
Graduate School of Natural Sciences
Faculty of Science

Master’s thesis ?

Cut and Count and Representative
Sets on Branch Decompositions

Author:
W.J.A. Pino

Supervisors:
dr. J.M.M. van Rooij

prof. dr. H.L. Bodlaender

August 2016

ICA-3463524

? A thesis submitted to the faculty in partial fulfilment of the
requirements for the degree of Master of Science in the Department

of Computing Science in the Graduate School of Natural Sciences.

Abstract

Recently, new techniques have been introduced to speed up dynamic program-
ming algorithms on tree decompositions for connectivity problems: the ‘Cut and
Count’ method and a method called the rank-based approach, based on representa-
tive sets and Gaussian elimination. These methods respectively give randomized and
deterministic algorithms that are single exponential in the treewidth, and respec-
tively polynomial and linear in the number of vertices. In this thesis, these methods
are adapted to branch decompositions. This yields algorithms, both randomised and
deterministic, that are in many cases faster than when tree decompositions would
be used.

In particular, the currently fastest randomised algorithms for several problems
on planar graphs are obtained. When the involved weights are O(nO(1)), this thesis
presents faster randomised algorithms on planar graphs for Steiner Tree, Con-
nected Dominating Set, Feedback Vertex Set and TSP, and a faster de-
terministic algorithm for TSP. When considering planar graphs with arbitrary real
weights, faster deterministic algorithms for all four mentioned problems are obtained.

1

Contents

1 Introduction 3

2 Preliminaries 6
2.1 Graphs, Sets and Partitions . 6
2.2 Width Measures . 7

2.2.1 Treewidth . 7
2.2.2 Branchwidth . 8

3 Algorithmic Techniques 10
3.1 Cut and Count . 10

3.1.1 Theory . 10
3.1.2 Example . 11

3.2 Rank Based Approach . 14
3.2.1 Theory . 14
3.2.2 Example . 17

3.3 Fast Subset Convolutions . 19
3.3.1 Theory . 19
3.3.2 Example . 20

3.4 Fast Matrix Multiplication . 23
3.4.1 Theory . 23
3.4.2 Example . 24

4 ‘Cut and Count’ on branch decompositions 25
4.1 Steiner Tree . 25
4.2 Connected Dominating Set . 27
4.3 Feedback Vertex Set . 30
4.4 Traveling Salesman . 33

5 Rank based approach on branch decompositions 35
5.1 Steiner Tree . 35
5.2 Connected Dominating Set . 37
5.3 Feedback Vertex Set . 40
5.4 Traveling Salesman . 41

6 Conclusion 44

2

1 Introduction

NP-complete problems are a source of much trouble for computer scientists. When a
problem is in NP this means that, unless P = NP, there does not exist a polynomial-
time algorithm that will solve the problem. Since almost everyone believes the answer
to the million dollar question (literally [9]) ‘is P = NP?’ to be negative, it is very likely
that only exponential-time algorithms exist for problems in NP. This is problematic
because the worst-case time it takes for an exponential-time algorithm to solve a problem
increases very fast as the size of the instance increases, often making these algorithms
useless for most practical instances. This being said, there are often approximation
algorithms that can be useful here.

Because a lot of interesting problems are NP-complete, a solution has to be found for
this issue. A possible approach lies in parameterized problems. The idea is that although
a problem of size n can only be solved in timeO(f(n)) where f is an exponential function,
it might be that the problem becomes tractable when it is parameterized. This means
that for a parameter k the running time becomes O(f(k)poly(n)), where f again is an
exponential function and poly is a polynomial function. This means that, although the
whole algorithm is still exponential, the algorithm has polynomial running time when k
is fixed. A problem with such an algorithm is called Fixed Parameter Tractable (FPT)
[11].

For problems involving graphs, useful parameters that often lead to FPT-algorithms
are width parameters. An often used width measure is treewidth, described by Robertson
and Seymour in their seminal work on graph minors [28]. Treewidth can be seen as the
degree to which a graph resembles a tree; a formal definition will be given in Section 2.
Treewidth and the corresponding tree decompositions have led to many fast algorithms
for a variety of problems [2].

Solving a problem using a width measure consists of two steps. First of all, a decom-
position of small or minimum width has to be found. Then this decomposition is used
to solve the problem using dynamic programming. The focus of this paper lies on the
second step. The intuition in the dynamic programming routine is that a set of partial
solutions is maintained for some part of the graph that can be combined with partial
solutions on the other parts to find a solution to the complete problem. Which set needs
to be maintained and how this set is updated when a new part of the graph is consid-
ered are the essential questions when designing an dynamic programming algorithm on
decompositions.

Treewidth is a width measure that has been studied extensively. For a good overview
see [5]. Finding a tree decomposition is NP-hard [4]. If the treewidth is fixed, then a
decomposition can be found in linear time [3], but the constants in the algorithm given
are so large that the approach is not practically feasible. For some types of graphs a
decomposition can be found fast [4]. However, a notable open problem is whether there
is an polynomial time algorithm that finds the treewidth of a planar graph.

Branchwidth is another well studied graph parameter, with strong relations to treewidth.
The branchwidth, bw, and treewidth, tw, of a graph are bounded by each other in the

3

following way: bw ≤ tw + 1 ≤ b3
2bwc. The transformation from a tree decomposition to

a branch decomposition or vice versa, fulfilling these bounds, can be executed in linear
time. This implies that running times of the form O(cknO(1)) for graphs of treewidth
k or branchwidth k follow from each other, except for a possibly different value for the
base of the exponent c. This difference in the base of the exponent is what this thesis
focusses on.

There are several other width measures besides treewidth and branchwidth such as
cliquewidth, rankwidth and boolean width [10, 26, 8]. However, these are considered to
be out of scope for this thesis.

It was long known that many graph problems with a local nature (e.g., Independent
Set, Dominating Set) can be solved on graphs given with a tree decomposition of
width k in time linear in k and single exponential in the number of vertices n, e.g. see [30].
For several problems with a global ‘connectivity’ property in it, it was open whether there
existed O(2O(k)nO(1)) time algorithms. This was resolved by Cygan et al. [13] with
the ‘Cut and Count ’ method; this approach gives fast randomized algorithms that are
single exponential in the treewidth and polynomial in the number of vertices for various
problems, e.g. Steiner Tree, Feedback Vertex Set, Hamiltonian Circuit, TSP,
Connected Dominating Set. The constants in the base of the exponential factors in
these algorithms are optimal [24, 13]. At the cost of a higher constant in the base of the
exponential factor, Bodlaender et al. [6] gave deterministic algorithms that are single-
exponential in the treewidth and linear in the number of vertices for these connectivity
problems. This technique, based on representative sets and Gaussian elimination, is
called the rank-based approach. This algorithm was experimentally evaluated by Fafianie
et al. [17], showing that in the case of the Steiner Tree problem, the method gives
a significant speedup over naive dynamic programming. An alternative method that
gives similar time bounds, based on representative sets and matroids, was given by
Fomin et al. [19]. Later, Fomin et al. [18] showed how to use matroids to speed up the
computation at join nodes in these algorithms leading, for several connectivity problems
with Steiner Tree as flagship example, to the currently fastest algorithms on graphs
of bounded treewidth.

In this thesis, it is shown that ‘Cut and Count’ and the rank-based approach can
be used directly on branch decompositions. As a result, in several cases, improvements
compared to using tree decompositions are obtained. For an overview of our results, see
Table 1.

Fast matrix multiplications and subset convolutions are two other techniques to speed
up dynamic programming algorithms on tree and branch decompositions. Dorn [14]
showed how to use matrix multiplication to speed up algorithms on branch decomposi-
tions and van Rooij et al. [7, 31] showed how to speed up algorithms on tree, branch and
clique decompositions using (generalised) subset convolutions. In this thesis these works
are build upon, applying these techniques where possible.

For a comparison of the results in this thesis to the current best treewidth algorithms,
see Table 2 and Table 3. Here, ω < 2.373 [21] is the matrix multiplication exponent.
Our branch decomposition based results improve known treewidth results for parts of

4

Problem Randomized Deterministic

Steiner Tree O(3
ω
2
bwnO(1)) O(n((1 + 2ω)

√
5)bwbwO(1))

Connected Dominating Set O(4
ω
2
bwnO(1)) O(n((2 + 2ω)

√
6)bwbwO(1))

Feedback Vertex Set O(3
ω
2
bwnO(1)) O(n((1 + 2ω)

√
5)bwbwO(1))

Hamilton Cycle / TSP O(4
ω
2
bwnO(1)) O(n(5 + 2

ω+2
2)bwbwO(1))

Planar Steiner Tree O(23.991
√
n) O(28.039

√
n)

Planar Connected Dominating Set O(25.036
√
n) O(28.778

√
n)

Planar Feedback Vertex Set O(23.991
√
n) O(28.039

√
n)

Planar Hamilton Cycle / TSP O(25.036
√
n) O(26.570

√
n)

Table 1: Our results using the ‘Cut and Count’ (randomized) and rank-based (deter-
ministic) techniques.

Problem Treewidth Branchwidth

Steiner Tree O(3twnO(1)) O(3
ω
2
bwnO(1))

Connected Dominating Set O(4twnO(1)) O(4
ω
2
bwnO(1))

Feedback Vertex Set O(3twnO(1)) O(3
ω
2
bwnO(1))

Hamilton Cycle / TSP O(4twnO(1)) O(4
ω
2
bwnO(1))

Table 2: Comparison of our results with best known results on treewidth [13] for ran-
domized algorithms on problems where the weights are O(nO(1)).

the range bw ≤ tw + 1 ≤ b3
2bwc (note that ω

2 < 3
2). Since the constants in the base

of the treewidth algorithms in Table 4 are optimal, if ω = 2, the constants in the
branchwidth algorithms are also optimal. In case of deterministic algorithms for TSP
with arbitrary real weights, our algorithms even give the advantage of using lower width
branch decompositions compared to tree decompositions without the additional cost of
a higher constant in the base of the exponent of the running time.

As planar graphs have branchwidth at most 2.122
√
n, and such a branch decom-

position can be constructed in polynomial time [20] (the ratcatcher algorithm can also

Problem Treewidth Branchwidth

Steiner Tree O(n23.134 tw) [18] O(n23.790 bw)
Connected Dominating Set O(n23.628 tw) [6] O(n24.137 bw)
Feedback Vertex Set O(n23.134 tw) [18] O(n23.790 bw)
Hamilton Cycle / TSP O(n23.257 tw) [6] O(n23.257 bw)

Table 3: Comparison of our results with best known results on treewidth for deterministic
algorithms on problems with arbitrary real weights.

5

Problem Dorn (nO(1)) Dorn (R) Randomized Deterministic

Planar Steiner Tree O(27.16
√
n) O(28.49

√
n) O(23.991

√
n) O(28.039

√
n)

Planar Connected Dom. Set O(28.11
√
n) O(29.82

√
n) O(25.036

√
n) O(28.778

√
n)

Planar Feedback Vertex Set O(27.56
√
n) O(29.26

√
n) O(23.991

√
n) O(28.039

√
n)

Planar Hamilton Cycle/TSP O(28.15
√
n) O(29.86

√
n) O(25.036

√
n) O(25.63

√
n)

Table 4: Comparison of our results on planar graphs with best known results.
The column ‘Dorn (nO(1))’ states deterministic results by Dorn [14] when weights are
O(nO(1)); the column ‘Dorn (R)’ states deterministic results by Dorn [15] for arbitrary
real weights; the column ‘Randomized’ states our randomised results when weights are
O(nO(1)); and the column ‘Deterministic’ states our deterministic results that also apply
to arbitrary real weights.
Note that the mentioned results by Dorn [14, 15] have not been adjusted for the recently
slightly improved matrix multiplication constant ω [21].

be used, it exactly computes the branchwidth of planar graphs in O(n3) time [22, 29]),
the algorithms in this thesis can be applied to solve connectivity problems on planar
graphs. This leads to the currently fastest algorithms on planar graphs for several prob-
lems, improving upon the best known results due to Dorn [14, 15]. When considering
randomised algorithms, the currently fastest algorithms for all considered problems are
improved when weights are bounded by O(nO(1)). When considering deterministic algo-
rithms, the currently fastest algorithms for all considered problems with arbitrary real
weights are improved, and the currently fastest algorithm for Hamilton Cycle and
TSP is improved when weights are bounded by O(nO(1)).

The results in this thesis are to be presented at the International Symposium on Pa-
rameterized and Exact Computation (IPEC). This means that there is overlap between
this thesis and the paper in the proceedings of the conference [27].

2 Preliminaries

2.1 Graphs, Sets and Partitions

Let G(V,E) be a graph with |V | = n vertices and |E| = m edges. For a vertex set X ⊆ V
the induced subgraph is denoted by G[X], i.e., G[X] = G(X,E ∩ (X ×X)). Likewise,
the induced subgraph of an edge set Y ⊆ E is denoted as G[Y], i.e., G[Y] = G(V (Y), Y)
where V (Y) stands for all endpoints of edges in Y . A cut in a graph is a tuple of two
vertex sets (X1, X2) for which it holds that X1 ∪X2 = V and X1 ∩X2 = ∅. The number
of connected components in a graph G is denoted by cc(G).

In a rooted tree, node y is a descendant of a node x when x is encountered when
traveling from y to the root. A node is also a descendant of itself.

The open neighborhood of a vertex v ∈ V is defined by N(v) = {u ∈ V |{u, v} ∈ E}
and the closed neighborhood of that vertex by N [v] = N(v) ∪ {v}. The closed and
open neighborhoods of a set of vertices X ⊆ V are denoted by N [X] =

⋃
v∈X N [v] and

6

N(X) = N [X]/X respectively. The powerset of a set S is denoted by 2S . A weight
function w : U → Z applied to a set X is defined as w(X) =

∑
x∈X w(x).

If two numbers a and b are the same modulo 2, i.e. a is odd iff b is odd, this is denoted
by a ≡ b.

Throughout the paper the Iverson bracket is used. This notation denotes a 1 if
the condition between brackets is satisfied and 0 otherwise, e.g. [1 = 1]42 = 42 and
[1 = 2]42 = 0. To be exact:

[P] =

{
1, if P = True

0, otherwise

This notation is also used in combination with sets S, then this denotes [True]S = S
and [False]S = ∅.

For a labelling s on a set of nodes X, s[v → a] denotes a labelling where node v ∈ X
has label a.

Some definitions and notions regarding partitions are also needed. Consider a set U .
The set of all partitions of U is denoted by Π(U). An element of a partition is also called
a block. For p ∈ Π(U), the term |p| denotes the amount of blocks in the partition. For
p, q ∈ Π(U), ptq is obtained from p and q by iteratively merging blocks in p that contain
elements that are in the same block in q and vice versa. Also, pu q is the partition that
contains all blocks that are a non empty intersection of a block in p and a block in q. If
X ⊆ U , then p↓X ∈ Π(X) is formed by removing all elements not in X from the partition
p and possibly removing empty blocks. In the same way, if U ⊆ X, then p↑X ∈ Π(X) is
formed by adding a singleton to p for every element in X \ U . The term U [X] denotes
a partition where all elements are singletons except for the elements in X which form
one block. A set of weighted partitions over U is a set F ⊆ (Π(U) × N), i.e., a set of
pairs consisting of a partition of U and a non-negative integer that is the weight of the
partition.

2.2 Width Measures

For each width measure the definition and a framework for constructing dynamic pro-
gramming algorithms on the decompositions will be given. As mentioned before, the
first step of finding a decomposition is considered out of scope and because of this de-
compositions are treated as given throughout the thesis.

2.2.1 Treewidth

Definition 2.1 (Tree decomposition). A tree decomposition of a graph G(V,E) is a
tree T where every node x ∈ T is associated with a set of vertices Bx ⊆ V (a bag) for
which it holds that

⋃
x∈TBx = V and with the following properties:

• for any edge (u, v) ∈ E there exists a node x ∈ T such that {u, v} ⊆ Bx.

• if v ∈ Bx and v ∈ By then v ∈ Bz for every node z on the path from node x to
node y in T.

7

The width of a tree decomposition is the size of the largest bag minus one. The
treewidth of a graph is the minimum width over all tree decompositions. There exist
several other equivalent definitions [4].

When writing a dynamic programming algorithm for a tree decomposition it is con-
venient if the tree decomposition has a certain structure. This is why the notion of a
nice tree decomposition is introduced. The definition given here is slightly different than
the original definition [23] but has been used before [13].

Definition 2.2 (Nice tree decomposition). A nice tree decomposition is a tree decom-
position T with a root where each of the bags Bx is of one of the following types:

• Leaf bag: a leaf x of T with Bx = ∅.

• Introduce vertex bag: an internal vertex x of T with one child vertex y for which
Bx = By ∪ {v} for some vertex v /∈ By. The bag is said to introduce vertex v.

• Introduce edge bag: an internal vertex x of T labeled with an edge (u, v) ∈ E
with one child vertex y for which u, v ∈ Bx = By. The bag is said to introduce
edge (u, v).

• Forget bag: an internal vertex x of T with one child vertex y for which Bx =
By/{v} for some vertex v ∈ By. The bag is said to forget vertex v.

• Join bag: an internal vertex x of T with two child vertices l and r with Bx =
Bl = Br.

Additionally require that every edge is introduced exactly once.

In [6] it is shown that, given a tree decomposition, a nice tree decomposition of the
same width can be found in O(n twO(1)) time. Once a nice tree decomposition is found,
the next step is to formulate how to handle each of the five types of bags and show that
this leads to the solution at the root node. When working with tree decompositions,
it is convenient to define for each node x ∈ T the node set Vx =

⋃
y descendant of xBy

(remember that x is its own descendant). In a slight abuse of notation, G[Vx] includes
only edges that are already introduced.

2.2.2 Branchwidth

While branchwidth is similar to treewidth with respect to algorithmic complexity results,
the definition is quite different.

Definition 2.3 (Branch decomposition). A branch decomposition of a graph G is a
tree T in which every internal node has degree 3 together with a bijection between the
leaves of T and the edges of G.

As such, every leaf of T is assigned an edge of G and every edge of G is in exactly
one leaf.

8

The removal of an edge in a branch decomposition T results in a cut in G. That
is, every edge x in T divides the edges of G in two parts E1 and E2, namely the edges
assigned to the leaves of the resulting subtrees T1 and T2 of T. For an edge x in T,
the associated middle set is the vertex subset Bx ⊆ V consisting of all vertices both
in G[E1] and in G[E2], i.e., Be = V1 ∩ V2 where V1 and V2 are the vertices in G[E1]
and G[E2], respectively. The width assigned to the edge x is the size of the middle
set Bx. The width of a branch decomposition T is the maximum width over all edges
of the decomposition, and the branchwidth of a graph G is the minimum width over all
possible branch decompositions of G.

To simplify the presentation, only rooted branch decompositions are considered. One
obtains a rooted branch decomposition by splitting an arbitrary edge (u, v) in the branch
decomposition into (u,w) and (w, v), adding a root node r, and adding the edge (w, r).
The middle sets of these three edges are defined to be B(u,w) = B(w,v) = B(u,v) and
B(w,r) = ∅. On rooted branch decompositions, it is possible to define a leaf edge to be
an edge of T connected to a leaf of T, the root edge to be the edge (w, r) to the root r,
and an internal edge to be any other edge of T. Additionally, for a non-leaf edge x of T,
it is possible to define its left child y and right child z in T by ordering the two edges
below x in T.

A dynamic programming algorithm on branch decompositions typically computes a
table Ax for every edge x of the branch decomposition T in a bottom-up fashion. Such
a table Ax usually contains a set of partial solutions (or the number of partial solutions)
on G[Ex] where Ex is the set of the edges assigned to the leaves below the edge x in T.
In the case that x is the root edge, the table Ax contains (the number of) complete
solutions. Because there are only two types of edges, i.e. leaf edges and internal edges,
only two types of operations have to be specified in a dynamic programming algorithm.

When considering a non-leaf edge x of a branch decomposition T, it is convenient to
define a well-known partitioning on the three middle sets involved.

Definition 2.4 (Partioning of middle sets). Consider a non-leaf edge x in a branch
decomposition T. Let x have left child y and right child z, and let the associated middle
sets be Bx, By, and Bz. Now define the following partitioning of Bx ∪By ∪Bz:

• Intersection vertices: I = Bx ∩ By ∩
Bz

• Forget vertices: F = (By ∩Bz) \Bx

• Left vertices: L = (Bx ∩By) \Bz

• Right vertices: R = (Bx ∩Bz) \By

This partitioning is illustrated in Figure 1. Note that I ∪ F ∪L∪R = Bx ∪By ∪Bz
since every node in a middle set is in at least one other middle set.

Lemma 2.5 (Constraints on size of middle set partitions). Given a branch decompo-
sition T of width bw, the following inequalities on the sizes of the middle-set partitions
hold for all non-leaf edges in T:

9

Figure 1: The partitioning of the middle sets

• |I|+ |L|+ |R| ≤ bw • |I|+ |L|+ |F | ≤ bw • |I|+ |F |+ |R| ≤ bw

Finally, to obtain the results on planar graphs, the following lemma is needed that
relates planar graphs to branch decompositions:

Lemma 2.6 (Branch decompositions of planar graphs [16, 20, 22, 29]). Given a planar
graph G, a branch decomposition T of G of minimal width can be computed in O(n3)
time. Furthermore, the computed branch decomposition T has width at most 2.122

√
n,

and for every non-leaf edge x in T the middle set partitions satisfy |I| ≤ 2.

3 Algorithmic Techniques

In this section the various techniques relevant for this thesis will be discussed. To
facilitate understanding the techniques will be accompanied with examples. ‘Cut and
Count’ and the rank based approach will be explained by means of Steiner Tree.
Since they had not been defined on branch decompositions before, they will be explained
using tree decompositions. Fast subset convolutions and fast matrix multiplication will
be explained using Dominating Set. Because they have both been used to speed up
dynamic programming algorithms on branch decompositions and are used only in this
capacity in this thesis they shall be defined on branch decompositions.

3.1 Cut and Count

3.1.1 Theory

‘Cut and Count’ is quite abstract when not applied to a problem so it is advised to read
the example when a first reading of the theory is not sufficiently clear.

The ‘Cut and Count’ technique of Cygan et al. [13] has two parts, the cut part
and the count part. In the cut part, the problem is reformulated and transformed
into a counting problem on consistently-cut candidate solutions where the connectivity
constraint is relaxed. This is done in three steps: first requirements on the set of
solutions S are relaxed to find a set of candidate solutions R, then this set R is coupled
with consistent cuts to find a set C of candidate solution-cut pairs, finally it is shown
that |S| ≡ |C|. In the count part, |C| is counted using dynamic programming.

Consider a set of solutions S ⊆ 2U over a universe U . The question is whether there
is a solution, i.e. whether S is non-empty. The first step in the cut part is done by

10

relaxing the connectivity requirement to obtain a set of candidate solutions R ⊇ S. For
the second step, define the set C = (X,C) where X ∈ R and C is a consistent cut of X.
The exact definition of a consistent cut depends on the problem at hand. This set C is
counted in the count part. If the relaxation is done properly then |C| ≡ |S|. For this
third step it suffices to ensure that a potential solution X ∈ R has an odd amount of
consistent cuts associated with it if X /∈ S and an even amount if X ∈ S. By counting
C it is now possible to determine whether S is non-empty, since solutions x ∈ R \ S
cancel because they have an even number of consistent cuts associated to them and only
solutions x ∈ S remain.

The problem is that when |S| is even the solutions cancel each other. To avoid this,
introduce a weight function w(u) that assigns a weight to each u ∈ U as specified in
Lemma 3.2. The lemma can now be used to ensure that, if there is a solution, this
solution has a unique weight with probability ≥ 1

2 . This is done by setting H = S and
M = 2n. Since |C| ≡ |S|, for each weight W , |{(X,C) ∈ C | w(X) = W}| ≡ |{X ∈
S | w(X) = W}|. With these insights it is possible to construct an algorithm [13], which
returns no if S = ∅ and yes with probability ≥ 1

2 otherwise. Count is a subroutine that
counts C mod 2.

Definition 3.1. A function w : U → Z isolates a set family H ⊆ 2U if there is a unique
H ′ ∈ H with w(H ′) = minH∈Hw(H).

Lemma 3.2 (Isolation Lemma [25]). Let H ⊆ 2U be a set family over a universe U with
|H| > 0. For each u ∈ U , choose a weight w(u) ∈ {1, 2, . . . ,M} uniformly at random.

Then Pr [w isolates H] ≥ 1− |U |M .

Algorithm 1: cutandcount(U ,T,Count)

Input : Set U ; tree decomposition T; Procedure Count with arguments
w : U → Z, W ∈ Z, and T.

Output: no if no solution, yes with Pr 1
2 otherwise

1 foreach v ∈ U do
2 Choose w(v) ∈ {1, 2, . . . , 2|U |} uniformly at random;
3 foreach 0 ≤W ≤ 2|U |2 do
4 if CountC(w,W,T) ≡ 1 then return yes;
5 return no

The runtime of the algorithm is dominated by the Count routine.

3.1.2 Example

Steiner Tree
Input: An undirected graph G(V,E), a set of terminals T ⊆ V and an integer k.
Question: Does there exist a set X ⊆ V such that T ⊆ X, |X| ≤ k, and G[X] is
connected?

11

For a subset X ⊆ V , Cygan et al. [13] define a consistent cut of G[X] to be a cut (X1, X2)
such that there is no edge (u, v) in G[X] with u ∈ X1 and v ∈ X2. This means that a
consistent cut of G[X] does not go through any connected component of G[X]. Since
the unweighted version of Steiner Tree is considered, it is possible to let a solution be
a subset of vertices X ⊆ V such that T ⊆ X and G[X] is connected. A consistently-cut
(possibly disconnected) candidate solution then is a pair (X, (X1, X2)) consisting of a
candidate solution X and a consistent cut (X1, X2) of G[X].

The relaxation is quite straightforward: a solution X is in R if it satisfies all require-
ments mentioned in the problem except for the requirement that G[X] is connected.
Define RW ⊆ R to be set of solutions for the relaxed problem with weight W . Define
SW and CW in the same manner.

The set C = (X, (X1, X2)) consists of candidate solutions X ∈ R and consistent cuts
(X1, X2) of G[X] with an arbitrarily chosen vertex v0 ∈ V always in X1. Since this
vertex is arbitrarily chosen it is possible to require that v0 = t0 ∈ T . It is necessary to
show that |CW | ≡ |SW | for each W .

Lemma 3.3. Given a graph G(V,E) let X be a subset of vertices such that t0 ∈ X ⊆ V .
The amount of consistently cut subgraphs (X, (X1, X2)) such that t0 ∈ X1 is 2cc(G[X])−1.

Proof. From the definition of a consistently cut subgraph it is known that a connected
component of G[X] is either in X1 or in X2. For the connected component with t0 in it
there is only one choice; it is in X1. All other connected components can be on either
side of the cut. This gives 2cc(G[X])−1 options leading to as many entries in C for every
X.

Now it is possible to prove the original assertion:

Lemma 3.4. Let G, w, CW , and SW as defined above. Then for every W , |CW | ≡ |SW |

Proof. By the previous lemma it is known that |CW | ≡
∑

X∈RW
2cc(G[X])−1. Thus |CW | ≡

|{X ∈ RW |cc(G[X]) = 1}| = |SW |.

The theory from the previous section combined with the lemmas above result in the
following:

Lemma 3.5. Suppose an algorithm Count is given that, given a graph G, a terminal
set T , some fixed terminal t0 ∈ T , and a weight function w : V → [0, ...,W], computes
the values A(i, w) defined below, for all 0 ≤ i ≤ k and 0 ≤ w ≤ kW :

A(i, w) =

∣∣∣∣{(X, (X1, X2))

∣∣∣∣ X ⊆ V, (X1, X2) a consistent cut of G[X],
T ⊆ X, t0 ∈ X1, |X| = i, w(X) = w

}∣∣∣∣ (mod 2)

Then, there exists a Monte-Carlo algorithm that solves Steiner Tree on G, that cannot
give false-positives and may give false negatives with probability at most 1/2. The running
time of this algorithm is dominated by the running time of the Count algorithm with
W = O(n).

12

Note that the Count algorithm described in the lemma does exactly what is required:
it counts CW for each W . For simplicity, the modulus is omitted in the description of
our counting algorithms and is taken afterwards. Doing all computations modulo two
requires slightly less time and space.

Theorem 3.6. There exist a Monte-Carlo algorithm that, given a graph G and a tree
decomposition T of G of width tw, solves Steiner Tree in time O(3twnO(1)).

Proof. The result follows from Lemma 3.5 if an algorithm is given that computes the
required values A(i, w) in O(3twnO(1)) time. The algorithm is a dynamic programming
algorithm on a tree decomposition. Since this algorithm is discussed in detail in [13]
some steps that are nonessential to understanding the gist of the algorithm are skipped
here.

The algorithm computes A(i, w) by bottom-up dynamic programming on the tree
decomposition T. For each node x of T, the algorithm counts partial-solution-cut pairs
(X, (X1, X2)), where X is a partial solution in G[Vx] if all terminals in G[Vx] are in X,
and where the cut (X1, X2) is a consistent cut of G[Vx] with additionally that if t0 ∈ X
then t0 ∈ X1. To count these pairs, define a labelling using labels 0, 11 and 12 on the
vertices in the bag Bx associated to an edge x of T. These labels identify the situation
of the vertex in a partial-solution-cut pair (X, (X1, X2)): label 0 means not in X, and
labels 11 and 12 mean in X and on side X1 and X2 of the cut, respectively.

In a bottom-up fashion, associate to each node x of T a table Ax(i, w, s) with entries
for all 0 ≤ i ≤ k, 0 ≤ w ≤ kW , and s ∈ {0, 11, 12}Bx . Such an entry Ax(i, w, s) counts
the number of partial-solution-cut pairs (X, (X1, X2)) as defined above that satisfy the
constrains imposed by the states s on Bx and that satisfy |X| = i and w(X) = w. It
suffices to compute the entries Ar(k,W, ∅) for the root bag r for all W .

What remains is to specify for each type of bag how to construct the dynamic pro-
gramming table associated with it. The vertex or edge under consideration is denoted
by v or (u, v). The bag itself is x and the left and right child of a bag, if applicable, are
y and z.

• Leaf bag:
Ax(0, 0, ∅) = 1

All other entries are zero.

• Introduce vertex bag:

Ax(i, w, s[v → 0]) = [v /∈ T]Ay(i, w, s)

Ax(i, w, s[v → 11]) = Ay(i− 1, w − w(v), s)

Ax(i, w, s[v → 12]) = [v 6= t0]Ay(i− 1, w − w(v), s)

The first line holds since all terminals must be in the solution. The third option
is only possible if v 6= t0 since t0 can only be on side 1 of the cut.

13

• Introduce edge bag:

Ax(i, w, s) = [s(u) = 0 ∨ s(v) = 0 ∨ s(u) = s(v)]Ay(i, w, s)

If u and v are on different sides of the cut then the entry becomes invalid.

• Forget vertex bag:

Ax(i, w, s) =
∑

α∈{0,11,12}

Ay(i, w, s[v → α])

This step sums over all possible states v can have in the child bag.

• Join bag:

Ax(ix, wx, s) =
∑

ix=iy+iz−|s−1({11,12})| ∑
wx=wy+wz−w(s−1({11,12}))

Ay(iy, wy, s) ·Az(iz, wz, s)

The labeling has to be identical for both children. The vertices in the bag and
their weights are counted twice if they are summed, so they have to be deducted
to obtain ix and wx.

The bag which takes most time to compute is the join bag. Each entry of the Ax has
to be evaluated. There are only a limited number of entries from each of the child nodes
that could result in an entry of Ax. When s is fixed this also fixes the labelling for y
and z and the amount of iy and iz or wy and wz that could result in a given ix or wx is
proportional to n. The main component of the computation time is therefore dependent
on the size of Ax. This size is determined by the different options for ix, wx and s. The
amount of options for ix and wx are of order nO(1) but the amount of labellings s is of
order 3tw since there are three different labels and the maximum size of a bag is equal
to the treewidth. This results in an overall running time of O(3twnO(1)).

3.2 Rank Based Approach

3.2.1 Theory

The following operators from [6] are used on a set of weighted partitions F ⊆ (Π(U)×N):

• Remove: Define rmc(F) = {(p, w) ∈ F | @(p, w′) ∈ F ∧ w′ < w}. This operator
removes non-minimal weight copies.

• Union: For G ⊆ (Π(U)×N), define F]G = rmc(F ∪G). This operator combines
the two sets of weighted partitions and discards the dominated partitions.

• Insert: For X ∪ U = ∅, define ins(X,F) = {(p↑U∪F , w) | (p, w) ∈ F}. This
operator adds all elements in X as singletons to each partition.

14

• Shift: For w′ ∈ N, define shft(w′,F) = {(p, w + w′) | (p, w) ∈ F}. This operator
increases the weight of each partition in F by w′.

• Glue: For u, v, let Û = U ∪ {u, v} and define glue({u, v},F) ⊆ Π(Û)× N as

glue({u, v},F) = rmc({(Û [{u, v}] t p↑Û , w) | (p, w) ∈ F})

This operator adds u and v to the base set if needed and combines all blocks with
u and v into one block in each partition.

• Project: For X ⊆ U , let X̄ = U \X and define proj(X,F) ⊆ Π(X̄)× N as

proj(X,F) = rmc({(p↓X̄ , w) | (p, w) ∈ F ∧ |p↓X̄ | = |p|})

This operator removes all elements from X from each partition and discards a
partition if the amount of blocks in it decreases because of this.

• Join: For a set U ′ and G ⊆ Π(U ′), let Û = U ∪ U ′ and define join(F ,G) ⊆
(Π(Û)× N) as

join(F ,G) = rmc({(p↑Û t q↑Û , w1 + w2) | (p, w1) ∈ F ∧ (q, w2) ∈ G})

This operator extends all partitions to the same base set Û . It then combines each
pair of partitions by means of the t operator and assigns the sum of the weights
as a new weight.

It is straightforward to find the running times of these operations [6].

Corollary 3.7. Each of the operations union, shift, glue, and project can be performed
in time S · |U |O(1), where S is the size of the input of the operation. Given sets of
weighted partitions F and G, join(F,G) can be computed in time |F | · |G| · |U |O(1).

The basic idea behind the rank based approach is to limit the sizes of the tables used
in a dynamic programming routine. A naive algorithm is taken as starting point. In
between the steps of the algorithm, e.g. after processing each bag, a Reduce routine
is used to reduce the size of the table. The crux of the Reduce routine is that it does
not look at individual entries of the table but looks at sets of entries. The results of this
section are discussed in more detail in the original paper [6].

In the naive algorithm, as in the rank based algorithm, the entries in a table in a
dynamic programming algorithm are specified by means of a labelling. This labelling
specifies the role of the vertices in the bag in the solution, e.g. in or not in the solution.
Each entry Ax(s) is filled with weighted partitions. Ax(s) represents all partial solutions
on G[Vx] consistent with the labelling s in the following way: the weight of the partition
corresponds to the weight of the partial-solution; and vertices are in the same block of
the partition that represents that solution, if and only if, the vertices are in the same
connected component. The operators specified above are used to handle these weighted
partitions.

15

When reducing a table it is important that the smaller table is representative of the
larger table, i.e. if a partial solution in the larger set of partial solutions can be extended
to an optimal solution, then there should always be a partial solution in the smaller set
that can also be extended to this optimal solution. The formal definition is given below.

Definition 3.8 (Representation). For sets of weighted partitions F ,F ′ ⊆ (Π(U) × N)
and a partition q ∈ Π(U), define:

opt(q,F) = min{w | (p, w) ∈ F ∧ p t q = {U}}

F ′ represents F , if for all q ∈ Π(U), it is the case that opt(q,F ′) = opt(q,F).

The essence of the rank-based approach lies in the Reduce procedure from [6]. This
procedure reduces the size of the tables used in the dynamic program without loss of
representation.

Theorem 3.9. There exists an algorithm Reduce that, given a set of weighted partitions
F ⊆ (Π(U) × N), outputs a set of weighted partitions F ′ ⊆ F , such that F ′ represents
F and |F ′| ≤ 2|U |−1, in O(|F|2(ω−1)|U ||U |O(1)) time where ω is the matrix multiplication
exponent.

The matrix multiplication exponent will be explained in detail in Section 3.4. For
the moment it suffices to know that ω < 2.373. The proof is omitted here in lieu of a
sketch of the routine.

For the moment the weights will be disregarded and the focus will be on the parti-
tions. Extending the method to include weights is trivial. The aim of the routine is to
find a subset of partitions that is representative. To reiterate, this means that there is
a partition in this set that can be extended to the unit partition by combining it with
another partition, if there was a partition in the original set for which this also holds. It
turns out that it is possible to construct a matrix in which finding a basis plays the same
role as selecting a subset of partitions that is representative. This matrix is denoted by

M ∈ ZΠ(U)×Π(U)
2 . The matrix shows which partitions combine to form the unit partition.

Formally it can defined as follows:

M [p, q] =

{
1, if p t q = {U}
0, otherwise

One can see that a basis in M corresponds to a set of partitions for which the
mentioned criteria hold and which is therefore representative. The next question is how
large this basis, and thus the set, can be. Obtaining an upper bound on the size of
the basis amounts to obtaining an upper bound on the rank of the matrix. To find
this upper bound it is shown that M can be constructed by taking the product of
two cutmatrices C. Define cuts(t) = {(V1, V2) | V1 ∪ V2 = U ∧ 1 ∈ V1} where 1 is

an arbitrary but fixed element of U . A matrix C ∈ ZΠ(U)×cuts(t)
2 is a cutmatrix if

C[p, (V1, V2)] = [(V1, V2) is consistent with p]. The matrix shows which partitions and

16

cuts are consistent, i.e. which partitions are a refinement of a cut. It can now be seen
that M ≡ CCT . The entry CCT [p, q] counts the number of cuts that is consistent both
p and q. This is 1 iff p t q = {U}. To see this consider the blocks in p t q. The block
containing 1 must be in V1. The other blocks can either be in V1 or V2. The total amount
of cuts consistent with p t q is thus equal to 2|ptq|−1.

The next step is to find a row basis in C because the associated partitions will be
representative of the whole set of partitions. If the weights of the partitions are included
this should be a minimum weight basis. Since there are only 2|U |−1 columns in C, this
is a bound on the rank of C. For the output, this means that F ≤ 2|U |−1.

3.2.2 Example

Weighted Steiner Tree
Input: An undirected graph G(V,E), a set of terminals T ⊆ V , a weight function
w : E → N and an integer k.
Question: Does there exist a set X ⊆ E such that T ⊆ V (G[X]), |X| ≤ k, and
G[X] is connected?

First a naive algorithm for weighted Steiner Tree on tree decompositions will be given.
Thereafter, it will be showed how to use representative sets and Gaussian elimination to
improve the time complexity. Note that, different from Section 3.1, (partial) solutions are
now sets of edges connecting the terminals T . Note also that the Reduce algorithm can
be used as a black box when discussing specific problems. It reduces tables irrespective
of the problem in which it is used. This means that no more theoretical discussion of
the workings of the algorithm is needed throughout the rest of the thesis.

In a bottom-up fashion, the naive algorithm computes a table Ax for each node x of
the tree decomposition T. This table keeps track of all possible partial solutions Y ⊆ Ex
on G[Vx] that can be extended to a minimal weight solution on G. These partial solutions
are subsets Y ⊆ E(G[Vx]) such that all terminals in G[Vx] are incident to an edge in Y ,
and all connected components in G[Y] either contain a vertex in Bx or connect all
terminals T in G.

Each entry Ax(s) in the table is indexed by a labelling s ∈ {0, 1}Bx on the vertices
in Bx and contains a set of weighted partitions. The label 1 means that the vertex will
be incident to the solution edge set, which is the case when the vertex is a terminal or
when the vertex is incident to an edge in the partial solution Y . The label 0 means that
it will not be incident to the solution edge set. The set of weighted partitions Ax(s) is
a set of weighted partitions on all vertices with label 1 in s. Ax(s) represents all partial
solutions on G[Vx] consistent with the labelling s in the following way: the weight of
the partition corresponds to the weight of the partial-solution Y ; and vertices are in the
same block of the partition p that represents that solution Y , if and only if, the vertices
are in the same connected component in G[Y].

For each bag x with children y and z, if applicable, the tables are constructed as
below. The vertex or edge under consideration is denoted by v or (u, v).

17

• Leaf bag:
Ax(∅) = {(∅, 0)}

• Introduce vertex bag:

Ax(s) =


ins({v}, Ay(sy)), if s(v) = 1

Ay(sy), if s(v) = 0 ∧ v /∈ T
∅, if s(v) = 0 ∧ v ∈ T

If v is in the solution then it is inserted as a singleton into each partition. Since no
edges to v are introduced, it cannot be connected to another part of the solution.
If v is not in the solution then the partitions do not change. Of course if v is a
terminal then it has to be in the solution.

• Introduce edge bag:

Ax(s) =

{
shft(w(uv), Ay(s)] glue({u, v}, Ay(s))), if s(v) = s(u) = 1

Ay(s), otherwise

If v and u are both in the solution, the blocks with u and v can be merged. If not,
the partitions remain the same.

• Forget vertex bag:

Ax(s) = Ay(s[v → 0])] proj(v,Ay(s[v → 1]))

The partial solutions where v was in the solution are combined with those where
v was not. If v was in the solution it is removed from the partition and partial
solutions where v was a singleton are removed. The latter step ensures that all
solutions are connected.

• Join bag:
Ax(s) = shft(w(s−1(1)), join(Az(s), Ay(s)))

Each partial solution in Ay(s) can be combined with each partial solution from
Az(s). The partitions of each solution need to be combined and the weights have
to be added and then adjusted for double nodes.

It is now possible to apply the Reduce routine from Theorem 3.9 at each step of the
naive algorithm for Steiner Tree and carefully analyse the resulting running time to
obtain the following result.

Theorem 3.10. There exists an algorithm that, given a graph G and a tree decomposi-
tion T of G of width tw, solves Steiner Tree in time O(n(1 + 2ω+1)twtwO(1)).

18

Proof. The algorithm computes the tables Ax in a bottom-up fashion over the branch
decomposition T according to the formulae in the description of the naive algorithm.
Directly after the algorithm finishes computing a table Ax for any node x in the tree
decomposition, the Reduce algorithm is applied to each entry Ax(sx) of the table to
control the sizes of the sets of weighted partitions. This means that Az(s) ≤ 2|s

−1(1)|

and Ay(s) ≤ 2|s
−1(1)|. Because the naive algorithm is correct and the Reduce procedure

maintains representation (Theorem 3.9), it is possible to conclude that the new algorithm
is correct also.

Processing the bags can be done relatively fast, see Corollary 3.7. The time complex-
ity is dominated by the Reduce algorithm which takes longest for a join bag since the
input is largest there. It is known that after a join operation Ax(s) ≤ 2|s

−1(1)|∗2|s−1(1)| =
22|s−1(1)|. The total time needed for Reduce on all labelings can be seen to be:

O(

|Bx|∑
i=0

(
|Bx|
i

)
22i2(ω−1)itwO(1)) = O(

|Bx|∑
i=0

(
|Bx|
i

)
1|Bx|−i2(ω+1)itwO(1)) =

O((1 + 2ω+1)|Bx|twO(1)) ≤ O((1 + 2ω+1)twtwO(1))

In the first formula, the first part,
∑|Bx|

i=0

(|Bx|
i

)
, generates all possible labellings. The

variable i stands for the number of nodes assigned a 1 in the labeling. The second part,
22i2(ω−1)itwO(1), gives the time to reduce the table for that labeling. The term 22i in
this part is the maximum size of the table for each labeling. The binomial theorem is
used to go from the second step to the third step. Since this time is needed for each bag,
the total running time is O(n(1 + 2ω+1)twtwO(1)).

3.3 Fast Subset Convolutions

3.3.1 Theory

The fast subset convolution technique that is used in this paper is a generalization of
fast subset convolution [1] and has been used on tree and branch decompositions [31, 7].
It makes use of transformations that use multiple states.

When constructing a table Ax from tables Ay and Az in a dynamic programming
routine on a branch decomposition, it is often the case that the label of a node in Ax can
be caused be several combinations of labels of that node in Ay and Az (Steiner tree is an
exception and therefore a relatively easy example). This is problematic because when
composing Ax, in order to determine the value of an entry, a relatively high number of
entries from Ay and Az must be examined. For example, if a node is labeled in Ax to
indicate it has a neighbor in the solution it could be that this is a result from either the
node being labeled as such in Ay, or being labeled as such in Az, or being labeled as
such in both tables. This increases the running time of the algorithm. The idea behind
fast subset convolution is to choose a different set of labels, such that a label in Ax can
only be the result of a more limited set of combinations of labels in Ay and Az. The key
here is that, in order to be able to guarantee the requirements of the problem, it must
be possible to convert between different sets of labels. To do this the algorithm does

19

not only keep track of the size of a (partial) solution but also of the number of (partial)
solutions of that size. How to convert the labels is different for each set of labels used,
but follows the same reasoning as presented in the example.

3.3.2 Example

Dominating Set
Input: An undirected graph G(V,E) and an integer k.
Question: Does there exist a set X ⊆ V such that |X| ≤ k, and N [X] = V ?

Before introducing the subset convolutions the folklore algorithm will be presented. To
make the transition to the algorithm using fast subset convolutions more fluent this
algorithm already counts the number of solutions.

Theorem 3.11. There exists an algorithm that, given a graph G and a branch decom-
position T of G of width bw solves Dominating Set in time O(6bwnO(1)).

Proof. In a bottom-up fashion, the algorithm computes a table Ax for each edge x of
the branch decomposition T. This table keeps track of all possible partial solutions X ⊆
Vx on G[Ex] that can be extended to a solution on G. These partial solutions are
subsets X ⊆ Vx such that all vertices in G[Ex] \ Bx are either in X or dominated and
all connected components in G[X] contain a vertex in Bx.

Each entry Ax(s, k) in the table is indexed by a labelling s ∈ {1, 01, 00}Bx on the
vertices in Bx and a value 0 ≤ k ≤ n which denotes |X|, i.e. the amount of nodes in the
solution. The labels 1, 01 and 00 respectively mean that a vertex is in the solution, is
not in the solution but is dominated by a vertex in the solution, or is not in the solution
and is not dominated by a vertex in the solution either. A vertex v is dominated if
N(v) ∩X 6= ∅. An entry Ax(s, k) has a value that corresponds to the number of partial
solutions for which the vertices in Bx have the labeling s and k = |X|. The root node r
will have one entry for each value of k (since Br = ∅) with a value that corresponds to
the amount of solutions that consist of k vertices.

For a leaf edge x of the branch decomposition T, Bx = {u, v} for an edge (u, v) ∈ E.
The table Ax associated to x can be filled as follows:

Ax(00 00, 0) = 1 Ax(01 1, 1) = 1 Ax(1 01, 1) = 1 Ax(1 1, 2) = 1

For an internal edge x of the branch decomposition T with children y and z, fill the
table Ax by means of the following formula:

Ax(sx, kx) =
∑

sx,sy ,szmatch

∑
ky+kz−kI,F =kx

Ay(sy, ky) ·Az(sz, kz)

Here the term kI,F stands for the amount of nodes in F and I that have label 1. Of
particular concern is whether labellings are matching. Labeling sx, sy and sz are said

20

to be matching if sy and sz can combine to form sx. For each of the partitions of the
middle sets this means something different.

The labels on a vertex v in L match if sy(v) = sx(v) ∈ {1, 01, 00}. Roughly the
same holds for a vertex v in R, the labels match if sz(v) = sx(v) ∈ {1, 01, 00}. For
both there are 3 combinations of labels that produce a match. For a vertex v in F
the labels are matching if either sy(v) = sz(v) = 1, or sy(v), sz(v) ∈ {00, 01} while not
sy(v) = sz(v) = 00. So 4 combinations of labels produce a match. Lastly, for a vertex
v in I labels produce a match if either sy(v) = sz(v) = sx(v) ∈ {1, 00}, or sx(v) = 01

while sy(v), sz(v) ∈ {00, 01} and not sy(v) = sz(v) = 00. Here 5 combinations produce
valid matchings.

The bottleneck in this algorithm is computing the tables for the internal edges. For
each matching set of states the table has to be constructed for each value of k and in
the sum there are O(n) terms for each matching set of states. Since each vertex in L
and R has 3 possible matching states, each vertex in F has 4 matching states, and each
vertex in I has 5 matching states, the total amount of possible matching sets of states is
3|L|+|R|4|F |5|I|. This means each table Ax can be computed in O(n23|L|+|R|4|F |5|I|) time.

Under the constraints in Lemma 2.5, this is maximal if |I| = 0 and |R| = |L| =
|F | = 1

2bw. Since there are O(m) internal edges, this leads to a running time of

O(mn24
1
2
bw3bw) = O(6bwnO(1)).

In the complexity analysis it becomes clear that it is mainly the number of valid
matching states that influences the running time. This is what the introduction of fast
subset convolutions takes advantage of.

To do this an extra label is introduced, namely 0?. This label means that a node is
not in the solution but it is not specified whether it is dominated or not. In terms of
the existing labels, a node with label 0? could have been assigned either 01 or 00. In
the algorithm a different set of labels is used for each vertex. Which labels are used
depends on whether a node is in L, R, F or I. Furthermore, this is done asymmetrical,
i.e. for an internal edge x with children y and z, it could be that a node in F in the
table Ay is labeled using different states as the same node (still in F) in table Az. This
is done to allow for easy recombination later in the algorithm. Firstly, however, the sets
of states and how they interact will be formalized. This formalization is similar to that
in previous papers [31].

Lemma 3.12. Let x be an edge of a branch decomposition T with corresponding middle
set Bx and let Ax be a table with entries Ax(s, k) representing the number of partial
solutions of Dominating Set in G(Ex) of each size k, with Ex being the edges assigned
to the leaves of Tx. Here s corresponds to all labelings of the middle set Bx with states
such that for every individual node in Bx one of the following fixed sets of states is used:

{1, 01, 00} {1, 01, 0?} {1, 0?, 00}

The information represented in the table Ax does not depend on the choice of the set
of states from the options given above. Moreover, there exist transformations between

21

tables using representations with different sets of states on each vertex using O(|Ax||Bx|)
operations.

Proof. To show that this holds a set of formulæ will be provided that can be used to
transform the table such that it represents the same information with different sets of
states. Since these formulæ can also be used to reverse the transformation it follows that
the information is preserved.

The transformation works in |Bx| steps. The invariant is that, at any step i, the first
i− 1 labels in the labeling use the sets of states that are introduced and the last |Bx|− i
labels use the original sets of states. The set of states used by the i-th label are changed
in step i. Note that when changing from one set of states to another, it is always the
case that one label is introduced. Depending on which label this is one of the formulæ
below is used.

Ax(c1 × {0?} × c2, k) = Ax(c1 × {01} × c2, k) +Ax(c1 × {00} × c2, k)

Ax(c1 × {01} × c2, k) = Ax(c1 × {0?} × c2, k)−Ax(c1 × {00} × c2, k)

Ax(c1 × {00} × c2, k) = Ax(c1 × {0?} × c2, k)−Ax(c1 × {01} × c2, k)

Here c1 is a sub-labeling of the first i − 1 nodes that uses the new sets of states
and c2 is a sub-labeling of the last |Bx| − i nodes that uses the original sets of states.
The entries that have a label on the i-th node that is also in the new set of states stay
the same. After computing all new values the entries with the removed label on node
i are removed. For example, the first formula counts the number of partial solutions
that do not contain the i-th vertex v in their solution (it is not specified whether this
vertex is dominated) by adding the partial solutions that do not include v but where v is
dominated and the partial solutions that do not contain v but where v is not dominated.
Note that although the set of states used may differ per vertex and per table, node i
within one table will always use the same set of states for its labeling.

For each of the |Ax| entries, |Bx| subtractions or additions are needed so a transfor-
mation will use O(|Ax||Bx|) operations.

It is now possible to use Lemma 3.12 to improve on Theorem 3.11.

Theorem 3.13. There exists an algorithm that, given a graph G and a branch decom-
position T of G of width bw solves Dominating Set in time O(3

3
2
bwnO(1)).

Proof. Except for how the tables for each internal edge are computed the algorithm is
the same as the algorithm of Theorem 3.11. When computing the table Ax for an edge x
with children y and z, the algorithm starts by transforming the tables Ay and Az so that
they use the required sets of states for labels. This means that nodes in I are labeled
with {1, 0?, 00}, nodes in L and R are labeled with {1, 01, 00} and nodes in F are labeled
with either {1, 01, 00} if they are in table Ay or with {1, 01, 0?} if they are in table Az.

With these new sets of states it is possible to reevaluate when labellings are matching.
For any node v the labels match if:

• v ∈ I : sx(v) = sy(v) = sz(v) ∈ {1, 0?, 00}

22

• v ∈ F : either sy(v) = sz(v) = 1 or sy(v) = 00 and sz(v) = 01 or sy(v) =
01 and sz(v) = 0?

• v ∈ L : sx(v) = sy(v) ∈ {1, 01, 00}

• v ∈ R : sx(v) = sz(v) ∈ {1, 01, 00}

Note that there are 3 possibilities for each part of the middle sets. For the nodes in
L and R the same is done as in the previous algorithm. For nodes in I the same holds if
a node has label one. If a node has label 00 in Ax it must be the case that it has label 00

in both the tables of the children. This is true since if a node is not in the solution and
not dominated, it cannot have been dominated before. The most complicated case is for
the nodes in F . If a node is forgotten it must be either in the solution, or it must be
dominated. The case where the node is in the solution is covered by the first instance,
like in the previous algorithm. However, the algorithm must make sure that each of the
other cases is counted only once. To see that this is the case look at the combinations
that resulted in valid matchings when the set of states used was {1, 01, 00}. The case
where sy(v) = 00 and sz(v) = 01 is covered by the same combination in this algorithm.
The case where sy(v) = 01 and sz(v) = 01 and the case where sy(v) = 01 and sz(v) = 00

are both counted in the case where sy(v) = 01 and sz(v) = 0? in this algorithm.
The time analysis of this algorithm is like the time analysis in Theorem 3.11. The

only difference is that there are now a smaller number of valid matchings. This means
that the factor 3|L|+|R|4|F |5|I| is replaced by 3|L|+|R|+|F |+|I|. The running time under
the constraints on the different parts of the middle sets is still maximal if |I| = 0 and

|R| = |L| = |F | = 1
2bw. So the algorithm runs in O(mn23

3
2
bw) = O(3

3
2
bwnO(1)).

3.4 Fast Matrix Multiplication

3.4.1 Theory

The time it takes to multiply two (n× n)-matrices can be written as O(nω). The ω, as
has been mentioned in Section 3.2, is called the matrix multiplication exponent. Since
the time this takes when choosing the naive approach is O(n3), it is known that ω ≤ 3.
The best current value for ω is 2.373 [21].

If, instead of square matrices, a (n× p)-matrix and a (p× n)-matrix are considered,
then the running times differ. Two cases can be distinguished here, the case where p ≤ n
and the case where p > n. For the first case there is a O(n1.85 · p0.54) algorithm (with
ω = 2.373). For the second case there exists an O(pn · n

ω + p
n · n

2) algorithm. This is
the result of splitting each matrix into p

n many (n × n)-matrices and multiplying them
to find another p

n (n × n)-matrices. Sum over each entry of the resulting matrices to
find the result of the multiplication. Suppose that the multiplication is B ·C = A, then
splitting gives matrices Bl and Cl with 1 ≤ l ≤ p

n . Multiplying these gives matrices Al.
Now sum over elements Alij for each l to find the values Aij .

Fast matrix multiplication was first used in the context of branch decomposition by
Dorn [14]. The intuition behind using fast matrix multiplication in dynamic program-

23

ming algorithms on branch decompositions is that the tables that have to be combined
can be seen as matrices. Combining these matrices can be done through matrix multi-
plication. The most straightforward way to do this is to fix all variables, including the
labelling on I, except for the labelling of the nodes in F , L and R. Assume that the
labeling has v different values. It is now possible to construct two matrices B and C (for
some instance of the fixed variables) of size (v|L|× v|F |) and (v|F |× v|R|) respectively. In
matrix B there is a row for each labelling of L and a column for each labelling of F , and
in matrix C there is a row for each labelling of F and a column for each labelling of R.
As the labellings on I are fixed, each entry in B can be associated to a full labelling of
the middle set By, and each entry in C can be associated to a complete labelling of the
middle set Bz. Moreover, each entry in the matrix product BC = A can be associated
to a full labelling of Bx, corresponding to the row of B (labelling of L) and column of C
(labelling of R). Note that it is imperative that column i of B and row i of C correspond
to the same labelling on F . The entries in each of the matrices now correspond to a
value from each of the respective tables. This is ensured because a single table entry is
specified for each matrix entry by the fixed variables and the complete labelling resulting
from the fixed labelling on I and the labellings associated with the rows and columns.
This means all entries for Ax can be found in the A matrices.

To clarify this strategy it is helpful to see how it can be used to improve the result
on Dominating Set of Theorem 3.13.

3.4.2 Example

Theorem 3.14 ([7]). There exists an algorithm that, given a graph G and a branch
decomposition T of G of width bw solves Dominating Set in time O(3

ω
2
bwnO(1)) where

ω is the matrix multiplication exponent.

Proof. As mentioned above, the first step is to fix several variables. In this case kx,
ky and a labeling on I are fixed for each matrix multiplication. As shown later, it is
not necessary to fix kz since it is well-defined by kx, ky and the labeling. Now two
matrices B and C are created of size (3|L| × 3|F |) and (3|F | × 3|R|) respectively. The
rows and columns are labeled as described in the theory section above. An entry of
matrix B will have value Ay(sy, ky). Because the labeling on I is fixed and each row and
column are assigned a labeling on a part of the middle set, sy is well-defined. This is
true for the whole expression since ky was fixed already. The entries of C are the values
Az(sz, kx − ky − kI,F). As before, the term kI,F stands for the amount of nodes in F
and I that have label 1, this term is defined by the labeling sz. As a result, all variables
in the expression are fixed for each entry. Note that, when constructing B and C, the
labeling assigned to column i in B and row i in C cannot be equal, different sets of states
are used in labeling the parts. However, it is possible to arrange the matrices such that
column i in B and row i in C have labellings that match. This is possible because there
is a bijection between the valid labellings on F .

If B and C are multiplied, the result is a matrix A. This is an (3|L| × 3|R|) matrix
with a labeling on L and R assigned to each row and column. The values of each entry

24

can be seen to correspond to the result of the sum that was previously used to compute
Ax(sx, kx). When looking at how each term is constructed it becomes clear that each
entry of A equals the sum over all possible labellings of F of the product of compatible
terms such that kx = ky +kz−kI,F . In other words, the outcome is exactly equal to the
outcome of the formula used to compute the internal edge table in the algorithm from
Theorem 3.13:

Ax(sx, kx) =
∑

sx,sy ,szmatch

∑
ky+kz−kI,F =kx

Ay(sy, ky) ·Az(sz, kz)

Because of the values that are fixed for each set of matrices, this multiplication needs
to be done n23|I| times for each table. For symmetry reasons |L| = |R| in the worst case.

The time it takes to multiply B and C follows from the theory and is O(3|F |

3|L|
3ω|L|).

The total time complexity is therefore O(mn23|I| 3
|F |

3|L|
3ω|L|). The worst-case under the

constraints in Lemma 2.5 arises if |I| = 0 and |R| = |L| = |F | = 1
2bw. The algorithm

therefore has a running time of O(mn23
ω
2
bw) = O(3

ω
2
bwnO(1)).

4 ‘Cut and Count’ on branch decompositions

In this section several examples will be used to show that the ‘Cut and Count’ technique
from [13] can also be used in algorithms on branch decompositions. First of all it is
important to note, as will become clear in this section, that only the Count procedure
has to be changed. This is the only part that uses the tree or branch decomposition.
Everything else can remain identical whether a tree of branch decomposition is used.
For clarity some context on the ‘Cut and Count’ framework for each problem is given,
but for a detailed description see the original paper [13]

The problems discussed in this section are Steiner Tree, Connected Domi-
nating Set, Feedback Vertex Set and Traveling Salesman. These problems
are chosen because they are representative of connectivity problems and because col-
lectively they deal with all peculiarities encountered in [13], such as markers and fast
subset convolutions. All other problems discussed in the mentioned paper can be solved
using branch decompositions in a similar manner.

4.1 Steiner Tree

Since Steiner Tree was an example in Section 3.1, the general approach is known.
The only part that needs to be revised is the Count procedure where the dynamic
programming on tree decompositions was used because Lemma 3.5 still holds. The
Count procedure will now be defined on a branch decomposition.

For easier exposition, first the following theorem will be proven. Next, this will be
improved this using fast matrix multiplication in Theorem 4.2.

Theorem 4.1. There exist a Monte-Carlo algorithm that, given a graph G and a branch
decomposition T of G of width bw, solves Steiner Tree in time O(3

3
2
bwnO(1)).

25

Proof. The result follows from Lemma 3.5 if an algorithm can be given that computes
the required values A(i, w) in O(3

3
2
bwnO(1)) time. This algorithm is given below.

The algorithm computes A(i, w) by bottom-up dynamic programming on the branch
decomposition T. For each edge x of T, count partial-solution-cut pairs (X, (X1, X2)),
where X is a partial solution in G[Ex] if all terminals in G[Ex] are in X, and where the
cut (X1, X2) is a consistent cut of the subgraph of G[Ex] induced by X (i.e., a cut in
(G[Ex])[X]) with additionally that if t0 ∈ X then t0 ∈ X1. To count these pairs, define
a labelling using labels 0, 11 and 12 on the vertices in the middle set Bx associated to
an edge x of T. These labels identify the situation of the vertex in a partial-solution-cut
pair (X, (X1, X2)): label 0 means not in X, and labels 11 and 12 mean in X and on
side X1 and X2 of the cut, respectively.

In a bottom-up fashion, associate to each edge x of T a table Ax(i, w, s) with entries
for all 0 ≤ i ≤ k, 0 ≤ w ≤ kW , and s ∈ {0, 11, 12}Bx . Such an entry Ax(i, w, s) counts
the number of partial-solution-cut pairs (X, (X1, X2)) as defined above that satisfy the
constrains imposed by the states s on Bx and that satisfy |X| = i and w(X) = w.

For a leaf edge x of the branch decomposition T, Bx = {u, v} for some edge (u, v)
in E. The table Ax associated to x can be filled as follows (all other entries are zero):

Ax(0, 0, 0 0) = 1[u /∈ T ∧ v /∈ T]

Ax(1, w(u), 11 0) = 1[v /∈ T]

Ax(1, w(v), 0 11) = 1[u /∈ T]

Ax(1, w(u), 12 0) = 1[u 6= t0 ∧ v /∈ T]

Ax(1, w(v), 0 12) = 1[u /∈ T ∧ v 6= t0]

Ax(2, w(u) + w(v), 11 11) = 1

Ax(2, w(u) + w(v), 12 12) = 1[u 6= t0 ∧ v 6= t0]

Here, it is enforced that the cut is consistent, that every terminal t ∈ T is in the partial
solution X, that t0 is on the correct side of the cut (t0 ∈ X1), and that |X| = i and
w(X) = w.

For an internal edge x of the branch decomposition T with children y and z, fill the
table Ax by combining the counted number of partial-solution-cut pairs from the tables
for y and z. For this, it is defined that labellings sx of Bx, sy of By, and sz of Bz are
compatible if and only if sLx = sLy ∧ sRx = sRz ∧ sFy = sFz ∧ sIx = sIy = sIz (where sLx denotes
the labelling sx restricted to middle set partition L; for the middle set partitions see
Definition 2.4).

Fill Ax by means of the following formula, where iZ denotes the number of vertices
with state 1 in middle set partition Z, and wZ denotes the sum of the weights of the
vertices with state 1 in middle set partition Z (for Z equals any middle set partition):

Ax(ix, wx, sx) =
∑

sx, sy , sz
compatable
labellings

∑
ix = iy + iz
−iI − iF

∑
wx = wy + wz

−wI − wF

Ay(iy, wy, sy) ·Az(iz, wz, sz)

26

This counts the total number of partial-solution-cut pairs (X, (X1, X2)) that satisfy
the constraints. The summations combine all compatible entries from Ay and Az and
the multiplication combines the individual counts. Labellings are compatible if sLx =
sLy ∧ sRx = sRz ∧ sFy = sFz ∧ sIx = sIy = sIz. To see that exactly these entries are valid,
note that the consistency of the cut, the fact that T ⊆ X, and that t0 ∈ X1 are all
enforced at the leaves and maintained by enforcing compatible labels. Furthermore, the
partial-solution size i and weight w is the sum of both underlying partial solutions minus
the doubling on the middle set partitions F and I.

By computing Ax for all edges in the branch decomposition T in the above way, it is
possible to find the required values A(i, w) at the root edge r of T where Br = ∅.

Consider the time required for computing tableAx. This table has at most 3|L|3|R|3|I|k2W
entries, and for each entry at most 3|F |k2W combinations of entries from Ay and Az have
to be inspected, thus requiring O(3|L|+|R|+|I|+|F |k4n2) time using W = O(n). This leads

to a worst-case running time of O(3
3
2
bwnO(1)) under the constraints in Lemma 2.5.

This result can be improved by using the fast matrix multiplications introduced in
Section 3.4.

Theorem 4.2. There exist a Monte-Carlo algorithm that, given a graph G and a branch
decomposition T of G of width bw, solves Steiner Tree in time O(3

ω
2
bwnO(1)), where

ω is the matrix multiplication exponent.

Proof. The algorithm is similar to the proof of Theorem 4.1, however, the formula for
the table Ai(ix, wx, sx) associated to an internal edge of the branch decomposition is
evaluated in a more efficient way.

This is achieved by fast matrix multiplications. The usage is very similar to that
in Section 3.4.2. A labelling on I is fixed and ix, iy, wx and wy are fixed. Then Ax is
computed by means of matrix multiplications.

Since there are three labels, 3|I|k2W 2 matrix multiplications are performed of a
3|L|× 3|F | matrix and a 3|F |× 3|R| matrix. These rectangular matrices can be multiplied
in O(3(ω−1)|L|3|F |nO(1)) time (see also [14, 21]), where it is used that it is possible to
assume |L| = |R| in a worst-case analysis for symmetry reasons. Under the constraints
of Lemma 2.5, the worst-case arises when |L| = |R| = |F | = 1

2bw resulting in a running

time of O(3
ω
2
bwnO(1)).

Corollary 4.3. There exists a Monte-Carlo algorithm that, given a planar graph G,
solves Planar Steiner Tree in time O(23.991

√
n).

Proof. Combine Theorem 4.2 with Lemma 2.6 and use ω < 2.373 [21].

4.2 Connected Dominating Set

27

Connected Dominating Set
Input: An undirected graph G(V,E) and an integer k.
Question: Does there exist a set X ⊆ V such that |X| ≤ k, N [X] = V , and G[X]
is connected?

The ‘Cut and Count’ routine works in similar ways as for Steiner tree. A vertex
v0 is fixed that needs to be in the solution. For a general algorithm, iterate over all
nodes in the neighborhood of a node. A random weight function w : V → [0, ...,W]
is selected. The set R is the set of all dominating sets. The connectivity requirement
is again relaxed. The set C is defined as in the previous section. Proving that these
requirements ensure a correct solution is similar to the proof in the previous section.
The following lemma now holds:

Lemma 4.4. Suppose an algorithm Count is given that, given a graph G(V,E), some
fixed vertex v0 ∈ V , and a weight function w : V → [0, ...,W], computes the values
A(i, w) defined below for all 0 ≤ i ≤ k and 0 ≤ w ≤ kW :

A(i, w) =

∣∣∣∣{(X, (X1, X2))

∣∣∣∣ (X1, X2) a consistent cut of G[X],
N [X] = V, v0 ∈ X1, |X| = i, w(X) = w

}∣∣∣∣ (mod 2)

Then, there exists a Monte-Carlo algorithm that solves Connected Dominating Set
on G, that cannot give false-positives and may give false negatives with probability at
most 1/2. The running time of this algorithm is dominated by the running time of the
Count algorithm using W = O(n).

Theorem 4.5. There exist a Monte-Carlo algorithm that, given a graph G and a
branch decomposition T of G of width bw, solves Connected Dominating Set in
time O(4

ω
2
bwnO(1)), where ω is the fast matrix multiplication exponent.

Proof. The result follows from Lemma 4.4 if an algorithm can be given that computes
the required values A(i, w) in O(4

ω
2
bwnO(1)) time.

Compute A(i, w) by bottom-up dynamic programming on the branch decomposi-
tion T. For each edge x of T, count partial-solution-cut pairs (X, (X1, X2)), where X is
a partial solution in G[Ex] if V (G[Ex]) \ Bx ⊆ N [X], and where the cut (X1, X2) is a
consistent cut of the subgraph of G[Ex] induced by X (i.e. a cut in (G[Ex])[X]) with
additionally that if v0 ∈ X then v0 ∈ X1.

To speed up the dynamic programming algorithm the subset convolutions from Sec-
tion 3.3 are used. To count partial-solution-cut pairs, a labelling is defined using a
combination of labels 11, 12, 01, 0? and 00 on vertices in middle set Bx associated to an
edge x of T. The first three labels are always used and two out of three of the latter
are used; each set of labels consists of four different labels. These labels identify the
situation of the vertex in a partial-solution-cut pair (X, (X1, X2)): 11 and 12 mean in
X1 and X2 respectively, 00 means not in X but in N [X], 0? means not in X but perhaps
in N [X] and 00 means not in X and not in N [X].

28

In a bottom-up fashion, associate to each edge x of T a table Ax(i, w, s) with entries
for all 0 ≤ i ≤ k, 0 ≤ w ≤ kW , and s ∈ {11, 12, 01, 0?, 00}Bx . Such an entry Ax(i, w, s)
counts the number of partial-solution-cut pairs (X, (X1, X2)) as defined above that sat-
isfy the constrains imposed by the states s on Bx and that satisfy |X| = i and w(X) = w.

Which sets of labels are used for which vertices, which labellings are compatible
and how the sets of labels can be transformed is almost identical to the algorithm in
Theorem 3.13. The difference here is that instead of a label 1, there are two labels 11 and
12. This results in not three but four possible combinations of labels at each vertex when
computing internal edges. Note that a label on a vertex in one middle set determines
the labels on the vertices in the other middle sets.

For a leaf edge x of the branch decomposition T, Bx = {u, v} for some edge (u, v) in
E. The table Ax associated to x can be filled as follows (all other entries are zero):

Ax(0, 0, 00 00) = 1[u 6= v0 ∧ v 6= v0]

Ax(1, w(u), 11 01) = 1[v 6= v0]

Ax(1, w(v), 01 11) = 1[u 6= v0]

Ax(1, w(u), 12 01) = 1[u 6= v0 ∧ v 6= v0]

Ax(1, w(v), 01 12) = 1[u 6= v0 ∧ v 6= v0]

Ax(2, w(u) + w(v), 11 11) = 1

Ax(2, w(u) + w(v), 12 12) = 1[u 6= v0 ∧ v 6= v0]

Here, it is enforced that the cut is consistent, that v0 is on the correct side of the cut
(v0 ∈ X1), and that |X| = i and w(X) = w.

For an internal edge x of the branch decomposition T with children y and z, fill the
table Ax by combining the counted number of partial-solution-cut pairs from the tables
for y and z. The subset convolutions technique dictates which labellings are compatible.

The table Ax is filled by means of the following formula, where iZ and wZ denote
the number of vertices and the sum of the weights of the vertices with state 11 or 12 in
Z, where Z is any middle set partition:

Ax(ix, wx, sx) =
∑

sx, sy , sz
compatable
labellings

∑
ix = iy + iz
−iI − iF

∑
wx = wy + wz

−wI − wF

Ay(iy, wy, sy) ·Az(iz, wz, sz)

This counts the total number of partial-solution-cut pairs (X, (X1, X2)) that satisfy the
constraints as the summations combine all compatible entries from Ay and Az and the
multiplications combine the individual counts. Furthermore, the partial-solution size i
and weight w is the sum of both underlying partial solutions minus the doubling on the
middle set partitions F and I.

By computing Ax for all edges in the branch decomposition T in the above way, it is
possible to find the required values A(i, w) at the root edge r of T where Br = ∅.

It is again possible to speed up computation of the tables using fast matrix multi-
plications. This is very similar to the previous section, the main difference is that there

29

are now four different labels in each labelling. Fix iy, iz, wy, wz, and the labelling on
I. Now construct the tables B and C. In this case the labelling associated with a col-
umn of B is no longer the same as the labelling associated with a row of C. However,
since there is a 1-1 correspondence between compatible labellings this is not a problem.
Since there are now 4 possible labels on each vertex, the sizes of B and C are 4|L|× 4|F |

and 4|F | × 4|R| respectively. The time analysis is, with the exception of the table sizes,
equal to the analysis already performed and so the algorithm has a running time of
O(4

ω
2
bwnO(1)).

Corollary 4.6. There exist a Monte-Carlo algorithm that, given a planar graph G,
solves Planar Connected Dominating Set in time O(25.036

√
n).

Proof. Combine Theorem 4.5 with Lemma 2.6 and use ω < 2.373 [21].

4.3 Feedback Vertex Set

Feedback Vertex Set
Input: An undirected graph G(V,E) and an integer k.
Question: Does there exist a set Y ⊆ V such that |Y | ≤ k, and G[V \Y] is a forest?

The ‘Cut and Count’ algorithm for Feedback Vertex Set is more intricate than
thus far seen. In the algorithm, instead of selecting the feedback vertex set itself, the
set of vertices not in the feedback vertex set, those forming the forest, is selected. To
ascertain whether this set of nodes is a forest the rule is used that a graph G is a forest
iff cc(G) = n−m.

To ensure this, a bound on the amount of connected components in the solution is
needed. To this end a set of markers M ⊆ X ⊆ V is introduced which is a subset of
the solution. The set C consists of pairs ((X.M), (X1, X2)) where M is a set of markers
and, just as before, X is a set of nodes in the solution and (X1, X2) is a consistent
cut of X. There are two weight functions wX and wM which give every vertex two
weights. In the algorithm it is required that M ⊆ X1. This means that each solution
with a connected component without a marker has an even amount of consistent cuts
associated with it, because a connected component without a marker can be on both
sides of the cut. These solutions therefore cancel modulo 2. A solution is thus required
to have a marker in each connected component, which creates an upper bound on the
amount of connected components, and needs to be a forest, which is checkable because
of this upper bound.

The dynamic programming algorithm keeps track of the number of vertices in the
solution |X| = i, the number of edges in the solution j, the number of markers |M | =
h and the sum of the weights of both the vertices in the solution and the markers
wX(X) + wM (M).

With this information it is possible to check if a solution is found. If there is a table
entry at the root node (which is not 0) for which it holds that i = |X| > |V | − k, and

30

h = |M | = |X|−j this means that this represents a forest with the set of vertices needed
to be removed to create this is |Y | ≤ k. This means all criteria are met. The following
lemma captures this idea.

Lemma 4.7. Suppose an algorithm Count is given that, given a graph G(V,E), a weight
function wX : V → [0, ...,W], and a weight function wM : V → [0, ...,W], computes
the values A(i, j, h, w) defined below for all 0 ≤ i ≤ n, 0 ≤ j ≤ n, 0 ≤ h ≤ n and
0 ≤ w ≤ 2nW :

A(i, j, h, w) ≡2

∣∣∣∣{((X,M), (X1, X2))

∣∣∣∣ (X1, X2) a consistent cut of G[X],M ⊆ X1, |X| = i,
|E(G[X])| = j, |M | = h,wX(X) + wM (M) = w

}∣∣∣∣
Then, there exists a Monte-Carlo algorithm that solves Feedback Vertex Set on
G, that cannot give false-positives and may give false negatives with probability at most
1/2. The running time of this algorithm is dominated by the running time of the Count

algorithm using W = O(n).

Theorem 4.8. There exist a Monte-Carlo algorithm that, given a graph G and a branch
decomposition T of G of width bw, solves Feedback Vertex Set in time O(3

ω
2
bwnO(1)),

where ω is the fast matrix multiplication exponent.

Proof. The result follows from Lemma 4.7 if an algorithm exists that computes the
required values A(i, w) in O(3

ω
2
bwnO(1)) time.

A(i, w) is computed by bottom-up dynamic programming on the branch decomposi-
tion T. For each edge x of T, count partial-solution-cut pairs ((X,M), (X1, X2)), where
(X,M) is a partial solution in G[Ex] if M ⊆ X ⊆ V (G[Ex]) and where the cut (X1, X2)
is a consistent cut of the subgraph of G[Ex] induced by X (i.e. a cut in (G[Ex])[X])
with additionally that M ∈ (X1 \Bx).

To count these pairs, define a labelling using a combination of labels 11, 12, and 0 on
vertices in middle set Bx associated to an edge x of T. These labels identify the situation
of the vertex in a partial-solution-cut pair ((X,M), (X1, X2)): label 0 means not in X,
and labels 11 and 12 mean in X1 and in X2 respectively. The labels do not designate
whether a vertex is in M , this is only determined when a vertex is no longer in Bx.

In a bottom-up fashion, associate to each edge x of T a table Ax(i, j, h, w, s) with
entries for all 0 ≤ i ≤ n, 0 ≤ j ≤ n, 0 ≤ h ≤ n, 0 ≤ w ≤ 2nW , and s ∈
{11, 12, 0}Bx . Such an entry Ax(i, j, h, w, s) counts the number of partial-solution-cut
pairs ((X,M), (X1, X2)), as defined above, that satisfy the constrains imposed by the
states s on Bx and that satisfy |X| = i, |E(G[X])| = j, |M | = h and wX(X \ Bx) +
wM (M) = w. Note that the weights of vertices that are in the solution and in the
middle set are not counted. The weights of vertices in the solution are only added when
they are no longer in the middle set. This happens automatically for markers since it is
chosen which nodes are markers only when they are no longer in the middle set.

To remedy not keeping track of which vertices are inM , some preprocessing is needed.
This is the reason weights are only added when vertices are no longer in the middle set.
Before constructing the table for an internal edge x of T with children y and z, the table

31

Ay is modified. For every entry of Ay, increase the weight by wX(X ∩ F) (this term
is different for each entry). By adding this term the weights of vertices in the solution
are counted. After this, iteratively cycle through all the vertices in F . For all entries
where v has label 11 the possibility needs to be considered that v is a marker. Add the
amount of solutions corresponding to that original entry to the entry that is the same
except for the marker counter h which is h = horig + 1 and the weight value which is
w = worig + wM (v). In this way it is considered for each vertex in F with label 11 that
it could be a marker while still maintaining the same bound on the size of the table.

For a leaf edge x of the branch decomposition, Bx = {u, v} for some edge (u, v) in
E. The table Ax associated to x can be filled as follows (all other entries are zero):

Ax(0, 0, 0, 0, 0 0) = 1 Ax(1, 0, 0, 0, 11 0) = 1

Ax(1, 0, 0, 0, 0 11) = 1 Ax(1, 0, 0, 0, 12 0) = 1

Ax(1, 0, 0, 0, 0 12) = 1 Ax(2, 1, 0, 0, 11 11) = 1

Ax(2, 1, 0, 0, 12 12) = 1

Here, it is enforce that the cut is consistent, that |X| = i, and that |E(G[X])| = j.
For an internal edge x of the branch decomposition with children y and z, fill the

table Ax by combining the counted number of partial-solution-cut pairs from the tables
for y and z. For this, it is defined that labellings sx of Bx, sy of By, and sz of Bz are
compatible iff sLx = sLy ∧ sRx = sRz ∧ sFy = sFz ∧ sIx = sIy = sIz. Fill Ax by means of the
following formula:

Ax(ix, jx, hx, wx, sx) =
∑

sx, sy , sz
compatable
labellings

∑
ix=iy+iz−iI−iF

∑
jx=jy+jz

∑
hx=hy+hz

∑
wx=wy+wz

Ay(iy, jy, hy, wy, sy) ·Az(iz, jz, hz, wz, sz)

This counts the total number of partial-solution-cut pairs ((X,M), (X1, X2)) that
satisfy the constraints as the summations combine all compatible entries from Ay and
Az and the multiplication combines the individual counts. The preprocessing ensures
that weights are only counted once.

By computing Ax for all edges in the branch decomposition T in the above way, it is
possible to find the required values A(i, w) at the root edge r of T where Br = ∅.

It is possible to use fast matrix multiplication to speed up the computations. Al-
though there are more values that need to be fixed, these are only dependent on n so
they do not affect the resulting running time. Since the amount of labels is equal, the
matrices are the same size as in Theorem 4.2 and the running time is also equal.

Corollary 4.9. There exist a Monte-Carlo algorithm that, given a planar graph G,
solves Planar Feedback Vertex Set in time O(23.991

√
n).

Proof. Combine Theorem 4.8 with Lemma 2.6 and use ω < 2.373 [21].

32

4.4 Traveling Salesman

Traveling Salesman
Input: An undirected graph G(V,E), a weight function w : E → N and an integer
k.
Question: Does there exist a set Y ⊆ E such that w(Y) ≤ k, and G[Y] is a
Hamiltonian cycle?

The ‘Cut and Count’ algorithm for Traveling Salesman resembles that of Section 4.1
and Section 4.2. The main difference is that here the solution consists of edges instead
of vertices. So C consist of pairs (Y, (X1, X2)) where (X1, X2) is a consistent cut of
G[Y]. The selected random weight function w2 is also on edges instead of vertices. In
the algorithm it is enforced that every node removed from the middle set has degree 2.
This ensures that the solution consist of a set of cycles. Since a node v0 is chosen which
is required to be in X1, solutions with more than one cycle cancel modulo 2.

Lemma 4.10 (based on [13]). Suppose an algorithm Count is given that, given a
graph G(V,E), some fixed vertex v0 ∈ V , a weight function w1 : E → [0, ...,W], and a
weight function w2 : E → [0, ...,W], computes the values A(i, w) defined below for all
0 ≤ i ≤ k and 0 ≤ w ≤ nW :

A(i, w) =

∣∣∣∣{(Y, (X1, X2))

∣∣∣∣ (X1, X2) a consistent cut of G[Y], v0 ∈ X1,
w1(Y) = i, w2(Y) = w, V = V (G[Y])

}∣∣∣∣ (mod 2)

Then, there exists a Monte-Carlo algorithm that solves Travelling Salesman Prob-
lem on G, that cannot give false-positives and may give false negatives with probability
at most 1/2. The running time of this algorithm is dominated by the running time of
the Count algorithm using W = O(n).

The weight function w1 is intrinsic to the problem and gives the weights of the edges
in the problem. The second weight function is added by the ‘Cut and Count’ technique.

Theorem 4.11. There exist a Monte-Carlo algorithm that, given a graph G and a branch
decomposition T of G of width bw, solves Traveling Salesman in time O(4

ω
2
bwnO(1)),

where ω is the fast matrix multiplication exponent.

Proof. The result follows from Lemma 4.10 if an algorithm exists that computes the
required values A(i, w) in O(4

ω
2
bwnO(1)) time. This algorithm is given below.

Compute A(i, w) by bottom-up dynamic programming on the branch decomposi-
tion T. For each edge x of T, count partial-solution-cut pairs (Y, (X1, X2)), where Y
is a partial solution in G[Ex] if V (G[Y]) = V (G[Ex]) \ Bx, and where the cut (X1, X2)
is a consistent cut of the subgraph of G[Ex] induced by Y (i.e., a cut in (G[Ex])[Y])
with additionally that if v0 ∈ X then v0 ∈ X1. To count these pairs, define a labelling
using labels 0, 11, 12 and 2 on the vertices in the middle set Bx associated to an edge x
of T. These labels identify the situation of the vertex in a partial-solution-cut pair

33

(Y, (X1, X2)): label 0 means not in Y , and labels 11 and 12 mean in Y with one adjacent
edge in Y and on side X1 and X2 of the cut, respectively. Label 2 means in Y and with
2 adjacent edges in Y .

In a bottom-up fashion, associate to each edge x of T a table Ax(i, w, s) with entries
for all 0 ≤ i ≤ k, 0 ≤ w ≤ nW , and s ∈ {0, 11, 12, 2}Bx . Such an entry Ax(i, w, s) counts
the number of partial-solution-cut pairs (Y, (X1, X2)) as defined above that satisfy the
constrains imposed by the states s on Bx and that satisfy w1(Y) = i and w2(Y) = w.

For a leaf edge x of the branch decomposition T, Bx = {u, v} for some edge (u, v)
in E. The table Ax associated to x can be filled as follows (all other entries are zero):

Ax(0, 0, 0 0) = 1

Ax(w1(uv), w2(uv), 11 11) = 1

Ax(w1(uv), w2(uv), 12 12) = 1[u 6= v0 ∧ v 6= v0]

Here, it is enforced that the cut is consistent, that v0 is on the correct side of the cut
(v0 ∈ X1), and that w1(Y) = i and w2(Y) = w.

For an internal edge x of the branch decomposition T with children y and z, fill the
table Ax by combining the counted number of partial-solution-cut pairs from the tables
for y and z. For this, it is defined that labellings are compatible if the labels on nodes
in L and R are equal for all middle sets and the labels on nodes in F satisfy sy(v) =
2 ∧ sz(v) = 0 ∨ sy(v) = 0 ∧ sz(v) = 2 ∨ sy(v) = 11 ∧ sz(v) = 11 ∨ sy(v) = 12 ∧ sz(v) = 12

for any node v ∈ F . To limit the amount of possible compatible labels per node in I to
4 options a slight modification of generalized fast subset convolution is used [31].

Fill Ax by means of the following formula:

Ax(ix, wx, sx) =
∑

sx, sy , sz
compatable
labellings

∑
ix=iy+iz

∑
wx=wy+wz

Ay(iy, wy, sy) ·Az(iz, wz, sz)

This counts the total number of partial-solution-cut pairs (Y, (X1, X2)) that satisfy the
constraints as the summations combine all compatible entries from Ay and Az and the
multiplication combines the individual counts.

By computing Ax for all edges in the branch decomposition T in the above way, it is
possible to find the required values A(i, w) at the root edge r of T where Br = ∅.

Since the length of the tables is identical to that in Theorem 4.5 and a labelling on
a part of a middle set also implies the labelling on that part of the other middle set(s),
the time analysis is the same as in Theorem 4.5.

Corollary 4.12. There exist a Monte-Carlo algorithm that, given a planar graph G,
solves Planar Travelling Salesman Problem in time O(25.036

√
n).

Proof. Combine Theorem 4.11 with Lemma 2.6 and use ω < 2.373 [21].

34

5 Rank based approach on branch decompositions

In this section the same representative four problems are chosen as in the previous
section. The structure of each section is similar. First a naive algorithm is presented.
Afterwards, it is indicated where the Reduce routine is used and the complexity analysis
shows what effect this has on the worst case running time.

5.1 Steiner Tree

First a naive algorithm for weighted Steiner Tree on branch decompositions will be
given. Thereafter, it is shown how to use representative sets and Gaussian elimination
to improve the time complexity. The tables of this naive algorithm are the same as those
in Section 3.2, the difference lies in how they are constructed.

For a leaf edge x of the branch decomposition T, Bx = {u, v} for an edge (u, v) in
E. The table Ax associated to x can be filled as follows:

A(0 0) = {(∅, 0)}[u /∈ T ∧ v /∈ T]

A(1 0) = {({{u}}, 0)}[v /∈ T]

A(0 1) = {({{v}}, 0)}[u /∈ T]

A(1 1) = {({{u}, {v}}, 0), ({{u v}}, w((u, v)))}

Here, it is ensured that terminal vertices in T correspond to 1 labels, and that vertices
incident to an edge in the partial solution correspond to 1 labels. It is also needed to
ensure that the partition corresponds to the connected components on the vertices with
a 1 label, and that the weight of the partition equals the weight of the partial solution.

For an internal edge x of the branch decomposition T with children y and z, fill the
table Ax by means of the following formula:

Ax(sx) =
⊎

sF∈{0,1}F
proj

(
F, join(Ay(s

L
xs

I
xsF), Az(s

R
x s

I
xsF))

)
Here sLxs

I
xsF stands for the concatenation of the labelling sx restricted to L, the la-

belling sx restricted to I, and the labelling sF on F (note that this gives a valid labelling
on By).

For every labelling sF on F , the above formula combines every entry of Ay(s
L
xs

I
xsF)

with every entry of Az(s
R
x s

I
xsF). The resulting entries in which vertices in F are in sep-

arate blocks should be discarded, since this indicates a partial solution with a connected
component no longer connected to Bx, which is therefore invalid. Projecting over all
vertices in F removes these entries and also makes sure the vertices in F are no longer
included in partitions in Ax.

Partitions in the computed set Ax(s) again correspond to the connected components
of the partial solution, by definition of the join and proj operations. Also, the weights
of the partitions correspond to the weights of the partial solutions, as edges are chosen
from G in a partial solution in leaf edges of the branch decomposition and the join

operation sums up the weights.

35

By computing Ax for all edges in the branch decomposition T in the above way, it
is possible to find the weight of the minimum weight solution to Steiner Tree at the
root edge r of T where Br = ∅ as the weight of the empty partition.

The Reduce routine from Theorem 3.9 is applied at each step of the naive algorithm
for Steiner Tree to obtain the following result.

Theorem 5.1. There exists an algorithm that, given a graph G and a branch decom-
position T of G of width bw, solves Steiner Tree in time O(n((1 + 2ω)

√
5)bwbwO(1)),

where ω is the matrix multiplication exponent.

Proof. The algorithm computes the tables Ax in a bottom-up fashion over the branch
decomposition T according to the formulae in the description of the naive algorithm.
Directly after the algorithm finishes computing a table Ax for any edge x in the branch
decomposition, the Reduce algorithm is applied to each entry Ax(sx) of the table to
control the sizes of the sets of weighted partitions. Because the naive algorithm is correct
and the Reduce procedure maintains representation (Theorem 3.9), the new algorithm
is correct also.

To prove the running time, consider a non-leaf edge x in the branch decomposition T
with left child y and right child z. The operations in the naive algorithm used to
compute, for a labelling sx ∈ {0, 1}Bx , the set of weighted partitions Ax(sx) can be
implemented in O(bwO(1)) time times the number of combinations of entries from Ay
and Az involved. This can be done using the straightforward implementations from
Corollary 3.7. As each combination of entries from Ay and Az can lead to an entry in
Ax(sx) before the Reduce step is applied, the running time is dominated by the time
required by the Reduce algorithm.

For a fixed sx ∈ {0, 1}Bx , let j be the amount of vertices in sx with label 1, i.e.
j = |s−1

x (1)|. For the set of weighted partitions Ax(sx), Reduce takes time:

O
(
|Ax(sx)|2(ω−1)jjO(1)

)
The size of Ax(sx) is the result of combining, for every labelling sF ∈ {0, 1}F , every entry
of Ay(s

L
xs

I
xsF) with every entry of Az(s

R
x s

I
xsF). Using sy = sLxs

I
xsF and sz = sRx s

I
xsF ,

the sizes of Ay(sy) and Az(sz) are bounded by 2|s
−1
y (1)| and 2|s

−1
z (1)|, respectively, since

these table were reduced after computing Ay and Az. Therefore, the total time it takes
to reduce the sets of partitions for all entries in Ax is:

O
(|I∪R∪L|∑

j=0

(
|I ∪R ∪ L|

j

)
2(ω−1)j |Ax(sj)|jO(1)

)
The sum and the binomial coefficient consider all possible labellings using j for the
number of 1 labels. This is the only information needed about the labellings. As such,
notation is slightly abused and any labelling with j vertices with label 1 is denoted as
sj . Also, si,l,f denotes any labelling with i vertices with label 1 on I, l vertices with
label 1 on L, and f vertices with label 1 on F .

36

It is now possible to expand the sum, differentiating between I, L and R, and use
that Ay(sy) and Az(sz) are bounded by 2|s

−1
y (1)| and 2|s

−1
z (1)|, respectively:

O
(|I∪R∪L|∑

j=0

(
|I ∪R ∪ L|

j

)
2(ω−1)j |Ax(sj)|jO(1)

)
=

O
(|I|∑
i=0

|R|∑
r=0

|L|∑
l=0

(
|I|
i

)(
|R|
r

)(
|L|
l

)
2(ω−1)(i+r+l)|Ax(si,r,l)|(i+ r + l)O(1)

)
≤

O
(|I|∑
i=0

|R|∑
r=0

|L|∑
l=0

(
|I|
i

)(
|R|
r

)(
|L|
l

)
2(ω−1)(i+r+l)

|F |∑
f=0

(
|F |
f

)
|Ay(si,l,f)||Az(si,r,f)|bwO(1)

)
≤

O
(|I|∑
i=0

|R|∑
r=0

|L|∑
l=0

(
|I|
i

)(
|R|
r

)(
|L|
l

)
2(ω−1)(i+r+l)

|F |∑
f=0

(
|F |
f

)
2i+l+f2i+r+fbwO(1)

)
=

Next, rearrange the terms and repeatedly apply the binomial theorem to obtain a more
simple expression:

O
(|I|∑
i=0

(
|I|
i

)
2(ω+1)i

|R|∑
r=0

(
|R|
r

)
2ωr

|L|∑
l=0

(
|L|
l

)
2ωl

|F |∑
f=0

(
|F |
f

)
22fbwO(1)

)
≤

O
(
(1 + 2ω+1)|I|(1 + 2ω)|R|(1 + 2ω)|L|5|F |bwO(1)

)
If this is maximized under the constraints in Lemma 2.5, then a worst-case running time
is found of:

O(((1 + 2ω)
√

5)bwbwO(1))

In this case |R| = |L| = |F | = 1
2bw and |I| = 0. Taking into consideration that this

must be done for every edge in the branch decomposition, the time-complexity from the
theorem is found.

Corollary 5.2. There exists an algorithm that, given a planar graph G, solves Planar
Steiner Tree in time O(28.039

√
n).

Proof. Combine Theorem 5.1 with Lemma 2.6 and use ω < 2.373 [21].

5.2 Connected Dominating Set

Theorem 5.3. There exists an algorithm that, given a graph G and a branch decom-
position T of G of width bw, solves Connected Dominating Set in time O(n((2 +
2ω)
√

6)bwbwO(1)), where ω is the matrix multiplication exponent.

Proof. First the naive algorithm will be discussed. Next Reduce is applied in order to
achieve the required running time.

For each edge x there is a table Ax. Each entry Ax(s) consists of a set of weighted
partitions. These weighted partitions represent all the partial solutions for a labelling

37

s. A labelling s ∈ {1, 01, 0?}Bx describes the state of the vertices associated with the
edge. A label 1 means the vertex is in the solution, a label 01 means it is not in the
solution but is dominated, a label 0? means that it is not in the solution but perhaps
dominated. Ax(s) represents all partial solutions on G[Ex] consistent with the labelling s
in the following way: the weight of the partition corresponds to the weight of the partial-
solution X; and vertices are in the same block of the partition p that represents that
solution X, if and only if, the vertices are in the same connected component in G[X].
Note that the partitions for each entry are partitions of all vertices with label 1.

For a leaf edge x of the branch decomposition T, it holds that Bx = {u, v} for some
edge (u, v) in E. The table Ax associated to x can be filled as follows (all other entries
are zero):

Ax(0? 0?) = {(∅, 0)} Ax(1 0?) = {({u}, w(u))}
Ax(1 01) = {({u}, w(u))} Ax(0? 1) = {({v}, w(v))}
Ax(01 1) = {({v}, w(v))} Ax(1 1) = {({uv}, w(u) + w(v))}

For an internal edge x of the branch decomposition with children y and z, the table
Ax is filled by combining the partial-solutions from the tables for y and z. This is done
by means of the following formula:

Ax(sx) =]
sx, sy , sz

compatable

proj(F, join(Ay(sy), Az(sz)))

There are different criteria that determine whether sy and sz are compatible with sz
for different parts of the middle sets. For a vertex v in L the labellings are compatible
if sy(v) = sz(v) and similarly for a vertex in R. For a vertex v in I the labellings are
compatible if sy(v) = sz(v) = sx(v) = 1 ∨ sy(v) = sz(v) = sx(v) = 0? ∨ sy(v) = sx(v) =
01 ∧ sz(v) = 0? ∨ sz(v) = sx(v) = 01 ∧ sy(v) = 0?. Of course the labellings would also
be compatible if sy(v) = sz(v) = sx(v) = 01 but this case is covered already by the
two latter cases (and will never have a better weight) so it is possible to disregard this
option. For a vertex v in F the labellings are compatible if sy(v) = sz(v) = 1 ∨ sy(v) =
01 ∧ sz(v) = 0? ∨ sy(v) = 0? ∧ sz(v) = 01.

The Reduce routine can be used after computing each edge. This will be the most
expensive step. Note that sx is an arbitrary labelling having the amount of labels 1, 01

and 0? prescribed by j0, j1 and j2 respectively. The amount of vertices having each label
is the only information needed in the time analysis, the actual labelling is irrelevant here,
but this is a convenient notation. This is a similar abuse of notation as in Section 5.1,
however, the sj0,j1,j2 notation is not used to avoid terms like si0,i1,i2,r0,r1,r2,l0,l1,l2 .

38

O(
∑

j0+j1+j2=|I∪R∪L|

(
|I ∪R ∪ L|
j0 j1 j2

)
2

(ω−1)
2

j0 |Ax(sx)|jO(1)
0) =

O(
∑

i0+i1+i2=|I|

∑
r0+r1+r2=|R|

∑
l0+l1+l2=|L|

(
|I|

i0 i1 i2

)(
|R|

r0 r1 r2

)(
|L|

l0 l1 l2

)
2(ω−1)(i0+r0+l0)|Ax(sx)|(i0 + r0 + l0)O(1)) =

O(
∑

i0+i1+i2=|I|

∑
r0+r1+r2=|R|

∑
l0+l1+l2=|L|

(
|I|

i0 i1 i2

)(
|R|

r0 r1 r2

)(
|L|

l0 l1 l2

)
2(ω−1)(i0+r0+l0)

∑
sx, sy , sz

compatable
labellings

2|s
−1
y (1)|2|s

−1
z (1)|(i0 + r0 + l0)O(1)) =

The exact labellings sy and sz are also irrelevant, as shown below. The sum that is
new in the last equation above stands for the size of a table with a labelling that meets
the criteria specified by the dummy variables. These criteria are that it should contain
an amount of vertices within a part of the labelling corresponding to the value of the
dummy variable. For example, if l1 = a this means that labelling sx should have a
vertices in part L that have label 1. To determine the size of a table that meets these
requirements it is necessary to look at the amount of options per vertex. Each part of the
labelling is treated separately. This results in several product terms. When labellings
are compatible has been specified above for each part of the middle sets.

∑
sx, sy , sz

compatable
labellings

2|s
−1
y (1)|2|s

−1
z (1)| =

|I|∏
i=1

∑
sy(i), sz(i)
compatable
with sx(i)

2[sy(i)=1]2[sz(i)=1]

|L|∏
l=1

∑
sy(l)=sx(l)

2[sy(l)=1]

|R|∏
r=1

∑
sz(r)=sx(r)

2[sz(r)=1]

|F |∏
f=1

∑
sy(i), sz(i)
compatable

2[sy(f)=1]2[sz(f)=1] =

22i02i11i2 2l01l11l2 2r01r11r2 6|F |

39

Put this expression back into the time equation and simplify, to find:

O(
∑

i0+i1+i2=|I|

(
|I|

i0 i1 i2

)
2(ω+1)i02i01i2

∑
r0+r1+r2=|R|

(
|R|

r0 r1 r2

)
2ωr01r11r2

∑
l0+l1+l2=|L|

(
|L|

l0 l1 l2

)
2ωl01l11l2 6|F | (i0 + r0 + l0)O(1)) ≤

O((3 + 2ω+1)|I|(2 + 2ω)|L∪R|6|F |bwO(1))

Maximize under the constraints in Lemma 2.5 to find that the worst-case occurs
when |I| = 0 and |F | = |L| = |R| = 1

2bw. This gives the result from the theorem.

Corollary 5.4. There exists an algorithm that, given a planar graph G, solves Planar
Connected Dominating Set in time O(28.778

√
n).

Proof. Combine Theorem 5.3 with Lemma 2.6 and use ω < 2.373 [21].

5.3 Feedback Vertex Set

Theorem 5.5. There exists an algorithm that, given a graph G and a branch de-
composition T of G of width bw, solves Feedback Vertex Set in time O(n((1 +
2ω)
√

5)bwbwO(1)), where ω is the matrix multiplication exponent.

Proof. First the naive algorithm will be given. Next Reduce is applied in order to
achieve the required running time.

To solve the problem it is necessary to redefine the problem. The aim is to find an
induced subgraph that is a tree on at least i = |V | − k edges. This is similar to the
approach in the proof of Theorem 4.7. A universal vertex v0 is added with edges E0 to
all other vertices. It is necessary to find a pair (Y, Y0) such that Y ⊆ V \ {v0}, |Y | ≤
k, Y0 ⊆ E0 and the graph (V \ Y,E[V \ Y] ∪ Y0) is a tree. This is equivalent to the
original formulation. Note that the tree must contain all edges between vertices in the
solution and any edges from E0.

The tables that need to be filled for each edge x consist of entries Ax(s, i, j). Each
entry contains a set of partitions. A labelling s ∈ {1, 0}Bx describes the state of the
vertices associated with the edge. A label 1 means the vertex is in the solution, a label
0 means it is not. The number of vertices in the solution are denoted by i and the
number of edges in the solution are denoted by j. Ax(s) represents all partial solutions
on G[Ex] consistent with the labelling s in the following way: the weight of the partition
corresponds to the weight of the partial-solution X; and vertices are in the same block of
the partition p that represents that solution X, if and only if, the vertices are in the same
connected component in G[X]. Note that the partitions for each entry are partitions of
all vertices with label 1.

If there is an entry at the root which has i ≥ |V | − k vertices and j = i − 1 edges
then there is a solution. This holds because a graph with n = m+ 1 vertices and edges
must be a tree.

40

For a leaf edge x of the branch decomposition T, Bx = {u, v} for some edge (u, v) in
E. The table Ax associated to x can be filled as follows (all other entries are zero):

Ax(0 0, 0, 0) = {{∅}}

Ax(1 0, 1, 0) =

{
∅ if v = v0

{{u}} otherwise

Ax(0 1, 1, 0) =

{
∅ if u = v0

{{v}} otherwise

Ax(1 1, 2, 0) =

{
{{u/v}} if u = v0 ∨ v = v0

∅ otherwise

Ax(1 1, 2, 1) = {{u v}}

For an internal edge x of the branch decomposition with children y and z, fill the
table Ax by combining the partial-solutions from the tables for y and z. This is done by
means of the following formula:

Ax(sx, ix, jx) =
⊎
∀sF

⊎
jy+jz=jx

⊎
iy + iz

−|(I ∪ F) ∩ s−1
y (1)|

= ix

proj(F, join(Ay(sy, iy, jy), Az(sz, iz, jz)))

The term sF is a labelling on the vertices in F . To ensure that no vertices are counted
double the term |(I ∪ F) ∩ s−1

y (1)|, the amount of vertices in I ∪ F with label 1, is
subtracted.

It is possible to use the Reduce routine after computing each edge. This will be the
most expensive step. Since the table sizes before the reduce step have the same bound
as in Theorem 5.1, the time analysis and the result are also the same.

Corollary 5.6. There exists an algorithm that, given a planar graph G, solves Planar
Feedback Vertex Set in time O(28.039

√
n).

Proof. Combine Theorem 5.5 with Lemma 2.6 and use ω < 2.373 [21].

5.4 Traveling Salesman

Theorem 5.7. There exists an algorithm that, given a graph G and a branch decomposi-

tion T of G of width bw, solves Traveling Salesman in time O(n(5+2
ω+2
2)bwbwO(1)),

where ω is the matrix multiplication exponent.

Proof. First the naive algorithm will be given. Next Reduce is applied in order to
achieve the required running time.

For each edge x there is a table Ax. Each entry Ax(s) consists of a set of weighted
partitions. These weighted partitions represent all the partial solutions for a labelling s.
A labelling s ∈ {2, 1, 0}Bx describes the state of the vertices associated with the edge.

41

A label 0 means the vertex is not in the solution, a label 1 means it is in the solution
and is the end of a path (it has degree 1), a label 2 means that it is in the solution
and is the middle of a path (it has degree 2). Ax(s) represents all partial solutions on
G[Ex] consistent with the labelling s in the following way: the weight of the partition
corresponds to the weight of the partial-solution Y ; and vertices are in the same block of
the partition p that represents that solution Y , if and only if, the vertices are in the same
connected component in G[Y]. Note that the partitions for each entry are partitions of
all vertices with label 1. This means that there are two vertices in each block of the
partition, since every path can have at most two endpoints.

For a leaf edge x of the branch decomposition T, Bx = {u, v} for some edge (u, v) in
E. The table Ax associated to x can be filled as follows (all other entries are zero):

Ax(0 0) = {({∅}, 0)} Ax(1 1) = {({uv}, w(u v))}

For an internal edge x of the branch decomposition with children y and z, the table
Ax is filled by combining the partial-solutions from the tables for y and z. This is done
by means of the following formula:

Ax(sx) =
⊎

sx,sy ,sz match

proj(F ∪ (s−1
x (2) ∩ (s−1

y (1) ∪ s−1
z (1))), join(Ay(sy), Az(sz)))

Labellings match if the labels of the vertices in L and R are identical in sx and sy or
sz respectively, for all vertices v ∈ F it holds that sy(v) + sz(v) = 2 and for all vertices
v ∈ I it holds that sy(v) + sz(v) = sx(v) ≤ 2. Besides projecting over the vertices in F
it is also necessary to project over all vertices with label 2 in sx that did not have label
2 in either sy or sz. This is to avoid cycles in the solution.

The partitions of the vertices with label 1 are all perfect matchings. This allows the
use of a different Reduce subroutine.

Theorem 5.8 ([12]). There exists an algorithm ReduceMatchings that, given a set

of weighted partitions F ⊆ Π(U) × N, outputs in time O(|F|2
(ω−1)

2
|U ||U |O(1)) a set of

weighted partitions F ′ ⊆ F , such that F ′ represents F and |F ′| ≤ 2|U |/2, where ω denotes
the matrix multiplication exponent.

The complexity analysis is similar to that seen in Theorem 5.3. Note that sx is an
arbitrary labelling having the amount of labels 0, 1 and 2 prescribed by j0, j1 and j2
respectively. The amount of vertices having each label is the only information needed in
the time analysis, the actual labelling is irrelevant here, but this is a convenient notation.

42

This notation is also used in Section 5.2.

O(
∑

j0+j1+j2=|I∪R∪L|

(
|I ∪R ∪ L|
j0 j1 j2

)
2

(ω−1)
2

j1 |Ax(sx)|jO(1)
1) =

O(
∑

i0+i1+i2=|I|

∑
r0+r1+r2=|R|

∑
l0+l1+l2=|L|

(
|I|

i0 i1 i2

)(
|R|

r0 r1 r2

)(
|L|

l0 l1 l2

)
2

(ω−1)
2

(i1+r1+l1)|Ax(sx)|(i1 + r1 + l1)O(1)) =

O(
∑

i0+i1+i2=|I|

∑
r0+r1+r2=|R|

∑
l0+l1+l2=|L|

(
|I|

i0 i1 i2

)(
|R|

r0 r1 r2

)(
|L|

l0 l1 l2

)

2
(ω−1)

2
(i1+r1+l1)

∑
sx, sy , sz

compatable
labellings

2
|s−1
y (1)|

2 2
|s−1
z (1)|

2 (i1 + r1 + l1)O(1)) =

The exact labellings sy and sz are also irrelevant, as shown below. The sum that is
new in the last equation above signifies the size of a table with a labelling that meets
the criteria specified by the dummy variables. These criteria are that it should contain
an amount of vertices within a part of the labelling corresponding to the value of the
dummy variable. Each part of the labelling will be dealt with separately. This results
in several product terms.

∑
sx, sy , sz

compatable
labellings

2
|s−1
y (1)|

2 2
|s−1
z (1)|

2 =

|I|∏
i=1

∑
sy(i)+sz(i)=sx(i)

2[sy(i)=1]/22[sz(i)=1]/2

|L|∏
l=1

∑
sy(l)=sx(l)

2[sy(l)=1]/2

|R|∏
r=1

∑
sz(r)=sx(r)

2[sz(r)=1]/2

|F |∏
f=1

∑
sy(f)+sz(f)=2

2[sy(f)=1]/22[sz(f)=1]/2 =

1i02
3
2
i14i2 1l02

1
2
l11l2 1r02

1
2
r11r2 4|F |

For each vertex v it is needed to look at options for sy(v) and/or sz(v) if sx(v) is set.
The last equation in the time analysis is obtained by using the values computed below.
For a vertex in I:

sx(v) = 0 : 20/220/2 = 1

sx(v) = 1 : 21/220/2 + 20/221/2 = 23/2

sx(v) = 2 : 21/221/2 + 20/220/2 + 20/220/2 = 4

43

For a vertex in L (and idem for a vertex in R):

sx(v) = 0 : 20/2

sx(v) = 1 : 21/2

sx(v) = 2 : 20/2

For a vertex in F :

21/221/2 + 20/220/2 + 20/220/2 = 4

If this expression for the size of a table back is put into the time equation and the
equation is simplified, the result is:

O(
∑

i0+i1+i2=|I|

(
|I|

i0 i1 i2

)
1i02

ω+2
2
i14i2

∑
r0+r1+r2=|R|

(
|R|

r0 r1 r2

)
1r02

ω
2
r11r2

∑
l0+l1+l2=|L|

(
|L|

l0 l1 l2

)
1l02

ω
2
l11l2 4|F | (i1 + r1 + l1)O(1)) ≤

O((5 + 2
ω+2
2)|I|(2 + 2

ω
2)|L∪R|4|F |bwO(1))

When maximizing under the constraints in Lemma 2.5, it is possible to conclude that
the expression is maximized when |I| = bw and all other sets are empty. This gives the
result from the theorem.

Corollary 5.9. There exists an algorithm that, given a planar graph G, solves Planar
Travelling Salesman in time O(26.570

√
n).

Proof. Combine Theorem 5.5 with Lemma 2.6 and use ω < 2.373 [21]. Because |I| is
small the expression determining the running time is now maximized when |F | = |L| =
|R| = 1/2bw.

6 Conclusion

In this thesis, two things are shown. First of all, it is shown that ‘Cut and Count’
and the rank-based approach can be used not only on tree decompositions but also on
branch decompositions. This means the techniques are more powerful than they were
known to be. Perhaps these techniques can also be used in combination with other width
measures. This could be a possibility for further research.

The thesis also presents fast algorithms, especially on planar graphs, for several
connectivity problems. These algorithms use branch decompositions and therefore affirm
the use of this type of decomposition as a solid foundation for algorithms.

Further research could also focus on the possibility of improving the deterministic
algorithms. It might be possible to apply the techniques by Fomin et al. [19, 18], using

44

representative sets and matroids, to branch decompositions. When this is possible,
chances are that the algorithms will be faster than the deterministic algorithms from
this thesis, since their counterparts on tree decompositions are faster then the rank based
algorithms from Bodlaender et al. [6].

Acknowledgements

I would like to thank my two supervisors Johan en Hans for their faith in me, their time,
their patience, and their insights. All of this culminated in writing a paper together for
the IPEC 2016 conference, a result that I am proud of.

I owe my friends for all the times they pretended to understand or care when listening
to my ramblings about graphs and complexity. My family also earned my gratitude for
supporting me and not making me feel like ten months was an exorbitantly long time to
write a thesis.

Finally, I am indebted to my muse for all the inspiration she gave me.

References

[1] Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Fourier
meets Möbius: Fast subset convolution. In Proceedings of the 39th Annual Sympo-
sium on Theory of Computing, STOC 2007, pages 67–74, 2007.

[2] Hans L. Bodlaender. A tourist guide through treewidth. Acta Cybernetica, 11:1–23,
1993.

[3] Hans L. Bodlaender. A linear time algorithm for finding tree-decompositions of
small treewidth. SIAM Journal on Computing, 25:1305–1317, 1996.

[4] Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth.
Theoretical Computer Science, 209:1–45, 1998.

[5] Hans L. Bodlaender. Treewidth: Structure and algorithms. In Proceedings of the
14th International Colloquium on Structural Information and Communication Com-
plexity, SIROCCO 2007, volume 4474 of Lecture Notes in Computer Science, pages
11–25. Springer Verlag, 2007.

[6] Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Determin-
istic single exponential time algorithms for connectivity problems parameterized by
treewidth. Information and Computation, 243:86–111, 2015.

[7] Hans L. Bodlaender, Erik Jan van Leeuwen, Johan M. M. van Rooij, and Martin
Vatshelle. Faster algorithms on branch and clique decompositions. In Proceedings
of the 35th International Symposium on Mathematical Foundations of Computer
Science, MFCS 2010, volume 6281 of Lecture Notes in Computer Science, pages
174–185. Springer Verlag, 2010.

45

[8] Binh-Minh Bui-Xuan, Jan Arne Telle, and Martin Vatshelle. Boolean-width of
graphs. Theoretical Computer Science, 412:5187–5204, 2011.

[9] James A Carlson, Arthur Jaffe, and Andrew Wiles. The millennium prize problems.
American Mathematical Society, 2006.

[10] Bruno Courcelle, Joost Engelfriet, and Grzegorz Rozenberg. Handle-rewriting hy-
pergraph grammars. Journal of Computer and System Sciences, 46(2):218–270,
1993.

[11] Marek Cygan, Fedor V Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx,
Marcin Pilipczuk, Micha l Pilipczuk, and Saket Saurabh. Parameterized Algorithms.
Springer, 2015.

[12] Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Fast Hamiltonicity checking
via bases of perfect matchings. In Symposium on Theory of Computing Conference,
STOC 2013, pages 301–310, 2013.

[13] Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M.
van Rooij, and Jakub Onufry Wojtaszczyk. Solving connectivity problems parame-
terized by treewidth in single exponential time. In IEEE 52nd Annual Symposium
on Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, Octo-
ber 22-25, 2011, pages 150–159, 2011.

[14] Frederic Dorn. Dynamic programming and fast matrix multiplication. In Pro-
ceedings of the 14th Annual European Symposium on Algorithms, ESA 2006, pages
280–291. Springer Verlag, Lecture Notes in Computer Science, vol. 4168, 2006.

[15] Frederic Dorn. How to use planarity efficiently: New tree-decomposition based
algorithms. In Andreas Brandstädt, Dieter Kratsch, and Haiko Müller, editors,
Proceedings of the 33rd International Workshop on Graph-Theoretic Concepts in
Computer Science, WG 2007, pages 280–291. Springer Verlag, Lecture Notes in
Computer Science, vol. 4769, 2007.

[16] Frederic Dorn, Eelko Penninkx, Hans L. Bodlaender, and Fedor V. Fomin. Ef-
ficient exact algorithms on planar graphs: Exploiting sphere cut decompositions.
Algorithmica, 58:790–810, 2010.

[17] Stefan Fafianie, Hans L. Bodlaender, and Jesper Nederlof. Speeding up dynamic
programming with representative sets: An experimental evaluation of algorithms
for Steiner tree on tree decompositions. Algorithmica, 71(3):636–660, 2015.

[18] Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Represen-
tative sets of product families. In Algorithms - ESA 2014 - 22th Annual European
Symposium, Wroclaw, Poland, September 8-10, 2014. Proceedings, volume 8737 of
Lecture Notes in Computer Science, pages 443–454. Springer, 2014.

46

[19] Fedor V. Fomin, Daniel Lokshtanov, and Saket Saurabh. Efficient computation
of representative sets with applications in parameterized and exact algorithms. In
Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2014, pages 142–151, 2014.

[20] Fedor V. Fomin and Dimitrios M. Thilikos. New upper bounds on the decompos-
ability of planar graphs. Journal of Graph Theory, 51:53–81, 2006.

[21] François Le Gall. Powers of tensors and fast matrix multiplication. In International
Symposium on Symbolic and Algebraic Computation, ISSAC, pages 296–303, 2014.

[22] Qian-Ping Gu and Hisao Tamaki. Optimal branch-decomposition of planar graphs
in O(n3) time. In Lúıs Caires, Giuseppe F. Italiano, Lúıs Monteiro, Catuscia
Palamidessi, and Moti Yung, editors, Proceedings of the 32nd International Col-
loquium on Automata, Languages and Programming, ICALP 2005, pages 373–384.
Springer Verlag, Lecture Notes in Computer Science, vol. 3580, 2005.

[23] Ton Kloks. Treewidth. Computations and Approximations, volume 842 of Lecture
Notes in Computer Science. Springer Verlag, Berlin, 1994.

[24] Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Known algorithms on graphs
on bounded treewidth are probably optimal. In Proceedings of the Twenty-Second
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, pages 777–
789, 2011.

[25] Ketan Mulmuley, Umesh V Vazirani, and Vijay V Vazirani. Matching is as easy
as matrix inversion. In Proceedings of the nineteenth annual ACM symposium on
Theory of computing, pages 345–354. ACM, 1987.

[26] Sang-il Oum. Rank-width and vertex-minors. Journal of Combinatorial Theory,
Series B, 95(1):79–100, 2005.

[27] Willem J.A. Pino, Johan M. M. van Rooij, and Hans L. Bodlaender. Cut and
count and representative sets on branch decompositions. In Proceedings of the 9th
International Symposium on Parameterized and Exact Computation, IPEC 2016,
2016. Accepted.

[28] Neil Robertson and Paul D. Seymour. Graph minors. III. Planar tree-width. Journal
of Combinatorial Theory, Series B, 36:49–64, 1984.

[29] Paul D. Seymour and Robin Thomas. Call routing and the ratcatcher. Combina-
torica, 14(2):217–241, 1994.

[30] Jan Arne Telle and Andrzej Proskurowski. Algorithms for vertex partitioning prob-
lems on partial k-trees. SIAM Journal of Discete Mathematics, 10:529 – 550, 1997.

47

[31] Johan M. M. van Rooij, Hans L. Bodlaender, and Peter Rossmanith. Dynamic
programming on tree decompositions using generalised fast subset convolution. In
Proceedings of the 17th Annual European Symposium on Algorithms, ESA 2009,
pages 566–577. Springer Verlag, Lecture Notes in Computer Science, vol. 5757,
2009.

48

