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Abstract

Five experiments are performed to characterise the time development of the
chemical potential and temperature of a bimodal Bose-condensed gas. The five
experiments are a stationary experiment, a slow motion experiment, a slow mo-
tion over a barrier experiment, a fast motion experiment and a fast motion over
a barrier experiment. In the two slow motion experiments the atoms are moved
with velocities below the critical velocity of superfluidity, while in the two fast
motion experiments the atoms are moved with velocities above the critical veloc-
ity. We observed superfluidity in the slow slow motion experiments. Additional
heating was observed in fast motion experiments, indicating that the system is
not superfluid in this regime.

Furthermore we find transition temperatures for the five experiments. Below
this transition temperature, heating of the system occurs and above, cooling of
the system occurs. For the stationary experiment, the transition temperature is
found to be approximately 719 nK.
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Introduction

1 Introduction

In 1924 Satyendra Bose derived the black-body spectrum found earlier by Planck by
solely using statistical arguments. Having trouble getting this paper published, Bose
sent his work to Einstein. Einstein understood the importance of Bose’s work, trans-
lated the work to German himself and extended it to apply to massive non-interacting
particles. Einstein predicted that below a finite critical temperature integer-spin par-
ticles, later called bosons, make a phase transition to a new phase. This leads to a
macroscopic occupation of the single-particle ground state of the system. This new
state of matter became known as a Bose-Einstein condensate (BEC) [1–3].

It took just over 70 years to achieve Bose-Einstein condensation of atoms experi-
mentally. In 1995, it was first observed in rubidium atoms in the NIST-JILA lab by
Cornell and Wieman [1]. Later that year, it was achieved in sodium atoms at MIT by
Ketterle’s group [2]. It has been the subject of much research around the world ever
since and nowadays Bose-Einstein condensation has been observed in among others
different alkali atoms, hydrogen, molecules and photons [3, 4].

Bose-Einstein condensates form an interesting research field especially because it can
be controlled very precisely in the lab. It allows one to study macroscopic quantum
mechanical behaviour of a system accurately, which is often difficult in large systems
at higher temperatures. Furthermore, theoretical predictions can be calculated ac-
curately and therefore theory and experiment can be compared accurately. It thus
forms a model system for various exotic phenomena in other systems.

The research presented in this work is aimed at characterising transport properties
of the BEC. To describe the properties of the condensate, we will study the chemical
potential and temperature of the system. These are our quantities of interest. The
two quantities will be able to describe the system using simple assumptions. The
time development of the chemical potential and temperature of atomic clouds below
the critical temperature will be studied. This will be done for different transport
experiments. A core concept in quantum transport, or hydrodynamics, is superflu-
idity, which is flow with zero viscosity. Below a critical velocity, the BEC behaves
like a superfluid and we therefore expect the system will not behave differently from
stationary experiments. Above this critical velocities, excitations can be made, in-
creasing the energy of the system. Therefore, we expect that in these experiments we
will observe an increase in energy. Our goal is to characterise the temporal behaviour
of our quantities of interest for different transport experiments, and to compare this
for different transport experiments below and above the critical velocity.

This thesis is structured in the following way: in Sec. 2 the essential theory will
be explained, in Sec. 3 the experimental methods will be described and justified, in
Sec. 4 the results will be presented and in Sec. 5 the results will be discussed.
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2 Theory

The theory of Bose-Einstein condensation is explained in detail in textbooks [3,5] and
is discussed briefly in Sec. 2.1. A short explanation is given in Sec. 2.2 and Sec. 2.3,
mostly focussing on relating the column densities and total number of particles to the
chemical potential and temperature. The atomic cloud between absolute zero and
the critical temperature is discussed in Sec. 2.4 and a brief overview for the criteria
for superfluid properties are given in Sec. 2.5. Furthermore, a theoretical description
of the imaging technique is given in Sec. 2.6.

2.1 The Ideal Bose Gas

The field of Bose-Einstein condensation is focussed on systems of many particles. To
obtain thermodynamic properties of a system of those particles, the grand partition
function must be found. Assuming a system of non-interacting massive bosons, the
grand partition function Z is given by

Z = Π~k
Z~k, (2.1)

where ~k is the wavevector of a particle, and where the single particle partition function
Z~k is given by

Z~k =
1

1− e−β(E~k−µ)
, (2.2)

where β = 1/kBT with kB the Boltzmann constant and T the temperature, E~k is

the energy of a particle with wave vector ~k and µ is the chemical potential of the
system [6].

Using the grand partition function, the number of particles N can be obtained by [6]

N = kBT
∂

∂µ
lnZ. (2.3)

Using Eq. 2.1 and Eq. 2.2, this can be rewritten as [6]
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N = kBT
∑
~k

∂

∂µ
ln(Z~k),

= −kBT
∑
~k

∂

∂µ
ln
(

1− e−β(E~k−µ)
)
,

=
∑
~k

1

eβ(E~k−µ) − 1
.

(2.4)

Note that here the chemical potential must be negative, such that the particle number
does not diverge. In the thermodynamic limit, this summation can be rewritten as

N =

∫ ∞
0

dED(E)
1

eβ(E−µ) − 1
, (2.5)

where D(E) is the density of states [6]. For many systems, such as a uniform or a
harmonic oscillator potential, the density of states is of the form

Dα(E) = CαE
α−1, (2.6)

where α and Cα are constants depending on the system [3]. Introducing the fugacity
z = eβµ, Eq. 2.5 can be rewritten as

N = Cα

∫ ∞
0

dE
Eα−1

z−1eβE − 1
. (2.7)

This integral can be rewritten in terms of the dimensionless parameter x = βE such
that

N = Cα(kBT )α
∫ ∞
0

dx
xα−1

z−1ex − 1
,

= Cα(kBT )α Γ(α) gα(z),

(2.8)

where the gamma function is Γ(α) =
∫∞
0 dxxα−1e−x and the Bose function is gα(z) =∑∞

n=1 z
n/nα [6]. For a three-dimensional uniform system, α = 3/2 and Cα =

V m3/2/
√

2π2~3 [3]. The particle density n = N/V of a three-dimensional uniform
system is given by

n =
(mkBT )3/2√

2π2~3
Γ (3/2) g3/2(z). (2.9)
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Using that Γ(3/2) =
√
π/2 and introducing the thermal de Broglie wavelength

λth =
√

2π~2/mkBT , Eq. 2.9 can be rewritten as

nλ3th = g3/2(z). (2.10)

As discussed before, the chemical potential must be negative. Under this constraint,
the Bose function has a maximum as µ → 0. In that case, the Bose function re-
duces to the Riemann zeta function ζ(α) =

∑∞
n=1 n

−α such that g3/2(1) = ζ(3/2) ≈
2.612 [6,7]. The right-hand side of Eq. 2.10 thus has a finite maximum. However, the
left-hand side can be increased further, by either increasing the density or decreasing
the temperature. At the critical temperature Tc

n

(
2π~2

mkBTc

)3/2

= ζ(3/2) ≈ 2.612. (2.11)

As the temperature is decreased below Tc or as the density is increased, the derivation
thus fails. This is when Bose-Einstein condensation occurs. The ground state of the
system is not properly accounted for in going from the summation to the integral in
Eq. 2.5.

Below Tc the ground state becomes macroscopically occupied and the atoms in the
ground state are said to be in the condensate. The atoms in excited states are said
to be in the thermal cloud. To describe this, the total number of particles Ntot is
given by Ntot = Nth +Nc, where Nth is the number of particles in the thermal cloud
and Nc is the number of particles in the condensate [3, 5, 6].

2.2 The Thermal Cloud

To obtain the particle density of the thermal cloud in an external potential, the
chemical potential must be be replaced by µ− Vext(~r), where Vext(~r) is the potential
energy function at position ~r. Using Eq. 2.10 the particle density of the thermal
cloud is given by

nth(~r) =
1

λ3th
g3/2

(
e(µ−Vext(~r))/kBT

)
. (2.12)

Below the critical temperature Tc at which Bose-Einstein condensation occurs, the
chemical potential of the thermal cloud is zero, as seen in Sec. 2.1. In our experimental
setup, atoms are trapped in an external potential that is to good approximation
harmonic in the centre of the trap. This harmonic potential is described by
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Vext(~r) =
1

2
m
(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
, (2.13)

where ωi are the trap frequencies in the i ⊂ {x, y, z} directions.

In the experiment, the column densities of the atoms is measured. To extract the
column density from the density distribution nth, the imaged direction must be in-
tegrated out. In our setup, this is the y-direction. The column density ρth(x, z) can
be written as

ρth(x, z) =

∫ ∞
−∞

nth(x, y, z) dy

=
1

λ3th

∫ ∞
−∞

g3/2

(
e(−m(ω2

xx
2+ω2

yy
2+ω2

zz
2)/2)/kBT

)
dy

=
1

λ3th

∫ ∞
−∞

∞∑
n=1

1

n3/2
en(−m(ω2

xx
2+ω2

yy
2+ω2

zz
2)/2)/kBT dy

=
1

λ3th

√
2kBT

mω2
y

√
π g2

(
e(−m(ω2

xx
2+ω2

zz
2)/2)/kBT

)
.

(2.14)

In our experiment, the trap is cylindrically symmetric, and therefore ωx = ωy [8].
Using that λth =

√
2π~2/mkBT , the column density as a function of position and

temperature is given by

ρth(x, z, T ) =
mk2B

2π~3ωx
T 2 g2

(
e−m(ω2

xx
2+ω2

zz
2)/2kBT

)
. (2.15)

For given ωi, the number of particles in the thermal cloud is only a function of
temperature. The number of particles in the thermal cloud Nth is determined by
integrating the column density over the x- and z-directions as [5, 7]

Nth(T ) =

∫ ∞
−∞

∫ ∞
−∞

ρth(x, z) dx dz =
k3Bζ(3)

~3ω2
xωz

T 3. (2.16)

2.3 The Bose-Einstein Condensate

A pure BEC at zero temperature can be described by the order parameter ψ that
satisfies the time-independent Gross-Pitaevskii equation (GPE)

(
− ~2

2m
~∇2 + Vext(~r) + Vself

∣∣ψ(~r)
∣∣2)ψ(~r) = µψ(~r), (2.17)
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where Vext is the external potential, Vself = 4π~2a/m is a coupling constant with a

the scattering length, and
∣∣ψ(~r)

∣∣2 is the atom density. The first term is the kinetic
energy term and the second term is the potential energy term. The third term of the
GPE takes into account the mean field potential caused by the atoms. This is a mean
field description and it therefore works well if the system has many particles. In the
experiment described in this thesis, the number of particles in the condensed state is
typically 15 million, for which this description can be applied accurately [3, 7].

Under the Thomas-Fermi approximation, the kinetic term of the GPE is neglected.
This is a good approximation in the limit of strong interactions or small momenta.
The condensate number density nc(~r) as function of the position ~r is given by [7]

nc(~r) =
∣∣ψ(~r)

∣∣2 = max

(
µ− Vext(~r)

Vself
, 0

)
. (2.18)

Using Eq. 2.13 this can be rewritten as

nc(~r) =
µ

Vself
max

(
1−

m
(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)

2µ
, 0

)
. (2.19)

As for the thermal cloud, the column densities of the atoms are measured in the
experiment. To extract the column densities from the density distribution nc, the
y-direction is integrated out. The column density of the condensate ρc(x, z) can be
written as

ρc(x, z) =

∫ ∞
−∞

nc(x, y, z) dy

=
µ

Vself

∫ ∞
−∞

max

(
1−

m
(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)

2µ
, 0

)
dy

=
µ

Vself

4

3

√
2µ

mω2
y

max

(
1−

m
(
ω2
xx

2 + ω2
zz

2
)

2µ
, 0

)3/2

.

(2.20)

Using that our trap is cylindrically symmetric, and using that Vself = 4π~2a/m [7]
this can be rewritten as a function of position and the chemical potential as

ρc(x, z, µ) =

√
2m

3π~2aωx
µ3/2 max

(
1−

m
(
ω2
xx

2 + ω2
zz

2
)

2µ
, 0

)3/2

. (2.21)

For given ωi and a, the number of particles in the condensate is only a function of
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the chemical potential. The number of particles in the condensate Nc is obtained by
integrating the column density over the x- and z-directions as

Nc(µ) =

∫ ∞
−∞

∫ ∞
−∞

ρc(x, z) dx dz =
4
√

2

15

1

a
√
m~2ω2

xωz
µ5/2. (2.22)

2.4 Bimodal Density Distributions

Below Tc, but above absolute zero, the atomic cloud consists of a condensate and
a thermal part. Such a system is referred to as a bimodal cloud. The condensate
fraction Nc depends on the temperature as [3, 5]

Nc(T )

Ntot
= 1−

(
T

Tc

)α
(2.23)

Section 2.2 describes the limit where T → Tc, while Sec. 2.3 describes the limit where
T → 0. Therefore, between absolute zero and Tc a different approach is needed.

To properly take into account the effect of finite temperature, one needs to take
into account the effect of interactions between the condensate atoms and the ther-
mal atoms. This can be done in several ways, three of which are demonstrated in
Ref. [9]. A first approximation is to neglect all interactions. In this work, this non-
interacting model is assumed, such that ρ = ρc+ρth. This has the advantage that the
column density can be obtained analytically, which cannot be done when including
interactions. Even though interactions must be present to achieve Bose-Einstein con-
densation, these results will be a good first approximation for large weakly-interacting
systems.

Figure 2.1 shows the total column density for our experimental trap frequencies and
for typical temperature and chemical potential. The thermal cloud is the broad and
low distribution and the BEC is the narrower and higher paraboloid-like distribution
on top. The total column density is continuous, but the position derivative has a
discontinuity at the edge of the condensate, as can be seen by examining Eq. 2.21.
This feature can be used to visually identify if a condensate is present.

2.5 Superfluidity & Critical Velocity

A superfluid is a fluid that flows with zero viscosity. It experiences no friction and
is rotationless. A Bose-Einstein condensate behaves like a superfluid if its velocity is
smaller than a critical velocity. Above this critical velocity, excitations can be created.
These excitations can among others be solitons, sound waves or vortices. Vortices
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Figure 2.1: Total column density as a function of position assuming a non-interacting model, for a
bimodal cloud of sodium atoms with temperature 700 nK and chemical potential 3.0 kHz, and using the

trap frequencies ωx = 2π · 92.5 Hz and ωz = 2π · 15.3 Hz as in our experiment.

are phase singularities. The condensate phase increases with 2π when going through
a loop around a vortex, while the density is zero in the centre of the vortex [3, 10].

The critical velocity is to good approximation equal to the velocity of sound for
ultra-cold atomic systems with weak interactions. The speed of sound vs is defined
by

mv2s (~r) = µ− Vext(~r). (2.24)

This reduces to vs(~r) = vs =
√
µ/m =

√
Vselfnc/m for a uniform system [11]. Since

the experiments are done in a harmonic trap, this needs to be modified. For a
cylindrically symmetric trap with ωx,y � ωz, the condensate density needs to be
replaced by nc(0, 0, z)/2. Therefore, the speed of sound in the elongated trap is given
by [11]
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vs(z) =

√
Vself nc(0, 0, z)

2m
. (2.25)

In the experiment, the initial chemical potential of the cloud is typically between
3 kHz and 4 kHz in units of h. This yields a speed of sound in the centre of the cloud
between approximately 5.1 mm/s and 5.9 mm/s, respectively.

2.6 Phase-Contrast Imaging

Studying the density distribution of an ultra-cold atomic cloud is done by measuring
its column density with a probe beam. The absorption imaging technique uses reso-
nant light. The light shines on the atomic cloud and casts a shadow on the camera
behind the atomic cloud. Shining resonant light on the ultra-cold cloud causes it to
heat up and destroys the sample. Therefore a new cloud has to be prepared for each
measurement. Large shot-to-shot variations in, for example, the number of trapped
particles make this measuring method disadvantageous compared to other techniques
when studying time-dependent behaviour of a condensate.

The measuring method used in this experiment is called Phase-Contrast Imaging
(PCI) and it is non-destructive because it uses off-resonant light. The basic idea
behind PCI is to shine a part of the off-resonant light on the atomic cloud, accu-
mulating an additional phase through the light-atom interaction. The more atoms
the light interacts with, the larger the accumulated phase is. This part of the light
is interfered with another part of the light that is focussed on a phase spot behind
the atoms where it accumulates a constant phase shift. This way, the interference
pattern will contain the information about the column density [8, 12].

The PCI technique is strictly speaking not non-destructive as a small part of the
atoms is still lost. Rather, few atoms are lost compared to absorption imaging and
generally dozens of images can be taken from the same condensate. For large detuning
of the light with respect to the ground to excited state transition, and for negligible
saturation, the scattering rate Rsc is given by

Rsc(~r) =
3πc2

2~ω3
0

(
ω

ω0

)3 ( Γ

ω0 − ω
+

Γ

ω0 + ω

)2

I(~r), (2.26)

where c is the speed of light in vacuum, ω0 is the frequency of the atom ground to
excited state transition, ω is the frequency of the laser, Γ is the natural linewidth of
atomic transition and I is the light intensity [13].

The detuning is defined as δ = ω − ω0. Assuming that the detuning is much smaller
than the ground to excited state frequency, the rotating wave approximation can be
used to rewrite Eq. 2.26 as [13]
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Rsc(~r) =
3πc2

2~ω3
0

(
Γ

δ

)2

I(~r). (2.27)

Notice that the scattering rate is proportional to Iδ−2. Increasing the detuning thus
reduces the scattering. However, the phase shift is related to the dispersion, which is
proportional to Iδ−1. In our experiment, the intensity and detuning are chosen such
that the scattering rate is small and dozens of images can be taken, while the phase
shift is still measurable [8, 12].

The electric field of the probe beam accumulates an extra phase when passing through
the atoms; another part of the light accumulates an extra phase when passing the
phase spot. After the phase spot, the electric field E is given by

E(x, z) = E0e
iθ + E0

(
eiφ(x,z) − 1

)
, (2.28)

where E0 is the absolute value of the electric field before passing through the atoms
and phase spot, θ is the phase that the light accumulates when passing through the
phase spot and φ is the phase that the light accumulates when passing through the
atoms [12]. If the light passes no atoms on a position (x, z), φ = 0 and the second
term becomes 0. In that case, the electric field only accumulates a phase θ due to
the phase spot and the measured intensity is the same as the probe beam intensity.
The intensity I is proportional to the absolute value squared of the electric field, such
that the intensity is related to φ as

I = I0 [3− 2 cos (θ) + 2 cos (θ − φ)− 2 cos (φ)] , (2.29)

where I0 is the probe beam intensity profile [12].

The signal S that is measured in the experiments is given by

S(x, z) =
I(x, z)

I0(x, z)
. (2.30)

When measuring the intensities, any ambient background light will also contribute
to the signal. Therefore, the intensity of the background light must be substracted
from both of the intensities. The signal in measured quantities is given by

S(x, z) =
I(x, z)− Ibg(x, z)
I0(x, z)− Ibg(x, z)

, (2.31)

where Ibg is the intensity as measured without the atoms and without the probe light
on. All the intensities are functions of the position in the x,z-plane [8, 12].
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Measuring the intensities given in Eq. 2.31 yields the signal. Using Eq. 2.29 these
measured quantities can be related to the phase accumulated due to the atoms

S
(
φ(x, z)

)
= 3− 2 cos (θ) + 2 cos (θ − φ(x, z))− 2 cos (φ(x, z)). (2.32)

Equation 2.32 is plotted in Fig. 2.2 for three values of the phase spot θ. Note that
for θ = π/3, the signal lies between 0 and 4.

0 1 2 3 4 5 6

0

1

2

3

4

5

6

ϕ

S

θ = π/2

θ = π/3

θ = π/4

Figure 2.2: The signal S as a function of the phase φ (in radians) given by Eq. 2.32, plotted for three
different values of phase spot θ.

The phase is related to the particle density n(x, y, z) as

φ(x, z) = k

∫ ∞
−∞

(√
1 +

n(x, y, z)α/ε0
1− n(x, y, z)α/3ε0

− 1

)
dy, (2.33)

where k = 2π/λ is the wave vector, α is the polarizability of the atoms and ε0 is the
permittivity of vacuum [8,9]. For |nα/ε0| � 1 this can be approximated by

φ(x, z) =
kα

2ε0

∫ ∞
−∞

n(x, y, z) dy =
kα

2ε0
ρ(x, z), (2.34)

which relates the column density to accumulated phase [8, 9].

In our experiment, the trapped sodium atoms are in the
∣∣Fg,Mg

〉
=
∣∣1,−1

〉
state. If

we assume the detuning δ of the probe light with respect to the Fg → Fe transition
is large, and if we assume the detuning is approximately the same for the transitions
to all excited states, the polarizability is given by
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α = −ε0cΓσλ
3ωδ

, (2.35)

where ε0 is the vacuum permittivity and σλ is the cross section of light absorption [9].

For our experiment, the phase and the column density are thus related as

φ(x, z) = −σλΓ

6δ
ρ(x, z). (2.36)

With this relation between the phase and the column density, and using the as-
sumption from Sec. 2.4 for the total column density and the results from Sec. 2.2
and Sec. 2.3, a relation between the measured signal and the chemical potential and
temperature is found.
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3 Methods

The experimental setup used for this work is explained in detail in Refs. [8, 12, 14].
In Sec. 3.1 the analysis of the experimental data is explained, in Sec. 3.2 the method
used to displace the atomic cloud is explained and in Sec. 3.3 the creation of a barrier
and the additions to the setup are explained. Finally, Sec. 3.4 gives an overview of
the experiments that are done for this thesis.

3.1 PCI Analysis

The PCI measuring technique as explained in Sec. 2.6 is used to study the column
density distribution of the BEC and thermal cloud. In our experiment, the probe light
has a power of 50 µW and an 80 µs illumination time, and a detuning of −350 MHz
with respect to the ground to excited state transition. A typical PCI image can be
seen in Fig. 3.1a. The signal is close to one far off the centre. At that position,
the accumulated phase is approximately zero and therefore also the atom density is
approximately zero. Closer to the centre, the signal first increases slowly and then
rapidly as the signal reaches its maximum. The signal drops to below one even closer
to the centre and becomes close to zero. Here, the accumulated phase is largest
and therefore the atom density is highest on that position. The rapid increase of
accumulated phase indicates the edge of the condensate, as discussed in Sec. 2.4.

The data is acquired by measuring 3 series of images. The first series of images
consists of 40 measurement of the intensity of the probe light as it passes through
the cloud of trapped atoms. The second series of 40 images is taken by measuring the
intensity of the probe light without the trapped atoms. The third series of 40 images
is taken by measuring the intensity of the background light with the probe beam
off. These three series correspond to I(x, z), I0(x, z) and Ibg(x, z) from Eq. 2.31,
respectively, and are used to determine the signal.

Because the different intensities are measured at different times, fluctuations in the
probe light intensity and fluctuations in the background light can cause a global
error in the signal, which is different for each PCI image. It is observed in many
measurements that the background signal became constant at values significantly
higher than one. This implies that such a fluctuation is present. To compensate for
this, the signal background is determined by averaging a 20 by 20 pixel corner of the
signal without atoms. The entire image is divided by this average, such that the signal
goes down to one at the edges. Furthermore, due to misalignment of the phase spot
and due to statistical uncertainties in the measured intensities, the measured signal
sometimes reached values larger than expected from Eq. 2.32. To compensate for
this, the signal data is capped at the maximum that the signal reaches theoretically.

The analysis was done by fitting the signal as given in Eq. 2.32 for given phase spot
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θ. In Sec. 2.4 interactions are neglected and we assumed the total column density
is the sum of the thermal and condensate column densities. The Bose function
g3/2 was approximated in this fitting procedure by only taking into account the
first two terms of the infinite sum. The other terms only give a relatively small
contribution. Furthermore a coordinate transformation was done to correct for the
small angle between the imaged axis and the long axis of the atomic cloud, and to
take into account that the cloud is not centred around the origin. Therefore, the five
independent fitting parameters are the temperature, the chemical potential, the x-
and z-position of the centre and the angle between the imaged z-axis and the long
axis of the atomic cloud. A Levenberg-Marquardt algorithm was used for fitting,
which is an unconstrained fitting algorithm.

The phase spot used in the experiment was π/3. For this particular phase spot, the
maximum signal is 4 and the minimum is 0. The signal as a function of the phase is
plotted in Fig. 2.2 for different values of θ. It can be seen that the maximum signal
of the data in Fig. 3.1a lies around three before the signal decreases towards zero in
the centre. This behaviour is also seen in all other runs. A maximum signal of four
is expected with a π/3 phase spot. Since it is unexpected that the column density
has any discontinuities, we do not expect the maximum to be three while it also goes
back towards zero close to the centre. Figure 3.1b shows a fit to the measurement
data using θ = π/3. In comparison, Fig. 3.1c shows a fit done assuming a π/4 phase
spot, for which the maximum goes to about 3.1. The fit with θ = π/4 describes the
data significantly better than the fit with π/3. We therefore assume the phase spot
is π/4 from now on.

We have observed that the alignment of the phase spot is very critical. It is possible
that due to a slight misalignment our probe beam is not focussed perfectly on the
centre of the phase spot and that a small fraction of the focussed light just misses
the phase spot. This can explain why the phase spot effectively acts like a π/4 phase
spot.

The position of the centre of the atomic cloud is generally determined with a fitting
uncertainty of approximately 0.25 µm. The deviation of the position between PCI
images was generally up to 2.5 µm for stationary experiments. However, towards
the end of the experiment, the fits sometimes found the centre at least 20 µm away
from the previous position. In these cases, the fit also found a decrease in chemical
potential of 1 kHz or more, while the decrease is generally up to 0.2 kHz between
PCI images. In a stationary experiment such large jumps are not expected, and it
was observed that the fits did not describe the data well in these cases. Therefore, we
chose to reject fits to images in stationary experiments if the centre position deviated
more than 10 µm from the previous position and if the chemical potential deviated
by more than 1 kHz from the previous chemical potential.

In experiments where the atomic cloud is moved, this procedure did not work, since
in those experiments a displacement of the centre is expected. Instead, the found
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Figure 3.1: (a) shows a typical image as obtained by a PCI measurement, (b) shows the best fit
assuming θ = π/3 and (c) shows the best fit assuming θ = π/4. On the horizontal axis, the z-position

is plotted, on the short axis the x-position is plotted and the colour bar indicates the height of the
measured signal. The data is significantly better described assuming a π/4 phase spot. Assuming a π/4

phase spot for this measurement, the chemical potential was found to be 3.458± 0.004 kHz, the
temperature was found to be 637.1± 1.2 nK and the total number of particles for this atomic cloud was

determined at 35 · 106.
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position is compared to the guessed value of the position. For dense clouds, the signal
is below 1, as seen in Fig. 3.1a. If the minimum of the signal was significantly below
the background of 1, the position of the minimum is used as the initial guess for the
fit. Otherwise, the position of the maximum of the signal is used as the initial guess.
If the deviation of the fitted centre position from the initially guessed position is
larger than 15 µm and if the deviation from the previous chemical potential is larger
than 1 kHz, the fit was rejected.

Furthermore, the fit is rejected if the chemical potential becomes negative, because
this experiment is aimed at studying the temporal behaviour above Tc. Using these
rejection criteria worked well and ensured that only fits were accepted that described
the data well. A fit to a typical bimodal cloud can be seen in Fig. 3.2.

Figure 3.2: A 3D plot of the data together with the fitted surface, assuming a π/4 phase spot. The
‘rough’ points indicate the data, while the smooth surface with the contour lines shows the best fitted

surface. On the horizontal axis, the z-position is plotted, on the short axis the x-position is plotted and
the colour and height indicates the height of the measured signal. The data plotted here is the same as

the data plotted in Fig. 3.1a.

3.2 BEC Displacement

The atomic cloud is trapped in a harmonic potential using magnetic fields created by
electromagnetic coils. By changing the current through these coils, the minimum of
the harmonic trap is moved. Changing the current thought the MOT coils results in
a gradient force acting on the atomic cloud in the z′-direction. Here the z′-direction
is taken to be the BEC axis, which is under an angle of approximately 5 degrees with
the imaged axis. For details on the coils, see Refs. [8] and [12].

If the current is ramped very slowly, the atomic cloud will get a small displacement
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and follow the movement of the minimum of the trap, but if the current is ramped
very quickly, the atomic cloud will start to oscillate around the new centre. When
moving slowly, the system will have time to adjust to the new minimum. However,
when moving quickly the system will not have time to adjust to the new minimum
immediately. Instead, it will undergo a rise in potential and it will start to oscillate
around a minimum that is displaced with respect to the original minimum.

To achieve the slow motion, the current through the MOT coils was ramped linearly
from 4.0 A to 2.1 A in 500 ms. To achieve the fast motion, the current through the
MOT coils was ramped linearly from 4.0 A to 0.6 A in 25 ms. These are referred to
as the slow and fast current ramps, respectively.

The effect of these two types of current ramps is shown in Fig. 3.3. In Fig. 3.3a
the z′-component of the position as a function of time is shown for the slow current
ramp. The position is seen to increase and it increases less quickly as it progresses.
A parabola was fitted to describe the position as a function of time. The maximum
velocity was estimated by determining the derivative of the position at t = 0 ms
and was found to be vmax = 0.14 ± 0.03 mm/s, much smaller than the lower bound
of the critical velocity of 5.1 mm/s (see Sec. 2.5). In Fig. 3.3b the z′-component of
the position is shown for the fast current ramp. The position is seen to oscillate. A
sine was fitted to describe the position as a function of time and this describes the
data very well. Note that the first point, at t = 0 ms, is not described well by the
sine. This is because at that time the BEC is still situated at the original potential
minimum. For the fast current ramp, the maximum velocity was determined to be
vmax = 9.8± 0.3 mm/s, which is larger than the upper bound on the critical velocity
of 5.9 mm/s of our experiment.

In both cases the motion in the perpendicular direction was observed to be negligible
and therefore the estimates of these maximum velocities gave a good estimate of the
real maximum velocity.

3.3 The Light Barrier

A 532 nm green laser was used to create a repelling barrier for the BEC. The laser
has a maximum laser output power of 1.5 W and is tunable in steps of 2 mW. This
laser acts as an optical dipole trap and creates a potential U

U =
3πc2

2ω3
0

Γ

δ
I, (3.1)

where ω0 is the frequency of the transition between the ground and excited state and
δ = ω−ω0 is the detuning of the laser with frequency ω with respect to the transition
frequency ω0 [8]. For the blue-detuned laser, δ is positive and U is positive.
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Figure 3.3: The z′-position plotted as a function of time for typical runs. The blue points indicate the
position data as obtained from fits, where the angle between imaging and BEC axis was taken into

account. The red lines indicate the best fits done to the position to determine the maximum velocities.
(a) shows the displacement due to the slow current ramp with vmax = 0.14± 0.03 mm/s and (b) shows

the displacement due to the fast current ramp with vmax = 9.8± 0.3 mm/s.

Figure 3.4 shows the additions made to the setup to create the repelling barrier.
The green laser is situated on a separate optical table. The laser passes through a
telescope to size down the beam, an acousto-optic modulator (AOM), a shutter and
is coupled into a single-mode fiber. The beam is transferred to the main experimental
setup using this fiber. The beam passes a telescope to increase the beam width, and
a normal and a cylindrical lens. The focus of the f = 70 cm lens lies on the atomic
cloud. The cylindrical lens images the beam in one direction and does not effect the
light in the other direction. In this way, a line focus is created on the centre of the
atomic cloud. The line focus is perpendicular to the z′-axis of the atomic cloud.

In our experiment, the laser power going into the experimental chamber was approxi-
mately 370 mW, and the beam waist of the line focus focus was approximately 57 µm
and 795 µm in the focussed and imaged direction, respectively. This results in a
barrier height of U/h ≈ 4.5 kHz, which is higher than the typical chemical potential.

3.4 Overview of the Experiments

For this work, five experiments are done. In every experiment, a bimodal atomic cloud
was created with temperature below Tc. For each experiment, approximately 20 runs
are done. Each atomic cloud was cooled to varying initial chemical potential and
temperature. The initial chemical potential was determined to be between 3.0 kHz
to 4.1 kHz and the initial temperature was determined to be between 400 nK and
850 nK. For every run, 40 PCI images are taken with 15 ms time intervals. For each
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Figure 3.4: Schematic overview of the additions to the setup to shine a line focus on the centre of the
BEC.

image, the fitting procedure described in Sec. 3.1 was applied. The time dependence
of the chemical potential and the temperature was found for different initial values.

In the first experiment, the stationary experiment, the atomic cloud was not moved
and the green laser was not shone on the cloud. The goal of this measurement was to
determine the normal temporal behaviour of the chemical potential and temperature
of the cloud such that a comparison can be made with the different experiments.

In the second experiment, the slow motion experiment, the atomic cloud was subject
to the slow current ramp as described in Sec. 3.2. The slow current ramp was initiated
right before the first image. Due to a delay in the response time of the cold atoms,
the effect of this motion only becomes visible in the second image. It was estimated
that the atoms started moving approximately 10 ms after initiating the ramp. The
entire ramp duration was 500 ms.

In the third experiment, the slow motion with laser experiment, the atomic cloud was
subject to the slow current ramp exactly like described for the second experiment and
in addition the green laser was shone on the cloud. The potential barrier created by
the green laser line focus is described in Sec. 3.3. The laser was switched on between
the first and second image. In this way, when the first image is taken, the system is
unaffected by the change in magnetic field and the laser potential.

19



Methods

In the fourth experiment, the fast motion experiment, the atomic cloud was subject
to the fast current ramp as described in Sec. 3.2. Similarly to the second experiment,
the ramp was initiated right before the first image was taken. The effect of this
change in current only became visible in the second image. The ramp time was
25 ms.

In the fifth experiment, the fast motion with laser experiment, the atomic cloud was
subject to the fast current ramp exactly like described for the fourth experiment and
in addition the green laser was shone on the cloud in the same way as in the third
experiment.
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4 Results

The experimental results for the five experiments are discussed in this chapter. The
time dependence of the chemical potential and the temperature is measured in five
experiments and these results are discussed in Sec. 4.1 through Sec. 4.5. A comparison
between the time dependences for the different experiments is given in Sec. 4.6

4.1 The Stationary Experiment

Figure 4.1 shows a typical series of measurements of a single cloud at the times
indicated in the upper left corner. The condensate is present in Fig. 4.1a through
Fig. 4.1d, which can be observed by a sharp increase in the signal. On the edge of
the condensate, the signal rises quickly. As seen in Sec. 2.6, the signal is related to
the phase and the phase is proportional to the column density. Examining Eq. 2.21
we notice that the column density of the condensate changes quickly on the edge.
Furthermore we notice that the central density decreases over time.

The thermal cloud can best be observed in the diffuse orange cloud off-centre. In
this experimental run, the size of the thermal cloud increases over time. Examining
Eq. 2.15 we see that a broader thermal cloud indicates an increase in temperature.
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Figure 4.1: Typical measurement series of a single stationary cloud. On the horizontal axis, the imaged
z-direction is plotted, on the vertical axis, the imaged x-direction is plotted and the colour bar indicates
the signal height. The six figures show the cloud at different times as indicated in the upper left corner.
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The fitting procedure as described in Sec. 3.1 was applied to every PCI image. Some
fits were rejected on the criteria explained in that section. The condensate fraction
generally decreases in time. In some runs, the condensate is gone before the end of
the measurement. As soon as the condensate disappeared, the chemical potential
becomes negative and the fits are rejected. However, this did not cause any prob-
lems since the goal was to study the temporal behaviour of the atomic cloud for
temperatures below Tc.
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Figure 4.2: (a) and (b) show the chemical potential and temperature, respectively, as a function of
time for a typical stationary experiment. The blue points indicate the data and the red lines indicate the

best fit to the data. The relative fitting errors in the chemical potential and temperature are smaller
than 1% and are smaller than the point sizes.

Figure 4.2 shows the time development of the chemical potential and temperature for
a typical stationary experiment. The data is obtained by fitting PCI images as de-
scribed in Sec. 3.1. In this run, the chemical potential decreases and the temperature
increases.

The chemical potential is seen to decrease in time for all runs. The temperature is
seen to either increase or decrease in time, which is identified as heating or cooling of
the system, respectively. For all runs the chemical potential and temperature were
seen to change approximately linearly in time. Therefore, in order to describe the
time-development of the chemical potential and temperature, a linear fit was made.
These fits described the data well for all PCI images that were accepted. The best
fitted value of the slope was identified as dµ/dt and dT/dt for the chemical potential
and temperature, respectively. The intersection with the y-axis was identified as
the initial chemical potential µ0 and the initial temperature T0 at the start of the
experiment at t = 0 ms. The two parameters of the fit thus uniquely describe the
behaviour in time of the quantity.

For all runs, the chemical potential and temperature were determined and the early
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time dependence was modelled by this linear fit. The two fitted parameters of these
fits are plotted in Fig. 4.3. We observe that the higher the initial chemical potential,
the more negative the time derivative of the chemical potential. The three points in
the lower left corner are outliers. For the temperature, we observe a heating regime
where dT/dt > 0 and a cooling regime where dT/dt < 0. For the temperature we
see that the system generally cools down if the initial temperature is relatively high,
while the system heats if the initial temperature is relatively low. This behaviour
changes around 700 nK.
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Figure 4.3: (a) shows the time derivative of the chemical potential plotted against the initial chemical
potential, (b) shows the time derivative of the temperature plotted against the initial temperature for

the stationary experiment. The blue points indicate the best fits to single runs and the error bars
indicate the uncertainties in the fitted parameters. The red line indicates the best fit to the data. The

dashed black line indicates dT/dt = 0.

Heating and cooling have been observed in earlier experiments [8]. Two effects take
place due to scattering of light on the atoms. On the one hand, atoms gain energy
by scattering events. Thermalisation after such events increases the energy of the
system. On the other hand, the system can loose energy because atoms are removed
from the cloud. If an atom from the condensate is removed, the energy is decreased
very little, because the energy of atoms in the condensate is very small. However, if
an atom from the thermal cloud is lost, much more energy is lost. An atom from the
condensate will take its place, because the chemical potential of the thermal cloud
is zero. Since these condensate atoms are much less energetic, the cloud thermalises
at a lower temperature. If the first effect dominates, heating is observed, and if the
latter effect dominates, cooling is observed.

We notice a strong negative correlation between the initial quantity and time deriva-
tive. Therefore the average dµ/dt and dT/dt does not describe the behaviour well.
Instead, a linear fit was done to this data. A weighted orthogonal distance regression
was used to take into account the uncertainties in both directions.
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For the chemical potential, the function fitted was fµ (µ0) = aµ · (µ0 − µtr), where
aµ describes the slope and where µtr is the transition chemical potential. Based on
this simple model, we expect the chemical potential to decrease if µ0 is above the
transition chemical potential, and we expect it to increase if µ0 is below the transition
chemical potential. In this experiment, the latter behaviour is not observed, because
the transition chemical potential was determined to be 2.63 ± 0.23 kHz, which is
lower than the lowest µ0 observed in this experiment. Furthermore, aµ characterises
how strongly the time derivative depends on µ0. In our regime above µtr, a more
negative aµ means that for given µ0 the chemical potential will decrease faster in
time than for a less negative aµ. We found for this experiment aµ = −4.8± 1.1 s−1.

For the temperature, the function fitted was fT (T0) = aT · (T0 − Ttr), where aT
describes the slope and where Ttr is the transition temperature. The transition
temperature is determined to be 719 ± 35 nK. Below this temperature, heating of
the system occurs, and above cooling occurs. aT quantifies how strongly the time
derivative depends on the initial temperature. Above Ttr, a large aT means that
heating occurs faster and below Ttr this means cooling occurs faster. We found for
this experiment aT = −1.0± 0.4 s−1.

Even though this is a simple linear model, it is able to describe the data reasonably
well. We expect that the time derivative of our quantities of interest is only a function
of the initial quantity. Therefore, for a given initial chemical potential or temperature,
we can get an expectation for the short time development of the atomic cloud.

4.2 The Slow Motion Experiment

Figure 4.4 shows a typical series of images at different times taken for the second
experiment. At t = 0 ms we see a bimodal cloud with a very low signal at the
centre of the cloud. Over time, the central signal first increases and after t = 450 ms
decreases, while the ellipse of maximum signal shrinks. For this run at t = 450 ms,
the atomic cloud does not show a distinct condensate any more. In addition, we see
that the cloud is displaced slowly in the positive z-direction. The shape of the cloud
remains unchanged throughout the experiment.

The chemical potential and temperature were found as a function of time for all
runs in this experiment. The time development of a typical run is seen in Fig. 4.5.
We again note the chemical potential and temperature show approximately linear
behaviour in time. The chemical potential decreases, whereas the temperature is
seen to increase slightly.

In the same way as for the stationary experiment in Sec. 4.1, our quantifies of interest
are analysed by plotting the time derivative against the initial quantity. This is shown
in Fig. 4.6. As before, we note that the time derivative of the chemical potential is
always negative, and we note either heating of cooling of the system. We again
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Figure 4.4: Typical measurement series of a single slowly moving cloud. Furthermore, the figure
description is the same as in Fig. 4.1.

note a strong negative correlation between these two fitting parameters and describe
this by performing a straight line fit as in Sec. 4.1. For this experiment, we find
aµ = −5.9 ± 1.7s−1, µtr = 2.78 ± 0.21 kHz, aT = −1.9 ± 0.5s−1 and Ttr = 676 ± 22
nK.
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Figure 4.5: Quantities of interest for a typical slow motion experiment. The figure description is the
same as in Fig. 4.2.
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The maximum velocity reached in this experiment is determined to be approximately
0.14± 0.03 mm/s, well below the critical velocity. We thus expect the condensate to
behave as a superfluid in this regime. Superfluidity is observed if there is no significant
difference between the time-development of µ and T . With the analysis presented
here, this time-development is described by the four fitting parameters aµ, µtr, aT
and Ttr. Comparing these four fitting parameters to the fitting parameters of the
stationary experiment will thus be enough to conclude if we can observe superfluidity.
This will be done in Sec. 4.6.
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Figure 4.6: The temporal behaviour of the quantities of interest for the slow motion experiment. The
figure description is the same as in Fig. 4.3.

4.3 The Slow Motion over Barrier Experiment

In this experiment, the cloud was displaced slowly over a potential barrier, provided
by a green laser. Figure 4.7 shows a typical series of images at different times taken
for this experiment. A BEC is observed in the centre of the images for all shown
times, except the last one. At t = 375 ms, the condensate has disappeared and this
and later images of this run are therefore not taken into account. In addition, we
see that the cloud is displaced slowly in the positive z-direction. The shape of the
BEC changes in time in a different way compared to the experiment without the laser
barrier. Due to this different shape, the fitting procedure described in Sec. 3.1 was
unable to describe the data well. In these cases, the fit was omitted and the next PCI
image was found for which the fit gave a good description. At time t = 150 ms after
the start of the experiment, the data was in general described well by our model.
Note that the first image looks the same as a stationary cloud. The first image was
always described well by our model.

We note that the effect of the motion and laser only becomes visible in the second
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image. The laser is aimed approximately at the centre of the stationary cloud. In
the second image, the condensate has moved very swiftly to the right of the barrier.
This is as we expect. The laser was aimed at the centre of the BEC, but the centre
of the magnetic trap is displaced to the right in the second image. The minimum of
the total external potential is therefore at the right of the barrier. Looking at the
images, the thermal cloud is displaced, but seems unaffected by the laser.
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Figure 4.7: Typical measurement series of a single cloud in the third experiment. Furthermore, the
figure description is the same as in Fig. 4.1.

Figure 4.8b shows typical results for the chemical potential and temperature as a
function of time. Between 15 ms and 135 ms, the images are not described properly
by our fitting procedure, so these were not taken into account. Furthermore note that
from 300 ms on, the images were not described well by the fits and therefore these
images were also not taken into account. Still, we notice that the time development
is approximately linear. Therefore, the same procedure as described in Sec. 4.1 was
followed and the time derivatives and initial quantities were found.

Using this procedure, we cannot say anything explicitly about the way the chemical
potential and temperature develop between 15 ms and 135 ms. However, we can
study the development after the interaction with the laser. Since we want to study
the effect of the laser, it is sufficient to look at the chemical potential and temperature
before and after the laser interaction.

As for the previous experiments, the fitted values for the time derivatives and the
initial values of our quantities of interest were plotted. This can be seen in Fig. 4.9.
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Figure 4.8: Quantities of interest for a typical slow movement over the barrier experiment. The figure
description is the same as in Fig. 4.2. In addition, the second through ninth measurement of the run

were not taken into account because the fits to these PCI images were rejected. Note that this example
is not the same run as Fig. 4.7.

The time derivative of the chemical potential is negative everywhere, indicating that
the chemical potential decreases in time for all runs. Again, the system either heats
or cools. Like before, a strong correlation is observed, especially in the chemical
potential. To characterise the time behaviour of the chemical potential and the
temperature a fit was made. This was done in the same way as described in Sec. 4.1.
The best fitted values found here are aµ = −4.2 ± 0.8 s−1, µtr = 2.77 ± 0.10 kHz,
aT = −1.8± 0.4 s−1 and Ttr = 642± 29 nK.

Since the current of the MOT coils is ramped in the exact same way as for the second
experiment, we can assume we move the cloud by the same velocity that was found
for that experiment. For this experiment, we still expect to be in the superfluid
regime.

4.4 The Fast Motion Experiment

Figure 4.10 shows a series of PCI images for a typical run of the fast motion experi-
ment. Here, the fast current ramp was applied as explained in Sec. 3.4. We notice a
relatively large motion over time, as the centre of the cloud oscillates around a new
centre. We see a bimodal cloud for all times plotted. The shape of the condensate
and thermal cloud seem to be the same as for a stationary cloud.

The chemical potential and temperature are plotted as a function of time in Fig. 4.11
for a typical run. As in earlier experiments, the time development is approximately
linear. This is again described using a linear fit, from which we obtain the time
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Figure 4.9: The temporal behaviour of the quantities of interest for the slow motion over the barrier
experiment. The figure description is the same as in Fig. 4.3.
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Figure 4.10: Typical measurement series of a single quickly moving cloud. Furthermore, the figure
description is the same as in Fig. 4.1.

derivatives and the initial values of the chemical potential and temperature.

Figure 4.12 shows the time derivatives versus the initial values of the chemical po-
tential and temperature as obtained from the linear fits. The time derivative of
the chemical potential is negative everywhere, indicating that the chemical potential
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Figure 4.11: Quantities of interest for a typical fast motion experiment. The figure description is the
same as in Fig. 4.2.

decreases over time for all runs. Again, the system either heats or cools. Like in
previous experiments, a strong correlation between the time derivative and initial
value is observed, especially in the chemical potential. Therefore, a linear fit was
done to characterise the temporal behaviour of the chemical potential and temper-
ature. The best fitted values found for this experiment are aµ = −9.7 ± 1.3 s−1,
µtr = 3.29 ± 0.04 kHz, aT = −4.9± 1.8 s−1 and Ttr = 663± 28 nK.
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Figure 4.12: The temporal behaviour of the quantities of interest for the fast movement experiment.
The figure description is the same as in Fig. 4.3.

The maximum velocity reached in this experiment is determined to be approximately
9.8±0.3 mm/s, well above the critical velocity. We thus do not expect the condensate
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to behave as a superfluid in this regime, and we expect the chemical potential and
temperature to develop differently in time compared to superfluid experiments.

4.5 The Fast Motion over Barrier Experiment

For the fifth experiment, the atomic cloud was moved quickly and in the same way
as the fourth experiment. In addition, the laser was shone on the centre to provide
a potential barrier. Figure 4.13 shows PCI images at different times. At t = 0 ms,
the atomic cloud looks like the cloud in a stationary experiment. After initiating
the slow current ramp and switching on the laser, the cloud starts to deform and
the BEC is forced over the barrier at t = 15 ms. At this time, the shape cannot be
described well by the fitting procedure. At t = 30 ms, the cloud looks normal again.
The central density of the cloud is so high that the signal goes back to zero and
goes back up again (this is the small orange ‘hill’ in the middle of the black ‘crater’).
For later times, the cloud again oscillates. A condensate and thermal cloud are seen
everywhere.
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Figure 4.13: Typical measurement series of a single cloud in the fifth experiment. Furthermore, the
figure description is the same as in Fig. 4.1.

The same procedure was followed as before. A straight line was fitted to the chemical
potential and temperature as a function of time, which described the data well. This
can be seen in Fig. 4.14 for a typical run. The time derivative and initial value of µ
and T were obtained in this way. These two parameters were plotted against each
other in Fig. 4.15. Again we note that dµ/dt is always negative and therefore the
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Figure 4.14: Quantities of interest for a typical fast movement over a barrier experiment. The figure
description is the same as in Fig. 4.2. The second measurement of the run was not taken into account

because the fit to this PCI image was rejected.

chemical potential always decreases over time for our observations. Unlike earlier
experiments, the temperature always increases, and cooling is observed in none of
the runs. As for the previous four experiments, we see that there is a strong negative
correlation between the initial value at t = 0 ms and the time derivative. The
correlation in temperature is not strong, but a trend is visible. To quantify this, and
to compare the temporal behaviour with other experiments, a straight line fit was
done again, exactly like described in Sec. 4.1. The best fitted values found for this
experiment are aµ = −8.4± 1.7 s−1, µtr = 3.23± 0.09 kHz, aT = −0.8± 0.5 s−1 and
Ttr = 1.04± 0.27 µK. The temperature parameters have a large relative uncertainty
because the correlation in the temperature data is not strong.

4.6 Comparison of the Experiments

Table 4.1 shows the four fitting parameters that describe the temporal behaviour
of the chemical potential and temperature for each experiment. These parameters
quantify how the time derivative of the quantity changes as a function of the initial
quantity.

Comparing the aµ, µtr, aT and Ttr parameters of the different experiments, we can
conclude whether the time development of the experiments is different. Figure 4.16
shows a comparison between the aµ and µtr parameters of the five different exper-
iments. We notice that the results of the stationary, the slow motion and the slow
motion with laser experiment yield results that are not significantly different from
each other. However, the two fast motion experiments are significantly different
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Figure 4.15: The temporal behaviour of the quantities of interest for the fast movement over the
barrier experiment. The figure description is the same as in Fig. 4.3.

Experiment aµ (s−1) µtr (kHz) aT (s−1) Ttr (nK)

1) Stationary cloud -4.8 ± 1.1 2.63 ± 0.23 -1.0 ± 0.4 719 ± 35

2) Slow movement -5.9 ± 1.7 2.78 ± 0.21 -1.9 ± 0.5 676 ± 22

3) Slow and laser -4.2 ± 0.8 2.77 ± 0.10 -1.8 ± 0.4 642 ± 29

4) Fast movement -9.7 ± 1.3 3.29 ± 0.04 -4.9 ± 1.8 663 ± 28

5) Fast and laser -8.4 ± 1.7 3.23 ± 0.09 -0.8 ± 0.5 1036 ± 267

Table 4.1: The best fitting values describing the time development of the chemical potential and
temperature for the different experiments.

from the stationary experiment. No significantly different temporal behaviour of the
chemical potential in the fourth and fifth experiment is observed.

The behaviour can be explained by assuming superfluid flow. Since the two slow mo-
tion experiments were done with velocities well below the critical velocity, we expect
the system to show superfluidity. This implies that also the temporal behaviour of
the chemical potential is not different compared to a stationary experiment. This is
exactly what we observe. Introducing a barrier also does not change the temporal
behaviour of the chemical potential significantly, even though the barrier height of
∼ 4.5 kHz is higher than our typical chemical potential. This is also what is expected.

For the two fast experiments, the maximum velocity was well over the critical velocity.
We thus expect that in these two experiments, excitations are produced, which is
expected to lead to a larger decrease in chemical potential over time. We observe
this as aµ is significantly more negative for these fast experiments. Furthermore
the transition chemical potential changes. However, since µtr for all experiments is
outside of the region in which the initial chemical potential is measured, we cannot
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Figure 4.16: The aµ parameter plotted against the µtr parameter for the five experiments. The data
points give the best estimates of the parameters and the error bars give the statistical uncertainty in the

estimate.

say with certainty that this model still holds for values close to and below µtr.

Figure 4.17 shows the comparison of the temperature parameters. Similar to the
chemical potential, we observe that the two slow motion experiments and the sta-
tionary experiment do not differ significantly. The two slow motion experiments also
do not differ significantly from each other. This can again be explained by superflu-
idity as discussed for the chemical potential.

The behaviour of the fast motion experiment is significantly different from the sta-
tionary experiment. While the transition temperatures are approximately the same
for both experiments, the aT parameter is significantly lower. This indicates that
for T < Ttr heating is increased. This is also what we expect, since this experiment
has a maximum velocity larger than the critical velocity. Therefore, excitations can
be created which leads to increased heating. However for T > Ttr this implies that
cooling of the cloud is increased. This is unexpected, but as we see in Fig. 4.12b the
runs where cooling is observed are very close to constant temperature. Therefore, we
doubt if this model predicts the behaviour above Ttr well. A more elaborate model
is likely necessary to describe the behaviour above Ttr.

The fast motion with laser experiment has a much larger transition temperature
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Figure 4.17: The aT parameter plotted against the Ttr parameter for the five experiments. The data
points give the best estimates of the parameters and the error bars give the statistical uncertainty in the

estimate.

than the other experiments, but there is no significant difference from the stationary
experiment due to the large uncertainty. However, a higher transition temperature in-
dicates more heating for temperatures below the transition temperature. Looking at
Fig. 4.15b we also notice that all runs show heating. More heating is expected, again
because the maximum velocity is higher than the critical velocity in this experiment.
Therefore, we conclude that the results of this experiment suggest increased heating,
but because of the large uncertainties, this cannot yet be asserted conclusively.
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5 Conclusion

5.1 Discussion

We have studied the short time development of the chemical potential and tempera-
ture in five different experiments. These results will be discussed here.

For the fitting procedure of a single PCI image, many assumptions and approxima-
tions are made. Each PCI image is scaled such that the signal at the edges goes to
1, and the signal is set to the theoretical maximum the signal reaches. In addition,
a θ = π/4 phase spot is assumed instead of the π/3 phase spot that is used, and in
Sec. 3.1 it is shown that this describes the data significantly better. We attribute this
deviation in θ to a small misalignment which causes the phase spot to act as a π/4
instead of π/3 phase spot. Furthermore, the Bose function in the column density of
the thermal cloud is approximated by only taking into account the first two terms.
This gives a good approximation because higher order terms give a relatively small
contribution. In the theoretical derivation of the column densities, several assump-
tions are done. We work in the thermodynamic limit, we use the time-independent
Gross-Pitaevskii equation and the Thomas-Fermi approximation is applied in the
derivation of the BEC column density. Lastly, a non-interacting model is assumed
for the total column density.

Using the rejection procedure as explained in Sec. 3.1, we have seen that the fits
describe the data very well for bimodal clouds that are not deformed by a laser. We
therefore show that the assumptions mentioned before are justified and give a good
estimate of the temperature and chemical potential. As the condensate disappears
and the temperature reaches Tc, the fitting procedure fails. This is no problem,
because we want to study the system below Tc.

Probing of the atomic cloud using PCI leads to particle losses, as described in Sec. 2.6.
We have seen that the chemical potential always decreases in our experiments and
this indicates that atoms are lost from the condensate. We attribute these losses to
the probing of the cloud. In the thermal cloud, we have observed both heating and
cooling. In Sec. 4.1 these effects were explained by the interaction of the probe light
with the atoms.

The chemical potential as a function of time is fitted with a linear fit for all runs.
On longer time scales, the chemical potential shows non-linear temporal behaviour.
The temperature as a function of time shows linear behaviour. The fact that we only
observe linear time development is attributed to the small time interval we study
of clouds well above Tc. Linear fits are done to both the chemical potential and
temperature which describe the data well for all runs. In the experiments with the
laser barrier, one or more PCI images between t = 15 ms and t = 150 ms are not
taken into account, because they are rejected in the fitting procedure. However,
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we still observe the linear time development of µ and T and therefore it is valid to
continue and compare the fitting parameters.

Per experiment, the time derivative is plotted against the initial value of the quantity
of interest, such as in Fig. 4.3. In most of these plots, a strong negative correlation is
observed between the two parameters. A linear fit is done to describe the time devel-
opment of the quantity of interest. In some of the temperature plots, the correlation
is less strong, such as in Fig. 4.15b. We choose to fit by the same procedure to enable
comparison between the experiments. Further experiments or simulations must be
done to better understand this. However, fitting a straight line gives an interesting
first estimate. We note that the uncertainties in the best fitted values are larger for
experiments with a weak correlation than for experiments with a strong correlation.
Taking into account the uncertainties of the fitted values thus still allows us to give
a fair comparison between the experiments.

In the chemical potential and temperature, we have observed superfluidity for the
two slow motion experiments. The fast motion experiment shows significantly dif-
ferent temporal behaviour in the chemical potential and temperature. In the fast
motion experiment, additional heating of the system is observed. In the fast motion
experiment with the laser, we observe increased heating, but the deviation from the
stationary experiment is not significant due to the large uncertainty in Ttr.

Even though the time development of the temperature in a fast motion with laser
experiment is not significantly different from a stationary experiment, we note it is
significantly different from the fast motion experiment without laser. In the chemi-
cal potential a significant difference between the fast experiment with laser and the
stationary experiment is observed. Therefore, we conclude that overall the tempo-
ral behaviour of the fast motion experiment is significantly different from both the
stationary experiment and the other fast experiment, while the fast experiment with
the laser barrier is also significantly different from the stationary and the fast motion
experiments.

Our analysis of the temporal behaviour of the chemical potential predicts a tran-
sition chemical potential below which the chemical potential increases, rather than
decreases. This is not observed in the experiments, because the atomic clouds are
always prepared in the regime with µ0 > µtr. We do not expect that the chemical
potential increases over time for these experiments. Rather, this linear description is
valid in the region we studied, and we cannot extrapolate the results. Further research
is needed to study this. However, we observe a difference in the transition chemical
potential between the fast motion experiments and the slow motion and stationary
experiments. This suggests different temporal behaviour in these experiments.

On the other hand, the analysis of the temporal behaviour of the temperature yields
results about the transition temperature. These are valid because this transition
temperature is in the range of the initial temperatures.

37



Conclusion

5.2 Conclusions

A fitting procedure is written which is able to describe PCI images of bimodal clouds
well. The chemical potential is seen to decrease for all initial values, while the
temperature is seen to either increase or decrease, depending on the initial value.
In the short time regime that is studied, the time development of both quantities
is approximately linear. The chemical potential and temperature as a function of
time are fitted, and the time derivatives and initial values are obtained. We have
observed a strong correlation in these parameters and a second linear fit is done
to the time derivatives and the initial values, yielding two parameters. We have
characterised the behaviour of the chemical potential and temperature in time, each
by two parameters. This characterises the temporal behaviour of the quantities of
interest. Comparing these parameters for the experiments, we conclude that we have
observed superfluidity for velocities below the critical velocity, and we have seen
indications of additional heating for velocities above the critical velocity.

For the temperature, heating is observed for temperatures below a certain transition
temperature. Above this transition temperature, cooling occurs. This transition
temperature is found for all experiments. For stationary experiments, we find Ttr =
719± 35 nK.

Outlook

To better understand the results, full simulations should be done. This gives insight
in the relevant processes and the time development of the chemical potential and the
temperature, also during the interaction with the barrier.

The analysis as done in this work, predicts that the chemical potential increases when
the initial chemical potential is below a certain µtr. It is interesting to create a cloud
such that this prediction can be checked.

Furthermore it is interesting to study longer time developments. Non-linear be-
haviour will be observed. Studying the cloud as the condensate disappears also
allows the study of the behaviour around Tc.

Lastly, it is interesting to replace one of the mirrors in the beam path of the green
laser after the fiber by a spatial light modulator. Interesting dynamical experiments
can be done, as shown in Refs. [15] and [16]. In addition, the line focus can be shaped
accurately. A line focus with a small hole can be created and this can be used to
study transport through this hole.
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