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Abstract 

One of the main reasons why software projects fail is because of the poor quality of requirements, or 

the lack of any documented requirements. In the last two decades there has been an increasing 

interest in the development of tools using Natural Language Processing (NLP) to support the 

formulation, documentation and verification of NL requirements. Over the years numerous NLP tools 

have been developed to improve the quality of requirements. Because of the many approaches 

available it is not clear how the approaches relate to each other. The goal of this thesis is therefore to 

get a clear overview of the performance of the main approaches taken by NLP tools in the 

requirements engineering (RE) landscape, and to create a theoretical tool that synergistically 

integrates the best approaches. The scope is on finding defects and deviations in natural language 

requirements.  

A literature study is performed to identify the main 50 NLP tools in the (RE) landscape. After an initial 

analysis 3 tools are selected for further analysis. Derived from the features of these 3 tools a 

requirement standard is created to specify what a quality defect is for each feature. Using the 

requirement standard 4 datasets are tagged for quality defects. These tagged datasets are compared 

against the output of the tools using the metrics precision and recall to measure the performance of 

the features of the 3 tools.  

Based on the performance of the features and a qualitative analysis of the approaches of those 

features a set of good and bad practices is derived: 

1. Different tokenizers: The choice to which tokenizer to use can have an effect (both positive 

and negative) on the performance of a tool 

2. Dictionary vs. Parsing: Using a dictionary is a safe and simple method to detect defects. Parsing 

is a more complicated approaches, and when not performed correctly it can have a negative 

effect on the performance of a tool 

3. What is in the dictionary: The size and content of a dictionary can have an effect on the 

performance (both recall and precision) of a tool, the bigger the dictionary, the better 

The performance of the features and the set of good and bad practices lead to the design of a next 

generation tool. This tool incorporates the best performing approaches (regarding recall) for each 

feature specified in the requirement standard. NLP tool developers can use the set of good and bad 

practices and the design of the next generation tool for the development of their own NLP tools.  
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1 Introduction 

The requirements engineering (RE) phase is extremely important in any software project (Kof, 2005). 

At the end of the RE phase a set of stable requirements is established, after which the system can be 

designed, developed and implemented. Nowadays agile methods manage requirements throughout 

the design process, where requirements change all the time (Dingsøyr, Nerur, Balijepally, & Moe, 2012; 

Paetsch, Eberlein, & Maurer, 2003). Traditional RE and agile development have several differences, 

but they at least have one thing in common; they need to formulate and document the requirements 

(Paetsch et al., 2003).  

One of the main reasons however why software projects fail is because of the poor quality of 

requirements, or the lack of any documented requirements (de Bruijn & Dekkers, 2010). Low quality 

requirements are requirements that are not understood in the same way by different stakeholders 

(either due to jargon, words with different meanings, fragmented sentences, etc.). Despite the 

availability of modelling languages and techniques, most of the requirements are still largely written 

in natural language (NL) so that they can be easily understood by all the stakeholders involved in the 

project (Berry, Gacitua, Sawyer, & Tjong, 2012; Mich, Franch, & Novi Inverardi, 2004). NL also enables 

the requirements engineer to specify any type of requirement and as abstract or detailed as required 

(Kamsties & Peach, 2000). The problem with using NL to specify requirements is that they can be 

ambiguous and misunderstood (Kof, 2005). Other issues regarding requirements in general is that they 

can be incomplete, inconsistent, incorrect, infeasible, unusable, and not verifiable (Firesmith, 2003).  

Enforcing higher quality requirements can be done in any phase of the RE process. For instance, during 

the requirements specification phase, a style or structure can be used to specify the requirements 

(Jain, Verma, Kass, & Vasquez, 2009). Another example is the use of quality models during the 

requirements verification phase. According to Kamsties & Peach (2000) the previously mentioned 

solutions for higher quality requirements suffer from either lack of acceptance by the intended users, 

lack of specificity, or uni-dimensionality, meaning that only the linguistic dimension is addressed and 

not the pragmatic dimension.  

In the last two decades there has been an increasing interest in the development of tools to support 

the formulation, documentation and verification of NL requirements (D. Berry et al., 2012). There are 

numerous tools that use natural language processing (NLP) to mitigate the problems and increase the 

quality of NL requirements. In this thesis these kind of tools are referred to as NLP tools. Liddy (2001) 

defines NLP as follows: 

“Natural Language Processing is a theoretically motivated range of computational techniques 

for analysing and representing naturally occurring texts at one or more levels of linguistic 

analysis for the purpose of achieving human-like language processing for a range of tasks or 

applications.” 



2 
 
 

 

 

According to this definition the goal of NLP tools is to “achieve human-like language processing”. When 

applied to RE this is not exactly the case. Ryan (1993) states that even if a NLP tool is able to understand 

NL, not all aspects of a system can be explained in NL. NLP tools will never be able to cover the entire 

requirements engineering process due to its complex nature, and therefore will never be able to 

achieve human-like language processing. For this reason several NLP tools state that their goal is not 

to replace the requirements engineer but to support the requirements engineer in the RE process 

(Ambriola, 2006; MacDonell, Min, & Connor, 2005). The NLP tools automate parts of the RE tasks in 

the RE process, so that the requirements engineer has to do less work manually. The goal of RE can 

thus be seen as to aid the requirements engineer in the RE process through using NLP techniques. 

These techniques can be based on the way humans process NL.  

1.1 Problem Statement 

NLP has been studied since the 1950s, emerging from the fields of linguistics and artificial intelligence 

(Nadkarni, Ohno-Machado, & Chapman, 2011). Early approaches focused on production rules and the 

grammar of a language (Cambria & White, 2014), with the work of Chomsky (1956) being a major 

influence. In the 1960s the focus changed from a more syntactic approach to semantic pattern 

matching. A decade later the First Order Logic (FOL) became popular and can be seen as a combination 

of syntactic and semantic approaches. FOL uses axioms and rules of inferences to formulate relations 

between concepts by the means of predicates and quantification. The network approach got attention 

in the 1980s. Examples of the studied networks are Bayesian networks and Semantic networks. 

According to Liddy (2001) it was not until the 1990’s that the field of NLP gained prominence. She 

argues that this growth in interest can be explained by the availability of electronic text, the availability 

of computers, and the rise of the Internet. In 2004 McGuinness & Van Harmelen (2004) introduced the 

Ontology Web Language (OWL); this language and the related technology are still exploited by some 

NLP tools. 

Numerous NLP tools have been developed over the years. Recent tools use one or more of the 

previously mentioned approaches and techniques. There are various tools that employ a hybrid 

approach, using for instance both FOL and OWL (Vincenzo Ambriola, 2006; Jain et al., 2009). Even 

though there are many approaches, some basic NLP techniques are present in most NLP tools. For 

instance tokenization and Part-Of-Speech (POS) tagging are NLP techniques that can be found in most 

of the recently developed NLP tools. Some NLP tools use an external parser for this (e.g. Standford 

Parser, Minipar, and Treetagger), while other NLP tools developed their own parser. These parsers 

differ in the way they process NL and in the output they return (e.g. parse tree vs. ER diagram) (Liddy, 

2001). 

These differences imply is that there is no single approach or technique that can be seen as the golden 

standard for NLP tools in RE. There have been done comparisons of sub-parts of NLP tools (e.g. POS 

tagging comparison), showing the performance of individual activities within NLP tools. This has not 

been done yet, however, for NLP tools and their approaches.  
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The goal of this thesis is therefore to get a clear overview of the performance of the main approaches 

taken by NLP tools in the RE landscape, and to create a theoretical tool that synergistically integrates 

the best approaches.  

1.2 Scope 

The main scope of this thesis is on NLP tools within the RE domain. There are various tasks in the RE 

process that can be automated by NLP tools. Berry et al. (2012) specifies four broad categories were 

NLP tools can fall into: 

1. Finding defects and deviations in NL requirements documents  

2. Generating models from NL descriptions  

3. Inferring trace links between NL descriptions 

4. Identifying the key abstractions from NL documents 

The scope of this thesis is on finding defects and deviations in NL requirement documents, and by 

doing so improving the quality of the requirement documents. The reason why this thesis is limited to 

the quality of requirement is that this is a main reason why software projects fail or not succeed (de 

Bruijn & Dekkers, 2010). Additionally, comparing NLP tools with NL requirements document as output 

against for instance NLP tools with a model as output is not useful. These NLP tools have different goals 

(quality improvement vs. visualisation), which makes comparing them according to a shared set of 

metrics difficult. Only sub-parts that overlap with the other type of NLP tools can be compared, which 

contradicts the goal of this thesis. By comparing only NLP tools that focus on the quality of requirement 

documents, the approaches of the NLP tools can be compared instead of just sub-parts of the NLP 

tools.  

1.3 Scientific Relevance 

According to Cambria & White (2014) future NLP research and development will focus more on the 

semantics of NL instead of the syntax of NL, on which research has mostly focused ever since the 

1950’s. They describe that the approaches can be seen as curves which are somewhat sequential 

(Figure 1). This means that the experiences and knowledge from the syntactic curve are used in the 

semantic curve. The same goes for the transition from the semantic curve to the pragmatic curve. In 

current NLP research the syntactic approach is the most popular approach to process NL.  
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Figure 1 NLP curves 

Recently, however,we have been witnessing a shift towards a more semantic approach (Cambria & 

White, 2014). There are numerous NLP tools designed by following the semantic approach 

(Kiyavitskaya, Zeni, Mich, & Berry, 2008; Yang, Roeck, Gervasi, Willis, & Nuseibeh, 2012). The increasing 

popularity of the semantic approach could mean that research is transitioning from the syntactic curve 

to the semantic curve. Therefore the experiences and knowledge (good and bad practices) of the 

syntactic curve have to be identified so that research focussing on the semantic curve can progress 

further. 

1.4 Research questions 

In order to achieve the goal of this thesis—i.e., to get a clear overview of the main NLP tools in the RE 

landscape—we define the following research question:  

How to create a best of breed Requirements Engineering Tool for improving the quality of 

requirements through Natural Language Processing? 

To answer the main research question, four sub questions are defined. The purpose of the sub 

questions is to address the information needed to answer the main research question. For each sub 

question there is a corresponding activity and deliverable. In this section they are briefly mentioned, 

as they are explained in more detail in the “Research Method” section.  
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Sub question 1 

The first sub question (SQ1) is stated as: 

What are the similarities and differences between Natural Language Processing tools? 

A literature review is performed to get an overview of the most recent NLP tools. An initial analysis of 

these NLP tools shows high level differences and similarities between them. From this analysis a 

selection of the most relevant NLP is made for a more detailed and thorough analysis. This sub question 

is answered in chapter 4 

Sub question 2 

The second sub question (SQ2) is stated as: 

What are the metrics for analysing and comparing Natural Language Processing tools in terms of 

quality of requirements? 

Another result from the literature review is an overview of methods, frameworks, and metrics that 

focus on the evaluation and comparison of NLP tools. The next step is to select the methods, 

frameworks, or metrics that are relevant to this research. This results in evaluation criteria that are 

used to compare the most relevant NLP tools. This sub question is answered in chapter 4, section 4.3. 

Sub question 3 

The third sub question (SQ3) is stated as: 

What effect does Natural Language Processing tools have on the quality of requirements? 

Datasets with requirements serve as input to the most relevant NLP tools. The output is evaluated by 

means of the selected evaluation criteria. The results are compared together with the thorough 

analysis of the selected NLP tools. This comparison results in an overview of the strengths and 

weaknesses of the selected NLP tools (and approaches). This sub question is answered in chapter 6. 

Sub question 4 

What are good and bad practices of Natural Language Processing tools that can inform the 

development of future NLP tools for RE? 

From the comparison and the strengths and weaknesses of the NLP tools, a set of good and bad 

practices is derived. This has to serve as a guide or heuristics to both NLP tool developers and 

requirements engineers. The good and bad practices lead to the design of a conceptual next generation 

tool. This sub question is answered in chapters 7 and 8. 

1.5 Outline 

The remainder of this thesis is structured as follows. Chapter 2 describes the research method where 

the literature study, tools selection, metrics selection, requirements standard, dataset preparation, 

and experiment design is explained. Chapter 3 describes the related work explaining the theory to 
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understand this thesis. Chapter 4 provides an overview and analysis of the identified NLP tools. This 

chapter also explains the metrics used to measure the performance of NLP tools. Chapter 5 describes 

the requirement standard used in this thesis. Chapter 6 describes how the experiment is conducted 

and what the results are. Chapter 7 provides a set of good and bad practices based on the results of 

the experiment. Chapter 8 provides the blueprint for the design of the next generation tool. Finally 

chapter 9 concludes this thesis and describes the limitations and future work. 
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2 Research Method 

The research method of this thesis is of experimental nature. An input is fed into a subject (in this case 

a NLP tool), and an output is returned by the subject. The output is evaluated against a pre-defined 

standard based on the literature and human judgement. The overall research method is depicted in 

Figure 2.  

 

Figure 2 Research Method 

At first, a literature study is conducted to identify NLP tools and metrics for the evaluation of NLP tools. 

Several tools are selected after an initial analysis. The selected tools are analysed more thoroughly. 

From the available metrics, a subset is selected that is relevant for this research. From the selected 

tools, a set of features is selected. Each feature is covered by at least one of the selected tools. For 

every selected feature a definition and guidelines are given, based on the definition of the selected 
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tools and the literature. The selected features, with the definitions and guidelines, are referred to as 

the “requirement standard” in this thesis. The next step is to provide datasets containing requirements 

as input to the selected NLP tools. For every selected tool one dataset is provided by the developers 

of the tool, of which the developers know that it is processed well by their tool. This dataset serves as 

a baseline for the tool.  

Every dataset is manually processed by the author by the means of the requirement standard, and 

evaluated by a RE expert. These datasets are referred to as “checked datasets”. All of the datasets are 

then given as input to each of the selected tools. The output is compared against the checked datasets. 

The performance is measured using the metrics by looking at the difference between the output and 

the checked datasets. For every feature the approach of the tool performing best regarding that 

feature is selected. The result is a conceptual assembled tool that combines the approaches of the 

selected tools in order to achieve increased performance regarding the quality of requirements. The 

following sections describe the various parts of the method.  

2.1 Literature Study 

For the identification of the NLP tools and the evaluation metrics a semi-structured literature review 

is performed. A semi structured literature review is chosen, and not a structured literature review, 

because the NLP domain has emerged from the fields of linguistics, computing science, cognitive 

psychology, and artificial intelligence (Liddy, 2001; Nadkarni et al., 2011). From these domain different 

concepts are associated and/or used intertwined with NLP. Natural Language Understanding (NLU), 

Natural Language Generation (NLG), Computational Linguistics (CL), Information Retrieval (IR), and 

Machine Translation (MT) are some examples of the concepts that are being used intertwined with 

NLP. Because of the various concepts used in the NLP domain, a structured literature review would 

result in a large number of search terms required. This, and the large number of papers that need to 

be reviewed, makes a structured literature review not feasible. The search terms used in this research 

are therefore limited to the concepts used in the RE domain.  

Papers are found using the Google Scholar search engine. The main reason for this is that the relevant 

libraries such as ACM library, IEEE, and Springer are all queried by the Google Scholar search engine. 

Most of the found papers are identified using Google Scholar, only a few are found using the dblp 

computing science library. The literature study consists of three main parts. The first part focuses on 

the exploration of the NLP and RE domain. The results of this part are described in the chapter “Related 

Works”. The second part focuses on the identification of the NLP tools. The third part focuses on the 

identification of the evaluation metrics.    

2.1.1 NLP tools 

The first step in identifying NLP tools is to formulate a search protocol while doing the literature review. 

(Yue, Briand, & Labiche, 2011) did a systematic literature review for NLP tools that create models from 

requirement documents. They came up with three sets of terms to search for available literature; 

population terms, intervention terms, and outcome terms. Furthermore they formulated inclusion and 
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exclusion criteria for the selection of the tools. Based on the work of Yue et al. (2011) a set of primary, 

secondary, and tertiary search terms have been identified for the scope of this research. Please note 

that the content of the search terms are different than in the literature review of Yue et al. (2011). An 

initial set of terms was created from the exploratory literature review. In the process of identifying the 

NLP tools, additional relevant terms were added to the set. Not all combinations of search terms are 

queried in the Google Scholar search engine. Instead, combinations of search terms found in papers 

are used. The final set of terms is defined as: 

Primary terms:  

Natural language, natural language processing, natural language requirements, natural language 

understanding, requirements, requirements engineering, ambiguity 

Secondary terms: 

Model, use case, diagram, requirements specification, requirement document, automated, conflict 

Tertiary terms: 

Checking, verification, extraction, elicitation, selection, identification, detection, abstraction, 

generation, analysis, transformation, formalisation, tool, finder, system 

Various combinations of primary, secondary and tertiary search terms were used to search for papers 

describing NLP tools. The primary terms have to make sure the search is within the right domain. The 

secondary terms refer to the input and output of the NLP tools. This limits the search to the scope of 

this research. The tertiary terms are various concepts used for the activities performed by NLP tools.   

A first inclusion criteria for a paper is that an approach using NLP is described. Another inclusion criteria 

is that the paper describes a system that uses the proposed approach. The final inclusion criteria is 

that paper is within the RE domain. The exclusion criteria are:  

- Not enough technical information 

- Not within the scope (e.g. only POS tagging) 

- Doesn’t have NL text or requirements document as input or output 

- No tool or application (e.g. only prototype) 

- Not relevant anymore / outdated 

The search using the search terms and inclusion/exclusion factors resulted in an initial list of papers 

describing NLP tools. A snowballing approach was used to identify additional NLP tools. Most of the 

NLP tools described in the papers however referred to NLP tools that were outdated and not relevant 

anymore. Finally some tools were added by doing unstructured searches and suggestions from 

researcher in the field of NLP and RE. A final list of fifty NLP have been identified to include in the initial 

analysis and can be found in Arendse & Lucassen (2016). 
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2.2 Tools selection 

From the fifty identified tools a selection is made to include in further analysis and the experimental 

test. Only the most relevant NLP tools are selected based on inclusion and exclusion criteria. A NLP 

tool is included when the goal of the NLP tool is to improve the quality of a requirements document, 

which is in alignment with the goal of this thesis. NLP tools that focus on ambiguity are also included, 

since reducing ambiguity is also a form of quality improvement. After this 20 NLP tools are selected 

from the 50 NLP tools in the initial analysis.  

Table 1 Tools that focus on finding defects and deviations 

Tool Name Aim Input Transformation 
approach 

Automatio
n 

Year Exclusion  

Circe Quality of 
requirements 

Requirements 
document 

Rule based 
Ontology based 

Semi-
automated 

2006 Not available  

NAI Ambiguity Requirements 
document 

Rule based 
Ontology based 

Automated 2010 Not available 

QuARS Quality of 
requirements 

Requirements 
document 

Rule based 
Ontology based 

Automated 2001 
2004 

Not available 

CRF Tool Uncertainty Requirements 
document 

Rule based 
Ontology based 

Automated 2012 Not available 

AQUSA Quality of 
user stories 

User stories Rule based 
Ontology based 

Automated 2015 Input type 

T1' Ambiguity Requirements 
document 

Rule based Automated 2008 Not available 

RAT Quality of 
requirements 

Requirements 
document 

Rule based Automated 2009 Not available 

Text2Test Quality of use 
cases 

Use cases Unknown Unknown - No information 

MaramaAI Quality of 
requirements 

Requirements 
document 

Rule based 
Pattern based 

Semi-
automated 

2011 Not automated 

EuRailCheck Quality of 
requirements 

Requirements 
document 

Rule based 
Ontology based 

Semi-
automated 

2012 Not automated 

UIMA Use case 
model 

Use case 
description 

Rule based Automated 2009 Out of scope 

DODT Quality of 
requirements 

Requirements 
document 

Rule based 
Ontology based 

Semi-
automated 

2011 Not automated 

SREE Ambiguity Requirements 
document 

Ontology based Semi-
automated 

2013 Not available 

Extraction 
of OLAP 
req. 

Quality of 
requirements 

Requirements 
document 

Rule based 
Pattern based 

Automated 2009 Out of scope 

HEJF Quality of 
requirements 

Requirements 
document 

Rule based Automated 2014 Included 

Dowser Ambiguity  Requirements 
document 

Rule based 
Ontology based 

Semi-
automated 

2008 Not automated 

RQA Quality of  
requirements 

Requirements 
document 

 Rule based 
Ontology based 

  2011 Included 

Anaphora 
detection 

Ambiguity  Requirements 
document 

Rule based Automated 2011 Not available 

Lexior  Quality of 
requirements 

 Requirement
s document 

 Unknown Unknown  No information 
Not available 

Tiger Pro  Quality of 
requirements 

Requirements 
document 

Ontology based  Automated 2004 Included 
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Duplicate approaches are excluded from this research. A second exclusion factor is that NLP tools are 

too domain specific or too high level. For instance UIMA (Ferrucci & Lally, 2004) is a platform where 

various parsers, annotators, tokenizers can be chosen to create a NLP tool. Even though this would be 

interesting to research, it does not fall within the scope of this research mainly because our goal is on 

what the tools do with the information provided by these parsers, annotators, and tokenizers. Thirdly 

NLP tools that are no longer supported by the developers are excluded from the research. Finally NLP 

tools that have a semi-automated approach are excluded for further research, tools that require a 

glossary as supplement are not excluded. The reason for this is that semi-automated NLP tools require 

a requirements supplement in order to function. This means they require a domain specific ontology, 

dictionary or vocabulary. It could also mean that the requirements engineer has to do some manual 

procedures before the tool can function, for instance linking requirements or creating dependencies 

between requirements. The scope of this research is on automated NLP tools. The 20 tools that focus 

on finding defect and deviations are listed in Table 1, together with the reason for exclusion. 

The exclusion criteria result in 4 NLP tools that are finally included in the thorough analysis and 

experimental test. After the thorough analysis AQUSA (Lucassen, Dalpiaz, Brinkkemper, & van der 

Werf, 2015) is excluded because it requires a specific kind of requirements document as input (user 

stories). Efforts could have been made so that the tool could be involved in the experiment. The 

approaches of the tool however are already covered by the other tools involved in the experiment. 

The dataset provided by the developer of this tool is still used in the experiment.  

The NLP tools that are included in the experimental test can found in Table 2. The 3 NLP tools that are 

included in the experimental test will be described and analysed further in section 4.2. 

Table 2  NLP tools included in this research 

Tool Name Year of Publication Reference 

Qualicen1 2014 (Femmer, Fernández, et al., 
2014) 

RQA 2011 (Génova et al., 2011) 

TIGER-PRO 2004 (Kasser, 2003) 

 

2.3 Metrics selection 

For the metric selection an unstructured literature study is performed. The literature search is focussed 

on frameworks or metrics that can measure the performance of NLP tools, and in particular within the 

domain of RE. The papers of the identified NLP tools are also analysed to see how the performance of 

the NLP tools is evaluated. These type of metrics will be referred to as “performance metrics”. 

                                                           
1 Qualicen is formerly known as HEJF.  
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2.4 Requirement standard 

The requirement standard consists of features that are covered by the selected NLP tools. Only the 

features within the scope of this research are selected. This consists mostly of features that deal with 

atomicity and ambiguity. Features that deal with for example model consistency or uniformity have 

not been included in the requirement standard. Features from different tools that are the same or 

similar have been grouped into one feature in the requirement standard. Figure 3 shows how the 

requirement standard has been created. 

Tool 1

Feature 1

Feature 2

Feature 3

Feature 4

Tool 2

Feature 5

Feature 6

Feature 7

Feature 8

Requirement 
standard

Feature 
aspect 1

Feature 
aspect 2

Feature 
aspect 3

 

Figure 3 Requirement standard creation 

For each feature in the requirement standard a definition and guidelines are given. Every feature has 

to be specified so that the manual checking of the datasets can be performed in a consistent and 

repetitive manner. The definition and guidelines of a feature are based on the description given by the 

tools. If the tools have the same definition, and do not contradict each other, that definition is used in 

the requirement standard. If however the tools do contradict each other, or no definition or guidelines 

is provided by the tools, the handbook of ambiguity by Berry et al. (2003)  is used to provide a definition 

and guidelines. 

2.5 Datasets preparation 

For each of the selected tools one dataset is provided by the developers of the tool. Including the tool 

that was excluded after the initial analysis four datasets were gathered. Every dataset was manually 

checked by the author using the requirement standard (Arendse & Lucassen, 2016). These “checked 

datasets” were evaluated and validated by a requirements expert from Utrecht University.   

2.6 Experiment design 

The four datasets are given as input to each of the tools. The output of the tools is compared against 

the checked datasets. The differences between the output and the checked datasets are used to 
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calculate the performance metrics. Three rules were used while measuring the performance of the 

tools: 

1. If an instance of a true error is detected, but it is marked as something else (e.g. ambiguity 

instead of superlative term), the detection of the true error is to be considered as an issue for 

the labelled metric only for metrics that belong to the same category (e.g. not for multiple 

requirements instead of ambiguity). 

2. If an instance of a true error is detected and marked as multiple errors, the detection of the 

true error is to be considered as one issue for the labelled metric only for metrics that belong 

to the same category. 

3. If an instance of a true error is detected and marked as multiple errors, the detection of the 

true error is to be considered as multiple issues only for metrics that do not belong to the same 

category.  

Based on the performance metrics a hypothetical tool is assembled from the tools included in the 

experiment. For each feature the approach of the best performing tool is selected to be included in 

the hypothetical tool. The best performing tool is selected by choosing a performance metric, or a 

combination of performance metrics, and select the tool with the highest score regarding that 

performance metric.  
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3 Related work 

This chapter describes the field of NLP and in particular within the RE domain. The purpose of this 

chapter is to elaborate on certain aspects of NLP that are necessary to understand this thesis. The first 

section focusses on requirements and requirement specification (RS). The second section elaborates 

on the ambiguity of language, and more specific the ambiguity in requirements. The final section 

explains the main NLP techniques and approaches relevant to this research.  

3.1 Requirements engineering 

This section elaborates on the concepts regarding requirements engineering. 

3.1.1 Requirements 

The purpose of a requirement in general is to make sure that the reader of a requirement shares the 

mental representation of the writer of the same requirement (Harwell, Aslaksen, Hooks, Mengot, & 

Ptack, 1993). The purpose of a requirement in software development differs from the general purpose 

of a requirement. In software development the purpose of a requirement is to specify a single function 

that a system must be able to perform (Firesmith, 2003). In this research we define a requirement as 

(Harwell et al., 1993): 

 “If it mandates that something must be accomplished, transformed, produced, or provided, it is a 

requirement – period” 

The purpose of a requirement in software development describes only a small part of the quality 

attributes a requirement must have (i.e. cohesiveness). Other quality attributes of a requirement are 

(Firesmith, 2003; Harwell et al., 1993; Wiegers, 1999): 

 Completeness:  

o A requirement should be self-contained. A requirement is complete if it requires no 

further explanation or clarification. A requirement furthermore contains all the 

relevant information to understand the requirement.  

 Consistency:  

o A requirement should use the same vocabulary. A requirement is externally consistent 

if it is coherent with the high level goals and requirements of the project and 

organisation. A Requirement is externally consistent if it does not contradict another 

requirement semantically. A requirement is internally consistent when all the 

requirements have a uniform pattern.  

 Correctness:  

o A requirement should be semantically and syntactically correct. A requirement is 

semantically correct if it meets all the needs of the stakeholders, if it is a correct 

explanation of a business goal, and if it is a correct explanation of high level 

requirements. A requirement is syntactically correct is it uses the proper format, if 

there are not spelling mistakes, and if the requirement is grammatically correct. 
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 Currency:  

o A requirement should specify the current needs of the user. Requirement 

specifications should be updated when the high level goals of a project or organisation 

change. An obsolete requirement should be removed from the requirement 

specification.   

 Customer/User Orientation 

o A requirement should not contain jargon that customers or users would not 

understand. Because the technical background of stakeholders can vary any technical 

terms should be avoided as much as possible. A requirements should furthermore be 

phrased in the language of the stakeholders.  

 External Observability 

o A requirement should not specify technical details of the system. Only characteristics 

of the application that are observed when using the application should be specified. A 

requirement should also not specify the architecture, design, implementation, or 

testing of the application.  

 Feasibility 

o A requirement should be implementable by the developers. A requirement should 

describe an application that fits within the budget, time schedule, and constraints of 

the project. A requirement should also cohere to the existing hardware and software 

in place, and to current state of technological advances.  

 Lack of Ambiguity 

o A requirement should not have multiple interpretations. The meaning of a 

requirement should be objective, not subjective. To avoid ambiguity a requirement 

should not be vague and has to be precise.  

 Mandatory 

o A requirement should be prioritized so that it is clear which requirements are 

mandatory, which are desired by the stakeholders, and which are constraints.   

 Metadata 

o A requirement should have metadata. A requirement should have acceptance criteria 

so that it is clear when the requirement is met. A requirements should also be 

allocated to a developer or a team. Other metadata are assumptions, identification, 

prioritization, rationale, schedule, status, and trace.  

 Relevance 

o A requirement should be within the scope of the system. A requirement should specify 

the behaviour of a system, not a user.  

 Usability 

o A requirement should be readable by the customers, managers, software architects, 

designers, programmers, and testers.  

 Validatability 

o A requirement should be able to be tested. It should be possible to check if the 

requirement actually meets the needs of the stakeholders. 

 Traceability 
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o A requirement should be traceable. It has to be clear where a requirement came from 

(e.g. which stakeholder) so that more information could be gathered in case of 

uncertainty.  

 Verifiability 

o A requirement should be able to be verified. The features implemented in the system 

should be able to be verified by the requirement specification. Each feature of the 

system should be specified in the requirement specification. 

It is however hard to imagine an RS with requirements that show all of these quality attributes. The 

quality attributes should therefore be seen as guidelines that a RE have to keep in mind while writing 

requirements (Wiegers, 1999). Another issue is that the quality of a requirement is hard to measure 

(Harwell et al., 1993). The quality of a requirement can be interpreted in two ways. First the quality is 

not in requirements themselves, but is determined by the reader of the requirements. This is a more 

qualitative way of trying to measure the quality of requirements. From the general purpose of a 

requirement could be argued that if the reader understands and agrees with a requirement, or he 

thinks he does, the goal of the requirement has been achieved. This however means that the quality 

of a requirement could depend on the capabilities of the reader.   

A more qualitative approach to the quality of a requirement could refer to each or all of the above 

mentioned quality attributes. To what extend does a requirement capture the needs of a user? Are 

the requirements within the scope of the project? Are the requirements verifiable? Not only are the 

answers to these questions hard to quantify, some of them can only be answered after the system has 

been developed (Harwell et al., 1993). If the quality can only be measured a posteriori, and the quality 

is hard to quantify, it can be argued that measuring the quality of a requirement is neither necessary 

nor sufficient (Davis & Zowghi, 2006).  

There are however some quality attributes that can be quantified, and have already been implemented 

in NLP tools. There are for instance tools that try to detect verbs and nouns that are not present in the 

pre-defined vocabulary (Génova et al., 2011). Other tools focus on detecting technical information in 

a requirement (Femmer et al., 2014; Kasser, 2003). Therefore in this research the quality of a 

requirement is measured by looking at a selection of individual quality attributes or features that can 

be quantified.  

3.1.2 Requirement specification 

The purpose of a requirement specification (or requirement document) is to communicate the 

requirements between the stakeholders and developers of a tool or system (Paetsch et al., 2003). It 

serves as an agreement between the stakeholders and the developers on what the tool or system will 

be able to do. One definition by (Berezin, 1999) of a requirements document is: 

“The requirement document states what the software will do. It does not state how the software will 

do it.” 
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An RS should not contain technical information on how the system will address the wishes of the users. 

If anything it should be a translation of the wishes of users into a format the developers of a tool can 

work with during the development process. An RS however should be more than just a translation of 

the wishes of the users. An RS is not just a collection of requirement statements (Wiegers, 1999). It is 

statement on its own, which represents the vision of the developers (Berezin, 1999). The stakeholders 

can see in the RS if their wishes are being met. Other benefits of an RS are (Berezin, 1999; Paetsch et 

al., 2003): 

 An estimation of resources can be made 

 A project plan and time schedule can be made 

 There is a quality assurance for testing the system 

 Changes can be more easily managed 

The quality attributes of RS are similar to those of requirement statements. An RS should be complete, 

correct, concise, consistent, understandable, feasible, unambiguous, modifiable, and traceable 

(Paetsch et al., 2003; Wiegers, 1999). Even though the quality attributes of an RS are well defined, the 

structure of an RS is a more complicated issue. According to the IEEE an RS has to include the following 

topics: 

 Interfaces. 

 Functional capabilities. 

 Performance levels. 

 Data structures and elements. 

 Safety. 

 Reliability. 

 Security and privacy. 

 Quality. 

 Constraints and limitations. 

It is argued by (Berezin, 1999) that the level of detail of an RS should depend on the size of the project 

and the system to be developed. She argues that only for large systems, systems with many users, and 

systems that are critical to the business a detailed RS is required. In every other case the project only 

requires a brief RS. This does not only mean that the level of detail can be lower, but also the number 

of topics addressed could be less.  

The level of detail of an RS can influence the amount of confusion with the reader of the RS. A less 

detailed RS requires the reader to subjectively fill in the gaps in the RS. The more this phenomenon 

occurs the more ambiguity can occur in an RS. It is the job of the requirements engineer to determine 

the level of detail so that the amount of ambiguity is kept as low as possible.   

3.1.2.1 Types of requirement specifications 

Requirements can be represented as use cases, user stories, and NL requirement documents (Lucassen 

et al., 2015; Yue et al., 2011). User stories originally had little structure, but currently they follow a 
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strict template (Lucassen et al., 2015). User stories are written from the user perspective as if a user 

wrote what he required and why he requires it. Use cases are similar to user stories. One of the main 

differences however is that use cases are presented as a sequence of steps and alternative steps, 

rather than a story (Yue et al., 2011). Requirement documents tend to have less structure than user 

stories and use cases. The requirements are written from the perspective of the requirements engineer 

as if he describes what the system and user must be able to do. The NL requirements are supported 

by explanatory text and supporting figures and tables. Most NLP tools cannot process figures, since 

they focus on NL. It is also important for a NLP tool to differentiate between explanatory text and NL 

requirements.  

No matter which requirement representation is used, 2 ways of writing NL requirements exist. The first 

is using unstructured NL. This means that the requirements engineer does not have to follow a certain 

grammar or vocabulary. Secondly there is using structured NL. A pre-defined grammar and vocabulary 

have to make sure that ambiguity is reduced and the quality of the requirements is improved (Yue et 

al., 2011). In the case of multiple people adding requirements to the project structured NL make sure 

that the requirements are consistent.  

A pre-defined vocabulary can be domain specific for a project, and is often referred to as a glossary. It 

is a requirements supplement that is part of the RS. Only nouns and verbs that are in the glossary are 

allowed to be used while writing the requirements. This has to prevent that in one case the term 

“system” is used and in another case the term “application” is used. Using multiple terms for the same 

instance could lead to confusion with the reader of the RS. Another requirements supplement is a 

definition. A definition is similar to a grammar in the way that they both define the notational short 

hand for defining requirements. A final requirements supplement is the domain model. A domain 

model describes the key concepts of a domain and what the relationships between them are (Yue et 

al., 2011).  

3.2 Ambiguity 

Ambiguity in an unavoidable issue when dealing with requirements. For every requirement there is 

always someone who can interpret a requirement differently (Berry et al., 2003). It is extremely 

difficult for a RE, and also NLP tools, to formulate unambiguous requirements (Ryan, 1993). It could 

therefore be argued that an unambiguous RS does not exist (Berry et al., 2003). There are however 

more mature RSs, which are understood in a similar way by the vast majority of the stakeholders.  

Even though the term ambiguity is ambiguous on its own (multiple definitions of ambiguity exist)(Berry 

et al., 2003), most definitions agree on the following definition of ambiguity in the field of RE (Brun, 

Steinar Saetre, & Gjelsvik, 2009; Chantree, Roeck, Nuseibeh, & Willis, 2006; Gill, Raza, Zaidi, & Kiani, 

2014; Kamsties & Peach, 2000; Wiegers, 1999): 

“A requirement is ambiguous if it admits multiple interpretations despite the reader’s knowledge of 

the RE context” 
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3.2.1 Classification of ambiguity 

Ambiguity in NL can represent itself in various forms. There are however four classes of ambiguity; 

lexical ambiguity, syntactic ambiguity, semantic ambiguity, and pragmatic ambiguity. In the following 

section a definition and example is given for each type of ambiguity (Berry et al., 2003). 

3.2.1.1 Lexical ambiguity 

Lexical ambiguity is the most basic form of ambiguity. It occurs when a requirement contains a word 

that has several meanings. There are two types of lexical ambiguity, homonymy and polysemy. The 

former can be defined as: 

“Different words have the same written and phonetic representation, but unrelated meanings and 

different etymologies” 

An example of homonymy is the word bark. Bark could refer to the sound a dog makes (1a), or it could 

refer to the surface of a tree (1b). It is written and pronounced in the same way, but it has two different 

meanings.  

1. a) All that my dog does all day is bark 

b) You cannot eat the bark of a tree 

Polysemy can be defined as: 

“A word has several related meanings but one etymology” 

An example of polysemy is the word newspaper. It could refer for instance to an actual instance of a 

newspaper (2a), or it could refer to the organisation that makes the newspaper (2b). Even though the 

word has different meanings, the meanings are related. In order to disambiguate a polysemy a lot of 

contextual information is required. This makes it hard for NLP tools to address this type of ambiguity 

(Kamsties & Peach, 2000).  

2. a) The sports section is the best part of the newspaper 

b) The newspaper announced that they are hiring new writers 

3.2.1.2 Syntactic ambiguity 

Syntactic ambiguity occurs when more than one grammatical structure can be given to a sequence of 

words. There are four types of syntactic ambiguity; analytical, attachment, coordination, and elliptical 

ambiguity. Analytical ambiguity can be defined as: 

“The role of the constituents within a phrase or sentence is ambiguous” 

An example of analytical ambiguity is when there are more than one adverbs or adjectives describing 

a noun. This could cause confusion about what belongs to the noun phrase, and how an adverb or 

adjective influences the noun phrase. Consider the following phrase: 

3. a) The English history student 
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Could be interpreted as: 

3 b) The (English) history student 

c) The (English history) student 

Attachment ambiguity can be defined as: 

“A particular syntactic constituent of a sentence, such as a prepositional phrase or a relative clause, 

can be legally attached to two parts of a sentence” 

An example of attachment ambiguity is when a prepositional phrase can both modify a verb and a 

noun (or noun phrase) in a sentence. There are two interpretations possible in the example sentence 

(4a). Either the father provided the children with high grades because of a certain accomplishment. Or 

the children were rewarded by the father because of their high grades. 

4. a) The father rewarded the children with high grades  

The third type of syntactical ambiguity is coordination ambiguity. This can be defined as: 

“More than one conjunction, and or or, is used in a sentence or one conjunction is used with a 

modifier” 

Even though the definition itself is ambiguous, multiple connectors in a sentence could cause 

ambiguity. A connector can conjunct two sentences into one sentence. Using multiple connectors, 

where one connector is not used for a conjunction, can lead to confusion. It is hard for the reader to 

identify which connector is used for the conjunction of the sentences. In example 5a Susan could be 

looking at John and Stan, and Steve wasn’t looking at John and Stan. Another interpretation is that 

Susan looked at John, and Stan and Steve weren’t looking at John. 

5. a) Susan looked at John and Stan and Steve didn’t look 

Coordination ambiguity can also occur when a single connector is used in combination with a modifier. 

In example 6a both the table and chair could be green, or just the table could be green. 

6. a) Green table and chair 

The last type of syntactical ambiguity is elliptical ambiguity, which can be defined as: 

“An ellipsis is a gap in a sentence cause by omission of a lexically or syntactically necessary 

constituent. Elliptical ambiguity occurs when it is not certain whether or not a sentence contains an 

ellipsis” 

In other words, if a word or word group is omitted from a sentence this could cause ambiguity. In 

example 7a the constituent “knows” after Vincent is left out. If the constituent wasn’t omitted the 

sentence could only be interpreted that Theo knows a taller man than anyone Vincent knows. By 
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omitting the constituent the sentence could also be interpreted that Theo knows somebody that is 

taller than Vincent is.  

7. a) Theo knows a taller man than Vincent 

3.2.1.3 Semantic ambiguity 

Semantic ambiguity occurs when there is no lexical and syntactic ambiguity, but a sentence still has 

more than one interpretation. There are three types of semantic ambiguity; coordination ambiguity, 

referential ambiguity, and scope ambiguity. Coordination ambiguity is already discussed in the 

previous section. In some cases of coordination ambiguity the ambiguity is not caused by a single word 

or group of words. In those cases the coordination ambiguity is classified as semantic ambiguity. 

Referential ambiguity can be within a sentence or between a sentence and the context. In the former 

case the referential ambiguity is classified as semantic ambiguity, in the latter case it is classified as 

being pragmatic ambiguous. Referential ambiguity will be discussed in the next section. The final type 

of semantic ambiguity is scope ambiguity, which can be defined as: 

“Operators can enter into different scoping relations with other sentence constituents” 

Quantifier operators are words such as “all”, “each”, “a”, and “every”. These operators precede and 

modify nouns to the scope of the quantifier operator. For instance “all scientists” include every 

scientist that exists, where “some scientists” only include a selection of the entire population of 

scientists. Ambiguity can occur when several quantifier operators are included in a sentence. Consider 

the following phrase: 

8. a) All kids like a superhero 

If “all” is included in the scope of “a” then there is one superhero that is liked by every kid in the 

population. If however “a” is included in the scope of “all” then every kid in the population likes a 

superhero, but not necessarily the same superhero. Besides quantifier operators there are also 

negation quantifiers such as “not” and “no one”. Ambiguity can occur in the same way as with 

quantifier operators. Consider the following phrase: 

9. a) No one has seen a dragon 

The sentence could be interpreted that dragons do not exist, and therefore no one could ever see a 

dragon. Another interpretation is that a dragons does exist, but it hasn’t been seen by anyone.  

3.2.1.4 Pragmatic ambiguity 

Pragmatic ambiguity occurs when multiple meanings can be given to a sentence based on the context 

of the sentence. The context can be language specific and non-language specific. (Kamsties & Peach, 

2000) defines three types of non-language specific context: 

- Application domain 

- System domain 

- Development domain 
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In the application domain context ambiguity can occur because of what is known about the application. 

The same goes for the system domain and development domain for what is known about the system 

and the development process respectively. Based on the context, either one of the three non-language 

specific context or the language specific context, pragmatic ambiguity can occur. There are two types 

of pragmatic ambiguity, referential ambiguity and deictic ambiguity. Referential ambiguity can be 

defined as: 

“An anaphor can take its reference from more than one element, each playing the role of the 

antecedent” 

A reference is a word or word group that refers to an actual object in the real world. An anaphor is a 

word or word group that refers to a part of a sentence, this could be the same sentence or another 

sentence. The part of the sentence the anaphor refers to is called an antecedent. Referential ambiguity 

can occur if it is not clear what the antecedent is to which the anaphor refers to. The most common 

type of anaphor is a pronoun (Berry et al., 2003). Consider the following phrase: 

10. a) The kids shall eat the vegetables before they get spoiled 

The pronoun “they” could refer to both the kids and the cookies. It is not clear whether the kids get 

spoiled if the kids don’t eat their vegetables, or if the vegetables get spoiled if the kids don’t eat the 

vegetables. Other types of anaphora are definite noun phrases and ellipses. Consider the following 

phrase: 

11. a) If the nickname is available, the user enters the password. If not, the user is rejected 

In example 12a it is not clear if the user is rejected if the nickname is not available, or if the user is 

rejected because he didn’t enter a password. A part of the second sentence is omitted which causes 

an ellipsis between sentences.  

3.3 Natural language processing 

3.3.1 Levels of language  

Before looking at how NLP tools process NL, the way humans process NL has to be understood. This 

starts by analysing how NL is structured. According to Liddy (2001) there are 7 levels of language that 

humans use to process NL: 

1. Phonology: the interpretation of speech sounds within and across words 

2. Morphology: the componential nature of words 

3. Lexical: the interpretation of the meaning of individual words 

4. Syntactic: the analysis of words in a sentence to uncover the grammatical structure of a 

sentence 

5. Semantic: the determination of possible meanings of a sentence  

6. Discourse: the interpretation of a unit of text larger than a single sentence 



23 
 
 

 

 

7. Pragmatic: the interpretation of text by looking at the context rather than the content of the 

text 

In early literature these levels were described as being sequential for processing NL. So before the 

lexical level of meaning could be reached the phonological and morphological meaning had to be 

obtained first. Recent research suggests this process is much more dynamic and can be seen as a 

synchronic model (Liddy, 2001). This means that humans give meaning to NL on every level of 

language. Humans also use information from a “higher” level to help provide meaning to a “lower” 

level of language. For instance pragmatic information such a knowing the domain could help provide 

meaning to individual words on the lexical level of language.  

NLP tools can focus on each level of language, although in RE the phonological level is rarely addressed. 

Humans use every level to understand NL. In order for a NLP tool to even come close to human NLP 

Liddy (2001) states that: 

“…the more capable an NLP system is, the more levels of language it will utilize.” 

In other words this means that there is a correlation between the performance of a NLP tool and the 

levels of language is uses to provide meaning to NL. This does not mean however that addressing more 

levels of language results in a better performing NLP tool. What is important is that information from 

every level of language is shared with other levels in order to help giving meaning to NL. This is however 

a complicated process and hard to implement into a NLP tool. 

3.3.2 NLP activities 

NLP can be applied in various domains such as education, finance, and RE. Activities were NLP can be 

applied include (Ambriola & Gervasi, 1997; Cambria & White, 2014; Liddy, 2001; Mich et al., 2004): 

- Information extraction (Xiao, Paradkar, Thummalapenta, & Xie, 2012) 

- Information retrieval 

- Dialogue systems (e.g. customer services) 

- Summarisation 

- Machine translation 

- Requirements elicitation  

- Conflict identification 

- Requirements validation 

- Requirements selection 

- Model creation 

- Ambiguity detection (Yang, Roeck, Gervasi, Willis, & Nuseibeh, 2011) 

The wide range of activities where NLP can be applied in shows it is a powerful technique that can be 

implemented in almost every project that uses natural language.  
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3.3.3 NLP approaches 

According to Liddy (2001) a NLP tool falls in 1 of 4 categories; symbolic, statistical, connectionist, and 

hybrid. Another categorisation is made by (Cambria & White, 2014), who defines 3 categories; 

syntactic, semantic, and pragmatic. The categorisations made by Liddy (2001) and Cambria & White 

(2014) have several similarities and differences. The symbolic approach is similar to the semantic 

approach. They both focus on using lexicons, corpora, and ontologies to provide meaning to NL. The 

difference is that the semantic approach also includes the connectionist approach in the way that 

machine learning algorithms are used. Next the statistical approach is similar to the syntactic approach. 

The syntactic approach however consists of 3 parts; keyword spotting, lexical affinity, and statistical 

NLP.  

Based on this comparison a combination of the categorisations is used for the approaches to NLP. The 

main categories of Cambria & White (2014) are used since they have a broader definition than the 

categorisation of Liddy (2001). In this research the NLP approaches are defined as: 

1. Syntactic: focusses on the analysis of word by using mathematical techniques and corpora 

without adding any domain knowledge 

2. Semantic: focusses on the analysis of concepts and the intrinsic meaning of NL by using 

ontologies and  machine learning techniques 

3. Pragmatic: focusses on the analysis of narratives  

4. Hybrid: focusses on more than one of the previous approaches. 

3.3.4 Pre-processing approaches 

Pre-processing is the process of preparing requirements by the means of NLP techniques for the 

transformation and analysis of requirements. According to Cambria & White (2014) and Liddy (2001) 

the 5 main pre-processing techniques are: 

- Lexical analysis 

- Syntactical analysis 

- Semantic analysis 

- Categorisation 

- Pragmatic analysis 

The pre-processing techniques are similar, to some extent, to the levels of language. As described 

earlier better performing NLP tools use more levels of language, and thus use more pre-processing 

techniques. In the upcoming section a more detailed description of the pre-processing techniques is 

provided. 

3.3.4.1 Lexical analysis 

The first step in processing NL is performing a lexical analysis. The purpose of the lexical analysis is to 

interpret the meaning of individual words (Liddy, 2001). Lexical analysis can be defined as (Dale, Moisl, 

& Somers, 2000): 



25 
 
 

 

 

“The determination of lexical features for each of the individual words of a text” 

The extent to which a NLP tool performs a lexical analysis is based on the complexity of the tool (Dale 

et al., 2000; Liddy, 2001). There are four main techniques used in the lexical analysis; sentence splitting, 

tokenization, Part-Of-Speech tagging, and morphological analysis. The techniques are listed and 

described from the most basic to the most complex technique.   

Sentence splitting 

Sentence splitting is also known as sentence boundary detection or sentence segmentation. The goal 

is to split the text into sentences so that these can be processed further (Dale et al., 2000). During 

sentence splitting the NL text is analysed to determine the sentence boundaries between the 

sentences. Most languages use punctuation marks to indicate the boundaries between sentences. 

There are however some instances were punctuation marks are not used for indicating boundaries. 

For instance with abbreviations and titles punctuation marks are used, which do not indicate a 

sentence boundary (Nadkarni et al., 2011). Information from the tokenization process is therefore 

required to help with the detection of sentence boundaries. The process is further complicated when 

an abbreviation is at the end of a sentence, and the period marks both the abbreviation and the end 

of the sentence (Dale et al., 2000). 

Tokenization 

Tokenization is also known as word segmentation. The goal is to split the text into elements, called 

tokens, so that these can be processed further (Dale et al., 2000). Based on the structure of the text, 

which is partly provided by the sentence splitting, the tokens are associated to a category. The most 

common categories are words (consisting of letters only), numbers, punctuation marks, and symbols 

(Ferilli & Singh, 2011). A more basic method of tokenization is looking up the tokens in a table to 

determine the category it belongs to. This approach is however mostly used for simple tasks (Dale et 

al., 2000).   

Part-Of-Speech tagging 

The purpose of Part-Of-Speech (POS) tagging is to assign the words of a text into word classes (Weikum, 

2002). Voutilainen (2003) defines eight classes of words; noun, verb, particle, article, pronoun, 

preposition, adverb, and adjective. This classification is supported by Weikum (2002), with a difference 

in the terminology of the classes. Instead of an article, Weikum (2002) defines a determiner, which is 

the superclass of an article. Information from the tokenization process is used to classify the words. 

An example output of POS tagging could like:  

12. a) A(Art) cat(N) has(V) 9(Nu) lives(N) 

Where Art is an article, N is a noun, V is verb, and Nu is a numeral. The noun “lives” is an example of 

what makes POS tagging challenging. When only looking at individual words it could also be classified 

as a verb. Therefore information from the morphological analysis is used to assign words to their word 

classes.  
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Morphological analysis 

Morphological analysis is also known as morphological decomposition and morphological 

normalization. The purpose of this step is to identify the root of compound words (Nadkarni et al., 

2011). This can be accomplished by using stemming, lemmatization, and suffix stripping. With 

stemming and lemmatization a dictionary is involved. With stemming a word such as ‘computational’ 

is brought back to the root ‘comput’, and with lemmatization the root would be ‘compute’. Suffix 

stripping does not require a dictionary, but removes standard suffixes that follow the root of a word.  

3.3.4.2 Syntactic analysis 

The output of the lexical analysis serves as input to the syntactic analysis. The goal of the syntactic 

analysis is to uncover the grammatical structure of a sentence (Liddy, 2001). The information of the 

grammatical structure can be used, in combination with rules, to identify quality defects.  

3.3.4.3 Semantic analysis 

The purpose of the semantic analysis is to determine possible meanings of a sentence (Liddy, 2001). 

All the information from the previous analysis is used for this. Semantic analysis looks at the meanings 

of the different words in a sentence. Cambria & White (2014) define 2 broad types of semantic analysis 

for NLP: endogenous NLP and taxonomic NLP. Endogenous NLP deals with machine learning 

techniques, where taxonomic NLP focusses on dictionaries, ontologies, and corpus.  

3.3.4.4 Categorisation 

The purpose of text categorisation is to classify certain aspects of text (Weikum, 2002). Categorising in 

requirements engineering deals with classifying requirements for a specific purpose. Classifying 

requirements can be useful for the development of software. Classified requirements can be assigned 

to teams that each focus on a particular class of requirements (Yue et al., 2011).   

3.3.4.5 Pragmatic analysis  

The output of the previous analysis only identifies the defects in the requirements. The pragmatic 

analysis automatically improves the requirements based on the identified defects in the previous 

analysis (Yue et al., 2011). Another form of pragmatic analysis is that improved requirements, based 

on identified defect earlier, are checked whether the defects are still present.  

3.3.5 Transformation approaches 

After pre-processing the requirements they are transformed into an analysis model, intermediate 

model or improved requirements. The latter does not necessarily mean the generation of improved 

requirements, it could also be in the form of error messages and warnings. In the remainder of this 

section the 3 types of transformation approaches are described. 

The first type of transformation approach is the rule based approach. For this approach a set of pre-

defined transformation rules is used. These transformation rules compare the input requirements with 

heuristics, definitions, boilerplate requirements and other requirement supplements that provide a 
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structure or template. The rule based transformation approach is often seen in NLP tools that follow 

the syntactic NLP approach. 

The second type of transformation approach is the ontology based approach. For this approach a 

vocabulary or ontology is used. An ontology “defines the terms used to describe and represent an area 

of knowledge” (Heflin, 2004). This representation is in a form that can be processed by computers and 

is unambiguous (Yue et al., 2011). A simple example of an ontology is a taxonomy describing the 

relevant terms within a domain and the relationships among them. Ontology Web Language (OWL) is 

a technique that can be used to create an intermediate model from requirements by creating an 

ontology model. This model can be a class diagram consisting of classes and attributes and the between 

them (Heflin, 2004).  

The third type of transformation approach is the pattern based approach. For this approach a target 

pattern is required. Requirements that have a certain pattern are thus transformed into requirements 

that another, target, pattern. 
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4 NLP tools 

One part of the literature study consists of getting an overview of the most recent NLP tools. In this 

chapter the results of this part of the literature study are described. The first part of this chapter 

focusses on all of the NLP tools that are found in literature. From these tools a selection is made for 

further analysis. The selected NLP tools are analysed in detail in the second part of this chapter. The 

third part discusses the metrics that can be used to measure the performance of NLP tools. 

4.1 NLP tools overview 

From the literature study a set of 50 NLP tools are identified relevant to this research. An initial analysis 

is performed on these 50 tools ((Arendse & Lucassen, 2016)). At first the goal, input and output of each 

tool is identified to determine whether the tool was within the scope of this research. The scope of 

this research is on NLP tools that focus on improving the quality of requirements and focus on 

ambiguity. Within the RE domain however there are various other goals that NLP tools can focus on 

(see Figure 4).  

 

Figure 4 NLP tools distribution 

Besides the quality of requirements and ambiguity there are 2 other main goals of NLP tools. The first 

is model creation and refers to tools that create various models such as UML model, BPMN model, and 

feature model from a RS. The second is extraction and refers to tools that extract glossaries, relevant 

terms, requirements, and business rules from NL text. The tools in the “Other” category are tools that 

either only use NLP in a part of their approach or are part of a larger approach (e.g. NLTK is used in 

AQUSA for the lexical analysis).  

The input of the tools are forms of NL text. This can be user stories, use cases, NL requirements, NL 

requirement documents, or just plain text. The output of the tools depends both on the goal and the 

input of a tool. It makes sense that a tool that creates models has a model as output. But for tools that 

focusses for instance on the quality of requirements the output can differ. There are tools that give 

some sort of report in various forms such as warnings, errors and defects as output. Other tools 

however actually give an improved or altered requirement as output when this is given as input.  
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A second aspect of the initial analysis is to determine whether or not a tool performs a lexical, syntactic, 

semantic, and / or pragmatic analysis. Furthermore it is analysed if some sort of categorisation is 

performed by the tools. The various analyses are interpreted differently here than described earlier. 

The reason for this is that there are not many tools that actually perform a semantic analysis, let alone 

a pragmatic analysis. By interpreting the types of analyses broader a more detailed analysis can be 

performed. Therefore the types of analysis are defined as follows: 

- Lexical analysis is the pre-processing of NL by the means of tokenisation, sentence splitting, 

POS tagging and / or morphological analysis 

- Syntactic analysis is the process of taking the output of the lexical analysis and give it 

grammatical structure based on a pre-defined grammar or set of rules 

- Semantic analysis is the process of giving some sort of meaning to the output of the syntactic 

analysis by the means of a corpus, vocabulary, dictionary, or other methods 

- Categorisation is the process of automatically ordering or classifying requirements for a 

specific purpose  

- Pragmatic analysis is the process where the results of the semantic analysis are used to 

determine the errors in the input, generate a model, prepare and verify the output, visualize 

the output, and / or create a report.   

When looking at the lexical analysis of the tools it is noticeable that only a few tools have created their 

own solution for this. Most tools use external software to perform the lexical analysis. The main reason 

for this is that there are various parsers that prove to have a good performance. The parsing of NL is 

only mentioned briefly in most of the papers where the tools are described in. There are numerous 

tools and techniques available that have high precision and recall when it comes to parsing NL. This 

implies that even for a ‘simple’ task such as parsing approaches can differ. Some parsers even cover 

both the lexical and syntactic analysis. The most commonly used parser is the Stanford Parser. It is 

often mentioned to be the most validated and accessible parser available. It is also available for 

multiple languages created by the community of the Stanford Parser. An overview of all the parsers 

used by the NLP tools included in this research can be found in Table 3.  

Table 3 NLP Parsers 

TreeTagger Sent detector Minipar 
Genia Tagger NLTK Stanford Parser 

OpenNLP Parser GATE ANNIE POS tagger 
Link Grammar Moby POS II SensAgent 
RCNL Parser   

 

The differences between the tools and their corresponding approaches are mostly in the way they 

perform the semantic and pragmatic analysis. WordNet is a commonly used corpus during the 

semantic analysis. The way WordNet is used however differs from tool to tool. In the prototype tool 

described in (Kiyavitskaya et al., 2008) wordNet is used to create a Semantic Net. In the tool (Ibrahim 

& Ahmad, 2010) wordNet is used as part of a concepts extraction engine. What this shows is that a 
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corpus or dictionary can be used in various ways to give meaning to text or parts of text. Besides the 

use of a corpus there are various other methods that are being used to give some sort of meaning to 

text. Some tools create an intermediate model to represent the text in a format where relationships 

and dependencies can be constructed between parts of text. Some of the models that are being 

created are world model, framenet, and essential use case model.  

During the pragmatic analysis missing relationships and dependencies are detected by using rules and 

pre-defined model formats. The feedback is given to the user by providing error messages or warnings. 

Other methods used during the semantic analysis include named entity recognition, conditional 

random fields, semantic role labelling, annotation schema, attribute value splitting, semantic pattern 

matching, and two level grammar. 

Another aspect where NLP tools can differ is in the requirements supplements they require in order to 

function. As mentioned earlier some tools require a corpus or dictionary to give meaning to the text. 

These tools are mostly ontology based. Other tools are more rule based and require rules, definitions, 

heuristics, and sometimes a glossary as a requirements supplement. The output of the syntactic 

analysis, mostly a parse tree, is analysed by the means of the requirements supplements. Tools that 

require a glossary as supplement check the nouns of the text with the glossary. This way they check 

whether all the nouns are specified in the glossary in order to get term consistency within the RS. A 

glossary differs from a corpus or dictionary in the way that a glossary is a list of “allowed” terms and a 

corpus is a list of “disallowed” terms.  

For a lot of the NLP tools the requirements supplements have an impact the automation of the tool. 

Some tools require a domain model or domain dictionary in order to function properly. In most cases 

this results in a tool that is semi-automated. These tools mention however that domain specific 

information can increase the performance of the tool. Automated tools on the other side are mostly 

domain independent and require minimal manual work before the tool can be used.  

4.2 NLP tools in experiment 

From the 50 identified tools, 20 tools focus on finding defect and deviations. By using exclusion criteria, 

as described in section 2.2, 3 tools are involved in the experiment (RQA, Qualicen, and TIGER-PRO). 

This section describes each of the 3 tools, and the approaches they use.  

4.2.1 RQA 

The Requirements Quality Analyzer (RQA) is a commercial tool developed by The REUSE Company. 

RQA can be implemented in larger organisations where multiple people work on the same project. The 

tool offers metrics covering the correctness, consistency, and completeness of requirements. For this 

they define 4 types of indicators (Génova et al., 2011): 

1. Morphological indicators, such as size 

2. Lexical indicators, such as number of ambiguous terms 

3. Analytical indicators, such as usage of verbal forms 
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4. Relational indicators, such as overlapping with other requirements 

Only the morphological and lexical indicators are relevant for this thesis, because they cover the 

correctness of requirements. The tool offers metrics that can be adjusted by the user. For instance the 

occurrence of an ambiguous term weighs twice as much as the occurrence of a connector. Additionally 

the user can modify the dictionaries RQA uses (Figure 5). The user can define nouns, verbs, adjectives, 

and adverbs that are considered worth looking for by the tool. The analytical indicators help the user 

in using a pre-defined pattern for requirements. The relational indicators provide a similarity measure 

that tells the user how much the requirements overlap.  

After RQA performs the analysis on the requirements it provides the user with errors and warning. The 

tool gives a score for each metric and a short explanation what the metric means (Figure 6). The words 

highlights red when there is an error message regarding those words. The user can export the results 

of the analysis to a pdf or excel file.  

Figure 5 RQA metrics 
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Figure 6 RQA report 

4.2.2 Qualicen 

Qualicen is a commercial tool that stemmed from a research initiative at TU Munich. The tool analysis 

NL requirements by using requirement smells. Qualicen defines a requirement smell as “a concrete 

instance for a requirement artefact’s quality defect” (Femmer et al., 2014). The difference between a 

requirement smell and a requirement defect is that a smell is only an indication for a possible quality 

defect. Qualicen detects the following requirement smells: 

- Slash smell 

- Ambiguous adverbs and adjectives smell 

- Negative words smell 

- Non-verifiable term smell 

- Subjective language smell 

- Imprecise phrase smell 

- Superlative requirements smell 

- Comparative requirements smell 

- Vague pronouns smell 

- Loophole smell 

- UI detail smell 

- Long sentence smell 

All but the last 3 smells are within the scope of this thesis. The tool provides users with warning 

messages which a short description whenever a smell is detected (Figure 7). For some of the smells 

the tool uses dictionaries, which cannot be adjusted by the user. Qualicen however can provide a 

version of the tool with adjusted dictionaries. Other smells use NLP techniques such as morphological 
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analysis and POS tagging. In both cases there are rule based exceptions for certain smells that are not 

quality defects 

 

Figure 7 Qualicen report 

4.2.3 TIGER-PRO 

TIGER-PRO is an educational tool developed by Joseph Kasser. The purpose of TIGER-PRO is to help 

students write higher quality requirements. The tool defines 7 types of requirement defects: 

1. Multiple requirements 

2. Possible multiple requirements 

3. Unverifiable terms 

4. Wrong word 

5. User defined words 

6. Possible design words 

7. Incomplete 

All the approaches of TIGER-PRO use a dictionary to check for any defects. The dictionary of 

unverifiable terms consists of more than just non-verifiable terms. This dictionary also includes 

quantifiers, subjective terms, comparative terms, slashes, and escape clauses. Figure 8 provides a 

screenshot of the user interface of TIGER-PRO. 
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Figure 8 TIGER-PRO report 

4.3 Metrics 

The literature search for frameworks and metrics for measuring the performance of NLP tools did not 

yield much results. Looking at the evaluation methods of the identified NLP tools however provided 

some performance metrics that were frequently used; precision, recall, accuracy, and specificity. The 

benefit of these metrics is that it can be applied to a wide range of quality attributes such as ambiguity, 

duplicity, and consistency. To determine all of the performance metrics for a quality attribute the 

number of true positives (TP), false positives (FP), true negatives (TN), and false negatives (FN) has to 

be determined. The individual performance metrics can be determined as followed (Nakache, Metais, 

& Timsit, 2005): 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

This chapter has provided an analysis of the 50 identified tools. This analysis shows that even on a 

parser level a lot of differences exist between NLP tools. Even that way in which corpus and dictionaries 

are used differs per tool. This chapter furthermore provided a more thorough analysis of the 3 selected 

tools. This chapter concludes with the explanation of the metrics available for the performance 

measurement of NLP tools.   
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5 Requirement standard 

The purpose of the requirement standard is to have a standard to identify the defects in the datasets. 

A standard is important because this way the subjective involvement of the author (tagging the 

datasets) is brought to a minimum. Writing a requirement standard down also makes sure the research 

can be repeated and replicated.  

The requirement standard consists of 17 features, 5 regarding atomicity, 11 regarding ambiguity, and 

1 regarding passive and active voice. A feature is a functionality or defect check performed by at least 

1 one the tools involved in the experiment. For each feature a definition is given, and in some cases 

accompanied by further explanation and examples. The description of each feature explains how and 

when a requirement defect can occur regarding that feature. The description of the features is based 

on how the 3 tools in the experiment define quality defects regarding those features. The handbook 

of ambiguity by Berry et al. (2003) is consulted in the case the tools contradict each other or the 

description of the tools is not clear enough. The upcoming section describes the requirement standard 

used in this research. 

5.1 Requirement standard in this research 

Atomicity 

1. “and” – The occurrence of an and that describes multiple features. 

2. “or” –The occurrence of an or that describes multiple features. 

3. Multiple imperatives – The occurrence of more than one imperative describes multiple 

features.  

e.g. “shall” more than once. 

4. List of items (enumeration) – The occurrence of a list of nouns or noun phrases that 

describes multiple features 

o Indicators could be  

 “: “   

 “-“ 

 “,” 

 Multiple “and” 

E.g. “The system must process text, images, and videos 

5. Multiple sentences – The occurrence of multiple sentences that describes multiple features 

o Only 1 instance of this can occur in a requirement 

Ambiguity 

1. Vague pronouns – The occurrence of a pronoun of which it is not certain to which noun or 

noun phrase the pronoun refers to. (referential ambiguity)(Berry et al., 2003) 

o Proper pronouns are terms that substitutes a noun or a noun phrase, and do not 

refer to a concept or idea.  
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o A pronoun at the beginning of a sentence is a strong indicator that the pronoun 

refers to a concept or idea. ((Berry et al., 2003)) 

2. Quantifier – The occurrence of a quantifier of which the scope is not certain.  

o Universal quantifiers have a high likelihood to be ambiguous (all, both, any, each, 

every, some, and one). 

 “simply because very few universal statements about the world have no 

exceptions” (Berry & Kamsties, 2000)  

o The use of “a” or “an” could be an universal quantifier. 

E.g. “An office has a door connecting the office to a hallway” implies that there could 

be more than one office, door, and hallway. “An” in this case could be interpreted as 

a universal “each”, so that each office has a door… ((Berry et al., 2003)) 

o Checking for quantifier is closely related to Scope ambiguity (Berry et al., 2003): 

 “All linguistic prefer a theory”, scope can be on “all” and on “a” 

 “No one has seen a pig with wings”, scope can be on “no one” and on “a” 

3. Unit – The occurrence of a number without a unit. 

o This includes both written and numeral numbers 

4. Slash – The occurrence of a slash of which the nouns or noun phrases on either side have a 

different meaning.  

o This includes attached and separated slashes 

E.g. passengers/customers and passengers / customers 

5. Non-verifiable terms – The occurrence of terms of which the truth or accuracy cannot be 
determined.  

o Terms that are hard to measure (e.g. unlimited, correct). But not if the non-verifiable 

term can be measured by the context.  

o The truth or accuracy cannot be demonstrated 

o These are terms that are used in conjunction with a noun or noun phrase (e.g. 

unlimited users, maximum response time, user friendly interface) 

E.g. “The maximum number of users is 1000 users”. Can there be 1000 users or at 

most 999 users? 

6. Subjective terms – The occurrence of terms which people can interpret differently.  

o Subjective terms are different from non-verifiable terms in a way that the latter is 

harder to quantify by subjective interpretation.  

o Some terms could be: 

  a few  

  appropriate  

  effective  

  efficient  

  sufficient  

7. Comparative terms 

o Terms that rely on something outside of the requirements (more, less) or something 

mentioned earlier. 
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E.g. “The response time shall be more than it was before”. But also “The number of 

users shall be more than one” because it is not clear if a single user is also allowed. 

Replace “more” with “no less than x or greater than x” or “no greater than x or less 

than x” 

o Elliptical ambiguity (Berry et al., 2003): 

 Perot knows a richer man than Trump 

8. Negative terms 

o Terms imply a constraint rather than a requirement 

o Some terms could be: 

  cannot  

  Can't   

  no  

  not  

9. Superlative terms (highest, lowest) 

o Terms that signify the greatest form of a descriptor 

o Relating to, or nothing the highest degree of the comparison of adjectives and 

adverbs” 

E.g. “The system shall have the highest response time”. But not “The system shall 

display the 10 airplanes with the earliest departure times” 

10. Ambiguous words check (ontology) 

o If a term does not fit within one of the above mentioned metrics, but it is ambiguous, 

it is classified as “Ambiguity”. These are mostly adjectives and adverbs.  

o Pay extra attention to: 

 And (coordination ambiguity) 

 Any  

 Include  

 After, before, next and previous 

 Minimum  

 Maximum  

 Or (coordination ambiguity) 

 For up to (including or excluding) 

o Analytical ambiguity: Multiple adverbs or adjectives before a noun (Berry et al., 

2003) 

 E.g. the Tibetan history teacher 

o Attachment ambiguity: a phrase that can modify both a verb and a noun in a 

sentence (Berry et al., 2003) 

 the police shot the rioters with guns 

o To be correct, an “only” should be immediately preceding the word or phrase that it 

limits (Berry et al., 2003). 

o “Also” suffers the same fate as only in that it is supposed to be put immediately 

preceding the word or phrase it modifies 

o There are other words that have the same problem as “only” and “also”. These include  

 almost  
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 even 

 hardly  

 just 

 merely  

 nearly  

 really 

11. Escape clause sentences  

o Sentences that have an open ending 

  as little as possible  

  as much as possible  

  if it should prove necessary  

  if practicable  

  so far as is possible  

  where possible  

  where there is sufficient space 

Passive voice 

o Verbs that imply that something has already happened. 2 

E.g. “A user has been notified before something happened”. But not “A user is notified 

if something happens”.  

o “To know whether you are writing in the active or passive voice, identify the subject 

of the sentence and decide whether the subject is doing the action or being acted 

upon.” (Femmer, Kuˇ, & Vetrò, 2014).  

 A sentence is passive voice if the subject of the sentence is the receiver of the 

action performed in the sentence. 

 A sentence is active voice if the subject of the sentence performs the action in 

the sentence.  

  

                                                           
2 http://www.plainlanguage.gov/howto/quickreference/dash/dashactive.cfm  

 

http://www.plainlanguage.gov/howto/quickreference/dash/dashactive.cfm
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6 Experiment Conduction and Results 

This chapter describes how the experiment is conducted and reports on the obtained results. The first 

section describes the conduction of the experiment. The second section shows the performance of the 

tools for each feature. The third section describes the approaches of the tools, followed by a 

comparison of the approaches.  

6.1 Experiment Conduction 

This section elaborates on the conduction of the experiment. Before the experiment starts a 

requirement standard is created to have a definition of how the quality of a requirement can be 

measured. Based on this requirement standard 4 datasets are manually tagged by the author, and 

validated by a requirements expert at the Utrecht University. The datasets are prepared for each tool 

so that the tools can process the datasets (e.g. excel files, txt files, and word files). The prepared 

dataset are given as input to the tool involved in the experiment. The output of the tools can be found 

in Arendse & Lucassen (2016). The difference between the manually tagged datasets and the output 

of the tools is used to calculate the performance of the tools. The performance of the tools is used to 

qualitatively compare the approaches of the tools.   

6.2 Tool performance 

For each feature the performance is measured by using a micro average of the 4 datasets. Micro 

average means that the true positives, false positives, true negatives, and false negatives for every 

dataset are summed up before the calculation of precision and recall (Tague-Sutcliffe, 1992). Another 

method is using the macro average. With this method the precision and recall is calculated for each 

dataset, after which the average of the precision and recall for all the datasets is averaged. In this thesis 

the micro average is used because of 3 reasons. First the number of datasets in this research is 

relatively small. When using the macro average this means that the performance of an individual 

dataset could have a big impact on the average. One of the datasets used in this research consists of 

user stories. The performance of this dataset could differ from the other datasets, which skews the 

results. The second reason is that datasets in this research vary in size. Together with the number of 

datasets, this could furthermore skew the results towards the performance of an individual dataset. 

The final reason is that this research focusses on the performance of the individual features. Macro 

average is useful for measuring the overall performance of a system. Micro average on the other hand 

is more suited for the measurement of sub-parts of a system.  

The performance results of the 3 selected tools on the 4 datasets are available in Table 4. The rows 

with grey highlighting depict the total performance for the constructs atomicity and ambiguity for each 

of the tools. The total of the construct atomicity consists of the features “and”, “or”, multiple 

imperatives, list of items, and multiple sentences. The total of the construct ambiguity consists of the 

features vague pronouns, quantifier, unit, slash, non-verifiable, subjective, comparative, negative, 

superlative, general ambiguity, and escape clause. The specific score indicates the tool’s performance 

only counting the features it has implemented, while the overall score averages all features described 
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in the requirement standard. An example of the specific score is that the specific score of TIGER-PRO 

for atomicity consists of the total of the features “and”, “or”, and multiple imperatives. The overall 

score for atomicity includes the features list of items and multiple sentences, even though TIGER-PRO 

does not have those features implemented. The precision and recall cell pairs with green background 

represent the best performing approach according to the tool’s recall for that feature. The focus is on 

recall and not on precision because precision only measures what the tools do detect, where recall 

also measures what the tools do not detect. Furthermore it is the goal of most NLP tools to achieve 

100% recall of quality defects, sacrificing precision if necessary: The Perfect Recall Condition (Berry et 

al., 2012) 

Table 4 Tool performance 

Total Score Qualicen TIGER RQA 

Precision Recall Precision  Recall Precision Recall 

“and” - - 0.66 1 0.66 1 

“or” - - 0.22 1 0.22 1 

Multiple imperatives - - 1 0.6 0.96 1 

List of items - - - - 0.47 0.8 

Multiple sentences - - - - 1 0.56 

Atomicity specific - - 0.70 0.85 0.72 0.88 

Atomicity overall - - 0.70 0.66 0.72 0.88 

Vague pronouns 0.44 0.25 - - 0.76 0.91 

Quantifier - - 0.95 0.67 0.76 0.5 

Unit - - - - 0.1 1 

Slash 1 1 1 0.5 1 1 

Non-verifiable 0.4 1 0.5 1 0 0 

Subjective 1 0.33 1 0.08 1 0.17 

Comparative 0 0 1 0.75 1 0.14 

Negative 0.83 1 - - 1 1 

Superlative 0.75 1 - - - - 

General ambiguity 0.38 0.29 - - 0.65 0.24 

Escape clause - - 0 0 1 0.43 

Ambiguity specific 0.55 0.36 0.93 0.5 0.65 0.55 

Ambiguity overall 0.55 0.26 0.93 0.23 0.65 0.52 

Passive voice 0.92 0.89 - - 0.98 0.66 

 

6.3 Comparison of the approaches 

“And” 

Both TIGER-PRO and RQA consider the occurrence of an and as being a sign of no atomicity. Qualicen 

does not focus on atomicity. The performance of TIGER-PRO and RQA is the same, since they both 
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detected all the instances of and. Some instances of “and” imply ambiguity rather than atomicity 

defects, which explains the precision. 

“Or” 

Both TIGER-PRO and RQA consider the occurrence of an or as being a sign of no atomicity. Qualicen 

does not focus on atomicity. The performance of TIGER-PRO and RQA is the same, since they both 

detected all the instances of or. 

Multiple Imperatives 

TIGER-PRO and RQA both check for multiple imperatives in a requirement. Qualicen does not focus on 

atomicity. TIGER-PRO only checks for the imperative shall, which results in a precision of 100% and a 

recall of 60%. RQA additionally checks for the imperatives might, can, will, must, and may. These 

additional imperatives results in a precision of 96% and a recall of 100%. 

List of Items 

RQA is the only tool that checks for a list of items. Since RQA is a commercial tool the actual approach 

is confidential. Therefore the approach can only be analysed by looking at the instances of list of items 

RQA detects. The approach derived from this is that RQA checks for the occurrence of multiple and 

within a sentence. The instances RQA missed were lists that don’t use an Oxford comma while listing 

items. For example the requirement “The rental transaction is created, printed and stored” is not 

detected by RQA. The requirement could be read that the creation process of a rental transaction 

consists of the actions printing and storing. Another interpretation is that there are 3 actions for the 

rental transaction (created, printed, and stored). 

Multiple Sentences 

RQA is the only tool that checks for multiple sentences. It does so by looking at the occurrence of a 

period that marks the end of a sentence. In some cases however 2 sentences were connected by a 

comma instead of a period. RQA doesn’t check for commas, which results in a precision of 100% and a 

recall of 56%.  

Vague pronouns 

Qualicen and RQA both check for vague pronouns, where TIGER-PRO does not. Qualicen checks for 

vague pronouns by using POS tagging. Initially every pronoun marked by the POS tagger. Qualicen, 

together with their clients, formulated some exception rules that filters a part of the pronouns. These 

exception rules consist of certain types of grammar of a sentence where pronouns are not vague or 

ambiguous.  Since Qualicen is a commercial tool the exception rules are confidential. The approach of 

Qualicen however missed every instance of the pronouns it and this. The reason for this is that Qualicen 

only checks for relative pronouns Therefore Qualicen did detect the pronouns that, what, where, 

which, who, and whose.. The result is a precision of 44% and a recall of 25%.  

RQA uses a dictionary to check for vague pronouns. The dictionary consists of him, his, he, it, this, that, 

their, our, your, mine, we, I, they, you, us, her, she, and them. Based on the dictionary RQA checks for 

personal pronouns, possessive pronouns, demonstrative pronouns, and some relative pronouns. In the 
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dataset consisting of user stories the detection of the pronoun I is ignored. The result is a precision 

76% and a recall of 91%.  

Quantifier 

TIGER-PRO and RQA both check for quantifiers, Qualicen does not check for quantifiers. Both tools use 

a dictionary to check for quantifiers. The dictionary of RQA consists of all, both, and any, with a results 

of a 76 % precision and 50% recall. TIGER-PRO additionally checks for the term each, which results in 

a 95% precision and 67% recall. 

Unit 

RQA is the only tool that checks for numbers without units. RQA detects both written and numeral 

numbers. The approach of RQA marks all numbers as being ambiguous, irrespective if it’s followed by 

a unit or a noun. The result is a precision of 10% and a recall of 100%.  

Slash 

All three tools check for slashes. Qualicen and RQA detect both slashes that are separate (e.g. 

passengers / customers) and slashes that are attached (e.g. passengers/customers). This approach 

results in a precision of 100% and a recall of 100%. TIGER-PRO only detects the separate slashes, with 

a results of 100% precision and 50% recall.  

Non-verifiable terms 

All three tools check for non-verifiable terms by using a dictionary. The dictionary of RQA consists of 

the 13 terms prompt, fast, routine, maximum, minimum, optimum, nominal, easy to use, close quickly, 

high speed, medium sized, best practices, and and user friendly. The result is a precision and recall of 

0% since RQA didn’t detect any non-verifiable terms in the datasets.  

The dictionary of TIGER-PRO consists of the 17 terms affect, all, any, as little as, each, best practice, 

maximize, maximum, minimize, minimum, quick, rapid, user-friendly, sufficient, include, includes, and 

including. The result is a precision of 50% and a recall of 100%.  

The dictionary of Qualicen consists of 7 terms. Because Qualicen is a commercial tool the content of 

the dictionaries is not available. A way to find out what is in the dictionary is to provide the tool with 

an extensive list of non-verifiable terms. The non-verifiable terms that are marked are in the dictionary 

of Qualicen. The developers of Qualicen however asked to be careful with the proprietary content of 

Qualicen. Therefore only the number of terms in the dictionary are used. The result is a precision of 

40% and a recall of 100% 

Subjective terms 

All three tools check for subjective terms by using a dictionary. The dictionary of Qualicen consists of 

25 terms, which results in a precision of 100% and a recall of 33%. The dictionary of RQA consists of 

the 25 terms probably, perhaps, typically, normally, often, generally, usually, commonly, optionally, 

maybe, may, can, frequently, almost always, rarely, at last, and almost. The result is a precision of 

100% and a recall of 17%. 
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The dictionary of TIGER-PRO consists of the 32 terms accurate reconstruction adequate, appropriate, 

brief, clear, easy, effective, enhance, enough, flexibility, flexible enough, high, high-activity, high-

dynamic, high-priority, improve, large, little, low, many, optimized, periodic, possible, several, short-

duration, significant, statistically monitor, world-class, irregular, unexpected, unusual, and good. The 

result is a precision of 100% and a recall of 8%. 

Comparative terms 

TIGER-PRO and Qualicen check for comparative terms. RQA has no measures or dictionary for the 

detection on comparative terms. RQA however did identify one instance of comparative terms. A 

comparative term was part of another dictionary. The result is a precision of 100% and a recall of 14%. 

TIGER-PRO uses a dictionary consisting of the 3 terms also, same, and such as. With these terms TIGER-

PRO has a precision of 100% and a recall of 75%. Qualicen uses POS tagging and morphological analysis 

for the detection of comparative terms. This approach however did not detect any instance of 

comparative terms. The result is a precision and recall of 0%. 

Negative terms 

Qualicen and RQA check for negative terms, TIGER-PRO does not. Both tools use a dictionary to detect 

negative terms. The dictionary of Qualicen consists of 13 terms, which results in a precision of 83% and 

a recall of 100%. 

The dictionary of RQA consists of the 17 terms nothing, nobody, none, never, doesn’t, won’t, shan’t, 

mustn’t, couldn’t, shouldn’t, oughtn’t, can’t, no, nor, non, not, and cannot. The result is a precision and 

recall of 100%. 

Superlative terms 

RQA is the only tool that checks for superlative terms. The tool does so by performing morphological 

analysis to detect the greatest form of an adverb or adjective. This approach results in a precision of 

75% and a recall of 100%. 

General ambiguity 

Qualicen and RQA check for general ambiguity, TIGER-PRO does not check for this. Both tools use a 

dictionary to check for general ambiguity. The dictionary of Qualicen consists of 358 terms. The result 

is a precision of 38% and a recall of 29%.  

The dictionary of RQA consists of the 109 terms bad, good, too, worst, better, timely, provide for, 

normal, as required, effective, easy to, capability to, capability of, be capable of, as appropriate, 

adequate, safe, reliable, improved, efficient, as possible, approximately, flexible, versatile, user friendly, 

if practical, easy, not limited to, as a maximum, as a minimum, quick, sufficient, minimize, maximize, 

user-friendly, a few, a lot of, about, all, ancillary, any, appropriate, approximate, as far as possible, as 

little as possible, as much as possible, as necessary, at least, based on, best possible, best practices, 

both, clearly, close quickly, close to, common, customary, easily, easy to use, enough, extremely, fault 

tolerant, few, first rate, generic, great, high fidelity, if it should prove necessary, large, little, manage, 
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many, many of, maximum, medium-sized, minimal, minimum, necessary, optimal, optimize, optimum, 

proficient, prompt, quickly, reasonable, relevant, robust, roughly, routine, satisfactory, several, 

significant, small, so far as possible, some, state of the art, sufficiently, suitable, typical, typically, 

useable, vague, very nearly, rapid, high speed, slow, fast, friendly, and more or less. The result is a 

precision of 65% and a recall of 24%. 

Escape clause 

TIGER-PRO and RQA check for escape clauses, Qualicen does not do this. TIGER-PRO has no explicit 

dictionary for escape clause. There are however several escape clause terms in the dictionary of non-

verifiable terms. These terms are e.g, i.e., etc., and eg. The result is a precision and recall of 0%.  

RQA also uses a dictionary for the detection of escape clauses. The dictionary consists of the 25 terms 

among others, as a minimum, not limited to, not determined, not defined, tbc, tbs, tbd, further, 

etcetera, etc., and so on, shall be included but not limited to, but not limited to, e.g., eg, example, such 

as, if possible, if required, possibly, various, when requested by, when required, and to be determined. 

The results is a precision of 100% and a recall of 43% 

Passive voice 

Qualicen and RQA check for passive voice, TIGER-PRO does not. The approach of both tools is protected 

by the tools. Analysing the results of the experiment does provide some insight in how the tools 

operate. The approach of Qualicen most likely uses POS tagging and morphological analysis. Adverbs 

and adjectives that might indicate passive voice (e.g. the requested book) were ignored by Qualicen, 

where verbs were detected (e.g. shall be requested). The results is a precision of 92% and a precision 

of 89%. 

RQA detects every instance of a verb, adverbs or adjective that is written in past tense. The 

morphological analysis is probably different than that of Qualicen. RQA failed to detect the instance 

can be read, where Qualicen did detect this. It could be that Qualicen uses the word be as in indicator, 

which is often true. RQA does not do this and has less true positives and false positives. Therefore the 

approach of RQA results in a precision of 98% and a recall of 66% 

6.4 Good and bad practices 

This section describes a set of good and bad practices derived from the results. The good and bad 

practices can be used by NLP tool developers for the creation and improvement of NLP tools. Please 

note that these are based on the results of an experiment including 3 tools. Developers have to 

consider whether the good and bad practices apply to their tools. The 3 sections in this chapter each 

describe a good or bad practice.  

Different tokenizers 

The choice of which tokenizer to use can have an effect on the performance of a tool. Especially when 

it comes to symbols the approaches of tokenizers differ. The end of a sentence is in most cases marked 

with a period. Abbreviations can also be closed with a period. Some tokenizers use a corpus to detect 
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these abbreviations. Other tokenizers use the structure of a sentence to determine whether a period 

marks the end of a sentence or the end of a word. Finally there are tokenizers that consider each period 

as the end of a sentence. For the detection of the feature Multiple sentences the choice of tokenizer is 

extremely important. Using a tokenizer that considers each period the end of a sentence is likely to 

results in a low precision but high recall. Using one of the other approaches is more likely to result in 

a better precision, but it could have a negative effect on the recall.  

Another feature effected by the choice of tokenizer is Slash detection. RQA and Qualicen both use a 

tokenizer that detects slashes in between or at the end of words (e.g. passengers/customers). TIGER-

PRO however only detects slashes that are separated from words (e.g. passengers / customers). The 

result is that all tools have a precision of 100%. RQA and Qualicen have a recall of 100%, where TIGER-

PRO’s recall is 50%.  

Dictionary vs. Parsing 

Most features regarding ambiguity use a dictionary to detect any ambiguous terms. There are however 

several features, such as vague pronouns and comparative terms, that use parsing to detect ambiguity. 

The strength of using a dictionary is that a comprehensive list can be created to detect any defects in 

requirements. The dictionary can even be adjusted to a certain domain to improve the performance. 

Parsing on the other hand is more delicate approach. Possible defect are marked by the parser after 

which exception rules filters out instances that use a certain types of grammar.  

For the feature vague pronouns RQA uses a dictionary. Qualicen uses a POS tagger to detect vague 

pronouns. The performance of RQA is better in this experiment, for both precision and recall. The 

approach of Qualicen has a relatively low precision and recall, and missed all instance of the most 

common pronouns it and this. This could be due to two reasons. First the POS tagger of Qualicen could 

not be working properly, and pronouns were not tagged as being pronouns. Using a different parser 

could help resolve this problem. Second the exception rules could be too strict by which true defects 

were wrongfully filtered out. These exception rules however were created together with clients of 

Qualicen. It is possible that only instances of vague pronouns are detected that they consider to be 

ambiguous. This more practical approach however does not perform well in this experiment.  

For the feature comparative terms TIGER-PRO uses a dictionary. Qualicen uses a POS tagger and 

morphological analysis to detect comparative terms. Even though the dictionary of TIGER-PRO only 

consists of 3 terms, it managed to get a 75% recall. It has to be noted that the number of comparative 

terms in the datasets is limited to only 7 instances. Nevertheless the approach of Qualicen is not able 

to detect any instances of comparative terms. This could be because of the limited instances of 

comparative terms. Another reason could be that the POS tagging or morphological analysis is not 

performed properly. Because the approach of Qualicen is proprietary it cannot be said with certainty 

what the real reason is that the approach does not perform well. All that can be said is that the 

dictionary approach of TIGER-PRO performs better than the parsing approach of Qualicen. 
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What is in the dictionary 

All three tools utilize dictionaries for multiple features. For both RQA and TIGER-PRO this is the main 

approach for detecting ambiguity and atomicity defects. The difference in performance of the 

dictionaries can be explained by what is in the dictionaries and the size of the dictionaries. Even with 

1 term in the multiple imperatives dictionary TIGER-PRO has a recall of 60%. RQA uses 6 terms however 

and has a recall of 100%. The same goes for quantifiers. RQA checks for all, both, and any, and TIGER-

PRO checks additionally for each. Using only this one extra term results in a both higher precision and 

recall (0.19 and 0.17). Finally for the detection of negative terms Qualicen uses 13 terms and RQA uses 

17 terms. Both tools have a 100% recall, RQA however has a higher precision (0.17) even with more 

terms in the dictionary. This indicates that the bigger the dictionary does not necessarily mean a lower 

precision. It furthermore shows that what is in the dictionary effects the precision and recall of a tool.  

It has to be noted that for some features it is easier to create an exhaustive list of all the terms than 

other features. There is for instance a limited number of pronouns, imperatives, and quantifiers. RQA 

checks for all imperatives and therefore has a 100% recall regarding multiple imperatives. RQA also 

does this for pronouns. They do not check however for all pronouns such as what, where, which, who, 

and whose. Nevertheless the tool has a precision of 91%. For the quantifiers it is more complicated. 

TIGER-PRO and RQA both check for universal quantifiers. With that approach they manage to detect 

more than half of the quantifier defects. In some cases however the terms a, an, and the are used as 

quantifiers that cause ambiguity. If the tools were to check for these terms the recall would be higher, 

and possibly even 100%. The precision however would be severely effected in a negative way. A more 

comprehensive approach is desired, where instance are filtered out using exclusion rules. None of the 

tools in the experiment however has found an approach for this.   

The number of subjective and non-verifiable terms is a harder to define. One reason for this is that the 

definition for what a subjective term or non-verifiable term is differs per tool. TIGER-PRO has a 

dictionary for non-verifiable terms, while it actually consists of subjective terms, non-verifiable terms, 

comparative terms, escape clauses, and quantifiers. Some terms can furthermore be classified as more 

than one type of term. The main property of non-verifiable terms is that they are hard to measure. 

Because of this people can use their own measurement for these kind of terms, making it also a 

subjective term.  
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7 Design of the next generation tool 

This chapter describes the design of the next generation tool. The first section elaborates on the best 

performing approaches of the tools involved in the experiment. The second section describes how 

these approaches can be implemented into a tool.  

The results of the experiment and their analysis in Chapter 7 serve as a design blueprint for the next 

generation tool. The results of the experiment, together with the technical information about the tools 

provided by their developers, lead to the design of the best approaches for each feature. These 

approaches can be implemented into new or existing NLP tools to increase the performance of these 

tools. Please note that the results are based on an experiment involving 3 tools. Developers have to 

consider and test themselves whether the approaches described in this chapter actually outperform 

the current approaches of their NLP tools.  

7.1 Approaches 

This section describes the best performing approaches of the 3 tools involved in the experiment. The 

approaches of the next generation tool are: 

1. “and” – Any instance of and 

2. “or” – Any instance of or 

3. Multiple imperatives – A dictionary with the imperatives shall, might, can, will, must, and may 

4. List of items – Multiple and in a sentence. 

5. Multiple sentences – Multiple “.” that indicate the end of sentence 

6. Vague pronouns – A dictionary with the pronouns him, his, he, it, this, that, their, our, your, my, we, 

I, they, you, us, her, she, and them 

7. Quantifier – A dictionary with the quantifiers all, both, any, and each 

8. Unit – Any instance of a written or natural number 

9. Slash – A tokenizer that detects the symbol / without space between the words on either side 

10. Non-verifiable terms – A dictionary with the terms affect, all, any, as little as, each, best practice, 

maximize, maximum, minimize, minimum, quick, rapid, user-friendly, sufficient, include, includes, and 

including 

11. Subjective – The dictionary of Qualicen with 25 terms 

12. Comparative terms – A dictionary with the comparative terms also, same, and such as 
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13. Negative terms – A dictionary with the negative terms nothing, nobody, none, never, doesn't, won't, 

shan't, mustn't, couldn't, shouldn't, oughtn't, can't, no, nor, non, not, and cannot 

14. Superlative terms – Morphological analysis that detect the greatest form of adverbs and adjectives 

15. General ambiguity – The dictionary of Qualicen with 358 terms 

16. Escape clause – A dictionary with the terms among others, as a minimum, not limited to, not 

determined, not defined, tbc, tbs, tbd, further, etcetera, etc, and so on, shall be included but not limited 

to, but not limited to, e.g., eg, example, such as, if possible, if required, possibly, various, when 

requested by, when required, and to be determined 

17. Passive voice – The parsing approach of Qualicen 

In theory, a next generation tool that implements these 16 approaches should obtain 0.92 recall and 

0.68 precision for atomicity, 0.76 recall and 0.77 precision for ambiguity, and 0.89 recall and 0.92 

precision for passive voice. This is calculated by taking the micro average of the performance of the 

approaches included in the design of the next generation tool. However, far superior approaches might 

already be available that cannot be included because the design is based on already available tools. 

After all, the design is based on tools that are between 13 and 2 years old. For example, it is not 

inconceivable that new tools employing POS tagging for the detection of vague pronouns outperform 

the dictionary-based approach selected for the vague pronoun feature. Perhaps a combination of the 

two approaches is preferable. Furthermore, considering that POS tagging technology is continuously 

improving it is impossible to predict the exact performance of a next generation tool. Because of this, 

next generation tools should undergo a performance test against the same datasets used in this 

experiment (Arendse & Lucassen, 2016) . 

7.2 Tool mashup 

One should proceed with caution when starting the development of this next generation tool design. 

Unfortunately, it is impossible to combine the best-performing features into one tool without 

recreating the entire technology. In fact, any new custom-built tool released after years of 

development will likely be yet another tool that has its own strengths and weaknesses in terms of 

features. As research community, we should start a shared initiative to create a common, modular 

standard that allows for easily replacing old approaches with superior techniques. The right 

architecture design could even empower automatic tool assembly with the best modules for a specific 

context. 

An example of a mash-up initiative is the UIMA Framework (Ferrucci & Lally, 2004), which enables 

developers to create unstructured information analysis tools by combining application components. 

The framework defines a standard interface that manages data flow between all available 

components. Developers can choose to configure existing annotators and repositories, or create new 

ones for their application. Through component re-use, developers can more quickly develop tools or 
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web applications that process unstructured text, audio and video. A simplified architecture of this 

framework is shown in Figure 9. 

UIMA
Infrastructure
- Tooling
- Servers
- Workbench

Components
- Annotators
- Repositories

UIMA 
Framework

 

Figure 9 UIMA framework 

Unfortunately, the UIMA Framework requires strong technical capabilities of the user to run it, despite 

the availability of user guides and tutorials. Achieving widespread adoption requires a user-friendly 

application with little set-up time or configuration. Ideally, the application exposes a cloud-based 

interface to allow a wider range of application integrations. It could even built upon existing mashup 

services such as Zapier3 that enable non-technical users to easily integrate, automate and innovate by 

moving data between applications. 

A mashup framework for the integration of NLP approaches into a tool would have to be easily 

accessible for less experienced developers. It becomes easier for researchers and the business 

environment to contribute to the body of knowledge regarding NLP in RE. Preferably the framework is 

so easy to use that all a user has to do is select the approaches he wants to implement into his tool. 

For this a unified user interface for reporting defects is required. The framework however should be 

flexible enough so that it supports various technologies and programming languages. Users have to be 

able to implement their approaches as intended, and not with the limitations of an enforced 

programming language.  

  

                                                           
3 https://zapier.com/  
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8 Discussion 

This chapter concludes this thesis by answering the research questions, presents limitations and issues 

for future work.  

8.1 Conclusions 

This thesis was set out to get a clear overview of the performance of the main approaches taken by 

NLP tools in the RE landscape, and to create a theoretical tool that synergistically integrates the best 

approaches. A literature study identified the 50 main NLP tools in the RE landscape. Based on exclusion 

criteria 3 tools remained to be included in the experiment. A requirement standard is created to 

manually process 4 datasets provided by the developers of the tools. Using these 4 manually tagged 

datasets the performance of the approaches for each feature of the tools is measured. From the results 

a theoretical next generation tool is designed based on the best performing approach for each feature. 

A set of good and bad practises is derived from the results of the experiment and the theoretical next 

generation tool.  

The main research question of this thesis is “How to create a best of breed Requirements Engineering 

Tool for improving the quality of requirements through Natural Language Processing?”. To answer this 

main research question there are 4 sub questions. The first sub question seeks for the similarities and 

differences between NLP tools. The 50 identified tools are analysed in chapter 4 to show the similarities 

and differences. The main difference of the tools is the technologies the tools use, and how they are 

used. The second sub question was set to identify the metrics for measuring the performance of NLP 

tools. A set of 4 metrics is presented in section 4.3 consisting of precision, recall, accuracy, and 

specificity is identified as being the most frequently used approach for measuring the performance of 

NLP tools. The third research question seeks out what approaches NLP tools can take to improve the 

quality of requirements. This question is answered in chapter 6 where the approaches of the 3 tools 

involved in the experiment are thoroughly analysed and compared. The final sub question provides a 

set of good and bad practices that other researchers can use for the development of their own NLP 

tool. This question is answered in section 6.4 where the following good and bad practices are 

described: 

1. Different tokenizers: The choice to which tokenizer to use can have an effect (both positive 

and negative) on the performance of a tool 

2. Dictionary vs. Parsing: Using a dictionary is a safe and simple method to detect defects. Parsing 

is a more complicated approaches, and when not performed correctly it can have a negative 

effect on the performance of a tool 

3. What is in the dictionary: The size and content of a dictionary can have an effect on the 

performance (both recall and precision) of a tool, the bigger the dictionary, the better 

The process of answering the sub questions provides the answer to the main research question. The 

result is the theoretical design of the next generation tool. NLP tool developers can incorporate these 

approaches into their own tool. For existing tools developers have to determine whether these 
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approaches fit within the framework of their tool. Furthermore they have to test whether these 

approaches perform better than their current approaches.  

A final contribution made by this thesis is the requirement standard. Other researchers can use the 

requirement standard from this thesis to manually tag their own datasets. Even if their tools only cover 

a part of the requirement standard they can use it in the process of measuring the performance of NLP 

tools.  

8.2 Limitations 

After the research is conducted it is important to see how valid the results of the research are. For this 

there are 2 things to consider: reliability and validity (Golafshani, 2003). Reliability refers to the extent 

the results of the research remains the same over a period of time, and whether the research can be 

reproduced using the same method. A threat to the reliability for this research is the creation of the 

requirement standard. The standard is created by the author based on the definitions given by the 

tools and the handbook of ambiguity (Berry et al., 2003). If this research were to be replicated with 

other tools the requirement standard could take a different form than the one in this research, which 

leads to datasets that are tagged in another way. This brings forward a second threat to the reliability 

of this research; the tagging of the datasets. The datasets were manually tagged by the author. If 

another researcher were to tag the same datasets, with the same requirement standard, this could 

still lead to differently tagged datasets.  

Validity refers to whether the research actually measures or achieves what was intended. In this thesis 

there are 3 main threats to validity: the definition of ambiguity and atomicity, the number of tools 

involved in the experiment, and the number of datasets used. 

The first threat to validity is how the constructs of ambiguity and atomicity are created. They are 

created on how the 50 identified tools, and especially the 3 tools involved in the experiment, define 

ambiguity and atomicity. The author deducted the constructs ambiguity and atomicity from these 

definitions. It is not validated however that these construct actually measure the same thing, i.e. 

ambiguity and atomicity. The involvement and judgement of a researcher, in this case the author, is a 

threat to the construct validity of this research.  

The second threat to validity is the number of tools involved in the experiment is limited to only 3 

available tools, out of the 12 that where eligible. Involving more tools in the experiment could lead to 

a different design of the next generation tool. Therefore it is difficult to generalize the results, which 

is a threat to the external validity of this thesis. The number of approaches that are compared is limited, 

which in turn has an effect on the design of the next generation tool. Including more tools means more 

approaches, which could lead to different approaches in the design of the next generation tool.  

A third threat to the validity of this research is the number of datasets involved in this thesis. Manually 

tagging datasets is a time consuming task. Therefore only 4 datasets are used from the tools involved 

in the experiment. This is threat to the internal validity of this thesis. Using more datasets could provide 
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the tools in the experiment with more terms (e.g. subjective terms). In turn this could lead to a 

different performance of the tools, and approaches, and a different design of the next generation tool.  

8.3 Future work 

A first issue that requires further work relates to the number of tools that are available to this thesis. 

The limitation that only 3 tools are available is at the same time an issue that should be solved by the 

research community. Making sure that a NLP tool can be used years after development increases both 

the reproducibility of that research and the progress that can be made in the field of NLP in RE. 

Performing the same research as in this thesis but only with more tools could significantly increase the 

validity of the results. The research community can solve this problem by using a standardised 

framework or platform, such as UIMA, to more easily create and mashup NLP tools.  

The creation of a tool mashup approach is a second issue for future work. An accessible framework is 

required even though a mashup framework already exists in the form of UIMA. The focus of such a 

mashup framework should be on both easily integrating existing approaches into a tool as well as 

implementing and testing newly developed approaches. More progress in the field of NLP in RE could 

be made by making the framework accessible for less experienced developers. 

A third issue for future work relates to the tagging of the datasets. This is a time consuming task and 

performed for every performance testing of NLP tools. Creating a database with tagged datasets that 

are validated could fasten the process of NLP tools testing. Such an initiative has already been started 

in the form of the NLRP Benchmark4. The problem with this initiative is that the number of (tagged) 

datasets is limited. Contributions made by the research community could make sure that the NLRP 

Benchmark becomes a valuable resource for every NLP tool developer.   

A fourth issue for future work is researching the progress made in the semantic and pragmatic curve. 

This thesis focussed on syntactic NLP approaches in RE. Even though more research is needed to fully 

analyse the syntactic curve, it is already necessary to look at the semantic and pragmatic curve. The 

method used in this thesis however is probably not suited for studies of the semantic and pragmatic 

curve. Especially the definition of what a quality defect is and what would be semantically or 

pragmatically correct needs to be clearly defined.  

A final issue for future work is the implementation of the approaches of the design of the next 

generation tool. In this thesis a mostly quantitative method is used to create the design of the next 

generation tool. But how will the users of real world RE systems will experience those approaches? 

Case studies are required to find out whether the approaches presented in this thesis are perceived 

during actual development projects. 

  

                                                           
4 http://nlrp.ipd.kit.edu/index.php/Main_Page 
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10 Appendix 

10.1 Appendix A: Paper 

The paper will be published in September 2016 in the workshop on Artificial Intelligence for 

Requirements Engineering (AIRE). The properly formatted paper can be found there. 

Toward Tool Mashups: Comparing and Combining NLP RE Tools 
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Abstract—Over 50 papers present natural language pro-cessing tools for improving 

the quality of requirements. How-ever, few of these are adopted by industry. Even 

worse, most of them are no longer publicly available or supported by their creators. 

The few available and actively maintained tools exhibit some outstanding features, 

but also include sub-optimal functionalities. In this paper, we compare the 

performance of 3 existing tools on how well they automatically detect ambiguity 

and atomicity defects and deviations in 4 real-world natural language requirements 

sets. Next, we show how to design a superior tool by combining the best 

performing approaches of these three. Finally, we introduce a research roadmap 

toward automatically generating NLP RE tool mashups through the assembly of 

modular components taken from existing tools. 

Index Terms—Requirements engineering, Natural language processing, Quality of 

requirements, Mashups 

I. INTRODUCTION 

The fundamental purpose of a software requirement is to convey a mental 

representation of an intended functionality or quality of a system to the reader of 

the requirement [11]. How-ever, human requirements engineers frequently make 

mistakes in the way they formulate requirements, causing expensive re-work in 

later phases of software engineering [4]. 
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With the aim of mitigating these errors, the Requirements Engineering (RE) 

community has churned out 50+ tools in the past 15 years that leverage natural 

language processing (NLP) for (semi-)automatically improving requirements 

quality [1]. 

However, the specific facets of requirements quality these tools strive to improve 

varies substantially. The number and diversity of lists defining quality criteria 

and/or characteristics of software requirements further complicates matters [11, 8, 

29]. Just to give a few examples, the ISO 29148 standard defines 13 characteristics 

of high quality system requirements specification [25], Pohl defines quality in 

terms of specification completeness, agreement among stakeholders, and formality 

of the representation [22], while Lucassen et al. [17] list 13 linguistic criteria that 

define high-quality user stories. 

All NLP RE tools strive to improve requirement quality by focusing on one or 

more quality attributes from one or more criteria standards. Berry et al. [3] 

categorizes the fundamental approaches of all NLP RE tools into four types: 

1. Finding defects and deviations in natural language (NL) requirements document; 

2. Generating models from NL descriptions; 

3. Inferring trace links between NL descriptions; 

4. Identifying the key abstractions from NL documents. 

In this paper, we compare the performance of 3 NLP RE tools of the first type, 

which find defects and deviations in NL requirements documents. We do so by 

experimentally testing their performance on four real-world requirements data sets. 

By analysing the results, we design a hybrid tool that combines the most effective 

approaches of each for state-of-the-art results. 

For the purposes of this paper, we focus on two specific requirements quality 

characteristics: ambiguity and atomicity. Academic literature describes multiple 

approaches on how to automatically ensure the quality of these two requirements 

characteristics. Because reducing ambiguity is arguably a key objective of 

requirements engineering [11], much effort has been put into defining requirements 

ambiguity and developing tools that detect deviations. Furthermore, atomicity is 

clearly detectable and definable for both non-expert humans as well as machines. 
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On the other hand, other quality criteria—such as complete-ness, consistency or 

traceability—require deep understanding of the domain or access to metadata 

unspecified in the requirements text itself, thereby making them less suitable to our 

research, which relies on objective metrics of performance. 

The rest of the paper is structured as follows. Section II further details the chosen 

quality aspects for requirements: ambiguity and atomicity. This is followed by an 

exposition of our experimental method in Section III and its results in Section IV. 

Section V presents our design for a next generation tool, followed by related work 

in Section V. We discuss the limitations of this study in Section VI and present our 

conclusions and directions for future work in Section VII. 

II. AMBIGUITY AND ATOMICITY 

Although minimizing ambiguity is a primary objective of requirements 

engineering, it is impossible to avoid ambiguity completely [2]. A requirement is 

ambiguous if it can have multiple interpretations [29, 5, 6, 10, 13]. Berry et al. [2] 

argue that 100% unambiguous requirements do not exist. There will always be 

someone with a different interpretation, especially in projects where there are 

multiple types of stakeholders involved such as business analysts, developers, high 

level management, and customers. This implies that a perfect requirement—more 

precisely, a perfectly formulated requirement—is an oxymoron: it does not exist. 

However, not all requirements are equally imperfect. Some requirements are 

understood in a similar way by the vast majority of stakeholders. One way to 

measure the 

ambiguity of a requirement is the percentage of requirements engineers that form 

the same mental representation by reading the requirement. If every requirement 

engineer in the group has the same mental representation the requirement is 

unambiguous. Yet, any new requirements engineer might still form a different 

mental representation [2]. Furthermore, determining ambiguity in this way requires 

a lot of time investment and produces unpredictable results depending on the 

experience, capabilities, and background of the requirement engineers. 

Instead, NLP RE Tools employ on a more quantitative approach by looking at the 

causes of ambiguity. Ambiguity can occur because of the use of words that are 

prone to be ambiguous. For instance, the interpretation of superlative terms (e.g. 

best and highest) and universal quantifiers (e.g., all, each, and every) is subjected to 

the view and state of mind of an individual. The number of ambiguous words can 

then quantify the ambiguity of (a set of) requirements. 
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A requirement is atomic when it specifies exactly one function. To find atomicity 

(often referred to as cohesiveness in the literature) violations, NLP RE tools detect 

requirements that specify more than one function of a system using a similar 

approach as for ambiguity. The difference is the type of words that can cause 

multiple functions in a single requirement. For in-stance, connectors (e.g., and) are 

indicators of a possible lack of atomicity. Another example is the use of multiple 

imperatives in a requirement (e.g. shall, will, and must). 

III. METHOD 

Our method for comparing the performance of NLP RE tools consists of three 

steps: (A) compiling a list of eligible tools, (B) defining a requirement quality 

standard to which a requirement should conform to and (C) test the performance of 

each tool against a gold standard. The following sub-sections describe each of these 

steps. 

A. Eligible Tools 

We conducted a snowball literature study that led to 50 papers describing tools that 

apply NLP to requirements [1]. Although many more papers are available on the 

intersection of NLP and requirements, we pre-emptively excluded all literature that 

employ outdated approaches, for instance the use of Two Level Grammar in Lee et 

al. [16], or do not describe a tool. Out of the 50 identified tools, 20 focus on our 

aforementioned type 1 tool criterion that focuses on finding defects and deviations. 

The other tools have a different emphasis: 11 of them focus on generating models, 

15 on identifying key abstractions, and 4 on other issues. Next, we applied the 

following inclusion criteria: 

* Provides sufficient technical information to understand inner working of the tool 

(18 remain) 

* Accepts NL requirements as input (16 remain) 

* Is fully automated – does not require manual pre-processing such as manual POS 

tagging or creating traceability links (12 remain) * Available for use on the internet 

or by contacting the author directly (3 remain) 

A full overview of all the tools and their reason for exclusion see Table 1 below. 

The experiment includes the following 3 tools: 
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1. The Requirements Quality Analyser (RQA) [9] is a commercial tool developed 

by The Reuse Company. The tool provides morphological, lexical, analytical, and 

relational indicators. 

2. The Tool to InGest and Elucidate Requirements Professional (TIGER-PRO) [14] 

is an educational tool developed by Joseph Kasser to help students write good 

requirements. 

3. Qualicen [7] is a commercial tool developed by Qualicen GmBH. The tool uses 

requirement smells to detect quality defects in requirements. 

TABLE I. OVERVIEW AND CLASSIFICATION OF NLP RE TOOLS. 

INCLUDED TOOLS FORMATTED IN BOLDFACE TYPE 

Tool Name Transformat
ion 

Automa
ted 

Year Exclusion 

Extraction of 

OLAP req. 
Rule/ 

Ontology 
Based 

Y 2009 Input type 

Circe RB / OB Y 2006 Not available 
NAI RB / OB Y 2010 Not available 

QuARS RB / OB Y 2001 Not available 
CRF Tool RB / OB Y 2012 Not available 
AQUSA RB Y 2015 Input type 

T1'* RB Y 2008 Not available 
RAT RB Y 2009 Not available 

Text2Test - - - No info 
MaramaAI RB / OB N 2011 Not auto 

EuRailCheck RB / OB N 2012 Not auto 
UIMA RB Y 2009 Not available 
DODT RB / OB N 2011 Not auto 
SREE RB / OB Y 2013 Not available 

Qualicen RB Y 2014 Included  
Dowser RB / OB N 2008 Not auto 

RQA RB / OB Y 2011 Included 
Anaphora 

detection 
RB Y 2011 Not available 

Lexior - - - No info 
Not available 

TIGER-PRO RB / OB Y 2004 Included 

B. Requirements quality standard 

Next, we introduce a requirement quality standard to which a requirement should 

conform, consisting of 16 violation criteria tests. Note that the quality standard only 

includes those ambiguity and atomicity tests that at least one of the selected tools 

implements. Each test is accompanied by an explanation and ex-ample based on 

either the tools’ definition or as explained in Berry et al. [2]. 



63 
 
 

 

 

T1. “And” – The occurrence of an and that facilitates the description of multiple 

features. 

T2. “Or” – The occurrence of an or that facilitates the description of multiple 

features. 

T3. Multiple imperatives – The occurrence of more than one imperative that 

facilitates the description of multiple features. 

T4. List of items – The occurrence of a list of nouns or noun phrases that facilitates 

the description of multiple features 

T5. Multiple sentences – The occurrence of multiple sentences that facilitates the 

description of multiple features 

T6. Vague pronouns – The occurrence of a pronoun of which it is not certain to 

which noun or noun phrase the pronoun refers to. 

T7. Quantifier – The occurrence of a quantifier of which the scope is not certain. 

T8. Unit – The occurrence of a number without a unit. 

T9. Slash – The occurrence of a slash of which the nouns or noun phrases on either 

side have a different meaning. 

T10. Non-verifiable terms – The occurrence of terms of which the truth or accuracy 

cannot be determined. 

T11. Subjective – The occurrence of terms which people can interpret differently. 

T12. Comparative terms – The occurrence of terms that express a relation to other 

nouns or noun phrases. 

T13. Negative terms – The occurrence of terms that express a constraint. 

T14. Superlative terms – The occurrence of terms that signify the greatest form of 

an adverb or adjective 

T15. General ambiguity – The occurrence of general terms that can cause 

ambiguity. 
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T16. Escape clause – The occurrence of terms that imply an open ending of a 

sentence. 

C. Gold standard 

To test the performance of the tools we aggregated a requirements collection from 

datasets provided by the developers of all three tools + an internally obtained set of 

user stories. This way each tool has a baseline for the analysis of the results. Using 

the requirement standard, the first author of this paper manually pro-cessed the 4 

collected datasets. For every instance of a possible defect, for instance a subjective 

term, the first author determined, based on the requirement standard, whether this 

possible defect is an actual defect. A requirements expert from Utrecht University 

(not an author) validated his output. 

Next, each of the tools processed these 4 datasets. The difference between the 

output of the tools and the manually pro-cessed datasets measures the performance 

of the tools using two main measures: precision and recall [10]. Precision measures 

how much of the detected errors by the tool are actual errors ac-cording to the 

manually checked datasets [20]. Recall measures how much of the actual errors 

according to the manually checked datasets have been detected by the tool [20]. 

IV. RESULTS AND DISCUSSION 

The performance results of the 3 selected tools on the 4 golden standard data sets 

are available in Table II. Each row reports the precision and recall of a specific 

feature type for all of the tools. Note that none of the tools implement all possible 

features. In fact, Qualicen does not include atomicity features at all! The rows with 

grey highlighting depict average performance for atomicity and ambiguity for each 

of the tools. The specific score indicates the tool’s performance only counting the 

feature aspects it has implemented, while the overall score averages all relevant 

features. The precision and recall cell pairs with green highlighting represent the 

best performing approach according to the tool’s recall for that feature. We choose 

for recall because we agree with Berry et al.’s [3] notion on the criticality of 

achieving 100% recall of quality defects, sacrificing precision if necessary: The 

Perfect Recall Condition. The goal of this experiment is to compare the 

performance of the approaches of the tools. Focussing on precision would not 

provide us with enough information to compare the performance of the approaches, 

since precision only looks at which defects a tool does detect, and not at the defects 

a tool fails to detect. By qualitatively analyzing the output of the tools we learn 

how and why the experiment results differentiate. In this section we explain how 
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three types of decisions by tool creators substantially impact the results of the 

evaluation. 

TABLE II. QUANTITATVIE EXPERIMENT RESULTS 

Total Score Qualicen TIGER RQA 

Precision Recall Precision  Recall Precision Recall 

“and” - - 0.66 1 0.66 1 

“or” - - 0.22 1 0.22 1 

Multiple imperatives - - 1 0.6 0.96 0.96 

List of items - - - - 0.47 0.8 

Multiple sentences - - - - 1 0.56 

Atomicity specific - - 0.68 0.84 0.68 0.92 

Atomicity overall - - 0.68 0.65 0.68 0.92 

Vague pronouns 0.44 0.25 - - 0.76 0.91 

Quantifier - - 0.95 0.67 0.76 0.5 

Unit - - - - 0.1 1 

Slash 1 1 1 0.5 1 1 

Non-verifiable 0.4 1 0.5 1 0 0 

Subjective 1 0.33 1 0.08 1 0.17 

Comparative 0 0 1 0.75 1 0.14 

Negative 0.83 1 - - 1 1 

Superlative 0.75 1 - - - - 

General ambiguity 0.38 0.29 - - 0.65 0.24 

Escape clause - - 0 0 1 0.43 

Ambiguity specific 0.55 0.36 0.93 0.5 0.65 0.55 

Ambiguity overall 0.55 0.26 0.93 0.23 0.65 0.52 

1) Different tokenizers 

The approaches for detecting conjunctions and and or by TIGER-PRO and RQA 

are similar: they seemingly both count each instance as a possible atomicity 

violation. Similarly, all 3 tools detect occurrences of slash-like characters such as / 

in requirements through pattern matching. Yet, TIGER-PRO only detects half of all 

slashes. In particular, TIGER-PRO does not detect slashes in between or at the end 

of words, e.g. passengers/customers and http://. One explanation for this 

phenomenon is that these tools use different tokenizers to divide a sentence into 

word-tokens, RQA and Qualicen do split a token on slashes, while TIGER-PRO 

does not. 

2) Dictionary vs. Parsing 

Multiple methods are available for detecting vague pronouns and comparative 

terms. RQA and TIGER-PRO rely on dictionaries of specific bad words. RQA 

scans for occurrences of 18 pronouns such as it, this and that and TIGER-PRO 

detects the comparative terms same, also and such as. Qualicen employs a different 

approach: a part-of-speech tagger which automatically assigns a grammar tag to 



66 
 
 

 

 

each word in a sentence. If a word is tagged as being a pronoun or comparative 

term, the tool highlights it as ambiguous. Exception rules based on certain types of 

grammar filters out some pronouns. The downside of this approach is that the 2 

most frequent pronouns in the datasets it and this were never tagged as pronouns. 

For comparative terms, Qualicen employs both POS tagging and morphological 

analysis, yet it detects no occurrences. 

3) The bigger the dictionary the better? 

All of the tools utilize dictionaries for multiple feature aspects. Indeed, for both 

RQA and TIGER-PRO this is the primary method for detecting ambiguity and 

atomicity violations. The contents of these dictionaries, however, varies 

substantially. For detecting multiple imperatives TIGER-PRO solely focuses on the 

imperative shall. RQA also includes the imperatives might, can, will, must and 

may, resulting in a .36 higher recall at a loss of just .04 precision. Similarly, both 

TIGER-PRO and RQA use a dictionary to detect ambiguous quantifiers. RQA 

checks for the quantifiers all, both and any, while TIGER-PRO also includes each. 

Again, this results in an increase for both precision and recall (.19 and .17). A 

similar phenomenon applies to the detection of negative term by Qualicen and 

RQA with 13 and 17 terms. While both obtain 100% recall, RQA obtains a higher 

precision despite its larger dictionary. 

These results suggest that tools with a bigger dictionary generally do better. This is 

not always the case, however. The sizes of the dictionaries for detecting non-

verifiable terms are 7, 13 and 17 for Qualicen, RQA and TIGER-PRO, 

respectively. Yet, Qualicen and TIGER-PRO obtain 100% recall while RQA fails 

to detect anything despite its larger dictionary. This result possibly is a 

consequence of bad luck or bad design choices. It could be bad luck that RQA does 

not include precisely those five non-verifiable terms that are in the datasets. 

Furthermore RQA could badly designed considering that it does not include 

common terms such as measure and brief. 

V. NEXT GENERATION TOOL DESIGN 

The results of the experiment and their analysis in Section IV serve as a design 

blueprint for the next generation tool. Together with technical information about 

the tools provided by their creators, the results enable us to introduce and explain 

the current superior approaches to the violation criteria tests of the next generation 

tool design in this section: 

T1. “and” – Any instance of and 
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T2. “or” – Any instance of or 

T3. Multiple imperatives – A dictionary with the imperatives shall, might, can, will, 

must, and may 

T4. List of items – Multiple and in a sentence. 

T5. Multiple sentences – Multiple “.” that indicate the end of sentence 

T6. Vague pronouns – A dictionary with the pronouns him, his, he, it, this, that, 

their, our, your, my, we, I, they, you, us, her, she, and them 

T7. Quantifier – A dictionary with the quantifiers all, both, any, and each 

T8. Unit – Any instance of a written or natural number 

T9. Slash – A tokenizer that detects the symbol / without space between the words 

on either side 

T10. Non-verifiable terms – A dictionary with the terms affect, all, any, as little as, 

each, best practice, maximize, maximum, minimize, minimum, quick, rapid, user-

friendly, sufficient, include, includes, and including 

T11. Subjective – The dictionary of Qualicen with 25 terms 

T12. Comparative terms – A dictionary with the comparative terms also, same, and 

such a 

T13. Negative terms – A dictionary with the negative terms nothing, nobody, none, 

never, doesn't, won't, shan't, mustn't, couldn't, shouldn't, oughtn't, can't, no, nor, 

non, not, and cannot 

T14. Superlative terms – Morphological analysis that detect the greatest form of 

adverbs and adjectives 

T15. General ambiguity – The dictionary of Qualicen with 358 terms 

T16. Escape clause – A dictionary with the terms among others, as a minimum, not 

limited to, not determined, not defined, tbc, tbs, tbd, further, etcetera, etc, and so 

on, shall be included but not limited to, but not limited to, e.g., eg, example, such 

as, if possible, if required, possibly, various, when requested by, when required, 

and to be determined 
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In theory, a next generation tool that implements these 16 approaches should obtain 

at least0.92 recall and 0.68 precision for atomicity and 0.76 recall and 0.77 

precision for ambiguity. We calculated this by taking the micro average of the 

performance of the approaches included in the design of the next generation tool 

[26]. However, far superior approaches might already be available that we cannot 

include because we base our design on already available tools. After all, our design 

is based on tools that are between 13 and 2 years old. For example, it is not 

inconceivable that new tools employing POS tagging for the detection of vague 

pronouns outperform the dictionary-based approach we selected for T6. Perhaps a 

combination of the two approaches is preferable. Furthermore, considering that 

POS tagging technology is continuously improving it is impossible to predict the 

exact performance of a next-gen tool. Because of this, next generation tools should 

undergo a performance test against the same golden dataset used in the experiment 

in Section III, available online [1]. 

Nevertheless, one should proceed with caution when starting the development of 

this next generation tool design. Unfortunately, it is impossible to combine the 

best-performing features into one tool without recreating the entire technology. In 

fact, any new custom-built tool released after years of development will likely be 

yet another tool that has its own strengths and weaknesses in terms of features. As 

research community, we should start a shared initiative to create a common, 

modular standard that allows for easily replacing old approaches with superior 

techniques. The right architecture design could even empower automatic tool 

assembly with the best modules for a specific context. 

An example of a mash-up initiative is the UIMA Framework [24], which enables 

developers to create sophisticated unstructured information analysis tools by 

combining application components. The framework defines a standard interface 

that manages data flow between all available components. Developers can choose 

to configure existing annotators and repositories, or create new ones for their 

application. Through component re-use, developers can quickly develop 

sophisticated tools or web applications that process unstructured text, audio and 

video. A simplified architecture of this framework is shown in Figure 1. 
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Fig I. THE UIMA FRAMEWORK 

Unfortunately, the UIMA Framework requires strong technical capabilities of the 

user to run it, despite the availability of user guides and tutorials. Achieving 

widespread adoption requires a user-friendly application with little set-up time or 

configuration. Ideally, the application exposes a cloud-based interface to allow a 

wider range of application integrations. It could even built upon existing mashup 

services such as Zapier1 that enable non-technical users to easily integrate, 

automate and innovate by moving data between applications. 

VI. RELATED WORK 

The large number of papers that apply NLP in the context of RE signifies the 

popularity and relevance of the development of NLP RE tools (see the many tools 

listed in Section III.A). Yet, few studies exist that rigorously compare the 

performance of NLP RE tools with one another. Indeed, the majority of papers only 

describe RE tools and compare their approaches by looking at their implemented 

features without considering performance [30, 15, 19]. Those that do consider 

performance, look at varying aspects. For example, [21] compares the recall and 

precision of three sentence similarity algorithms when applied to requirements and 

[28] presents a rudimentary comparison of how many occurrences of the words 

and, or, and/or, all and any three NLP RE tools find. Aside from comparing 

features, [23] also includes recall and precision scores as reported by the tool 

authors. The comparative value of these numbers, however, is low. 

Although the RE community creates NLP RE tool comparisons on a regular basis, 

their focus on counting features instead of measuring performance reduces their 

relevance. We agree with [27]’s call for more rigorous comparisons that report on 

quality/recall/precision of tools based on a standard benchmark. 

VII. LIMITATIONS 

The study presented in this paper contains two major limitations. To begin, of the 

12 tools eligible for comparison merely 3 were (made) available to us. This has a 

UIMA
Infrastructure
- Tooling
- Servers
- Workbench

Components
- Annotators
- Repositories

UIMA 
Framework
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negative impact on the comprehensiveness of our study, as well as the expected 

performance of our next generation tool design. We request tool creators to 

benchmark their tools using the NLP RE tool performance measurement data set 

[1]. 

Additionally, the current golden dataset contains just 112 requirements. Although 

every feature is included multiple times in this dataset, it is not the case that every 

dictionary word of each feature is included. This phenomenon might skew the 

performance measurement in favour of one of the NLP RE tools. Using a bigger 

dataset will increase the reliability of the performance measurement as well as the 

quality of the next generation tool 

VIII. CONCLUSION AND FUTURE WORK 

Although many different NLP RE tools exist, no work is available that compares 

their performance in detecting ambiguity and atomicity defects in software 

requirements. In this paper we presented a comparison of NLP RE tools based on a 

requirement standard consisting of 16 violation criteria for ambiguity and 

atomicity. The results indicate that none of the tools is clearly superior on all 

feature aspects. Because of this, we pro-pose a next generation tool design that 

incorporates all the best features of the previous tools. 

Unfortunately, the vast majority of NLP RE tools are no longer available online nor 

through contacting their creators. There appears to be tendency of creating a 

prototype for a publication and then abandoning it soon after. We have encountered 

easily preventable issues such as expired licensing schemes. Be-cause of this, we 

could only compare the performance of 3 tools. 

Moreover, this phenomenon hurts the reproducibility of significant scientific 

contributions, ultimately hindering the progress of NLP applied to RE [18]. 

Therefore, we appeal to the community to create a standardized mashup framework 

or platform to easily assemble feature modules into new NLP RE tools. 

Aside from creating such a platform, future work includes replicating this study 

with more tools and more expansive benchmark data (in other languages). We 

intend to contribute to and draw from the data provided by the NLRP Benchmark 

[27]. 
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