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Abstract

It has been known for decades that black holes behave as thermodynamic objects and, as such,
have an entropy, which was acquired in exact form as the Bekenstein-Hawking entropy. However,
the origin of this entropy, and in particular its proportionality to the area of the horizon, remained
unexplained. Motivated by this mystery, several authors examined the possibility of entanglement
entropy as a source of black hole entropy, by considering a scalar field in the ground state and
tracing out the degrees of freedom inside an imaginary sphere, analogous to the interior of the
black hole. The resulting entanglement entropy between the two regions turned out to scale with
the area of their mutual boundary. In the simplest model the scalar field is represented by a
system of coupled harmonic oscillators. After an introduction to the phenomenon of quantum
entanglement and the associated entanglement entropy, we will review the problem of two coupled
oscillators in the ground state and derive the entanglement entropy using an approach in Fock
space, as opposed to the standard method involving integrals in positon space. This will also
allow us to look at some excited states of the system. Subsequently we will try to extend this
approach to a system of N coupled harmonic oscillators and derive the entanglement entropy
between an inner and outer region of oscillators.
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1 Introduction

1.1 Background and motivation

The starting point of the project presented in this thesis was a famous paper by Srednicki from

1993 [1], in which the so-called area law was derived. This paper was motivated by the desire to

comprehend the form and origin of the entropy of a black hole. It had already been recognised

that black holes behave to exterior observers as thermodynamic objects, and, as such, also have

an entropy. This entropy, called the Bekenstein-Hawking entropy and denoted by SBH , was in

the 1970’s found to be proportional to the area of the black hole horizon [2].

Classically, however, the entropy of a system is an extensive quantity, meaning that it scales

with the system’s volume. Besides, it is not obvious how to interpretate SBH from the perspective

of statistical mechanics, where the entropy S is usually related to the number of accessible

microstates of the system, or, in the case of a quantum system, the number of available quantum

states. It is, however, unknown how many quantum state configurations the black hole interior

can have for a given macrostate and whether this number is even finite.

Srednicki [1], and a few years earlier Bombelli et al. [3], presumed that the black hole entropy

could have a special quantum mechanical origin, namely that it could result from the quantum

entanglement between the degrees of freedom interior and exterior to the horizon. Entanglement

is a purely quantum mechanical phenomenon which will be explained below in Section 1.2.

Associated with this phenomenon, is the notion of entanglement entropy.

In [1] and [3] the black hole and its surroundings were modelled by a scalar quantum field in

the ground state, upon which the degrees of freedom inside an imaginary sphere, representing

the black hole, were integrated out. The resulting reduced system represented the surroundings

of the black hole, reflecting the fact that the interior of the horizon is inaccessible to exterior

observers. The entanglement entropy resulting from the correlations between the degrees of

freedom in the two regions, turned out to be proportional to the area of the boundary between

the regions, hence the name area law, with this boundary representing the black hole horizon.

As a first approximation, the authors considered a system of coupled harmonic oscillators

which was then extended to a bosonic scalar field. When integrating out a part of these oscillators

and evaluating the corresponding entanglement entropy, they used integrals of wave functions

in position space. In general, numerous accounts of entanglement entropy in systems consisting

of coupled harmonic oscillators have been provided in the literature, but the problem is either

approached from a position space basis, e.g. in [4] and [5], or the entanglement entropy is

examined in terms of other quantities such as the logartihmic negativity, as in [6] and [7].

In this thesis we take a different approach: we will derive the entanglement entropy between

coupled harmonic oscillators by using a basis in Fock space. The aim is to provide more insight

into results obtained by other authors, but also to be able to extend these results to excited states

of the system. From a broader perspective, we presume that an approach in Fock space could help

in gaining a better understanding of entanglement entropy in quantum field theories. Only in
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the case of 2d conformal field theories has entanglement entropy been thoroughly described and

understood [8], where it is related to holographic entanglement entropy, which by the AdS/CFT

correspondence has in turn provided new insight into black hole entropy [9]. This topic, however,

is well beyond the scope of the project presented here.

We will now proceed by explaining the phenomenon of quantum entanglement and the re-

sulting entanglement entropy in Section 1.2. Then we will discuss the simplest problem of two

coupled harmonic oscillators in Chapter 2, where we will start by reviewing the derivation of the

entanglement entropy for the system’s ground state in position space and subsequently derive

the same results from our Fock space approach. We will then show how to extend this to some

particular excited states of the system. In Chapter 3, we will consider the problem of N coupled

oscillators, again reviewing how to find the entanglement entropy from a basis in position space

and subsequently examining the same system in the language of Fock space. At last, in Chapter

4, we will conclude our work and present an outlook.

1.2 Entanglement entropy in the quantum mechanical framework

In this section we are going to give a description of quantum entanglement within the mathe-

matical framework of quantum mechanics and show how the notion of entropy is extended to

entanglement entropy, which can be interpreted as a measure of quantum entanglement [10]. In

order to do so, we will make a distinction between two different kinds of quantum states, namely

pure states and mixed states, and describe both of them in terms of density operators. Density

operators, also called density matrices, will prove to be a crucial tool for expressing the entropy

associated to either a mixed quantum state or a pure, entangled quantum state.

1.2.1 Pure states

When the quantum state of a system is fully known, i.e. when there is full access to all the

information in the system, we can express the state of the system as a pure state, say |Ψ〉. This

state |Ψ〉 can still be a superposition of different quantum states, for example a superposition of

different eigenstate of the Hamiltonian operator corresponding to the system. In this sense one

might think there is no complete information about the state of the system, since one cannot tell

what the exact energy of the system is until one performs a measurement and the system’s wave

function collapses into one of the Hamiltonian eigenstates. However, this kind of uncertainty is

intrinsic to quantum mechanics and could therefore never be removed. Hence, it does not reflect

any incompleteness with respect to our knowledge, but rather is an inherent feature of nature.

Let us now consider a system that can be divided in two subsystems, say A and B. The total

Hilbert space in which the state vector of the system lives, can correspondingly be divided into

two subspaces, i.e.:

H = HA ⊗HB . (1.1)

Let us denote a basis of state vectors in HA by |ψn〉A and a basis of state vectors in HB by
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|φn〉. The state |Ψ〉 of the total system can generally be expressed as a superposition of tensor

products between these basis vectors:

|Ψ〉 =
∑
n,m

Cnm |ψn〉A ⊗ |φm〉B . (1.2)

In general it is not possible to describe the states of the two subsystems independently of

each other, but in the case that this is possible, we speak of a separable state or product state.

Mathematically this means that we can write each element of the coefficient matrix Cnm in the

following way:

Cnm = cA,n cB,m, for alln,m , (1.3)

where the cA,n and cB,m are sets of coefficients satisfying∑
n

|cA,n|2 =
∑
m

|cB,m|2 = 1. (1.4)

The state of the composite system can then be written as

|Ψ〉 =
∑
n

cA,n |ψn〉A ⊗
∑
m

cB,m |φm〉B . (1.5)

As is clear from Eq.(1.5), the state |Ψ〉 can now be expressed as a tensor product between two

pure states, each of which describes one of the subsystems and is restricted to the corresponding

subspace of the total Hilbert space. When the composite system is in such a separable state,

there is no quantum entanglement between subsystem A and subsystem B. Indeed, in terms

of the quantum mechanical formalism we can define quantum entanglement as the phenomenon

where the state of one system cannot be described independently of the state of another system.

Consequently, we speak of an entangled state whenever the condition in Eq.(1.3) does not hold.

In order to understand quantum entanglement on a mathematically more rigorous level, let

us introduce the density operator ρ, given by

ρ = |Ψ〉 〈Ψ| , (1.6)

for any pure quantum state |Ψ〉. The density operator is a projetion operator that can be very

useful when calculating quantum mechanical probabilities, which will become more apparent in

due course, when we consider mixed states. The expectation value of an operator A in the state

|Ψ〉 can be expressed by means of the density operator as

〈A〉Ψ = Tr(Aρ) . (1.7)

This can be verified by expanding the state |Ψ〉 in the complete and orthonormal set of eigenstates
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|αi〉, with eigenvalues ai, of the operator A, i.e.

|Ψ〉 =
∑
i

ci |αi〉 , (1.8)

such that

Tr(Aρ) =
∑
i,j

cic
∗
j Tr(A |αi〉 〈αj | =

∑
i,j

cic
∗
j

∑
k

〈αk|A |αi〉 〈αj |αk〉 (1.9)

=
∑
i,j

aicic
∗
j

∑
k

〈αk|αi〉 〈αj |αk〉 =
∑
i

ai|ci|2 = 〈A〉Ψ , (1.10)

where we used the orthonormality condition 〈αi|αj〉 = δij and where |ci|2 is interpreted in the

standard way as the probability that a measurement of the observable represented by A yields

outcome ai.

Let us consider the density matrix for a state that has the form of Eq.(1.2), hence describing

a system consisting of subsystems A and B. By Eq.(1.6), the density matrix can be written as

ρ =
∑
n,m

∑
k,l

CnmC
∗
kl |ψn〉A〈ψk| ⊗ |φm〉B〈φl|. (1.11)

Although we cannot, in general, describe the state of either subsystem separately due to quantum

entanglement, we can take the density matrix and trace over the degrees of freedom residing in

one of the two subsystems, resulting in the reduced density matrix of the other subsystem, i.e.

ρA = TrB ρ ; ρB = TrA ρ . (1.12)

Starting from Eq.(1.11) we find that the reduced density matrix ρA for subsystem A reads

ρA =
∑
n,m

∑
k,l

CnmC
∗
kl |ψn〉A〈ψk|

∑
j

B〈φj |φm〉B〈φl|φj〉B (1.13)

=
∑
n,m,k

CnmC
∗
km |ψn〉A〈ψk| =

∑
n,k

(CC†)nk |ψn〉A〈ψk|, (1.14)

where, in going from Eq.(1.13) to Eq.(1.14), we used again the orthonormality of the states |φi〉,
that is 〈φi|φj〉 = δij . We see that the reduced density matrix ρA in the basis of |ψn〉 is given by

CC†. The reduced density matrix thus satifies the general requirement for density matrices that

the trace be equal to 1:

TrρA = Tr(CC†) =
∑
n,m

|Cnm|2 = 1 . (1.15)

Before proceeding with a definition of entanglement entropy in terms of reduced density

matrices, it is useful to have a look at mixed states and the kind of density matrices they give

rise to.
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1.2.2 Mixed states

As explained above, pure states can be assigned to systems when one has all available knowledge

with respect to the state of the system. However, often the obsever does not have full access

to all the information about the system, for instance in the case of a statistical ensemble. The

closest one can get in this case is a probability distribution over a large number of states. In this

situation we speak of a mixed state.

Density matrices form a particularly useful way of describing systems like these, when one

does not know in which exact state the system is, but one does know the probabilities for the

different states the system could be in. If we denote the different possible states by |Ψn〉 and the

corresponding probabilities by pn, the density matrix corresponding to this mixed state takes

the form

ρ =
∑
n

pnρn =
∑
n

pn |Ψn〉 〈Ψn| , (1.16)

where ρn is the density matrix corresponding to a pure state |Ψn〉. Note that the set of states

|Ψn〉 does by no means have to form an orthonormal basis of the system’s Hilbert space. Eq.(1.7)

can be extended to mixed states such that the ensemble average 〈A〉 is given by

〈A〉 = Tr(Aρ) . (1.17)

The trace condition, i.e. the condition that the trace of the density matrix be equal to 1, still

holds as well, which can be seen when expanding the states |Ψn〉 in an orthonormal set of states

|ψi〉 spanning the Hilbert space:

|Ψn〉 =
∑
i

cn,i |ψi〉 , (1.18)

leading to

Trρ =
∑
n

pnTrρn (1.19)

=
∑
n

pn
∑
i,j

cn,ic
∗
n,j

∑
k

〈ψk|ψi〉 〈ψj |ψk〉 (1.20)

=
∑
i,n

pn|cn,i|2 = 1 , (1.21)

since
∑
n

pn = 1 by definition.

A well known and often encountered example of a mixed state is the thermal mixture where

the probability distribution is given by the Boltzmann distribution:

pn =
e−βεn∑
n

e−βεn
=
e−βεn

Z
, (1.22)
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with the εn denoting the energy eigenvalues and Z the partition function. The density operator

in the basis of energy eigenstates |n〉 then takes the form

ρ =
∑
n

e−βεn

Z
|n〉 〈n| , (1.23)

which can be written in basis independent form as

ρ =
e−βH

Tr (e−βH)
, (1.24)

where H is the Hamiltonian operator.

Thermal mixtures and other statistical ensembles are the subject of study in the field of

statistical mechanics, where relevant (classical) thermodynamic quantities are derived from the

partition function of a system. One such quantity is the entropy S, which can be interpreted

as a measure of the amount of disorder in the system. In the language of statistical physics

this translates to the degree of spread in the probability distribution over the possible (classical)

states of the system, for some fixed macroscopic quantities such as temperature. Hence, if the

probability for the system to be in one specific state is high and the probabilities for the other

states are low, the entropy is low, since one can predict with significant certainty what state the

system is in. If, on the other hand, the distribution over all possible states shows a large spread,

the system shows more disorder and the uncertainty is larger, resulting in a high entropy. The

definition of entropy that explicitly takes these probabilities into account is the one for the Gibbs

entropy [11], given by

S = −kB
∑
i

pilog pi , (1.25)

where pi is the probability to be in state i and kB is the Boltzmann constant.

A way to extend the notion of entropy from a classical quantity to a quantum mechanical

one, is by interpreting the entropy as a measure of the degree of mixing of a quantum mechanical

system. This should intuitively be clear, for the more mixed a system is, the larger the spread

in the probability distribution and hence, the higher the entropy. Accordingly, there is no such

entropy associated to pure states, as there is no uncertainty with respect to which state the system

is in, when it is in a pure state. In the case of a mixture, the probabilities corresponding to the

different quantum states are nothing but the eigenvalues of the density matrix that describes the

mixed state, as follows from Eq.(1.16). Therefore,we can extend Eq.(1.25) to the so-called von

Neumann entropy SvN , which reads

SvN = −Tr(ρ log ρ) . (1.26)

The von Neumann entropy can be considered the quantum mechanical extension of the Gibbs

entropy, since it describes the entropy associated with quantum mechanical mixtures.
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The idea that the entropy is larger when the spread in the probability distribution over

available states is larger, naturally applies in the quantum mechanical picture as well. Suppose

there are N possible states, then the probability distribution is maximally spread when the

probability for each state equals 1/N . Quantum mechanically this situation corresponds to a

mixed state in an N -dimensional Hilbert space where one can choose a basis of states such that

the probability corresponding to each of these basis states equals 1/N . This is expressed by an

N ×N density matrix of the form

ρ =


1/N 0 · · · 0

0 1/N · · · 0
...

...
. . .

...

0 0 · · · 1/N

 . (1.27)

States of this form are called maximally mixed states and they consequently have the highest

entropy. The expression for this maximum value of the von Neumann entropy follows from

Eq.(1.26):

S = −N
(

1

N
log

(
1

N

))
= logN . (1.28)

Now that we have related entropy to mixed quantum states, we can examine the kind of

entropy related to the phenomenon of quantum entanglement: the entanglement entropy.

1.2.3 Entanglement entropy

Before we define entanglement entropy, we recall that the density matrix corresponding to a

composite system consisting of subsystems A and B, can be traced over with respect to one of

the subsystems, resulting in the reduced denity matrix of the other subsystem. Whereas the

total density matrix describes a pure state, the reduced density matrix of either subsystem will,

in the case that the two subsystems are entangled, be equivalent to the density matrix of a mixed

state.

We will illustrate this by looking at a paradigm example of an entangled state: the spin singlet.

This state describes two particles with spin 1
2 , call them spin1 and spin2, living in subspaces H1

and H2 of the total Hilbert space. In terms of the eigenstates, denoted by |↑〉 and |↓〉, of the spin

operators corresponding to spin1 and spin2 along any fixed direction, the state reads

|Ψ〉 =
1√
2

(|↑〉1 ⊗ |↓〉2 − |↓〉1 ⊗ |↑〉2) . (1.29)

Comparing this to Eq.(1.2) we can identify the matrix C as

C =

 0 1√
2

−1√
2

0

 . (1.30)
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Forming the density matrix ρ according to Eq.(1.11) and tracing out spin2, we find the reduced

density matrix ρ1 of spin1, the elements of which are, in the basis of eigenstates corresponding

to spin1, given by the elements of the matrix CC†. This gives

ρ1 = CC† =

 1
2 0

0 1
2

 , (1.31)

or, equivalently,

ρ1 =
1

2
|↑〉 1 〈↑|+

1

2
|↓〉 1 〈↓| . (1.32)

A density matrix of this form could never correspond to a pure quantum state, but it could

definitely describe a mixture of two pure states, both with probability 1
2 . One could even argue

that tracing out one of the subsystems actually produces a mixed state. The incompleteness

of information inherent to mixed states, is in this case not the result of a lack of knowledge

about the state of the whole system, but of the fact that, due to the very nature of quantum

entanglement, part of the information about subsystem A resides in the degrees of freedom of

subsystem B which were traced out and are, therefore, no longer accessible.

In the same way that we could associate an entropy with the uncertainty carried by regular

mixed states, we can define an entropy related to the mixed form of the reduced density matrix

resulting from the quantum entanglement between different subsystems. This is what we call

the entanglement entropy and it is defined in the same way as the von Neumann entropy in

Eq.(1.26), but with the regular density matrix replaced by the reduced one. When a system in

a pure state can be divided into two subsystems A and B that are entangled, the entanglement

entropy can be expressed both in terms of ρA and ρB and is given by

S = −Tr(ρAlogρA) = −Tr(ρB logρB) . (1.33)

The equivalence of the two expressions in Eq.(1.33) can be proven by means of the Schmidt

decomposition theorem [12]. In short this theorem says that there can always be found a basis

such that the reduced density matrices of both subsystems are diagonal in this basis and have

the same eigenvalues. The entanglement entropy in terms of these eigenvalues pn simply reads

S = −
∑
n

pnlogpn . (1.34)

Returning to the spin singlet, we see that the reduced density matrix ρ1 in Eq.(1.31) is of the

form of the density matrix in Eq.(1.27), corresponding to a maximally mixed state. It follows

that the entanglement entropy of singlet state is S = log 2 and we say that this is an example of

a maximally entangled state [5]. In general we can say that the entanglement entropy is measure

for the amount of entanglement between two systems.
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Now that we have given an account of quantum entanglement and entanglement entropy within

the quantum mechanical framework. we will proceed in the next chapter with a derivation of

the entanglement entropy corresponding to a system of two coupled harmonic oscillators.
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2 Two coupled harmonic oscillators

As the harmonic oscillator could be considered the elementary building block of physical models,

it is hardy surprising that it is a good starting point for studying the entanglement entropy of

more complex systems and eventually quantum field theories, especially since a quantum field

is essentially formed by an infinite set of harmonic oscillators. In this chapter we will restrict

ourselves to the simplest system of harmonic oscillators that exhibits entanglement, namely the

system of two equal, coupled harmonic oscillators.

In Section 2.1 we will follow [1] in finding the ground state of the system in position space,

and deriving the corresponding entanglement entropy. In Section 2.2 we obtain the same results

in Fock space using methods involving ladder operators. In Section 2.3 we will use the latter

aproach to extend some of the results to excited states.

2.1 Ground state and entanglement entropy in position space

2.1.1 Diagonalising the Hamiltonian

Like any physical system, the system of two coupled harmonic oscillators can be described by a

Hamiltonian. We suppose that the two oscillators are equal, in the sense that they have equal

masses, which we set to 1, and equal frequencies when uncoupled. The Hamiltonian H is then,

in general form, given by

H =
1

2

[
p2

1 + p2
2 + k0(x2

1 + x2
2) + k1(x1 − x2)2

]
, (2.1)

where p1 and p2 are the momenta of the two oscillators and x1 and x2 their position coordi-

nates, i.e. the coordinates desribing the displacement of the oscillators from their equilibrium

positions. Furhtermore, k
1/2
0 is the frequency of both oscillators when they are uncoupled, while

k1 represents the coupling between them. The Hamiltonian can be cast into the form

H =
1

2

2∑
i=1

p2
i +

1

2

2∑
i,j=1

xiKijxj , (2.2)

with K given by

K =

(
k0 + k1 −k1

−k1 k0 + k1

)
. (2.3)

In order to find an expression for the ground state of the system, we would like to diagonalise

the matrix K by a unitary transformation, such that the Hamiltonian can be put into a decoupled

form. Denoting the transformation matrix by U , a straightforward diagonalisation of Eq.(2.3)

yields that

U =

 1√
2

1√
2

1√
2

−1√
2

 , (2.4)
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such that the diagonal form KD of K is given by

KD = UKDU
T =

k0 0

0 k0 + 2k1

 . (2.5)

We define new coordinates according tox+

x−

 ≡ U
x1

x2

 =

x1+x2√
2

x1−x2√
2

 ;

p+

p−

 ≡ U
p1

p2

 , (2.6)

in terms of which the Hamiltonian reads

H =
1

2

[
p2

+ + p2
− + ω2

+x
2
+ + ω2

−x
2
−
]
, (2.7)

where ω+ and ω− are the eigenvalues of Ω, thus the eigenfequencies of the system, given by

ω+ = k
1/2
0 ; ω− = (k0 + 2k1)1/2 . (2.8)

Eq.(2.7) shows precisely the decoupled form we aimed to obtain. It describes two uncoupled

oscillators, one with frequency ω+ and the other with frequency ω−. The ground state wave

function ψ0 is then simply the product of the ground state wave functions corresponding to these

oscillators, hence is given by

ψ0(x+, x−) =
(ω+

π

)1/4

exp

[
−1

2
ω+x

2
+

]
×
(ω−
π

)1/4

exp

[
−1

2
ω−x

2
−

]
, (2.9)

where we set ~ to 1, which will be maintained throughout this thesis. Eq.(2.9) can be rewritten

in terms of the original coordinates as

ψ0(x1, x2) =
(ω+ω−)

1
4

√
π

exp

[
−1

2

(
ω+ + ω−

2
(x2

1 + x2
2) + (ω+ − ω−)x1x2

)]
. (2.10)

2.1.2 Deriving the entanglement entropy

Since we are eventually interested in the entanglement entropy between the oscillators, let us

explicitly decompose the Hilbert space as

H1 ⊗H2 , (2.11)

where H1 is the subspace corresponding to the oscillator with position x1 and momentum p1 and

H2 is the subspace where the oscillator described by x2 and p2 lives. Now that we have obtained

an expression for the ground state wave function in Eq.(2.10), we can form the density matrix

and integrate out one of the two oscillators to arrive at the reduced density matrix, which will
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eventually lead us to the entanglement entropy.

Because we are working in position space, the density matrix is given by

ρ(x1, x
′
1;x2, x

′
2) = 〈x1, x2| ρ |x′1, x′2〉 = 〈x1, x2|ψ0〉 〈ψ0|x′1, x′2〉 = ψ0(x1, x2)ψ∗0(x′1, x

′
2) . (2.12)

We now decide to integrate out the degrees of freedom corresponding to the second oscillator,

which means that we have to integrate the density matrix over the variable x2. This gives the

reduced density matrix ρ1 :

ρ1(x1, x
′
1) =

∫ +∞

−∞
dx2 ψ0(x1, x2)ψ∗0(x1, x

′
2) . (2.13)

Substituting Eq.(2.10) into Eq.(2.13) and evaluating the gaussian integral by completing the

square, we obtain

ρ1(x1, x
′
1) = π−

1
2

(
2ω+ω−
ω+ + ω−

) 1
2

exp

[
− (ω+ + ω−)2 + 2ω+ω−

4(ω+ + ω−)

x2
1 + x

′2
1

2
+

(ω+ − ω−)2

4(ω+ + ω−)
x1x
′
1

]
.

(2.14)

In order to calculate the entanglement entropy S, we want to know the eigenvalues of ρ1(x1, x
′
1)

since S can be obtained straighforwardly from them, according to Eq.(1.34). Hence, we need to

solve the eigenvalue equation ∫ +∞

−∞
dx′ρ1(x, x′)fi(x

′) = pnfn(x) . (2.15)

The eigenfunctions fn(x) turn out to be equivalent to the eigenfuntions of a harmonic oscillator

with frequency ω = (ω−ω+)1/2, such that

fn(x) = Hn(ω
1
2x)exp(−ωx2/2) . (2.16)

The eigenvalues pn are given by

pn = (1− ξ2)ξ2n , (2.17)

where the parameter ξ is defined by

ξ =
ω

1/2
− − ω1/2

+

ω
1/2
− + ω

1/2
+

. (2.18)

Note that this expression for ξ entails, by Eq.(2.8), that 0 < ξ < 1, which is necessary in order

for the pn in Eq.(2.17) form a well defined probability distribution. The entanglement entropy

14



as a function of ξ is then given by

S(ξ) = −
∞∑
n=0

pn log pn = −log(1− ξ2)− ξ2

1− ξ2
log ξ2. (2.19)

2.2 Ground state and entanglement entropy in Fock space

In this section we are going to reproduce the result in Eq.(2.19) by taking an aproach to the

problem in the language of Fock space instead of working with integrals in position space. Our

aim in doing so is not merely to reproduce something we already know, but to gain more insight

into the form of the ground state and density matrix when expressed in a basis that explicitly

incorporates and illustrates the distinction between the two subspaces corresponding to the two

oscillators. Moreover, we hope that this will enable us to extend our results more easily to excited

states of the system.

2.2.1 Finding the ground state

To obtain an expression for the ground state in terms of ladder operators acting on states in

Fock space, we start by introducing the annihilation and creation and operators corresponding

to the x± and p± in Eq.(2.6):

a± =

√
ω±
2

(x± +
i

ω±
p±) ; a†± =

√
ω±
2

(x± −
i

ω±
p±) , (2.20)

satisfying the standard bosonic commutation relations:

[a−, a
†
−] = [a+, a

†
+] = 1 . (2.21)

Because the Hamiltonian is decoupled in this basis, we can write it in terms of the ladder

operators as

H = ω+a
†
+a+ + ω−a

†
−a− +

1

2
(ω+ + ω−) , (2.22)

where the first terms are number operators, corresponding to the new uncoupled oscillators, and

the third term represents the ground state energy. Due to the decoupled form of Eq.(2.22), any

eigenstate of H can be written as a product of the single oscillator eigenstates of the operators

a†−a− and a†+a+. Hence, the ground state is written in this basis as

|0〉 = |0〉− ⊗ |0〉+ . (2.23)

Clearly |0〉 is annihilated by both annihilation operators:

a± |0〉 = 0 . (2.24)
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Although we have obtained an expression for the ground state, in the form of Eq.(2.22),

it does not allow us to calculate the entanglement entropy between the two original oscillators.

The reason is that the ±-basis corresponds to a different decomposition of the Hilbert space than

the one we have supposed, given by Eq.(2.11) .Therefore we cannot integrate out the degrees of

freedom in either of our chosen subspaces from a state expressed in this ±-basis. This is also

evident from the fact that a± and a†± depend on the position and momentum of both original

oscillators as a result of the transformation in Eq.(2.6).

Hence, we want to express |0〉 in terms of ladder operators that are confined to either H1 or

H2, which is equivalent to saying that we want to find and expression of the form

|0〉 =
∑
n,m

Cnm |n〉1 ⊗ |m〉2 , (2.25)

where the |n〉1 constitute a basis in H1 and the |m〉2 in H2. The first step towards finding

the ladder operators corresponding to this desired basis, that is, the ladder operators raising

and lowering the states |n〉1 and |m〉2 in Eq.(2.25), is to realise and utilise the fact that linear

combinations of a+ ad a− also annihilate |0〉. By anticipation and trial and error, the following

particular combination turns out to be fruitful:

a =
1√
2

(a+ + a−) ; b =
1√
2

(a+ − a−) , (2.26)

where a and b are in fact new annihilation operators rotated by an angle π/4 with rspect to a+

and a−. Following Eqs.(2.6) and (2.20), we can write a and b in terms of the original position

and momentum operators, which, upon some reordering, yields

a =
1√

1− ξ2

(√
ω

2

(
x1 +

i

ω
p1

)
− ξ
√
ω

2

(
x2 −

i

ω
p2

))
; (2.27)

b = a (x1 ↔ x2, p1 ↔ p2) , (2.28)

where, just like in section 2.1, ω and ξ are, given by

ω = (ω−ω+)1/2 ; ξ =
ω

1/2
− − ω1/2

+

ω
1/2
− + ω

1/2
+

. (2.29)

In the expression for a given by Eq.(2.27) we can recognise two ladder operators of the form that

we are looking for, one of them living exclusively in HI , the other in HII . More precisely, if we

let

α =

√
ω

2

(
x1 +

i

ω
p1

)
; β =

√
ω

2

(
x2 +

i

ω
p2

)
, (2.30)
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we can write a and b as

a =
1√

1− ξ2

(
α− ξβ†

)
; b =

1√
1− ξ2

(
β − ξα†

)
. (2.31)

Note that α, despite depending only on x1 and p1, does not really correspond to the original

oscillator with coordinates x1 and p1, nor does β correspond to the original oscillator described

by x2 and p2 in the Hamiltonian in Eq.(2.1). These original oscillators both had frequency

k
1/2
0 = ω+ and were, from a classical point of view, coupled by a spring constant k1, whereas α

and β correspond to oscillators with frequency ω = (ω−ω+)1/2 that result from a rotation among

the system’s eigenstates.

Since a and b annihilate the ground state, it follows from Eq.(2.31) that

(α− ξβ†) |0〉 = (β − ξα†) |0〉 = 0 , . (2.32)

hence

α |0〉 = ξβ† |0〉 ; (2.33)

β |0〉 = ξα† |0〉 . (2.34)

Writing the ground state in the form of Eq.(2.25) and acting on it with α gives

α |0〉 =

∞∑
n,m=0

Cnm
√
n |n− 1〉1 ⊗ |m〉2 =

∞∑
n,m=0

C(n+1)m

√
n+ 1 |n〉1 ⊗ |m〉2 , (2.35)

where we used that the α(†) act on |n〉1 as standard ladder operators, i.e.

α |n〉1 =
√
n |n− 1〉1 ; α† |n〉1 =

√
n+ 1 |n+ 1〉1 . (2.36)

Meanwhile, the right hand side of Eq.(2.33) can be worked out to give

ξβ† |0〉 =

∞∑
n,m=0

ξCnm
√
m+ 1 |n〉1 ⊗ |m+ 1〉2 =

∞∑
n,m=0

ξCn(m−1)

√
m |n〉1 ⊗ |m〉2 . (2.37)

Equating Eqs.(2.35) and (2.37) it follows that their coefficients have to be equal, i.e.

C(n+1)m

√
n+ 1 = ξCn(m−1)

√
m. (2.38)

Working out Eq.(2.34) in the same way yields a similar relation, viz.

Cn(m+1)

√
m+ 1 = ξC(n−1)m

√
n. (2.39)
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Subsequently, Eq.(2.38) can be rewritten as

Cnm = ξC(n−m)(m−1)

√
m

n
, (2.40)

while from Eq.(2.39) it follows that

Cnm = ξC(n−1)(m−1)

√
n

m
. (2.41)

Eqs.(2.40) and (2.41) can only be consistent under the condition that Cnm ∝ ξnδnm. To find the

right proportionality factor, we just have to make sure the ground state is normalised, which,

according to Eq.(2.25), implies that
∑
n,m

|Cnm|2 = 1. It is then easily derived that

Cnm =
√

1− ξ2ξnδnm , (2.42)

as, by definition, 0 < ξ < 1. The ground state, at last, takes the form

|0〉 =
√

1− ξ2

∞∑
n=0

ξn |n〉1 ⊗ |n〉2 , (2.43)

which, in terms of ladder operators, can be expressed as

|0〉 =
√

1− ξ2

∞∑
n=0

ξn
(α†)n√
n!

(β†)n√
n!
|0〉1 ⊗ |0〉2 (2.44)

=
√

1− ξ2 eξα
†β† |0〉1 ⊗ |0〉2 . (2.45)

This result is in agreement with [3] and [5], however these authors did not give the relation

between the operators we denote by α and β and the position and momentum operators x1, p1

and x2, p2. In other words, they did not show how to arrive at the new ladder operators α(†)

and β(†) starting from the system’s two original oscillators. Nor did they give an expression for

the parameter we named ξ in terms of the system’s initial parameters, e.g. its eigenfrequencies.

Here we have shown precisely how the basis used to express |0〉 in Eq.(2.45) is obtained from

the basis of the system’s eigenstates and the position and momentum operators corresponding

to the two original oscillators.

2.2.2 Deriving the entanglement entopy

Having obtained an expression for the ground state in a basis that adopts the decompostion into

HI and HII , we are able to trace out either of the two subspaces. We first form the total density
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matrix ρ from Eq.(2.43):

ρ = |0〉 〈0| = (1− ξ2)
∑
n,n

ξn+m|n〉1〈m| ⊗ |n〉2〈m| . (2.46)

We subsequently trace over that part of ρ living in H2, forming the reduced density matrix ρ1:

ρ1 = Tr2ρ =(1− ξ2)
∑
n,m

ξn+m|n〉1〈m| ⊗
∑
k

2〈k|n〉2〈m|k〉2 (2.47)

=(1− ξ2)
∑
n

ξ2n|n〉1〈n| , (2.48)

where we used the orthonormality of the basis, i.e. 2〈m|k〉2 = δmk. Casting ρ1 into the form

ρ1 =
∑
n

pn|n〉1〈n| , (2.49)

it is clear that its eigenstates are just the eigenstates |n〉 of an oscillator with frequency ω and

its eigenvalues pn are equal to (1 − ξ2)ξ2n. This is in agreement with our discussion in Section

2.1, in particular Eqs.(2.16) and (2.17), and therefore perhaps not so surprising. However, the

Fock space approach we took here probably provides more insight into the origin and derivation

of this result.

We explained in Section 1.2 that reduced density matrices are often equivalent to density

matrices describing mixtures. As also pointed out by Srednicki, the reduced density matrix we

obtained in Eq.(2.48) can in fact be associated with a thermal mixture. We recall that a thermal

mixture is given by a density matrix of the form

ρth =
1

Z
e−βH , (2.50)

which, in the basis of eigenstates of H, for a quantum harmonic oscillator becomes

ρth =
∑
n

e−βnω

1− e−βω
|n〉 〈n| . (2.51)

Comparing this with Eq.(2.48), we see that both expressions are indeed equivalent if

pn =
e−βnω

1− e−βω
= (1− ξ2)ξ2n , (2.52)

which holds if we define the temperaure T of the mixture as

T = β−1 =
ω

log(ξ−2)
. (2.53)

One should keep in mind, however, that this is just a way to interpret the form of ρ1, which
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is not the same as saying that the reduced system has a temperature T given by Eq.(2.53).

The effect of tracing out one of the two oscillators is just that the resulting reduced system can

mathematically be described as if it were a thermal mixture.

Since the entanglement entrop S only depends on the eigenvalues of ρ1, we arrive at the same

expression for S as in Eq.(2.19), i.e.

S(ξ) = −
∞∑
n=0

pn log pn = −log(1− ξ2)− ξ2

1− ξ2
log ξ2 . (2.54)

We note that we would obtain the same result if we decided instead to take the trace with

respect to H1, which is easy to see from Eq.(2.47). The reduced density matrix would in this

case read

ρ2 = (1− ξ2)
∑
n

ξ2n|n〉2〈n| , (2.55)

which shows that ρ1 has the same eigenvalues as ρ2 and consequently leads to the same entan-

glement entropy.

So far we have restricted our considerations and derivations to the ground state of the system.

In the following section we will try to extend the methods we employed in this section to include

some excited states as well.

2.3 Entanglement entropy of excited states

Another advantage of deriving an expression for the ground state in Fock space, besides putting

the reduced density matrix in a more illuminating form, is that it allows us to straightforwardly

act on it with creation operators and form excited states.

2.3.1 Excited states

Let us consider in particular the creation operators a† and b†, obtained by taking the hermitian

conjugate of Eq.(2.31). Acting with a† on the ground state, given by Eq.(2.45), yields

a† |0〉 =
√

1− ξ2a†eξα
†β† |0〉1 ⊗ |0〉2 (2.56)

=
√

1− ξ2
(
eξα

†β†a† +
[
a†, eξα

†β†
])
|0〉1 ⊗ |0〉2 . (2.57)

Substituting a† = 1√
1−ξ2

(α† − ξβ) and using that β |0〉2 = 0, we get

a† |0〉 =
(
eξα

†β†α† − ξ
[
b, eξα

†β†
])
|0〉1 ⊗ |0〉2 . (2.58)

To work out the commutator we first expand the exponential and then use the following identity:

[A,Bn] = nBn−1[A,B] iff [[A,B] , B] = 0 , (2.59)
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which is proven in the Appendix (see A.1). This leads to

[
b, eξα

†β†
]

=

∞∑
n=0

ξn

n!
(α†)n[β, (β†)n] (2.60)

=

∞∑
n=0

ξn

n!
(α†)n n (β†)n−1 (2.61)

= ξ

∞∑
n=1

ξn−1

(n− 1)!
(α†)n−1(β†)n−1α† (2.62)

= ξ

∞∑
n=0

ξn

n!
(α†)n(β†)nα† = eξα

†β†α† , (2.63)

where we used that the n = 0 term in the sum in Eq.(2.61) does not contribute so we might as

well let n start at 1. Substituting this result into Eq.(2.58), we arrive at

a† |0〉 = (1− ξ2) eξα
†β†α† |0〉1 ⊗ |0〉2 . (2.64)

We see that acting with a† on |0〉 results in an excitation of the oscillator corresponding to α(†).

This result can be easily extended to acting n times with a†, yielding

(a†)n |0〉 =
(√

1− ξ2
)n+1

eξα
†β†(α†)n |0〉1 ⊗ |0〉2 (2.65)

=
(√

1− ξ2
)n+1

eξα
†β†
√
n! |n〉1 ⊗ |0〉2 , (2.66)

where the factor
√
n! arises because α† acts on |0〉1 according to Eq.(2.36)

The state in Eq.(2.66) is, however, not properly normalised yet. Indeed, when calculating its

norm, we find

|(a†)n |0〉 |2 =
(
1− ξ2

)n+1
n!

∣∣∣∣∣∣
∞∑
j=0

ξj

j!

√
(n+ j)!

n!

√
j! |n+ j〉1 ⊗ |j〉2

∣∣∣∣∣∣
2

(2.67)

=
(
1− ξ2

)n+1
∞∑
j=0

ξ2j (n+ j)!

j!
= n! . (2.68)

We can now define normalised excited states, |nα〉, by

|nα〉 ≡
1√
n!

(α†)n |0〉 =
(√

1− ξ2
)n+1

eξα
†β† |n〉1 ⊗ |0〉2 . (2.69)

The above discussion applies equally if, instead of α†, we would act n times with β†, resulting
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in an excited state |nβ〉, defined by

|nβ〉 ≡
1√
n!

(β†)n |0〉 =
(√

1− ξ2
)n+1

eξα
†β† |0〉1 ⊗ |n〉2 . (2.70)

2.3.2 Entanglement entropy

We can now evaluate the entanglement entropy between the two subsystems in the excited states

defined above. To that end, we first have to obtain the reduced density matrix by tracing out

one of the two subsystems. We will consider the state |nα〉, defined in Eq.(2.69), which has a

density matrix given by

ρ = |nα〉 〈nα| =
1

n!

(
1− ξ2

)n+1
∞∑

j,k=0

ξj+k

√
(n+ j)! (n+ k)!

j! k!
|n+ j〉1〈n+ k| ⊗ |j〉2〈k| . (2.71)

We form the reduced density matrix ρ1 in the usual way, by tracing over the basis |m〉2, yielding

ρ1 = (1− ξ2)n+1
∞∑
j=0

ξ2j (n+ j)!

n! j!
|n+ j〉1〈n+ j| . (2.72)

From Eq.(2.72) we can read off the eigenvalues pj of ρ1. The entanglement entropy S follows in

the usual way according to S = −
∑
j pj log pj , which gives

S = −
∑
j

(1− ξ2)n+1 ξ2j (n+ j)!

n! j!
log

[
(1− ξ2)n+1ξ2j (n+ j)!

n! j!

]
. (2.73)

Writing the logarithmic term as log(1− ξ2)n+1 + logξ2j + log (n+j)!
n! j! and simpifying the resulting

first term of S gives

− (1− ξ2)n+1 log(1− ξ2)n+1
∑
j

ξ2j (n+ j)!

n! j!
= −(n+ 1)log(1− ξ2) , (2.74)

where we recognised
∑
j ξ

2j (n+j)!
n! j! as the infinte Taylor series of f(ξ2) = (1 − ξ2)−n−1 around

ξ2 = 0. The second term of S can, by some lines of algebraic manipulation, be cast into the form

− (1− ξ2)n+1
∑
j

ξ2j (n+ j)!

n! j!
log ξ2j = −(n+ 1)

ξ2

1− ξ2
log ξ2 . (2.75)

Combining it all, we find the following expression for S:

S = −(n+ 1)log(1− ξ2)− (n+ 1)
ξ2

1− ξ2
logξ2− (1− ξ2)n+1

∑
j

ξ2j (n+ j)!

n! j!
log

(n+ j)!

n! j!
. (2.76)
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Figure 1: Entanglement entropy for excited states.

The reader can check that upon setting n = 0, i.e. going back to the ground state, the expression

in Eq.(2.54) is retrieved.

Since Eq.(2.76) might not be very illuminating, we numerically evaluate S for the first three

excited levels, i.e. n = 1 up to n = 3. A plot of the result is shown in Fig.1, where we also

included the ground state and where S is displayed as a function of ξ2. We see that S increases

for each level, whereas the shape of the graph showing the dependence of S on ξ2, remains

roughly the same. We also see that S increases for increasing ξ2, in each of the levels. This can

be explained by recalling the expression for ξ, given by Eq.(2.18), and noting that ξ is small

when ω+ ≈ ω−. As follows from Eq.(2.8), this is the case when k1 ≈ 0, hence when the coupling

between the two original oscillators is small. This should intuitively make sense, since there is

simply no entanglement between decoupled systems.

We remark that the particular excited states we have been considering here are not the eigen-

states of the system’s Hamiltonian. After all, these eigenstates are formed by acting with the

operators a†± on the ground state in the ±-basis, as is evident from Eq.(2.23). Instead, the

creation operators a† and b† that we used to excite |0〉 are linear combinations of a†±, following

from Eq.(2.26). Consequently, the states |nα〉 and |nβ〉 are linear combinations of the eigenstates

of H. The reason we chose to consider these states rather than the actual eigenstates, is because

they allowed for a better analytical derivation and a more elegant result. Further work could

examine the form of the entanglement entropy in the excited eigenstates.

Now that we have worked through the problem of two coupled oscillators and derived the en-

tanglement entropy between them, not only in the ground state but in some particular excited

states as well, it is time to consider the more general and more complicated problem consisting

of N coupled oscillators, where N can be any positive integer. This will be the topic of the next

chapter.
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3 N coupled harmonic oscillators

In this chapter we are, as announced, going to look at a system consisting of a general number of

N coupled harmonic oscillators. We are interested in this generalisation not only for the obvious

reason that results obtained for this general case will be more informative, but, moreover, because

this system forms the most simple model of a scalar quantum field and as such constitutes the first

step towards an approach in quantum field theory. As before, we aim to obtain the entanglement

entropy between two subsystems. Therefore, we will divide our composite system into two

subsystems consisting, respectively, of the first n oscillators and the remaining N −n oscillators,

where we assume that n < N − n. We we will solely focus on the ground state of the composite

system, and derive the entanglement entropy in this ground state. Following the structure of

the previous chapter, we will first give a derivation of the ground state and subsequently the

entanglement entropy by working in position space, in line with [1] and [3]. This is done is

Section 3.1. After that, in Section 3.2, we will attempt to generalise our approach from Section

2.2 in deriving a convenient expression for the ground state in Fock space that enables us to

calculate the entanglement entopy between the two subsystems.

3.1 Ground state and entanglement entropy in position space

3.1.1 Diagonalising the Hamiltonian

As always we start from the Hamiltonian of the system, which is just a generalisation of the

Hamiltionian in Eq.(2.2), and therefore takes the form

H =
1

2

N∑
A=1

p2
A +

1

2

N∑
A,B=1

xAKABxB . (3.1)

The matrix K describes the coupling between each of the oscillators and can be diagonalised by

a unitary transformation U . We define the matrix Ω as the square root of K, i.e. Ω ≡ K1/2,

which means that it can be diagonalised by the same unitary transformation, viz.

Ω = UTΩD U = UTK
1/2
D U , (3.2)

where ΩD denotes the diagonal form of Ω and KD denotes the diagonal form of K. By employing

the unitarity of U one can easily check from Eq.(3.2) that Ω · Ω = K . The eigenvalues ωA of

Ω are the square roots of the eigenvalues of K and form the eigenfrequencies of the system, like

ω+ and ω− did in the case of two oscillators. In terms of them, the ground state wave function

ψ0(x1, . . . , xN ) is a product of single oscillator ground states, each corresponding to one of the

eigenfrequencies, i.e.

ψ0(x1, . . . , xN ) =
∏
A

(ωA
π

)1/4

exp

[
−1

2
ωAx̃

2
A

]
, (3.3)
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where x̃A ≡
∑
B UABxB . Eq.(3.3) can be written in terms of the original variables xA as

ψ0(x1, . . . , xN ) =

(
det

(
Ω

π

))1/4

exp

[
−1

2
x · Ω · x

]
, (3.4)

where x =


x1

...

xN

. The density matrix ρ(x,x′) corresponding to the ground state is then given

by

ρ(x,x′) = ψ0(x)ψ∗0(x′) =

(
det

(
Ω

π

))1/2

exp

[
−1

2
x · Ω · x− 1

2
x′ · Ω · x′

]
. (3.5)

3.1.2 Reduced density matrix

We will now decompose the Hilbert space H into two subspaces, in accordance with the division

of the composite system into two subssystems, such that

H = HI ⊗HII , (3.6)

with the first n oscillators living in HI and the remaining N − n oscillators living in HII . From

now on, we will label operators and variables restricted to HI by indices a, b, etc., and those

restricted to HII by i, j, etc. Consequently, a runs from 1 to n whereas i runs from n+ 1 to N .

When we do not restrict ourselves to either subspace but refer to the complete system, we will

keep using capital indices A,B, etc. Accordingly we decompose Ω into four sectors:

ΩAB =

(Ω1)ab (Ω2)aj

(ΩT2 )ib (Ω3)ij

 . (3.7)

For later use, we also define its inverse to be

OAB ≡ (Ω−1)AB =

(O1)ab (O2)aj

(OT2 )ib (O3)ij

 . (3.8)

We will now form the reduced density matrix ρI corresponding to the subsystem made up

of the first n oscillators, which means we will have to integrate over the variables corresponding

to the other N − n oscillators. Indeed, we integrate ρ(x,x′) in Eq.(3.5) over the variables xi to
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obtain an expression for ρI , which, using Eq.(3.7), can be written as

ρI({xa}, {x′a}) =

(∏
i

∫
dxi

)
ρ({xa}, {xj}; {x′a}, {xj}) (3.9)

=

(
det

(
Ω

π

))1/2

exp

[
−1

2
xa(Ω1)abxb −

1

2
x′a(Ω1)abx

′
b

]
×

(∏
i

∫
dxi

)
exp [−(xa + x′a)(Ω2)ajxj − xi(Ω3)ijxj ] . (3.10)

In the above expression summation over repeated indices is implied, as will be the case from

now on unless indicated otherwise. The integral in Eq.(3.10) can be evaluated by completing the

square, yielding

(
πN−n

detΩ3

)1/2

exp

[
1

4
(xa + x′a)Ω2 aj

(
Ω−1

3

)
jk

(
ΩT2
)
kb

(xb + x′b)

]
.

Substituting this expression into Eq.(3.10) and reordering the terms, we obtain

ρI({xa}, {x′a}) =

(
det

(
O−1

1

π

))1/2

exp

[
−1

2
(xaΓabxb + x′aΓabx

′
b) + x′a∆abxb

]
, (3.11)

with the matrices Γ and ∆ defined as

∆ ≡ 1

2
Ω2 · Ω−1

3 · ΩT2 and Γ ≡ Ω1 −∆ . (3.12)

We also used that detΩ = detΩ3 det(O−1
1 ), as pointed out by [3]. Furthermore, we note for later

reference that

O−1
1 = Ω1 − Ω2Ω−1

3 ΩT2 , (3.13)

which we will prove in the Appendix (see A.10) and is also demonstrated in [3].

In order to diagonalise ρI , and find its eigenvalues, we have to carry out two subsequent trans-

formations. The first one is a coordinate transformation, transforming xa into new coordinates

ya, defined by

ya = Γ
1/2
D abVbcxc , (3.14)

where V is an orthogonal matrix that brings Γ into diagional form, such that

Γ = V TΓDV . (3.15)

However, when performing a coordinate transormation we should take into account that the

normalisation of the reduced density matrix has to be preserved, since its trace must always be
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equal to 1, i.e. ∫ ∏
a

dxa ρred({xa}, {xa}) = 1 . (3.16)

We know that a transformation of the integration variable in general contributes a jacobian

factor, such that, if y = Ax, ∫
dx ρ(A · x) =

1

detA

∫
dy ρ(y). (3.17)

In our particular case we have that A = Γ
1/2
D V , hence detA = detΓ

1/2
D = (detΓ)1/2, due to the

orthogonality of V . Plugging this into Eq.(3.11), we find that

ρred({ya}, {y′a}) = (det (πO1Γ))
−1/2

exp

[
−1

2
(y2
a + y′2a ) + y′aΛabyb

]
, (3.18)

where Λ ≡ Γ
−1/2
D V∆V TΓ

−1/2
D . In order to diagonalise Λ, a second transformation is required,

hence we introduce za = Sabyb, where S is again an orthogonal matrix and Λ = STΛDS.

Implementing this in Eq.(3.18), we obtain ρI in diagonal form as

ρI({za}, {z′a}) = (det (πO1Γ))
−1/2

n∏
a=1

exp

[
−1

2
(z2
a + z′

2
a) + λazaz

′
a

]
, (3.19)

where this time there is no implicit summation over a in the exponent. The λa denote the

eigenvalues of Λ which are, by definition of Λ, also the eigenvalues of the matrix Γ−1∆.

Let us now explicitly work out this result for the case of two coupled oscillators and compare

with the reduced density matrix we derived for this case in Chapter 2, Paragraph 2.1.2. The

matrix Ω and its inverse O are given by

Ω =
1

2

ω+ + ω− ω+ − ω−

ω+ − ω− ω+ + ω−

 ; O =
1

2

 1
ω+

+ 1
ω−

1
ω+
− 1

ω−

1
ω+
− 1

ω−
1
ω+

+ 1
ω−

 . (3.20)

From this it follows, in combination with Eq.(3.12), that

∆ =
(2ω+ − ω−)2

4(ω+ + ω−)
; (3.21)

Γ =
1

2
(ω+ + ω−)−∆ =

(ω+ + ω−)2 + 2ω+ω−
4(ω+ + ω−)

; (3.22)

O−1
1 =

ω+ω−
ω+ + ω−

. (3.23)

Comparing with Eq.(2.14), we see that we can indeed write the reduced density matrix as

ρ1(x1, x
′
1) =

(
O−1

1

π

)1/2

exp

[
−1

2
Γ(x2

1 + x′21 ) + ∆x1x
′
1

]
, (3.24)
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in agreement with Eq.(3.11). Because Γ and ∆ are just scalars in this case, the transformation

in Eq.(3.14) takes the simple form

y1 = Γ1/2x1 , (3.25)

which leads to

ρ1(z1, z
′
1) =

(
O−1

1

πΓ

)−1/2

exp

[
−1

2
(y2

1 + y′21 ) + λy1y
′
1

]
, (3.26)

where λ = ∆
Γ . A second transformation is not necessary, or would be just the identity, i.e.

z1 = y1. Furthermore, λ is related to the parameter ξ, given in Eq.(2.18), by

ξ2 =
λ

1 +
√

1− λ2
. (3.27)

Comparing Eq.(3.19) with Eq.(3.26), we see that ρI is just a tensorial product of reduced density

matrices corresponding to systems of two coupled oscillators. Hence, we can write

ρI({za}, {z′a}) = ρred(z1, z
′
1, λ1)⊗ ρred(z2, z

′
2, λ2)⊗ · · · ⊗ ρred(zn, z

′
n, λn) . (3.28)

Now that we have derived the above expression for the reduced density matrix ρI , we will

employ it to find the associated entanglement entropy.

3.1.3 Deriving the entanglement entropy

Obtaining an expression for the entanglement entropy is quite straightforward once one has

managed to find the eigenvalues of the reduced density matrix, for the entanglement entropy S

in terms of these eigenvalues is simply given by Eq.(1.34). What will be very helpful now, is the

fact that ρI turns out te be a product of reduced density matrices of which we already know the

eigenvalues and thus the associated entanglement entropy, namely the one given by Eq.(2.19).

A a consequence of the form of ρI , the entanglement entropy S will just be the sum of these

separate entanglement entropies corresponding to each of the reduced density matrices in the

product in Eq.(3.28) . Indeed, denoting the eigenvalues of ρI by pm, we have

S = −
∑
m

pmlog pm =
∑
{ma}

pm1
pm2
· · · pmn log(pm1

pm2
· · · pmn) (3.29)

=
∑
{ma}

pm1
pm2
· · · pmn (logpm1

+ logpm2
+ · · ·+ logpmn) (3.30)

=

n∑
a=1

∞∑
ma=0

pma log pma =

n∑
a=1

Sa . (3.31)
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Here Sa is the entanglement entropy corresponding to the reduced density matrix ρred(za, z
′
a, λa),

hence, from Eq.(2.19),

Sa = S(ξa) = −log(1− ξ2
a)− ξ2

a

1− ξ2
a

log ξ2
a , (3.32)

where

ξ2
a =

λa

1 +
√

1− λ2
a

, (3.33)

as follows from Eq.(3.27). For completeness, we point out that in Eqs.(3.32) and (3.33) there is

no summation over the index a. At last, we conclude that the total entanglement entropy S is

then given by

S =
∑
a

S(ξa) . (3.34)

.

3.2 Ground state and entanglement entropy in Fock space

Analogously to what we did in the case of two coupled oscillators, we will now try to obtain

an expression for the ground state of N coupled oscillators, using the language of creation and

annihilation operators acting on states in Fock space. In order to calculate the entanglement

entropy between the two subsystems, this expression will have to be of such a form that it allows

us to trace out the degrees of freedom residing in one of the two subsystems. In other words, we

need to find the ground state of the composite system in a particular basis in Fock space that

manifestly incorporates the decomposition of the Hilbert space into the two subspaces, HI and

HII , corresponding to the subsystems.

3.2.1 Diagonalising the Hamiltonian

Like before, we start from the Hamiltonian descibing the system of N coupled oscillators given

by Eq.(3.1). As described above, this system can be diagonlised by performing a unitary trans-

formation on the position coordinates and conjugate momenta in the form of the matrix U . Let

us denote the new position operators again by x̃A and likewise for the momenta, such that

x̃A = UABxB ; p̃A = UABpB . (3.35)

Using the fact that this particular transformation diagonalises Ω, given in Eq.(3.2), we can define

creation and annihilation operators in the usual way:

ãA =
1√
2

(
√
ωA x̃A +

i
√
ωA

p̃A

)
; ã†A =

1√
2

(
√
ωA x̃A −

i
√
ωA

p̃A

)
, (3.36)
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where the ωA are the eigenvalues of Ω and we introduced the convention that a bold index

indicates that it is not to be summed over. In terms of these operators the Hamiltonian takes

the following decoupled form:

H =
∑
A

ωA(ã†AãA +
1

2
) . (3.37)

The ground state |0〉 of the system can now be expressed as a product of ground states in

this basis:

|0〉 = |0̃〉1 ⊗ |0̃〉2 ⊗ · · · ⊗ |0̃〉N . (3.38)

Obviously the ground state is annihilated by all the ãA, i.e. ãA |0〉 = 0. Since the ground

state is a simple product state in this basis, there is no entanglement between the corresponding

oscillators, by which we mean the oscillators corresponding to the ãA and ã†A operators. However,

we are interested in the entanglement between the original oscillators, in particular between the

first n and remaining N − n oscillators. In order to find it, we will need to express the ground

state in a way that allows us to trace over the degrees of freedom corresponding to either of

the subsystems. Analogously to the problem of two coupled oscillators, we want to express the

ground state in terms of ladder operators that live in either of the two subspaces corresponding

to the two subsystems.

As before, we label operators living in subspace HI , corresponding to the first n oscillators, by

indices a, b, . . . and operators living in HII , corresponding to the remaining N −n oscillators, by

indices i, j, . . . When we consider the whole system and do not explicitly distinguish between the

two subsystems, we will use capital indices A,B, . . . We now look for annihilation operators αa

and βi, and their hermitian conjugates, such that the αa depend only on the position operators

xa and momentum operators pa, whereas the βi depend only on the operators xi and pi. In

this way the α
(†)
a are indeed restricted to HI and the β

(†)
i to HII . Note that each of the αa can

depend on a linear combination of the xa, and their conjugate momenta, i.e. a linear combination

of x1, . . . , xn and consequently a linear combination of p1, . . . , pn. Likewse, each of the βi can

depend on a linear combination of the xi and their conjugate momenta. The new annihilation

operators are generalisations of the operators α and β in Eq.(2.30).

3.2.2 A Bogoliubov transformation

In order to be able to express the ground state of the composite system in terms of these new

operators we have to relate them to the ãA and ã†A , since it is only in the basis of the latter

that the ground state has been - implicitly - solved for. Rotating a set of pairs of creation and

annihilation operators into another set, which is our aim, is done by performing a Bogoliubov

transformation. Usually a Bogoliubov transformation is carried out in order to diagonalise the

Hamiltonian of a quantum many-body system [13]. Its aim is then to yield those ladder operators

in terms of which the Hamiltonian takes a decoupled form and ideally consists only of number
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operators. However, we already know these operators: they are the ãA and ã†A in terms of which

the Hamiltonian is given by Eq.(3.37). What we want to do is to rotate these operators back to

sets of operators, the α
(†)
a and β

(†)
i , living in HI and HII , respectively. The Hamiltonian will no

longer be decoupled in this new basis but that is no concern to us. It is, after all, the coupling

between the two subsystems, in the form of the entanglement entropy, that we are interested in.

Denoting the transformation matrix by T , the Bogoliubov transformation has the folowing

form



α1

...

αn

βn+1

...

βN

α†1
...

α†n

β†n+1

...

β†N



= T ·



ã1

...

...

...

...

ãN

ã†1
...
...
...
...

ã†N



, (3.39)

where T is a square matrix of size 2N×2N . In order to make the division into the two subspaces

more apparent, we decompose the matrix T into several submatrices:

T =


VaA WaB

RiA SiB

WbA VbB

SjA RjB

 . (3.40)

Here we assume, mainly for simplicity, that T is real, but this will not impose any restriction on

the solution in the end. Apart from this, the form of T as given in Eq.(3.40) is still completely

general. Note that the matrices V and W are of size n×N whereas R and S are of size N−n×n.

The transformation can now be expressed in a somewhat more insightful way as
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αa

βi

α†b

β†j

 =


VaAãA +WaB ã

†
B

RiAãA + SiB ã
†
B

WbAãA + VbB ã
†
B

SjAãA +RjB ã
†
B

 , (3.41)

with summation over repeated indices implied as before. For this transformation to be a well

defined Bogoliubov transormation, T needs to satisfy certain constraints. These follow from the

requirement that the standard commutation relations be conserved, i.e.

[αa, α
†
b] = δab ; [βi, β

†
j ] = δij , (3.42)

with all other commutators vanishing. Upon imposing these relations on Eq.(3.41) we find the

following constraints for the submatrices of T :

V · V T −W ·WT = 1n×n ; (3.43)

R ·RT − S · ST = 1N−n×N−n ; (3.44)

V ·RT −W · ST = V · ST −W ·RT = 0 ; (3.45)

V ·WT −W · V T = R · ST − S ·RT = 0 . (3.46)

These constraints also allow us to construct the inverse of T , giving

T−1 =

 V TAa RTAi −WT
Ab −STAj

−WT
Ba −STBi V TBb RTBj

 . (3.47)

One can easily check that this is indeed the inverse of T by multiplying Eq.(3.40) with Eq.(3.47)

and employing the relations in Eqs.(3.43)-(3.46). The expression for T−1 enables us to express

the operators ãA and ã†A in terms of our new operators, α
(†)
a and β

(†)
i , yieldingãA

ã†B

 =

 V TAaαa +RTAiβi −WT
Abα

†
b − STAjβ

†
j

−WT
Baαa − STBiβi + V TBbα

†
b +RTBjβ

†
j

 . (3.48)

Hence, so far we have supposed two sets of ladder operators, the α
(†)
a and β

(†)
i that are related

to the ãA and ã†A by a Bogoliubov transformation, where ãA and ã†A are the ladder operators

that diagonlise the Hamiltonian and thus decouple the system. Furthermore, the distinction

between the α
(†)
a and β

(†)
i operators corresponds to the way we have divided the system into

two subsystems, such that the α
(†)
a live in the subspace of the first n oscillators and the β

(†)
i live

in the subspace of the remaining N − n oscillators. It is important to note that these ladder
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operators do not in general correspond to the original oscillators asscociated with the positions

xA and momenta pA. For instance, the pair of ladder operators α1 and α†1 does not, in general,

correspond to the oscillator with position x1 and momentum p1. Instead, it corresponds to an

oscillator that was not manifestly present from the beginning but results from a rotation among

the xa and pa. Likewise, each pair of βi and β†i corresponds to an oscillator resulting from a

rotation among the xi and pi.

Subsequently we have decomposed the the matrix T that transforms the ãA and ã†A into the

new ladder operators, into the four matrices V,W, S and R, in such a way that V and W are

linked to the first subspace and R and S to the second subspace. The four matrices themselves

are still unspecified, but have to satisfy the constraints in Eqs.(3.43)-(3.46), from which the

inverse transformation matrix T−1 follows.

Note that everything we have done so far is completely general as we have not imposed

any restrictions on the system or subsystems. However, we would like to obtain more explicit

expressions for the transformation matrices, in order to eventually relate them to the original

parameters of the system, i.e. the degrees of freedom residing in the matrix Ω, and to calculate

the entanglement entropy in terms of these parameters. In proceeding along this path, we will

give up to a certain extent the generality that we have maintained up to this point, which will

be demonstrated below.

3.2.3 An ansatz

The form of the inverse transformation T−1, i.e. the rotation transforming the α
(†)
a and β

(†)
i into

the ãA and ã†A, is relevant when we want to find more explicit expressions for the submatrices of

T . To see this, note that we can exploit the fact that all the ãA annihilate the ground state, i.e.

ãA |0〉 = 0 . (3.49)

Substituting Eq.(3.48) into Eq.(3.49) would yield a set of new equations for the matrices V,R,W

and S, if we knew how all the ladder operators act on the ground state. Therefore, at this point,

we decide to suppose an ansatz for the ground state, which will enable us to act on it with the

ladder operators and work out the equations following from Eq.(3.49).

Since the problem at hand is nothing but a generalisation of the problem of two coupled

oscillators, we assume that the ground state of the N oscillator problem can be expressed in a

way analogous to that of the two oscillator problem. Generalising Eq.(2.45), we therefore suppose

the following ansatz for the ground state |0〉 :

|0〉 ∝ eXaiα
†
aβ
†
i |0〉α ⊗ |0〉β , (3.50)

where X is an n × N − n matrix and the |0〉α and |0〉β are actually products of the states
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annihilated by the αa and βi, respectively, i.e.

|0〉α ≡
∏
a

⊗ |0〉αa ; |0〉β ≡
∏
i

⊗ |0〉βi . (3.51)

Hence, each of the |0〉αa and |0〉βi is a single oscillator ground state by itself and, as such, reacts

in the standard way when acted on by the corresponding ladder operators, viz.

αa |0〉αa = 0 ; (α†a)n |0〉αa =
√
n! |n〉αa ; (3.52)

βi |0〉βi = 0 ; (β†i )
n |0〉βi =

√
n! |n〉βi . (3.53)

Using Eq.(3.48) and the ansatz in Eq.(3.50), we can expand Eq.(3.49) to give(
V TAaαa +RTAiβi −WT

Abα
†
b − S

T
Ajβ

†
j

)
eXckα

†
cβ
†
k |0〉α ⊗ |0〉β = 0 . (3.54)

Considering each of the four terms separately, we will proceed by working out the first one:

V TAaαae
Xckα

†
cβ
†
k |0〉α ⊗ |0〉β

= V TAa

[
αa, e

Xckα
†
cβ
†
k

]
|0〉α ⊗ |0〉β

= V TAa

αa, ∞∑
n=0

(
Xck α

†
cβ
†
k

)n
n!

 |0〉α ⊗ |0〉β = V TAa

∞∑
n=1

1

n!

[
αa,

(
Xck α

†
cβ
†
k

)n]
|0〉α ⊗ |0〉β ,

(3.55)

where in going from the first to the second line, we use that αa |0〉α = 0 and we subsequently

expanded the exponential. In order to work out the commutator we use again the identity given

in Eq.(2.59), which leads to[
αa,
(
Xck α

†
cβ
†
k

)n]
=n

(
Xck α

†
cβ
†
k

)n−1 [
αa, Xbj α

†
bβ
†
j

]
=n

(
Xck α

†
cβ
†
k

)n−1

Xajβ
†
j , (3.56)

where we also employed the standard commutation relations given by Eq.(3.42). Substituting

this result into Eq.(3.55), we arrive at

V TAaαae
Xckα

†
cβ
†
k |0〉α ⊗ |0〉β

= V TAa

∞∑
n=1

1

(n− 1)!

(
Xck α

†
cβ
†
k

)n−1

Xajβ
†
j |0〉α ⊗ |0〉β

= eXck α
†
cβ
†
k

(
V TX

)
Aj
β†j |0〉α ⊗ |0〉β . (3.57)
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In a similar way we can work out the second term in Eq.(3.54), yielding

RTAiβi e
Xckα

†
cβ
†
k |0〉α ⊗ |0〉β

= eXck α
†
cβ
†
k

(
RTXT

)
Ab
α†b |0〉α ⊗ |0〉β . (3.58)

The third and fourth term do not require too much effort since they can be commuted through

the exponent straight away. Putting everyting together, we can rewrite Eq.(3.54) as

eXckα
†
cβ
†
k

[(
V TX

)
Aj
β†j +

(
RTXT

)
Ab
α†b −W

T
Abα

†
b − S

T
Ajβ

†
j

]
|0〉α ⊗ |0〉β = 0 , (3.59)

from which it follows straightforwardly that

(
V TX

)
Aj

= STAj ;
(
RTXT

)
Ab

= WT
Ab , (3.60)

hence

SiA =
(
XT V

)
iA

; WaA = (X R)aA . (3.61)

In addition to the conditions given by Eqs.(3.43)-(3.46), we now have those in Eq.(3.61)

following from the ansatz, further specifying the relations between the matrices V,W,R and S.

However, since the matrix X is still unspecified, this does not reduce the number of unknown

variables sufficiently to find an explicit form of the transformation matrices. Therefore, we will

refine our ansatz to a more restrictive form, enabling us to obtain more specified expressions for

these matrices.

3.2.4 A more restrictive ansatz

Once again generalising the solution to the problem of two oscillators, we suppose that the matrix

X has the following form:

Xai = ξaδ̃ai =


ξ1 0 · · · 0 · · · 0

0 ξ2 · · · 0 · · · 0
...

...
. . .

... · · · 0

0 0 · · · ξn · · · 0


n×N−n

, (3.62)

where each of the ξa is a parameter yet to be related to the parameters already present in the

system. The bold index in ξa in Eq.(3.62) indicates, as before, that it is not being summed over

and the tilde above the delta serves to distinguish it from the standard delta function, since δai

would be equal to zero by definition. In matrix form, δ̃ai is defined by

δ̃ai ≡
(

1n×n ∅n×N−2n

)
. (3.63)
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The ansatz we assumed in Eq.(3.50), will then take the following form:

|0〉 ∝ eξaδ̃aiα
†
aβ
†
i |0〉α ⊗ |0〉β . (3.64)

A look at Eq.(3.64) shows that each of the α†a is now coupled, so to say, to one of the β†i , which

allows the state to be written as a product state of pairs, as we will see later on. Indeed, it is

precisely this decomposition into pairs of oscillators that forms the motivation for the assumption

of this particular ansatz.

We will now implement the ansatz for Xai as given by Eq.(3.62) into the previously found

relations for the transformation matrices, in order to obtain new expressions solely in terms the

parameters ξa. We start by modifying the expressions for S and ST in Eqs.(3.60) and (3.61) in

accordance with Eq.(3.62) and substitute the result into Eq.(3.44), yielding

(
RRT

)
ij
− δ̃iaξa

(
V V T

)
ab
ξbδ̃bj = δij , (3.65)

which can be written equivalently as

(
RRT

)
ij

= δij + δ̃iaξa
(
V V T

)
ab
ξbδ̃bj . (3.66)

Following the same steps for W , WT and substituting into (3.43), yields

(
V V T

)
ab
− ξaδ̃ai

(
RRT

)
ij
δ̃jbξb = δab . (3.67)

Now we can substitute the expression for
(
RRT

)
ij

given by Eq.(3.66), into Eq.(3.67), which

eventually leads to (
V V T

)
ab

=
1

1− ξ2
a

δab . (3.68)

Combining this result with Eq.(3.66) gives a similar expression for
(
RRT

)
ij

, namely

(
RRT

)
ij

= δij + δ̃ia
ξ2
a

1− ξ2
a

δ̃aj . (3.69)

With the results in Eqs.(3.68) and (3.69), we only have to rewrite Eqs.(3.60) and (3.61) to find

two more similar results for the remaining two matrices, viz.

(
W WT

)
ab

=
ξ2
a

1− ξ2
a

δab ; (3.70)

(
S ST

)
ij

= δ̃ia
ξ2
a

1− ξ2
a

δ̃aj . (3.71)

At this point we have found some simple expressions for the quadratic products of transfor-

mations matrices in terms of the parameters ξa, but we do not know how these ξa are related

to the parameters initially present in the system. Furthermore, we have supposed an ansatz for
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the ground state in terms of the same ξa and two sets of ladder operators, α
(†)
a and β

(†)
i , living

in subspaces HI and HII , respectively. As stated above, the α
(†)
a can therefore only depend on

the xa and pa, while the β
(†)
i can only depend on the xi and pi. We will now examine what

the precise relation is between these new sets of ladder operators and the original position and

momentum operators of the system, thereby attempting to establish more explicitly how the

supposed ansatz depends on the initial parameters.

Let us recall that α
(†)
a and β

(†)
i are related to the ladder operators ã

(†)
A by the transformation

in Eq.(3.41), and that we do know how the ã
(†)
A depend on the initial coordinates of the system,

as is apparent from Eqs.(3.35) and (3.36). Making this dependency explicit, we have

ãA =
1√
2

(
√
ωAUABxB +

i
√
ωA

UABpB

)
; (3.72)

ã†A =
1√
2

(
√
ωAUABxB −

i
√
ωA

UABpB

)
. (3.73)

Plugging this into Eq.(3.41) yields expressions for α
(†)
a and β

(†)
i in terms of the transformation

matrices and the orginal position and momentum operators, viz.

αa =
1√
2

(V +W )aA
√
ωA UABxB +

i√
2

(V −W )aA
1
√
ωA

UABpB ; (3.74)

α†a =
1√
2

(V +W )aA
√
ωA UABxB −

i√
2

(V −W )aA
1
√
ωA

UABpB , (3.75)

and

βi =
1√
2

(R+ S)iA
√
ωA UABxB +

i√
2

(R− S)iA
1
√
ωA

UABpB ; (3.76)

β†i =
1√
2

(R+ S)iA
√
ωA UABxB −

i√
2

(R− S)iA
1
√
ωA

UABpB . (3.77)

Subsequently we use the fact that α
(†)
a can only depend on the xa and pa, and β

(†)
i only on xi

and pi, to infer certain restrictions on the form of the matrix products on the right hand sides

of Eqs.(3.74)-(3.75). Considering first the terms in Eqs.(3.74) and (3.75), we see that

(V +W ) · Ω1/2 · U =
(
An×n ∅n×N−n

)
: (3.78)

(V −W ) · Ω−1/2 · U =
(
Bn×n ∅n×N−n

)
, (3.79)

where A and B are matrices living in HI that are yet to be specified. The first step in doing so,

is to plug them back into Eq.(3.74), yielding

αa =
1√
2
Aabxb +

i√
2
Babpb . (3.80)
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Since we want each αa to be a well defined annihilation operator corresponding to a harmonic

oscillator that emerges from the transformation, we should be able to associate a position and

momentum operator to each of these new oscillators, as well as a frequency. Denoting these

position and momentum operators by x̄a and p̄a and the frequencies by ω̄a, we define them as

ω̄1/2
a x̄a ≡ Aabxb ; ω̄−1/2

a p̄a ≡ Babpb , (3.81)

so that αa takes the familiar form

αa =
1√
2

(√
ω̄a x̄a +

i√
ω̄a

p̄a

)
. (3.82)

Naturally, α†a can be written as

α†a =
1√
2

(√
ω̄a x̄a −

i√
ω̄a

p̄a

)
. (3.83)

Note that the ω̄a are generalisations of the frequency ω =
√
ω+ω− associated with the oscillator

corresponding to the α(†) in Section 2.2. Meanwhile, for the x̄a and p̄a to be well defined position

and momentum operators, they must satisfy the canonical commutation relation, i.e.

[x̄a, p̄b] = δab[x , px] , (3.84)

where by [x , px] we mean the commutator of any position operator x and its conjugate momen-

tum px. Imposing this on the definitions in Eq.(3.81) gives

δab [x , px] =

√
ω̄a

ω̄b
[x̄a , p̄b] = AacBbd [xc , pd] = AacBbdδcd[x , px] = AacBbc [x , px] , (3.85)

from which we derive that
(
ABT

)
ab

= δab, hence B =
(
A−1

)T
.

The steps we have taken above, starting from Eqs.(3.74) and (3.75), can be carried out in a

similar way when starting from Eqs.(3.76) and (3.77), leading this time to

(R+ S) · Ω1/2 · U =
(
∅N−n×n CN−n×N−n

)
; (3.86)

(R− S) · Ω−1/2 · U =
(
∅N−n×n DN−n×N−n

)
, (3.87)

where D =
(
C−1

)T
, which follows from the same argument as the relation between A and B

above.

Our next step will be to obtain expressions for the four transformation matrices V,W,R and

S, in terms of A,B and Ω. To this end, we multiply Eq.(3.78) from the right with UT · Ω−1/2
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and (3.79) with UT · Ω1/2. Adding the two resulting equations gives

VaA =
1

2

(
Aab U

T
bAω

−1/2
A +

(
A−1

)T
ab
UTbAω

1/2
A

)
, (3.88)

while subtracting yields

WaA =
1

2

(
Aab U

T
bAω

−1/2
A −

(
A−1

)T
ab
UTbAω

1/2
A

)
. (3.89)

Likewise, from Eqs.(3.86) and (3.87) we arrive at

RiA =
1

2

(
Cij U

T
jAω

−1/2
A +

(
C−1

)T
ij
UTjAω

1/2
A

)
; (3.90)

SiA =
1

2

(
Cij U

T
jAω

−1/2
A −

(
C−1

)T
ij
UTjAω

1/2
A

)
. (3.91)

The reader may check that the expressions in Eqs.(3.88)-(3.91) are consistent with the constraints

in Eqs.(3.43)-(3.46). We have now managed to express the four transformation matrices in terms

of the system’s initial paramters, contained in the matrix Ω, and the matrices A and C. However,

we still want to find the relation between Ω and the ξa, as the latter are the still unspecified

parameters in terms of which the ansatz for the ground state was established.

3.2.5 Relating the ansatz to the system’s initial parameters

In order to achieve a better understanding of the way in which the ξa depend on the system’s

degrees of freedom, we will have to exploit all the information contained in the relations that

followed from our ansatz. We start by employing once more the relations in Eq.(3.61), multiplying

the first by X from the left, subsequently adding them and then substituting Eqs.(3.89)-(3.92),

which gives

ξaδ̃aiCijU
T
jAω

−1/2
A =

1

2
(ξ2

a + 1)AabU
T
bAω

−1/2
A +

1

2
(ξ2

a − 1)
(
A−1

)T
ab
UTbAω

1/2
A . (3.92)

Multiplying by ω
1/2
A UAk from the right, the first term on the right hand side vanishes due to the

orthogonality of U and after relabeling indices we get

ξaδ̃aiCij =
1

2
(ξ2

a − 1)
(
A−1

)T
ab
UTbAωAUAj . (3.93)

Recalling our decoposition of Ω and its inverse O into different sectors, as given by Eqs.(3.7) and

(3.8), we see that we can write Eq.(3.93) as

δ̃aiCij =
ξ2
a − 1

2ξa

(
A−1

)T
ab

(Ω2)bj . (3.94)

.
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Instead of adding, we can also subtract the two equations that follow from working out the

two relations in Eq.(3.61), and subsequently multiply by ω
−1/2
A UAj , which leads to

δ̃ai
(
C−1

)T
ij

=
1− ξ2

a

2ξa
Aab(O2)bj . (3.95)

Meanwhile, writing S = XT · V explicitly, gives

CijU
T
jAω

−1/2
A −

(
C−1

)T
ij
UTjAω

1/2
A = δ̃ia

(
AabU

T
bAω

−1/2
A +

(
A−1

)T
ab
UTbAω

1/2
A

)
. (3.96)

Multiplying by ω
1/2
A UAc from the right and relabeling yields

−
(
C−1

)T
ij

(Ω2)Tjb = δ̃iaξa

(
Aab +

(
A−1

)T
ac

(Ω1)cb

)
, (3.97)

where we used again that UTjAUAc = δjc = 0. Taking the transpose of Eq.(3.94) and multiplying

this from the left by (C−1)Tij and from the right by 2ξa
ξ2a−1Aab gives

δ̃ia
2ξa
ξ2
a − 1

Aab =
(
C−1

)T
ij

(Ω2)
T
jb . (3.98)

Substituting this result into the left hand side of Eq.(3.97) and rewriting the resulting expression

eventually leads to

(A−1)Tab(Ω1)bc(A
−1)cd =

1 + ξ2
a

1− ξ2
a

δad . (3.99)

This result seems to be quite useful as it directly relates the ξa to Ω1. In particular, it tells us

that the transformation by A−1 and its transpose puts Ω1 into a diagonal form, with the diagonal

elements given by the right hand side of Eq.(3.99). We will later return to the implications of

this, but not before we show how to derive similar results for the other sectors of Ω and its

inverse O.

Going back to Eq.(3.96), we now multiply by ω
−1/2
A UAc from the right, which gives

Cij(O2)Tjb = δ̃iaξa

(
Aac(O1)cb +

(
A−1

)T
ab

)
. (3.100)

Similarly to what we did above with Eq.(3.94), we take the transpose of Eq.(3.95) and multiply

from the left by Cij and from the right by 2ξa
1−ξ2a

(A−1)Tab , obtaining

δ̃ia
2ξa

1− ξ2
a

(
A−1

)T
ab

= Cij (O2)
T
jb . (3.101)

Upon substituting Eq.(3.101) into the left hand side of Eq.(3.100) and rewriting, we arrive at

Aab(O1)bcA
T
cd =

1 + ξ2
a

1− ξ2
a

δad . (3.102)
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It is obvious that Eq.(3.102) shows a strong similarity in form to Eq.(3.99) and both relate the

ξa to parameters corresponding to the interactions within HI .
In order to find the analogous relations for the sector descibing the degrees of freedom within

HII , we start again from Eq.(3.96), but now we multiply from the right by either ω
1/2
A UAk or

ω
−1/2
A UAk. Note that this time we pick different sectors of U compared to when we derived

Eqs.(3.97) and (3.100). The first of these options, i.e. multiplying by ω
1/2
A UAk, leads to

Cik −
(
C−1

)T
ij

(Ω3)jk = δ̃iaξa
(
A−1

)T
ab

(Ω2)bk . (3.103)

Now we repeat the same trick as before, that is, we modify Eq.(3.94) in such a way that it takes

a convenient form. This time it is straightforward to see that we can rewrite it to

δ̃ia
2ξ2

a

ξ2
a − 1

δ̃ajCjk = δ̃iaξa
(
A−1

)T
ab

(Ω2)bk . (3.104)

Now we can equate the left hand sides of Eqs.(3.103) and (3.104), which, after some reordering,

leads to (
C−1

)T
ik

(Ω3)kl
(
C−1

)
lj

= δ̃ia
2ξ2

a

1− ξ2
a

δ̃aj + δij . (3.105)

At last we work out the multiplication of Eq.(3.96) by ω
−1/2
A UAk from the right, to find

Cij(O3)jk −
(
C−1

)T
ik

= δ̃iaξaAab(O2)bk , (3.106)

and we rewrite Eq.(3.95) to

δ̃ia
2ξ2

a

1− ξ2
a

δ̃aj
(
C−1

)T
jk

= δ̃iaξaAab(O2)bk . (3.107)

Equating the left hand sides of Eqs.(3.106) and (3.107) and reordering a little, we finally arrive,

perhaps not surprisingly, at

Cik(O3)klC
T
lj = δ̃ia

2ξ2
a

1− ξ2
a

δ̃aj + δij . (3.108)

As anticipated, we have obtained two more relations between the paramters ξa and the initial

parameters of the system, this time the ones described by the matrices Ω3 and O3 that contain

the degrees of freedom in HII . The form of Eqs.(3.105) and (3.108) is strikingly similar to that

of Eqs.(3.99) and (3.102). To illustrate this a little more clearly, we can write the right hand side
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of Eqs.(3.99) and (3.102) in matrix form as


1+ξ21
1−ξ21

0 · · · 0

0
1+ξ22
1−ξ22

· · · 0

...
...

. . .
...

0 0 · · · 1+ξ2n
1−ξ2n

 , (3.109)

and that of Eqs.(3.105) and (3.108) as




1+ξ21
1−ξ21

0 · · · 0

0
1+ξ22
1−ξ22

· · · 0

...
...

. . .
...

0 0 · · · 1+ξ2n
1−ξ2n

 ∅n×N−2n

∅N−2n×n 1N−2n×N−2n


. (3.110)

We see that the matrix in (3.110) does not contain any more independent parameters than that

in (3.109). In fact, we can say that the diagonal elements of the second matrix are equal to
1+ξ2i
1−ξi2

with the first n of these ξi equal to the ξa and the remaining N − 2n of these ξi equal to zero.

The question now rises how to interpret these relations and this is what we will address in the

following paragraph.

3.2.6 Determination of ξa

In finding an answer to the question raised above, let us consider for now just the relations

concerning the first subspace, hence Eqs.(3.99) and (3.102). At first one might think that the

matrix in (3.109) is the diagonal form of the matrices Ω1 and O1. However, this is not entirely

correct. One way to see this is by realising that Ω1 has dimensions of frequency, hence so do

its eigenvalues, whereas the ξa are dimensionless parameters, as follows from the form of the

ansatz in Eq.(3.64). Therefore, the diagonal elements in (3.109) cannot be the eigenvalues of

Ω1. Along the same line of reasoning, we realise they cannot be the eigenvalues of O2 either,

since those would have dimensions of inverse frequency. Another way to look at it, is by arguing

that Eqs.(3.98) and (3.102) would ony describe well defined diagonalisation transformations if

A were orthogonal such that AT = A−1. However, from the previous argument, as well as from

Eq.(3.81), it follows that A, and thus AT , have dimension of square root of frequency, while A−1

has the inverse dimension and therefore cannot be equal to AT .

In accordance with Eq.(3.81), we can write A as Aab = ω̄
1/2
a Pab, for some matrix P , such

that (
A−1

)T
ab

= ω̄−1/2
a

(
P−1

)T
ab
, (3.111)
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leading to

x̄a = Pabxb ; p̄a =
(
P−1

)T
ab
pb . (3.112)

We argue that the ω̄a are not fixed since any dimensionless factor can be absorbed by the x̄a

and p̄a and therefore we can pick our ω̄a in a specific way. In particular, we choose them to be

such that the matrix P becomes orthogonal, i.e. PT = P−1. Now Eq.(3.99) can be rewritten as

(Ω1)ab = PTac ω̄
1/2
c

1 + ξ2
c

1− ξ2
c

δcd ω̄
1/2
d Pdb = (P−1)ac ω̄c

1 + ξ2
c

1− ξ2
c

Pcb . (3.113)

This shows that Ω1 is diagonalised by P and its eigenvalues are equal to ω̄a
1+ξ2a
1−ξ2a

. At first sight,

this finally seems to entail the relation between the ξa and the parameters of the system that we

have been looking for. However, we do not know the ω̄a and therefore diagonalising Ω1 will not

be sufficient to determine the ξa. Instead, we will have to make use of other information as well,

in particular that contained in (3.102). Employing Eq.(3.111), it is straightforward to show that

Eq.(3.102) is equivalent to

(O1)ab =
(
P−1

)
ac

1

ω̄c

1 + ξ2
c

1− ξ2
c

Pcb , (3.114)

from which it follows that (
O−1

1

)
ab

=
(
P−1

)
ac
ω̄c

1− ξ2
c

1 + ξ2
c

Pcb . (3.115)

Clearly, diagonalising O or O−1 will leave us with the same problem: insufficient information

to completely determine the ξa. However, when we combine Eqs.(3.113) and (3.115), we will be

able to get around this issue. We will now illustrate this in a way that allows us at the same

time to make the conncetion with Section 3.1, where we solved the problem in postion space. In

the end, both methods should yield equivalent solutions.

Let us hereto recall the matrices Γ and ∆ from Paragraph 3.1.2, given in Eq.(3.12). By

employing the identity in Eq.(3.13), they can be written conveniently as

Γab =
1

2

(
Ω1 + O−1

1

)
ab

; (3.116)

∆ab =
1

2

(
Ω1 − O−1

1

)
ab
. (3.117)

Combining this with Eqs.(3.113) and (3.115), we can write Γab as

Γab =
(
P−1

)
ac

ω̄c

2

(
1 + ξ2

c

1− ξ2
c

+
1− ξ2

c

1 + ξ2
c

)
Pcb

=
(
P−1

)
ac
ω̄c

1 + ξ4
c

1− ξ4
c

Pcb . (3.118)
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Its inverse, Γ−1, is then given by

(
Γ−1

)
ab

=
(
P−1

)
ac

1

ω̄c

1− ξ4
c

1 + ξ4
c

Pcb . (3.119)

Likewise, ∆ab can be written as

∆ab =
(
P−1

)
ac
ω̄c

2ξ2
c

1− ξ4
c

Pcb . (3.120)

For reasons that will become clear in a moment, we now multiply the matrices Γ−1 and ∆, as

given by Eqs.(3.119) and (3.120), to arrive at

(
Γ−1∆

)
ab

=
(
P−1

)
ac

2ξ2
c

1 + ξ4
c

Pcb . (3.121)

Finally we have obtained an expression that unambiguously describes the relation between the

ξa and the system’s initial parameters. Eq.(3.121) tells us what the eigenvalues of (Γ−1∆)ab are

in terms of the ξa, with Γ−1 and ∆ fully defined in terms of Ω. More specifically, if we denote

these eigenvalues by λa, we have that

λa =
2ξ2

a

1 + ξ4
a

, (3.122)

which can be inverted to give

ξ2
a =

λa

1 +
√

1− λ2
a

. (3.123)

A look at Eq.(3.33) reveals that our expression for ξa is equivalent to the one found for the ξa

in Section 3.1, since in both cases the λa are the eigenvalus of the matrix
(
Γ−1∆

)
ab

.

In deriving this result we have restricted ourselves to the sectors corresponding to HI , that

is, from the beginning of Paragraph 3.2.6 we have only used equations for Ω1 and O1. One might

now wonder whether we would have obtained the same result, had we instead used Eqs.(3.105)

and (3.106). The answer to this question is yes, which follows from the fact that all the arguments

we used in the derivation in this paragraph have their analog in the other sector. For instance,

the analog of Eq.(3.111) would be

Cij = ω̄
1/2
i Qij , (3.124)

with Q an orthogonal matrix. Defining ξi ≡ δ̃iaξa, we would, instead of Eqs.(3.113) and (3.115),

obtain

(Ω3)ij =
(
Q−1

)
ik
ω̄k

1 + ξ2
k

1− ξ2
k

Qkj , and
(
O−1

3

)
ij

=
(
Q−1

)
ik
ω̄k

1− ξ2
k

1 + ξ2
k

Qkj . (3.125)

Then defining Γ̃ij ≡ 1
2

(
Ω3 + O−1

3

)
and ∆̃ij ≡ 1

2

(
Ω3 − O−1

3

)
, we find that the eigenvalues λi of
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Γ−1∆ are given by

λi =
2ξ2

i

1 + ξ4
i

, (3.126)

showing equivalence to Eq.(3.122). The matrices Γ̃ and ∆̃ would have shown up instead of Γ

and ∆ in the derivation in position space that we discussed in Section 3.1, if we had integrated

over the xa instead of xi when calculating the reduced density matrix. Back there it was not so

evident, but the derivation we just did thus explicitly shows that in either case, integrating out

one or the other subsystem, one obtains the same entanglement entropy, confirming the general

law.

We have found the relation between the parameters in our ansatz, ξa and the system’s initial

parameters, and shown that they are in fact the same ξa as the ones that emerged in section 3.1.

The task that remains is to calculate the entanglement entropy following from our ansatz and

show its equivalence to the entanglement entropy found in Paragraph 3.1.3.

3.2.7 Deriving the entanglement entropy

Let us now return to our ansatz in Eq.(3.64), that, including the correct normalisation factor,

reads

|0〉 =
∏
i

∏
a

⊗
(√

1− ξ2
a e

ξbδ̃bjα
†
bβ
†
j |0〉αa ⊗ |0〉βi

)
. (3.127)

We mentioned before that in this form the state can be factorised into pairs across the |0〉α and

|0〉β . Indeed, we can see how this works when writing Eq.(3.127) explicitly as

|0〉 =
√

1− ξ2
1 · · ·

√
1− ξ2

n e
ξ1α
†
1β
†
n+1 · · · eξnα

†
nβ
†
2n |0〉α1

⊗ |0〉βn+1
⊗ · · · ⊗ |0〉αn ⊗ |0〉β2n

⊗ |0〉β2n+1
⊗ · · · ⊗ |0〉βN , (3.128)

which can be grouped to give

|0〉 =
√

1− ξ2
1 e

ξ1α
†
1β
†
n+1 |0〉α1

⊗ |0〉βn+1
⊗ · · · ⊗

√
1− ξ2

n e
ξnα

†
nβ
†
2n |0〉αn ⊗ |0〉β2n

⊗ |0〉β2n+1
⊗ · · · ⊗ |0〉βN . (3.129)

This shows how each α†a is paired with β†n+a by ξa and how each of the pairs represents as

system of two coupled oscillators like the one we discussed in section 2.2. The fact that there

are, by assumption, more α’s than β’s, results in a product of N − 2n single oscillator ground

states corresponding to the β’s that are left over, so to say. Recalling how we can expand each

exponential and write each paired state in the form of Eq.(2.43), we can write the density matrix
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ρ as

ρ = |0〉 〈0| =
∏
a

⊗

(
(1− ξ2

a)
∑
r,s

ξr+sa |r〉αa〈s| ⊗ |r〉βα+n
〈s|

)
⊗ |0〉β2n+1

〈0| ⊗ · · · ⊗ |0〉 βN 〈0| .

(3.130)

Taking the trace over the oscillators living in HII , that is, the oscillators corresponding to the

β
(†)
i , we obtain the reduced density matrix ρI corresponding to the subsystem in HI , which is

given by

ρI =
∏
a

⊗

(
(1− ξ2

a)
∑
r

ξ2r
a |r〉αa〈r|

)
. (3.131)

As anticipated, ρI is a tensor product of reduced density matrices corresponding to systems

consisting of two coupled oscillators, with each of these systems characterised by a paramter ξa.

By the same argument as explained in Paragraph 3.1.3, it follows that the entanglement entropy

S is just the sum of the entanglement entropies corresponding to each of these systems of two

oscillators, that is

S =
∑
a

S(ξa) . (3.132)

We chose here to trace out the degrees of freedom in HII , leading to ρI , but we could have

traced over the oscillators in HI as well. This would yield the reduced density matrix ρII , given

by

ρII =
∏
a

⊗

(
(1− ξ2

a)
∑
r

ξ2r
a |r〉βn+a

〈r|

)
⊗ |0〉β2n+1

〈0| ⊗ · · · ⊗ |0〉βN 〈0| . (3.133)

Clearly the only difference in form with ρI is the additional product of unpaired β ground states.

However, this leaves the spectrum of eigenvalues the same, since the additional terms take the

form of identity matrices in the tensor product. Therefore, the entanglement entropy resulting

from ρII is equal to that following from ρI , like it should be.
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4 Conclusion and outlook

In this thesis we have examined the entanglement entropy in a system of coupled harmonic

oscillators. We reviewed and explained results from the literature that were derived in position

space, by means of wave functions and integration over position coordinates. The point of the

thesis was to take an approach in Fock space, which would not only allow us to rederive already

know results in a different way, but also enhance our understanding of how these results come

about. Moreover, taking a different approach to the problem would potentially enable us to

generalise the results more easily to excited states.

After reviewing the phenomenon of quantum entanglement and the associated entanglement

entropy within a quantum mechanical framework in Chapter 1, we dove into the problem of

two coupled harmonic oscillators in Chapter 2. Following [1], we showed how the entanglement

entropy between the oscillators in the ground state of the composite system could be derived

by integrating the density matrix over the position coordinates of one of the oscillators and

determining the eigenvalues of the resulting reduced density matrix. The entanglement entropy

S was expressed as a function of the parameter ξ, which, in turn, solely depended on the ratio

between the two eigenfrequencies of the system in such a way that it increased for larger coupling

between the two original oscillators. We then considered the same system in Fock space, where

we tried to find an expression for the ground state in a basis enabling us to trace over one of

the subspaces. In doing so, we had to perform a rotation of the ladder operators corresponding

to the eigenstates of Hamiltonian, to a new set of ladder operators, consisting of a pair living

in one of the subpaces and another pair living in the other subspace. Upon finding the desired

transformation, we could express the ground state in the basis corresponding to these new ladder

operators. It was from there straightforward to obtain the reduced density matrix, which had a

diagonal form in this basis. Therefore, as opposed to the case in postion space, the eigenvalues

could now be read off immediately.

As anticipated, the obtained expression for the ground state was such that it could be acted

on by creation operators to form excited states. We only considered particular excited states

that were linear combinations of the Hamiltonian eigenstates, for these turned out to have an

interesting and elegant form in the basis we were working in. More precisely, we acted with

a creation operator that caused only the states forming the basis in one of the two subspaces,

to be excited to the next level. The corresponding reduced density matrix could be evaluated

analytically in diagonal form, from which we numerically evaluated S in the first three excited

states. S turned out to increase with each level of excitation but its curve depicting the depence

on ξ, hence on the coupling strength, remained of the same form. Further work could examine

how S would behave for excited eigenstates.

We then moved on to the problem of N coupled oscillators. Decomposing the system into a

subsystem consisting of the first n oscillators and its complement, consisting of the remaining

N − n oscillators, we started again by reviewing [1] on how to find the ground state, reduced
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density matrix and entanglement entropy in position space. It was shown that the reduced

density matrix could, in the right basis of position coordinates, be written as a product of

reduced density matrices corresponding to systems of two coupled oscillators, each specified by

a paramater ξa. Consequently, S turned out to be just the sum of the entanglement entropies

S(ξa).

When attempting to reproduce this result in Fock space, we had to find again the particular

transformation leading to the set of ladder operators in terms of which we could express the

ground state in a convenient form. We could obtain a very general form of what this transfor-

mation should look like, based on several constaints to guarantee that the new ladder operators

would be well defined and satisfy the standard bosonic commutation relations. However, this

was not enough to obtain an explicit solution.

Therefore, we supposed an ansatz based on our result for the two oscillator ground state. We

then refined this ansatz by introducing the parameters ξa in such a way that the reduced density

matrix would take a diagonal form and, moreover, be a tensor product of density matrices corre-

sponding to systems of two coupled oscillators, with each pair coupled by one the ξa. Evidently

this would lead to the correct form of the entanglement entropy as a sum of S(ξa). However,

since we introduced the ξa by hand, we still had to relate them to the system’s initial parameters

and show that they were in fact the same ξa as the ones obtained before. By employing all

the information contained in all the constraints, we were eventually able to achieve this, hence

showing that our ansatz was correct.

It is hardly debatable that the derivation of the entanglement entropy in position space

seems to be less tedious than that in Fock space. In fact, we implicitly used the results from

the method in position space in order to set up an ansatz for the ground state in Fock space,

which we otherwise might have never found. On the other hand, this also shows that it is rather

the convenient basis for the ground state, than the actual entanglement entropy, that was hard

to obtain in Fock space. The underlying reason is that in position space, the reduced density

matrix was obtained in nondiagonal form and had to be diagonalised afterwards, whereas our

derivation in Fock space was all about finding the basis in which the reduced density matrix

would be diaginal to begin with. Indeed, once the ground state was expressed in the desired

basis, the reduced density matrix and entanglement entopy could be obtained very easily from

it. Besides, once the ground state has been obtained in Fock space, it is easier to form excited

states and find the corresponding entanglement entropy, as was explicitly shown for the case of

two oscillators. Unfortunately there was no time for this project to examine excited states in the

N oscillator system, which is therefore left for future work.

As mentioned before, the reason for studying a system of coupled harmonic oscillators, is

that it forms the first approximation to a quantum scalar field. In fact, in [1], the area law for

entanglement entropy of a scalar field in the ground state was derived by extending the results for

the system of N coupled oscillators. However, in general, entanglement entropy in quantum field

theories is not thoroughly understood or described yet. The presumption is that an approach in
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Fock space could contribute to a better understanding of entanglement entropy in quantum field

theories, not only in the ground state but also in excited states. One could, for instance, wonder

whether the area law still holds in excited states, or what happens when we consider a fermionic

field instead of, or together with, a bosonic one. When approaching these questions from a Fock

space perspective, this thesis can hopefully serve as a first step towards finding an answer.
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Appendix

In Section 2.3 we used an identiy, given by Eq.(2.59), wich we will prove here. Let A and B be

two operators, then

[A,Bn] =ABn −BnA (A.1)

=ABBn−1 −BBn−1A (A.2)

=ABBn−1 −BBn−1A + BABn−1 −BABn−1 (A.3)

=(AB −BA)Bn−1 +B(ABn−1 −Bn−1A) (A.4)

=[A,B]Bn−1 +B[A,Bn−1] . (A.5)

We have obtained a recursive relation, as the result in Eq.(A.5) can be substituted again into its

second term and so on, yielding

[A,Bn] =[A,B]Bn−1 +B[A,Bn−1] (A.6)

=[A,B]Bn−1 +B
(
[A,B]Bn−2 +B[A,Bn−2]

)
(A.7)

=[A,B]Bn−1 +B[A,B]Bn−2 +B2[A,B]Bn−3 + · · ·+Bn−1[A,B]. (A.8)

If B commutes with [A,B], this simplifies to

[A,Bn] = nBn−1[A,B], (A.9)

hence proving the identity in Eq.(2.59).

We will now show the correctness of Eq.(3.13) in Section 3.1, where we will follow [3]. We

want to prove that

O−1
1 = Ω1 − Ω2Ω−1

3 ΩT2 , (A.10)

which is most easily done by multiplying the right hand side with O1 and showing that this

yields the identity matrix. Using only the indices to indicate the different sectors of Ω and O ,

we have

O1

[
Ω1 − Ω2)Ω−1

3 ΩT2
]

= OabΩbc −OabΩbi(Ω−1
3 )ijΩjc . (A.11)

We can write OabΩbc = OaAΩAc−OaiΩic and, likewise, OabΩbi = OaAΩAi−OakΩki. Substituting

this in (A.11) gives

OaAΩAc −OaiΩic − (OaAΩAi −OakΩki) (Ω−1
3 )ijΩjc . (A.12)
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Using that OaAΩAc = δac and OaAΩAi = δai = 0, we can simplify (A.12) to

δab −OaiΩic +OakΩki)(Ω
−1
3 )ijΩjc . (A.13)

Realising that Ωki = (Ω3)ki, (A.13) becomes

δab −OaiΩic +OakδkjΩjc = δab. (A.14)

Thus, we conclude that

(O1)ac
[
Ω1 − Ω2)Ω−1

3 ΩT2
]
cb

= δab , (A.15)

which was to be proven.
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