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Abstract

The trigonal curves form a closed subscheme of M5, the moduli space
of smooth curves of genus five. The cohomological data of these spaces
can be found by counting their number of points over finite fields. The
trigonal curves of genus five can be represented by projective plane
quintics that have one singularity that is an ordinary node or an or-
dinary cusp. We use a partial sieve method for plane curves to count
the number of trigonal curves over any finite field. The result agrees
with the findings of a computer program we have written that counts
the number of trigonal curves over the finite fields of two and three
elements.

We also use the partial sieve method to count the number of smooth
plane quintics. This result agrees with a previous result by Gorinov
where he computed the cohomology of nonsingular plane quintics using
a different method.
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Notation

All our schemes are noetherian.
With a curve over an algebraically closed field k we mean a proper scheme
of dimension 1 over k.
With a smooth curve we mean a curve that is smooth and irreducible.
The genus of a smooth curve C over k is given by g(C) = dimkH

1(C,OC).
The genus of a singular curve is the genus of its normalization.
With k we will always mean a finite field with q elements unless specified
otherwise. We define ki to be the finite field extension of k that has qi

elements.
When we talk about sets of points S ⊂ P2 they will always be defined over
k̄.

1 Introduction.

Moduli spaces are spaces that parameterize objects. These objects can be
many things but here we are only interested in moduli spaces of curves. By
studying a moduli space of curves we can discover more about the curves
themselves.

We want to know the cohomology of Mg, the coarse moduli space of stable
curves of genus g. The cohomology of Mg has been found for g up to four
but for five it is yet unknown.

It turns out that the cohomological data can be found by counting points
over finite fields. So if we know #M5(k) for all finite fields k then we know
the cohomology of M5. Inside M5 we have the closed subset T5, consisting
of smooth trigonal curves of genus five. In this paper we will count #T5(k).
To do this we use the fact that there is a bijection between smooth trigonal
curves of genus five and projective plane quintics that have precisely one
singularity that is either an ordinary node or an ordinary cusp. To count
these plane quintics we use a a method for counting plane curves that we
call the partial sieve method. We derive this name from the fact that we
use the sieving principle up to a certain point and after that we compute
the rest explicitly.

In this paper we first give a short introduction to moduli spaces. We
will not actually use any theory of moduli spaces during our counting of
plane curves. However since moduli spaces provide the motivation for our
counting problem we still included some basic theory. After that we describe
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the connection with plane curves and then we develop the partial sieve
method. To give some examples of how the method works we apply it to
count the number of smooth plane curves of degree three, four, and five.
Smooth plane quartics have been counted before (using the same partial
sieve method) by Bergström in [3] and later in [5]. In [6] Gorinov has
computed the cohomology corresponding to smooth plane quintics so our
count gives an alternative proof.

Finally we will count the number of plane quintics that have precisely one
singularity that is either an ordinary node or an ordinary cusp. Here we can
reuse part of the computations for smooth plane quintics.

Theorem 10.7. The number of smooth trigonal curves of genus five over a
finite field Fq is given by

#T5(Fq) = q11 + q10 − q8 + 1.

We have written a computer program to compute #T5(F2) and #T5(F3).
The results of this program support the theorem.

2 Moduli spaces.

Let k be an algebraically closed field. We want to find a scheme Mg such
that there is a bijection between the k-points of Mg and the isomorphism
classes of smooth genus g curves over k. Without any further conditions we
could easily construct such schemes. But we want Mg to be unique and the
correspondence to be natural with respect to the structure on Mg.

To achieve this we look at families of curves. A family of curves over a
base scheme B is a smooth proper morphism C → B such that its geometric
fibers are smooth curves of genus g.

Definition 2.1. The moduli functor Mg is a contravariant functor from
the category of schemes to the category of sets.

B 7→ {families of smooth curves of genus g over B up to B-isomorphism}

(B′ → B) 7→ (C/B 7→ (B′ ×B C))

Definition 2.2. A fine moduli space for smooth curves of genus g is a
scheme Mg that represents Mg.

This means there is an isomorphism of functors Ψ between Mg and hMg .
Here hMg is the functor of points of Mg that sends a scheme B to (B,Mg),
the set of maps from B to Mg. So every family in Mg(B) corresponds to a
morphism B →Mg.
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Remark 2.3. For any field k families of curves over Spec k considered up
to k-isomorphism, are just curves up to k-isomorphism. So if B = Spec k
where k is an algebraically closed field then as we wanted we get a bijection
between the k points of Mg and the isomorphism classes of smooth genus g
curves over k.

The identity map Mg → Mg corresponds to what we call the universal
family θ : U →Mg in Mg(Mg). Now let us have any family φ : C → B and
ΨB(φ) = f : B →Mg. We look at the commutative diagram

Mg(Mg) (Mg,Mg)

Mg(B) (B,Mg)

ΨMg

Mg(f) hMg (f)

ΨB

and we get

φ = Ψ−1
B (f)

= Ψ−1
B (idMg ◦ f)

= (Ψ−1
B ◦ hMg(f) ◦ΨMg)(θ)

= (Ψ−1
B ◦ΨB ◦Mg(f))(θ)

=Mg(f)(θ)

= B ×Mg U

So every family over B is the pullback of the universal family θ via a unique
map B →Mg.

Remark 2.4. In a similar fashion to the above we can also defineMg,n and
Mg,n for smooth curves of genus g with n fixed points.

These fine moduli spaces are very nice but they only exist if the moduli
functor is representable.

We look at a family of curves φ : C → B such that all fibers are isomorphic
to some curve C0. If such a family exists and it is not the trivial family C0×B
then the fine moduli space does not exist. For if a fine moduli space Mg

does exist then Ψ(φ) will factor through the point in Mg corresponding to
C0. Which means that the fiber product C0 ×Mg B is trivial.

Example 2.5. We will construct such a family for g = 1. We consider
complex elliptic curves and write them in Weierstrass form Y 2 = X3+ax+b.
Two elliptic curves are isomorphic if and only if they have the same j-
invariant. The j-invariant is given by j = 1728 4a

4a−9b and it is zero for

a = 0, b 6= 0. So we look at the family of curves over A1
C − {0} given by

Y 2 = X3 + b. If this family is trivial then we can extend it to a family over
A1
C. But its fiber over 0 would be Y 2 = X3 which is not a smooth curve. So

the family is not trivial and the fine moduli space M1 does not exist.
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It turns out that this problem is caused by the existence of non-trivial
automorphisms. These non-trivial automorphisms enable us to create a
non-trivial family such that all fibers are isomorphic. We can see a non-
trivial automorphism in example 2.5 if we go from one fiber to another fiber
and then back to the first fiber. The fibers over 1 and −1 are the curves
Y 2 = X3 + 1 and Y 2 = X3 − 1. The isomorphism between these curves is
given by (x, y) 7→ (−x, iy) where i2 = −1. Applying it twice gives us the
non-trivial automorphism (x, y) 7→ (x,−y).

There are three main solutions to this problem.

Solution 1: rigidification.
We no longer consider just the curves but we add some extra data. For
example we will choose some fixed points. If an automorphism fixes enough
points then it has to be the identity. (How many points is enough depends
on the genus.) This way we no longer have any non-trivial automorphism.
The downside of this approach is that we have to keep track of our extra
data.

Solution 2: stacks.
We extend the category of schemes by considering algebraic objects called
stacks. The moduli functor of smooth curves is not representable by a
scheme but it is representable by a stack. This approach is very clean.
However the difficulty of working with extra structure is still there, except
it is now part of the theory of algebraic stacks.

Solution 3: coarse moduli spaces.
Instead of demanding a fine moduli space we lower our demands to get only
a coarse moduli space.

Definition 2.6. A coarse moduli space for the moduli functor F is a scheme
M and a morphism of functors Ψ : F → hM such that:

(i) For algebraically closed fields k the map F (k) → M(k) is a bijection
of sets.

(ii) Given a scheme N and a morphism of functors Φ : F → hN , there is
a unique morphism f : M → N such that Φ = hf ◦Ψ.

Coarse moduli spaces of smooth curves do exist. But these spaces may
not have nice properties. For example they are not always smooth.

Remark 2.7. From now on we will act as if the fine moduli schemes Mg,
Mg,n exist. (They actually exist as stacks but since my knowledge of stacks
is insufficient I pretend we are just working with a scheme or variety.)
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Example 2.8. Smooth 1-pointed curves of genus 1 are elliptic curves. The
j-line A1 is a coarse moduli space for elliptic curves. Concretely a curve
C → B is sent to the map B → J that sends a point b ∈ B to the j-
invariant of the fiber Cb. The first condition is satisfied since when k is
algebraically closed isomorphism classes of elliptic k-curves correspond to
l-points on the j-line.

Let m ∈ J(l) for some field l, there is a family of curves Cm → Spec l
such that it is the isomorphism class of curves of j-invariant m. Now for the
second condition: given such N and Φ we get the morphism f : J → N by
sending m ∈ J to Φ(Cm).

We will now look at another moduli functor, namely the one for stable
curves. In what follows let g ≥ 0, n ≥ 0 and 2g − 2 + n > 0. Here g is the
arithmetic genus.

Definition 2.9. A stable n-pointed curve of genus g is a reduced connected
curve C of genus g whose only singularities are ordinary double points,
coupled with a collection P1, . . . , Pn of distinct nonsingular points, such
that C has only finitely many automorphisms that fix P1, . . . , Pn. A stable
curve is a stable 0-pointed curve.

Similar to the smooth case we can define moduli functors Mg and Mg,n

for stable curves and n-pointed stable curves. It turns out that there exist
coarse moduli spacesMg, Mg,n and that these spaces are projective varieties.

As the notation implies the moduli space Mg is a dense open subspace of
Mg. We can take a look at the boundary ∆g = Mg−Mg. Every curve in the
boundary has at least one singular point so it is in the closure of some locus
of curves with a singularity at that point. This means that the boundary is
the union of closures of loci of curves with one singularity.

For 1 ≤ i ≤ bg2c we define ∆i
g to be the closure of the locus of curves with

one singularity that are the union of two smooth curves of genera i and g−i.
And we define ∆0

g to be the closure of the locus of irreducible curves with
one singularity. We find that ∆g =

⋃
i ∆i

g.
An irreducible curve with one ordinary double point corresponds to its

normalization which is a curve with genus one lower and two points in the
inverse image of the double point. This gives us a dominating map Mg−1,2 →
∆0
g. And we also have dominating maps Mi,1 ×Mg−i,1 → ∆i

g.

3 Point counts and cohomology.

As we said in the introduction we are interested in the cohomology of Mg.
Let k be a finite field. We define the number of points over k of Mg to be

#Mg(k) =
∑
C/k

1

|Autk(C)|
,
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where the sum is over representatives of k-isomorphism classes of stable
curves of genus g over k.

Bogaart and Edixhoven have shown the following in [1]:
Let d be the dimension of Mg. If there exists a polynomial P (t) =

∑
Pit

i,
with Pi ∈ Q, such that

#Mg(Fpn) = P (pn) + o(pnd/2) (n→∞)

for all p in a set of primes of Dirichlet density 1, then the degree of P (t)
equals d and there exists a unique such polynomial satisfying Pi = Pd−i
for all 0 ≤ i ≤ d. Suppose P (t) satisfies this symmetry. Then it has
non-negative integer coefficients and satisfies #Mg(Fpn) = P (pn) for all
primes p. This polynomial also completely determines the cohomology of
Mg. That is, for all primes l and all i ≥ 0 there is an isomorphism of
Gal(Q/Q)-representations

H i((Mg)Q,ét,Ql) ∼=

{
0 if i is odd;

Ql(−i/2)Pi/2 if i is even.

From Theorem F in [2, p.15] and the fact that M5 is unirational it follows
that for M5 such a polynomial P (t) exists.

By purity, knowing the cohomology of M5 is equivalent to knowing the
Hodge Euler characteristic of M5. This Hodge Euler characteristic can be
computed from that of M5 and the Sn-equivariant Hodge Euler characteris-
tics of the Mg,n occurring in the description of the boundary ∆5. We say a
function of k = Fq is polynomial if it is an element of Q[q]. The occurring
#Mg,n(k) are known and polynomial for g ≤ 3. We do not know all the
occuring #M4,n(k) but we do know they are polynomial from Theorem F
in [2, p.15], so #M5(k) is polynomial. By the symmetry described above
it will then be sufficient to know the higher order terms of #M5(k), from
which we will be able to compute #M5(k) and #M5(k). Since M5(k) has
dimension 12 the higher order terms are those of order greater than or equal
to 6.

We can split up M5(k) in three groups of curves:

(i) If a curve has a g1
2 then it is hyperelliptic. We already know the number

of hyperelliptic curves: #H5(Fq) = q9.

(ii) If a non-hyperelliptic curve has a g1
3 then it is trigonal.

(iii) We call the other curves non-trigonal curves. A non-trigonal curve has
a canonical embedding as a complete intersection of three quadrics in
P4.

In this paper we count #T5(Fq), the number of trigonal curves of genus 5.
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Theorem 10.7. The number of smooth trigonal curves of genus five over a
finite field Fq is given by

#T5(Fq) = q11 + q10 − q8 + 1.

4 Representing trigonal curves by projective plane
curves.

Proposition 4.1. There is a bijection between the smooth trigonal curves
of genus five and projective plane quintics that have precisely one singularity
which is either an ordinary node or an ordinary cusp.

Proof. Let C be a smooth trigonal curve of genus 5 and let D be a divisor
in its g1

3. We look at the linear system |K −D|. We see that deg(K −D) =
2g − 2 − 3 = 5. And by Riemann-Roch we have dim |K −D| = dim |D| −
deg(D) + g − 1 = 2. So we get a g2

5.
Claim: The g2

5 is base point free.
Proof of claim: If it has a base point P then we have dim |K − D − P | =
dim |K − D| which gives us a g2

4. This g2
4 is base point free, otherwise we

get a g2
3 which contradicts Clifford’s theorem. It is also very ample for

otherwise there are points Q,R such that dim |K − D − P − Q − R| =
dim |K −D−P | − 1 and we get a g1

2, which is a contradiction with the fact
that C is not hyperelliptic. So C can be embedded as a smooth plane curve
of degree 4. But this means that the genus is 1

2(4− 1)(4− 2) = 3, which is
a contradiction.

Since the g2
5 is base point free we get a corresponding morphism φ : C → P2

with deg(φ) · deg(φ(C)) = 5. If deg(φ(C)) = 1 then φ(C) is a line, which is
in contradiction with the fact that the dimension of the g2

5 is two. So φ is
of degree 1. The image is of degree 5 which gives us

5 = g =
1

2
(5− 1)(5− 2)−

∑
P

δP = 6−
∑
P

δP .

So the image has to have precisely one singularity of delta-invariant 1. This
means that it has multiplicity 2 and thus it has two tangents counting mul-
tiplicity. If these tangents are the same then we have an ordinary cusp and
if they are different we have an ordinary node.

The only thing that remains is to prove that the g1
3 (and thereby the g2

5)
is unique. If there are two different g1

3’s then they are both base point free,
otherwise we would get a g1

2, which contradicts the fact that C is not hyper-
elliptic. Together these two g1

3’s give a map to P1 × P1. The image of this
map is a curve Z of type (3, 3), i.e., the inverse image of a point on either
P1 is a divisor of degree 3. A non singular curve of type (a, b) in P1×P1 has
genus (a− 1)(b− 1), so Z has genus at most 4, which is a contradiction.
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Conversely, suppose that we have a curve C that has a representation as
a plane quintic with one singularity that is either an ordinary node or an
ordinary cusp. Then by the genus formula

g(C) =
(5− 1)(5− 2)

2
− 1 = 5.

Every line through the singular point intersects C in 3 other points counting
multiplicity. So the pencil of lines through the singular point gives us a
g1

3.

We want to count

#T5(k) =
∑
C/k

1

|Autk(C)|

where the sum is over representatives of k-isomorphism classes of smooth
trigonal curves of genus five over k. By the above proposition it is equivalent
to let the sum go over representatives of k-isomorphism classes of plane
quintics that have precisely one singularity which is either an ordinary node
or an ordinary cusp.

Plane curve automorphisms can be extended to P2 automorphisms and
the automorphism group of P2 is the projective general linear group PGL3.
So the automorphism group of a plane curve C is the stabilizer of the action
by PGL3 on P2. We get∑

C/k

1

|Autk(C)|
=
∑
C/k

1

|Stabk(C)|
.

We can rewrite this as∑
C/k

1

|Stabk(C)|
=
∑
C/k

|Orbk(C)|
|PGL3(k)|

=
1

|PGL3(k)|
∑

C∈T (k)

1.

Here T is the set of plane quintics with exactly one singularity which is
either an ordinary node or an ordinary cusp.

This enables us to simply count plane curves rather than plane curves
up to k-isomorphism. However before we compute |T (k)| we first develop
the partial sieve method for counting smooth plane curves. Later we shall
adjust this method to count curves that have precisely one singularity which
is either an ordinary node or an ordinary cusp.

5 Preliminaries and tools.

Definition 5.1. Let P1, . . . , Pn be points in P2 and let r1, . . . rn be natural
numbers. We define Vk(d, r1P1, . . . , rnPn) to be the set of degree d plane
curves over k that have multiplicity at least ri at Pi for 1 ≤ i ≤ n.
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If S = {P1, . . . , Pn} is a set of points then we may write Vk(d, rS) :=
Vk(d, rP1, . . . , rPn).

The set Vk(d, r1P1, . . . , rnPn) is the result of applying linear conditions to
the projective space of all degree d projective plane curves over k. When
the conditions contradict each other we get the empty set and otherwise we
get a linear subspace. Whether these conditions are dependent or not does
not depend on the fields that the points are defined over:

Notation 5.2. When we talk about the Frobenius map F we mean the
geometric Frobenius.

Let P2 be the projective plane over a field Fq. The geometric Frobenius on
P2 is the endomorphism P2 → P2 defined by (x : y : z) 7→ (xq : yq : zq).

Lemma 5.3. ([3, 2.8]) If we have points {P1, . . . , Pn} such that for ev-
ery 1 ≤ i ≤ n there is a j such that F(Pi) = Pj and ri = rj, then
dimk Vk(d, r1P1, . . . , rnPn) = dimk Vk(d, r1P1, . . . , rnPn).

Notation 5.4. We write λ = [1λ1 , . . . , vλv ] for the partition where i appears
λi times. This partition has weight |λ| :=

∑v
i=1 i ·λi. We consider the empty

partition [] to have weight 0. For the sake of notation we leave out the zero
powers, e.g. [12, 20, 30, 41] is the same as [12, 41].

Given λ = [1λ1 , . . . , vλv ] and µ = [1µ1 , . . . , vµv ] we use [λ, µ] to denote
[1λ1+µ1 , . . . , vλv+µv ].

Definition 5.5. Let X be a scheme defined over k. An n-tuple (x1, . . . , xn)
of distinct subschemes of Xk̄ is called a conjugate n-tuple if F(xi) = xi+1

for 0 ≤ i < n and F(xn) = x0, where F is the Frobenius map.
A |λ|-tuple (x1, . . . , x|λ|) of distinct subschemes of Xk̄ is called a λ-tuple if

it consists of λ1 conjugate 1-tuples, followed by λ2 conjugate 2-tuples, etc.
Given a set S of distinct subschemes of Xk̄, we define Ŝ to be the partition

such that S is a Ŝ-tuple.
A λ-tuple is called ordered when it is ordered as a |λ|-tuple. A λ-tuple

is called unordered when for each 1 ≤ i ≤ v the λi conjugate i-tuples
are unordered among themselves and the points within every i-tuple are
unordered.

For a scheme X defined over k we write Xord(λ) for the set of ordered
λ-tuples of points of X and we write X(λ) for the set of unordered λ-tuples
of points of X.

We see that for a partition λ = [1λ1 , . . . , vλv ] we get

|X(λ)| = |Xord(λ)|∏v
i=1 λi! · iλi
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Lemma 5.6. ([5, 4.12]) Let µ denote the Möbius function. For any scheme
X defined over k, the number of ordered λ-tuples of points of X is equal to

|Xord(λ)| =
v∏
i=1

λi−1∏
j=0

∑
d|i

µ(
i

d
) · |X(kd)|

− i · j
 .

Example 5.7. Since the empty product gives one we have |X([])| = 1.

Example 5.8. We want to know the number of ways we can pick an un-
ordered [22]-tuple of points on a k-line L. The lemma tells us that the
number is

|L([22])| = 1

8

∑
d|2

µ(
2

d
) · |L(kd)|

− 2 · 0

 ·
∑

d|2

µ(
2

d
) · |L(kd)|

− 2 · 1


=

1

8
(|L(k2)| − |L(k)|) · ((|L(k2)| − |L(k)|)− 2)

=
1

8

(
(q2 + 1)− (q + 1)

)
·
((

(q2 + 1)− (q + 1)
)
− 2
)

=
1

8
(q2 − q) · ((q2 − q)− 2)

=

( q2−q
2

2

)
There are q2−q

2 conjugate 2-tuples on a line so this fits our expectations.

Notation 5.9. We say a curve C is of type [d1, . . . , dn] for d1, . . . , dn ∈ N if
it has n distinct irreducible components C1, . . . , Cn where Ci has degree di.

The number of singularities on each irreducible component is restricted by

Theorem 5.10. If C is an irreducible projective plane curve of degree n,
then ∑

i

mPi(mPi − 1)

2
≤ (n− 1)(n− 2)

2

were mPi is the multiplicity of C at Pi.

Proof. See Fulton [8, 5.4, theorem 2]

Here are some basic facts about lines that we will use.

Lemma 5.11. Let i, j ∈ N be coprime and let LCM(i, j) denote the least
common multiple of i, j.

(i) A conjugate i-tuple of lines and a conjugate j-tuple of lines intersect
in one k-point or in a conjugate LCM(i, j)-tuple of points.

(ii) Through a conjugate i-tuple of points and a conjugate j-tuple of points
goes one k-line or a LCM(i, j)-tuple of lines.
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(iii) There is precisely one k-point on a conjugate 2-tuple of lines.

(iv) There is precisely one k-line through a conjugate 2-tuple of points.

(v) A conjugate 3-tuple of lines either has no k-points on it or all three
lines intersect in one k-point.

(vi) A conjugate 3-tuple of points either has no k-lines through it or all
three points lie on one k-line.

Proof. (ii), (iv), (vi) are the dual versions of (i), (iii), (v) so just proving the
latter three is sufficient.
(i): Let L be a line in the i-tuple of lines and let R be a line in the j-tuple
of lines. Let t be the minimal natural number such that L ∩R is a kt-point
P . If i - t then F t(L) 6= L and so P ∈ L′ for some conjugate L′ of L. Since
F i fixes both L and L′ and P = L∩L′ we get t|i. So i|t or t|i and similarly
we get j|t or t|j. We also know that both L and R are fixed by FLCM(i,j) so
t ≤ LCM(i, j).
If t|i and t|j then because i, j are coprime we get t = 1.
If i|t and j|t then t = LCM(i, j).
If i|t and t|j then i|j so i = 1 and then t = 1 or t = j = LCM(i, j). For t|i
and j|t it is the same with i, j switched.
(iii): Let us denote one of the two lines by L. The k-points on L are
the points on L that are fixed by F , that is the points in the intersection
L ∩ F(L). And two distinct lines intersect in precisely one point.
(v): Let us denote one of the three lines by L. A k-point P is fixed by F so
if P ∈ L then P ∈ L ∩ F(L) ∩ F2(L).

6 The partial sieve method.

In this section we will develop a method to compute |Cd(k)|, the number of
smooth degree d plane curves over k. We first count all curves of degree d
and then ”sieve out” the degree d curves that are singular so that we are
left with the nonsingular curves.

First we count all curves (including singular curves).∑
S∈P2([])

|Vk(d, 2S)| = |Vk(d)|

Every curve that has precisely one singularity has been counted one time.
So we subtract every curve that has at least one singularity at a k-point.
For every k-point P ∈ P2 we subtract |Vk(d, {P})|.

−
∑

S∈P2([11])

|Vk(d, 2S)|
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Now for the curves that have precisely two singularities we get two cases:
either the singularities are both defined over k or they form a conjugate
2-tuple.

The curves that have two singularities over k have been counted once and
then subtracted twice (once for each singularity). So we have to add them
once.

+
∑

S∈P2([12])

|Vk(d, 2S)|

The curves that have a conjugate 2-tuple of singularities have been added
once so we have to subtract them once.

−
∑

S∈P2([21])

|Vk(d, 2S)|

And we continue in this manner for curves that have at least three singu-
larities and then curves that have at least four singularities, etc.

Definition 6.1. If λ = [1λ1 , . . . , vλv ] is a partition then by µ ⊂ λ we mean
any partition µ = [1µ1 , . . . , vµv ] such that µi ≤ λi for all 1 ≤ i ≤ v.

We define σ(λ) ∈ Z such that

σ([]) = 1

∑
µ⊂λ

σ(µ)
v∏
i=1

(
λi
µi

)
= 0, for λ 6= [].

The number of times a curve with singularities at a λ-tuple of points has
to be added in the sieve method described above is given by σ(λ). So if we
continue our sieving we get∑

λ

(
σ(λ) ·

∑
S∈P2(λ)

|Vk(d, 2S)|
)
.

We cannot keep counting indefinitely so we only count those λ for which
|λ| ≤ M where we define M := d(d−1)

2 . We stop at M because any degree
d plane curve that has more than M singularities has a double component
and thus has infinitely many singularities. So it suffices to count up to and
including M and then afterwards correct the curves that have an infinite
number of singularities.

However it becomes more and more difficult to compute this sum as |λ|
increases. So we will use a partial sieving method where we will only count
those λ for which |λ| ≤ N where N is a fixed number chosen such that
1 ≤ N ≤M .

For the λ such that N < |λ| ≤ M we will explicitly count |Cd,λ|, the
number of degree d plane curves that have exactly a λ-tuple of singular
points.

14



Definition 6.2. For a partition λ = [1λ1 , . . . , vλv ] we define τ(λ) ∈ Z such
that ∑

µ⊂λ
|µ|≤N

σ(µ)
v∏
i=1

(
λi
µi

)
+ τ(λ) = 0

The number of times |Cd,λ| has to be added is given by τ(λ). We now have

|Cd(k)| = sd,sieve + sd,explicit + sd,∞

where

sd,sieve :=
1

|PGL3(k)|
∑
|λ|≤N

(
σ(λ) ·

∑
S∈P2(λ)

|Vk(d, 2S)|
)
, (1)

sd,explicit :=
1

|PGL3(k)|
∑

N<|λ|≤M

τ(λ) · |Cd,λ|, (2)

sd,∞ := − 1

|PGL3(k)|
∑

C∈Cd,∞

∑
|λ|≤N

σ(λ) · |C(λ)|. (3)

Here Cd,∞ is the set of degree d plane curves that have an infinite number
of singularities.

We will now describe how we will compute these sums.

Lemma 6.3. For a partition λ = [1λ1 , . . . , vλv ] we have

σ(λ) = (−1)
∑v
i=1 λi ,

τ(λ) = σ(λ) ·
∑
µ⊂λ

|µ|<M−N

σ(µ)
∏
j

(
λj
µj

)
.

Proof. First we use induction to show that for a a positive integer and b a
non-negative integer we have σ([ab]) = (−1)b. By definition it is true for
σ([a0]) = σ([]) = 1. If it is true for b ≤ n then for b = n+ 1 we get from the
definition of σ

0 =

n+1∑
i=0

(
n+ 1

i

)
σ([ai]) =

n+1∑
i=0

(
n+ 1

i

)
(−1)i + σ([an+1])− (−1)n+1

And from the properties of the binomial coefficient we get

n+1∑
i=0

(
n+ 1

i

)
(−1)i = (1− 1)n+1 = 0

So we find that σ([an+1]) = (−1)n+1.
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In a similar fashion we show that σ(λ) =
∏v
i=1 σ([iλi ]) using induction on

the weight of λ. For |λ| = 0 it is clearly true and if it is true for all λ of
weight up to n then we get for |λ| = n+ 1

0 =

λ1∑
a1=0

· · ·
λv∑
av=0

σ([1a1 , . . . , vav ])
v∏
i=1

(
λi
ai

)

=

λ1∑
a1=0

· · ·
λv∑
av=0

v∏
i=1

σ([iai ])

(
λi
ai

)
+ σ(λ)−

v∏
i=1

σ([iλi ])

=
v∏
i=1

λi∑
ai=0

(−1)i
(
λi
ai

)
+ σ(λ)−

v∏
i=1

σ([iλi ])

=

v∏
i=1

(1− 1)λi + σ(λ)−
v∏
i=1

σ([iλi ])

= σ(λ)−
v∏
i=1

σ([iλi ]).

So σ(λ) =
∏v
i=1 σ([iλi ]). Now it is easy to see that σ(λ) = (−1)

∑v
i=1 λi .

From the definitions of σ and τ we find that

τ(λ) =
∑
µ⊂λ

N<|µ|≤M

σ(µ)
∏
j

(
λj
µj

)

=
∑
µ⊂λ

N<|µ|≤M

(−1)
∑
j µj
∏
j

(
λj
µj

)

=
∑
µ⊂λ

|µ|<M−N

(−1)
∑
j(λj−µj)

∏
j

(
λj

λj − µj

)

= σ(λ) ·
∑
µ⊂λ

|µ|<M−N

σ(µ)
∏
j

(
λj
µj

)
.

Definition 6.4. A sieving partition is a partition of
⋃
|λ|≤N P2(λ) into sub-

sets U0, . . . , Un together with numbers wi, ui ∈ Z≥0 for 0 ≤ i ≤ n such
that if S ∈ Ui then we have |S| = wi and |Vk(d, 2S)| = ui. We also write
Ui,λ := {S ∈ Ui|Ŝ = λ}.

We can use a sieving partition to compute sd,sieve.

sd,sieve =
1

|PGL3(k)|

n∑
i=0

(
ui ·

∑
|λ|=wi

σ(λ) · |Ui,λ|
)

(4)

16



When we create a sieving partition we have to look at what |Vk(d, 2S)|
becomes for different S ⊂ P2. The set Vk(d) is simply the projective space

spanned by all monomials of degree d. So Vk(d) ∼= Pn where n = d(d+3)
2 . For

Vk(d, 2S) we add 3|S| linear conditions to Vk(d): one condition for a point
being on the curve and two for it being a singular point. So if Vk(d, 2S)

is not empty then its minimal dimension is d(d+3)
2 − 3|S|. If there are no

dependencies between the 3|S| conditions then this minimal dimension is
the actual dimension.

If we have points P1, . . . , Pn on a line L then for any curve C ∈ Vk(d, 2P1, . . . , 2Pn)
we get for the intersection number that L · C ≥ 2n. So if 2n > d then by
Bézout L is a component of C. This means we can see C as a degree d− 1
curve times L. We get Vk(d, 2P1, . . . , 2Pn) ∼= Vk(d − 1, 1P1, . . . , 1Pn). The

minimal dimensions are given by d(d+3)
2 − 3n for Vk(d, 2P1, . . . , 2Pn) and

(d−1)(d+2)
2 − n for Vk(d − 1, 1P1, . . . , 1Pn). (Note that these dimensions are

the same for 2n = d+ 1.)
We will create our sieve partitions as follows: We will separate

⋃
|λ|≤N P2(λ)

into subsets based on |λ| and on the dependencies we can find as above using
Bézout. So an example would be the subset of all sets of five points such
that there are precisely four points on a line. We will move to a space of
lower degree curves as often as we can if this new space has a higher mini-
mal dimension. When we can no longer do this we have found the ”highest
minimal dimension”. Then we only need to prove that the highest minimal
dimension is the actual dimension. Of course there is no reason to think
that this is always true but it will turn out to be true in all the cases that
we come across.

Example 6.5. Let us have a set of points S = {P1, . . . , P6, P7} where the
points in S′ = {P1, P2, P3, P4} are on a line L and the points in S′′ =
{P5, P6, P7} are on another line L′. We want to know the dimension of
Vk(5, 2S). There are four points on the line L so L is part of any curve
in Vk(5, 2S). So Vk(5, 2S) ∼= Vk(4, 1S

′, 2S′′). Now for d = 4 the points
in S′′ determine that L′ is part of any curve in Vk(4, 1S

′, 2S′′) so we find
Vk(4, 1S

′, 2S′′) = Vk(3, 1S). The projective space Vk(3, 1S) has minimal
dimension 9− 7 = 2. To see that the dimension is equal to 2 we only need
to prove that the seven conditions on the P9 of cubics are independent. We
will not do that in this example but it is not very hard to do.

Remark 6.6. For our partial sieving method we generally want to choose
a high N since it is less work to compute sd,sieve than sd,explicit. However if
we choose N too high then when we try to make a sieving partition some
of the highest minimal dimensions will be negative. This is a lot harder to
work with so in practice we will want to choose N as high as possible such
that this problem won’t occur.
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Definition 6.7. For any scheme X defined over k and w ∈ Z≥0 we define

πw(X) :=
∑
|λ|=w

σ(λ) · |X(λ)|

This construction will occur quite often, mainly as part of (4) when we have
Ui,λ ∼= X(λ) for some scheme X.

In the following table we list some values of πw(X) where the rows repre-
sent different X and the columns represent different w. Remember that q is
the number of elements in k.

0 1 2 3 4 5 6 7

P1 1 −q − 1 q 0 0 0 0 0

P1 − {P} 1 −q 0 0 0 0 0 0

P2 1 −q2 − q − 1 q3 + q2 + q −q3 0 0 0 0

P2 − {P} 1 −q2 − q q3 0 0 0 0 0

Lemma 6.8. In the following cases we will have sd,∞ = 0.

(i) d = 3, N ≥ 2.

(ii) d = 4, N ≥ 3.

(iii) d = 5, N ≥ 5.

Proof. If we can show that for any C ∈ Cd,∞ we have
∑
|λ|≤N σ(λ)·C(λ) = 0

then we can see from (3) that sd,∞ = 0. Since d ≤ 5 there are the following
four possible types of double components: A k-line, a k-conic, two k-lines,
and a conjugate 2-tuple of lines.

Let us take a curve C that has precisely one double k-line L. We use Z
to denote the set of singular points of C that are not on L. The number
of points in Z is at most (d−2)(d−3)

2 . When choosing a λ-tuple of singular
points on C we pick part of the points from Z and the rest from L.

∑
|λ|≤N

σ(λ) · C(λ) =
∑
S⊂Z

∑
|λ|≤N−|S|

σ([Ŝ, λ]) · |L(λ)| ·
v∏
i=1

(
Ẑi

Ŝi

)

=
∑
S⊂Z

σ(Ŝ) ·
v∏
i=1

(
Ẑi

Ŝi

) ∑
|λ|≤N−|S|

σ(λ) · |L(λ)|

=
∑
S⊂Z

σ(Ŝ) ·
v∏
i=1

(
Ẑi

Ŝi

)N−|Ŝ|∑
j=0

πj(L)
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Since
∑n

i=1 πi(P1) = 0 for n ≥ 2 we see that
∑
|λ|≤N σ(λ) · C(λ) = 0 if

N ≥ |λ|+ 2 ≥ (d−2)(d−3)
2 + 2.

For a curve C that has precisely one double k-conic we can apply the
same reasoning. Except that for d ≤ 5 there are no singularities outside the
double conic. So we end up with the result that

∑
|λ|≤N σ(λ) · C(λ) = 0 if

N ≥ 2.
For a a curve C that has precisely two double k-lines L,L′ there are no

singularities outside the double lines and we get∑
|λ|≤N

σ(λ) · C(λ) =
∑
λ

∑
|µ|≤N−|λ|

σ([λ, µ]) · |L(λ)| · |(L− L′)(µ)|

=
∑
λ

σ(λ) · |L(λ)|
∑

|µ|≤N−|λ|

σ(µ) · |(L− L′)(µ)|

=

N∑
i=0

πi(L)

N−i∑
i=j

πj(L− L′).

Since
∑n

i=1 πi(P1) = 0 for n ≥ 2 and πj(P1 − {P}) = 0 for j > 1 we find
that

∑
|λ|≤N σ(λ) · C(λ) = 0 if N ≥ 3.

We are left with the curves C that have a double conjugate 2-tuple of lines
L,L′. Let P denote the k-point L∩L′. For a partition λ = [1λ1 , 2λ2 , . . . , vλv ]
we define 2λ = [2λ1 , 4λ2 , . . . , (2v)λv ]. All points on (L∪L′)−{P} are defined
over fields ki such that i is even. This means that we can work over base k2

when choosing our points. (For example a [11, 21]-tuple of points over base k2

consists of a k2 point and conjugate 2-tuple of k4 points.) Picking a λ-tuple
of points over base k2 on L − {P} also determines their conjugates and is
thus equivalent to picking a 2λ-tuple of points over base k on (L∪L′)−{P}.
Note that σ(λ) = σ(2λ). We divide the sum

∑
|λ|≤N σ(λ) · C(λ) into two

parts. First we have the sum of λ-tuples of points that do not include the
point P . Over base k2 this sum is

∑
|λ|≤bN

2
c

σ(2λ) · |(L− {P})(λ)| =
bN

2
c∑

i=0

πi(L− {P}).

When we do include the point P we get over base k2

∑
|λ|≤bN−1

2
c

σ([[11], 2λ]) · |(L− {P})(λ)| = −
bN−1

2
c∑

i=0

πi(L− {P}).

These two sums cancel each other out if bN2 c ≥ 1 and bN−1
2 c ≥ 1 so we find

that
∑
|λ|≤N σ(λ) · C(λ) = 0 if N ≥ 3.

The case where we have exactly a double k-line imposes the condition
N ≥ (d−2)(d−3)

2 + 2. For d = 3 this means N ≥ 2, for d = 4, N ≥ 3, and for
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d = 5, N ≥ 5. The other three cases do not occur for d = 3 and for d = 4, 5
their strongest demand is that N ≥ 3.

7 Smooth plane cubics.

For d = 3 we see that M = d(d−1)
2 = 3 and we choose N = 3. This means

that s3,explicit = 0 and by Lemma 6.8 we have s3,∞ = 0. So we only need to
count s3,sieve. To do this we will choose a sieving partition.

We say a tuple of points is in general position if there are no three points
on a line. For every 0 ≤ w ≤ 3 we have the set Uw of w-tuples of points in
general position. For S ∈ Uw we see that Vk(3, 2S) is a P9 of cubics with
3w linear conditions imposed on it. Because of 5.3 we can apply a k̄-linear
transformation to map the w-tuple of points to a subset of {(1 : 0 : 0), (0 :
1 : 0), (0 : 0 : 1)}. This makes it easy to see that the 3w conditions are
independent. So uw = |P9−3w|. For 0 ≤ w ≤ 2 all w-tuples are in general
position.

We write U4 for 3-tuples of points that are on a line. We get a P5 of
conics with 3 linear conditions imposed on it. By mapping the points to
(1 : 0 : 1), (1 : 0 : 0), (0 : 0 : 1) we see that the three conditions are
independent so u4 = |P2|.

Since for 0 ≤ w ≤ 2 all w-tuples of points are in general position we
find that Uw,λ = P2(λ). To get a 3-tuple of points on a line we first pick a
k-line and then a 3-tuple of points on that line. So |U4,λ| = |P2| · |P1(λ)|.
All 3-tuples of points that are not all on a line are in general position so
|U3,λ| = |P2(λ)| − |P2| · |P1(λ)|.

We get

s3,sieve =
1

|PGL3(k)|

4∑
i=0

(
ui ·

∑
|λ|=wi

σ(λ) · |Ui,λ|
)

=
1

|PGL3(k)|

( 2∑
w=0

(
|P9−3w| · πw(P2)

)
+ |P0| · (π3(P2)− |P2| · π3(P1)) + |P2| · |P2| · π3(P1)

)
=

1

|PGL3(k)|

(
|P9| · 1− |P6| · (q2 + q + 1) + |P3| · (q3 + q2 + q) + |P0| · (−q3 − 0) + 0

)
= q

So |C3(Fq)| = q.

8 Smooth plane quartics.

For d = 4 we see that M = d(d−1)
2 = 6. As we mentioned in Remark 6.6 we

want to choose N as high as we can without getting problems with negative
minimal dimensions.

We say a tuple of points is in general position if there are no three points on
a line and no five points on a conic. For a set of w-tuples of points in general
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position we get a P14 of quartics with 3w linear conditions imposed on it.
For 1 ≤ w ≤ 4 it is not hard to see that the 3w conditions are independent.
But for w = 5 and w = 6 we get a negative minimal dimension.

We can evade this problem since by Theorem 5.10 we find that any curve
with four or more singularities is reducible. In fact a quartic can only have
exactly five singularities if it consists of two lines and a conic, in which case
there will be three points on a line. And a quartic can only have exactly
six singularities if it consists of four lines, in which case there would also
be three points on a line. So there are no quartics that have five or six
singularities in general position.

For N = 6 we will still run into problems but for N = 5 the above
workaround suffices since we do not get any negative minimal dimensions in
other cases. So we choose N = 5. By Lemma 6.8 we have s3,∞ = 0.

In our sieving partition we get for 1 ≤ w ≤ 4 the set of w-tuples of points
in general position. We also get the set of tuples of points that have five
points on a conic and multiple sets of tuples of points that have at least
three points on a line. (For example the set of 5-tuples of points that have
four points on a line and one point outside the line.) We do not prove here
that their resulting conditions are independent but it is not hard to see.
Only the sets of points in general position contribute to the count because
πw(P1) = 0 for w ≥ 3 and πw(P1 − {P}) = 0 for w ≥ 2.

As an example we take Ui, the set of 5-tuples of points that have three
points on a k-line L and three points on a different k-line L′. To count

|Ui,λ| we first pick the two k-lines which can be done in
(
q2+q+1

2

)
ways. The

intersection P of these lines is one of our five points and we pick two more
points on each line.

∑
|λ|=5

σ(λ) · |Ui,λ| =
(
q2 + q + 1

2

) ∑
|λ|=2

∑
|µ|=2

σ([λ, µ]) · (L− {P})(λ) · (L′ − {P})(µ)

=

(
q2 + q + 1

2

)(∑
|λ|=2

σ(λ) · (L− {P})(λ)

)(∑
|µ|=2

σ(µ) · (L′ − {P})(µ)

)

=

(
q2 + q + 1

2

)
· π2(P1 − {P}) · π2(P1 − {P})

= 0

Since the points that are in general position are the only type of points that
do not result in zero we can pretend all points are in general position. (We
actually have to subtract the cases where the points are not in general po-
sition but since we would only subtract zero it makes no difference to the
result.)
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s4,sieve =
1

|PGL3(k)|

4∑
w=0

|P14−3w| · πw(P2)

=
1

|PGL3(k)|

(
|P14| · 1 + |P11| · −(q2 + q + 1) + |P8| · (q3 + q2 + q) + |P5| · −q3

)
= q6

For |λ| = 6 we will explicitly count |C4,λ|, the number of smooth degree 4
plane curves over k that have exactly a λ-tuple of singularities. If a plane
quartic has exactly six singularities then it consists of four lines. If these
four lines are a [14]-tuple then we count the number of curves as follows. We
first choose two k-points.

|P2([12])| =
(
q2 + q + 1

2

)
Then through each of these points we take two k-lines that do not pass
through the other point.

|(P1 − {P})([12])|2 =

(
q

2

)2

Now we have four k-lines that intersect in six points. However for every way
we pick an unordered pair of unordered pairs of lines from the four lines we
get the same four lines, so we have to divide by 3.

The cases for the other λ are computed in a similar fashion. For example
when we have a [11, 31]-tuple of lines we first take a k-line: q2 + q + 1.
And then we choose a conjugate 3-tuple of lines such that these lines do
not intersect each other in one k-point. To count this we first choose any
conjugate 3-tuple of lines and then subtract for every k-point P the number
of conjugate 3-tuples of lines through P .

1

3
(q6 + q3 − q2 − q)− (q2 + q + 1)

1

3
(q3 − q) =

1

3
(q6 − q5 − q4 + q3)

We will divide C4,λ into smaller parts. Since proper subscripts would overly
complicate the notation we will simply denote these parts by C for all λ.
This is quite vague but since we will only use it in tables it will be clear
enough what is meant.

To help see how we computed |C| we make the following distinction in all
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our tables. We write |(P1 − {P})([12])| =
(
q
2

)
and |(P1)([21])| = 1

2(q2 − q).

lines λ points τ(λ) |C|

[14] [16] 1 1
3

(
q2+q+1

2

)(
q
2

)2
[12, 21] [12, 22] 1 1

2

(
q2+q+1

2

)(
q
2

)
1
2(q2 − q)

[11, 31] [32] 1 (q2 + q + 1)1
3(q6 − q5 − q4 + q3)

[22] [12, 22] 1
(
q2+q+1

2

)
(1

2(q2 − q))2

[41] [21, 41] 1 1
4((q8 − q2)− (q2 + q + 1)(q4 − q2))

We get ∑ τ(λ) · |C|
|PGL3(k)|

=
1

24
+

1

8
+

1

3
+

1

4
+

1

4
= 1

where the sum is over the rows in the table.
So we have proven the following theorem.

Theorem 8.1. ([3, 2.13]) The number of smooth plane quartics over a finite
field Fq is given by

|C4(Fq)| = q6 + 1.

9 Smooth plane quintics.

For d = 5 we see that M = d(d−1)
2 = 10 and we choose N = 7. Now by

Lemma 6.8 we have s5,∞ = 0.

9.1 The sieve count.

We create a sieving partition.

9.1.1 All points in general position.

We say a tuple of points is in general position if there are no four points on
a line and no six points on a conic. Note that this includes reducible conics.
By Theorem 5.10 we find that any curve with seven or more singularities is
reducible. So a curve with seven or more singularities either has infinitely
many singularities or is of type [1, 1, 1, 1, 1], [2, 1, 1, 1], [2, 2, 1], [3, 1, 1], [3, 2],
or [4, 1].

Lemma 9.1. A plane quintic of type [1, 1, 1, 1, 1], [2, 1, 1, 1], [2, 2, 1], [3, 1, 1],
[3, 2], or [4, 1] cannot have seven singularities in general position.
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Proof. If a curve of type [1, 1, 1, 1, 1] has at least seven singular points then
either no three lines intersect in one point or there is precisely one point
where precisely three lines intersect. In either case there are four singular
points on a line.

If a curve of type [2, 1, 1, 1] has at least seven singular points then it has
four singular points on a line unless all three lines intersect in the same point
in which case there are six singular points on the conic.

If a curve of type [2, 2, 1] has at least seven singular points then there are
six singular points on a conic unless the conics intersect in precisely three
points in which case there are four singular points on the line.

If a curve of type [3, 1, 1] has at least seven singular points then there are
four singular points on a line.

If a curve of type [3, 2] has at least seven singular points then there are
six singular points on the conic.

If a curve of type [4, 1] has at least seven singular points then there are
four singular points on the line.

This means we can just do the dimension proof for the case where we have
six points in general position, since for any lower number of points the
conditions will be a subset of the conditions for some tuple of six points.

Lemma 9.2. If P1, . . . , P6 form a λ-tuple of points in general position where
λ is any distribution of weight six, then Vk(5, 2P1, . . . , 2P6) ∼= P2.

Proof. We get a P20 of quartics with 18 linear conditions imposed on it so
we need to proof that the conditions are all independent.

Because of 5.3 we can apply a k̄-linear transformation to map the λ-tuple
of points to (1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1), (1 : 1 : 1), (s : α : β), (t : γ : δ)
for some s, t, α, β, γ, δ. If s = t = 0 then we have four points on a line so
without loss of generality we can take s = 1. This leaves us with two cases:
t = 1 and t = 0. We start with t = 1.

We look at the matrix where the columns correspond to the monomials
of degree 5. For every point we get three rows: one with the values at the
monomials and two with the values at the derivatives of the monomials.
Here we take the derivatives to x and z.

We can remove the rows corresponding to (1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1)
while also removing the nine corresponding columns. Now we have a 9× 12
matrix; if we can remove three columns such that we get a square matrix with
nonzero determinant then the rank of the matrix is 9 and the conditions are
all independent. We remove the columns corresponding to y2z3, xyz3, x2z3

to get determinant

(αβγ − αβδ − αγδ + βγδ − βγ + αδ)4(α− γ)(α− 1)α2(γ − 1)γ2.

If αβγ−αβδ−αγδ+βγδ−βγ+αδ = 0 then there are six points on a conic.
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If α = γ then we remove the columns corresponding to y2z3, xyz3, y3z2

instead to get determinant

(α− β)(α− δ)(α− 1)4α6(β − δ)5.

If α = 0, 1 we have four points on a line and if β = δ then two of our points
are the same. If α = β then we remove columns y2z3, xyz3, xy2z2 to get

−(α− δ)6(α− 1)5α7.

If this is zero then we have four points on a line or two points are the same.
So we have proven that the conditions are independent if α = γ = β. By
symmetry we have also proven it for α = γ = δ and thus again by symmetry
for α = γ and β = δ.

If α = 1 then we remove columns y2z3, xyz3, y3z2 to get

−(βγ − δ)(β − 1)5(γ − δ)(γ − 1)4γ2δ2.

If γ = 1 we have four points on a line, if β = 1 then two of our points
are the same, and if δ = 0 then there are six points on a reducible conic.
From here on we replace the rows corresponding to derivatives to x by
rows corresponding to derivatives to y. If γ = 0 then we remove columns
y2z3, y3z2, xy2z2 to get

−(β − 1)5δ5.

If γ = δ then we remove columns y2z3, xyz3, xy2z2 to get

−(β − 1)6(γ − 1)5γ5.

If δ = βγ then we remove columns y2z3, xyz3, xy2z2 to get

(β − 1)6β3(γ − 1)5γ5.

If α = 0 then we remove columns y2z3, xyz3, x2yz2 to get

−β5(γ − 1)γ6(δ − 1)4.

If γ = 0 we have four points on a line, if β = 0 then two of our points are the
same, and if δ = 1 then there are six points on a reducible conic. If γ = 1
then we have a case symmetric to α = 1, γ = 0.

By symmetry we have also covered γ = 0, 1 so we are done with the case
where t = 1.

Now for t = 0 we again take derivatives to x and z and we remove columns
xyz3, xy2z2, x3z2 to get determinant

(α− β)5α2γ8δ5.

If α = 0 we have four on a line, if γ or δ is zero the two points are the same,
and if α = β then there are six points on a reducible conic.

We have shown that there are no dependencies.
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When we descripe a subset of tuples of points in our sieving partition, we do
not explicitly describe all the points. So when we say ”four points on a line”,
we leave implicit that there are up to three other points and that these three
other points are not covered by one of the other cases such as ”four points
on a line and three other points on another line”. Also when we say ”four
points on a line and three other points on another line” we are referring to
a total of seven different points. So the four points are different from each
other and the three points are also different from each other. Furthermore
our use of ”other” implies that the four points are distinct from the three
points.

We only show that the dimension is the expected one for the cases where
we have seven points in total. Since if the conditions corresponding to seven
points are independent then the conditions corresponding to a subset of the
seven points are also independent. We always remove the rows and columns
corresponding to (1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1) from our matrices since
their conditions can easily be separated from the others this way.

9.1.2 Five to seven points on a line.

The line is a double component and we are left with a P9 of cubics with at
most six conditions from the points not on the line. It is easy to see that
these conditions are independent.

9.1.3 Four points on a line and four points on another line.

Note that in cases like this where we have an equal number of points on each
line, the lines could be a conjugate 2-tuple. However since we use a k̄-linear
transformation on the points this does not affect the argument.

We map the intersection point of the lines to (0 : 0 : 1). The other points
are mapped to (1 : 0 : 0), (1 : 0 : 1), (α : 0 : 1) and (0 : 1 : 0), (0 : β : 1), (0 :
γ : 1) where α 6= 0, 1, β, γ 6= 0, and β 6= γ. The points determine both lines
so we get a space of cubics through six points. Looking at the conditions
for (α : 0 : 1), (0 : β : 1), (0 : γ : 1) and columns yz2, xz2, y2z, x2z we get
determinant

(α− 1)α(β − γ)βγ.

9.1.4 Four points on a line and three other points on another
line.

We map the four points on a line to (1 : 0 : 0), (0 : 0 : 1), (α : 0 : 1), (β : 0 : 1)
with α, β 6= 0 and α 6= β. The two other points we map to (0 : 1 : 0), (1 : 1 :
1), (γ : 1 : γ) such that γ 6= 0, 1. The points determine both lines so we get a
space of cubics through seven points. Looking at columns yz2, xz2, y2z, x2z
we get determinant

(α− β)αβ(γ − 1)γ.
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9.1.5 Three points on a line and three other points on another
line.

We map the points on the lines to (1 : 0 : 0), (0 : 0 : 1), (α : 0 : 1) and
(0 : 1 : 0), (1 : 1 : 1), (β : 1 : β) such that α 6= 0 and β 6= 0, 1. The other
point we map to (γ : 1 : δ) where γ 6= δ. The points determine both lines
so we get a space of cubics through seven points that have a singularity at
(γ : 1 : δ). Taking derivatives to x and z and removing the column for xz2

we get determinant
−α2(β − 1)β(γ − δ)3.

9.1.6 Four points on a line.

We map the four points on a line to (1 : 0 : 0), (0 : 0 : 1), (α : 0 : 1), (β :
0 : 1) with α, β 6= 0 and α 6= β. The two other points we map to (0 : 1 :
0), (1 : 1 : 1), (γ : 1 : δ) such that γ 6= δ. The points determine the line so
we get a space of quartics through seven points that have singularities at
(0 : 1 : 0), (1 : 1 : 1), (γ : 1 : δ). Taking derivatives to x and z and removing
the columns xz3, y2z2 we get determinant

(α− β)α2β2(γ − δ)5γ,

so c = 0 but then we remove xz3, xyz2 instead to get

(α− β)α2β2δ5,

so d = 0 but then we would have c = d.

9.1.7 Seven points on an irreducible conic.

The conic is a double component of the curve so we get a P2 of lines with
no conditions.

9.1.8 Six points on an irreducible conic.

We have six points P1, . . . , P6 on a conic C and one more point Q outside the
conic. Among P1, . . . , P6 there are no three points on a line since otherwise
C would be reducible.

The points determine the conic so we get a P9 of cubics with 9 conditions
on it. We first show that when we leave out the condition for P6 we get 8
independent conditions.

We map P1, . . . , P5 to (1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1), (1 : 1 : 1), (1 : α : β)
with α, β 6= 0, 1 and α 6= β. We also map Q to (1 : γ : δ) with the condition
that it is not on the conic, i.e. αβγ − αβδ − αγδ + βγδ − βγ + αδ 6= 0. We
take tangent conditions dy, dz. First we remove the columns for yz2, xz2 to
get determinant

−(αβγ − αβδ − αγδ + βγδ − βγ + αδ)(α− γ)(γ − 1)γ.
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If c = 0 then we remove columns yz2, xyz instead to get determinant

α2(β − 1)δ2.

If c = a then we remove columns yz2, xy2 to get determinant

−(β − δ)2δ(α− 1)2α.

Now if b = d then Q = (1 : a : b). If d = 0,then we remove columns yz2, y2z
to get determinant

−β2(α− 1)α2.

If c = 1 then we remove columns yz2, xy2 to get determinant

(α− 1)2β(δ − 1)2δ.

Now if d = 1 then Q = (1 : 1 : 1), so d = 0, now we remove columns yz2, y2z
to get determinant

−(α− 1)β.

We have shown that the determinant will not become zero and the 8 condi-
tions are independent.

Now if we can find a cubic that passes through P1, . . . , P5 and has a
singularity at Q but does not pass through P6 then the condition for P6 is
independent from the other 8 conditions. There is a point among P1, . . . , P5

that is not on the line through P6 and Q, without loss of generality we
assume this point is P5. Now taking the cubic given by the conic through
P1, . . . , P4, Q together with the line through P5, Q satisfies our demands.

9.1.9 Counting s5,sieve.

Because πw(P1) = 0 for w ≥ 4 and πw(P1 − {P}) = 0 for w ≥ 2 all the
counts become zero besides the count of the cases where all points are in
general position. As we did with quartics we can pretend all points are in
general position since subtracting the other cases is just subtracting zero.

s5,sieve =
1

|PGL3(k)|

6∑
w=0

|P20−3w| · πw(P2)

=
1

|PGL3(k)|

(
|P20| · 1 + |P17| · −(q2 + q + 1) + |P14| · (q3 + q2 + q) + |P11| · −q3

)
= q12

9.2 The explicit count.

We will count the different types of curves separately. First we note that
when |λ| = 8 we get

τ(λ) = σ(λ).
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When |λ| = 9 we get

τ(λ) = σ(λ)(1−
(
λ1

1

)
).

And when |λ| = 10 we get

τ(λ) = σ(λ)(1−
(
λ1

1

)
−
(
λ2

1

)
+

(
λ1

2

)
).

We will not list the cases where τ(λ) = 0 in our tables.

9.2.1 [1, 1, 1, 1, 1], three lines through one point Q.

We start with the case where we have a [15]-tuple of lines, i.e. all lines are
k-lines. We first take two k-points. Then we choose two k-lines through one
of the k-points and three k-lines through the other such that none of these
lines goes through the two chosen k-points. Together this gives us(

q2 + q + 1

2

)
2

(
q

2

)(
q

3

)
.

The other cases are computed in a similar matter. (In all cases Q has to be
a k-point.) We put the results in a table.

The values in the table should be multiplied with
(
q2+q+1

2

)
2.

lines λ points τ(λ) |C|

[15] [18] 1
(
q
2

)(
q
3

)
[13, 21], only one k-line through Q [14, 22] 1

(
q
2

)
q 1

2(q2 − q)

[13, 21], three k-lines through Q [12, 23] −1 1
2(q2 − q)

(
q
3

)
[11, 22] [12, 23] −1 1

2(q2 − q)q 1
2(q2 − q)

[12, 31] [12, 32] 1
(
q
2

)
1
3(q3 − q)

[21, 31] [12, 61] −1 1
2(q2 − q)1

3(q3 − q)

We get∑ τ(λ) · |C|
|PGL3(k)|

=
1

12
(q− 2) +

1

4
q− 1

12
(q− 2)− 1

4
q+

1

6
(q+ 1)− 1

6
(q+ 1) = 0

where the sum is over the rows in the table.
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9.2.2 [1, 1, 1, 1, 1], no three lines through one point.

For a [15]-tuple of lines we first take two k-points. Then we choose two
k-lines through one of the k-points and two k-lines through the other such
that none of these lines goes through the two chosen k-points. This gives(
q2+q+1

2

)(
q
2

)2
. Then we pick a point P on one of the lines and a line though P

but not through any of the 6 intersection points that we already have. This
gives 4(q − 2)(q − 3), which we then have to divide again by 4 since we will
get a chosen line four times (once for each of its intersection points with the
other lines). For every way we pick an unordered pair of unordered pairs of
lines from the five lines we get the same five lines, so we have to divide by 15.

We have a table with the results:

lines λ points τ(λ) |C|

[15] [110] 36 1
15

(
q2+q+1

2

)(
q
2

)2
(q − 2)(q − 3)

[11, 22] [12, 24] −4
(
q2+q+1

2

)
(1

2(q2 − q))2(q + 1)(q − 2)

[51] [52] 1 1
5(q10 + q5 − q2 − q)− 1

5(q2 + q + 1)(q5 − q)

We get∑ τ(λ) · |C|
|PGL3(k)|

=
3

10
(q − 2)(q − 3)− 1

2
(q + 1)(q − 2) +

1

5
(q2 + 1) = −q + 3

where the sum is over the rows in the table.

9.2.3 Tools for conics.

Definition 9.3. A curve C in Pn is called strange if there is a point S which
lies on all the tangent lines of C. We call S the strange point of C.

Lemma 9.4. Let C be a plane curve and S a point not on C. The following
are equivalent:

(i) C is strange with strange point S.

(ii) Every line through S is tangent to C.

And when (i) holds S is the unique strange point of C.

Proof. (i) ⇒ (ii) : Any line L through S intersects C in at least one point
P . The tangent of C at P goes through S so it is L.
(ii) ⇒ (i) : The line through S and any point on C is a tangent line. So S
lies on the tangent line of C at every point of C.

If C has another strange point S′ then all tangent lines pass through S
and S′. But there is only one line through two points so there is only one
tangent line. This means that C is a line, which contradicts the assumption
that S is not on C.
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Proposition 9.5. Given an irreducible plane k̄-conic C.

(i) If char(k) 6= 2 then for every point P that is not on the conic there
are precisely two lines through P that are tangent to the conic.

(ii) If char(k) = 2 then the conic is strange.

Proof. Without loss of generality we let the point be P = (0 : 0 : 1), we
have a k̄-conic C given by

ax2 + by2 + cz2 + dxy + exz + fyz

where a, b, c, d, e, f ∈ k̄ are the coefficients. Since P is not on C we know
that c 6= 0. A line through P is of the form rx − sy. We look at the lines
where r 6= 0 so we can take r = 1 and x = sy. This gives us

(as2 + ds+ b)y2 + (es+ f)yz + cz2.

Now for the char(k) 6= 2 case the equation will have discriminant

(es+ f)2 − 4c(as2 + ds+ b).

This will have a zero in s unless a, d, e are all zero which would mean that
C is not irreducible. Now we know that there is at least one tangent line
and we can apply a k̄-linear transformation such that it becomes the line y
tangent at (1 : 0 : 0). Then a, e are zero so we get precisely one more zero
from the above equation.

For the char(k) = 2 case we see that we get a double zero iff es + f = 0.
But this is only for the lines where r 6= 0. In general we get a double zero
iff es + rf = 0. If e = f = 0 then for all lines we get a double zero and
otherwise there is exactly one solution. So either P is strange or precisely
one tangent line of C passes through P .

We take two different points on C. The tangent lines of C at these points
are different and intersect in a point P ′ outside the conic. This point P ′

has more than one tangent line of C passing through it so it is the strange
point.

Lemma 9.6. Let char(k) 6= 2, C be an irreducible k-conic and P a k-point
that is not on C. We have two cases for the lines through P , there are

1. 2 k-lines tangent to C,
q−1

2 k-lines that intersect C in two k-points,
q−1

2 k-lines that intersect C in a conjugate 2-tuple of points,
(q−1)2

4 conjugate 2-tuples of lines that intersect C in two conjugate 2-
tuples of points,
q2−1

4 conjugate 2-tuples of lines that intersect C in a conjugate 4-tuple
of points.
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2. 1 k2-tuple of lines tangent to C,
q+1

2 k-lines that intersect C in two k-points,
q+1

2 k-lines that intersect C in a conjugate 2-tuple of points,
(q+1)(q−3)

4 conjugate 2-tuples of lines that intersect C in two conjugate
2-tuples of points,
q2−1

4 conjugate 2-tuples of lines that intersect C in a conjugate 4-tuple
of points.

When char(k) = 2 then the cases for the lines through P are:

1. P is a strange point for C.

2. 1 k-line tangent to C,
q
2 k-lines that intersect C in two k-points,
q
2 k-lines that intersect C in a 2-tuple of points,
q(q−2)

4 conjugate 2-tuples of lines that intersect C in two conjugate 2-
tuples of points,
q2

4 conjugate 2-tuples of lines that intersect C in a conjugate 4-tuple
of points.

Proof. Since the proofs are all similar and simple we just do the first case
for char(k) 6= 2: If there are two k-lines through P tangent to C, then there
are q − 1 other points on C. A point on C determines a k-line from it to P
and all non-tangent lines intersect C in two points. So we get q−1

2 k-lines

that intersect C in two k-points. Which leaves q+ 1− 2− q−1
2 = q−1

2 k-lines
that intersect C in a conjugate 2-tuple of points.

So there are q2−1
2 k2-lines that intersect C in two k2-points. From this we

subtract the q − 1 k-lines that intersect C in two k2-points. This leaves us

with 1
2( q

2−1
2 − (q− 1)) = 1

4(q− 1)2 conjugate 2-tuples of lines that intersect
C in two k2-points. Since a k2-tuple of lines will not intersect C in two k
points we have the answer.

There are q2−1
2 k2-lines that intersect C in a conjugate 4-tuple of points.

Lemma 9.7. Let char 6= 2, C be an irreducible k-conic.
There are

(
q+1

2

)
points outside C that are the intersection of two k-tangent

lines of the conic.
There are

(
q
2

)
points outside C that are the intersection of a conjugate 2-tuple

of tangent lines of the conic.

Proof. There are
(
q+1

2

)
ways to pick two different k-points of the conic and

there are 1
2(q2 − q) =

(
q
2

)
k2-tuples of points. The tangents of C at these

pairs of points are pairs of tangents that intersect in a point outside C.

Lemma 9.8. The number of irreducible k-conics is

(q2 + q + 1)q2(q − 1).
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Proof. There is a P5 of conics and every reducible k-conic is either a pair of
different k-lines, a conjugate 2-tuple of lines, or a double k-line.

q6 − 1

q − 1
−
(
q2 + q + 1

2

)
− 1

2
(q4 − q)− (q2 + q + 1) = (q2 + q + 1)q2(q − 1)

9.2.4 [2, 1, 1, 1], one of the lines is tangent to the conic.

The case where precisely one of the lines is tangent to the conic, no lines
intersect on the conic, and the three lines do not intersect in one point.

To get a [13]-tuple of lines and a [18]-tuple of points we first pick an irre-
ducible k-conic and a k-point Q on the conic: (q2+q+1)q2(q−1)(q+1). The
tangent line at Q is one of our three lines. We choose 4 other k-points on
the conic and 2 lines through those points:

(
q
4

)
3. From this we subtract the

cases where the resulting 3 lines intersect in one point. If char(k) 6= 2 then
through every k-point on the tangent line besides Q there are q−1

2 k-lines

that intersect the conic in two k-points: q
( q−1

2
2

)
. If char(k) = 2 then through

every non-strange k-point on the tangent line besides Q there are q
2 k-lines

that intersect the conic in two k-points: (q − 1)
( q

2
2

)
.

For char(k) 6= 2.
The values in the table should be multiplied with (q2 +q+1)q2(q−1)(q+1).

lines λ points τ(λ) |C|

[13] [18] 1
(
q
4

)
3− q

( q−1
2
2

)
[16, 21] −1

(
q
2

)
1
2(q2 − q)− q

(
q−1

2

)2

[14, 22] 1
( 1

2
(q2−q)

2

)
− q
( q−1

2
2

)
[11, 21] [12, 23] −1

( 1
2

(q2−q)
2

)
2− q (q−1)2

4

[12, 21, 41] 1 1
4(q4 − q2)− q q

2−1
4

We get

∑ τ(λ)·|C|
|PGL3(k)| = 1

8

(
(q − 3)2 − 2(q − 1)2 + (q − 1)2 − 2(q2 − 2q − 1) + 2(q + 1)(q − 1)

)
= 1

where the sum is over the rows in the table.

For char(k) 6= 2.
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The values in the table should be multiplied with (q2 +q+1)q2(q−1)(q+1).

lines λ points τ(λ) |C|

[13] [18] -
(
q
4

)
3− (q − 1)

( q
2
2

)
[16, 21] +

(
q
2

)
1
2(q2 − q)− (q − 1)

( q
2

)2
[14, 22] -

( 1
2

(q2−q)
2

)
− (q − 1)

( q
2
2

)
[11, 21] [12, 23] +

( 1
2

(q2−q)
2

)
2− (q − 1) q(q−2)

4

[12, 21, 41] - 1
4(q4 − q2)− (q − 1) q

2

4

We get∑ τ(λ) · |C|
|PGL3(k)|

=
1

8

(
(q−2)(q−4)−2q(q−2)+q(q−2)−2(q2−2q)+2q2

)
= 1

where the sum is over the rows in the table.

9.2.5 [2, 1, 1, 1], nine singularities.

We get nine singularities when none of the lines is tangent to the conic, no
lines intersect on the conic, and the three lines do not intersect in one point.

We will have to subtract the case where we have three lines through one
point so we count that first.

To get a [13]-tuple of lines and a [17]-tuple of points we pick an irreducible
k-conic and choose a k-point Q outside the conic that is the intersection of
two k-tangents of the conic. By Lemma 9.7 this gives (q2 + q + 1)q2(q −
1)
(
q+1

2

)
. Then we pick three lines through Q that intersect the conic in

two k-points:
( q−1

2
3

)
. We can also choose a k-point Q outside the conic

that is the intersection of a k2-tuple of tangents of the conic:
(
q
2

)
. And pick-

ing three lines through Q that intersect the conic in two k-points gives
( q+1

2
3

)
.

For char(k) 6= 2.
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The values in the table should be multiplied with (q2 + q + 1)q2(q − 1).

lines λ points |C|

[13] [17]
(
q+1

2

)( q−1
2
3

)
+
(
q
2

)( q+1
2
3

)
[15, 21]

(
q+1

2

)( q−1
2
2

) q−1
2 +

(
q
2

)( q+1
2
2

) q+1
2

[13, 22]
(
q+1

2

) q−1
2

( q−1
2
2

)
+
(
q
2

) q+1
2

( q+1
2
2

)
[11, 23]

(
q+1

2

)( q−1
2
3

)
+
(
q
2

)( q+1
2
3

)
[11, 21] [13, 22]

(
q+1

2

) q−1
2

(q−1)2

4 +
(
q
2

) q+1
2

(q+1)(q−3)
4

[13, 41]
(
q+1

2

) q−1
2

q2−1
4 +

(
q
2

) q+1
2

q2−1
4

[31] [11, 32] q2 1
6(q3 − q)

[11, 61] q2 1
6(q3 − q)

For char(k) = 2.
The values in the table should be multiplied with (q2+q+1)q2(q−1)(q2−1).

lines λ points |C|

[13] [17]
( q

2
3

)
[15, 21]

( q
2
2

) q
2

[13, 22] q
2

( q
2
2

)
[11, 23]

( q
2
3

)
[11, 21] [13, 22] q

2
q(q−2)

4

[13, 41] q
2
q2

4

[31] [11, 32] 1
6(q3 − q)

[11, 61] 1
6(q3 − q)

Now back to the case where there are no three lines through one point. For
a [13]-tuple of lines and a [19]-tuple of points we pick an irreducible k-conic
and choose six k-points on the conic: (q2 + q + 1)q2(q − 1)

(
q+1

6

)
. We then

choose three lines through these six points: 15.
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The values in the table should be multiplied with (q2 + q + 1)q2(q − 1).

lines λ points τ(λ) |C|

[13] [19] 8
(
q+1

6

)
15

[17, 21] −6
(
q+1

4

)
1
2(q2 − q)3

[15, 22] 4
(
q+1

2

)( 1
2

(q2−q)
2

)
[13, 23] −2

( 1
2

(q2−q)
3

)
[11, 21] [13, 23] −2

(
q+1

2

)( 1
2

(q2−q)
2

)
2

[13, 21, 41] 2
(
q+1

2

)
1
4(q4 − q2)

[31] [33] −1
( 1

3
(q3−q)

2

)
3

[31, 61] 1 1
6(q6 − q3 − q2 + q)

For char(k) 6= 2.

We get

∑ τ(λ) · |C|
|PGL3(k)|

=
1

6
(q−2)(q−3)(q−4)− 3

8
q(q−1)(q−2)+

1

4
(q+1)q(q−2)

− 1

24
(q−2)(q2−q−4)−1

4
(q+1)q(q−2)+

1

4
(q+1)q2−1

6
(q3−q−3)+

1

6
(q3+q−1)

−
(

1

6
(q−3)2−3

8
(q−1)2+

1

4
(q−1)2− 1

24
(q−3)2−1

4
(q2−2q−1)+

1

4
(q+1)(q−1)−1

6
q2+

1

6
q2

)
=

4(q − 1)− 1 = 4q − 5

where the sum is over the rows in the table minus the cases from the table
where there are three lines through a point.

For char(k) = 2.
The contribution of the case where we have three lines through one point is
given by

1

6
q(q − 2)(q − 4)− 3

8
q2(q − 2) +

1

4
q2(q − 2)− 1

24
q(q − 2)(q − 4)

− 1

4
q2(q − 2) +

1

4
q3 − 1

6
(q + 1)q(q − 1) +

1

6
(q + 1)q(q − 1) = 1

so the result is the same.

9.2.6 Tools for [2, 2, 1].

Let there be a λ-tuple of points P1, P2, P3, P4 such that no three points are
on a line. We write P for the pencil of conics through P1, P2, P3, P4. This
pencil of conics is a P1. Let L be a k-line not through any of P1, P2, P3, P4.
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For char 6= 2 we look at the separable finite morphism P1 → P1 where a
point Q on L gets sent to the conic in P through Q. This map has degree 2
so using Hurwitz’s theorem we see that there are two branch points. So L
is the tangent of two conics.

For char = 2 we choose coordinates such that P1, P2, P3, P4 are (1 : 0 :
0), (0 : 1 : 0), (0 : 0 : 1), (1 : 1 : 1). From a few simple computations it
follows that that the line x + y + z is tangent to all conics in P and that
all other lines that do not pass through the four points are the tangent of
precisely one conic in P.

We define for L and P1, P2, P3, P4:

• Ak, the number of pairs of k-lines in P(k) such that their intersection
is not on L.

• Bk, the number of conics in P(k) that L is tangent to.

• Xk, the number of reducible conics in P(k).

• Yk, the number of irreducible conics in P(k) that L is tangent to.

We also define the following:

• Ck, the number of irreducible conics in P(k) that intersect L in two
k-points.

• Ck2 , the number of irreducible conics in P(k) that intersect L in a
conjugate 2-tuple of points.

• Dk2 , the number of conjugate 2-tuples of irreducible conics in P(k2)
that intersect L two conjugate 2-tuples of points.

• Dk4 , the number of conjugate 2-tuples of irreducible conics in P(k2)
that intersect L a conjugate 4-tuple of points.

For Ck we note that any k-point on L gives a k-conic in P(k). We do not
want the conic to be reducible so we subtract 2Ak and we do not want a
conic that has L as tangent so we subtract Bk. Every conic that is not
tangent to L intersects L in two points so we have to divide by two.

Ck =
1

2
(q + 1− 2Ak −Bk)

The irreducible k-conics in P(k) intersect L in one k-point, two k-points, or
a conjugate 2-tuple of points. So we get

Ck2 = q + 1−Xk − Yk − Ck(L)

=
1

2
(q + 1 + 2Ak +Bk − 2Xk − 2Yk).
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If we take the k2-conics that intersect L in two k2-points and subtract the
cases where we get a k-conic, then we get the conjugate 2-tuples of points
that give conjugate 2-tuples of conics.

Dk2 =
1

4
(q2 + 1− 2Ak2 −Bk2 − 2Ck − 2Ck2)

=
1

4
(q2 − 2q − 1− 2Ak2 −Bk2 + 2Xk + 2Yk)

And lastly we get

Dk4 =
1

2
(q2 − q − (Xk2 −Xk)− (Yk2 − Yk)− 2Dk2)

=
1

4
(q2 + 1 + 2Ak2 +Bk2 − 2Xk2 − 2Yk2).

When λ is [14],[12, 21] or [22] all the reducible conics in P(k) are pairs
of conjugate 2-tuples of lines. This means that we have Xk2 = 3 and
Ak2 +Bk2 −Xk2 − Yk2 = 0

For char(k) 6= 2.
We have Bk2 = 2 and we use this to get

Dk2 =
1

4
(q2 − 2q − 1 +Bk2 + 2Xk + 2Yk − 2Xk2 − 2Yk2)

=
1

4
(q2 − 2q − 5 + 2Xk + 2Yk − 2Yk2)

and

Dk4 =
1

4
(q2 + 1−Bk2) =

1

4
(q2 − 1).

For λ = [14] there are three pairs of k-lines through P1, P2, P3, P4. We denote
their singular points by B1, B2, B3. If B1, B2, B3 are on a line then that line
would be the tangent of least three conics which is a contradiction.
So there are 3 k-lines through two of B1, B2, B3.
There are 3(q−3) k-lines through precisely one of B1, B2, B3 and not through
any of P1, P2, P3, P4.
There are (q − 3)2 k-lines not through any of B1, B2, B3, P1, P2, P3, P4.
There are q−2 irreducible conics in P(k) that each have q−3 non-intersection
k-points. This gives us (q − 3)(q − 2) k-tangents to irreducible conics in
P(k). From this we subtract 3(q − 3) for the lines that have only one k-
conic tangent to it. This leaves us with (q − 3)(q − 5) tangent points and
1
2(q − 3)(q − 5) lines that have two k-conics tangent to it. And we get
(q − 3)2 − 1

2(q − 3)(q − 5) = 1
2(q − 3)(q − 1) lines that have two k2-conics

tangent to it.
When we look at the types of lines and their properties we get the following

table:
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For λ = [14] we have Xk = 3.

number Ak Bk Yk Yk2 2Ck 2Ck2 4Dk2

3 1 2 0 0 q − 3 q − 1 q2 − 2q + 1

3(q − 3) 2 2 1 1 q − 5 q − 1 q2 − 2q + 1

1
2(q − 3)(q − 5) 3 2 2 2 q − 7 q − 1 q2 − 2q + 1

1
2(q − 1)(q − 3) 3 0 0 2 q − 5 q + 1 q2 − 2q − 3

Similarly we find for other distributions λ:
For λ = [12, 21] we have Xk = 1.

number Ak Bk Yk Yk2 2Ck 2Ck2 4Dk2

1 1 0 0 0 q − 1 q + 1 q2 − 2q − 3

q − 1 0 2 1 1 q − 1 q − 1 q2 − 2q − 3

1
2(q − 1)2 1 2 2 2 q − 3 q − 1 q2 − 2q − 3

1
2(q + 1)(q − 3) 1 0 0 2 q − 1 q + 1 q2 − 2q − 7

For λ = [22] we have Xk = 3.

number Ak Bk Yk Yk2 2Ck 2Ck2 4Dk2

1 1 2 0 0 q − 3 q − 1 q2 − 2q + 1

2 0 2 0 0 q − 1 q − 3 q2 − 2q + 1

2(q − 1) 1 2 1 1 q − 3 q − 3 q2 − 2q + 1

q − 3 0 2 1 1 q − 1 q − 5 q2 − 2q + 1

1
2(q − 1)(q − 3) 1 2 2 2 q − 3 q − 5 q2 − 2q + 1

1
2(q + 1)(q − 1) 1 0 0 2 q − 1 q − 3 q2 − 2q − 3

For λ = [11, 31] we have Ak = Ak2 = Xk = Xk2 = 0.

number Bk Yk Yk2 2Ck 2Ck2 4Dk2 4Dk4

1
2q(q + 1) 2 2 2 q − 1 q − 1 q2 − 2q + 1 q2 − 1

1
2q(q − 1) 0 0 2 q + 1 q + 1 q2 − 2q − 3 q2 − 1

For λ = [41] we have Ak = 0, Xk = 1, Xk2 = 3.
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number Ak2 Bk Yk Yk2 2Ck 2Ck2 4Dk2 4Dk4

1 1 0 0 0 q + 1 q − 1 q2 − 2q − 3 q2 − 1

q + 1 0 2 1 1 q − 1 q − 1 q2 − 2q + 1 q2 − 5

1
2(q + 1)(q − 1) 1 2 2 1 q − 1 q − 3 q2 − 2q + 1 q2 − 5

1
2(q + 1)(q − 1) 1 0 0 2 q + 1 q − 1 q2 − 2q − 3 q2 − 5

For char(k) = 2.
We do not consider the line that is tangent to all concis in P. We have
Bk = Bk2 = 1 and Yk = Yk2 . When λ is [14],[12, 21] or [22] we use Xk2 = 3
and Ak2 +Bk2 −Xk2 − Yk2 = 0 to get

Dk2 =
1

4
(q2 − 2q − 6 + 2Xk), and Dk4 =

1

4
q2.

For λ = [14] there are three pairs of k-lines through P1, P2, P3, P4. As above
we denote their singular points by B1, B2, B3. The points B1, B2, B3 all lie
on the line x + y + z. There are 3(q − 2) k-lines through one of B1, B2, B3

and not through any of P1, P2, P3, P4. There are (q − 2)(q − 4) k-lines not
through any of B1, B2, B3, P1, P2, P3, P4.

For λ = [14] we have Xk = 3, so Dk2 = 1
4(q2 − 2q).

number Ak Yk 2Ck 2Ck2

3(q − 2) 2 0 q − 4 q

(q − 2)(q − 4) 3 1 q − 6 q

For λ = [12, 21] we have Xk = 1, so Dk2 = 1
4(q2 − 2q − 4).

number Ak Yk 2Ck 2Ck2

q − 2 0 0 q q

q(q − 2) 1 1 q − 2 q

For λ = [22] we have Xk = 3, so Dk2 = 1
4(q2 − 2q).

number Ak Yk 2Ck 2Ck2

q − 2 0 0 q q − 4

2q 1 0 q − 2 q − 2

q(q − 2) 1 1 q − 2 q − 4
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For λ = [11, 31] we have Ak = Ak2 = Xk = Xk2 = 0, Yk = 1.

number 2Ck 2Ck2 4Dk2 4Dk4

(q + 1)(q − 1) q q q2 − 2q q2

For λ = [41] we have Ak = 0, Xk = 1, Xk2 = 3.

number Ak2 Yk 2Ck 2Ck2 4Dk2 4Dk4

q 0 0 q q q2 − 2q q2 − 4

q2 1 1 q q − 2 q2 − 2q q2 − 4

When counting the number of ways we can choose a λ-tuple of four points
it turns out that it is given by

ν(λ) · |PGL3(k)|.

Where ν(λ) is given by

λ [14] [12, 21] [11, 31] [22] [41]

ν(λ) 1
24

1
4

1
3

1
8

1
4

9.2.7 [2, 2, 1], eight singularities and the conics are definined over
k.

We get eight singularities when the line intersects each conic in 2 points and
the conics intersect in 4 other points.
For a [18]-tuple of points we pick four k-points P1, . . . , P4 such that there
are no three on a line.

ν([18]) · |PGL3(k)| = 1

24
(q + 1)q3(q2 + q + 1)(q2 − 2q + 1)

We then use the tables above to choose a line and choose two conics through
P1, P2, P3, P4 such that each conic intersects the line in two k-points.
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For char(k) 6= 2.
The values in the table should be multiplied with (q+1)q3(q−1)2(q2+q+1).

4 points λ points τ(λ)ν(λ) |C|

[14] [18] 1
24

3
( 1

2
(q−3)

2

)
+ 3(q − 3)

( 1
2
(q−5)

2

)
+ 1

2
(q − 3)(q − 5)

( 1
2
(q−7)

2

)
+ 1

2
(q − 1)(q − 3)

( 1
2
(q−5)

2

)
[16, 21] − 1

24

3 1
2
(q − 3) 1

2
(q − 1) + 3(q − 3) 1

2
(q − 5) 1

2
(q − 1)

+ 1
2
(q − 3)(q − 5) 1

2
(q − 7) 1

2
(q − 1)

+ 1
2
(q − 1)(q − 3) 1

2
(q − 5) 1

2
(q + 1)

[14, 22] 1
24

3
( 1

2
(q−1)

2

)
+ 3(q − 3)

( 1
2
(q−1)

2

)
+ 1

2
(q − 3)(q − 5)

( 1
2
(q−1)

2

)
+ 1

2
(q − 1)(q − 3)

( 1
2
(q+1)

2

)
[12, 21] [16, 21] − 1

4

( 1
2
(q−1)

2

)
+ (q − 1)

( 1
2
(q−1)

2

)
+ 1

2
(q − 1)2

( 1
2
(q−3)

2

)
+ 1

2
(q + 1)(q − 3)

( 1
2
(q−1)

2

)
[14, 22] 1

4

1
2
(q − 1) 1

2
(q + 1) + (q − 1) 1

2
(q − 1) 1

2
(q − 1)

+ 1
2
(q − 1)2 1

2
(q − 3) 1

2
(q − 1)

+ 1
2
(q + 1)(q − 3) 1

2
(q − 1) 1

2
(q + 1)

[12, 23] − 1
4

( 1
2
(q+1)

2

)
+ (q − 1)

( 1
2
(q−1)

2

)
+ 1

2
(q − 1)2

( 1
2
(q−1)

2

)
+ 1

2
(q + 1)(q − 3)

( 1
2
(q+1)

2

)
[11, 31] [15, 31] 1

3
1
2
q(q + 1)

( 1
2
(q−1)

2

)
+ 1

2
q(q − 1)

( 1
2
(q+1)

2

)
[13, 21, 31] − 1

3
1
2
q(q + 1) 1

2
(q − 1) 1

2
(q − 1) + 1

2
q(q − 1) 1

2
(q + 1) 1

2
(q + 1)

[11, 22, 31] 1
3

1
2
q(q + 1)

( 1
2
(q−1)

2

)
+ 1

2
q(q − 1)

( 1
2
(q+1)

2

)
[22] [14, 22] 1

8

( 1
2
(q−3)

2

)
+ 2

( 1
2
(q−1)

2

)
+ 2(q − 1)

( 1
2
(q−3)

2

)
+ (q − 3)

( 1
2
(q−1)

2

)
+ 1

2
(q − 1)(q − 3)

( 1
2
(q−3)

2

)
+ 1

2
(q + 1)(q − 1)

( 1
2
(q−1)

2

)

[12, 23] − 1
8

1
2
(q − 3) 1

2
(q − 1) + 2 1

2
(q − 1) 1

2
(q − 3)

+2(q − 1) 1
2
(q − 3) 1

2
(q − 3) + (q − 3) 1

2
(q − 1) 1

2
(q − 5)

+ 1
2
(q − 1)(q − 3) 1

2
(q − 3) 1

2
(q − 5)

+ 1
2
(q + 1)(q − 1) 1

2
(q − 1) 1

2
(q − 3)

[24] 1
8

( 1
2
(q−1)

2

)
+ 2

( 1
2
(q−3)

2

)
+ 2(q − 1)

( 1
2
(q−3)

2

)
+ (q − 3)

( 1
2
(q−5)

2

)
+ 1

2
(q − 1)(q − 3)

( 1
2
(q−5)

2

)
+ 1

2
(q + 1)(q − 1)

( 1
2
(q−3)

2

)
[41] [14, 41] − 1

4

( 1
2
(q+1)

2

)
+ (q + 1)

( 1
2
(q−1)

2

)
+ 1

2
(q + 1)(q − 1)

( 1
2
(q−1)

2

)
+ 1

2
(q + 1)(q − 1)

( 1
2
(q+1)

2

)
[12, 21, 41] 1

4

1
2
(q + 1) 1

2
(q − 1) + (q + 1) 1

2
(q − 1) 1

2
(q − 1)

+ 1
2
(q + 1)(q − 1) 1

2
(q − 1) 1

2
(q − 3)

+ 1
2
(q + 1)(q − 1) 1

2
(q + 1) 1

2
(q − 1)

[22, 41] − 1
4

( 1
2
(q−1)

2

)
+ (q + 1)

( 1
2
(q−1)

2

)
+ 1

2
(q + 1)(q − 1)

( 1
2
(q−3)

2

)
+ 1

2
(q + 1)(q − 1)

( 1
2
(q−1)

2

)
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We get

∑ τ(λ) · |C|
|PGL3(k)|

=
1

192

(
(q2−9q+17)(q−3)(q−5)−2(q2−5q+3)(q−1)(q−3)+(q2−q+1)(q−1)(q−3)

−6(q2−3q+1)(q−1)(q−3)+12(q3−2q2−1)(q−1)−6(q2−3q+1)(q+1)(q−1)+8(q+1)q(q−1)(q−2)

−16q2(q+1)(q−1)+8(q+1)q(q−1)(q−2)+3(q3−2q2−2q−1)(q−3)−6(q2−q−1)(q−1)(q−3)

+3(q2−q−1)(q+1)(q−1)−6(q2−q−1)(q+1)(q−1)+12(q2−q+1)(q+1)(q−1)−6(q2−q−1)(q−1)(q−3)

)
=

− 1

2
(q − 1)

where the sum is over the rows in the table.

For char(k) = 2.
The values in the table should be multiplied with (q+1)q3(q−1)2(q2+q+1).

4 points λ points τ(λ)ν(λ) |C|

[14] [18] 1
24 3(q − 2)

( 1
2

(q−4)
2

)
+ (q − 2)(q − 4)

( 1
2

(q−6)
2

)
[16, 21] − 1

24 3(q − 2)1
2(q − 4)1

2q + (q − 2)(q − 4)1
2(q − 6)1

2q

[14, 22] 1
24 3(q − 2)

( 1
2
q

2

)
+ (q − 2)(q − 4)

( 1
2
q

2

)
[12, 21] [16, 21] −1

4 (q − 2)
( 1

2
q

2

)
+ q(q − 2)

( 1
2

(q−2)
2

)
[14, 22] 1

4 (q − 2)1
2q

1
2q + q(q − 2)1

2(q − 2)1
2q

[12, 23] −1
4 (q − 2)

( 1
2
q

2

)
+ q(q − 2)

( 1
2
q

2

)
[11, 31] [15, 31] 1

3 (q + 1)(q − 1)
( 1

2
q

2

)
[13, 21, 31] −1

3 (q + 1)(q − 1)1
2q

1
2q

[11, 22, 31] 1
3 (q + 1)(q − 1)

( 1
2
q

2

)
[22] [14, 22] 1

8 (q − 2)
( 1

2
q

2

)
+ 2q

( 1
2

(q−2)
2

)
+ q(q − 2)

( 1
2

(q−2)
2

)
[12, 23] −1

8

(q − 2)1
2q

1
2(q − 4) + 2q 1

2(q − 2)1
2(q − 2)

+q(q − 2)1
2(q − 2)1

2(q − 4)

[24] 1
8 (q − 2)

( 1
2

(q−4)
2

)
+ 2q

( 1
2

(q−2)
2

)
+ q(q − 2)

( 1
2

(q−4)
2

)
[41] [14, 41] −1

4 q
( 1

2
q

2

)
+ q2

( 1
2
q

2

)
[12, 21, 41] 1

4 q 1
2q

1
2q + q2 1

2q
1
2(q − 2)

[22, 41] −1
4 q

( 1
2
q

2

)
+ q2

( 1
2

(q−2)
2

)
We get

43



∑ τ(λ) · |C|
|PGL3(k)|

=
1

192

(
+(q−2)(q−4)(q−5)(q−6)−2q(q−2)(q−3)(q−4)+q(q−1)(q−2)2

−6q(q−2)2(q−3)+12q2(q−1)(q−2)−6q(q+1)(q−2)2+8q(q+1)(q−1)(q−2)−16q2(q+1)(q−1)

+8q(q+1)(q−1)(q−2)+3q(q2−3q−2)(q−2)−6q2(q−2)(q−3)+3(q2−3q−6)(q−2)(q−4)

− 6q2(q + 1)(q − 2) + 12q3(q − 1)− 6q2(q − 2)(q − 3)

)
=

− 1

2
(q − 1)

where the sum is over the rows in the table.

9.2.8 [2, 2, 1], eight singularities with a conjugate 2-tuple of conics.

For char(k) 6= 2.
The values in the table should be multiplied with 1

4(q+1)q3(q−1)2(q2+q+1).

4 points λ points τ(λ)ν(λ) |C|

[14] [14, 22] 1
24

1
2(q2 − 2q + 3)(q2 − 2q + 1)

+1
2(q − 1)(q − 3)(q2 − 2q − 3)

[14, 41] − 1
24 (q2 − 3q + 3)(q2 − 1)

[12, 21] [12, 23] −1
4

1
2(q2 + 1)(q2 − 2q − 3)

+1
2(q + 1)(q − 3)(q2 − 2q − 7)

[12, 21, 41] 1
4 (q2 − q − 1)(q2 − 1)

[11, 31] [11, 31, 22] 1
3

1
2(q2 + q)(q2 − 2q + 1)

+1
2(q2 − q)(q2 − 2q − 3)

[11, 31, 41] −1
3 q2(q2 − 1)

[22] [24] 1
8

1
2(q2 + 2q − 1)(q2 − 2q + 1)

+1
2(q + 1)(q − 1)(q2 − 2q − 3)

[22, 41] −1
8 (q2 + q − 1)(q2 − 1)

[41] [22, 41] −1
4

1
2(q + 1)2(q2 − 2q + 1)

+1
2(q2 + 1)(q2 − 2q − 3)

[42] 1
4 (q2 − 1) + (q2 + q)(q2 − 5)
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We get

∑ τ(λ) · |C|
|PGL3(k)|

=
1

96

(
+(q3−4q2 +4q+3)(q−1)−(q2−3q+3)(q+1)(q−1)

−6(q2−q−3)(q+1)(q−3)+6(q2−q−1)(q+1)(q−1)+8(q+1)q(q−1)(q−2)−8(q+1)q2(q−1)

+3(q3−4q−1)(q−1)−3(q2+q−1)(q+1)(q−1)−6(q3−2q2−1)(q+1)+6(q3−4q−1)(q+1)

)
=

− 1

2
(q + 1)

where the sum is over the rows in the table.

For char(k) = 2.
The values in the table should be multiplied with 1

4(q+1)q3(q−1)2(q2+q+1).

4 points λ points τ(λ)ν(λ) |C|

[14] [14, 22] 1
24 (q − 1)(q − 2)(q2 − 2q)

[14, 41] − 1
24 (q − 1)(q − 2)q2

[12, 21] [12, 23] −1
4 (q + 1)(q − 2)(q2 − 2q − 4)

[12, 21, 41] 1
4 (q + 1)(q − 2)q2

[11, 31] [11, 31, 22] 1
3 (q + 1)(q − 1)(q2 − 2q)

[11, 31, 41] −1
3 (q + 1)(q − 1)q2

[22] [24] 1
8 (q + 2)(q − 1)(q2 − 2q)

[22, 41] −1
8 (q + 2)(q − 1)q2

[41] [22, 41] −1
4 (q2 + q)(q2 − 2q)

[42] 1
4 (q2 + q)(q2 − 4)

We get

∑ τ(λ) · |C|
|PGL3(k)|

=
1

96

(
+(q − 1)(q − 2)(q2 − 2q)− (q − 1)q2(q − 2)

−6(q+1)(q−2)(q2−2q−4)+6(q+1)q2(q−2)+8(q+1)(q−1)(q2−2q)−8q2(q+1)(q−1)

+3(q+2)q(q−1)(q−2)−3(q+2)q2(q−1)−6(q+1)q2(q−2)+6(q+2)(q+1)q(q−2)

)
=

− 1

2
(q + 1)

where the sum is over the rows in the table.

9.2.9 [3, 1, 1], eight singularities.

We get eight singularities when the lines each intersect the cubic in three
points and intersect each other outside the conic.
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Lemma 9.9. If we have two different lines L,L′ and three point on either
line that do not include the intersection of L and L′. Then for a point P
outside the lines there is exactly one cubic that goes through the six points
on the lines and has a singularity at P . This cubic is reducible if and only
if there is a line through P and two of the six points on the line.

Proof. There is a P9 of cubics and we have six conditions for the conics plus
three for the singularity at P . It is easy to see that these conditions are all
independent.

If there is a line J through P and two of the six points on the line then
the intersection of the cubic and J is four. So by Bézout the line is part of
the cubic.

Now for the other way around: If L (or L′) is part of the cubic then we
are left with a conic that intersects L′ (or L) in three points so both L and
L′ are part of the cubic and then P can no longer be singular. So L and L′

are not part of the cubic. If the cubic is reducible then it consists of a line
J and a (possibly reducible) conic. This conic intersects L and L′ in four of
the six points. So J intersects L and L′ in the other two points.

For a [12]-tuple of lines and a [18]-tuple of points we choose two k-lines and
a k-point Q outside those lines. This gives(

q2 + q + 1

2

)
(q2 − q) =

1

2
(q2 + q + 1)(q + 1)q2(q − 1).

We then choose three k-points on each line such that there are no two points
on a line through Q:

(
q
3

)(
q−3

3

)
. By Lemma 9.9 this gives us an irreducible

conic through the six points on the lines and with a singularity at Q.

The values in the table should be multiplied with 1
2(q2+q+1)(q+1)q2(q−1).

lines λ points τ(λ) |C|

[12] [18] +1
(
q
3

)(
q−3

3

)
[16, 21] −1 2

(
q
3

)
(q − 3)1

2(q2 − q)

[14, 22] +1 q 1
2(q2 − q)(q − 1)1

2(q2 − q − 2)

[15, 31] +1 2
(
q
3

)
1
3(q3 − q)

[12, 32] +1 1
3(q3 − q)1

3(q3 − q − 3)

[13, 21, 31] −1 21
3(q3 − q)1

2(q2 − q)q

[21] [12, 23] −1 1
6(q2 − q)(q2 − q − 2)(q2 − q − 4)

[12, 21, 41] +1 (q2 − q)1
2(q4 − q2)

[12, 61] −1 1
3(q6 − q2)− 1

3(q3 − q)
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We get

∑ τ(λ) · |C|
|PGL3(k)|

=
1

72

(
+(q−2)(q−3)(q−4)(q−5)−6q(q−1)(q−2)(q−3)

+ 9(q + 1)q(q − 1)(q − 2) + 4(q + 1)q(q − 1)(q − 2) + 4(q3 − q − 3)(q + 1)

−12(q+1)q2(q−1)−6(q2−q−4)(q+1)(q−2)+18(q+1)q2(q−1)−12(q3+q−1)(q+1)

)
=

− 2q + 1

where the sum is over the rows in the table.

9.3 Results.

We add everything from the explicit counting together to get

s5,explicit = 0 − q + 3 + 1 + 4q − 5 − 1

2
(q − 1) − 1

2
(q + 1) − 2q + 1 = 0.

Now we just add s5,explicit and s5,sieve together which gives us the end result.

Theorem 9.10. The number of smooth plane quintics over C5(Fq) is given
by

|C5(Fq)| = q12.

10 Counting plane quintics with an ordinary sin-
gularity.

We continue where we left of at the end of section 4. We want to count
|T (k)|
|PGL3(k)| , where we remember that T is the set of plane conics with exactly
one singularity which is either an ordinary node or an ordinary cusp. We
can divide T (k) into three subsets:

1. Tsplit(k), the set of plane quintics over k that have precisely one sin-
gularity that is a split node (i.e. the tangents are defined over k).

2. Tnon-split(k), the set of plane quintics over k that have precisely one
singularity that is a non-split node (i.e. the tangents are a conjugate
2-tuple).

3. Tcusp(k), the set of plane quintics over k that have precisely one sin-
gularity that is a cusp.

We have
|T (k)| = |Tsplit(k)|+ |Tnon-split(k)|+ |Tcusp(k)|.

Let C be a curve in T and let P be its singular point. The Frobenius
map sends a singularity to a singularity, so P is a k-point as it is the only
singularity of C. We can apply a k-linear coordinate change such that P

47



gets mapped to (0 : 0 : 1) and the tangent lines at P become certain fixed
lines L,L′. What these fixed lines are depends on whether we are dealing
with a split node, a non-split node, or a cusp.

Definition 10.1. Let P = (0 : 0 : 1) and let L,L′ be two lines through P .
We define TP ;L;L′ to be the set of plane quintics that have P as their only
singularity, such that P has multiplicity 2 and the tangents at P are given
by the lines L,L′. We define GP ;L;L′ to be the subgroup of PGL3(k) that
fixes P and fixes {L,L′}.

Note that GP ;L;L′ is the group that fixes TP ;L;L′ .
Any curve in Tsplit(k) has a singularity at a k-point with two distinct k-

tangents. This means we can apply a k-linear coordinate change such that
the singularity is the point P = (0 : 0 : 1) and the tangents at P are given
by the lines x, y. And any curve in TP ;L;L′ is part of Tsplit(k) so we get

|Tsplit(k)|
|PGL3(k)|

=
|TP ;x;y|
|GP ;x;y|

.

The matrices that fix P , x and y have the form
a 0 0

0 b 0

c d 1


where ab 6= 0. There are q2·(q−1)2 = q4−2q3+q2 such matrices. We can also
permute x and y which adds a factor two so GP ;x;y contains 2(q4−2q3 + q2)
matrices.

We do the equivalent thing for non-split nodes. Just like with a split node
we fix the point P = (0 : 0 : 1) and two tangents at the point. Let α be an
element in k2 that is not in k. We take as tangents x + αy, x + F(α)y and
we get

|Tnon-split(k)|
|PGL3(k)|

=
|TP ;x+αy;x+F(α)y|
|GP ;x+αy;x+F(α)y|

.

If char(k) 6= 2 then the field k has a quadratic nonresidue r and we can take
α such that α2 = r. The matrices that fix P , x + αy and x + F(α)y have
the form 

a rb 0

b a 0

c d 1


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where a 6= 0 or b 6= 0.
If char(k) = 2 then we get matrices

a α·F(α)·(a+b)
α+F(α) 0

a+b
α+σ(α) b 0

c d 1


where a 6= 0 or b 6= 0.
In either case we get q2 · (q2 − 1) = q4 − q2 matrices. We can also permute
the two tangents so GP ;x+αy;x+F(α)y contains 2(q4 − q2) matrices.

Now for cusps we can fix the point P and the double tangent y at P .
However this is not enough since a curve in TP,y,y can have a cusp that is
not ordinary. In fact the cusp is ordinary if and only if the coefficient of
x3z2 is nonzero.

Definition 10.2. We use Cx3z2 6=0 to denote the set of plane quintics that
have a nonzero coefficient for x3z2 in their defining polynomial, and Cx3z2=0

to denote the set of plane quintics that have a zero coefficient for x3z2 in
their defining polynomial.

It is easy to see that GP,y,y fixes not only TP,y,y but also TP,y,y ∩ Cx3z2 6=0.
This gives us

|Tcusp(k)|
|PGL3(k)|

=
|TP,y,y ∩ Cx3z2 6=0|

|GP,y,y|
.

The matrices that fix P and y have the form
a b 0

0 c 0

d e 1


where ac 6= 0. There are q3 · (q − 1)2 = q5 − 2q4 + q3 such matrices. Here
permuting the tangents has no effect so GP,y,y contains q5−2q4+q3 matrices.

Now we will introduce some notation so we can count |TP ;L;L′ | using a
modification of the partial sieve method.

Definition 10.3. Let P1, . . . , Pn be points in P2 − {P} and let r1, . . . rn
be natural numbers. Also let P = (0 : 0 : 1) and let L,L′ be two lines
through P . We define CP ;L;L′ to be the set of plane quintics that have a
singularity at P of multiplicity two, such that the tangents at P are given by
the lines L,L′. We define Vk(d, 2P ;L;L′, r1P1, . . . , rnPn) to be the union of
Vk(d, 3P, r1P1, . . . , rnPn) and of the subset of Vk(d, 2P, r1P1, . . . , rnPn) that
consists of curves that have multiplicity 2 at P and tangents L,L′ at P .
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The set Vk(d, 2P ;L;L′, r1P1, . . . , rnPn) is the result of applying two linear
conditions to Vk(d, 2P, r1P1, . . . , rnPn). And taking the intersection with
Cx3z2=0 is equivalent to applying yet another linear condition. Similar to
lemma 5.3 we get the following lemma.

Lemma 10.4. If we have points {P1, . . . , Pn} such that for every 1 ≤ i ≤ n
there is a j such that F(Pi) = Pj and ri = rj, and the Frobenius map also
fixes {L,L′}, then

dimk Vk(d, 2P ;L;L′, r1P1, . . . , rnPn) = dimk Vk(d, 2P ;L;L′, r1P1, . . . , rnPn),

dimk(Vk(5, . . .) ∩ Cx3z2=0) = dimk(Vk(5, . . .) ∩ Cx3z2=0).

We will now describe the sieving for split nodes. We first count all curves
in CP ;x;y. ∑

S∈(P2−{P})([])

|Vk(5, 2S) ∩ CP ;x;y| = |CP ;x;y|

Then we subtract all curves in CP ;x;y that have a singularity outside P .∑
S∈(P2−{P})([11])

|Vk(5, 2S) ∩ CP ;x;y|

We can go on like this as before to get our sieving sum. We get

ss
sieve :=

1

|GP ;x;y|
∑
|λ|≤N

(
σ(λ) ·

∑
S∈(P2−{P})(λ)

|Y s(S)|
)
,

sns
sieve :=

1

|GP ;x+αy;x+F(α)y|
∑
|λ|≤N

(
σ(λ) ·

∑
S∈(P2−{P})(λ)

|Y ns(S)|
)
,

sc
sieve :=

1

|GP,y,y|
∑
|λ|≤N

(
σ(λ) ·

∑
S∈(P2−{P})(λ)

|Y c(S)|
)
.

where

Y s(S) = Vk(5, 2P ;x; y, 2S)− Vk(5, 3P, 2S),

Y ns(S) = Vk(5, 2P ;x+ αy;x+ F(α)y, 2S)− Vk(5, 3P, 2S),

Y c(S) = (Vk(5, 2P ; y; y, 2S)− Vk(5, 3P, 2S)) ∩ Cx3z2 6=0.

The intersection with Cx3z2 6=0 poses no problem because we have

Vk(5, . . .) ∩ Cx3z2 6=0 = Vk(5, . . .)− Vk(5, . . .) ∩ Cx3z2=0.

As before we can compute these sums using sieve partitions.

Definition 10.5. A sieving partition for split nodes is a partition of
⋃
|λ|≤N (P2−

{P})(λ) into subsets U0, . . . , Un together with numbers wi, ui ∈ Z≥0 for

0 ≤ i ≤ n such that if S ∈ Ui then we have |Ŝ| = wi and |Y s| = ui. We also
write Ui,λ := {S ∈ Ui|Ŝ = λ}.

We get a similar definition for non-split nodes and cusps.
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For split nodes we get the explicit count

ss
explicit :=

1

|GP ;x;y|
∑

N<|λ|≤M

τ(λ)|C5,P ;x;y,λ|

where CP ;x;y,λ ⊂ CP ;x;y is the set of curves that have exactly a λ-tuple of
singularities besides P . Since GP ;x;y is the group that fixes CP ;x;y,λ we can
instead pick a curve that does not have a fixed point at P and then choose
a split node on it. This means we get

ss
explicit :=

1

|PGL3(k)|
∑

N<|λ|≤M

τ(λ)
∑

C∈C5,[[11],λ]

#s(C)

where #s(C) is the number of ordinary split nodes on C. We get equivalent
definitions for sns

explicit and sc
explicit using #ns(C) and #c(C).

Note that M = 5(5−1)
2 − 1 = 9 is one lower than before since we already

have the singularity at P .
Let ss

∞, s
ns
∞, s

c
∞ be the corrections for curves with an infinite number of

singularities. Similar to lemma 6.8 we get

Lemma 10.6. For N ≥ 4 the numbers ss∞, s
ns
∞, s

c
∞ are all zero.

For our sieving we choose N = 5, which means we can ignore the curves
with an infinite number of singularities.

10.1 The sieve count for nodes.

We first make a sieving partition that works for both split nodes and non-
split nodes. We write L,L′ for the tangent lines at P . For split nodes these
are x, y and for non-split nodes they are x+ αy, x+ σ(α)y.

Both Y s(S) and Y ns(S) are given by Vk(5, 2P ;L;L′, 2S) − Vk(5, 3P, 2S).
The two linear conditions for L,L′ will always be conditions on the coeffi-
cients of x2z3, xyz3, y2z3. So if we can do our dimension proofs for P and the
points in S as before but without using the columns corresponding to the
coefficients of x2z3, xyz3, y2z3 then the tangent conditions are independent
of the other conditions. It is sufficient to prove the cases where we have P
and five other points because when we have less points it can be realized as
a subset of these cases.

10.1.1 P and five other points in general position.

We say the six points are in general position if there are no four points
on a line, no six on an irreducible conic, and no three on a line through
P . Because of 10.4 we can apply a k̄-linear transformation to map the five
points to (1 : 0 : 0), (0 : 1 : 0), (1 : 1 : 1), (1 : α : β), (1 : γ : δ) while
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leaving P fixed, for some α, β, γ, δ where α, γ 6= 0, 1 and α 6= γ. We also
have αβγ − αβδ − αγδ + βγδ − βγ + αδ 6= 0 for otherwise there would be
six on a conic. The lines L,L′ will also get transformed but this is fine
since it does not change the fact that their conditions on the coefficients of
y2z3, xyz3, x2z3.

We take derivatives to x and z and we remove the columns corresponding
to y2z3, xyz3, x2z3 to get determinant

(αβγ − αβδ − αγδ + βγδ − βγ + αδ)4(α− γ)(α− 1)α2(γ − 1)γ2.

So the conditions are independent.

10.1.2 P and at least four more points on a line.

The line is a double component which contradicts the fact that P is an
ordinary node. So Vk(5, 2P ;L;L′, 2S)− Vk(5, 3P, 2S) = ∅.

10.1.3 Five points on a line and P outside the line.

We map the four points on the line to (0 : 1 : 0), (1 : 0 : 0), (1 : α :
0), (1 : β : 0), (1 : γ : 0) with α, β, γ all different and nonzero. The points
determine the line so we get a space of quartics. Here the fact that we
don’t use x2z3, y2z3, xyz3 corresponds to not using x2z2, y2z2, xyz2. Taking
derivatives to x and z and taking the columns for xy3, x2y2, x3y, x4 we get
determinant

−(α− β)(α− γ)α(β − γ)βγ.

10.1.4 Four points on a line and P and another point on another
line.

We map the four points on the line to (1 : 0 : 0), (0 : 1 : 0), (1 : 1 : 0), (α :
1 : 0) with α 6= 0, 1. The two other point we map to (1 : 1 : 1). The
points determine the two lines so we get a space of cubics. We take columns
x2z, xy2, x2y to get determinant

−(α− 1)α.

10.1.5 Four points on a line and P and another point outside the
line.

We map the four points on the line to (1 : 0 : 0), (0 : 1 : 0), (α : 1 : 0), (β : 1 :
0) with α, β 6= 0, 1 and α 6= β. The other point we map to (1 : 1 : 1). The
points determine the line so we get a space of quartics. Taking derivatives
to x and z and taking the columns for xy2z, x2yz, xy3, x2y2, x3y we get
determinant

(α− β)(α− 1)α(β − 1)β.
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10.1.6 P and three points on one line and P and two points on
another line.

We map the three other points on the line to (1 : 0 : 0), (α : 0 : 1), (β : 0 : 1)
with α, β 6= 0 and α 6= β. The two other points we map to (0 : 1 : 0), (0 : 1 :
1). The points determine the two lines so we get a space of cubics. We take
columns xz2, y2z, x2z to get determinant

(α− β)αβ.

10.1.7 P and three more points on a line.

We map the three other points on the line to (1 : 0 : 0), (α : 0 : 1), (β : 0 : 1)
with α, β 6= 0 and α 6= β. The two other points we map to (0 : 1 : 0), (1 :
1 : 1). The points determine the line so we get a space of quartics. Taking
derivatives to x and z and taking the columns for x2z2, x2yz, x3z, x2y2, x3y
we get determinant

(α− β)α2β2.

10.1.8 P and two more points on a line and the three other points
on a line.

We map the three other points on the line to (1 : 0 : 0), (α : 0 : 1) with
α 6= 0. Two other points we map to (0 : 1 : 0), (1 : 1 : 0), (1 : β : 0) where
β 6= 0, 1. The points determine the two lines so we get a space of cubics.
We take columns x2z, xy2, x2y to get determinant

α2(β − 1)β.

10.1.9 P and two points on one line and P and two points on
another line.

We map the three other points on the line to (1 : 0 : 0), (α : 0 : 1) with
α, β 6= 0 and α 6= β. Two other points we map to (0 : 1 : 0), (0 : 1 : 1).
Then we got one more point (1 : β : γ) where β 6= 0. The points determine
the two lines so we get a space of cubics. Taking derivatives to x and z and
taking the columns for y2z, xyz, x2z, xy2, x2y we get determinant

−α2β4.

10.1.10 P and two more points on a line.

We map the three other points on the line to (1 : 0 : 0), (α : 0 : 1) with
α 6= 0. Two other points we map to (0 : 1 : 0), (1 : 1 : 1), (1 : β : γ)
where β 6= 0, 1 and γ 6= 1. The points determine the line so we get a
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space of quartics. Taking derivatives to x and z and taking the columns for
y2z2, xyz2, x2z2, xy2z, x2yz, x2y2, x3y we get determinant

α2(β − 1)β4(γ − 1)4.

10.1.11 Six points on a conic.

We first map four points to (1 : 0 : 0), (0 : 1 : 0), (1 : 1 : 1), (1 : α : β) with
α, β different and nonzero while leaving P fixed. Through these five points
we then have the conic (β − αβ)xy + (αβ − α)xz + (α− β)yz. This means
that the sixth point is of the form (αβ+αγ−βγ−α : γ(αβ+αγ−βγ−α) :
αβγ−βγ) where γ 6= α, β, 0, 1 and αβ+αγ−βγ−α 6== 0. We take columns
x2z, xy2, x2y to get determinant

(αβ + αγ − βγ − α)2(α− β)2(α− γ)(γ − 1)γ.

10.1.12 The result of the sieving.

Because πw(P1) = 0 for w ≥ 4 and πw(P1 − {P}) = 0 for w ≥ 2 all the
counts become zero besides the count of the cases where all points are in
general position. As we did before we can pretend all points are in general
position since subtracting the other cases is just subtracting zero. For P
and a set S of 3w points that are in general position with P we have

Vk(5, 2P ;L;L′, 2S)− Vk(5, 3P, 2S) = P15−3w − P15−3w−1 = A15−3w.

So for split nodes we have

ss
sieve =

1

|GP ;x;y|

5∑
w=0

|A15−3w| · πw(P2 − {P})

=
1

|GP ;x;y|
(|A15| · 1− |A12| · (q2 + q) + |A9| · q3)

=
q15 − q14 − q13 + q12

2(q4 − 2q3 + q2)

=
1

2
(q11 + q10)

And in the same way we get

sns
sieve =

1

|GP ;x+αy;x+F(α)y|

5∑
w=0

|A15−3w| · πw(P2 − {P})

=
q15 − q14 − q13 + q12

2(q4 − q2)

=
1

2
(q11 − q10)
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10.2 The sieve count for cusps.

We have

Y c(S) := (Vk(5, 2P ; y; y, 2S)− Vk(5, 3P, 2S)) ∩ Cx3z2 6=0.

So if we can do our dimension proofs for P and the points in S without
using the columns corresponding to the coefficients of x2z3, xyz3, y2z3, x3z2

then all the conditions are independent. Since we want to use the condition
that x3z2 is nonzero we will keep the double tangent y fixed during linear
transformations. This means we can no longer send a point to (1 : 0 : 0).

We cannot have P and two other points on a line or P and four other points
on a conic that has tangent y at P . Since then the points would determine
that line or conic which makes it impossible for P to be an ordinary cusp.

10.2.1 P and five other points in general position.

We say the six points are in general position if there are no four points on
a line, no six on an irreducible conic, no three on a line through P , and
no five on a conic through P that has tangent y at P . However if there
are six singular points on an irreducible plane quintic then they all have to
be of delta-invariant 1. So if P is a non-ordinary cusp then that means a
curve through the six points has to be of type [1, 1, 1, 1, 1], [2, 1, 1, 1], [2, 2, 1],
[3, 1, 1], [3, 2], or [4, 1]. And these types cannot have six singularities of which
one is a non-ordinary cusp such that the six points are in general position.
So for P and a set S of five other points such that they are in general position
with P we have

(Vk(5, 2P ; y; y, 2S)− Vk(5, 3P, 2S)) ∩ Cx3z2 6=0 = Vk(5, 2P ; y; y, 2S)− Vk(5, 3P, 2S).

This means that we do not need the condition on x3z2 and we can use its
corresponding column. So we can use the same proof as the one we used for
nodes in section 10.1.1.

Note that the above argument does not work when we have P and less
than five points in general position.

10.2.2 P and four other points in general position.

We map the four points to (0 : 1 : 0), (1 : 1 : 1), (1 : α : β), (1 : γ :
δ) where α, γ 6= 1 and α 6= γ. We also have αβγ − αγδ − αβ + γδ +
α − γ 6= 0 for otherwise there would be five points on a conic that has
tangent y at P . Taking derivatives to y and z and taking the columns for
y3z2, xy3z, x2y2z, x3yz, x4z, x2y3, x3y2, x4y, x5 we get determinant

−(αβγ − αγδ − αβ + γδ + α− γ)3(α− γ)2(α− 1)2(γ − 1)2.
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10.2.3 Five points on a line and P outside the line.

We map the four points on the line to (0 : 1 : 0), (1 : α : 0), (1 : β : 0), (1 :
γ : 0), (1 : δ : 0) with α, β, γ, δ all different. The points determine the line
so we get a space of quartics. Taking derivatives to x and z and taking the
columns for xy3, x2y2, x3y, x4 we get determinant

−(α− β)(α− γ)(α− δ)(β − γ)(β − δ)(γ − δ).

10.2.4 Four points on a line and P and another point outside the
line.

We map the four points on the line to (0 : 1 : 0), (1 : α : 0), (1 : β : 0), (1 : γ :
0) with α 6= β 6= γ 6= α and α, β, γ 6= 1. The other point we map to (1 : 1 : 1).
The points determine the line so we get a space of quartics. Taking deriva-
tives to x and z and taking the columns for xy2z, x2yz, xy3, x2y2, x3y, x4 we
get determinant

(α− β)(α− γ)(α− 1)(β − γ)(β − 1)(γ − 1).

10.2.5 The result of the sieving.

Because πw(P1) = 0 for w ≥ 4 and πw(P1 − {P}) = 0 for w ≥ 2 all the
counts become zero besides the count of the cases where all points are in
general position. Again we pretend all points are in general position. For P
and a set S of 3w points that are in general position with P we have

Vk(5, 2P ; y; y, 2S)∩Cx3z2 6=0−Vk(5, 3P, 2S)∩Cx3z2 6=0 = A15−3w−A15−3w−1.

So we get

sc
sieve =

1

|GP,y,y|

5∑
w=0

(|A15−3w| − |A14−3w|) · πw(P2 − {P})

=
1

|GP,y,y|
((|A15| − |A14|) · 1− (|A12| − |A11|) · (q2 + q) + (|A9| − |A8|) · q3)

=
q15 − 2q14 + 2q12 − q11

q5 − 2q4 + q3

= q10 − q8.

10.3 The explicit count.

We note that when we have P and a λ-tuple of points we get for |λ| = 7

τ(λ) = σ(λ)(1−
(
λ1

1

)
).

56



For |λ| = 8 we get

τ(λ) = σ(λ)(1−
(
λ1

1

)
−
(
λ2

1

)
+

(
λ1

2

)
).

For |λ| = 9 we get

τ(λ) = σ(λ)(1−
(
λ1

1

)
−
(
λ2

1

)
−
(
λ3

1

)
+

(
λ1

2

)
−
(
λ1

3

)
+

(
λ1

1

)(
λ2

1

)
).

Remember that for the explicit count we no longer fix a point P but instead
have

ss
explicit :=

1

|PGL3(k)|
∑

N<|λ|≤M

τ(λ)
∑

C∈C5,[[11],λ]

#s(C).

And similar for sns
explicit, s

c
explicit.

By Theorem 5.10 curves of type [5] have at most six singularities so we do
not need to consider them. For curves C of type [1, 1, 1, 1, 1], [2, 1, 1, 1], [2, 2, 1]
we will have #c(C) = 0 so we can ignore the counts for cusps in those cases.

10.3.1 [1, 1, 1, 1, 1], three lines through one point Q.

We can reuse our findings from section 9.2.1 with different τ(λ). And in-
stead of an 8-tuple of points we instead write it as a k-point P and a 7-tuple
of points. However keep in mind that we do not fix P here, the difference
between the tables is one of notation. Besides the fact that we leave out the
cases where τ(λ) = 0 and the cases where #s(C) = #ns(C) = #c(C) = 0.

The values in the table should be multiplied with
(
q2+q+1

2

)
2.

lines P, λ points τ(λ) |C|

[15] [18] 6
(
q
2

)(
q
3

)
[13, 21], both k2-lines through Q [14, 22] 2

(
q
2

)
q 1

2(q2 − q)

For [15] we find that #s(C) = 8 and for [13, 21] we have #s(C) = 3. We get
for split nodes∑ τ(λ) ·#s(C) · |C|

|PGL3(k)|
=

7

2
(q − 2) +

3

2
q = 5q − 7

where the sum is over the rows in the table. There are no non-split nodes
to be counted here.
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10.3.2 [1, 1, 1, 1, 1], no three lines through one point.

We reuse our findings from section 9.2.2.

lines P, λ points τ(λ) |C|

[15] [110] 56 1
15

(
q2+q+1

2

)(
q
2

)2
(q − 2)(q − 3)

[13, 21] [14, 23] 6 1
3

(
q2+q+1

2

)
2
(
q
2

)
1
2(q2 − q)q(q − 1)

[12, 31] [11, 33] 2 (q2 + q + 1)
(
q+1

2

)
1
3(q + 1)q3(q − 1)2

For split nodes we get∑ τ(λ)·#s(C)·|C|
|PGL3(k)| = 14

3 (q − 2)(q − 3) + 3
2q(q − 1) + 1

3q(q + 1) = 1
2(13q2 − 49q + 56)

where the sum is over the rows in the table. And for non-split nodes we get∑ τ(λ) ·#ns(C) · |C|
|PGL3(k)|

=
1

2
q(q − 1)

where the sum is over the rows in the table.

10.3.3 [2, 1, 1, 1], two of the lines are tangent to the conic.

Precisely two of the lines are tangent to the conic, no lines intersect on the
conic, and the three lines do not intersect in one point.

For a [13]-tuple of lines and a [17]-tuple of points we pick an irreducible
k-conic: (q2 +q+1)q2(q−1). We pick two k-points on the conic and take the
tangent lines at those points, they meet in a point Q:

(
q+1

2

)
. We take two

more k-points on the conic and take the line through them. We then have
to subtract the case where the resulting line goes through Q. If char(k) 6= 2
then by 9.6 this gives

(
q−1

2

)
− q−1

2 . If char(k) = 2 then Q is the strange point

so we get
(
q−1

2

)
.

For char(k) 6= 2.
The values in the table should be multiplied with (q2 + q + 1)q2(q − 1).

lines P, λ points τ(λ) |C|

[13] [17] 1
(
q+1

2

)
(
(
q−1

2

)
− q−1

2 )

[15, 21] −1
(
q+1

2

)
(1

2(q2 − q)− q−1
2 )

[11, 21] [13, 22] 1 1
2(q2 − q)(

(
q+1

2

)
− q+1

2 )

[11, 23] −1 1
2(q2 − q)(1

2(q2 − q − 2)− q+1
2 )
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For split nodes we get∑ τ(λ) ·#s(C) · |C|
|PGL3(k)|

=
5

4
(q − 3)− 3

4
(q − 1) +

1

2
(q − 1) =

1

2
(2q − 7)

where the sum is over the rows in the table. And for non-split nodes we get∑ τ(λ) ·#ns(C) · |C|
|PGL3(k)|

=
1

4
(q − 1)− 1

4
(q − 3) =

1

2

where the sum is over the rows in the table.

For char(k) = 2.
The values in the table should be multiplied with (q2 + q + 1)q2(q − 1).

lines P, λ points τ(λ) |C|

[13] [17] 1
(
q+1

2

)(
q−1

2

)
[15, 21] −1

(
q+1

2

)
1
2(q2 − q)

[11, 21] [13, 22] 1 1
2(q2 − q)

(
q+1

2

)
[11, 23] −1 1

2(q2 − q)1
2(q2 − q − 2)

For split nodes we get∑ τ(λ) ·#s(C) · |C|
|PGL3(k)|

=
5

4
(q − 2)− 3

4
q +

1

2
q =

1

2
(2q − 5)

where the sum is over the rows in the table. And for non-split nodes we get∑ τ(λ) ·#ns(C) · |C|
|PGL3(k)|

=
1

4
q − 1

4
(q − 2) =

1

2

10.3.4 [2, 1, 1, 1], one of the lines is tangent to the conic.

Precisely one of the lines is tangent to the conic, the intersections of the
lines are not on the conic, and the three lines do not intersect in one point.
We reuse our findings from section 9.2.4.

For char(k) 6= 2.
The values in the table should be multiplied with (q2 +q+1)q2(q−1)(q+1).

lines P, λ points τ(λ) |C|

[13] [18] 6
(
q
4

)
3− q

( q−1
2
2

)
[16, 21] −4

(
q
2

)
1
2(q2 − q)− q

(
q−1

2

)2

[14, 22] 2
( 1

2
(q2−q)

2

)
− q
( q−1

2
2

)
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For split nodes we get∑ τ(λ) ·#s(C) · |C|
|PGL3(k)|

=
21

4
(q − 3)2 − 5(q − 1)2 +

3

4
(q − 1)2 = q2 − 23q + 43

where the sum is over the rows in the table. There are no non-split nodes
to be counted here.

For char(k) = 2.
The values in the table should be multiplied with (q2 +q+1)q2(q−1)(q+1).

lines P, λ points τ(λ) |C|

[13] [18] 6
(
q
4

)
3− (q − 1)

( q
2
2

)
[16, 21] −4

(
q
2

)
1
2(q2 − q)− (q − 1)

( q
2

)2
[14, 22] 2

( 1
2

(q2−q)
2

)
− (q − 1)

( q
2
2

)
For split nodes we get∑ τ(λ) ·#s(C) · |C|

|PGL3(k)|
=

21

4
(q−2)(q−4)−5q(q−2)+

3

4
q(q−2) = q2−23q+42

where the sum is over the rows in the table.

10.3.5 [2, 1, 1, 1], the lines intersect on the conic.

None of the lines is tangent to the conic, the intersection of two of the lines
is on the conic, and the other intersections of the lines are not on the conic.

For a [13]-tuple of lines and a [17]-tuple of points we pick an irreducible
k-conic and choose a k-point Q on the conic: (q2 + q + 1)q2(q − 1)(q + 1).
Then we pick two k-lines through Q that are not tangent to the conic:

(
q
2

)
.

And then we choose two k-points on the conic that are not on the two lines.
We take the line through these points:

(
q−2

2

)
.

If we have a [11, 21]-tuple of lines such that the k2-tuple of lines intersects
on a point outside the conic. Then the intersection of the k-line with one of
the k2-lines is a k2-point Q on the conic. The conjugate of this point is on
the k-line, on the other k2-line, and on the conic. So two of the intersection
points of the lines are on the conic which is a contradiction. This means
that we do not get any non-split nodes.

The values in the table should be multiplied with (q2 +q+1)q2(q−1)(q+1).

lines P, λ points τ(λ) |C|

[13] [17] 1
(
q
2

)(
q−2

2

)
[15, 21] −1

(
q
2

)
1
2(q2 − q)

[11, 21] [13, 22] 1 1
2(q2 − q)

(
q
2

)
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For split nodes we get∑ τ(λ) ·#s(C) · |C|
|PGL3(k)|

=
3

2
(q− 2)(q− 3)− q(q− 1) +

1

2
q(q− 1) = q2− 7q+ 9

where the sum is over the rows in the table.

10.3.6 [2, 1, 1, 1], three lines through one point.

None of the lines is tangent to the conic and the three lines intersect in one
point outside the conic. We reuse our findings from section 9.2.5.

For char(k) 6= 2.
The values in the table should be multiplied with (q2 + q + 1)q2(q − 1).

lines P, λ points τ(λ) |C|

[13] [17] 1
(
q+1

2

)( q−1
2
3

)
+
(
q
2

)( q+1
2
3

)
[15, 21] −1

(
q+1

2

)( q−1
2
2

) q−1
2 +

(
q
2

)( q+1
2
2

) q+1
2

[13, 22] 1
(
q+1

2

) q−1
2

( q−1
2
2

)
+
(
q
2

) q+1
2

( q+1
2
2

)
[11, 23] −1

(
q+1

2

)( q−1
2
3

)
+
(
q
2

)( q+1
2
3

)
[11, 21] [13, 22] 1

(
q+1

2

) q−1
2

(q−1)2

4 +
(
q
2

) q+1
2

(q+1)(q−3)
4

[11, 23] −1
(
q+1

2

) q−1
2

(q−1)2

4 +
(
q
2

) q+1
2

(q+1)(q−3)
4

[13, 41] −1
(
q+1

2

) q−1
2

q2−1
4 +

(
q
2

) q+1
2

q2−1
4

[11, 21, 41] 1
(
q+1

2

) q−1
2

q2−1
4 +

(
q
2

) q+1
2

q2−1
4

For split nodes we get

∑ τ(λ) ·#s(C) · |C|
|PGL3(k)|

=
1

8
(q−3)2−1

4
(q−1)2+

1

8
(q−1)2+

1

4
(q2−2q−1)−1

4
(q+1)(q−1) =

− (q − 1)

where the sum is over the rows in the table. There are no non-split nodes
to be counted here.

For char(k) = 2.
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The values in the table should be multiplied with (q2+q+1)q2(q−1)(q2−1).

lines P, λ points τ(λ) |C|

[13] [17] 1
( q

2
3

)
[15, 21] −1

( q
2
2

) q
2

[13, 22] 1 q
2

( q
2
2

)
[11, 23] −1

( q
2
3

)
[11, 21] [13, 22] 1 q

2
q(q−2)

4

[11, 23] −1 q
2
q(q−2)

4

[13, 41] −1 q
2
q2

4

[11, 21, 41] 1 q
2
q2

4

For split nodes we get∑ τ(λ)·#s(C)·|C|
|PGL3(k)| = 1

8(q − 2)(q − 4)− 1
4q(q − 2) + 1

8q(q − 2) + 1
4q(q − 2)− 1

4q
2 = −(q − 1)

where the sum is over the rows in the table.

10.3.7 [2, 1, 1, 1], nine singularities.

None of the lines is tangent to the conic, no lines intersect on the conic, and
the three lines do not intersect in one point. We reuse our findings from
section 9.2.5.

The values in the table should be multiplied with (q2 + q + 1)q2(q − 1).

lines P, λ points τ(λ) |C|

[13] [19] 28
(
q+1

6

)
15

[17, 21] −9
(
q+1

4

)
1
2(q2 − q)3

[15, 22] 1
(
q+1

2

)( 1
2

(q2−q)
2

)
[13, 23] 3

( 1
2

(q2−q)
3

)
[11, 21] [13, 23] 3

(
q+1

2

)( 1
2

(q2−q)
2

)
2

[11, 24] −3
( 1

2
(q2−q)

3

)
3 · 2

[13, 21, 41] −1
(
q+1

2

)
1
4(q4 − q2)

[11, 22, 41] 1 1
2(q2 − q)1

4(q4 − q2)
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For char(k) 6= 2.
We subtract the case where we have three lines through one point to get for
split nodes

∑ τ(λ) ·#s(C) · |C|
|PGL3(k)|

=
21

4
(q−2)(q−3)(q−4)−63

16
q(q−1)(q−2)+

5

16
(q+1)q(q−2)

+
3

16
(q−2)(q2−q−4)+

3

4
(q+1)q(q−2)− 1

4
(q+1)q2−

(
21

4
(q−3)2− 63

16
(q−1)2

+
5

16
(q − 1)2 +

3

16
(q − 3)2 +

3

4
(q2 − 2q − 1)− 1

4
(q + 1)(q − 1)

)
=

1

2
(2q3 − 51q2 + 184q − 186)− (q2 − 19q + 33) =

1

2
(2q3 − 53q2 + 222q − 252)

For non-split nodes:

∑ τ(λ) ·#ns(C) · |C|
|PGL3(k)|

=
3

8
(q+1)q(q−2)− 3

8
(q−2)(q2−q−4)− 1

8
(q+1)q2

+
1

8
q2(q−1)−

(
3

8
(q2−2q−1)−3

8
(q2−2q−1)−1

8
(q+1)(q−1)+

1

8
(q+1)(q−1)

)
=

1

2
(q2 − 6)− 0 =

1

2
(q2 − 6)

For char(k) = 2.
Subtracting three lines through one point results in −(q2 − 19q + 33) and
−0 just as for char(k) 6= 2. So the end result is the same.

10.3.8 [2, 2, 1], the line is tangent to one of the conics.

The line is tangent to precisely one of the conics and intersects the other
conic in 2 points. The conics intersect in 4 other points.

If we have a conjugate 2-tuple of conics then the k-line has to intersect
both conics in the same number of points so this will not happen.

For char(k) 6= 2.
For a [12]-tuple of conics and a [17]-tuple of points we pick four k-points
P1, P2, P3, P4 such that there are no three on a line.

1

24
(q2 + q + 1)(q + 1)q3(q − 1)2

Then we use the tables in section 9.2.6 to pick a k-line L that is tangent to
precisely one irreducible conic through P1, P2, P3, P4: 3(q− 3). We take this
conic and choose another conic through two k-points on L: Ck = q−5

2 . We
can also pick a k-line L that is tangent to precisely two irreducible k-conics
through P1, P2, P3, P4: 1

2(q − 3)(q − 5). We pick one of the two irreducible
conics and a conic through two k-points on L: 2Ck = q − 7.
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The values in the table should be multiplied with (q2+q+1)(q+1)q3(q−1)2.

4 points P, λ points τ(λ)ν(λ) |C|

[14] [17] 1
24 3(q − 3) q−5

2 + 1
2(q − 3)(q − 5)(q − 7)

[15, 21] − 1
24 3(q − 3) q−1

2 + 1
2(q − 3)(q − 5)(q − 1)

[12, 21] [15, 21] −1
4 (q − 1) q−1

2 + 1
2(q − 1)2(q − 3)

[13, 22] 1
4 (q − 1) q−1

2 + 1
2(q − 1)2(q − 1)

[11, 31] [14, 31] 1
3

1
2(q2 + q)(q − 1)

[12, 21, 31] −1
3

1
2(q2 + q)(q − 1)

[22] [13, 22] 1
8 (q − 3) q−1

2 + 2(q − 1) q−3
2 + 1

2(q − 1)(q − 3)(q − 3)

[41] [13, 41] −1
8 (q + 1) q−1

2 + 1
2(q2 − 1)(q − 1)

For split nodes we get

∑ τ(λ) ·#s(C) · |C|
|PGL3(k)|

=
1

8
(q−3)(q−4)(q−5)−· 1

12
(q−1)(q−2)(q−3)−·1

2
(q−1)2(q−2)

+·1
4
q(q−1)2+·1

2
(q+1)q(q−1)−·1

6
(q+1)q(q−1)+·1

8
q(q−1)(q−3)−·1

4
(q+1)q(q−1) =

3(q − 2)
where the sum is over the rows in the table. There are no non-split nodes
to be counted here.

For char(k) = 2.
The values in the table should be multiplied with (q2+q+1)(q+1)q3(q−1)2.

4 points P, λ points τ(λ)ν(λ) |C|

[14] [17] 1
24 (q − 2)(q − 4) q−6

2

[15, 21] − 1
24 (q − 2)(q − 4) q2

[12, 21] [15, 21] −1
4 q(q − 2) q−2

2

[13, 22] 1
4 q(q − 2) q2

[11, 31] [14, 31] 1
3 (q + 1)(q − 1) q2

[12, 21, 31] −1
3 (q + 1)(q − 1) q2

[22] [13, 22] +1
8 q(q − 2) q−2

2

[41] [13, 41] −1
4 q2 q

2

For split nodes we get
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∑ τ(λ) ·#s(C) · |C|
|PGL3(k)|

=
1

8
(q−2)(q−4)(q−6)−· 1

12
q(q−2)(q−4)−·1

2
(q−2)2

+ ·1
4
q2(q− 2) + ·1

2
(q+ 1)q(q− 1)− ·1

6
(q+ 1)q(q− 1) + ·1

8
q(q− 2)2− ·1

4
6q3 =

3(q − 2)
where the sum is over the rows in the table.

10.3.9 [2, 2, 1], eight singularities and the conics are definined over
k.

The line is intersects each conic in 2 points. The conics intersect in 4 other
points. We reuse our findings from section 9.2.7.

For char(k) 6= 2.
The values in the table should be multiplied with (q2+q+1)(q+1)q3(q−1)2.

4 points P, λ points τ(λ)ν(λ) |C|

[14] [18] 6
24

3
( 1

2
(q−3)

2

)
+ 3(q − 3)

( 1
2

(q−5)
2

)
+1

2(q − 3)(q − 5)
( 1

2
(q−7)

2

)
+ 1

2(q − 1)(q − 3)
( 1

2
(q−5)

2

)
[16, 21] − 4

24

31
2(q − 3)1

2(q − 1) + 3(q − 3)1
2(q − 5)1

2(q − 1)

+1
2(q − 3)(q − 5)1

2(q − 7)1
2(q − 1)

+1
2(q − 1)(q − 3)1

2(q − 5)1
2(q + 1)

[14, 22] 2
24

3
( 1

2
(q−1)

2

)
+ 3(q − 3)

( 1
2

(q−1)
2

)
+1

2(q − 3)(q − 5)
( 1

2
(q−1)

2

)
+ 1

2(q − 1)(q − 3)
( 1

2
(q+1)

2

)
[12, 21] [16, 21] −4

4

( 1
2

(q−1)
2

)
+ (q − 1)

( 1
2

(q−1)
2

)
+1

2(q − 1)2
( 1

2
(q−3)

2

)
+ 1

2(q + 1)(q − 3)
( 1

2
(q−1)

2

)
[14, 22] 2

4

1
2(q − 1)1

2(q + 1) + (q − 1)1
2(q − 1)1

2(q − 1)

+1
2(q − 1)2 1

2(q − 3)1
2(q − 1)

+1
2(q + 1)(q − 3)1

2(q − 1)1
2(q + 1)

[11, 31] [15, 31] 3
3

1
2q(q + 1)

( 1
2

(q−1)
2

)
+ 1

2q(q − 1)
( 1

2
(q+1)

2

)
[13, 21, 31] −1

3
1
2q(q + 1)1

2(q − 1)1
2(q − 1) + 1

2q(q − 1)1
2(q + 1)1

2(q + 1)

[11, 22, 31] −1
3

1
2q(q + 1)

( 1
2

(q−1)
2

)
+ 1

2q(q − 1)
( 1

2
(q+1)

2

)
[22] [14, 22] 2

8

( 1
2

(q−3)
2

)
+ 2
( 1

2
(q−1)

2

)
+ 2(q − 1)

( 1
2

(q−3)
2

)
+ (q − 3)

( 1
2

(q−1)
2

)
+1

2(q − 1)(q − 3)
( 1

2
(q−3)

2

)
+ 1

2(q + 1)(q − 1)
( 1

2
(q−1)

2

)
[41] [14, 41] −2

4

( 1
2

(q+1)
2

)
+ (q + 1)

( 1
2

(q−1)
2

)
+1

2(q + 1)(q − 1)
( 1

2
(q−1)

2

)
+ 1

2(q + 1)(q − 1)
( 1

2
(q+1)

2

)
For split nodes we get
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∑ τ(λ) ·#s(C) · |C|
|PGL3(k)|

=
1

24

(
6(q2−9q+17)(q−3)(q−5)−6(q2−5q+3)(q−1)(q−3)

+(q2−q+1)(q−1)(q−3)−18(q2−3q+1)(q−1)(q−3)+12(q3−2q2−1)(q−1)

+ 15(q + 1)q(q − 1)(q − 2)− 6q2(q + 1)(q − 1)− (q + 1)q(q − 1)(q − 2)

+ 3(q3 − 2q2 − 2q − 1)(q − 3)− 6(q2 − q − 1)(q + 1)(q − 1)

)
=

1

2
(19q2 − 101q + 120)

where the sum is over the rows in the table. There are no non-split nodes
to be counted here.

For char(k) = 2.
The values in the table should be multiplied with (q2+q+1)(q+1)q3(q−1)2.

4 points P, λ points τ(λ)ν(λ) |C|

[14] [18] 6
24 3(q − 2)

( 1
2

(q−4)
2

)
+ (q − 2)(q − 4)

( 1
2

(q−6)
2

)
[16, 21] − 4

24 3(q − 2)1
2(q − 4)1

2q + (q − 2)(q − 4)1
2(q − 6)1

2q

[14, 22] 2
24 3(q − 2)

( 1
2
q

2

)
+ (q − 2)(q − 4)

( 1
2
q

2

)
[12, 21] [16, 21] −4

4 (q − 2)
( 1

2
q

2

)
+ q(q − 2)

( 1
2

(q−2)
2

)
[14, 22] 2

4 (q − 2)1
2q

1
2q + q(q − 2)1

2(q − 2)1
2q

[11, 31] [15, 31] 3
3 (q + 1)(q − 1)

( 1
2
q

2

)
[13, 21, 31] −1

3 (q + 1)(q − 1)1
2q

1
2q

[11, 22, 31] −1
3 (q + 1)(q − 1)

( 1
2
q

2

)
[22] [14, 22] 2

8 (q − 2)
( 1

2
q

2

)
+ 2q

( 1
2

(q−2)
2

)
+ q(q − 2)

( 1
2

(q−2)
2

)
[41] [14, 41] −2

4 q
( 1

2
q

2

)
+ q2

( 1
2
q

2

)
For split nodes we get

∑ τ(λ) ·#s(C) · |C|
|PGL3(k)|

=
1

24

(
6(q−2)(q−4)(q−5)(q−6)−6q(q−2)(q−3)(q−4)

+q(q−1)(q−2)2−18q(q−2)2(q−3)+12q2(q−1)(q−2)+15q(q+1)(q−1)(q−2)

−6q2(q+1)(q−1)−q(q+1)(q−1)(q−2)+q(q2−3q−2)(q−2)−6q2(q+1)(q−2)

)
=

1

2
(19q2 − 101q + 120)

where the sum is over the rows in the table.
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10.3.10 [2, 2, 1], eight singularities with a conjugate 2-tuple of con-
ics.

We reuse our findings from section 9.2.8.

For char(k) 6= 2.
The values in the table should be multiplied with 1

4(q2+q+1)(q+1)q3(q−1)2.

4 points P, λ points τ(λ)ν(λ) |C|

[14] [14, 22] 2
24

1
2(q2 − 2q + 3)(q2 − 2q + 1)

+1
2(q − 1)(q − 3)(q2 − 2q − 3)

[14, 41] − 2
24 (q2 − 3q + 3)(q2 − 1)

[11, 31] [11, 22, 31] −1
3

1
2(q2 + q)(q2 − 2q + 1)

+1
2(q2 − q)(q2 − 2q − 3)

[11, 31, 41] 1
3 q2(q2 − 1)

For non-split nodes we get

∑ τ(λ) ·#ns(C) · |C|
|PGL3(k)|

=
1

12

(
(q3 − 4q2 + 4q + 3)(q − 1)

− (q2 − 3q + 3)(q + 1)(q − 1)− (q + 1)q(q − 1)(q − 2) + (q + 1)q2(q − 1)

)
=

1

2
q(q − 1)

where the sum is over the rows in the table. There are no split nodes to be
counted here.

For char(k) = 2.
The values in the table should be multiplied with 1

4(q+1)q3(q−1)2(q2+q+1).

4 points P, λ points τ(λ)ν(λ) |C|

[14] [14, 22] 2
24 (q − 1)(q − 2)(q2 − 2q)

[14, 41] − 2
24 (q − 1)(q − 2)q2

[11, 31] [11, 22, 31] −1
3 (q + 1)(q − 1)(q2 − 2q)

[11, 31, 41] +11
3 (q + 1)(q − 1)q2
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For non-split nodes we get

∑ τ(λ) ·#ns(C) · |C|
|PGL3(k)|

=
1

12

(
(q − 1)(q − 2)(q2 − 2q)

− (q − 1)q2(q − 2)− (q + 1)(q − 1)(q2 − 2q) + 8q2(q + 1)(q − 1)

)
=

1

2
q(q − 1)

where the sum is over the rows in the table.

10.3.11 Tools for two conics that intersect in three points.

Let there be a line T , a point Q on T and a λ-tuple of points P1, P2 not on
T such that Q,P1, P2 are not on a line.

We write P for the pencil of conics trough Q,P1, P2 that have tangent T
at Q. Let L be a k-line not through any of Q,P1, P2. We can define Ak, Bk,
Ck, etc. similar to how we did before in section 9.2.6.

There are two reducible conics in P and they are both k-conics so we have
Xk = Xk2 = 2.

For char(k) 6= 2.
We get Bk2 = 2 and Ak2 = Yk2 so Dk4 = 1

4(q2 − 1).
For λ = [12] we have Ak = Ak2 .

number Ak Bk Yk 2Ck 2Ck2 4Dk2

q − 1 1 2 1 q − 3 q − 1 q2 − 2q + 1

1
2(q − 1)(q − 3) 2 2 2 q − 5 q − 1 q2 − 2q + 1

1
2(q − 1)2 2 0 0 q − 3 q + 1 q2 − 2q − 3

For λ = [12] we get

number Ak Ak2 Bk Yk 2Ck 2Ck2 4Dk2

q − 1 0 1 2 1 q − 1 q − 3 q2 − 2q + 1

1
2(q − 1)2 1 2 2 2 q − 3 q − 3 q2 − 2q + 1

1
2(q + 1)(q − 1) 1 2 0 0 q − 1 q − 1 q2 − 2q − 3

For char(k) = 2.
We get Bk = Bk2 = 1, Yk = Yk2 and Ak2 = Yk2 + 1 so 4Dk2 = 1

4(q2 − 2q)
and Dk4 = 1

4q
2.
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For λ = [12] we have Ak = Ak2 .

number Ak Yk 2Ck 2Ck2

q − 1 1 0 q − 2 q

(q − 1)(q − 2) 2 1 q − 4 q

10.3.12 [2, 2, 1], two k-conics intersect in 3 points.

The line intersects each conic in 2 points. The conics intersect in 3 other
points.

For char(k) 6= 2.
For a [12]-tuple of conics and a [17]-tuple of points we pick a line T , a point
Q on T and two k-points P1, P2 not on T such that Q,P1, P2 are not on a
line.

(q2 + q+ 1)(q+ 1)

(
q2

2

)
−
(
q2 + q + 1

2

)
2

(
q

2

)
=

1

2
(q2 + q+ 1)(q+ 1)q3(q−1)

If instead we choose P1, P2 to be a k2-tuple of points then we get

(q2 + q + 1)(q + 1)1
2(q4 − q2)−

(
q2+q+1

2

)
21

2(q2 − q) = 1
2(q2 + q + 1)(q + 1)q3(q − 1)

The values in the table should be multiplied with 1
2(q2+q+1)(q+1)q3(q−1).

2 points P, λ points τ(λ) |C|

[12] [17] 1
(q − 1)

( 1
2

(q−3)
2

)
+ 1

2(q − 1)(q − 3)
( 1

2
(q−5)

2

)
+1

2(q − 1)2
( 1

2
(q−3)

2

)
[15, 21] −1

(q − 1)1
2(q − 3)1

2(q − 1)

+1
2(q − 1)(q − 3)1

2(q − 5)1
2(q − 1)

+1
2(q − 1)2 1

2(q − 3)1
2(q + 1)

[13, 22] 1
(q − 1)

( 1
2

(q−1)
2

)
+ 1

2(q − 1)(q − 3)
( 1

2
(q−1)

2

)
+1

2(q − 1)2
( 1

2
(q+1)

2

)
[21] [15, 21] −1

(q − 1)
( 1

2
(q−1)

2

)
+ 1

2(q − 1)2
( 1

2
(q−3)

2

)
+1

2(q + 1)(q − 1)
( 1

2
(q−1)

2

)
[13, 22] 1

(q − 1)1
2(q − 1)1

2(q − 3)

+1
2(q − 1)2 1

2(q − 3)1
2(q − 3)

+1
2(q + 1)(q − 1)1

2(q − 1)1
2(q − 1)
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For split nodes we get

∑ τ(λ) ·#s(C) · |C|
|PGL3(k)|

=
1

8

(
3(q − 3)2(q − 5)

− 4(q − 1)2(q − 3) + (q − 1)3 − 2(q − 1)2(q − 3) + 2(q − 1)3

)
=

− 3

2
(q − 2)(q − 5)

where the sum is over the rows in the table. There are no non-split nodes
to be counted here.

For char(k) = 2.
The values in the table should be multiplied with 1

2(q2+q+1)(q+1)q3(q−1).

2 points P, λ points τ(λ) |C|

[12] [17] 1
(q − 1)

( 1
2

(q−2)
2

)
+(q − 1)(q − 2)

( 1
2

(q−4)
2

)
[15, 21] −1

(q − 1)1
2(q − 2)1

2q

+(q − 1)(q − 2)1
2(q − 4)1

2q

[13, 22] 1
(q − 1)

( 1
2
q

2

)
+(q − 1)(q − 2)

( 1
2
q

2

)
[21] [15, 21] −1

(q − 1)
( 1

2
q

2

)
+q(q − 1)

( 1
2

(q−2)
2

)
[13, 22] 1

(q − 1)1
2q

1
2(q − 2)

+q(q − 1)1
2(q − 2)1

2(q − 2)

For split nodes we get

∑ τ(λ) ·#s(C) · |C|
|PGL3(k)|

=
1

8
(q − 2)

(
3(q − 4)(q − 5)

− 4(q − 3)q + q(q − 1)− 2q(q − 3) + 2q(q − 1)

)
=

− 3

2
(q − 2)(q − 5)

where the sum is over the rows in the table.
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10.3.13 [2, 2, 1], a conjugate 2-tuple of conics intersects in 3 points.

For char(k) 6= 2.
The values in the table should be multiplied with 1

2(q2+q+1)(q+1)q3(q−1).

P, λ points τ(λ) |C|

[13, 22] 1 1
2(q − 1)2 1

4(q2 − 2q + 1) + 1
2(q − 1)2 1

4(q2 − 2q − 3)

[13, 41] −1 (q − 1)2 1
4(q2 − 1)

For non-split nodes we get

∑ τ(λ) ·#ns(C) · |C|
|PGL3(k)|

=
1

4
(q−1)

(
(q2−2q−1)−(q2−1)

)
= −1

2
q(q−1)

where the sum is over the rows in the table. There are no split nodes to be
counted here.

For char(k) = 2.
The values in the table should be multiplied with 1

2(q+1)q3(q−1)(q2+q+1).

P, λ points τ(λ) |C|

[13, 22] 1 (q − 1)2 1
4(q2 − 2q)

[13, 41] −1 (q − 1)2 1
4q

2

For non-split nodes we get

∑ τ(λ) ·#ns(C) · |C|
|PGL3(k)|

=
1

4
(q − 1)

(
(q2 − 2q) − q2

)
= −1

2
q(q − 1)

where the sum is over the rows in the table.

10.3.14 [3, 1, 1], eight singularities.

We get eight singularities when the lines each intersect the cubic in three
points and intersect each other outside the conic. We reuse our findings
from section 9.2.9.
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The values in the table should be multiplied with 1
2(q2+q+1)(q+1)q2(q−1).

lines P, λ points τ(λ) |C|

[12] [18] 6
(
q
3

)(
q−3

3

)
[16, 21] −4 2

(
q
3

)
(q − 3)1

2(q2 − q)

[14, 22] 2 q 1
2(q2 − q)(q − 1)1

2(q2 − q − 2)

[15, 31] 3 2
(
q
3

)
1
3(q3 − q)

[13, 21, 31] −1 21
3(q3 − q)1

2(q2 − q)q

We do not know whether the singular point of te cubic is a split node, a
non-split node, or a cusp. This means we can no longer compute the number
of split nodes, non-split nodes, and cusps separately. However we can still
compute their sum. We get

∑ τ(λ) · (#s(C) + #ns(C) + #c(C)) · |C|
|PGL3(k)|

=
1

6

(
4(q−2)(q−3)(q−4)(q−5)

−12q(q−1)(q−2)(q−3)+6(q+1)q(q−1)(q−2)+5(q+1)q(q−1)(q−2)−3(q+1)q2(q−1)

)
=

− (q3 − 24q2 + 87q − 80)

where the sum is over the rows in the table.

10.3.15 [3, 1, 1], a smooth cubic.

The lines each intersect the smooth cubic in three points and intersect each
other outside the conic.

For a [12]-tuple of lines and a [17]-tuple of points we choose two k-lines
L,L′ and three k-points on each line that are not the intersection of the

lines:
(
q2+q+1

2

)(
q
3

)2
.

There is a P3 of cubics through the 6 points. From this we subtract the
reducible cubics through the 6 points. We get a reducible conic when we
take the lines L,L and any other line more line, this gives a P2. Another
way to get a reducible conic is by taking a k-line that is not L,L′, through
two of the points. And then there are q k-conics, that are not LL′, through
the four other points. So we get |P3(k)| − |P2(k)| − 9q for the number of
irreducible cubics. However the case where we have three k-lines, that are
not L,L′, through the six points has been subtracted once for every line. So
to compensate we have to add it twice. There are 6 ways to choose three
lines through the six points so we add 12.

After this we also have to subtract the cases where we get an irreducible
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singular cubic. We have already computed these cases above.

lines P, λ points τ(λ) |C|

[12] [17] 1
(
q2+q+1

2

)(
q
3

)2
(q3 − 9q + 12)

[15, 21] −1
(
q2+q+1

2

)
2
(
q
3

)
q 1

2(q2 − q)(q3 − 3q)

[13, 22] 1
(
q2+q+1

2

)
q2(1

2(q2 − q))2(q3 − q)

[14, 31] 1
(
q2+q+1

2

)
2
(
q
3

)
1
3(q3 − q)q3

[11, 32] 1
(
q2+q+1

2

)
(1

3(q3 − q))2(q3 − 3)

[12, 21, 31] −1
(
q2+q+1

2

)
2q 1

2(q2 − q)1
3(q3 − q)q3

[21] [11, 23] −1 1
2(q4 − q)

(
q2

3

)
(q3 − 3q + 2)

[11, 21, 41] 1 1
2(q4 − q)q2 1

2(q4 − q2)(q3 − q)

[11, 61] −1 1
2(q4 − q)1

3(q6 − q2)(q3 − 1)

We get

∑ τ(λ) · (#s(C) + #ns(C) + #c(C)) · |C|
|PGL3(k)|

=
1

72

(
7(q3−9q+12)(q−2)2−30(q2−3)(q−2)q2

+27(q+1)(q−1)q3+16(q+1)(q−2)q3+4(q3−3)(q+1)2−24(q+1)q4−6(q2−2)(q+2)(q−1)2

+18(q+1)(q−1)q3−12(q2+q+1)(q2+1)(q−1)−
(

7·(q−2)(q−3)(q−4)(q−5)

−30q(q−1)(q−2)(q−3)+27(q+1)q(q−1)(q−2)+16(q+1)q(q−1)(q−2)+4(q3−q−3)(q+1)

−24(q+1)q2(q−1)−6(q2−q−4)(q+1)(q−2)+18(q+1)q2(q−1)−12(q3+q−1)(q+1)

))
=

(2q2 − 9q + 5)− (2q2 − 12q + 11) = 3(q − 2)

where the sum is over the rows in the tables.

10.3.16 [3, 1, 1], one of the lines is tangent to the cubic.

One of the lines intersects the cubic in three points and the other line in-
tersects the cubic in two points. The lines intersect each other outside the
conic. And the cubic has a singular point.

The lines have to be a [12]-tuple. For a [17]-tuple of points we choose two
k-lines and a k-point Q outside those lines: 1

2(q2 + q + 1)(q + 1)q2(q − 1).
We then choose one of the two lines and three k-points on the line: 2

(
q
3

)
.

Then we pick two points on the other line L such that there are no three
points on a line through Q. And we finally choose one of these two points
R:
(
q−3

2

)
2.

Similar to lemma 9.9 there is exactly one irreducible cubic through Q and
the five points on the lines with tangent L at R and with a singularity at Q.
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The values in the table should be multiplied with 2(q2+q+1)(q+1)q2(q−1).

P, λ points τ(λ) |C|

[17] +1
(
q
3

)(
q−3

2

)
[15, 21] −1 q 1

2(q2 − q)
(
q−1

2

)
[14, 31] +1 1

3(q3 − q)
(
q
2

)
We get

∑ τ(λ) · (#s(C) + #ns(C) + #c(C)) · |C|
|PGL3(k)|

= (q−2)(q−3)(q−4)−2q(q−1)(q−2)+(q+1)q(q−1) =

− 3(q2 − 7q + 8)

where the sum is over the rows in the tables.

10.3.17 [3, 2].

The cubic and the conic intersect in six points and the cubic has one singular
point.

For char(k) 6= 2.
For a [17]-tuple of points we pick an irreducible k-conic C: (q2+q+1)q2(q−1).
We use 9.7 pick a k-point Q that is the intersection of two k-tangents of C:(
q+1

2

)
. We then pick six points on C such that the tangent at none of them

goes through Q and there are no two on a line through Q. There are two
k-points on C such that their tangents go through Q. If we pick both these
points and four others then we get

1

4!
(q − 1)(q − 3)(q − 5)(q − 7).

If we pick one of these points and five others we get

2
1

5!
(q − 1)(q − 3)(q − 5)(q − 7)(q − 9).

If we pick six other points we get

1

6!
(q − 1)(q − 3)(q − 5)(q − 7)(q − 9)(q − 11).

So in total we have

(q − 1)(q − 3)(q − 5)(q − 7)(
1

4!
+ 2

1

5!
(q − 9) +

1

6!
(q − 9)(q − 11)).

Similar to lemma 9.9 there is exactly one irreducible cubic through Q and
the six points on C with a singularity at Q.
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We can also pick the k-point Q to be the intersection of a k2-tuple of
tangents of C. (

(
q
2

)
) In this case we get

1

6!
(q + 1)(q − 1)(q − 3)(q − 5)(q − 7)(q − 9).

For a [11, 61]-tuple of points there are 1
3(q3 − q) k3-tuples of lines through

Q. For two k3-tuples of points on C there is one k3-tuple of lines through
Q. So there are

1

3
(q3 − q)− 1

2

1

3
(q3 − q) =

1

6
(q3 − q)

k3-tuples of lines through Q that intersect C in a k6-tuple of points.

The values in the table should be multiplied with (q2 + q + 1)q2(q − 1).

P, λ points τ(λ) |C|

[17] 1

(
q+1
2

)
(q − 1)(q − 3)(q − 5)(q − 7)

( 1
4!

+ 2 1
5!
(q − 9) + 1

6!
(q − 9)(q − 11)

+
(
q
2

)
1
6!
(q + 1)(q − 1)(q − 3)(q − 5)(q − 7)(q − 9)

[15, 21] −1

(
q+1
2

)
( 1
2
(q2 − q)− q−1

2
)(q − 1)(q − 3)

1
2!

+ 2 1
3!
(q − 5) + 1

4!
(q − 5)(q − 7)

+
(
q
2

)
( 1
2
(q2 − q)− q+1

2
) 1
4!
(q + 1)(q − 1)(q − 3)(q − 5)

[13, 22] 1

(
q+1
2

)
1
2!
( 1
2
(q2 − q)− q−1

2
)( 1

2
(q2 − q)− q−1

2
− 2)

(1 + 2(q − 1) + 1
2!
(q − 1)(q − 3)) +

(
q
2

)
( 1
2
(q2 − q − 2)− q+1

2
)

(1 + 1
2!
( 1
2
(q2 − q − 2)− q+1

2
− 2)) 1

2!
(q + 1)(q − 1)

[11, 23] −1

(
q+1
2

)
1
3!
( 1
2
(q2 − q)− q−1

2
)( 1

2
(q2 − q)− q−1

2
− 2)( 1

2
(q2 − q)− q−1

2
− 4)

+
(
q
2

)
( 1
2
(q2 − q − 2)− q+1

2
)( 1

2
(q2 − q − 2)− q+1

2
− 2)

( 1
2!

+ 1
3!
( 1
2
(q2 − q − 2)− q+1

2
− 4)

[14, 31] 1

(
q+1
2

)
1
3
(q3 − q)(q − 1)(1 + 2 1

2!
(q − 3) + 1

3!
(q − 3)(q − 5))

+
(
q
2

)
1
3
(q3 − q) 1

3!
(q + 1)(q − 1)(q − 3)

[11, 32] 1 q2 1
2!

1
3
(q3 − q) 1

3
(q3 − q − 6)

[12, 21, 31] −1
(
q+1
2

)
1
3
(q3 − q)( 1

2
(q2 − q)− q−1

2
)(q + 1)

+
(
q
2

)
1
3
(q3 − q)( 1

2
(q2 − q)− q+1

2
)(q + 1)

[13, 41] −1
( 1
4
(q4 − q2)− q2−1

4
)(
(
q+1
2

)
(1 + 2(q − 1) + 1

2!
(q − 1)(q − 3))

+
(
q
2

)
1
2!
(q + 1)(q − 1))

[11, 21, 41] 1 ( 1
4
(q4 − q2)− q2−1

4
)(
(
q+1
2

)
( 1
2
(q2 − q)− q−1

2
) +

(
q
2

)
( 1
2
(q2 − q)− q+1

2
))

[12, 51] 1 q2 1
5
(q5 − q)(q + 1)

[11, 61] −1 q2( 1
6
(q6 − q3 − q2 + q)− 1

6
(q3 − q))
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We get

∑ τ(λ) · (#s(C) + #ns(C) + #c(C)) · |C|
|PGL3(k)|

=
7

720
(q2−9q+15)(q−3)(q−5)(q−7)

− 5

48
(q3 − 6q2 + 10q− 1)(q− 1)(q− 3) +

3

16
(q2 − q− 1)(q+ 1)(q− 1)(q− 3)

− 1

48
(q2−q−3)(q2−2q−7)(q−3)+

2

9
(q2−3q+3)(q+1)q(q−1)+

1

18
(q2+2q+3)q2(q−2)

−1

3
(q2−q−1)(q+1)q(q−1)−3

8
(q2−q+1)(q+1)2(q−1)+

1

8
(q2−q−1)(q+1)(q−1)2

+
2

5
(q2 + 1)q2(q + 1)− 1

6
(q2 + q + 2)q2(q − 1) =

− (2q2 − 15q + 14)
where the sum is over the rows in the tables.

For char(k) = 2.
For a [17]-tuple of points we pick an irreducible k-conic C and a k-point
Q outside the conic that is not the strange point of C: (q2 + q + 1)q2(q −
1)(q2 − 1). We then pick six points on C such that the tangent at none of
them goes through Q and there are no two on a line through Q.

q(q − 2)(q − 4)(q − 6)(q − 8)(
1

5!
+

1

6!
(q − 10)).

The values in the table should be multiplied with (q2+q+1)(q+1)q2(q−1)2.

P, λ points τ(λ) |C|

[17] 1 q(q − 2)(q − 4)(q − 6)(q − 8)( 1
5! + 1

6!(q − 10))

[15, 21] −1 (1
2(q2 − q)− q

2)q(q − 2)(q − 4)( 1
3! + 1

4!(q − 6))

[13, 22] 1 1
2!(

1
2(q2 − q)− q

2)(1
2(q2 − q)− q

2 − 2)q(1 + 1
2!(q − 2))

[11, 23] −1 1
3!(

1
2(q2 − q)− q

2)(1
2(q2 − q)− q

2 − 2)(1
2(q2 − q)− q

2 − 4)

[14, 31] 1 1
3(q3 − q)q(q − 2)( 1

2! + 1
3!(q − 4))

[11, 32] 1 1
2!

1
3(q3 − q)1

3(q3 − q − 6)

[12, 21, 31] −1 1
3(q3 − q)(1

2(q2 − q)− q
2)(q + 1)

[13, 41] −1 (1
4(q4 − q2)− q2

4 )q(1 + 1
2!(q − 2))

[11, 21, 41] 1 (1
4(q4 − q2)− q2

4 )(1
2(q2 − q)− q

2)

[12, 51] 1 1
5(q5 − q)(q + 1)

[11, 61] −1 1
6(q6 − q3 − q2 + q)− 1

6(q3 − q)

We get
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∑ τ(λ) · (#s(C) + #ns(C) + #c(C)) · |C|
|PGL3(k)|

=
7

720
(q−2)(q−4)2(q−6)(q−8)

− 5

48
(q−2)3q(q−4)+

3

16
(q2−2q−4)q2(q−2)− 1

48
(q2−2q−4)(q+2)(q−2)(q−4)

+
2

9
(2q−5)(q+1)q(q−1)(q−2)+

1

18
(q+1)q(q−1)2(q−2)−1

3
(q+1)2q(q−1)(q−2)

−3

8
(q2−2)q3+

1

8
(q2−2)q2(q−2)+

2

5
(q2+1)(q+1)2(q−1)−1

6
(q2+q+2)(q+1)(q−1)2 =

− (2q2 − 15q + 14)
where the sum is over the rows in the tables.

10.3.18 [4, 1].

The line and the quartic intersect in four points and the quartic has three
singular points.

For a [17]-tuple of points we pick three k-points Q1, Q2, Q3 that are not
on the same line.(

q2 + q + 1

3

)
− (q2 + q + 1)

(
q + 1

3

)
=

1

6
(q2 + q + 1)(q + 1)q3

We then pick a k-line L not through any of the three points: (q− 1)2. Then
we pick four k-points on L such that none of them is on a line through two
of Q1, Q2, Q3:

(
q−2

4

)
. Now we want to pick a quartic through Q1, Q2, Q3 and

the four points on L with singular points at Q1, Q2, Q3. There is a P1 of
such quartics. The quartic is reducible if it consists of L and the three lines
through Q1, Q2, Q3, or if it consists of two conics through Q1, Q2, Q3 where
each conic goes through two different points on L. There are 3 such pairs
of conics. All the other quartics are irreducible so we get q − 3 irreducible
quartics.

For picking a [11, 21]-tuple of points and a line not through any of them
we get

((q2 + q + 1)1
2(q4 − q)− (q2 + q + 1)(q + 1)1

2(q2 − q))(q2 − 1) = 1
2(q2 + q + 1)(q + 1)q3(q − 1)2.

For a [31]-tuple we get

(1
3(q6 + q3 − q2 − q)− (q2 + q + 1)1

3(q3 − q))(q2 + q + 1) = 1
3(q2 + q + 1)(q + 1)q3(q − 1)2.
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The values in the table should be multiplied with (q2+q+1)(q+1)q3(q−1)2.

3 points P, λ points τ(λ) |C|

[13] [17] 1 1
6

(
q−2

4

)
(q − 3)

[15, 21] −1 1
6

(
q−2

2

)
1
2(q2 − q)(q − 1)

[13, 22] 1 1
6

( 1
2

(q2−q)
2

)
(q − 3)

[14, 31] 1 1
6(q − 2)1

3(q3 − q)q

[13, 41] −1 1
6

1
4(q4 − q2)(q − 1)

[11, 21] [15, 21] −1 1
2

(
q
4

)
(q − 3)

[13, 22] 1 1
2

(
q
2

)
1
2(q2 − q − 2)(q − 1)

[11, 23] −1 1
2

( 1
2

(q2−q−2)
2

)
(q − 3)

[12, 21, 31] −1 1
2q

1
3(q3 − q)q

[11, 21, 41] 1 1
2

1
4(q4 − q2)(q − 1)

[31] [14, 31] 1 1
3

(
q+1

4

)
(q − 3)

[12, 21, 31] −1 1
3

(
q+1

2

)
1
2(q2 − q)(q − 1)

[11, 32] 1 1
3(q + 1)1

3(q3 − q − 3)q

We get

∑ τ(λ) · (#s(C) + #ns(C) + #c(C)) · |C|
|PGL3(k)|

=
7

144
(q−2)(q−3)2(q−4)(q−5)

− 5

24
q(q−1)2(q−2)(q−3)+

1

16
(q+1)q(q−1)(q−2)(q−3)+

2

9
(q+1)q2(q−1)(q−2)

− 1

8
(q + 1)q2(q − 1)2 − 5

48
q(q − 1)(q − 2)(q − 3)2 +

3

8
(q + 1)q(q − 1)2(q − 2)

− 1

16
(q2− q− 4)(q+ 1)(q− 2)(q− 3)− 1

3
(q+ 1)q3(q− 1) +

1

8
(q+ 1)q2(q− 1)2

+
1

18
(q+1)q(q−1)(q−2)(q−3)− 1

6
(q+1)q2(q−1)2 +

1

9
(q3−q−3)(q+1)q =

− 2(5q2 − 12q + 8)
where the sum is over the rows in the tables.

10.4 Results.

We have added the results together and put them in the tables below. In a
column for a certain weight w we have entered the sum of the contributions
for the cases where we consider curves with P and a w-tuple of points. We
have also added rows for some computer computations that we did for F2

and F3. The program we created to do the computations is written in c code
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and can be found at https://github.com/Wennink/countingtrigonalcurves.
Before that we also computed Tsplit(F2), Tnon-split(F2), and Tcusp(F2) using
a simple sage program. This sage program produced the same results as
the program in c code but it was a lot slower which made it more difficult
to scale to F3. It was also impractical to use the sage program for more
detailed computations of the in-between results.

In the c computer program we go through all plane quintics over k that
have an ordinary split node/non-split node/cusp with fixed tangents at P .
For each curve we test for all points besides P whether they are singular or
not. This way we find out how many curves there are for every distribution
of singular points. We then use this information to compute all the in-
between results for different weights. We can also directly grasp the end
results Tsplit(k), Tnon-split(k), and Tcusp(k) by looking at how many curves
the program counted that have no singularities besides P .

For the explicit cases where we have a singularity on an irreducible cubic
or quartic we do not know the contribution to ss

explicit, s
ns
explicit or sc

explicit so
there will be some question marks in the tables.
For split nodes we have

weight q 2 3

0 q13

2(q−1)2
4096 1594323

8

1 − q12+q11

2(q−1)2
−3072 −177147

2

2 q10

2(q−1)2
512 59049

8

3 0 0 0

4 0 0 0

5 0 0 0

6 ? 1 0

7 ? −5 −9

8 1
2(2q3 − 53q2 + 222q − 252) −2 −9

2

9 1
2(13q2 − 49q + 56) 5 13

sum ? 1535 236195
2
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For non-split nodes we have

weight q 2 3

0 q13

2(q2−1)
4096

3
1594323

16

1 − q11

2(q−1) −1024 −177147
4

2 q10

2(q2−1)
512
3

59049
16

3 0 0 0

4 0 0 0

5 0 0 0

6 ? 3 −4

7 ? 1 5

8 1
2(q2 − 6) −1 3

2

9 1
2q(q − 1) 1 3

sum ? 516 118109
2

For cusps we have

weight q 2 3

0 q11

q−1 2048 177147
2

1 − q10+q9

q−1 −1536 −39366

2 q8

q−1 256 6561
2

3 0 0 0

4 0 0 0

5 0 0 0

6 ? −1 −4

7 ? −1 0

8 0 0 0

9 0 0 0

sum ? 766 52484

For the sum of the split nodes, non-split nodes, and cusps we get
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weight q when char(k) = 2 2 q when char(k) 6= 2 3

0 q11(q3+q2−1)
(q−1)2(q+1)

22528
3

q11(q3+q2−1)
(q−1)2(q+1)

6200145
16

1 − q9(q3+q2−1)
(q−1)2

−5632 − q9(q3+q2−1)
(q−1)2

−688905
4

2 q8(q3+q2−1)
(q−1)2(q+1)

2816
3

q8(q3+q2−1)
(q−1)2(q+1)

229635
16

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 −16q2 + 70q − 73 3 −16q2 + 70q − 74 −8

7 −q3 + 35q2 − 156q + 175 −5 −q3 + 35q2 − 156q + 176 −4

8 q3 − 26q2 + 111q − 129 −3 q3 − 26q2 + 111q − 129 −3

9 7q2 − 25q + 28 6 7q2 − 25q + 28 16

sum q11 + q10 − q8 + 1 2817 q11 + q10 − q8 + 1 229636

So we have computed #T5(k) and the computer results over F2 and F3

are consistent with our findings.

Theorem 10.7. The number of smooth trigonal curves of genus five over a
finite field Fq is given by

#T5(Fq) = q11 + q10 − q8 + 1.

81



References

[1] T. van den Bogaart and B. Edixhoven, Algebraic stacks whose number
of points over finite fields is a polynomial, Number Fields and Func-
tion Fields- Two Parallel Worlds, Progress in Mathematics, Vol. 239,
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[2] Gaëtan Chenevier and Jean Lannes, Formes automorphes et voisins de
Kneser des réseaux de Niemeier, http://arxiv.org/abs/1409.7616, 2014.

[3] J. Bergström, Curves of genus three over finite fields, master thesis at
KTH, Stockholm, Sweden.

[4] J. Bergström and O. Tommasi, The rational cohomology of M4, Math.
Ann., 338(1):207239, 2007.

[5] J. Bergström, Cohomology of moduli spaces of curves of genus three via
point counts, J. Reine Angew. Math., 622:155187, 2008.

[6] A. Gorinov, eal cohomology groups of the space of nonsingular curves
of degree 5 in CP 2, Annales de la Facult des Sciences de Toulouse,
14(3):395-434, 2005.

[7] R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York, 1977.

[8] W. Fulton, Algebraic curves, Addison-Wesley Publishing Company Ad-
vanced Book Program, Redwood City, CA, 1989.

82


	Introduction.
	Moduli spaces.
	Point counts and cohomology.
	Representing trigonal curves by projective plane curves.
	Preliminaries and tools.
	The partial sieve method.
	Smooth plane cubics.
	Smooth plane quartics.
	Smooth plane quintics.
	The sieve count.
	The explicit count.
	Results.

	Counting plane quintics with an ordinary singularity.
	The sieve count for nodes.
	The sieve count for cusps.
	The explicit count.
	Results.


