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Abstract

Until an article[14] by Ahmed Almheiri, Donald Marolf, Joseph Polchinski and
James Sully in 2012 it was generally agreed on that an observer freely falling in
to a black hole should perceive the space in the vicinity of the horizon as ordinary
Minkowski space. This assumption is guided by Einstein’s equivalence principle.
The article by AMPS puts forward the idea that a freely falling observer should
actually see high energy modes near the horizon, they call this curtain of high
energy modes a firewall. Many authors have challenged the original article by
AMPS. In this thesis the corresponding articles are studied and an opinion is
formed about whether or not the firewall exists. Special focus will be on recent
articles[9, 10, 11] by ’t Hooft that aim to explain the construction of the S-matrix
by calculating the effects of gravitational back-reaction. This approach seems
to resolve the black hole information paradox and, in particular, the firewall
paradox.
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Preface

From the moment they were discovered in 1916, that is, found as a solution to
the equations of gravity, black holes have fascinated the scientific community.
This fascination was strengthened significantly when in 1974 Stephen Hawking
found that black holes actually radiated, and thus are not entirely ‘black’.
For some time physicists have investigated how observers, particularly freely
falling ones, perceive the spacetime of the black hole. It is thought that freely
falling observer’s do not notice anything out of the ordinary when crossing the
black hole horizon. This can be seen as a consequence of Einstein’s equivalence
principle. All freely falling observer’s should perceive spacetime in the same
way, this means that an observer falling freely through the horizon should
perceive his spacetime as empty space, i.e. Minkowski space.

Recently (2012) Ahmed Almheiri, Donald Marolf, Joseph Polchinski and James
Sully (from now on denoted as AMPS) published an article[14] that challenges
this idea, they propose that the freely falling observer should actually see high
energy particles at the horizon. They call this curtain of high energy particles
a firewall.

Their argument briefly, leaving out the details, goes as follows. When a black
hole has emitted half of its initial Hawking-Bekenstein entropy the radiation
that has already been emitted is highly entangled with the particles still in the
black hole. Thus, a Hawking mode that has been emitted after this point is
highly entangled with the radiation emitted before. However, a freely falling
observer measuring this particular Hawking mode just outside the horizon
should perceive Minkowski space, this implies that the Hawking mode is
highly entangled with a mode inside the black hole. We conclude that the
emitted hawking mode must be highly entangled with two distinct systems,
the early radiation and the black hole. This violates a law called monogamy of
entanglement.

Immediately after AMPS published their article a lot of criticism arose,
probably mainly due to the fact that it violates Einstein’s equivalence principle.

One interesting counterargument[30] was that for the observer to actually
verify the entanglement between the Hawking mode and the early radiation a
huge amount of time was needed, more time than that of the life span of the
black hole. To arrive at this statement they applied arguments from quantum
computation theory.

Another argument[47], though somewhat comparable, was that the observer
cannot collect all information in order to verify the entanglement between the
Hawking mode and the black hole (interior). The authors studied what part
of the total interior of the black hole can actually be observed by an infalling
observer, by looking at the corresponding causal patches.

A possibility that few researchers investigated is that the gravitational
back-reaction might actually significantly change the entanglements[54]. The
presence of the infalling observer can change the (gravitational and quantum)
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structure of spacetime in the vicinity of the horizon and this might alter the
results from the thought experiment proposed by AMPS. There is however, a
different way gravitational back-reaction can be used to argue against firewalls.
The author of [9, 10, 11] studies the effect the back-reaction of an ingoing particle
has on the other particles, leading to a unitary S-matrix. His approach suggests
a cut-off of to high momenta, which leads to the absence of firewalls. Moreover,
an interesting consequence of his approach is that the black hole actually is
in a pure state, invalidating the entanglement arguments in the firewall paradox.

There are also some arguments arising from string theory and some more
hypothetical theories. An overview of these will be given, but we will not go
into to much details. A particularly interesting hypothesis though is given by
Maldacena and Susskind, where they propose that Einstein-Rosen bridges and
Einstein-Rosen-Podolsky bridges can be fundamentally identified with each
other[33].

The thesis is organised as follows. Chapter 1 will be an introduction about
the Schwarzschild solution (the spacetime corresponding to a black hole), the
derivation of Hawking radiation and an explanation of the concept of entan-
glement. These are concepts that most Master’s students have probably seen
in some form or another. Then in chapter 2 some less commonly known (at
least for Master’s students) introductory concepts will be discussed. These are
the black hole information paradox and black hole complementarity. After these
two chapters we are equipped with enough knowledge to understand the firewall
paradox proposed by AMPS. We will explain the paradox in detail in chapter 3.
Chapter 4 is devoted to some arguments against the firewall that are relatively
conservative in nature, in the sense that they do not use particularly specula-
tive assumptions. In chapter 5 we will attempt to explain how back-reaction
can be used to resolve the firewall paradox. In chapter 6 however we will give
a short overview of some more speculative approaches to the firewall paradox.
We briefly pause in chapter 7 to consider some consequences if the firewall does
exist. The conclusion about the research project will be presented in the final
chapter.
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1 Introduction

1.1 The Schwarzschild solution

It was Karl Schwarzschild who was the first to find an exact non-trivial solution
to the Einstein equations of gravity[1]. This solution corresponds to the case of
a spherically symmetric mass, the corresponding Schwarzschild metric is given
by

ds2 = − (1− 2M/r) dt2 +
1

(1− 2M/r)
dr2 + r2dΩ2.

Here M is the mass, t is the time as experienced by an observer at infinity, r is
the physical radius and dΩ2 = dθ2 + sin(θ)dϕ2 is the metric of the 2-sphere. At
the Schwarzschild radius r = 2M , this surface is known as the event horizon,
the metric seems to become singular. However, from the General relativity
point of view this is merely a peculiarity associated with the particular choice
of coordinates. When one takes Kruskal-Szekeres coordinates, defined by

xy =
( r

2M
− 1
)
e
r

2M ,

x/y = e
t

2M ,

then the Schwarzschild metric takes the form

ds2 =
32M3

r
e−

r
2M dxdy + r2dΩ2,

which is non-singular for r > 0. The singularity at r = 0 is not removable
and is believed to truly represent a physical singularity, a point of infinite
gravity. A well-known property about the Schwarzschild radius, at least
classically (i.e. ignoring quantum mechanical effects), is that it marks a
‘point of no return’. Anything crossing the event horizon is trapped behind
it forever (and will in fact hit the singularity at r = 0). This justifies the
name black hole (referring to the region r ≤ 2M), as not even light can escape it.

It should be mentioned that a more general solution exists, that incorporates
electric charge Q and angular momentum J . This is known as the Kerr-Newman
solution and it takes the form

ds2 = −∆

Y
(dt− a sin2 θdφ)2 +

sin2 θ

Y
(adt− (r2 + a2)dφ)2 +

Y

∆
dr2 + Y dθ2

with

a =
J

M
, Y = r2 + a2 cos2 θ and ∆ = r2 − 2Mr +

Q2

4π
+ a2.

In the rest of this thesis only the pure (i.e. Q = J = 0) Schwarzschild black hole
will be considered, many of the properties that will be discussed are presumed
to also hold for the more general Kerr-Newman black hole.
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Figure 1: Penrose diagram of the Schwarzschild solution. Here the coordinates
are u+ + u− and u+ − u−, which are defined through x = tan(π2u

+) and y =
tan(π2u

−). Region I is what one usually views as the (outside of the) black hole,
i.e. the spacetime of a black hole from the perspective of a distant observer.

1.2 Hawking radiation

An amazing discovery by Stephen Hawking is that black holes radiate[3]. In
particular, an outside observer at some fixed place far away from the black hole
will experience a temperature given by TH = (8πM)−1, the so-called Hawking
temperature. At first glance this seems to be at odds with the statement made
in the previous paragraph, namely, that nothing can escape a black hole after
entry. This statement however is based on general relativity alone, to truly
understand a black hole one must also study the quantum mechanical nature
of the spacetime in the vicinity of the black hole.

In Minkowski space the quantum field describing particles can be expanded in
creation and annihilation operators a†ωlm and aωlm:

Φ =
∑
ω,l,m

fωlmaωlm + fωlma
†
ωlm.

Here the fωlm are solutions to the massless Klein-Gorden equation
ηµν∂µ∂νfωlm = 0, ω is interpreted as a mode frequency and l,m correspond
to the labelling of spherical harmonics. In a different geometry the correspond-
ing Klein-Gordon equation is obtained by replacing the Minkowski metric by
the metric under consideration, and by replacing ∂ by the covariant deriva-
tive, resulting in gµν∇µ∇νfωlm = 0. Of course we will consider the case where
gµν is the Schwarzschild metric. It will turn out to be convenient to consider
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Eddington-Finkelstein coordinates, a pair of coordinate systems defined by

v = t+ r + 2M log
∣∣∣ r
2M
− 1
∣∣∣

u = t− r − 2M log
∣∣∣ r
2M
− 1
∣∣∣

leading to the metrics

ds2 = −
(

1− 2M

r

)
dv2 + 2dvdr + r2dΩ2

ds2 = −
(

1− 2M

r

)
du2 − 2dudr + r2dΩ2.

The coordinate systems (v, r, θ, φ) and (u, r, θ, φ) are known as the ingoing en
outgoing Eddington-Finkelstein coordinates respectively. Notice that the radial
geodesics correspond to constant u or constant v. Considering only the region
r > 2M the function r + 2M log(r/(2M) − 1) is increasing (as a function of
r), therefore constant v leads to a function r that is a decreasing function of t,
hence corresponds to an ingoing light ray. Analogously, constant u corresponds
to an outgoing lightray.

In the ingoing Eddington-Finkelstein coordinates (corresponding to particles
from past infinity) solutions to the Klein-Gordon equation are of the form

fωlm =
1

r
Pω(r)e−iωvYlm(θ, φ).

Here the ω correspond to the frequencies, the Pω are polynomials and the Ylm
are spherical harmonics. Of course the field can now be expended as

Φ =
∑
ω,l,m

fωlmaωlm + fωlma
†
ωlm,

where the aωlm, a
†
ωlm represent the annihilation and creation operators in the

Schwarzschild geometry on the Cauchy surface corresponding to past infinity.
A similar expression holds for the outgoing Eddington-Finkelstein coordinates
(corresponding to particles reaching future infinity)

Φ =
∑
ω,m,l

pωmlbi + pωmlb
†
i

pωlm =
1

r
Pω(r)e−iωuYlm(θ, φ),

where the bωlm, b
†
ωlm represent the annihilation and creation operators in the

Schwarzschild geometry on the Cauchy surface corresponding to future infinity.
Now assuming completeness of the fωml we can write

pωml =

∫ ∞
0

dω′αωω′lmfω′lm + βωω′lmfω′lm,
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where the functions αωω′lm and βωω′lm are the so-called Bogolyubov coefficients.
We find that

bωlm = (Φ, pωlm) = −i
∫
dΣµ (Φ∂pωlm − pωlm∂µΦ)

√
g (1)

=

∫ ∞
0

dω′(αωω′lmaω′lm − βωω′lma†ω′lm). (2)

For this we used that the expression on the top right defines an inner product[48],
the Klein-Gordon inner product, provided that the integration is over a Cauchy
surface (of spacetime). Initially (at past infinity), before the black hole has
formed we expect the state to be close to the vacuum state |0〉 (as the geometry
should be similar to that of Minkowski space). This is expressed as aωlm|0〉 = 0
(for all ω, l,m). However, at future infinity the outgoing modes satisfy

〈bωlmb†ωlm〉 = 〈0|bωlmb†ωlm|0〉 =

∫ ∞
0

|βωω′lm|2,

where we used (2) and the condition that the aωlm annihilate |0〉 at past infinity.
If this integral is non-zero, we must conclude that particles have been created.
The hard part is to determine the value of βωω′lm, Using completeness we know
that we can express it as

βωω′ = (pωlm, fωlm),

were the inner product is the same as above, i.e. the Klein-Gordon inner prod-
uct. We will evaluate this inner product with past infinity as our Cauchy surface.
This means we should somehow trace back our outgoing solutions from future
infinity to past infinity. In order to do this it appears that we need to look at
surfaces of constant phase. These constant phase surfaces pile up near the hori-
zon (because time stops there). Let us denote by v0 the latest (ingoing) time
a particle can enter the collapsing body and still escape. The closer v < v0 is
to v0, the larger the outgoing time u. This connection is logarithmic, at future
null infinity we have for v < v0

pωlm ≈
1

r
Pω(r)Ci

ω
κ exp (−iω

κ
log(v0 − v))Ylm(θ, φ)

for some constant C > 0. For v ≥ v0 it must vanish. Plugging this into our
inner product gives

βωω′lm =
Ci

ω
κ

2π

∫ v0

−∞
dv

√
ω′

ω
exp (−iω′v + i

ω

κ
log(v0 − v))

=
Ci

ω
κ

2π

√
ω′

ω
e−iω

′v0

∫ 0

−∞
dve−iω

′v(−v)i
ω
κ .

We can relate the integral to the gamma function by complex contour integra-
tion, we then end up with

βωω′lm = − 1

2πi

1√
ωω′

(
iC

ω′

)iω/κ
Γ(1 + iω/κ)
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Now using the well-known multiplication rule Γ(1 − z)Γ(z) = πz/ sin(z), com-
bined with Γ(1 + z) = zΓ(z) and Γ(z) = Γ(z) (following from analytic continu-
ation), we find

|Γ(1 + iω/κ)|2 = |Γ(1− iω/κ)Γ(1 + iω/κ)|

=

∣∣∣∣ iπω/κ

sin(iω/κ)

∣∣∣∣
=

2πω/κ

eπω/κ − e−πω/κ
.

We conclude that

〈bωlmb†ωlm〉 =
1

e8πMω − 1

∫ ∞
0

dω′
2M

πω′
.

So we find a thermal spectrum corresponding to a black body radiating with
a temperature of 1/(8πM). Of course the latter integral is infinite, this is
because we have assumed a static black hole. But the big conclusion is, at
future infinity particles have been created.

The lesson we learn from this is that the notion of a particle is not covariant.
The geometry of space determines what an observer will see. A good example,
closely related to Hawking radiation, is the Unruh effect. This effect basically
states that a constantly accelerating observer, travelling through ordinary (i.e.
Minkowski) space, will see particles. This is because his geometry is described
by Rindler space instead of Minkowski space.

1.3 Quantum entanglement

In short quantum entanglement is the phenomenon that occurs when groups of
particles interact in such a way that the state of each member must subsequently
be described relative to the other. To clarify what this means, consider two
quantum systems S1 and S2 with corresponding Hilbert spaces H1 and H2. We
can view these two systems as one system, whose Hilbert space is the tensor
product H1 ⊗H2. When system S1 is in state |Ψ1〉1 and system S2 is in state
|Ψ2〉2 the composite system is in state |Ψ1〉1 ⊗ |Ψ2〉2, this is called a separable
state. However, not all states in the composite system are separable, a general
state is given by

|Ψ〉 =
∑
i,j

cij |i〉1 ⊗ |j〉2

for some bases (|i〉1)i and (|j〉2)j of H1 and H2 respectively. In the case that
there exist c1i , c

2
j such that cij = c1i c

2
j for all i, j the state is separable, when

this is not the case it is called an entangled state.

Let us consider a simple example, the composite spin system of two electrons.
The state

1√
2

(∣∣∣∣−1

2

〉
1

⊗
∣∣∣∣12
〉

2

−
∣∣∣∣12
〉

1

⊗
∣∣∣∣−1

2

〉
2

)
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is obviously an entangled state. If the composite system is in this state then
one cannot say that system S1 (or S2) is in a pure state. In other words, the
entropy of the whole state is zero, but the entropy of the subsystems is not.
For this reason the state is called entangled.

To illustrate this idea further suppose we have observers 1 and 2 doing mea-
surements on the systems S1 and S2 respectively. Suppose observer 1 performs
a measurement. There are two possible outcomes with equal probability

• Observer 1 measures spin − 1
2 and the system collapses to

∣∣− 1
2

〉
1
⊗
∣∣ 1

2

〉
2
.

• Observer 1 measures spin 1
2 and the system collapses to

∣∣ 1
2

〉
1
⊗
∣∣− 1

2

〉
2
.

Now, if observer 2 performs a measurement, its outcome is already determined.
In other words, the measurement of observer 1 has altered system S2. In par-
ticular, obtaining information about one of the two systems gives information
about the other.

We would like to stress though, that this example is exactly that, an example.
When we will think about the entanglement concerning black holes we are
thinking more in the line of the entanglements in the form of an EPR bridge.
This is explained in chapter 6.

An important construction concerning entanglement is the reduced density ma-
trix. The reduced density matrix ρ1 of H1 is defined as the partial trace over
H2 of the density matrix ρ of the bipartite system H1 ⊗H2, i.e.

ρ1 =
∑
i∈H2

ρ|i〉〈i|.

When ρ1 equals a multiple of the identity matrix we say that H1 and H2 are
maximally entangled with each other. The physical meaning of maximal en-
tanglement is that an observable in H1 can be measured by measuring a corre-
sponding observable in H2.
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2 Black hole complementarity

2.1 Black hole information paradox

Let us consider a system in a pure quantum state |Ψ(t)〉, i.e. |Ψ(t)〉 solves the
time dependent Schrödinger equation corresponding to the system. It is well
known that once the state is known at some time t0, |Ψ(t)〉 can be determined
by applying a unitary evolution operator to |Ψ(t0)〉. In particular, this means
that the complete information of a state in one point in time should allow
one in principle to determine the state at all other times. This is known as
quantum determinism.

The black hole information paradox is a paradox resulting from an attempt to
combine quantum theory with general relativity. The paradox suggests that
information can permanently disappear in a black hole. Namely, after a time
interval of order ∼ M3 the black hole will have evaporated completely. Does
this mean that all information of the particles that were inside it is gone?
Particularly troubling about this outcome is that it would mean that many
physical states could evolve in to the same end state, in obvious contradiction
with quantum determinism.

However, black holes form from what was initially just an ordinary system of
particles. Such a system has a corresponding wave function that we expect to
evolve in a unitary fashion. Therefore1 we believe that information is actually
preserved by the black hole evolution, it must somehow be connected to the
outgoing Hawking radiation. In particular, it is widely believed that there must
exist an S-matrix connecting the ingoing matter to the outgoing matter. It is
not yet confirmed what such an S-matrix would look like exactly2. A problem
this brings forth, is that it appears information can be both inside and outside
of the black hole, which would contradict the so-called no-cloning law.

At the heart of this paradox, is the (unanswered) question how a collection of
particles that was initially in a pure state, at later times appears to be in a
thermal, i.e. mixed, state.3

2.2 Black hole complementarity

Black hole complementarity[4, 5, 12] (often referred to simply as BHC) is a
possible solution to the black hole information paradox proposed by Susskind,
Thorlacius and ’t Hooft. It assumes that information is both reflected at the
horizon and passes through the horizon (where it cannot escape).

According to an observer at infinity the horizon heats up and the information
reradiates in the form of Hawking radiation, and this entire process can be
described by a unitary evolution operator (the S-matrix).

1But also findings from AdS/CFT duality, see chapter 6
2Although in chapter 5 we will see a interesting potential candidate.
3But an explanation is proposed in chapter 5.
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For an infalling observer nothing out of the ordinary seems to happen at the
horizon and both the observer and the information will hit the singularity
eventually.

At first glance this resolution seems to violate the no-cloning theorem, as
it appears that information has been duplicated, the information is inside
the black hole and outside it in the form of Hawking radiation. However,
an observer can only detect (directly or indirectly) the information either
outside the black hole or inside it. Another way to view this is that there
does not exist a single Hilbert space that describes both the interior and the
exterior of the black hole, each observer has his own corresponding Hilbert space.

BHC can be represented as a set of axioms. In short, these axioms are as follows:

A1. The process of formation and evaporation of a black hole, as viewed by
a distant observer, can be described entirely within the context of stan-
dard quantum theory. In particular, there exists a unitary S-matrix which
describes the evolution from infalling matter to outgoing Hawking-like ra-
diation.

A2. Outside the stretched horizon of a massive black hole, physics can be de-
scribed to good approximation by a set of semi-classical field equations.

A3. To a distant observer, a black hole appears to be a quantum system with
discrete energy levels. The dimension of the subspace of states describing
a black hole of mass M is the exponential of the Bekenstein entropy S(M).

It should be emphasized that in the BHC picture one usually assumes that
an observer doesn’t experience anything out of the ordinary when crossing the
horizon, as is dictated by Einstein’s equivalence principal.

The set of axioms of black hole complementarity we have presented here seems
to be the generally excepted form. We would like to point out however that
some authors use a slightly different definition[11].
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3 The Firewall

What happens when an observer passes through the horizon? Some researchers
suspect that this cannot happen without dramatic consequences for the infalling
observer[14]. Several attempts have been made to show the existence of drama,
in general they can be simplified as the following argument:

Let us divide the Hawking radiation in three subsystems, the early radiation
R, the late radiation L and the interior partners to the late radiation B. ’Late’
here, means that we are viewing the black hole at a time past the so-called
Page time, the time when half the entropy of the black hole has radiated away
from the black hole. For the radiation to become pure it must be true that R
and L are highly entangled. But for the observer to fall through the horizon
without drama L and B must be close to maximally entangled. This violates a
well-known quantum law called monogamy of entanglement.

This, in short, is the paradox. Now, making the assumption that the infalling
observer does experience drama, L and B cannot be maximally entangled.
This implies that the state of near horizon radiation is significantly different
from that of the vacuum, leading to the conclusion that the observer must see
high energy quanta. This is then interpreted as the observer burning up, i.e.
hitting a firewall.

Two things about the above argument should be explained. Why does the late
radiation have to be highly entangled with the early radiation, and why do
we expect that for the observer to experience nothing out of the ordinary it
should hold that the late radiation is highly entangled with the interior partners?

The first question essentially follows by a finding of Don Page, that a (much)
smaller subsystem of a pure state bipartite system is almost maximally
entangled with its counterpart[18]. That our combined system of late and
early radiation is pure is a consequence of the first axiom of black hole
complementarity.4

Answering the last question: a freely falling observer is expected to experi-
ence empty space, i.e. Minkowski space, by Einstein’s equivalence principle.
Intuitively, this is because any matter would rapidly fall into the black hole.
Minkowski space can be divided into a left and right Rindler wedge. In the
Minkowski vacuum state, fields with support in the left Rindler wedge are max-
imally entangled with fields with support in the right Rindler wedge. For an
observer falling freely in a black hole geometry the horizon can locally be iden-
tified with a Rindler horizon. This can be seen as follows: when we take θ ≈ π

2
and take r ≈ 2M (but r > 2M) we can consider introducing the new variables

τ =
t

4M
,ρ = 2

√
2M(r − 2M) and x̃ = (2Mθ, 2Mϕ).

In these new variables the Schwarzschild metric approximately takes the form[6]

ds2 ≈ −ρ2dτ2 + dρ2 + dx̃2,

4Tacitly, the third axiom of BHC is also used here, for finiteness.

11



which is indeed the metric corresponding to Rindler space. We conclude that,
close to the horizon, a mode that is localized outside a black hole must be
(approximately) maximally entanged with modes that are localized inside the
black hole.

Remark. It should be noted that many researchers that replied to AMPS use
a slightly different formulation of the paradox, in the sense that the subspaces
of the total black hole system are chosen differently. They factorize the Hilbert
space of an observer at infinity as R ⊕ B ⊕ H; here R is the radiation that is
localized at r > 3M , B is the radiation between 3M and 2M + ε (where ε is
some Planck length cut-off) and H represents the remaining degrees of freedom
between 2M and 2M + ε (which cannot be probed by an outside observer). An
infalling observer has access to R and B, and also has access to the subspace A
of modes inside the black hole, with r < 2M−ε. The region 2M−ε < r < 2M+ε
is passed so fast that it does not play a role in the Hilbert space of the infalling
observer. These choices of subspaces seem to make the technical details of the
paradox easier to grasp.
Unfortunately these notations overlap with those of AMPS.

3.1 The AMPS thought experiment

If black hole complementarity has taught us one thing it is that an inconsistency
is not really an inconsistency until there exists an observer that can observe
the inconsistency in some experiment. For example, it is (in principle) possible
that the two entanglements discussed in the above paragraph cannot be
simultaneously verified by a single observer. In that case that would not be a
real contradiction, just as for example in the quantum xeroxing problem.

In fact the inconsistency can be observer in the frame of the infalling observer.
This observer has access to the early radiation, the black hole and (at least
part of) the late radiation. The gedanken experiment AMPS consider is in
principle equivalent to the argument before, i.e. using the entanglement, but
they approach the argument from a slightly different angle, in order to sharpen
their argument.

AMPS consider a Hawking mode in the late radiation, i.e. a particle emitted by
the black hole at a time after the Page time. Using the first axiom from black
hole complementarity,

A1. The process of formation and evaporation of a black hole, as viewed by
a distant observer, can be described entirely within the context of stan-
dard quantum theory. In particular, there exists a unitary S-matrix which
describes the evolution from infalling matter to outgoing Hawking-like ra-
diation.

we infer that, to a distant observer, the entire system (black hole + radiation)
can be described by a pure quantum state |Ψ〉 that undergoes evolution by a
unitary evolution operator. In particular, it stays a pure quantum state.

Notice that so far, this situation is equivalent to the entanglement of the late
radiation with the early radiation (although strictly speaking the third axiom is
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also used here, for finiteness). However, instead of focussing on the entanglement
we will focus on the particular late time Hawking mode under consideration.
Using the second axiom of black hole complementarity,

A2. Outside the stretched horizon of a massive black hole, physics can be de-
scribed to good approximation by a set of semi-classical field equations.

we can find a unique (distant) observer independent annihilation operator
b corresponding to the late time Hawking mode. In particular, |Ψ〉 is an
eigenstate of b.

Now here is where it becomes interesting. In the linear approximation, we can
decompose any quantum field outside the black hole using spherical harmonics.
In particular, our late time hawking mode can now be viewed as being part of a
one dimensional scattering process with a corresponding effective potential that
may depend on the angular momentum of the mode. In this scattering process
we consider annihilation operators b, c and d, corresponding to the outgoing
mode outside the barrier (i.e. our late time Hawking mode), the incoming
mode outside the barrier and the outgoing mode inside the barrier respectively.
Just as in any ordinary one dimensional scattering process these operators are
related through reflection and transmission coefficients R and T by the relation

b = T ∗d+R
T ∗

T
c.

Now we could continue from here, but it will appear to be instructive to
consider the case T = 1 and R = 0, as do AMPS. In reality these reflection and
transmission coefficients, also called the gray body factors, depend on things
such as the energy and angular momentum of the mode (although they are
rapidly decreasing as a function of both the energy and angular momentum).
However, when considering the case with physically reasonable gray body factor
AMPS show that the same conclusion, that we will see in a moment, is achieved.

Let us view the situation in the frame of the infalling observer. This observer
has his own complete set of annihilation operators aω. In particular, he should
be able to express b as

b =

∫ ∞
0

dω
(
B(ω)aω + C(ω)a†ω

)
. (3)

Now assuming what is essentially the fourth axiom of black hole complemen-
tarity, namely that an infalling observer experiences a smooth horizon, we must
demand that |Ψ〉 is a vacuum with respect to the annihilation operators aω, i.e.
aω|Ψ〉 = 0 for all frequencies ω. Notice that this statement is the analogy of the
statement about the entanglement between the late radiation and the black hole.

We reach the conclusion that |Ψ〉 is an eigenstate of both b and aω. It is here
where our contradiction becomes eminent. We should have 〈Ψ|b†b|Ψ〉 = Nb,
where Nb is the amount of particles in the late time Hawking mode, and thus
〈Ψ|b|Ψ〉 =

√
Nb (the eigenvalue may differ by a phase factor however). But

calculating this expression with (3), i.e. using aω|Ψ〉 = 0 and 〈Ψ|a†ω = 0, yields√
Nb = 〈Ψ|b|Ψ〉 = 0. We have thus reached a contradiction.
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4 Objections to firewalls

4.1 Considering the entanglements separately

At the end of the black hole evaporation process the original system has resulted
into a bipartite system of the early radiation and the late radiation. Applying
the Page theorem[18] for such a thermodynamic system, one concludes that the
late radiation must be maximally entangled with the early radiation. In the
firewall argument one now reverse time evolves this late radiation until a point
where the black hole existed. Considering one mode of the late radiation, the au-
thors then argue that this mode is maximally entangled with the early radiation.

However, at the point the black hole exists they assume that Rindler space is
a good approximation in the neighbourhood of the horizon for the space-time
that a freely infalling observer experiences, which would mean the late radiation
mode has to be entangled with a mode inside the black hole. This seems
intuitively clear, but one should note was has happened to the late radiation
when we reverse time evolved it, it basically split into two systems: (part
of) the late radiation and the black hole. The authors of [49] argue that it
is, in their eyes, not so clear that the late radiation mode is still maximally
entangled with the early radiation. After all, Page’s theorem says something
about the entanglement between the early radiation and the combined system
of late radiation and black hole, but not about the entanglement with the late
radiation or the black hole separately.

They guide this insight by general quantum mechanics, with a quantum decay
process. They start of with some pure quantum state B0. Now they assume
that it decays into two states, denoted B1 and E. Generally, the states B1

and E are highly entangled. Now they assume yet another decay process takes
place, B1 decays into the two states B2 and L. Their argument now, is as
follows: B1 should be highly entangled with the combined system B2 ⊕ L.
However, is is not necessary that L (or B2 for that matter) is highly entangled
with B1, and thus with B0. So ordinary quantum mechanics teaches us that a
subsystem of a system L, where L is maximally entangled with a system B0, is
not necessarily also maximally entangled with B0.

Of course, this notation was suggestive: B0 and L representing the black hole
and the late radiation mode respectively. Let us look at a specific example, that
of a black hole B0, with total spin 0, that only emits spin one half particles
(electrons, let’s say)5. After the first emission the black hole has decayed into
the remainder of the black hole, B1, and the electron E, representing the early
radiation. i.e. it is in the state

|ψB1E〉 = α| ↑〉B1
| ↓〉E + β| ↓〉B1

| ↑〉E

for some constants α and β. This form is dictated by the fact that the black hole
state should conserve spin. Now after the second emission, of another electron

5Of course, this is just an illustrative example, not a physically reasonable situation.
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L, the state takes the form

|ψB2EL〉 = α (γ| ↑↑〉B2
| ↓〉E | ↓〉L + δ|0〉B2

| ↓〉E | ↑〉L)

+ β (ργ| ↓↓〉B2
| ↑〉E | ↑〉L + σ|0〉B2

| ↑〉E | ↓〉L) .

Even if all these coefficients are of the same order, that is, αγ ≈ αδ ≈ βρ ≈ βσ,
there does not appear to be a paradox. One can actually find some restrictions
on these coefficients. It was proved in [50] that black holes tend to get rid of
their quantum numbers. That means that a back hole with positive spin will
generally radiate on average more particles of positive spin. In this light we can
actually deduce that

α ≈ β, γ << δ and ρ << σ.

This observation has quite an important consequence however. What a sta-
tionary far away observer measures concerning the radiation actually depends
strongly on specific details of the black hole, i.e. the radiation is strongly corre-
lated with the black hole. Therefore, in considering the entanglement between a
late radiation mode and the early radiation one cannot simply ignore the black
hole state.

4.2 Embedding the black hole in the early radiation

At first there seems to be a solution to the firewall paradox that is totally in
line with the BHC way of thinking. Namely, there is no paradox if the three
subspaces to which the entanglements apply aren’t three different subspaces
at all. One can try to identify the (remaining) black hole with a subset of the
early radiation. The interior of the black hole should then fundamentally be
the same as that subset of the radiation. This entails a modification of effective
quantum field theory, i.e. axiom A2 should be abandoned, or at least modified.

How this identification works exactly is not clear yet. However, an effort
has been done by Susskind and Maldacena[33]. There approach is called the
ER=EPR approach. Due to its highly speculative basis we postpone it to the
next section.
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4.3 Is the measurement possible?

Crucial to the firewall argument is that the infalling observer should be able
to verify the entanglement between the early radiation and a given late time
Hawking mode before entering the black hole. In order to succeed in this mea-
surement the infalling observer should collect information about (nearly) all the
early radiation.

4.3.1 Computational Complexity

In the firewall paradox the infalling observer is able to confirm the entanglement
between an old Hawking quantum and the early radiation, before entering the
black hole. Harlow and Hayden suggest a modification of black hole comple-
mentarity that resolves the paradox, which disallows this measurement[30].
This modification is as follows:

Two spacelike-separated low-energy observables which are not both compu-
tationally accessible to some single observer do not need to be realized even
approximately as distinct and commuting operators on the same Hilbert space.

An observable is considered to be computationally inaccessible if it is so
quantum mechanically non-local that measuring it would require more time
or memory than the observer has fundamentally. In [30] the authors claim
with quantum computation theory methods that the measurement on the early
radiation can probably not be done fast enough. This would imply that the
AMPS experiment is not operationally realizable.

As a start we remark that the entropy of a black hole is n ∼ M2, while its
total life time is about ∼ M3. This means that the information requires to be
processed in about ∼ n3/2. Such a fast computation time is quite unusual in
complexity problems[30].

Let us tackle the problem more rigorously though. We consider the spaces
A,B,H,R from the non-AMPS notation. We know that, after the Page time,
BH is maximally entangled with a subspace of R, thus we can write

HR = (HRH ⊗HRB )⊗H ′R

with |H| = |HRH | and |B| = |HRB |, such that the black hole state (for the
outside observer) can be written as

|Ψ〉 =

(
1√
|H|

∑
h

|h〉H |h〉RH

)
⊗

(
1√
|B|

∑
b

|b〉B |b〉RB

)
.

To describe the measurement of the radiation R we use the so-called operational
basis, defined by

|bhr〉 := |b1 . . . bk, h1 . . . hm, r1 . . . rn−k−m〉R.

Here we have n = log2R qubits in total, we assume Alice can manipulate these
easily. k is the number of qubits in HB and m is the number of qubits in HH .
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We can view k+m as the number of qubits that are part of the black hole, i.e.
remaining in the black hole.
In the computational basis we can write the black hole state as

|Ψ〉 =
1√
|B||H|

∑
b,h

|b〉B |h〉HUR|bh0〉,

where UR is a unitary transformation on HR describing the evolution of R.
Alice’s task is to determine U†R and apply it to the Hawking radiation, thus
verifying the entanglement between HB and HRB .

From the quantum computation point of view Alice wants to do the following:
she want to adjoin the radiation to some computer. This computer is in some
state |Ψ〉C in a Hilbert space HC . Then she lets the system on HR⊗HC evolve

by a unitary evolution operator Ucomp to undo UR (i.e. apply U†R) and put the
qubits that are entangled with B into some sort of memory, for example the
first k qubits of the memory of the computer. In formula:

Ucomp : UR|bh0〉 ⊗ |Ψ〉C 7→ |something〉 ⊗ |b〉mem. (4)

To calculate the probability of finding such a state |Ψ〉C we discretize its cor-
responding Hilbert space. In any Hilbert space of dimension d we can find a
subset Sε such that any pure state in the Hilbert space is within trace norm
|| . . . ||t of some element in Sε. Such a set Sε is called an ε-net. We estimate the
minimal number of elements Sε can have. In order to make this estimate we
notice that with respect to the ordinary norm || . . . ||

|||Ψ2〉 − |Ψ1〉||2t = 2(1−
√

1− δ2/4 cos(α)) ≥ δ2

2
= (|||Ψ2〉〈Ψ2| − |Ψ1〉〈Ψ1|||)2

.

We conclude that an ε/2-net with respect to the Hilbert space norm is an ε-net
with respect to the trace norm. For an ε/2-net with respect to the Hilbert
space norm the minimal amount of elements needed is the number of balls with
radius ε/2 centered on points on the unit sphere in Rd that are needed to cover

it. When d is big this amount scales as ∼
(

2
ε

)2d−1
.

Let us now use this for our present situation. Let us fix b and h in the com-
putational basis, then the total amount of states |something〉 ⊗ |b〉mem could

be is
(

2
ε

)2|C||R|
. The state |something〉 has

(
2
ε

)2|C||R|/2k
possibilities. Now pick

a |Ψ〉C , the probability that (4) will be satisfied for all 2k+m choices of b, h is

then approximately
(

2
ε

)−2|C||R|2m(2k−1)
. By definition the number of choices for

|Ψ〉C is
(

2
ε

)2|C|
, thus the probability that (4) is met is approximately(

2

ε

)−2|C|(|R|2m(2k−1)−1)

.

Trying all (or many) possible values of |C| then gives us a probability of about

∞∑
|C|=0

(
2

ε

)−2|C|(|R|2m(2k−1)−1)

=
1(

2
ε

)2(|R|2m(2k−1)−1) − 1
≈
(

2

ε

)−2(|R|2m(2k−1)−1)

.
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Ofcourse this is extremely small. However, in a sense, picking |Ψ〉C at random
was the ‘dumbest’ way to try to determine it. We should try to find a better
way. One way of doing this is by varying the running time of the computer, i.e.
testing a variety of Ucomp’s while leaving the size of the Hilbert space fixed. In
this case the longest time she would have to wait is about

t ∼
(

2

ε

)|R||C||H||B|
.

This is an absurdly big number. The problem is that we pick Ucomp randomly
at each step. However, we can still improve if we use some structure in vary-
ing Ucomp in time. This is done by using techniques from quantum computation.

We will consider the quantum circuit model. This model consists of a memory
of n qubits. We assume that we can act on these qubits with some set of one- or
two-qubit unitary transformations, these are called quantum gates. Bigger uni-
tary transformations can be constructed by acting with these gates successively.
The number of gates needed to be able to approximate any unitary transfor-
mations close enough is surprisingly small. In principle one gate is enough if it
can be applied on any combination of two of the qubits. Such a set of gates is
called universal. The so-called Hadamard gate is defined by

H|0〉 =
1√
2

(|0〉+ |1〉)

H|1〉 =
1√
2

(|0〉 − |1〉).

The Z1/4 gate is defined by

Z1/4|0〉 = |0〉

Z1/4|1〉 = e
iπ
4 |1〉.

Another gate, called the CNOT gate, works on two qubits at once. It flips the
second bit if and only if the first bit is 1.

Ucnot|b1, b2〉 = |b1, b1 + b2mod 2〉.

The set {H,Z1/4, Ucnot} happens to be a universal set of gates.

Of course what we are interested in is how many gates are needed to make
the unitary transformation UR. We make the assumption that this amount is
a measure of how much time it would cost to do the computation, intuitively
because the gates can be implemented one by one. For a universal set of N
unitary gates the number of circuits, consisting of exactly N ′ of these gates, is((

n

2

)
N

)N ′
≈ n2N ′2−N

′
NN ′ .

Our memory of n qubits lives in the Hilbert space (C|0〉 + C|1〉)n, thus the
group of unitary operators on the memory can be written as a Lie group who’s
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elements are parametrized by

U(c1, c2, . . . , c22n) = exp (i

22n∑
j=1

cjgj),

where g1, g2, . . . , g22n are the infinitesimal Lie group generators. We notice that
for two unitary operators U1, U2 we have

〈χ|U1 − U2|Ψ〉 = 〈χ|(I− U2U
†
1 )U1|Ψ〉 ≈ 〈χ| − i

22n∑
j=1

δcjgjU1|Ψ〉.

If ||δc|| < ε then this expression will be smaller than εP (2n) for some low
order polynomial P . For every circuit (of our n2N ′2−N

′
NN ′ circuits) we can

imagine a 22n-dimensional ball of radius ε. The sum of all these volumes should
approximately equal the entire volume of the unitary group on n qubits. This
implies that

n2N ′2−N
′
NN ′ ≈ 1.

We conclude that our universal set of gates needs approximately

N ′ =
22n log(1/ε)

log (n2N/2)
= O(22n).

Thus the time needed to do our computation scales as 22n, a lot better then our

earlier result of a time scaling as
(

2
ε

)2|R||C||H|||B|
(remember |R| = 2n). This

result is know as the Solovay-Kitaey theorem[52]. This is a great improvement
however, we have improved the time from exponential in 2n to exponential in
n, but this does not come close to the life time of the black hole, which is about
n

3
2 . The question is, can we do better? Unfortunately, this does not appear

true. Several changes in how we chose the gates can slightly improve the time
required, but the exponential in n remains. We are therefore led to believe that
the measurement is not feasible.
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4.3.2 Measuring inside the black hole

Apart from the measurement of the early radiation, the infalling observer
should also be able to detect the entanglement of a late Hawking quantum with
its internal partner. This can be more problematic than one might expect.
Because of the angular momentum barrier most Hawking modes have low
angular momentum. Therefore a Hawking mode should be smeared over the
entire sphere near the horizon, this means that its entangled internal partner
is also smeared over the entire sphere. Thus an observer will have to be able to
see most of the black hole interior to be able to verify the entanglement. It will
appear that the infalling observer is not able to observe the entire black hole
interior, before hitting the singularity[47].

To show this we choose Gullstrand-Painlevé coordinates, defined by

T = t+ rs

2

√
r

rs
+ ln

∣∣∣∣∣∣
√

r
rs
− 1√

r
rs

+ 1

∣∣∣∣∣∣
 ,

with corresponding black hole metric

ds2 = −fdT 2 + 2

√
rs
r
dTdr + dr2 + r2dΩ2.

Here f = 1 − rs/r with rs the Schwarzschild radius. T actually corresponds
to the proper time along the worldline of a freefalling observer that started at
infinity. The conserved quantities are

E = fṪ −
√
rs
r
ṙ and l = r2θ̇.

Plugging the second identity in to the equation for a null geodesic

0 = −fṪ 2 + 2

√
rs
r
Ṫ ṙ + ṙ2 + r2θ̇2 = −fṪ 2 + 2

√
rs
r
Ṫ ṙ + ṙ2 +

l2

r2

yields

E2 =

(
fṪ −

√
rs
r
ṙ

)2

= f

(
fṪ 2 − 2

√
rs
r
Ṫ ṙ

)
+
rs
r
ṙ2

= f

(
ṙ2 +

l2

r2

)
+
rs
r
ṙ2

= ṙ2 + f
l2

r2
.

What we are interested in is what part of the black hole actually fits in the
causal patch of a freely infalling observer. We will assume that at some time,
say t = 0, the observer is very close to the singularity, with θ = 0. At this
time the observer will collect measurement data (of the interior s-wave) that
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is transmitted by some sort of infalling ring shaped measuring device. We will
not go in to the details of such a device but will just assume that such a device
can exist in principle. From the expression for E2 we obtain a formula for the
angular distance:

∆θ =

∫ r′

0

dθ

dr
dr

=

∫ r′

0

θ̇

ṙ
dr

= ±
∫ r′

0

l

r2

√
E2 − f l2r2

dr

= ±
∫ r′

0

dr√
ε2r4 − fr2

with ε =
E

l
.

Analogously, we get an expression for the proper time

∆T =

∫ r′

0

dT

dr
dr

=

∫ r′

0

Ṫ

ṙ
dr

=

∫ r′

0

1

f

E +
√

rs
r ṙ

ṙ
dr

=

∫ r′

0

1

f

 E

±
√
E2 − f l2r2

+

√
rs
r

 dr

=

∫ r′

0

1

f

(√
rs
r
± εr2√

ε2r4 − fr2

)
dr.

Given a T on which the measurement is transmitted, there is at most one ε
that can make the above identity true for a chosen r′. This then also uniquely
determines θ. Hence, for every choice of T , we obtain an (r, θ)-curve that
is parametrized by ε. This curve basically forms the boundary of the region
from which the observer can have obtained information at (t, r) ≈ (0, 0).
Unfortunately the expression for ∆T is hard to invert, thus an analytic
expression of r′ in terms of ε (and tacitly of T ) seems impossible.

Figure 2 shows the causal patch of the infalling observer. As T becomes larger,
the case we are considering, the complement of the causal patch turns into a
droplet like area, as can be seen in the (b) case of figure 2. We conclude that a
large part of the black hole does not lie in the causal patch. It will therefore be
hard, if not impossible, to perform the measurement inside the black hole.
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Figure 2: The white area does not lie in the causal patch. Here the Schwarzschild
radius is normalized to 1. (source: [47])

4.3.3 Entanglement changes due to the presence of the observer.

In the next chapter we will see that an ingoing particle in Schwarzschild space
will create a shock wave that effects the positions of other particles in the
vicinity of the horizon. This effect is called gravitational back-reaction. The
authors of [54] suggest that this effect can actually resolve the paradox. An
observer doing the measurement from the firewall paradox near the horizon
will himself have a gravitational back-reaction effect on the black hole. This
can disturb the state of the black hole and may, in particular, change the
entanglements, invalidating the results from the firewall thought experiment.
They attempted to make their suggestion quantitative but in our opinion they
failed to do so.

It is remarkable how little attention the scientific community paid to this idea.
We suspect that the general consensus is that the effect of gravitational back-
reaction is considered to be minimal. However, in the next chapter it will become
clear that this effect can become quite big close to the horizon.
There we will not focus on the observer, but on a general mechanism for black
hole evolution by considering the effects off back-reaction.

4.4 non-maximal entanglement

Most researchers so far have accepted that the late radiation is maximally
entangled with the early radiation, by the Page argument[18]. However the
authors of [53] challenge this claim. They argue that this is not necessarily the
case if the corresponding Hamiltonian of the black hole is non-degenerate. They
prove that for pure states that are randomly sampled in a Hilbert space, with
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fixed total energy, a typical state isn’t maximally entangled. The corresponding
state of a small subsystem is not the completely mixed state but a Gibbs state.

Let us consider two quantum systems with Hilbert spaces H1 and H2. Now take
a pure state |Ψ〉 ∈ H1 ⊗H2. The corresponding density operator, ρΨ = |Ψ〉〈Ψ|
is a |H1||H2| × |H1||H2| matrix. Hence it has a unique expansion of unitary
generators {I⊗ I, Gµν}. In formula:

ρΨ =
1

|H1||H2|

(
I⊗ I +

∑
µ,ν

αµνGµν

)

for some complex numbers αµν that can readily be shown to equal the expec-
tation value of Gµν , i.e.

αµν = 〈Gµν〉 = 〈Ψ|Gµν |Ψ〉.

Here the Gµν can be chosen to be traceless and satisfying Tr(GµνGµ′ν′) =
|H1||H2|δµµ′ . The generators Gµν are composed of generators G1,µ and G2,ν of
corresponding to H1 and H2 respectively. We use the convention that G1,0 =
G2,0 = I. We can then write Gµν = G1,µ ⊗G2,ν .
The reduced density matrix corresponding to the first system can now be written
as

ρ1 = Tr2(ρΨ) =
1

|H1|

(
I +

∑
µ

〈Gµ0〉G1,µ

)
.

At this point we introduce a non-degenerate Hamiltonian H on the combined
system with corresponding Hilbert space H1 ⊗H2. We can decompose it as

H = H1 ⊗ I + I⊗H2 + V12,

where H1 and H2 are the Hamiltonians of a free field theory and V12 is the
interaction term. We denote the eigenstates of H by |Ej〉 and their eigenvalues
by Ej , i.e. H|Ej〉 = Ej |Ej〉.

For δ > 0 we define

∆δ(E) = {j|E − δ ≤ Ej ≤ E}.

This is thus a set of indices of energy levels that lie within a certain (small)
interval. We can define a Hilbert space H∆δ(E) that is a subspace of H1 ⊗H2

as follows:

H∆δ(E) =
⊕

j∈∆δ(E)

C|Ej〉.

It is crucial to understand that H∆δ(E) cannot be decomposed as the product
of a subspace of H1 and a subspace of H2. To illustrate this let us suppose
that V12 is very small. Then H∆δ(E) is spanned by the generating element
|E1〉|E −E1〉. But |E1〉|E −E′1〉, with E′1 6= E1, is then not included. We must
conclude that H∆δ(E) cannot be decomposed as the product of a subspace
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of H1 and a subspace of H2. The big conclusion is that the tensor product
structure assumption of the ordinary Page curve hypothesis is incorrect for
black hole evaporation.

But we don’t stop here. For any ordinary system with a large volume V the
dimension d = |H∆δ(E)| is proportional to eγV for some constant γ > 0. A pure
state |Ψ〉 in H∆δ(E) is necessarily of the form

|Ψ〉 =
∑

j∈∆δ(E)

cj |Ej〉

for some complex numbers cj such that∑
j∈∆δ(E)

|cj |2 = 1

as to ensure normalization. To investigate the properties of H∆δ(E) we define
the following uniform probability distribution:

p(c) =
Γ(d− 1

2 )

2πd−
1
2

δ

 ∑
j∈∆δ(E)

|cj |2 − 1

 .

The factor is to ensure that the integral over p(c) is 1. The ensemble average of
any function f with respect to this distribution is given by

f =

∫
f(c)p(c)ddc.

In particular, we can take the ensemble average of the expectation value 〈O〉
of any observable O, which is then denoted as 〈O〉 accordingly. The statistical
deviation is given by

δ〈O〉 = 〈O〉 − 〈O〉.

One can prove the inequality

(δ〈O〉)2 = 〈O〉2 − 〈O〉
2
≤ ||O||

2

d+ 1
.

Here the operator norm ||.|| represents the maximum absolute value of the
eigenvalues of the corresponding operator.

We will now apply this to the operator O = Gµ0, which yields

(δ〈Gµ0〉)2 ≤ ||Gµ0||2

d+ 1
.

We know that ||Gµ0||2 is independent of |H2|. On the other hand, d grows as
eγV2(|H2|, where V2 represents the volume of the second system. This means
that (δ〈Gµ0〉)2 ≈ 0 when this volume becomes big when |H2| is big (|H1|
fixed). We must conclude that the typical values of 〈Gµ0〉 are very close to the
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ensemble average 〈Gµ0〉.

We deduce from this that ρ1 ≈ ρ1 with high precision for typical states |Ψ〉 in
H∆δ(E). Energy can be exchanged between the two systems due to the presence
of V12. When V12 ≈ 0 the sum H1 + H2 is approximately conserved. It is a
well-know fact that this implies that ρ1 is a Gibbs state, i.e. for |H1| >> |H2|

ρ1 =
1

Z(β)
e−βH1

for some fixed temperature β. This contradicts the claim of maximal entangle-
ment, since that would imply ρ1, and thus ρ1, to be proportional to the unit
matrix.
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5 Gravitational back-reaction

Close to the horizon it seems likely that the gravitational force dominates,
i.e. the other fundamental forces can be neglected. In that sense gravitational
back-reaction should be considered to be very important, it is surprising how
little attention the scientific community paid to it though. In section 4.3.3
we already discussed how the back-reaction of an infalling observer could
meddle with the measuring process. In our view, this counterargument lacks a
quantitative understanding.

The author of [9, 10, 11] suggests that back-reaction can actually be used to
solve the black hole information paradox and, with it, the firewall paradox. In
this chapter we will attempt to make the ideas clear.

5.1 The gravitational shock wave of a fast moving particle

Consider the gravitational field of a fast moving particle. Such a particle can
be shown to produce a shock wave. With fast, we mean that its speed is close
to the speed of light. Necessarily, its mass m is close to 0. Let us consider the
metric of such a particle, when it is not moving yet.

ds2 = − (1− 2m/r) dt2 +
1

(1− 2m/r)
dr2 + r2dΩ2

≈
(
−1 + 2

m

r

)
dt2 +

(
1 + 2

m

r

)
dr2 + dΩ2.

So radially we have

ds2 = dx2 + 2
m

r
(u · dx)2 + 2

m

r
dr2,

where x is the coordinate of ordinary Minkowski space and uµ = (1, 0, 0, 0) is
the fourvelocity of the particle.
Now we give the particle a Lorentz boost in the z-direction. This means that
muµ = pµ ≈ (p, 0, 0, p). Consequently, for fixed p

(mr)2 = m2x2 + (mu · x)2 = m2x2 + (p · x)2 ≈ (p · x)2 = m2(u · x)2

and thus r ≈ |u·x|. We will compare this metric with that of Minkowski space to
see how it differs. In order to do so it will be convenient to describe Minkowski
space in the following two coordinate systems y+ and y−:

yµ± = xµ ± 2muµ log r.

In this case the flat metric is given by

dy2
± = dx2 ± 4m

r
(u · x)dr − 4m2 dr

2

r2
.

Comparing the metric of our fast moving particle with these flat metrics gives

ds2 − dy2
± =

2m

r
d(r ∓ (u · x))2 + 4m2(d log r)2.
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Now let us fix p. It can be shown that when m ↓ 0, the metric ds2 approaches
dy2

+ when p · x > 0 and dy2
− when p · x < 0. At the hypersurface p · x = 0 these

two metrics are patched together by the relation y+ = y− + 4m log x̃, where x̃
denotes the transverse part (0, x, y, 0). The combined metric obtained in this
way is called the Aechelburg-Sexl metric.

Let us define x± = z ± t. Then we can consider the flat coordinate systems
(x±+, x̃+) and (x±−, x̃−), where x̃ = (x, y) denotes the transverse part. By the
above we know that these two metrics are connected by the relations x−+ =
x−−, x̃− = x̃+ and

x+
+ = x+

− + 4p+ log |x̃| = x+
− + 8p log |x̃|.

In particular, this is the shift produced by the gravitational shock wave. This
can actually be written in terms of a Green’s function f

x+
+ − x+

− = −pf(x̃) and δ̃2f(x̃) = −16πδ2(x̃).

What this implies is the following. Suppose some particle with momentum
(0, 0, p−, 0) (in lightcone coordinates of the t and z coordinates) passing through
the origin (0, 0, 0, 0). Then a different particle sitting on the transverse plane
(x̃, 0, 0) = (x, y, 0, 0) will on the moment of passing experience a shift towards
the point (x̃,−8 log |x̃|, 0). Ofcourse, in these formulas x̃ should be replaced by
x̃−x̃′ if our fast moving particle has transverse coordinate x̃′. Instead of just one
particle one can consider an entire distribution parametrized by the transverse
coordinates moving perpendicularly towards the transverse plane (x̃, 0, 0). Let
us denote this distribution by p−in(x̃) and the shift by z−out(x̃). In that case we
obtain the shift by integration

z+
out(x̃) = −8

∫
d2x̃′p−in(x̃′) log |x̃− x̃′|.

5.2 Gravitational back-reaction in the Schwarzschild met-
ric

So far we have looked at the case of a fast moving particle in flat space. What
we really want is the case where the particle lives in Schwarzschild space, and
is moving fast due to the metric. It turns out that the associated shift can be
calculated exactly. We will describe this in the Kruskal-Szekeres coordinates,
or rather their light cone coordinate versions: u+ and u−. Instead of the
transverse coordinates x̃ we should here work with the remaining spherical
coordinates Ω = (θ, φ).

We consider an infalling shell of particles, described by its momentum distri-
bution p+

in(Ω). We denote by u−in(Ω) the position of the shell for particular
spherical coordinates Ω. We want to know how the shell scatters with the hori-
zon, that is, we want to know u+

out and p−out after the interaction has taken
place. This situation brings forth some equations that actually can be solved,
and are similar to the ones from the previous paragraph. Namely, the shift is
determined by[10]

u−out(Ω) =
8πG

R2
f(Ω,Ω′)p−in(Ω),
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where f is a Greens function6 that solves the equation

(1−∆Ω)f(Ω,Ω′) = δ2(Ω,Ω′)

This leads to the following algebra for u+
in, u

−
out, p

−
in and p+

out

(1−∆Ω)u−out(Ω) =
8πG

R2
p−in(Ω)

[u+
in(Ω), p−in(Ω′)] = iδ2(Ω,Ω′)

(1−∆Ω)[u+
in(Ω), u−out(Ω

′)] =
8πiG

R2
δ2(Ω,Ω′)

[u−out(Ω), p+
out(Ω

′)] = iδ2(Ω,Ω′)

(1−∆Ω)u+
in(Ω) = −8πG

R2
p+
out(Ω)

As we can see al the equations are linear in the positions and momenta. It
therefore seems reasonable to expand them in spherical functions Ylm(Ω), i.e.

u±(Ω) =
∑
l,m

u±lmYlm(Ω) and p±(Ω) =
∑
l,m

p±lmYlm(Ω).

Perhaps surprisingly, our equations take a very simple form due to the complete
decoupling in spherical waves. Our algebra now takes the form

u−out,ml =
8πG/R2

l2 + l + 1
p−in,ml and u+

in,ml =
8πG/R2

l2 + l + 1
p+
out,ml.

In particular, we obtain the simple commutation relations

[u±in,lm, p
±
in,l′m′ ] = iδll′δmm′ and [u±out,lm, p

±
out,l′m′ ] = iδll′δmm′

From now on we will drop the indices l,m and in, out for convenience. At this
point it is actually possible to derive the long awaited form of the corresponding
S-matrix. First, we remark that a single particle wave function is of the form

ei(p
−u++p+u−),

Now we consider the wave functions

ψ(αeρ) = e−
1
2ρϕ(α, ρ) and

ψ̂(βeω) = e−
1
2ωϕ̂(β, ω)

with respect to the position u+
lm = αeρ and the momentum p−ml = βeω respec-

tively. Here we introduced the new variables α, β, ρ, ω, the reason for this is that
u−out(t) and p−in(t) increase exponentially with t, and their counterparts decrease
exponentially with t (with the same base e1/(4GM)). We prefer viewing our sys-
tem linear in time. The constants α and β simply denote the sign (±) and ρ
decreases linearly with time while ω increases linearly with time. The ocurrence
of the exponentials in front of ϕ and ϕ̂ is due to the fact that we demand these

6Notice that log|x̃− x̃′| indeed also satisfies a Greens function property.
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wave functions to be normalized in the ρ and ω variables respectively. Plugging
these expressions into the wave functions yields[10]

ψout(β, ω) =
1√
2π

∑
α=±

∫ ∞
−∞

dρe
1
2 (ρ+ω)e−αβie

ρ+ω

ψin(α, ρ+ log λ) (5)

with

λ =
8πG/R2

l2 + l + 1

Now we expand the wave functions in plane waves, let’s consider

ψin(α, ρ) = e−iκρψin(α) and ψout(β, ω) = eiκωψout(α)

With κ the corresponding energy. Plugging this in (5) yields

ψout(β) =
∑
α=±

A(αβ, κ)ψin(α)

where

A(α, κ) =
1√
2π

Γ

(
1

2
− iκ

)
e−α

πi
4 −ακ

π
2 .

Thus for every l,m and κ we obtain a scattering matrix of the form

A =

(
A(+, κ) A(−, κ)
A(−, κ) A(+, κ)

)
We notice that

|A(+, κ)|2 + |A(−, κ)|2 =
1

2π

∣∣∣∣Γ(1

2
− iκ

)∣∣∣∣2 (e−κπ + eκπ) = 1

A(+, κ)A(−, κ) +A(−, κ)A(+, κ) =
1

2π

∣∣∣∣Γ(1

2
− iκ

)∣∣∣∣2 (−i+ i) = 0.

Here we have made use of the well known formula Γ(s)Γ(1− s) = π/ sin(πs) to
obtain∣∣∣∣Γ(1

2
− iκ

)∣∣∣∣2 = Γ

(
1

2
+ iκ

)
Γ

(
1−

(
1

2
+ iκ

))
=

π

cosh(κπ)
.

We also tacitly used that Γ(s) = Γ(s), which is easily proved by analytic
continuation. We conclude that A is a unitary matrix, as it should be acording
to the first axiom of Black hole complementarity, i.e. information is preserved.

Notice that the Kruskal-Szekeres spatial coordinate can actually become
negative due to the shift. Yes, this means precisely that particles from region I
can be dragged to region II and vice versa in figure 3.

Usually we consider regions I and III as the outside and inside of the black
hole. These are considered to be actual existing spaces. The other two regions
are usually seen as a different black hole, that might be connected to the one
of regions I+III by a wormhole of some sort. But the author of [9, 10, 11]
argues differently. Certainly region I describes the outside of the black hole,
but region II will also describe the same black hole. This is not a wild idea but
is simply derived from the equations for the shift.
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Figure 3: The Penrose diagram of a black hole. (source: [11])

5.3 Gravitational back-reaction as an information transfer
mechanism

In the previous subsection the S-matrix was constructed. But what does the
result mean physically? From the specific form of the S-matrix we see that
particles staying in the same region are actually suppressed, it is preferred that
particles are dragged from region I to region II and vice versa. In the classical
limit, κ → ∞, the probability of this happening is actually 1. One can show
that both the ingoing (outgoing) momentum and position increase (decrease)
exponentially in the temporal coordinate. In particular, as time increases
particles will be dragged to the other region with probability approaching 1.
This quantum dragging effect between regions is a peculiar feature that we
come to shortly. First however, we wish to understand the mechanism behind it.

So let us think about the (almost) stationary quantum states a black hole can
be in. Of course we have the state corresponding to the eternal black hole, i.e.
an empty Penrose diagram. To a distant observer this state will be described
by the Hartle-Hawking vacuum:

|∅〉HH = C
∑
n,E

|E,n〉I |E,n〉IIe−
1
2E/TH .

Here C is some normalizing constant, E is the energy and n stands for any
labelling of quantum numbers that are needed. This state represents particles
going in, but also their time-reverse counterparts approaching from infinity.
Here particles also enter and leave region II. Now remember that particles
entering the black hole have an exponentially increasing momentum. We
cannot allow this momentum to increase without bound, since this would
also mean that the quantum dragging effect can increase without bound. It
therefore seems reasonable to introduce a cut-off for the momenta here, which
has been investigated before [4].
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Let us clarify this. The moment the momentum of an ingoing particle becomes
to big we replace the particle (i.e. we remove it) by the effect it has on the
outgoing particles. It is here where the information of the ingoing particle is
passed on to the outgoing particles. Notice that this resolution seems to (at
least partly) resolve the black hole information paradox. The question still
remains on how exactly all the information can be somehow contained in the
momentum distribution. The author of [9, 10, 11] expects that this will prove
possible.

It is also important to notice that such a cut-off would limit the number of
microstates, at least for every pair of l and m. This is good news since we want
the amount of microstates to be limited, as dictated by the back hole entropy.
There is still one problem, we do have infinitely many possibilities for l and m.
How could there still be only a finite amount of microstates for the entire black
hole? There are signs [57] that a black hole can only contain one particle per
Planck surface area. This implies that values of l for which the corresponding
momenta are Planckian will not play a role, i.e. there should also be a bound
on the values for l (and thus for m).

5.4 Antipodal identification

In the previous subsections a transformation mechanism and a unitary S-matrix
where found. Of course this is amazing, but one cannot help but feel there is
still one important confusion left. How can it be that particles are dragged
from one region to another, if one (region II) of them does not even seem to
be part of our universe? The answer we must inevitably reach is that region II
really must somehow be part of the black hole though. How can this be?

Surely, they could not possibly describe exactly the same part of the universe.
There is an elegant way out of this: it is called the antipodal identification [58],
described by the following identification

(u+, u−, θ, ϕ) ≡ (−u+,−u−, π − θ, π + ϕ)

In other words, region I and II describe two different (complementary) hemi-
spheres of the black hole.

Let us try to understand what this means. In General Relativity it is known
that a particular space-time portion can be viewed in different (but related)
coordinate systems. One can go from one coordinate system to another by
a coordinate transformation. Our coordinate transformation is one from
(u+, u−, θ, ϕ), the (light cone Kruskal-Szekeres) coordinates of an observer
at infinity, to the coordinates (−u+,−u−, π − θ, π + ϕ), the coordinates of
a local observer. We conclude that the transformation from global to local
coordinates is topologically non-trivial. It is however, one-to-one and does not
lead to singularities (this follows from the fact that the minimal distance is
always twice the Schwarschild radius). According to the author of [10, 11] the
anti-podal identification is, in fact, inevitable. Indeed, one is looking for an
isometry of R3 that has no fixed points, complemented by the condition that
it should be its own inverse. This last condition implies that our isometry
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Figure 4: The Penrose diagram of a black hole showing the effects of the drag-
ging. The red arrow represents an outgoing particle in region I, the green one
shows an outgoing particle in region II moving away from the horizon. The blue
arrow shows how unitarity is restored near the horizon, a particle in region I
gets dragged to region II. To get a consistent picture, one identifies region II to
the antipodal part of region I. (source: [10])

is either the identity or the reflection which, by the condition that it has no
fixed points, leads us to the conclusion that it is the reflection. In spherical
coordinates this map corresponds to (r, θ, ϕ) 7→ (r, π − θ, π + ϕ).

We would like to point out one important consequence. Namely, looking at one
value of l,m, to restore unitarity one has to take t as the causal parameter.
In particular outgoing particles in region II must enter in negative time, i.e.
negative u+ − u− This however means that motion seems to go backwards
in region II. This should be viewed as another example of the strangeness of
quantum mechanics.
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5.5 Two arguments against firewalls

From the previous subsections we can already extract two arguments against
firewalls. First, we have introduced a cut-off for the momentum of ingoing
particles. When the momentum becomes to high, we replace it by the dragging
effect (or equivalently, information transfer) it has on the other particles. This
means that high energy particles play no role, i.e. there is no firewall.

Also, the firewall argument makes use of the entanglements between the par-
ticles in the Schwarzschild metric. However, as we have seen in the previous
subsection, the black hole state is simply a pure state. Particles on one hemi-
sphere are maximally entangled with particles on the other hemisphere. That
the black hole seems to radiate thermally to an observer at infinity is simply
due to his inability to see the other hemisphere. There is only an apparent en-
tanglement for an observer that can only see one hemisphere of the black hole.
In this light the original firewall argument is based on an overcounting of states.
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6 Speculative approaches

The ’objections’ of the previous section were based on fairly accepted physical
ideas. In the firewall discussion however, one can find a lot of different ap-
proaches. Many of those are based on highly speculative ideas. In this section
we will give a short overview of each approach, but we will not go into much
detail.

6.1 The ER = EPR proposition

In the Penrose diagram of a black hole (i.e. figure 1) one can see two spatial
sections I and II. Usually, one assumes that just one of these sections is relevant
for the spacetime under consideration. However, one could view these as two
separate black holes, that are geometrically connected to each other. Such a
connection is known as a wormhole, or, Einstein-Rosen bridge[35].
Another bridge, called Einstein-Podolsky-Rosen bridge is the name for an
entanglement between two (collections of) particles[34]. Here, one considers
creating a pair of entangled particles which are then transported a large
distance apart. When one would make a measurement on one of these particles,
it appeares that the other particle would also instantaneously have to be
effected. The authors did not believe in this ‘spooky action at a distance’.
Nowadays however, we do think that this is really how it works.

The authors of [33] assume that these ER- and EPR-bridges are actually a
manifestation of the same thing. They are lead to this interesting idea by
observing some similarities between the two concepts.

• Although both concepts initially seem to allow strange violations of local-
ity, it is not actually possible to use them to send information faster than
light can travel.

• It is not possible to create more entanglement between the two connected
systems by a local action if there where not already bridges present.

So far, this is an interesting idea. But what does it have to do with the
AMPS-paradox? The answer lies in the emitted Hawking radiation, it will
play the role of a second black hole. We make the assumption that there is a
(complex) geometrical bridge between the black hole (from the paradox) and
the emitted Hawking radiation.

Now let us consider a black hole after the page time. We suppose that Alice
has some sort of quantum computer with which she can bring the Hawking
radiation into a second (far away) black hole, and that she has a way of
operating on this black hole. Now we consider the Hawking quantum B that
is about to be emitted from our original black hole, as in the AMPS paradox.
It follows that there is some part of the early radiation, RB , that is entangled
to B. Alice can distil this RB from her black hole at earlier times. Having RB
in possession, she flies back to the original black hole to meet with B when it
is emitted. By monogamy of entanglement this would imply that B cannot be
entangled with its usual internal partner A. The disruption of the A,B pair
would lead Bob to see a particle he did not expect when freely falling in the

34



(original) black hole (in view of the equivalence principle).

Now why would this not be a paradox? The answer could be that by distilling
RB Alice actually somehow created the later particle through the connecting
ER-bridge. AMPS argue that it is not necessary that the AMPS experiment
would actually be performed in order for there to be a firewall, in light of the
ER=EPR conjecture this would be an incorrect statement. It would then also
turn out that there isn’t necessarily a firewall, but perhaps a fireparticle.

6.2 Fuzzballs

In string theory fuzzballs are considered to be the true description of black
holes. Here the concept of the singularity of a black hole is replaced by the
following: the entire region inside the black hole is assumed to be a ball of
strings.

For fuzzballs one also has the concept of (fuzzball) complementarity. The rules
are given by the following set of axioms[56]:

F1. Black hole microstates have no support inside the black hole, in fact their
support ends some finite distance from the horizon. A true black hole
state is a superposition of these microstates.

F2. The fields in the vicinity of the horizon are not in a vacuum state.

F3. Situations of infalling quanta with energy E >> TH are accurately ap-
proximated by ordinary relativistic black hole solutions which have an
interior.

If a particle with E >> TH is sent into a fuzzball it will excite modes on the
surface of the fuzzball. Most of these modes are not entangled with the early
radiation, this in contrast with a normal black hole after the Page time. In par-
ticular, these excitations have a complementary description from the viewpoint
of an infalling observer. Hence there is no firewall.

6.3 AdS/CFT correspondence

The AdS/CFT correspondence is a conjectural relationship between Anti-de
Sitter spaces and conformal field theories. n−dimensional Anti-de Sitter space
is defined as the subset of Rn+1 such that each of its elements (x1, . . . , xn+1)
satisfies

x2
0 + x2

1 + . . .+ x2
n−1 − x2

n − x2
n+1 = −1.

Often, one applies the substitution ρ = sinh r with r =
√
x2

1 + x2
2 + . . .+ x2

n,
yielding the metric form

ds2 = − cosh2(r)dt2 + dr2 + sinh2(r)dΩ2
n−1.

Here t = x0 and dΩ2
n−1 is the surface density of the n−dimensional sphere. In

the AdS/CFT correspondence one usually considers some string theory on this
Anti-de Sitter space.
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Figure 5: Graphic representation of the AdS/CFT correspondence.
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Conformal field theories are quantum field theories that are invariant under
conformal transformations, i.e. physical results are invariant under translations
of the coordinates.

The idea of the AdS/CFT correspondence is that there is a one-to-one corre-
spondence between objects of Anti-de Sitter space and objects of conformal
theory. One starts of with some string theory on Anti-de Sitter space. As seen
in Figure 5 Anti-de sitter space can be viewed as a cylinder. The boundary
of this cylinder is important in light of the AdS/CFT correspondence. One
can show that this boundary is locally Minkowski. Thus one could define an
auxiliary theory that describes ordinary spacetime as de boundary of Anti-de
Sitter space. This, in a nutshell, is the idea of the AdS/CFT correspondence.
One assumes that any conformal field theory is equivalent to some gravitational
theory on the boundary of some Anti-de Sitter space.

In particular, any entity in the conformal field theory has a counterpart in
the AdS theory and vice versa. For example, a black hole in a conformal
field theory could be represented as some collection of particles in the AdS
theory. As mentioned earlier, this is exactly the reason that the AdS/CFT
correspondence dictates that black hole evolution is unitary (after all, in the
AdS theory it is represented by just some particles).

In this AdS/CFT framework it appears that no firewalls should form[51], but
we will not go in to the details.

6.4 Local conformal symmetry

The author of [7, 8] proposes that gravity exhibits a local conformal symmetry.
This symmetry can be encountered for example when one tries to determine the
paths of light rays, these satisfy

ds2 = gµνdx
µdxν = 0.

One can show that the solutions to this equation are invariant under the mul-
tiplication of the metric with a conformal factor Ω, explicitly

gµν(x)→ Ω(x)2gµν(x).

The idea now is to take this further, can this symmetry somehow be taken to
hold in other situations concerning gravity? In order to investigate this one
should look at the Einstein-Hilbert action:

L = LEM + Lmatter

with

LEM =
1

16πG

√
−g (R− 2Λ)

Lmatter = LYM (A) + Lbosons(A, φ, gµν) + Lfermions(A,ψ, φ, gµν).

Here A represents the Yang-Mills fields, φ represents the scalar matter fields
and ψ represents the fermionic fields.
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To incorporate the local conformal symmetry we introduce a dilaton field ω in
the following way:

gµν(x) = ω(x)2ĝµν(x).

In this way we obtain a corresponding Lagrangian depending on the variables
A, φ, ψ, ω and ĝµν . One can show that this Lagrangian is invariant under the
conformal transformation with Ω(x)

A
φ
ψ
ω
ĝµν

→


A
Ω−1φ

Ω−
3
2ψ

Ω−1ω
Ω2ĝµν

 .

The factor
√
−g is not invariant, but covariant. This implies that empty

space, the lowest energy state of our gravity theory, breaks the symmetry
spontaneously.
There are many questions left unanswered. For example, is the theory
renormalizable with respect to the dilation field ψ? Initially it is not, but
after a few tricks we find ourselves in a situation that hints that we might
obtain a renormalizable theory. If there is a succesful way to do this it would
mean that local conformal symmetry is an exact transformation rule for gravity.

Let us make the assumption that, indeed, local conformal symmetry is an
exact transformation rule (spontaneously broken by empty space, i.e. the
vacuum) and apply this to a black hole. Local conformal symmetry can be
used to remove the singularity, this is achieved by stretching the coordinates to
such an extent that the singularity of the Ricci curvature moves to future infinity.

We now demand that observers should not use gµν , but ĝµν . The particular
observers from the firewall paradox have a metric ĝµν described by

dŝ2 = M(t̃)2

(
−dt2

(
1− 2

r

)
+

dr2

1− 2
r

+ r2(dθ2 + sin(θ)dϕ2)

)
.

The conformal factor M(t̃)2 may depend on the retarded time, and the
advanced time. Both observers need to fix the conformal gauge differently.
That is, the infalling observer should see a constant M . The outside observer
however, will see M(t̃) decreasing until it vanishes completely.

The point now, is this. Both observers have fixed their gauge in a particular
way. Consequently, the metrics gµν they measure differ by a conformal factor.
This of course, has consequences for the Energy-Momentum tensor they
perceive. In particular, though they agree on the expectation vacuum value for
the dilaton field, they disagree about what the vacuum state (of space) is. Of
course, a disagreement between the perceived vacuum states has always been
central to the derivation of the Hawking effect. But we have found a different
origin, the gauge fix.
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In conclusion, in this view of local conformal symmetry, what might be a
firewall to one observer could be entirely transparent to another. It depends on
how the gauge is fixed.

6.5 Extreme cosmic censorship

An approach by Don Page is called extreme cosmic censorship. He has come
to this idea for a few reasons that cause the firewall paradox according to
him. One of those is that he thinks that in the firewall argument the black
hole microstates are over-counted, i.e. amongst those are states that exhibit
singular structure when evolved backwards in time. He has suggested a physical
principle to tackle this problem, extreme cosmic censorship. It is formulated as
follows:

The universe is entirely non-singular (except for singularities deep inside
black holes and/or white holes which do not persist to the infinite future or
past, with these singularities coming near the surface only when the holes have
masses near the Planck mass that normally happens only close to the ends
and/or beginnings of their lifetimes).

He categorizes quantum states as follows:

• Unconstrained kinematic states: the most general states that can be con-
sidered in a theory. No conditions such as gauge conditions have to be
satisfied and they do not have to be realizable.

• Constrained physical states: the most general states satisfying certain con-
straint equations in the theory.

• Non-singular realistic states: constrained physical states obeying the ex-
treme cosmic censorship criterion.

• The actual state: the realized state of our universe.

Page proposes that the universe is in a non-singular realistic state. Of course,
this means that we can apply extreme cosmic censorship to it. By definition
non-singular realistic states cannot have firewalls (or any other singular
structure) at the event horizon. We must conclude that an infalling observer
simply experiences a vacuum.

The modes inside and outside the black hole are then entangled. The crucial
point is that this entanglement is imaginary, which follows from extreme cosmic
censorship in the following way: only the realizable states of the universe are
non-singular realistic states, all these states contain entanglement between
inside and outside states of the black hole in such a way that an infalling
observer would see a vacuum state at the horizon.

The idea of extreme cosmic censorship cannot be introduced without a problem.
Unitary evolution of the black hole radiation leads to a situation where outgoing
modes must be entangled with the early radiation, when we assume, as most
physicists do, that effective field theory is valid outside the stretched horizon.
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Page’s somewhat radical solution to this is to doubt the validity of effective
field theory. He thinks validity of effective field theory is already dubious due
to the fact that effective field theory is local but the constraint equations of
general relativity are non-local. If this is the case, then in order to avoid the
firewall paradox there must exist some sort of mechanism that transfers the
entanglement of the late radiation with the modes inside the black hole to
entanglement between the late radiation and the early radiation.

6.6 Ice zones

In the firewall argument it is argued that, after the Page time, a late horizon
mode should be maximally entangled with a mode inside the black hole. A
heuristic way of understanding this is to assume that Hawking radiation is
created due to a quantum fluctuation that creates a pair of particles, of which
one escapes the black hole while the other is absorbed by the black hole. A
somewhat more rigorous argument comes from the assumption that we can
approximate the region close to the horizon by Rindler space. One can than
identify the regions inside and outside the black hole by left and right Rindler
wedges, which should be entangled.

The authors of [49] however abandon this assumption, they propose that
Rindler space is not a good approximation close to the horizon. Instead they
propose that alongside the particle pair creation a lot of infra red particles
are created (i.e. low energy particles). These particles would not measurably
change the Hawking radiation as seen by a distant stationary observer but they
would change the entanglements. However, a freely in-falling observer would
definitely notice these low energy particles. They call this collection of low
energy particles an ice zone.

There is something to be explained about this resolution however. For a young
black hole there would be only a bit of (early) Hawking radiation which, by
Page’s theorem, should be maximally entangled with the black hole. When the
black hole grows old however, the resolution states that this entanglement is
somehow lost. There should be some construction that explains this evolution
of maximal entanglement to no entanglement.

Let us work out the idea more rigorously. We consider a black hole that emits
spin 1

2 particles7. The original entropy N is given by (M/Mp)
2, i.e. the amount

of possible states is 2N . In the interaction picture the density matrix corre-
sponding to the black hole is represented by

ρ(t) = (I +A)ρ0.

Here A is a factor due to the interactions. In general, it depends on time.
However, we will consider the case in which a lot of radiation has been emitted
already. We may then make the assumption that A is constant. So let us assume
n emissions have already taken place. In that case

ρ0 =
1

2n
I.

7Of course this is just an illustrative example, not a physically reasonable situation.
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This is the state corresponding to maximal entanglement. For the form of A
we will make some assumptions. First of all, since A concerns interactions (i.e.
between distinct particles) it should have only 0 entries on its diagonal. Also,
we assume that no interaction between a particular pair of particles is preferred
over another pair. This constrains the form of A to

A = aI

where a is some constant and

I =


0 1 1 . . .
1 0 1 . . .
1 1 0 . . .
. . . . . . . . . . . .

 .

If we consider non-perturbative interactions then it is expected that a = e−S ≈
2n−N . We conclude that after n emissions the density matrix satisfies

ρ(t) =

(
In +

1

2N−n
I

)
1

2N
In

= ρmax +
1

N
In.

where ρmax denotes the matrix corresponding to maximal entanglement. We
notice that the effect of interactions is suppressed by two sources, one being
the total amount of states 2N , the other being the probability of each of the
interactions 2n−n. An important observation arises when we consider the case
that n is close to N (so the black hole has almost evaporated completely), in
that case

ρ(t) =
1

2n
In +

1

2N
I ≈ 1

2n
(I + I)

=
1

2n


1 1 1 . . .
1 1 1 . . .
1 1 1 . . .
. . . . . . . . . . . .

 ,

which is actually a pure state! Namely, we can write it as the product of
1√
2n

(1, 1, . . . , 1) with itself. Thus we have found a mechanism that evolves a

maximally entangled density matrix into a pure one.

The case of perturbative interactions is similar. In that case we expect that

a ≈ 1(
N
n

)
and we would have after n emissions

ρ(t) =

(
In +

1(
N
n

)I) 1

2n
In = ρmax +

1

2n
(
N
n

)I.
When n becomes close to N the binomial coefficient approaches 1 and we obtain
the same result as for non-perturbative interactions.
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6.7 Verlinde-Verlinde

Erik and Hermann Verlinde view the firewall paradox from a somewhat different
perspective than most physicists. They give a not earlier considered interpreta-
tion to the Bekenstein entropy of a black hole[27, 28]. This is called the balanced
holography interpretation. The two interpretations that already existed are as
follows:

• The Bekenstein entropy counts the number of black hole quantum states

• The Bekenstein entropy expresses the cross horizon entanglement of field
modes present in the vacuum states.

Verlinde-Verlinde propose the following hypotheses:

• H1: A typical quantum black hole, soon after it is formed, is close to
maximally entangled with its environment.

• H2: The physical Hilbert space of a young black hole and its entangled
environment E is eSBH = 2N dimensional.

The assumption is made that the black hole state can be described by N qubits.
For a young black hole they define the entangled environment E as the 2N
dimensional Hilbert space spanned by all the states that are entangled with the
black hole interior H. The entangled state is an element of the 22N -dimensional
product space HH ⊗ HE . If all the states in this product space are possible
then the black hole entropy equals twice the Bekenstein entropy. This is where
the second hypothesis kicks in.

Verlinde-Verlinde make a distinction between two types of qubits:

• Virtual qubits: these don’t carry information. They are determined by
the vacuum.

• Logical Qubits: these may carry information.

The black hole and its entangled environment should be maximally entangled.
When one supposes an implicit symmetry between these two spaces one con-
cludes that the two subsystems contain an amount of virtual qubits and an
amount of logical qubits that are close to equal. We should try to find a way to
represent the two species of qubits in the state, this can be done as follows: we
need to interpret the possible states. Consider the state

|Ψ〉 = α0|0〉H ⊗ |0〉E + α1|1〉H ⊗ |1〉E .

Applying the CNOT gate from section 4.3.1 yields

UCNOT |Ψ〉 = |0〉H ⊗ (α0|0〉E + α1|1〉E).

Verlinde-Verlinde interpret this as follows: the operation puts the original state
into a product state, which separates the virtual en logical bits. The state
|0〉H is the ground state of the horizon, the other state in the product can be
considered to be one qubit that contains information about the black hole.
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Would we have considered the state

|Ψ̃〉 = β0|1〉H ⊗ |0〉E + β1|0〉H ⊗ |1〉E ,

then the CNOT operation would have produced

UCNOT |Ψ〉 = |1〉H ⊗ (β0|0〉E + β1|1〉E).

The first state in the product would thus not be the ground state of the horizon.
Verlinde-Verlinde interpret this as a firewall state.

The idea now, is that this approach can be generalized to more qubits. Another
crucial idea is that the black hole may be in state |Ψ〉 for an observer at
infinity, but an infalling observer will always see it in the state UCNOT |Ψ〉.
This approach is allowed by black hole complementarity. Of course the
important implication is as follows: the observer at infinity does not have all
the information while the infalling observer does (for him the state separates
the virtual and logical qubits in a sort of product state).

We have talked about young black holes so far. The firewall paradox, at least
as initially stated, actually applies to an old black hole. Verlinde-Verlinde have
tackled this case in a second article. They express an old black hole state in
terms of balanced black hole states. Suppose we have a black hole of some mass
M . We can theoretically find a young black hole of the same mass. Since the
corresponding Hilbert spaces must have the same dimension we must conclude
that it is actually sufficient to only look at the case of young black holes.
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Figure 6: Penrose diagram of a black hole showing the formation of a firewall
and its merging with thesingularity. Source: [20].

7 Consequences of Firewalls

Perhaps the most dramatic consequence of the firewall, if correct, is that
Einstein’s equivalence principle has to be abandoned. This immediately
explains why the physics community reacted so aggressively to the AMPS
article, as this principle is one of the most fundamental we have. In essence
the equivalence principle is the foundation that Einstein built the theory of
general relativity on. If it is incorrect, it raises the question in what sense our
current understanding of general relativity is correct. In particular, it raises the
question in what sense Hawkings derivation of Hawking radiation is still correct.

Another notable consequence is that our understanding of the black hole interior
would need to be adapted. Besides disrupting the entrance (i.e. the horizon)
to the interior something much stronger seems to happen. The authors of [55]
argue that the lack of entanglement between the particles in the left and right
Rindler wedge implies that the interior region of the black hole does not exist at
all. In this view, the firewall should be seen as an extension of the singularity.
A pictorial explanation of this can be seen in Figure 6.
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8 Conclusion

A few introductory topics such as black hole evaporation, black hole com-
plementarity, the information paradox and quantum entanglement have been
presented in order to understand the firewall paradox, which we then addressed.
In essence, it states that either unitarity or the equivalence principle should be
abandoned. These two concepts have been so much accepted in the scientific
community that the firewall hypothesis has received a lot of criticism.

We have discussed a multitude of approaches to the problem. Some of them
question the possibility of making the particular measurement. These include
the Harlow-Hayden conjecture, considering the causal patch of an infalling
observer inside the black hole and gravitational back-reaction due to the
observer. In my opinion, the last one, gravitational back-reaction due to the
observer, has not been fully investigated yet. The authors of [54] have done an
attempt, but their arguments would be sharper if they provide more accurate
calculations accompanying their claims.
The Harlow-Hayden conjecture, considering the ability to measure in terms of
quantum computational complexity, is an interesting approach, in particular it
provides a link between quantum information and gravity, which is something
that seems useful in our search for a unifying theory of quantum gravity.
In my opinion one of the strongest arguments against firewalls is the fact that
the causal patch of an infalling observer measuring inside the black hole misses
a significant part of the total radiation inside the black hole. Particularly
appealing is that no speculative ideas seems to be used in this approach, the
argument is based on ideas that are accepted by the scientific community.

Another interesting counterargument to the firewall paradox, that does not
seem to use speculative ideas, comes from studying the gravitational back
reaction general particles in the vicinity of the horizon have on the other
particles. In doing so on finds that the black hole is not in a thermal state
at all, hence the firewall paradox breaks down. Very satisfying also, is the
explicit form of the S-matrix that turns up. There is a catch, which is that
the topology of Schwarzschild space is non-trivial. There are still some loose
ends to this approach, but if these can be solved a solution to the black hole
information problem seems near. It is exciting to wait for the response of the
scientific community to these results.

Another problem has to do with the entanglement between the late and early
radiation[49, 53]. By the Page argument the late radiation must be (close to)
maximally entangled to the early radiation. What is not clear though, is in
what sense one is allowed to trace a late radiation mode back to earlier times
without changing the entanglement.

Then of course there were some more speculative approaches. A particularly
interesting idea is the ER = EPR paradox, where ER bridges and EPR
bridges are interpreted as a manifestation of the same thing. Again, as in
the Harlow-Hayden conjecture, there is a clear link between quantum theory
(EPR) and general relativity (ER).
Another approach was that of local conformal symmetry. This approach is
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still in its infancy but if it proves correct it might be a very fundamental
symmetry, comparable to Lorentz symmetry. It would be a great tool towards
understanding quantum gravity.
There were also some string theoretic approaches, like the fuzzball conjecture
and the AdS/CFT correspondence. In both cases no firewall seems to exist.
The second approach, i.e. the AdS/CFT correspondence seems to be taken
quite seriously by the scientific community, it is for example seen as a strong
argument for the unitarity of the Hawking radiation, and thus the fact that
there are no firewalls in this view should be seen as a serious argument as well.

On the far end of the speculative spectrum we have the ideas of extreme cosmic
sensorship, ice zones and the balanced holography interpretation of the black
hole entropy. Time will tell in what sense these ideas can be taken seriously.
For now, I consider them just interesting ideas.

Directly and indirectly the theory of general relativity seems to have emerged
successfully out of so many experiments that I would find it very surprising
if Einstein’s equivalence principle is violated. This is however precisely the
ramification of the firewall hypothesis, and that is one of the main reasons why
I find it hard to accept this proposal.

At the moment the firewall discussion does not seem to be resolved in the
scientific community. Though less then in the beginning there are still articles
about it on a regular basis. Strangely perhaps, there does seem to be a consensus
from the very beginning that firewalls cannot exist. Of course AMPS do not
take part in this consensus, but there seem to be very few other scientists that
take the firewall position. The very few that did have either retracted some of
their statements or have written articles that, in my eyes, should not be taken
serious. I think it is mainly the complexity of the firewall argument by AMPS
that make it hard to find a decisive argument against it. I suspect such a decisive
argument will be found though, and it might come from a previously unexpected
place[59]: at the moment the LIGO[60] and the EHT[61] are actually capable
of making observations near the horizons of black holes. Their measurements
may lead to the discovery of new effects that could save our quantum picture of
the black hole, and resolve the information and firewall paradoxes.
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List of notation

a, aωlm Annihilation operator (in empty space, in Schwarzschild space at past infinity)
b, bωlm Annihilation operator in Schwarzschild space (at future infinity)
B The internal partners (i.e. inside the black hole) of the late radiation.
dΩ2 The metric of the 2-sphere.
gµν The spacetime metric.
L The late radiation (i.e. emitted after the Page time)
M The mass hole of a black hole.
ω Frequency (i.e. energy)
Φ The quantum field of the black hole.
ϕ The azimuthal angle (in spherical coordinate system)
Ψ The quantum state of the black hole.
r The physical radius (in Schwarzschild space)
R The early radiation (i.e. emitted before the Page time)
ρ The density matrix of a thermal system.

S, SBH The entropy of the black hole.
t The time coordinate as experienced by an observer at infinity (in Schwarzschild space)
TH The Schwarzschild temperature ((8πM)−1)
θ The polar angle (in spherical coordinate system)
u Timelike coordinate of outgoing Eddington-Finkelstein coordinates
v Timelike coordinate of ingoing Eddington-Finkelstein coordinates
xµ Spacetime coordinate.

x+, x− Light-cone coordinates.
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