
Braid Floer Homology on Surfaces

David van der Giessen

a thesis submitted to the Department of Mathematics
at Utrecht University and VU University in partial fulfillment of the

requirements for the degree of

Master of Mathematical Sciences
at Utrecht University

July 6, 2016

Supervisor VU:
Prof. Dr. R.C.A.M. Vandervorst

Supervisor UU:
Dr. F.J. Ziltener



Abstract

The Arnold Conjecture gives the existence of 1-periodic solutions of a nonde-
generate Hamiltonian system on a compact symplectic manifold. This Conjecture
is proved for aspherical manifolds with the use of Floer homology. After this proof,
we continue with developing braid Floer homology on surfaces. We look at free
and skeleton braids to define braid Floer homology. The skeleton braids are known
solutions for the Hamiltonian. The free braids are unknown solutions. Braid Floer
homology tells us when the skeleton forces new solutions. For a special class of
skeleton and free braids on the torus, I define braid Floer homology completely.



Preface

This Thesis focusses on the Arnold Conjecture and braid Floer homology on surfaces.
The first part is an extended summary of the Book [AD14]. They use Floer homolgy
to prove the Arnold Conjecture in its Morse homological form. The goal of my Thesis
was to use this Floer homology to develop braid Floer homology on surfaces. This is a
continuation of the Article [BGVW15] about braid Floer homology on a disk.
Rob Vandervorst, one of the authors of [BGVW15], was my daily supervisor from the
VU-University. Some special thanks to him about all the discussions we had about the
understanding of Floer homology, proper braids and braid Floer homology on especially
the torus.
This Thesis is done as a course on the VU University as partial fulfillment of the re-
quirements of the degree Master of Mathematical Sciences at Utrecht University. Fabian
Ziltener was my supervisor from the Utrecht University to make this collaboration pos-
sible. Also some special thanks to him, because of his advise about how to read new
mathematical texts and how to organize a Thesis.
All 22 figures in my Thesis are made by me with the use of TikZ. Some of the figures are
inspired from figures in [AD14] and [Wój07].
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Introduction

For a symplectic manifold with a Hamiltonian system on it, we are interested in the exis-
tence of periodic solutions. This interest comes from physics, solutions of a Hamiltonian
system describe the mechanics of motions. The Arnold Conjecture provides an answer.
The amount of 1-periodic solutions is greater or equal to the summation of the Betti
numbers, see Conjecture 1.1 of [Sal99]. To be more precise,

Arnold Conjecture. Let (M,ω) a compact symplectic manifold. If all the 1-periodic
solutions of a time dependent Hamiltonian vector field Xt are nondegenerate, then the
number of such solutions is greater or equal to

2n∑
i=0

bi(M).

Here denotes bi(M) the ith Betti number of M .

Many mathematicians have contributed to the proof of the Arnold Conjecture. It started
with Eliashberg for dimension 2 and then by Conley and Zender for the 2n-tori. The break-
through came with a series of papers from Floer. He developed an infinite dimensional
approach to the Morse theory, the now so called Floer homology. With this homology he
was able to prove the Arnold Conjecture for the monotone case. This was extended by
Hofer and Salamon, by Fukaya and Ono and by Liu and Tian to the general case. I refer
to the overview [Sal99] by Salamon for a more precise list of contributions and references
to these works.

The first Part of my Thesis is an extensive summary of Part II of the Book [AD14]. It is
about the definition of Floer homology to prove a simplified version of the Arnold Con-
jecture. Namely, let M be a symplectic manifold such that the second homotopy group
is trivial, then the amount of 1-periodic solutions is greater or equal to the summation
of the Morse homotopy groups without taking orientation, see for a precise statement
Theorem 2.1. A brief outline of the proof can be found in Subsection 2.2.
As stated above, Floer homology is an important tool to show this simplified version of
the Arnold Conjecture. Floer homology is made of the periodic solutions we are looking
for. It turns out to be equal to the Morse homology in some special case. Therefore,
the Floer homology brings the periodic solutions and the Morse homology together. This
allows us to prove this simplified version of the Arnold Conjecture.

After showing the Arnold Conjecture, the next question you could ask is

Question. If we already find some periodic solutions for a Hamiltonian system on a
compact symplectic manifolds, will the topology of these solutions on the manifold forces
more periodic solutions?
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The second Part of my Thesis is about developing a new kind of Floer homology to try
to answer this question in the case of compact symplectic surfaces. The new kind of
Floer homology is the braid Floer homology. Braid Floer homology on a disk is already
developed in [BGVW15].
The idea is to view the solutions that we already know, as a closed braid on the surface.
This braid is called the skeleton braid. Now, we want to show if we can find more solutions.
The possible new solutions form also a braid, this is called the free braid. Braid Floer
homology is made from this free braids that are restricted by the skeleton braid. This
restriction goes via an isolated invariant neighbourhood, just as a technique mentioned
already by Floer in [Flo89].
My thesis is a start of how to define the braid Floer homology on surfaces, but for a certain
class of skeleton braids and free braids on the torus I define the braid Floer homology
completely, see Theorem 10.9.
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Part I

Floer homology



1 Basics of symplectic geometry

Before going into Floer homology, I start with some basics of symplectic geometry.

Definition 1.1. Let M a manifold and TxM the tangent space of M at the point x in M .
A 2-form ω on M assigns to each x ∈ M an alternating bilinear form ωx on the tangent
space TxM varying smoothly with x.
A 2-form is called nondegenerate if ωx is nondegenerate for all x ∈M .

Definition 1.2 (Symplectic manifold). Let M a manifold and ω a nondegenerate closed
2-form, i.e. dω = 0, then the pair (M,ω) is called a symplectic manifold. Such a form ω
is called a symplectic form. The notion of ω is left from the notation if there can be no
confusion about the symplectic form ω we use.

Remark 1.3. Note that the dimension of a symplectic manifold (M,ω) must be even,
since the corresponding alternating form ωx on the tangent space TxM cannot be nonde-
generate if the tangent space has an odd dimension.

Lemma 1.4. Let V a vector space of dimension 2n. An alternating bilinear form ω is
nondegenerate if and only if the n-fold exterior power is nonzero, which means:

ωn = ω ∧ . . . ∧ ω 6= 0

Proof. For this proof I refer to Corollary 2.5 of [MS98].

Corollary 1.5. A symplectic manifold (M,ω) is orientable.

Proof. The alternating bilinear form ωx is nonzero in each point x of M , since ωnx 6= 0 by
Lemma 1.4. This implies that ω is a volume form, hence M is orientable.

Corollary 1.6. A 2-dimensional manifold is symplectic if and only if it is orientable.

Proof. We only need to prove that a 2-dimensional orientable manifold is symplectic, since
the other implication follows from Corollary 1.5.
Let M be a 2-dimensional orientable manifold. Then M has a volume form, which is a
2-form ω that is nonzero at every point x on the manifold, that is ωx 6= 0 for all x in M .
We also have that ωx is a 1-fold exterior power of the alternating bilinear form ωx. Now
apply Lemma 1.4 to ωx, so ωx is nondegenerate for all x in M . Hence ω is a nondegenerate
form on M . Now we conclude that (M,ω) is a symplectic manifold, since every 2-form
on a 2-dimensional manifold is closed.

Remark 1.7. For a manifold to be sympletic is a quiet restrictive demand. We already
saw that it must be of an even dimension and that it needs to have an orientation. In
dimension 2 it is enough to have an orientation to be symplectic, but this does not hold in
higher dimensions. Even some basic spaces like the spheres S2n do not admit a symplectic
structure for n ≥ 3. This follows from the fact that a compact manifold without boundary
such that the second cohomology space is zero cannot have a symplectic structure, see
page 8 of [MS98].
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Definition 1.8. Let ω be a symplectic form on a vector space V . A complex structure
J compatible with ω is an endomorphism on V such that:

1) J2 = −Id. (J is a complex structure)

2) ω(Ju, Jv) = ω(u, v) for all u, v in V . (J is symplectic)

3) g(u, v) := ω(u, Jv) is an inner product for all u, v in V .

Definition 1.9. Let (M,ω) a symplectic manifold. An almost complex structure on M ,
an endomorphism J on the tangent bundle TM such that J2 = −Id, is compatible with
ω if the complex structure Jx in TxM is compatible with ωx for all x in M .

Proposition 1.10. Every symplectic manifold (M,ω) has an almost complex structure
compatible with ω.

Proof. For this proof I refer to Proposition 4.1 Part (i) of [MS98].

Proposition 1.11. The space J of almost complex structures on M compatible with ω
is contractible.

Proof. For this proof I refer to Proposition 5.5.6 of [AD14].

Definition 1.12 (Hamiltonian vector field). Let (M,ω) a symplectic manifold. For a
function H : M → R we define the Hamiltonian vector field XH by the relation

ωx(Y,XH(x)) = (dH)x(Y ) for every Y ∈ TxM, (1.1)

this can also be written as

iXHω = −dH. (1.2)

We define a time depended Hamiltonian vector field for a function H : M × R → R by
Xt = XHt where Ht(x) = H(x, t). The corresponding Hamiltonian equation

ẋ(t) = Xt(x(t))

is called the Hamiltonian system.

Remark 1.13. Relation (1.1) together with the fact that ω is nondegenerate gives that
the Hamiltonian vector field XH is 0 at x if and only if x is a critical point of H, i.e.

XH(x) = 0 ⇐⇒ (dH)x = 0.

Note also that since ω is alternating, that the function H is constant on the trajectories
of XH , i.e. (dH)(XH) = 0.
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Remark 1.14. We associate to a given almost complex structure J on a symplectic
manifold (M,ω) and a function H : M → R two vector fields. Namely, the Hamiltonian
vector field XH and the gradient vector field gradH. The last one is defined with respect
to the Riemannian metric defined by g(X, Y ) = ω(X, JY ) where X, Y are vector fields of
M . We relate these vector fields in the following way:

ω(Y,XH)) = (dH)(Y ) = g(Y, gradH) = ω(Y, J gradH)

for all vector fields Y of M . Hence, XH = J gradH, since ω is nondegenerate.

Proposition 1.15. The flow ϕt of a Hamiltonian vector field XH preserves the symplectic
form ω for all time t.

Proof. We know that ϕt+s = ϕtϕs for all times t and s, and that(
d

dt
(ϕt)∗ω

)
t=0

= LXHω = iXH (dω) + d(iXHω).

Now follows that

d

dt
(ϕt)∗ω = (ϕt)∗LXHω

= (ϕt)∗(d(iXHω))

= (ϕt)∗(−ddH) = 0.

This implies that (ϕt)∗ω is constant in t, so (ϕt)∗ω=(ϕ0)∗ω = Id∗ω = ω for all time t.
The same statement and proof holds for a time dependent Hamiltonian vector field.

Definition 1.16. A 1-periodic solution x of a time dependent Hamiltonian vector field
Xt, i.e. ẋ(t) = Xt(x(t)) such that ϕ1(x) = x, is nondegenerate if

det(Id− Tx(0)ϕ
1) 6= 0.

Here is Tx(0)ϕ
1 the differential of ϕ1 at the point x(1) = x(0).

The next Proposition and Remark compare the definition of nondegenerate for a 1-periodic
solution of a time independent Hamiltonian system ẋ(t) = XH(x(t)) with the definition
of nondegenerate for a function H. This comparison is used to compare the Floer and
Morse homology.

Proposition 1.17. If x is a nondegenerate 1-periodic solution of a time independent
Hamiltonian system H, then x is nondegenerate as a critical point of the function H.

Proof. Use local coordinates for x. Then we can define the gradient, the Jacobian and
the Hessian at x, denoted by ∇x, Jacx and Hessx respectively.
Note that x is nondegenerate as 1-periodic solution of the Hamiltonian system H iff
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Id− Jacx ϕ
1 has eigenvalue 0. Also note, x is nondegenerate as critical point of the

function H iff Hessx H has eigenvalue 0, since x is nondegenerate for the function H if
the determinant of the Hessian is 0.
If we can show that Id− Jacx ϕ

1 has eigenvalue 0 implies that Hessx H has eigenvalue 0,
then we are done.
In coordinates we have

d

dt
(Jacx ϕ

t)i =
d

dt

∂ϕt

∂xi
=

∂

∂xi

dϕt

dt
=

∂

∂xi
(XH ◦ ϕt) =

∑
j

∂XH

∂xj

∂ϕtj
∂xi

= ∇xXH ·
∂ϕt

∂xi

= ∇x(−JxJacx H) · ∂ϕ
t

∂xi
= (−Jx∇x(Jacx H)) · ∂ϕ

t

∂xi
= (−JxHessx H) · ∂ϕ

t

∂xi
.

This gives

d

dt
(Jacx ϕ

t) = (−JxHessx H) · ∂ϕ
t

∂x
,

this implies

Jacx ϕ
t = e−tJxHessx H .

Therefore,

Id− Tx(0)ϕ
1 = Id− Jacx ϕ

1 = Id− e−JxHessx H

since x = x(0). From this we conclude that if Hessx H has eigenvalue 0 then Id− Jacx ϕ
1

has eigenvalue 0, this concludes the proof.

Remark 1.18. Note that the inverse statement of Proposition 1.17 does not hold neces-
sarily, since for any eigenvalue in 2πZ of Hessx H will give that Id−Jacx ϕ

1 has eigenvalue
0. But if we choose H such that the norm of Hessian stays smaller than 2π, the two non-
degeneracies are equivalent. Note in particular that if the Hessian stays smaller than 2π,
the 1-periodic solutions of the Hamiltonian system are constant.
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2 Arnold Conjecture

The main Theorem of the first Part of my Thesis is the Arnold Conjecture for the nonori-
ented Morse homology case with an extra homotopy assumption on the symplectic man-
ifold M . This is the following Theorem.

Theorem 2.1. Let M a compact symplectic manifold such that the homotopy group
π2(M) = 0. If all the 1-periodic solutions of a time dependent Hamiltonian vector field
Xt are nondegenerate, then the number of such solutions is greater or equal to∑

i

dimHMi(M ;Z/2).

Here denotes HMi(M ;Z/2) the ith Morse homology group of M without taking into ac-
count orientations.

This Theorem tells us that for such an M , there is such a 1-periodic solution if the Morse
homology on M is nontrivial. The goal of this section is to discus some of the assumptions
and to give an outline of the proof of the Theorem.

2.1 Assumptions

Some remarks about the assumptions of Theorem 2.1 are mentioned in this Subsection.

Remark 2.2. The assumption of π2(M) = 0 in the Arnold Conjecture implies that every
smooth map from the sphere to M , f : S2 →M , can be extended to a smooth map from
the ball to M , h : B3 →M . Stoke’s Theorem, see Theorem 16.11 in [Lee13], gives us now
that ∫

S2

f ∗ω =

∫
B3

h∗dω = 0, (2.1)

since ω is closed. If Formula 2.1 holds for every smooth map f : S2 → M , we call the
symplectic manifold (M,ω) aspherical.

Remark 2.3. The assumption π2(M) = 0 does not only give that (M,ω) is aspherical,
but it gives us also a trivialization property.
Note that for every smooth map f : S2 →M , the image f(S2) must be contractible, since
π2(M) = 0. Therefore f(S2) is homotopic to a disk D2. Note also that for every smooth
map ψ : D2 →M the symplectic fiber bundle ψ∗TM can be trivialized, see Theorem 7.1.1
of [AD14].
This trivialization for ϕ together with the fact that f(S2) is homotopic to a disk D2, gives
that there exists a symplectic trivialization of the fiber bundle f ∗TM for every smooth
map f : S2 →M .
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If we assume both Remark 2.2 and Remark 2.3 instead of the assumption π2(M)) = 0 in
Theorem 2.1, we will see that the Theorem remains to be true.

Remark 2.4. We may assume that the Hamiltonian Ht that induces the Hamiltonian
vector field Xt = XHt in Theorem 2.1 is periodic. If ϕt : M →M is a 1-periodic solution
of ϕ̇t = Xt(ϕ

t), then it is also a 1-periodic solution of

d

dt

(
ϕα(t)

)
=
dα

dt
XHα(t)

(
ϕα(t)

)
= Xα̇(t)Hα(t)

(
ϕα(t)

)
,

where α : [0, 1] → [0, 1] is a smooth function that is zero near zero and one near one,
because ϕα(1) = ϕ1. Note that α is flat near zero and one, so α̇(0) = α̇(1) = 0, so
Kt = α̇(t)Hα(t) can be extended as a 1-periodic function of time. Hence, we found a
1-periodic Hamiltonian Kt such that XKt has precisely the same 1-periodic solutions as
XHt .

2.2 Outline of the proof

I give the outline of the proof of Theorem 2.1 here. It is also an overview of the upcoming
Sections until Part II.

Proof of Theorem 2.1. The idea is to use 1-periodic solutions of a time dependent Hamil-
tonian vector field to define a homology which will be equal to the Morse homology. This
will be the Floer homology. We denote the corresponding Hamiltonian by H. We will
only use 1-periodic solutions that are contractible to define this homology. We can do
this since we are looking for an inequality and not an equality in the Theorem.
To define the Floer homology we start with defining a functional, the so called action
functional AH (Section 3). The Action functional has this contractible 1-periodic solu-
tions as critical points. Then we will use the trajectories of the negative gradient of the
action functional to connect two critical points. These trajectories will be described as
solutions of the Floer equation (Subsection 3.1). We need to choose a compatible almost
complex structure J on M to define this negative gradient.
We want to connect two critical point of the action functional with these trajectories. But
not every trajectory will connect two critical points in general. However, we can define
an energy for these trajectories. It turns out that the finite energy ones will be exactly
all the trajectories that connects two critical points. To show this, we will need that the
total space M of finite energy solutions is compact (Subsection 3.2).
To define the Floer homology we also need an index for the critical points of the action
functional. This will be the Maslov index that is denoted by µ (Section 4).
Now define Ck(H) as the vector space over Z/2 generated by critical points with Maslov
index k. Furthermore, for two critical points x, y that have a Maslov index difference of
one, let n(x, y) denote the number modulo two of trajectories between these two critical
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points. Then we define the Floer complex via the following differential (Section 6)

∂ : Ck(H) −→ Ck−1(H), ∂(x) =
∑

µ(y)=k−1

n(x, y)y.

We need to prove that this differential is well defined and that ∂ ◦ ∂ = 0. The differential
is well defined if the total amount of critical points is finite and also if the amount of
trajectories between two critical points with Maslov index difference one is finite.
That there are a finite amount of critical points is a direct consequence of the nondegen-
eracy assumption (Lemma 3.17). But the other two statements are a lot harder to prove.
To prove the other two statements, we start with slightly adjusting the Hamiltonian H.
This will be done in such a way that the spaces M(x, y) of solutions of the Floer equa-
tion between critical points x, y become manifolds. These manifolds will have dimension
µ(x) − µ(y), where µ(x), µ(y) denote the Maslov index of the points x, y respectively
(Section 5).
This adjustment is allowed because of a regularity property of the Floer equation. To
show this regularity property we will use the Sard-Smale Theorem(5.16), an infinite di-
mensional analogue of Sard’s theorem.
There is a natural R action on the spaces M(x, y), denoted by L(x, y) = M(x, y)/R.
This action allows us to count the trajectories between two critical points with one index
difference. The space L(x, y) turns out to be a zero dimensional compact manifold if the
index difference of x and y is one (Property (1) of Theorem 6.1). Hence it consists of a
finite amount of trajectories, so n(x, y) is well defined.
To conclude that ∂◦∂ = 0, we need to study L(x, z) where x and z have an index difference
of two. We will see that L(x, z) is a compact manifold with boundary of dimension one,
such that the boundary is the union of broken trajectories (Property (2) of Theorem 6.1).
Broken trajectories consists of multiple trajectories that are connected via critical points.
We can conclude that ∂ ◦ ∂ = 0, since every compact one dimensional manifold with
boundary has an even amount of boundary points.
Now, we have a well defined chain complex depending on a Hamiltonian and on an almost
complex structure J on M . The induced homology is independent of the Hamiltonian and
the almost complex structure (Subsection 7.1). This homology is the Floer homology.
In a particular situation, the Hamiltonian is independent of time and sufficiently small,
we can define both the Floer and Morse homology. In this case we can prove that they are
equal (Subsection 7.2). Hence, the Floer and Morse homology are equal since they both
do not depend on the Hamiltonian. This equality and the way how the Floer homology
is constructed allows us to conclude the Theorem.
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3 Action functional

The 1-periodic solutions of the Hamiltonian system ˙x(t) = Xt(x(t)) can be described as
the critical points of a functional. This is the action functional, which is defined on loops
on the compact symplectic manifold M . The action functional plays the same role in
Floer homology as the Morse function does in the Morse homology.
We want to solve the question, how to get a chain complex between solutions of the Hamil-
tonian system? This question is now, how to get a chain complex between critical points
of the action functional? To make a chain complex, you need a map between different crit-
ical points. This is induced from trajectories between critical points in Section 6. These
trajectories travel along the negative gradient of the action functional, this is described
by the Floer equation. In this Section, we show that the trajectories with finite energy
that move along the negative gradient of the action functional are trajectories between
critical points.

Definition 3.1 (Action functional). Let (M,ω) a symplectic manifold and Ht a time
dependent Hamiltonian that we assume to be periodic. To be periodic means Ht+1(x) =
Ht(x) for all time t. Define the action functional by

AH(x) = −
∫
D

u∗ω +

∫ 1

0

Ht(x(t))dt (3.1)

for a contractible loop x : S1 → M with extension u : D → M . This definition is well
defined if it does not depend on the choice of an extension u. Let v be another extension.
Glue u and v along their common boundary, the result of the gluing will be denoted by
w, see Figure 1. Then we have by Remark 2.2 that∫

D

u∗ω −
∫
D

v∗ω =

∫
S2

w∗ω = 0.

Hence the action functional does not depend on the choice of the extension u of the loop x.

x

u

x

v

x x

w

Figure 1: A contractible loop x [left ] in M with its extensions u and v [middle]. The
extensions u and v form together a sphere w [right ].
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Theorem 3.2. A loop x is a critical point of the action functional AH if and only if it is
a periodic solution of the Hamiltonian system ẋ(t) = Xt(x(t)).

Proof. A contractible loop x is a critical point of AH if the differential of AH is 0 at the
point x. Let u : z → u(z) be the extension of x : t → x(t) from the definition of the
action functional. Start with a computation of the differential for any vector field Y , see
the proof of Theorem 6.3.3 of [AD14] for more details. Split the differential in two parts,
namely

(dAH)x(Y ) = −
∫
D

u∗(LY (z)ω) +

∫ 1

0

(dHt)x(t)(Y (t)) dt.

The first part gives

−
∫
D

u∗(LY (z)ω) = −
∫
D

u∗(diY (z)ω) (ω is closed)

= −
∫
S1

x∗(iY (t)ω) (Stoke’s Theorem)

= −
∫ 1

0

ω(Y (t), ẋ(t)) dt

and the second part gives∫ 1

0

(dHt)x(t)(Y (t)) dt =

∫ 1

0

ωx(t)(Y (t), Xt(x(t))) dt (by definition of Xt).

Hence for any vector field Y we have

(dAH)x(Y ) =

∫ 1

0

ω(Y (t), Xt(x(t))− ẋ(t))dt, (3.2)

so the differential of A is 0 if and only if ẋ(t) = Xt(x(t)), because of the nondegeneracy
of ω.

3.1 The Floer equation

In this Subsection I will introduce the negative gradient of the action functional AH and
the Floer equation. The solutions of the Floer equation are the trajectories of the negative
gradient of the action functional.
We will study the trajectories of the negative gradient, because the trajectories are needed
to define the differential of the Floer homology.

Definition 3.3 (Gradient on the loop space). A compatible almost complex structure J
on a symplectic manifold (M,ω) defines a metric g on M . This metric induces a metric on

12



the space of contractible loops LM of M , namely for vector fields Y, Z along a contractible
loop x in LM we can define the metric at a loop x

〈Y, Z〉x =

∫ 1

0

gx(Y (t), Z(t))dt.

The gradient of a function f : LM → R is defined via the relation

〈gradx f, Y 〉x = (df)x(Y )

Remark 3.4. If we apply the last definition on the action functional AH : LM → R, we
get for a vector field Y defined along a loop x in LM that

(dAH)x(Y ) =〈gradxAH , Y 〉x

=

∫ 1

0

gx(t)((gradx(t)AH)(t), Y (t))dt

=

∫ 1

0

ωx(t)((gradx(t)AH)(t), JY (t))dt.

Furthermore, Formula 3.2 gives that

(dAH)x(Y ) =

∫ 1

0

ωx(t)(Jẋ(t)− JXt(x), JY )dt,

since J is symplectic. Hence for the negative gradient XH we have

−XH(t) := (gradxAH)(t) = Jx(t)ẋ(t)−Jx(t)Xt(x(t)) = Jx(t)ẋ(t) + gradx(t)Ht(x(t)), (3.3)

since ω is nondegenerate. The last identity holds, because J2 = −1 and J gradHt = Xt.

Definition 3.5 (Floer equation). Let u : R→ LM : s 7→ u(s, ·) be a path of contractible
loops in M , see Figure 2.
Such a u is the trajectory of the negative gradient XH of the action functional AH if it is
a solution of the following partial differential equation

∂u

∂s
+ J(u)

∂u

∂t
+ graduHt(u) = 0, (3.4)

see Equation 3.3. This differential equation is called the Floer equation.

13
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Figure 2: Schematic shape of a trajectory u.

Remark 3.6. There are two important special cases of the Floer equation. First, if the
Hamiltonian Ht vanishes, then we get the Cauchy-Riemann equation

∂u

∂s
+ J(u)

∂u

∂t
= 0.

If this is the case, u is called J-holomorphic.
The other special case is when a solution u of the Floer equation does not depend on s.
In this case the Floer equation can be rewritten as

u̇ = Xt(u).

Such a solution, a stationary trajectory of the negative gradient flow of the action func-
tional AH , is thus a periodic solution of the Hamiltonian system of Ht. Theorem 3.2 gives
now that the solution is a critical point of the action functional.

3.2 Solutions of the Floer equation

To define the differential of the Floer homology we are especially interested in smooth
contractible solutions of the Floer equation with finite energy. I will show that such
solutions connect two critical points of the action functional. The number of all such
possible connections between critical points will be used to define the differential.

Definition 3.7. For a contractible periodic solution u of the Floer equation we define
the energy as

E(u) =

∫ +∞

−∞
‖graduAH‖

2 ds. (3.5)

14



Definition 3.8. A contractible periodic solution u of the Floer equation connects two
critical points x and y of the action functional if

lim
s→−∞

u(s, ·) = x and lim
s→+∞

u(s, ·) = y

in C∞(S1;M). The space of such solutions between x and y is denoted by M(x, y).
Here denotes C∞(S1;M) the smooth maps from S1 to M ⊂ Rm with the standard C∞
topology. M is viewed as embedded in Rm for a large enough m, see the Whitney Em-
bedding Theorem 6.15 of [Lee13].

Lemma 3.9. For u a contractible periodic solution of the Floer equation, the energy has
the following three properties:

(1) The energy E(u) is positive.

(2) E(u) is zero if and only if u is a critical point of the action functional AH .

(3) If u connects two critical points x and y of AH , then E(u) = AH(x)−AH(y). Hence
the energy is finite.

Corollary 3.10. Let x a critical point of the action functional AH , then M(x, x) = {x}.

Proof of Lemma 3.9. The first property follows directly from the definition of the energy.
For the second property we notice first that

graduAH = J(u)
∂u

∂t
+ graduHt(u) = −∂u

∂s
,

since u is a solution. Hence

E(u) =

∫ ∞
−∞

∥∥∥∥∂u∂s
∥∥∥∥2

ds =

∫
R×S1

∣∣∣∣∂u∂s
∣∣∣∣2 ds dt, (3.6)

so E(u) is zero if and only if u does not depend on s. Now we are in the second special
case of Remark 3.6, which says that u is a critical point of the action functional AH .
The last property follows from the identities

‖graduAH‖
2 = (dAH)u(graduAH) = −(dAH)u

(
∂u

∂s

)
= − d

ds
AH(u(s)). (3.7)

Another formula for the energy is thus

E(u) = −
∫ +∞

−∞

d

ds
AH(u(s))ds.

Since u connects x and y we conclude E(u) = AH(x)−AH(y).
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Definition 3.11. Let us now define the total space of solutions of the Floer equation

M = {u : R× S1 −→M | u is a contractible solution of finite energy}.

View the compact symplectic manifold M as being embedded in a space Rm for a suffi-
ciently large m. We use this embedding to define a topology onM. This is the C∞ uniform
convergence topology on the the compact sets of R×S1 for smooth maps from R×S1 to
M ⊂ Rm. The topology is denoted by C∞loc(R× S1;M). The topology C∞loc(R× S1;M) is
the topology we use on the space M.

A crucial property to define Floer homology is that trajectories of the negative gradient
of the action functional with finite energy connect critical points of the action functional.
This is the following Theorem.

Theorem 3.12. If all the periodic trajectories of Xt are nondegenerate, then for every
u ∈M there are critical points x and y of the action functional AH such that u connects
these two critical points, i.e.

lim
s→−∞

u(s, ·) = x and lim
s→+∞

u(s, ·) = y

in C∞(S1;M). Moreover, we have

lim
s→±∞

∂u

∂s
(s, t) = 0

uniform in t.

Proof. For the proof see Section 3.5.

Corollary 3.13. Theorem 3.12 together with Item (3) of Lemma 3.9 give that

M = ∪x,y∈Crit(AH) M(x, y).

Before we can show Theorem 3.12, we need the following important Theorem.

Theorem 3.14 (Gromov compactness). The space M is compact in C∞loc(R× S1;M).

Proof. For the proof see Section 3.4.

3.3 Intermediate results

Before we are able to prove Theorem 3.14 and Theorem 3.12 we need some more results.
From now on, I will denote u(s, ·) with us.

Lemma 3.15. Let u ∈M. There exists two critical points x and y of the action functional
AH such that

lim
s→−∞

AH(us) = AH(x) and lim
s→+∞

AH(us) = AH(y).

16



Note that this Lemma does not yet contain the condition that all the periodic orbits of
Xt needs to be nondegenerate. We also note that it is enough to show this Lemma only
for the case s→ +∞, because of symmetry.

Proof. The function s 7→ AH(us) is decreasing because of Formula 3.7. So it is enough to
show that there is a critical point y of AH and a sequence sk going to +∞ such that

lim
k→+∞

AH(usk) = AH(y).

To show this, we split the proof in three steps.

(1) There is a sequence sk going to +∞ such that usk goes to a limit y that is continuous,
i.e. y ∈ C0.

(2) y is a critical point of the action functional AH and is smooth, i.e. y ∈ C∞.

(3) limk→+∞AH(usk) = AH(y).

I will only sketch the proofs of these three steps. More details can be found in the proof
of Proposition 6.5.7 of [AD14].
To prove the first step, create a sequence (sk)k∈N in R in such a way that (usk)k∈N will be
an equi-continuous family of functions. To do this you need to use the finiteness of the
energy of u and that M is compact. Then the compactness of M and the equi-continuous
property allows us to use the Arzelà-Ascoli Theorem, see Theorem C.1.1 in [AD14]. Ap-
plying this Theorem on the sequence (usk)k∈N gives step one.

For the second step we start with to show that ẏ = Xt(y). To show this, we look at the
difference

(y(t)− y(0))−
∫ t

0

Xτ (y(τ))dτ = lim
k→∞

(
usk(t)− usk(0)−

∫ t

0

Xτ (y(τ))dτ

)
.

The norm of this expression can be estimated to zero, so ẏ = Xt(y).
The relation ẏ = Xt(y) implies now that y is differentiable, i.e. y ∈ C1, because y ∈ C0.
Now we know y ∈ C1, hence y ∈ C2. In this way we conclude that y ∈ C∞. This process
is well known as bootstrapping. This completes the proof of the second step.

The difficulties of proving the third step are in the first integral of Definition 3.1, the
definition of the action functional. For extensions ũsk and ỹ of usk and y to the disk
respectively, we want that

lim
k→∞

∫
D

ũ∗skω =

∫
D

ỹ∗ω.

If we assume that the form ω is exact, i.e. ω = dλ, then follows from a short computation
that uses the first two steps, that the statement is true.
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The problem is that we cannot assume that ω is exact. It is even worse, a symplectic form
on a compact manifold cannot be exact. This follows from Lemma 1.4 and Theorem 17.31
of [Lee13].
However, we can still use this computation. y is contractible, so pick an open U around
y such that it is diffeomorphic to an open ball. Then ω is exact on U by Corrollary 17.15
(Local Exactness of Closed Forms) of [Lee13]. usk goes to y, so for k large enough, usk
lies also in U . If we now choose the extensions ũsk and ũy to be in U , the computation is
valid. We may choose ũsk and ũy in U , because the computation will not depend on the
chosen extension, because of Remark 2.2.

Lemma 3.16. The set of critical points of the action functional AH is compact.

Proof. Let (xk)k∈N a sequence of critical points of the action functional. There exists
a constant C > 0 such that for all k we have |xk| < C. This holds because of the
image of xk lies in M and M is compact. Furthermore, ẋk(t) = Xt(x

k(t)), so ẋk is
for all k also uniformly bounded. Hence, xk is equi-Lipschitz, and in particular equi-
continuous. Now we can apply the Arzelà-Ascoli Theorem, Theorem C.1.1 in [AD14], to
conclude that there exists a subsequence of (xk)k∈N that converges in the C1 sense. By
differentiating the equation ẋk(t) = Xt(x

k(t)) multiple times, bootstrapping, we obtain
the C∞ convergence.

Lemma 3.17. If all the critical points of the action functional AH are nondegenerate,
then the amount of critical points is finite.

Proof. The critical points of the action functional can be described as the intersection of
two submanifolds of the compact manifold M ×M . Both submanifolds have the same
dimension as M , which is half the dimension of M ×M . The two submanifolds are

(1) the diagonal ∆ = {(x, x) | x ∈M}

(2) and the graph {(x, ϕ1(x)) | x ∈M} of the flow ϕ1 of Xt at time 1.

The nondegeneracy of the critical points, see Definition 1.16, gives that both submanifolds
intersect transversal. Therefore, their intersection is a submanifold of dimension 0, see
Theorem 6.30 of [Lee13]. Hence the amount of critical points is finite, since it is also
compact by the Lemma above.

Corollary 3.18. There exist a constant C such that for all u ∈M we have the following
two estimates

−C ≤ AH(u) ≤ C and 0 ≤ E(u) ≤ C

Proof. Lemma 3.15 and the fact that the function s 7→ AH(us) is decreasing imply
AH(x) ≤ AH(u) ≤ AH(y) for x and y critical points of the action functional AH .
Furthermore, Lemma 3.15 and the same reasoning as in the third item of Lemma 3.9
imply E(u) = AH(x)−AH(y) for x and y critical points of the action functional AH .
Combining these two results with Lemma 3.17, the amount of critical points is finite,
proofs the Corollary. Here we must note that the first item of 3.9 gives that the energy
must be positive.
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3.4 Compactness

The Gromov compactness, Theorem 3.14, is a consequence of the following Lemma. This
Lemma is the core of the proof of the Theorem, but define first the following notation.
Let B(x, r) be the ball centered at a point x with radius r.

Lemma 3.19. Let M be a compact symplectic manifold such that π2(M) = 0, then there
exists a constant A > 0 such that the norm of the gradient of u is bounded by A for all u
in M and all (s, t) in R× S1, i.e.

∀u ∈M, ∀(s, t) ∈ R× S1, ‖ grad(s,t) u‖ ≤ A.

Proof. The proof of this Lemma contains some long computations, so I will give here only
a proof sketch. All the details can be found in the proof of Lemma 6.6.2 in [AD14].
We start with assuming that we have sequences (uk)k∈N in M and (sk, tk)k∈N in R × S1

such that

lim
k→∞

∥∥grad(sk,tk) uk
∥∥ = +∞.

The sequence (uk) will be used to create a sequence (vk) that does not diverge to +∞.
This sequence inherits a property that will give a contradiction with our assumption
π2(M) = 0, see Remark 2.1.
Before the definition of the sequence (vk), we make some assumptions on (uk). There
exists a sequence (εk) of positive numbers that converges to 0 such that

lim
k→∞

εk
∥∥grad(sk,tk) uk

∥∥ = +∞ and

∥∥grad(s,t) uk
∥∥ ≤ 2

∥∥grad(sk,tk) uk
∥∥ for (s, t) ∈ B((sk, tk), εk).

We can make this assumption because of the half maximum Lemma 6.6.3 in [AD14].
Now, define the sequence (vk) by

vk(s, t) = uk

(
(s, t)

Rk

+ (sk, tk)

)
where Rk =

∥∥grad(s,t) uk
∥∥ .

Note that ‖ grad(0,0) vk‖ = 1, εkRk
(k→∞)−−−−→∞, and ‖ grad(s,t) vk‖ ≤ 2 on B(0, εkRk).

Apply the Elliptic Regularity Lemma 12.1.1 of [AD14]. to conclude that there is a subse-
quence of (vk) that converges to a v in C2

loc(R× S1;M) such that

(1)
∥∥grad(0,0) v

∥∥ = 1, hence v is nonconstant,

(2)
∥∥grad(s,t) v

∥∥ ≤ 2 for all (s, t) ∈ R,
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(3) ∂v
∂s

+ J(v)∂v
∂t

= 0, hence v is J-holomorphic.

This three properties follow directly from the definition of the sequence (vk) and the
Elliptic Regularity Lemma, but we need more properties of v to run into a contradiction.
An estimation of the energy of v on B(0, εkRk) gives

E(v) =

∫
B(o,εkRk)

‖grad vk‖2 dt ds =

∫
B(o,εkRk)

∥∥∥∥∂vk∂s
∥∥∥∥2

+

∥∥∥∥∂vk∂t
∥∥∥∥2

dt ds ≤ 4C,

where C is the constant from Corollary 3.18. The ball B(0, εkRk) goes in the limit to
R × S1, so v has a finite energy by Fatou’s Lemma, see Theorem 9.11 of [Sch05]. This
estimation implies also that the symplectic area of v is finite, since a computation of this
area gives that∫

R×S1

v∗ω =

∫
R×S1

∥∥∥∥∂v∂t
∥∥∥∥2

dt ds =

∫
R×S1

∥∥∥∥∂v∂s
∥∥∥∥2

+

∥∥∥∥∂v∂t
∥∥∥∥2

dt ds ≤ 4C.

Note also that the area of v is nonzero, since v is nonconstant.
The last ingredient we need to get a contradiction is a sequence (rk) going to∞ such that
the length ` of v(∂B(0, rk)) converges to 0, i.e. the length of the image of the boundary
of the disk B(0, rk)) converges to 0. To find such a sequence, you need to use the facts
that v is J-holomorphic and the symplectic area of v is bounded. For the proof of this
statement see Lemma 6.6.5 of [AD14].
The length `(v(∂B(0, rk))) goes to 0 and ω is a closed form, so there is a big enough k and
a closed ball U such that v(∂B(0, rk)) ⊂ U and ω = dλ, see Corollary 17.15 of [Lee13]. Let
Dk be a disk in U such that ∂Dk = v(∂B(0, rk)) and let S2

k be the sphere Dk∪v(B(0, rk))
in M . The assumption π2(M) = 0, see Remark 2.1, gives now that

0 =

∫
S2
k

ω =

∫
Dk

ω +

∫
v(Bk)

ω.

Now we get a contradiction, since∫
v(Bk)

ω =

∫
Bk

v∗ω
(k→∞)−−−−→

∫
R×S1

v∗ω 6= 0 and∣∣∣∣∫
Dk

ω

∣∣∣∣ =

∣∣∣∣∫
Dk

dλ

∣∣∣∣ =

∣∣∣∣∫
v(∂B(0,rk))

dλ

∣∣∣∣ ≤ `(v(∂B(0, rk))) sup
U
‖λ‖ (k→∞)−−−−→ 0.

The image v(B(0, rk)) is called a bubble in this contradiction argument. Namely, the
surface v(B(0, rk)) increases like a bubble, since its area increases, but its boundary
v(∂B(0, rk)) decreases. This phenomenon of a bubble is thus not possible under the
assumption of π2(M) = 0.

Corollary 3.20. Every sequence (un)n∈N in M has a subsequence that converges uni-
formely, as do its derivatives, to a limit that is therefore of class C∞.

20



Proof. Lemma 3.19 together with the Elliptic Regularity Lemma 12.1.1. of [AD14] give
the result. Note that the energy on M is bounded, see Corollary 3.18, so the limit stays
in M.

Theorem 3.14 is a direct consequence of this corollary.

3.5 Trajectories connect critical points

I will give a proof sketch of Theorem 3.12 in this Section. The proof starts with the
following lemma.

Lemma 3.21. Let u ∈ M and (sk)k∈N a sequence in R going to +∞. Then there exists
a critical point y of the action functional AH and a subsequence (sk′)k′∈N such that

lim
k′→∞

usk′ = y.

Proof. We want to use the compactness of M to extract a subsequence of (sk)k∈N such
that usk converges to an element v ∈M. We need to be careful here, since usk /∈M, but
usk ∈ LM .
We start with making a sequence in M out of the sequence (sk)k∈N in R. To do this, we
note that the additive group R acts continuously onM from the right in the following way
(u · s)(s0, t) = u(s + s0, t). Now we define a sequence in M out of the sequence (sk)k∈N
as (u · sk)k∈N. Theorem 3.14 gives that M is compact, so there exists a subsequence
(u · sk′)k′∈N such that limk′→∞ u · sk′(s, t) = v(s, t) for some v ∈M and all s and t. For a
fixed s0 we have now

vs0(t) = lim
k′→∞

u · sk′(s0, t) = lim
k′→∞

usk′+s0(t) = lim
k′→∞

usk′ (t).

Now we are in the same situation as in the first step of the proof of Lemma 3.15. The
second step of that proof tells us now that vs0 is a critical point y of the action functional.

Proof of Theorem 3.12. It is enough to show only the case s→ +∞, because of symmetry.
Lemma 3.17 gives that the amount of critical points of the action functional AH is finite.
Therefore, we can choose disjoint open neighbourhoods Uy in LM such that each of them
contains one critical point y of the action functional. Define U = ∪y∈CritAHUy.
For all u ∈M there exists a big enough sK such that u([sK ,∞[×S1) ⊂ U by Lemma 3.21,
hence u([sK ,∞[×S1) ∩ Uy 6= ∅ for some critical point y. We have even more, since
u([sK ,∞[×S1) must be connected, then follows that u([sK ,∞[×S1) ⊂ Uy. The conclusion
is now lims→+∞ us = y.
Now we have the main statement of Theorem 3.12. The second part about ∂u/∂s follows
now easily. Corollary 3.20 gives that lims→∞ ∂us/∂t = ẏ. We also have that u is a solution
of the Floer equation and y a critical point of AH , so

lim
s→+∞

∂u

∂s
(s, t) = −(J(ẏ) + gradyHt(y)) = −J(ẏ −Xt(y)) = 0.
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4 The Maslov Index

To define the Floer homology, we need a chain complex. This chain complex can only
be defined if we have an index for the critical points of the action functional, because
these points will generate the vector spaces of the chain complex. This Section is about
defining the Maslov index on critical points of the action functional. This index will be
used to define the chain complex. Keep in mind that this critical points are precisely the
1-periodic contractible solutions of the Hamiltonian.
Let x a nondegenerate 1-periodic contractible solution. We will associate to x an integer
in three steps.

(1) Associate x with a path of symplectic matrices in the symplectic group Sp(2n).

(2) Associate the path of symplectic matrices with a path in the cicle S1.

(3) Associate such a path in S1 with an integer.

I will discuss these steps in the rest of the Section. Each step has his own Subsection.

4.1 First step

For a nondegenerate 1-periodic contractible solution x, we will associate to it a path
t 7→ A(t) of symplectic matrices such that A(0) = Id and 1 /∈ SpecA(1), where SpecA(1)
denotes the spectrum of the matrix A(1).
We begin with choosing a symplectic basis Z(0) = (Z1(0), . . . , Z2n(0)) of Tx(0)M . Let A(t)
be the matrix of the linear map Tx(0)ϕ

t in the basis Z(0). These matrices are symplectic for
all t ∈ [0, 1], since ϕt preserves the symplectic form ω, see Propostion 1.15. We also have
that 1 /∈ SpecA(1), because x is assumed to be nondegenerate, see Definition 1.16. Now
we have a path t 7→ A(t) of symplectic matrices such that A(0) = Id and 1 /∈ SpecA(1).
To study this path even more, we define Sp(2n)∗ = {A ∈ Sp(2n)| det(A − Id) 6= 0}.
Sp(2n)∗ is the space of symplectic matrices which do not have eigenvalue 1. We are
looking at paths that start at the identity and finish in the space Sp(2n)∗. Therefore,
define the space of paths S = {A : [0, 1] −→ Sp(2n) | A(0) = Id, A(1) ∈ Sp(2n)∗}.

Lemma 4.1. The path of matrices t 7→ A(t) is unique in S up to homotopy in Sp(2n).

Proof. See Subsection 7.1 of [AD14], Remark 2.3 is crucial in this proof.

4.2 Second step

We will associate to a path t 7→ A(t) ∈ S from the first step a path γ : [0, 1] → S1 such
that γ(0) = 1 and γ(1) = ±1. The main idea is to make the path t 7→ A(t) of symplectic
matrices longer and then apply to this longer path a certain map ρ : Sp(2n) → S1 to
obtain the path in S1.
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The space Sp(2n)∗ is the complement of the hypersurface Σ = {A ∈ Sp(2n) | det(A −
Id) = 0} in Sp(2n). So it is clear that Sp(2n)∗ cannot consists of one connected component
and has thus at least two components. The next propositions tells us that Sp(2n)+ =
{A ∈ Sp(2n) | det(A− Id) > 0} and Sp(2n)− = {A ∈ Sp(2n) | det(A− Id) < 0} are path
connected, so Sp(2n)∗ consists of two components.

Proposition 4.2. The spaces Sp(2n)± are path connected.

Proof. See Proposition 7.1.4 of [AD14].

With this Proposition we can make the paths t 7→ A(t) ∈ S longer, such that it goes to

W+ = −Id or W− =

2 0
0

0 1/2

0 −Id

 .

To be more precise, for a path α0 : t 7→ A(t) ∈ S we have that A(1) ∈ Sp(2n)∗, so
A(1) ∈ Sp(2n)+ or A(1) ∈ Sp(2n)−. If A(1) ∈ Sp(2n)+, choose a path α1 from A(1) to
W+ ∈ Sp(2n)+, but if A(1) ∈ Sp(2n)−, choose a path α1 from A(1) to W− ∈ Sp(2n)−.
Now, let α be the concatenation of the paths α0 and α1.

Σ

α0 α1

Id

A(1)

W+

W−

Sp(2n)+

Sp(2n)−

Figure 3: Path of symplectic matrices.

Theorem 4.3. There exist a continuous map ρ : Sp(2n) → S1 for every n ∈ N that
satisfies the following properties:

(1) For A, T ∈ Sp(2n) we have ρ(TAT−1) = ρ(A). (Neutrality)

(2) For A ∈ Sp(2n) and B ∈ Sp(2m) holds ρ

(
A 0
0 B

)
= ρ(A)ρ(B). (Product)

(3) For A =

(
X −Y
Y X

)
∈ Sp(2n) ∩O(2n), then ρ(A) = detC(X + iY ). (Determinant)
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(4) For A ∈ Sp(2n), if Spec (A) ⊂ R, then ρ(A) = (−1)m/2, (Normalization)
where m denotes the total multiplicity of negative eigenvalues.

(5) For A ∈ Sp(2n), ρ(At) = ρ(A−1) = ρ(A).

Proof. The construction of such a map ρ can be found in Subsection 7.3 of [AD14]. In
the case A ∈ Sp(2n) has 2n distinct eigenvalues, the map will be

ρ(A) = (−1)m/2
∏

λ∈Spec (A)∩S1

Im(λ)>0

λsign Im ω(X,X),

here denotes m the total multiplicity of real negative eigenvalues, and is X an eigenvector
of the corresponding eigenvalue λ.

If we now apply the map ρ of this Theorem to the path α, we get a path γ = ρ ◦ α in
S1. Note that α(0) = Id and α(1) = W±, so the fourth property of the map ρ gives that
γ(0) = 1 and γ(1) = ±1. Now we have completed the second step of defining the Maslov
Index.

4.3 Third step

To associate to the path γ : [0, 1] → S1 from the second step an integer, we will lift the
path γ to R. The integer will be the difference between the end points of the lifted path
divided by π. This integer is called the Maslov index of the nondegenerate 1-periodic
contractible solution x. Before we can lift the path γ, we need to have the following
Proposition.

Proposition 4.4. The inclusions i± of the spaces Sp(2n)± into Sp(2n)∗ induce zero
homomorphisms on the fundamental groups.

This Proposition can be easily proved with the following Remark and Lemma.

Remark 4.5. The third item of Theorem 4.3 can also be stated as, the map ρ is an
extension of the complex determinant map on the unitary group U(n). This is because
the intersection Sp(2n) ∩O(2n) consists of matrices(

X −Y
Y X

)
∈ GL(2n;R) with

{
X tY = Y tX

X tX + Y tY = Id

and these conditions are equivalent to X + iY ∈ U(n). In particular, ρ induces an
isomorphism on the fundamental groups

ρ∗ : π1(Sp(2n)) −→ π1(S1) = Z.

This is because Sp(2n) retracts on U(n), see Proposition 5.6.9 of [AD14], and the deter-
minant map detC : U(n) → S1 induces between the fundamental groups of U(n) and S1

an isomorphism, see Proposition 2.23 of [MS98].
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Lemma 4.6. There exist two continuous maps ρ± : Sp(2n)± → R such that the diagrams

R
exp
��

Sp(2n)±

ρ±

44

i±
// Sp(2n) ρ

// S1

commute.

Proof. This Lemma can be proven by using details of the construction of ρ. This is done
in Subsection 7.3 of [AD14].

Proof of Proposition 4.4. The homomorphism exp∗ between the fundamental groups of R
and S1 induced by the exponential map exp : R → S1 is the zero homomorphism. So
Lemma 4.6 gives that ρ∗ ◦ i±∗ = exp∗ ◦ρ±∗ = 0. Now follows that i±∗ are zero homomor-
phisms, since ρ∗ is an isomorphism by Remark 4.5.

Theorem 4.7 (Maslov index). Let x be a nondegenerate 1-periodic contractible solution.
Associate via the first and second step to it a path γ : [0, 1]→ S1. Now choose a lift β of
γ = ρ ◦ α such that the diagram

R
exp
��

[0, 1]

β

55

α
// Sp(2n) ρ

// S1

commutes. Then

µ(x) =
β(0)− β(1)

π

is well defined and is an integer. µ is called the Maslov index.

Proof. To define the number µ(x), I made three choices. µ(x) is well defined if it does
not depend on these choices.
The first choice was the symplectic basis Z(0) of Tx(0)M . From this basis we defined the
path α0 : t 7→ A(t) in S. Lemma 4.1 gives that this path α0 is unique up to homotopy
in Sp(2n). So if µ(x) does only depend on the homotopy class of α0, then it does not
depend on our choice of symplectic basis Z(0). Before I will show this, I take a look at
the second choice.
I choose a path α1 from α0(1) = A(1) to W+ or W− in Sp(2n)+ or respectively Sp(2n)−.
By Proposition 4.5 follows that this path is unique up to homotopy in Sp(2n). So the
concatenation α of the paths α0 and α1 is also unique up to homotopy in Sp(2n). So if
µ(x) does only depend on the homotopy class of α, then it does not depend on our first
two choices.
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Now we note that ρ∗ is an isomorphism, so γ = ρ ◦ α is also unique up to homotopy in
S1. Hence µ(x) = β(0)− β(1))/π does not depend on the first two choices and the choice
of lift β. Thus µ(x) is well defined.
Furthermore, it is an integer, since β(exp(0)) = ρ(α(0)) = ρ(Id) = 1 and β(exp(1)) =
ρ(α(1)) = ρ(W±) = ±1.

After defining the Maslov index, we need one more Proposition about the Maslov index
to be able to compare the Morse and Floer homology in Subsection 7.2.

Proposition 4.8. If S is an invertible symmetric matrix with norm ‖S‖ < 2π and if
α0(t) = e−tJxS with x ∈ M , then the Maslov index of this path is equal to the number of
eigenvalues of S minus half the dimension of M .

Proof. For this proof I refer to Proposition 7.2.1 of [AD14].
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5 Regularity property

The goal of this Section is to show that there is always a perturbation of the Hamiltonian
H such that the spaceM(x, y), the space of solutions of the Floer equation that connects
the orbits x and y, is a smooth submanifold of dimension µ(x)−µ(y). This goal translates
into the following Theorem.

Theorem 5.1. For every nondegenerate Hamiltonian H0 on M there exists an h ∈
C∞ε (H0) such that

(1) H = H0 + h is nondegenerate and has the same 1-periodic solutions as H0.

(2) for every distinct pair of critical values x and y of the action functional AH0 the
space M(x, y,H) is a submanifold of dimension µ(x)− µ(y).

Such a Hamiltonian H is called regular.

The space C∞ε (H0) denotes the perturbations of the Hamiltonian H0 and M(x, y,H)
denotes the space M(x, y). That M(x, y) depends on H is important in this Section,
therefore M(x, y) is denoted by M(x, y,H) in this Section.
The idea of how to show this Theorem, is to start with the space Z(x, y,H) of solutions
that connects the orbits x and y for all perturbations aroundH. Then define the projection

π : Z(x, y,H) −→ C∞ε (H),

soM(x, y,H) = π−1(H). Now follows thatM(x, y,H) is a submanifold if H is a regular
value of π. This is precisely the case if H is regular, which needs to be shown.
The problem is that not every Hamiltonian H is regular value of π. That is why we need
to look at perturbations of the Hamiltonian. The Sard-Smale Theorem will give us that
there are enough Hamiltonians in C∞ε (H) to find a Hamiltonian that is a regular value of
π, which is also close to the original Hamiltonian.
The Sard-Smale Theorem works only for Banach manifolds. Therefore, the whole proof
of Theorem 5.1 must be done in a Banach setting. This starts with defining a Banach
manifold P(x, y,H) that contains M(x, y) and allows us to define a Floer map F on it.
Also, the space of perturbations C∞ε (H) must be a Banach space. Then via a transversality
argument we show that Z(x, y,H) is a Banach submanifold of P(x, y,H)×C∞ε (H). This
allow us to use the Sard-Smale Theorem to find enough Hamiltonians that are regular
values of π.
The argument thatM(x, y,H) is a submanifold if H is a regular value of π, works in the
Banach setting only if the derivative of π is a Fredholm operator. The Fredholm index of
this derivative is µ(x)− µ(y), therefore M(x, y,H) becomes a submanifold of dimension
µ(x)− µ(y).
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5.1 Floer map on a Banach manifold

We want to define a Banach manifold P1,p(x, y,H) that containsM(x, y,H) such that the
Floer equation for solutions between two critical points x and y of the action functional
can be described via the Floer map

F : P1,p(x, y,H) −→ Lp(R× S1;Rm)

u 7−→ ∂u

∂s
+ J

∂u

∂t
+ gradu(Ht).

Here denotes Lp(R×S1;Rm) the Lebesgue space with norm p. m is chosen in such a way
that the manifold M can be embedded in Rm. The manifold P1,p(x, y,H) will be local
diffeomorphic to the Sobolev space W 1,p(R× S1;Rm).

First we note that for a smooth map u : R× S1 →M : (s, t) 7→ u(s, t) the variable s sits
not in a compact space. This makes it unnatural to look at Sobolev spaces containing
this u. Therefore we will look at maps u with the property

‖∂u
∂s

(s, t)‖ ≤ Ke−δ|s| and ‖∂u
∂t

(s, t)−XH(u)‖ ≤ Ke−δ|s|

for constants K and δ depending on u. The space of such smooth maps that also connect
two critical points x and y of the action functional AH is denoted by C∞↘(x, y,H).
Using the fact thatM(x, y,H) contains only elements with finite energy, the exponential
decay Theorem, see Theorem 8.9.1 of [AD14], gives us that M(x, y,H) ⊂ C∞↘(x, y,H).

Definition 5.2. Define for a map w ∈ C∞↘(x, y,H) the space W 1,p(w∗TM). The space
containing all continuous maps Y : R × S1 → TM such that Y (s, t) ∈ Tw(s,t)M for all
(s, t) and the composition of Y with the projection map pr2 on the second coordinate

R× S1 Y−→ TM ⊂ TRm = Rm × Rm pr2−−→ Rm

is in W 1,p(R× S1;Rm).

Remark 5.3. We need to pick p > 2 if we want to assume that Y ∈ W 1,p(w∗TM) is
continuous, see Theorem C.4.9 of [AD14].

Remark 5.4. Recall that an integral curve γ : I = (−ε, ε)→M of a smooth vector field
V on the manifold M if

γ̇(t) = Vγ(t) for all t ∈ I.

An integrable curve is called complete if the domain I is R. M is compact, so for every
smooth vector field V and all points m ∈ M there exists a unique complete integrable
curve γ such that γ(0) = m, see Theorem 9.12 and Corollary 9.17 of [Lee13]. Denote
evaluation of γ in time t = 1 by expm V .
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Definition 5.5. For p > 2 define P1,p(x, y,H) as the space that contains the maps of the
form

(s, t) 7−→ expw(s,t) Y (s, t) where Y ∈ W 1,p(w∗TM) and w ∈ C∞↘(x, y,H).

Theorem 5.6. P1,p(x, y,H) is a Banach manifold

Proof. The maps defined in the previous definition are local diffeomorphims and these
diffeomorphims are transition maps from W 1,p(R × S1;Rm) to P1,p(x, y,H), see Subsec-
tion 8.2.d of [AD14]. These transitions maps form an atlas for P1,p(x, y,H), so it is a
Banach manifold.

Remark 5.7. The Banach manifold P1,p(x, y,H) is defined in such a way that C∞↘(x, y,H) ⊂
P1,p(x, y,H), therefore M(x, y,H) ⊂ P1,p(x, y,H).

Theorem 5.8. The Floer map

F : P1,p(x, y,H) −→ Lp(R× S1;Rm)

u 7−→ ∂u

∂s
+ J

∂u

∂t
+ gradu(Ht).

is well defined.

Proof. The differential operators in the definition of the new Floer map are viewed as
differential operators on distributions instead of operators on functions. Therefore, it is
well defined if the image of P1,p(x, y,H) lies in Lp(R×S1;Rm). The crucial part to show
this is that for all u ∈ P1,p(x, y,H) it can be written as u = expw(Y ) with w ∈ C∞↘(x, y,H)
instead of w ∈ C∞(x, y), see subsection 13.3 of [AD14]. That the image of P1,p(x, y,H)
lands in Lp(R × S1;Rm) = W 0,p(R × S1;Rm) and not in W 1,p(R × S1;Rm) is a natural
consequence of the fact that F is a differential operator, so you expect to drop one Sobolev
index.

Definition 5.9. A continuous linear operator L : E → F between two Banach spaces
E,F is called a Fredholm operator if its image is closed and both the kernel and cokernel
are finite dimensional. This allows us to define the index of a Fredholm operator as the
difference

IndL = dim kerL− dim cokerL.

Theorem 5.10. For every u ∈M(x, y,H), (dF)u is a Fredholm operator of index µ(x)−
µ(y).

Proof. For this proof I refer to Theorem 8.1.5 of [AD14].

29



5.2 Transversality

The introduction of this Section starts about finding a perturbation of the Hamiltonian
H0 such that the spaces M(x, y,H) become a submanifold. Therefore, we define a space
of perturbations C∞ε (H). After this definition, we use a transversality argument to con-
clude that the space Z(x, y,H0) of W 1,p solutions going from x to a distinct y for all
perturbations of the Hamiltonian H0 is a Banach manifold, here are x, y critical points of
the action functional AH0 .
To define the space of perturbations, we use the following construction. Start with fixing
a sequence ε = (εn)n of positive real numbers. Define a norm

‖h‖ε =
∑
k≤0

εk sup
(x,t)∈M×S1

∣∣dkh(x, t)
∣∣ ,

where
∣∣dkh(x, t)

∣∣ denotes the maximum of |dαh(x, t)| over all multi-indices α of length k.
Define the space C∞ε as the C∞ functions on M × S1 with finite norm ‖ · ‖ε. The space
C∞ε is a normed and complete vector space. This space has another nice property.

Lemma 5.11. There exists a sequence ε = (εn)n of positive real numbers such that the
space C∞ε lies dense in C∞(M × S1) for the C1 topology. Moreover, the space C∞ε is
seperable, i.e. it contains a countable dense subset.

Proof. For this proof I refer to Proposition 8.3.1 of [AD14].

Definition 5.12. The space of Hamiltonian perturbations C∞ε (H) of a Hamiltonian H0

is defined as the subspace of C∞ε such that for h ∈ C∞ε (H) we have that h(x, t) = 0 in a
neighbourhood of the 1-periodic solutions of H0.

Lemma 5.13. Let H0 be a Hamiltonian such that all 1-periodic solutions of the induced
Hamiltonian system are nondegenerate. There exist a neighbourhood U around 0 in the
space C∞ε (H0) such that for h ∈ U we have that H = H0 + h is nondegenerate and H has
the same periodic solutions as H0.

Proof. Let h ∈ C∞ε (H0), then the support of h sits around the periodic solutions of H0.
So all the periodic solutions of H0 are also periodic solutions for H = H0 + h. Moreover,
these periodic solutions remain to be nondegenerate.
If we take ‖h‖ε small enough then there will be no other periodic solutions of H then H0

already has, see 1.18.

Definition 5.14. Let x, y critical points of the action functional AH0 . Define the space

Z(x, y,H0) = {(u,H = H0 + h) | h ∈ C∞ε (H0) and u a W 1,p solution between x and y}.

Theorem 5.15. The space Z(x, y,H0) of W 1,p solutions going from x to a distinct y
for all perturbations of the Hamiltonian H0 is a Banach submanifold of P1,p(x, y,H0) ×
C∞ε (H0).
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Proof. To show that Z(x, y,H0) is a manifold we use a transversality argument. Describe
Z(x, y,H0) as the set of zeros of a section of a fiber bundle. To do this, define for
u ∈ P1,p(x, y) and h ∈ C∞ε (H0) the space

E = {(u, h, Y )|Y ∈ Lp(u∗TM)},

here is Lp(u∗TM) defined in an analogous way as W 1,p(u∗TM). Define now the fiber
bundle as

E −→ P1,p(x, y,H0)× C∞ε (H0)

(u, h, Y ) 7−→ (u, h).

Note that C∞ε (H0) is closed in C∞ε (H0), therefore it is a Banach space. We also have
that P1,p(x, y,H0) is a Banach manifold by Theorem 5.6, so P1,p(x, y,H0)× C∞ε (H0) is a
Banach manifold.
The section that has the zero set Z(x, y,H0) is given by

σ : P1,p(x, y,H0)× C∞ε (H0) −→ E

(u, h) 7−→
(
u, h,

∂u

∂s
+ J(u)

∂u

∂t
+ gradu(H0 + h)

)
.

The section is well defined because of Theorem 5.8 and the definition of Lp(u∗TM).
Theorem 8.1.4 of [AD14] gives now that the linearised map (dσ)(u,h) composed with the
projection on the fiber is surjective when σ(u, h) = 0 and admits a continuous right
inverse. To prove the surjectivity, you need that the Floer map is Fredholm. Now we say
that the section σ has the transversality property. This transversality property gives that
the zero set σ−1(0), which is equal to Z(x, y,H0), is a Banach manifold, see Theorem 8.1.3
of [AD14].

E

P1,p(x, y)× C∞ε (H)

σ

Z(x, y)

Figure 4: Z(x, y) as transverse intersection of the section σ and the zero section
P1,p(x, y)× C∞ε (H) in the fiber bundle E .
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5.3 We may assume that M(x, y) is a submanifold

Define the projection

π : Z(x, y) −→ C∞ε (H0)

(u,H0 + h) 7−→ h

We want to conclude that there are a lot of regular values h ∈ C∞ε (H0), so we apply the
Sard-Smale Theorem, see [Sma65].

Theorem 5.16 (Sard-Smale). Let E and F be two seperable Banach spaces. If for U
an open set in E the map f : U → F is a smooth Fredholm map, then the set of regular
values of f is a countable intersection of dense open subsets.

This Theorem can also be used if E is a Banach manifold, since f is defined local on an
open U in E. To apply this Theorem on the map π above, we need that π is a Fredholm
map.

Lemma 5.17. The map π is Fredholm.

Proof. Use that the tangent map of the Floer map F is a Fredholm operator to conclude
the same for π, for the proof I refer to the beginning of Subsection 8.5.c. of [AD14].

The last ingredient to prove the main Theorem of this Section is the following Lemma,.

Lemma 5.18. The regular values h of π are exactly the h ∈ C∞ε (H0) such that (dF)u is
surjective for every u ∈M(x, y,H0 + h).

Proof. For this proof I refer to Lemma 8.5.9. of [AD14].

Now we are able to prove the main theorem of this Section.

Proof of Theorem 5.1. Apply the Sard-Smale Theorem 5.16 on π = πx,y for all the distinct
pairs x and y of critical values of the action functional AH0 . The amount of critical values
is finite because of 3.17, so we have a finite intersection of a countable intersections of dense
open sets of regular values for all maps πx,y. Hence this set is a countable intersection of
opens, then by Baires Theorem we conclude that this set is dense in C∞ε (H0). Denote this
set by πreg.
Denote by U the open subset U defined in Lemma 5.13. Since πreg is dense and U is open,
we have that U ∩ πreg 6= ∅. Take h ∈ U ∩ πreg, then H = H0 + h fulfills the first property
of the Theorem and h is a regular value of πx,y for all distinct pairs of critical values x
and y of the action functional AH0 .
Fix now an x and an y. h is a regular value for πx,y, so π−1

x,y(h) is a submanifold with
dimension equal to its Fredholm index, see Theorem C.2.13. of [AD14]. Regular value
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means that the tangent map of πx,y is surjective, so the cokernel of (dπx,y)(u,H) is 0. Now
we obtain

Ind(dπx,y)(u,H) = dim ker(dπx,y)(u,H)

= dim ker(dF)u (Lemma 5.17)

= Ind(dF)u (Lemma 5.18)

= µ(x)− µ(y) (Theorem 5.10)

If we now show that π−1
x,y(h) = M(x, y,H) we are done. By the Elliptic Regularity

Proposition 12.1.4 of [AD14] we have π−1
x,y(h) ⊂ M(x, y,H). This Proposition works

only for p > 2, since then the space W 1,p(R × S1;M) consist of continuous maps, see
Remark 5.3. The other direction follows by Remark 5.7, since M(x, y,H) ⊂ P(x, y) ⊂
π−1
x,y(h). This concludes the Theorem.
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6 Definition of the Floer complex

To define a chain complex for the Floer homology for a regular Hamiltonian, we must
look at the trajectory spaces L(x, y) =M(x, y)/R. This quotient is induced by the right
action explained in the proof of Lemma 3.21, denote the corresponding quotient map by
π. We need two properties of the trajectory spaces L(x, y), namely,

Theorem 6.1 (Two properties of the trajectory spaces). Let x, y, z critical points of the
action functional AH .

(1) If µ(x)− µ(y) = 1, then L(x, y) is a compact manifold of dimension 0.

(2) If µ(x)− µ(z) = 2, then L(x, z) is a manifold of dimension 1 such that the closure
L(x, z) is a compact manifold with boundary

∂L(x, z) =
⋃

µ(x)−µ(y)=1

L(x, y)× L(y, z).

The precise definition of L(x, y)×L(y, z) will be made clear in Theorem 6.3. The defini-
tion in words is that an element of L(x, y)×L(y, z) consists of two trajectories such that
the first one connects the critical points x and y, and the second one connects y and z.
Such a space is called the space of broken trajectories between x and z via y.
The first property gives that L(x, y) consists only of a finite amount of trajectories. There-
fore, the definition n(x, y) = #L(x, y) mod 2 is well defined if µ(x) − µ(y) = 1. Since
we already have shown that the total amount of critical points of the action functional is
finite, Lemma 3.17, we can define the differential

∂k : Ck(H) −→ Ck−1(H), ∂k(x) =
∑

µ(y)=k−1

n(x, y)y,

where Ck(H) denotes the vector space over Z/2 generated by the critical points with
Maslov index k. This differential induces the Floer complex. That it is really a differential
needs still to be shown. It is a differential if

∂ ◦ ∂(x) =
∑

µ(y)−µ(x)=1
µ(z)−µ(x)=2

n(x, y)n(y, z)z = 0.

The second property gives that L(x, z) consists of a union of a finite amount of lines and
circles, the boundary of such a manifold is always even, this allows us to prove ∂ ◦ ∂ = 0.
See Subsection 6.2 for the details about how the second property implies ∂ ◦ ∂ = 0.
The first step we must take to conclude both properties of Theorem 6.1 is to show that
L(x, y) is a manifold.

Theorem 6.2. Let x, y two distinct critical points of the action functional AH where H is
is regular. The trajectory space L(x, y) between x and y is then a manifold of dimension
µ(x)− µ(y)− 1.
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Proof. Theorem 5.1 gives that M(x, y) is manifold of dimension µ(x) − µ(y). Since
L(x, y) = M(x, y)/R is a quotient space, it is a manifold of dimension µ(x) − µ(y) − 1
if R acts smoothly, freely and properly on M(x, y), see Theorem 21.10 of [Lee13]. To
conclude that the action is indeed free, see Remark 9.1.6 of [AD14].

To prove the two properties of 6.1, we also need the following Theorem. It shows that the
space L(x, y) of broken trajectories is compact.

Theorem 6.3. Let x, y be two critical points of the action functional AH . Then for every
sequence (un) in M(x, y), there exists a subsequence of (un), also denoted by (un) and
critical points x = x0, x1, . . . , xl, xl+1 = y such that

lim
n→∞

ũn ∈ L(x0, x1)× L(x1, x2)× · · · × L(xl, xl+1), where ũn = π ◦ un ∈ L(x, y),

i.e. there exist sequences (skn) for 0 ≤ k ≤ l and uk ∈ M(xk, xk+1) such that for all
k = 0, . . . , l we have

lim
n→∞

un · skn = uk.

Moreover, the limits are unique.

Proof. The proof is given in Subsection 6.1.

Corollary 6.4. For two critical points x and y of the action functional AH , the space
L(x, y) is compact.

Now we are able to prove Property (1) of Theorem 6.1, but we need the following Theorem
to conclude also Property (2).

Theorem 6.5 (Gluing). Let x, y and z be critical points of the action functional AH ,
such that µ(x) = µ(y) + 1 = µ(z) + 2. We have then for (u, v) ∈ M(x, y) ×M(y, z)
representing trajectories (ũ, ṽ) ∈ L(x, y)× L(y, z) that:

(1) For some ρ0 There exists a differentiable map ψ : [ρ0,+∞[→M(x, z) such that

ψ̃ = π ◦ ψ : [ρ0,+∞[−→ L(x, z)

is an embedding satisfying

lim
ρ→+∞

ψ̃(ρ) = (ũ, ṽ) ∈ L(x, z).

(2) Every sequence (`n) in L(x, z) that converges to (ũ, ṽ) must lie in the image of ψ̃
for n large enough.

Proof. For this proof I refer to Theorem 9.2.3 of [AD14].
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Now we have all the tools to prove Theorem 6.1.

Proof of Theorem 6.1. Theorem 6.2 gives that L(x, y) and L(x, z) are a manifold and the
above corollary gives that L(x, y) and L(x, z) are compact.
Note for Property (1) that the manifold L(x, y) has dimension 0. For a discrete manifold
holds L(x, y) = L(x, y), hence L(x, y) is a compact manifold of dimension 0.
To show Property (2), we are only left with the statement that L(x, z) is a manifold with
boundary. This statement is a consequence of the so called gluing Theorem. I will not
prove this Theorem, but I will give some examples that illustrate how to conclude from
this second Property that ∂ ◦ ∂ = 0 in Subsection 6.2.

6.1 Broken trajectories

The boundary of the space of Trajectories L(x, y) is the space of broken trajectories that
connect x and y. These broken trajectories are unions of trajectories that connect critical
points, such that it starts at x and finishes in y. Furthermore, the space of trajectories
together with its broken trajectories is compact, in other words the closure of the space of
trajectories is compact. These properties of the trajectory spaces are a direct consequence
of Theorem 6.3, this Theorem is proved in this Subsection. The proof is a combination
of the proofs of Proposition 9.1.2 and Theoerm 9.1.7 of [AD14], the first one gives the
uniqueness and the second one the existence. I will only prove the existence.

Proof of Theorem 6.3. To prove the Theorem, we will view all the solutions of the Floer
equation in the loop space LM and use the notation of the proof of Lemma 3.21. The
proof to find a limit of a subsequence of (un) is via induction to k. The proof is illustrated
in Figure 5.
Pick around each critical point of the action functional a ball with radius ε such that they
are all disjoint. The solutions un in M(x, y) start at x and end up at y, so un exits the
ball B(x; ε). Denote by s1

n the first time that un exits the ball B(x; ε). The space M is
compact by Theorem 3.14, so there is a subsequence (un) such that (un · s1

n) converges to
a limit u1 in M. The time s1

n is chosen in such a way, that the limit u1 must start at x
and is non constant. By Corollary 3.10 follows now that u1 ∈ M(x, x1) for some critical
point x1 of the action functional distinct from x. If it happens to be that x1 = y, then
we are done, if not, then we have finished the induction basis.
To finish the proof by induction, we must show that if we found sequences (s1

n), . . . , (sjn)
and uj ∈M(xj−1, xj) such that y = xj and limn→∞ un · sjn = uj for 1 ≤ j ≤ k, then there
exists another critical point xk+1 such that the same holds for j = k + 1.
We have that uk ∈ M(xk−1, xk), so there exist a time s∗ such that uk(s) is in the ball
B(xk; ε) for all times s ≥ s∗. For n large enough, we have that (un · skn)(s∗) = un(skn + s∗)
lies in the ball B(xk; ε), because (un · skn)(s∗) converges to (u · sk)(s∗). Therefore, there is
a first time sk+1

n > skn + s∗ such that un(skn) exits the ball B(xk; ε), since (un) has to go to
y. M is compact, so there is a subsequence (un) such that uk+1 = limn→∞ un · sk+1

n . This
is the limit we are looking for, but we need to prove that uk+1 starts from xk and ends in
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another distinct critical point xk+1.
By contradiction it can be shown that the time difference between the times skn + s∗ and
sk+1 tends towards infinity. Therefore, un · sk+1(s) lies in the ball B(xk; ε) for n large
enough and s a negative real number. Hence uk+1 starts at xk. With the same argument
as in the induction basis, it follows that uk+1 ends in another distinct critical point xk+1.
Now we conclude that uk+1 ∈M(xk, xk+1), so by induction follows that we have found a
subsequence un that converges to a broken trajectory.
To conclude that this limit is unique, we use as mentioned above Proposition 9.1.2
of [AD14].

B(x0; ε)

B(xk; ε)

x = x0

xk

y = xl

un(s1
n)

un(sk+1
n )

un(skn + s∗)

uk(s∗)

Figure 5: The illustration of how a sequence (un)n of trajectories becomes a broken
trajectory.
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6.2 Gluing

Here I will illustrate with figures what Property (2) of the gluing Theorem 6.1 actually
means, and why it gives that ∂◦∂ = 0. Note that ∂◦∂ = 0 iff

∑
y n(x, y)n(y, z) = 0 mod 2

for all critical points x, y, z of the action functional such that µ(x) = µ(y) + 1 = µ(z) + 2.
The figures in Figure 6 are examples of spacesM(x, z) with broken trajectories as bound-
ary. The thick lines in the middle are the corresponding trajectory spaces L(x, z) =
M(x, z)/R. The grey parts are the spaces M(x, z). The lines going from x to z are the
Floer solutions from x to z. Now I will look at the four examples of Figure 6, to explain
why ∂ ◦ ∂ = 0.
Figure 6a shows the case where L(x, z) is a circle. There are no broken trajectories, so
L(x, z) = L(x, z). L(x, z) is a circle, so it is a manifold, in particular it is also a manifold
with boundary that has an empty boundary. This case fulfills therefore Property (2).
Now we want to conclude that ∂ ◦ ∂ = 0. Since there is no broken trajectory from x to z,
the trajectory spaces L(x, y) and L(y, z) are all empty for all y such that µ(x)−µ(y) = 1.
This means that n(x, y) = n(y, z) = 0 for all such y. Hence ∂ ◦ ∂ = 0.
Figure 6b shows the case where L(x, z) is a line. There are two broken trajectories, one via
y and another one via ỹ. Therefore L(x, z) is a line with two boundary points on each site
of the line. We have thus that L(x, z) is a manifold, L(x, z) is a manifold with boundary
∂L(x, z) = L(x, y)× L(y, z) ∪ L(x, ỹ)× L(ỹ, z). This case fulfills therefore Property (2).
Now we want to conclude again that ∂ ◦ ∂ = 0. The trajectory spaces L(x, y), L(y, z),
L(x, ỹ) and L(ỹ, z) consist all of one trajectory, so n(x, y) = n(y, z) = n(x, ỹ) = n(ỹ, z) =
1 mod 2. Therefore, we get n(x, y)n(y, z) + n(x, ỹ)n(ỹ, z) = 2 mod 2 = 0 mod 2, so
∂ ◦ ∂ = 0.
Now we are able to conclude from Property (2) that ∂ ◦ ∂ = 0. The only two connected
manifolds of dimension one with boundary are the circle and the line. For both cases we
have shown that ∂ ◦ ∂ = 0. A manifold with boundary is thus a disjoint union of circles
and lines that all add a zero amount to ∂ ◦ ∂, so it is zero.

x

z

(a) Possible.

ỹ

x

y

z

(b) Possible.

x

y

z

(c) Not possible.

y

x

z

(d) Not possible.

Figure 6: Example spacesM(x, z) in grey with there broken trajectories. The thick line
in the middle shows the corresponding trajectory spaces L(x, z).
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Figure 6c shows the case where L(x, z) is again a line. The problem is here that there
is only one broken trajectory, since the two end points of the line are collapsed on one
point. In this case ∂ ◦ ∂ = z, because n(x, y)n(y, z) = 1 mod 2. Thus ∂ ◦ ∂ 6= 0, even
though L(x, z) is a manifold and its boundary is a trajectory. The crucial point is that
L(x, z) is not a manifold with boundary. It is not a manifold with boundary because of
Item (2) of Theorem 6.5.
Figure 6d shows the case where L(x, z) consist of two lines. Again L(x, z) is a manifold
and its boundary are trajectories. The problem is here again that L(x, z) is not a manifold
with boundary as in the case above, even though ∂ ◦ ∂ = 0.
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7 Floer homology equals the Morse homology

The Floer complex defined in the last Section induces the Floer homology for a compatible
almost complex structure J and a regular Hamiltonian H. Denote this Floer homology
by HF (H, J). now we want to show that the definition of HF (H, J) does not depend on
the chosen pair (H, J). We call a pair (H, J) regular if for the chosen compatible almost
complex structure J the Hamiltonian H is regular. Denote the space of such pairs by
(H×J )reg. The invariance Theorem is the precise statement of the independence of the
pair (H, J).

Theorem 7.1 (Invariance). The Floer homology HF (H, J) does not depend on the chosen
regular Hamiltonian H and the compatible almost complex structure J in (H×J )reg.

When we know that the Floer homology HF (M) does only depend on the choice of the
compact symplectic manifold (M,ω), we can choose a specific pair (H, J) ∈ (H × J )reg

to show that the Floer homology HF is equal to the Morse homology HM(M), up to a
shift in the indices. This is the following Theorem.

Theorem 7.2. The Floer homology HF∗(M) and Morse homology HM∗+n(M) coincide
on every compact symplectic manifold (M,ω) with homotopy group π2(M) = 0, here is n
half the dimension of M .

7.1 Invariance

This Subsection is devoted to the proof of Theorem 7.1. Let (Ha, Ja) and (Hb, J b) be in
(H×J )reg. Define a smooth homotopy Γ = (H, J) that connects (Ha, Ja) to (Hb, J b) by

H : R× S1 ×M −→ R and J : R −→ J ⊂ End(TM),

such that for a constant R{
H(s, ·, ·) = Ha if s ≤ −R
H(s, ·, ·) = Hb if s ≥ R

and

{
J(s) = Ja if s ≤ −R
J(s) = J b if s ≥ R.

The existence of this homotopies follows from the fact that J is contractible, see Theo-
rem 1.11.
Write Γt(s) = (Hs,t, Js), then define the Floer equation with parameters as

∂u

∂s
+ Js(u)

∂u

∂t
+ gradu(Hs,t) = 0.

Similar as for the definitions of the spaceM of solutions of the Floer equation with finite
energy, we can also define them for the Floer equation with parameters.
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Definition 7.3. For energy defined by Formula 3.6, define analogous to M
MΓ = {u : R× S1 −→M | u is a contractible solution with finite energy}.

And analogous to M(x, y)

MΓ(x, y) = {u ∈MΓ | u connects a critical point x of AHa and a critical point y of AHb}.
We have analogous to Theorem 3.12 that MΓ =

⋃
x,yMΓ(x, y). Furthermore, analogous

to Theorem 5.1, there exists an h ∈ C∞ε (H0), such that for the homotopy h+H the spaces
MΓ(x, y) are submanifolds. Such a homotopy is called a regular homotopy.

Definition 7.4. Let Γ a regular homotopy connecting (Ha, Ja) and (Hb, J b), define for
every index k the morphism

ΦΓ
k : Ck(H

a, Ja) −→ Ck(H
b, J b)

x 7−→
∑

y∈CritA
Hb

µ(y)=k

nΓ(x, y)y,

where nΓ = #MΓ(x, y)/R mod 2.

This morphism is well defined if #MΓ(x, y)/R is finite for µ(x) = µ(y) and

ΦΓ ◦ ∂(Ha,Ja) = ∂(Hb,Jb) ◦ ΦΓ.

These two properties follow from analogies of Theorem 6.3 and Theorem 6.5. For all the
analogies in this Subsection I refer to Subsection 11.1 of [AD14].
The proof of Theorem 7.1 follows from the next three Propositions, which I will not prove.

Proposition 7.5. Let (Ha, Ja) = (Hb, J b) ∈ (H × J )reg and Γ = Id, then ΦΓ
k is the

identity for every k.

Proof. For this proof I refer to Proposition 11.1.14. of [AD14].

Proposition 7.6. The morphisms ΦΓ
k are for every k independent of the choice of the

regular homotopy Γ between (Ha, Ja) and (Hb, J b).

Proof. For this proof I refer to Proposition 11.2.8. of [AD14].

Proposition 7.7. Let (Ha, Ja), (Hb, J b) and (Hc, J c) ∈ (H×J )reg and let Γ′ a homotopy
between (Ha, Ja) and (Hb, J b) and let Γ′′ a homotopy between (Hb, J b) and (Hc, J c). There
exists a regular homotopy Γ between (Ha, Ja) and (Hc, J c) such that ΦΓ

k and ΦΓ′′

k ◦ ΦΓ′

k

induce the same homomorphism for every k.

Proof. For this proof I refer to Proposition 11.2.9. of [AD14].

Proof of Theorem 7.1. Let (Ha, Ja) and (Hb, J b) ∈ (H×J )reg. Use the same notation as
the last Proposition, where we choose (Hc, J c) = (Ha, Ja) and Γ = Id. Then follows by
the last three Propositions

ΦΓ′′

k ◦ ΦΓ′

k = ΦΓ
k = ΦId

k = Id

for every k, which proofs the Theorem.
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7.2 From Floer to Morse

From the last Subsection follows that the Floer homology does not depend on the pair
(H, J) ∈ (H×J )reg, Theorem 7.1. This allows us to prove that the Floer homology equals
the Morse homology up to a shift in indices, Theorem 7.2. This Subsection gives the idea
of the proof of this Theorem.
Before we start with the proof, we need to fix some new notations to make a clear dis-
tinction between the two homologies. Denote the vector spaces of the Floer complex
corresponding to the pair (H, J) ∈ (H × J )reg by CF∗(H, J) and denote its differential
by ∂F . For H a Morse function, i.e. H has no nondegenerate critical points, and X a
pseudo-gradient field admitting the Smale condition, see Subsection 2.2.b of [AD14], de-
note its Morse complex by CM∗(H,X) and its differential by ∂M .
Theorem 7.2 is a direct consequence of Theorem 7.1 and the following Theorem.

Theorem 7.8. There exists a Morse function H, such that there exist a compatible almost
complex structure J and a pseudo-gradient field X admitting the Smale condition such
that HF (H, J) and HM(H,X) both exist, furthermore CF∗(H, J) = CM∗+n(H,X) and
∂M∗ = ∂F∗+n.

Proof. Start with a time independent nondegenerate Hamiltonian H such that the norm
of its Hessian is smaller then 2π. We have that

(1) Crit(AH) = Crit(H), by Remark 1.18 and Theorem 3.2. In particular, all the critical
points x of the action functional are constant.

(2) µ(x) = IndMorse(x) − n, where µ(x) is the Maslov index and IndMorse(x) the Morse
index. The Morse index is defined as the amount of negative eigenvalues of the
Hessian Hessx(H). Since we already computed the path needed in the first step to
define the Maslov index in Proposition 1.17 and this path has the same shape as
the path in Proposition 4.8, it follows indeed that µ(x) = IndMorse(x)− n.

From these two points follows that CF∗(H, J) = CM∗+n(H,X). Now we must still define
differentials ∂M∗ and ∂F∗n , and show that they coincide. The trajectories of the Morse
homology and the Floer homology are solutions of the equations

∂u

∂s
+X(u) = 0 and

∂u

∂s
+ J(u)

(
∂u

∂t
+XH(u)

)
= 0

respectively, where X is a pseudo-gradient field admitting the Smale condition and J a
compatible almost complex structure. The trick is now to set X = −JXH and to deform
the Hamiltonian such that the solutions of the Floer equation that make the differential
are constant solutions. For X = −JXH and ∂u

∂t
= 0 both equations are the same, and will

induce the same differential up to an n-shift in the indices.
Subsection 10.1 of [AD14] gives that there exists a compatible almost complex structure
J such that X = −JXH is a pseudo-gradient field admitting the Smale condition. From
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this will then follow that then automatically holds that (H, J) ∈ (H× J )reg. Therefore,
both differentials ∂M∗ and ∂F∗ can be defined.
This Subsection 10.1 gives also that if we replace H by Hk = H/k for a large enough
k, then ∂u

∂t
= 0 for all trajectories that connect two critical points with Maslov index

difference smaller or equal then two. Hk has the same critical points as H, so Hk is the
Hamiltonian we are looking for, since the definition of the Floer differential uses only
Maslov index differences of one and two, see Theorem 6.1.
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Part II

Braid Floer homology on surfaces



8 Basics of braids

We want to develop braid Floer homology on surfaces. This is done for the closed disk
D2 in [BGVW15]. This Article is the inspiration to look for a definition of braid Floer
homology on other surfaces in this Thesis. Possible surfaces to define braid Floer homology
on, are all the orientable compact surfaces without boundary, since they are symplecic
surfaces, see Corollary 1.6.
The Floer homology that is defined in Part I works only for aspherical spaces, i.e the
second homotopy group must be zero. The sphere is obviously a surface that is not a-
spherical, so I will not look for a definition of braid Floer homology on a sphere in this
Thesis.
Denote the compact orientable surfaces by Mg, where g is its genus. For g ∈ N≥1 we have
that π2(Mg) = 0, because of Proposition 4.2 in [Hat01]. So except for the sphere, all the
compact orientable surfaces are aspherical. Therefore, we can use the Floer homology of
Part I on these spaces.
Before we start with stating what braid Floer homology is, we need some basics about
braids on these spaces. The basics are explained in this Section.

8.1 Closed braids

Let Mg be a compact orientable surface with genus g, such that g ∈ N≥1. A closed braid
consists of n strands in Mg such that the begin points of the strands matches the end
points of the strands. A more precise definition is given below. We will only look at closed
braids in this Thesis, so with braid we refer to a closed braid.

Definition 8.1 (Closed braids). A closed braid with n strands is a continuous mapping

x(t) = (x1(t), · · · , xn(t)) : [0, 1] −→Mg × · · · ×Mg

with the following two properties:

(1) xk(t) 6= xk
′
(t) for any pair k 6= k′ and for all t ∈ [0, 1]. This property gives that

strands of a braid will never intersect each other.

(2) There exists a permutation σ in the symmetric group Sn, such that xk(1) = xσ(k)(0)
for all k = 1, · · · , n. This property gives the closeness of a braid.

The space of all closed braids with n strands of the space Mg is denoted by ΓFn(Mg),
if there is no chance of confusion I denote it by ΓFn. For this space we use the strong
metric topology of C0([0, 1];Mg × · · · ×Mg).

Definition 8.2 (Braid class). A braid class is a path connected component of ΓFn. The
braid class of a closed braid x is denoted by [x].
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Remark 8.3. The right action of the symmetric group on a braid is defined as

x · σ(1, · · · , n) = (xσ(1), · · · , xσ(n)).

Note that all braids x′ in a braid class [x] have the same unique permutation σ such that
x′(0) · σ(1, · · · , n) = x′(1). Therefore, the C0-closure of the braid class [x] consists of
mappings that satisfy Property (2) of Definition 8.1. The closure of [x] is denoted by
cl[x].

Remark 8.4. The union of a braid with n strands and a braid with m strands is not
always a braid with n + m strands. It is not guaranteed that the union of the n + m
strands has Property (1) of Definition 8.1. However, we can define the map

ΓFn × ΓFm −→ cl(ΓFn+m), (x,y) 7−→ x rel y = (x1, · · · , xn, y1, · · · , ym).

Definition 8.5. The space ΓFn,m = {x rel y ∈ ΓFn+m} is the space of relative closed
braids. The braids x and y are called respectively the free braid and the skeleton braid.
Furthermore, the path connected component of x rel y in ΓFn,m is denoted by [x rel y].
Then for a given skeleton y ∈ ΓFm, the relative closed braid class fiber [x] rely is defined
as

[x] rel y = {x′ ∈ ΓFn | x′ rel y ∈ [x rel y]}.

8.2 Proper braids

Definition 8.6 (Singular braids). The elements in the boundary

Σ[x] = cl([x])\[x] =

{x ∈ cl([x]) | xk(t0) = xk
′
(t0), for at least one pair k 6= k′ and a time t0 ∈ [0, 1]}

are called the singular braids. Collapsed singular braids are the singular braids such that
at least two strands are collapsed on each other. The space of collapsed singular braids is

Σ−[x] = {x ∈ Σ[x] | xk(t) = xk
′
(t), for at least one pair k 6= k′ and all time t ∈ [0, 1]}.

Properly singular braids are braids such that there are two strands intersecting each other,
but those two strands are not collapsed. The space of properly singular braids is

Σ+[x] = {x ∈ Σ[x] | xk(t0) = xk
′
(t0) and xk(t1) 6= xk

′
(t1),

for at least one pair k 6= k′ and two distinct times t0, t1 ∈ [0, 1]}.

Note that a properly singular braid may contain collapsed strands, so the intersection
between the spaces Σ−[x] and Σ+[x] is in general nonempty.
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Definition 8.7. (Proper) A relative braid class [x rel y] is defined to be proper if for all
braid class fibers [x] rel y we have

cl([x] rel y) ∩ Σ[x rel y] ⊂ Σ+[x rel y],

otherwise [x rel y] is called improper.

Remark 8.8. The above definition of a proper relative braid class [x rel y] is analogous
to Definition 3.2 of [BGVW15], but there is a difference. Note that Mg has no boundary,
but D2 has the circle as boundary. Therefore, Definition 3.2 of [BGVW15] needs an extra
boundary assumption. Namely the acylindrical assumption, i.e. the free strands in x
cannot collapse on the boundary.

Example 8.9. Take a free braid x that consists of one strand and pick a skeleton braid
y, in such a way that [x rel y] is proper. In this case there is no possibility that two
different free strands may intersect on the boundary Σ[x rel y], since there is just only
one free strand. Therefore, Σ[x rel y] is proper if the braid strand x does not collapse on
a strand of the skeleton y. For this simplified case there are two easy examples of proper
braid classes [x rel y].
For the first example, take a skeleton braid y ∈ ΓFm in such a way that yl(1) 6= yl(0) for
all 1 ≤ l ≤ m. This is the same as saying that the permutation σ(l) is non trivial for all
1 ≤ l ≤ m, since yl(1) = yσ(l)(0). Now holds for any free braid x ∈ ΓF1 such that x rel y
is a braid, that [x rely] is proper. This holds, because x1(1) = x1(0) and yl(1) 6= yl(0) for
all 1 ≤ l ≤ m, therefore the free strand x1 of x = (x1) cannot collapse on a strand of the
skeleton y.
For the other example, take a skeleton braid y in such a way that all the strands of the
skeleton have a nontrivial homotopy in the space Mg. Pick then a free braid x ∈ ΓF1

with trivial homotopy in Mg such that x rel y is a braid. We have again that x cannot
collapse on a strand of the skeleton y, so [x rel y] is proper.

8.3 Braids as solutions of the Hamilton equation

This Subsection is about the first link between braids and Floer homology.

Definition 8.10 (Critical, Stationary). Let H be a Hamiltonian on Mg. A closed braid
x ∈ ΓFn(Mg) satisfies the Hamilton equation if its strands xk satisfy the Hamilton equa-
tion

ẋk(t) = XH(t, xk(t))

for all k = 1, · · · , n and if the boundary conditions xk(t + 1) = xσ(k)(t) are satisfied for
all t. Such a braid is called critical or stationary.

Remark 8.11. The terms critical and stationary are used in different situations, even
though they mean the same. Look at a relative braid x rel y. If the skeleton y satisfied
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the Hamiltonian equation, we say that y is a stationary skeleton. And if both the free
braid x and the skeleton y satisfies the Hamiltonian equation, we say that x rel y is a
critical relative braid.

Definition 8.12. Fix a stationary skeleton y and a fiber [x]rely. The set of all free braids
x′ ∈ [x] rely such that the relative braids x′ rely are critical is denoted by CritH([x] rely).

Definition 8.13. Let u = (u1, . . . , un) : R × [0, 1] → Mn
g be a smooth map with the

periodicity condition

uk(s, 1) = uσ(k)(s, 0) for all s, for all k = 1, . . . , n and for some permutation σ ∈ Sn.

Define analogous to Formula 3.6 its energy as

E(u) =
n∑
k=1

∫
R×[0,1]

∣∣∣∣∂uk∂s
∣∣∣∣2 ds dt.

Remark 8.14. Let u as in the above Definition. Note that u(s, ·) ∈ cl(LFn(Mn
g )) for

all s ∈ R, where LFn(Mn
g ) denotes the loop space of n-braids on Mg. Also note that the

space u(R× [0, 1]) is a union of cylindrical shapes. Every cycle of the permutation gives a
cylindrical shape with the length in the s direction and its circle shapes in the t direction.
The time t it takes to go around a circle shape is equal to the length of the corresponding
cycle. See figure 2 for the case of a braid with one strand.

Definition 8.15. Define analogous toM the spaceM(cl(LFn)). Let u as above. Denote
the space of such u with finite energy and contractible cylindrical shapes such that uk is
a solution of the Floer equation for every k = 1, . . . , n by M(cl(LFn)).

Instead of defining a space analogous to M for a map u such that u(s, ·) is a braid for
every s ∈ R, we can also define it such that u(s, ·) is in a relative braid class fiber.

Definition 8.16. For a stationary skeleton y and a free braid x such that [x] rel y is a
relative braid class fiber, define the space

M([x] rel y) = {u ∈M(cl(LFn)) | u(s, ·) ∈ [x] rel y for all s ∈ R}.

The last definition in this Subsection is analogous to the definition of M(x, y). We do
this for a relative braid class fiber.

Definition 8.17. Let again y a stationary skeleton and x a free braid such that x rel y
is a relative braid, define

M(u−,u+, [x] rel y) = {u ∈M(cl(LFn))| lim
s→±∞

u(s, ·) = u± ∈ [x] rel y}

Remark 8.18. Note that in the last Definition we did not assume that u lies inM([x] rel
y) but that it lies in M(cl(LFn)) to reach a limit in M([x] rel y).
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9 Braid Floer homology

The Arnold Conjecture tells us, that if the Morse homology is nontrivial, then for every
nondegenerate Hamiltonian vector field on a compact symplectic manifold there exists
at least one 1-period solutions. The next question to ask is, if we know the existence of
solutions, does they force new solutions? This is the main motivation of developing braid
Floer homology.
Look at a relative braid class fiber [x] rel y on Mg, for g ∈ N≥1. For such a fiber we want
to define the braid Floer homology. The skeleton y are the known solutions, and we want
to define for the free braid x the braid Floer homology. Then again, as in the Arnold
Conjecture, if the braid Floer homology is nonempty, then there is a free braid x′ in the
relative braid class fiber [x] rely that is a solution. Before we start with defining the braid
Floer homology we need three assumptions.
The first assumption we need to define the braid Floer homology is that [x] rel y lies
in a proper relative braid class [x rel y]. This is just as in the case of the closed disk,
see [BGVW15]. This properness assumption gives an isolation property, that allows us
to define braid Floer homology. Isolation is already used by Floer in [Flo89] to define an
earlier version of Floer homology.
The next assumption is that the free braid x can only consists of strands that forms
contractible loops in Mg. This is not an issue on the disk, since there are all the loops
contractible. It is an issue on Mg, since the Floer homology defined in Part I works only
for contractible loops, see the definition of the action functional, Definition 3.1.
The last assumption is that the free braid x consists of only one strand. This last as-
sumption is probably not needed, since this assumption is not needed in the case of a
disk, but makes everything a lot easier.
To define the braid Floer homology for this case, we will use the Floer homology from
Part I. A crucial Principle to be able to use Floer homology to define braid Floer homology
is the Monotonicity Principle.

Monotonicity Principle. Let u ∈M(cl(LFn)) and y ∈ ΓFm. Let Cross a braid invari-
ant. If for an s0 ∈ R we have that u(s0, ·) rel y ∈ Σ, then either u(s0, ·) rel y ∈ Σ− or
there exists an ε0 > 0 such that u(s0 ± ε, ·) rel y ∈ LFn for all 0 < ε < ε0 and

Cross(u(s0 − ε, ·)) > Cross(u(s0 + ε, ·)).

The problem of this Principle is that it needs a braid invariant. This braid invariant is
the braid crossing number in the case of a closed disk, that is why I used Cross to denote
a braid invariant in the Principle.
The definition of the braid Floer homology will be proven for the case [x rel y] is proper
and x consists of one strand, except for the Monotonicity Principle in my Thesis. I will
only show the Monotonicity Principle with two extra restrictive assumptions. The first
assumption is that g = 2, so we are looking only on a torus Mg = T2. The second
assumption is that all the solutions in the skeleton y are contractible in T2.
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The Monotonicity Principle will be proven for these restrictive assumptions in the next
Section, the rest of the definition of the Floer homology will be shown for the less restrictive
assumptions in this Section.

9.1 Floer solutions between critical braids

From this moment on, we will look at free braid x ∈ ΓF1(Mg) with only one contractible
strand, to define braid Floer homology for a relative fiber [x] rel y of a proper braid class
[x rel y]. Before we can define the braid Floer homology, we need to take a closer look at
the spacesM(u−,u+, [x] rel y), for u−,u+ ∈ CritH([x] rel y). I will use the Monotonicity
Principle without proving it.

Lemma 9.1. Let [x rel y] be a relative braid class where y is a stationary skeleton and
x is a braid that consists only of one contractible strand, then the set CritH([x] rel y) is
finite.

Proof. For x′ = (x′1) ∈ CritH([x] rel y), note x′1 ∈ CritAH , so CritH([x] rel y) ⊂ CritAH .
Since Lemma 3.17 gives that CritAH is finite, it follows that CritH([x] rely) is finite.

The next Theorem is analogous to the Gromov compactness of M, see Theorem 3.14.
We do not actually need this Theorem to define the braid Floer homology, since we
already have the Gromov compactness Theorem. This Theorem is also analogues to
Proposition 6.2 for the case of a disk in [BGVW15]. Since they wrote a self containing
braid Floer homology, that does not use the normal Floer homology, they needed this
Theorem to define the braid Floer homology on a disk. In particular, it shows an isolation
property in the case of a disk. Therefore, I will state and prove the next Theorem, since
it is also insightful of how the properness assumption brings isolation, which will be
Theorem 9.3.

Theorem 9.2. Let [x rel y] a proper relative braid class, where x consists of one con-
tractible strand. For any fiber [x] rely with y a stationary skeleton the set M([x] rely) is
compact.

Proof. Since x consists of one closed strand and M(cl(LF1)) = M, it follows that
M([x] rel y) ⊂ M. M is compact, so for a sequence {ui} ⊂ M([x] rel y) there
exists a subsequence that converges to a limit u in M. To prove that M([x] rel y)
is compact, we must show that u ∈ M([x] rel y). This means that we must show
u(s, ·) rel y ∈ [x] rel y for all s ∈ R.
Before we show this, note that the definition of proper for a relative braid class [x rel y]
where the free braid consists of one strand can replaced be by

cl([x] rel y) ∩ Σ[x rel y] ⊂ Σ[x rel y] \ Σ−[x rel y],

see Example 8.9.
Now we will show that u(s, ·) rel y ∈ [x] rel y for all s ∈ R to conclude the proof. For
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u = (u), if u(s0, t0) /∈ [x]rely for some s0 ∈ R and t0 ∈ [0, 1], then u(s0, t0)rely ∈ Σ[xrely].
u(s0, t0) rel y ∈ Σ[x rel y] means that u(s0, t0) = yk(t0) for a strand yk of the skeleton y.
Then by the Monotonicity Principle, either u rel y ∈ Σ[x rel y]− = Σ[x rel y] \Σ+[x rel y]
or there exists an ε0 > 0 such that u(s0 ± ε, ·) ∈ LFn rel y and Cross(u(s0 − ε, ·)) >
Cross(u(s0 + ε, ·)), for all 0 < ε < ε0. The first case contradicts with the fact that [x rely]
is a proper class and the second case contradicts with the fact that Cross is a braid class
invariant, so Cross(u(s0 − ε, ·)) = Cross(u(s0 + ε, ·)). Therefore, u(s0, t0) ∈ [x] rel y for
all s0 ∈ R and all t0 ∈ [0, 1], hence M([x] rel y) is compact.

The following Theorem gives an isolation property. It is analogous to the statement
M = ∪x,y∈Crit(AH) M(x, y), see Corollary 3.13.

Theorem 9.3 (Isolation property). Let [x rel y] be a proper relative braid class, with x
be a free braid that consists of one strand. Then we have for every braid class fiber of this
relative braid class that

M([x] rel y) =
⋃

u−,u+∈
CritH([x]rely)

M(u−,u+, [x] rel y).

Proof. Start with the proof of the inclusion

M([x] rel y) ⊂
⋃

u−,u+∈
CritH([x]rely)

M(u−,u+, [x] rel y). (9.1)

We have that M([x] rel y) ⊂ M = ∪x,y∈Crit(AH) M(x, y), so for u ∈ M([x] rel y) there
exist u−,u+ ∈ Crit(AH) such that u ∈M(u−,u+). If we now show that u−,u+ ∈ [x]rely,
then will follow that u−,u+ ∈ CritH([x] rel y), hence the inclusion holds.
To show that u−,u+ ∈ [x] rel y, note first that u± = lims→±∞ u(s, ·). We also know that
u(s, ·) ∈ [x] rel y for all s ∈ R by definition of M([x] rel y), so u−,u+ ∈ cl([x] rel y).
If we assume that u− rel y or u+ rel y lies on the boundary Σ[x rel y], we want to
find a contradiction with our properness assumption. For u− rel y or u+ rel y on the
boundary Σ[x rel y] means that the strand of u+ or u− intersects a stand of the skeleton
y. Both are solutions of the Hamiltonian equation, hence by uniqueness they are the
same. This implies that u− or u+ is collapsed on a strand of the skeleton. Now we obtain
a contradiction with the properness assumption.
The other inclusion

M([x] rel y) ⊃
⋃

u−,u+∈
CritH([x]rely)

M(u−,u+, [x] rel y) (9.2)

will be proven in the same way as Corollary 6.3 of [BGVW15]. Let u ∈M(u−,u+, [x]rely)
for some u−,u+ ∈ CritH([x] rel y]). To show the inclusion, we must show that u(s, ·) ∈
[x] rel y for all s ∈ R. First note [x] rel y is open, so by continuity of u there exists an
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S > 0 such that u(s, ·) ∈ [x] rel y for all |s| > S. Let Cross be the braid class invariant
mentioned in the Monotonicity Principle, then we have Cross(u(s, ·)) = Cross(u±) for all
|s| > S.
If we assume that there exists an s0 such that u(s0, ·) /∈ [x] rel y, then by continuity of
u there exists an s∗ such that u(s∗, ·) rel y ∈ Σ[x rel y]. By the Monotonicity Principle
follows that u(s∗, ·) rel y ∈ Σ−[x rel y] or

Cross(u−) ≥ Cross(u(s∗ − ε, ·)) > Cross(u(s∗ + ε, ·)) ≥ Cross(u+).

Both possibilities give a contradiction, the first one with u(s, ·) ∈ [x] rel y for all |s| > S
and the second one with the fact that Cross(u−) = Cross(u+).

Corollary 9.4. Let [x] rel y be the fiber class as in the Theorem before, then for u−u+ ∈
Crit([x] rel y) we have

M(u−,u+, [x] rel y) =M(u−,u+).

9.2 Definition braid Floer homology

Now, we have all the tools to define the braid Floer homology for a fiber class [x] rely of a
proper relative braid class [xrely], where the free braid x consists only of one contractible
strand. I will define it without proving the Monotonicity Principle. This homology will
depend on the chosen regular Hamiltonian H, see Theorem 5.1, and the chosen compatible
almost complex structure J and the chosen braid fiber class [x] rel y.
Recall the trajectory spaces L(x, y) = M(x, y)/R, for x, y ∈ Crit(AH). Since we have
the equality M(u−,u+, [x] rel y) = M(u−,u+) by Corollary 9.4, we have L(u−,u+) =
M(u−,u+)/R for all u−,u+ ∈ Crit([x]rely). This implies that if µ(u−)−µ(u+) = 1, then
L(u−,u+) is a compact submanifold of dimension 0, see Property (1) of Theorem 6.1.
Recall the definition n(u−,u+) = #L(u−,u+) mod 2 and that CritH([x] rel y) is finite,
see Lemma 9.1. Now we are able to define the differential of the braid Floer homology
for every k

∂k : Ck(H, [x] rel y) −→ Ck−1(H, [x] rel y), ∂k(x) =
∑

x′∈Crit([x]rely)
µ(x′)=k−1

n(x,x′)x′,

where Ck(H, [x] rel y) denotes the vector space over Z/2 generated by the critical points
in CritH([x] rel y) with Maslov index k. I use the same notation for this differential as
the differential in Floer homology, because it is just a restriction. The complex induced
by this new differential is therefore a chain subcomplex of the Floer complex.
Now we still need to show that ∂ ◦ ∂ = 0, to conclude that ∂ is a differential. To show
this, we want to use the results that are obtained in Section 6. If we can show that
Theorem 6.3 holds also in this case, then we can directly use Theorem 6.5 and a property
analogous to Property (2) of Theorem 6.1 to conclude ∂ ◦ ∂ = 0.
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Actually, to define ∂ we already used implicitly Theorem 6.3, since Property (1) of The-
orem 6.1 is a consequence of it. This consequence follows from the case in Theorem 6.3
where µ(u−)− µ(u+) = 1, but this gives no trouble yet. Theorem 6.3 does not hold any
more if µ(u−) − µ(u+) > 1. Then we are looking at all the critical points of the action
functional Crit(AH), but that is not allowed, since we are now only working with the
subset CritH([x] rel y) ⊂ Crit(AH). The next Theorem will replace Theorem 6.3 to show
that the space of broken trajectories between u− and u+ viewed in CritH([x] rel y) is the
same as the space of broken trajectories L(u−,u+) where u− and u+ are viewed as critical
points of the action functional.

Theorem 9.5. Let u−,u+ ∈ CritH([x]rely) for a proper relative braid class [xrely]. Then
for every sequence (vn) in M(u−,u+), there exists a subsequence of (vn), also denoted by
(vn) and critical points u− = u0,u1, . . . , ul,ul+1 = u+ in CritH([x] rel y) such that

lim
n→∞

ṽn ∈ L(u0,u1)× L(u1,u2)× · · · × L(ul,ul+1), where ṽn = π ◦ vn ∈ L(u−,u+),

i.e. there exist sequences (skn) for 0 ≤ k ≤ l and vk ∈ M(uk,uk+1) such that for all
k = 0, . . . , l we have

lim
n→∞

vn · skn = vk.

Moreover, the limits are unique.

Proof. We already have Theorem 6.3, so we only need to show that the critical points
u1, . . . , ul of the action functional lie in CritH([x] rel y).
To exclude that ui ∈ [x] rel y with 1 ≤ i ≤ l, assume ui /∈ [x] rel y. Divide the problem
in two cases. The first case is ui rel y /∈ Σ and the second is ui rel y ∈ Σ.
If ui rel y /∈ [x] rel y and ui rel y /∈ Σ, then for a big enough n, there exists an s ∈ R such
that vn(s, ·) is close enough to ui to conclude that vn(s, ·) /∈ [x] rel y. This contradicts
Inclusion 9.2, this finishes the first case.
If ui rel y ∈ Σ, then the strand of ui intersects a strand of the skeleton y. Both are
solutions of the Hamiltonian equation, hence by uniqueness they are the same. This
implies that ui is collapsed on a strand of the skeleton. Now we obtain a contradiction
with the properness assumption.

Theorem 9.6. ∂ ◦ ∂ = 0 holds for a proper relative braid class fiber [x] rel y.

Proof. The last Theorem shows that the broken trajectory spaces in the braid Floer
homology are equal to broken trajectory spaces in the Floer homology case. Therefore,
we can use the gluing Theorem 6.5 to conclude Property (2) of Theorem 6.1 for only
picking all y ∈ CritH([x] rel y) instead of picking y from all the critical points of the
action functional, i.e. we conclude:
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Let u−,u+ ∈ CritH([x] rel y) such that µ(u−)− µ(u+) = 2, then L(u−,u+) is a manifold
of dimension 1 such that the closure L(u−,u+) is a compact manifold with boundary

∂L(u−,u+) =
⋃

µ(u−)−µ(y)=1
y∈CritH([x]rely)

L(u−, y)× L(y,u+).

Now follows that ∂ ◦ ∂ = 0 in the same way as it did in Section 6.

We have defined the braid Floer complex in the case that [x rel y] is proper and the
free braid x consist of only one contractible strand, without proving the Monotonicity
Principle. Denote the braid Floer homology by BFH(H, J, [x] rel y), since it depends on
H, J and [x] rel y.
To get a better intuition of why ∂ ◦ ∂ = 0, see the next Figures. The five lines on the
outside, are boundaries between braid classes. The braid class that is surrounded by
this lines is the proper braid class [x rel y]. The grey figures are examples of the space
M(u−,u+) with u−,u+ critical points of the action functional, just as in Figure 6.

u−

u+

(a) Possible. (b) Possible. (c) Not possible.

Figure 7: Proper braid class [x rel y] with examples of spaces M(u−,u+).

Figure 7a, both u−,u+ lie CritH([x] rel y), so M(u−,u+) belongs to the Floer homology
and the braid Floer homology. Note ∂ ◦ ∂ = 0 as in Figure 6a.
Figure 7b, the bottom point u+ lies not in CritH([x] rely), soM(u−,u+) belongs only to
the Floer homology and not to the braid Floer homology.
Figure 7b, this is not possible by Theorem 9.3.
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(a) Possible. (b) Possible. (c) Not possible.

Figure 8: Proper braid class [x rel y] with more examples of spaces M(u−,u+).

Figure 8a, both u−,u+ lie CritH([x] rel y), so M(u−,u+) belongs to the Floer homology
and the braid Floer homology. Note ∂ ◦ ∂ = 0 as in Figure 6b
Figure 8b, the top point u− lies not in CritH([x] rely), soM(u−,u+) belongs only to the
Floer homology and not to the braid Floer homology.
Figure 8c, this is not possible by Theorem 9.3.

(a) Possible. (b) Not possible.

Figure 9: Proper braid class [x rel y] with even more examples of spaces M(u−,u+).

Figure 9a, the top point u− lies not in CritH([x] rely), soM(u−,u+) belongs only to the
Floer homology and not to the braid Floer homology.
Figure 9b, this is not possible by Theorem 9.5.
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10 Monotonicity Principle

The last Section gives a definition for braid Floer homology, without proving the Mono-
tonicity Principle. This Section is about proving the Monotonicity Principle for a restric-
tive case. The proof is for the case that we have a relative braid class fiber [x] rel y ∈
ΓF1,n(T2) on the torus, such that the free braid x consists of one contractible braid. Also
assume that the loops formed by the strands of the skeleton y are contractible on the
torus.
The Monotonicity Principle needs two main ingredients. The first one is a local property
of the Floer equation that works for all braids on a space Mg. The first Subsection shows
this property.
The second ingredient is a braid invariant. We get a braid crossing number on the torus
from the braid crossing number on a plane. This can only be done within the restrictive
case mentioned above.

10.1 Floer equation implies a local property

Start with local solutions u, u′ : U ⊂ R2 → Mg of the Floer equation, such that there
exists a chart ϕ : (V, J)→ (R2, J ′) with the properties J ◦ϕ = J ′ and u, u′ : U → V ⊂M .
Define v = ϕ ◦ u, v′ = ϕ ◦ u′ and w = v − v′.
Theorem 10.1. Let u, u′ : U ⊂ R2 → M two local solutions of the Floer equation as
above. If u(s0, t0) = u′(s0, t0) for some (s0, t0) ∈ G = [a, a′]× [b, b′] ⊂ U and u(z) 6= u′(z)
for all points z ∈ ∂G, then (s0, t0) is an isolated point such that u(s0, t0) = u′(s0, t0) and
we have for the degree deg(w,G, 0) < 0.

Proof. To prove this Lemma, I use the same approach as Lemma 5.1 of [BGVW15], but
since the statement to prove is more general, the computation is longer. First, we need
to take into account that in this case we are working on a surface not equal to the unit
disk in R2. Secondly, the almost complex structure J is not constant any more.
The Floer equation for u is

∂u

∂s
+ J(s, u)

∂u

∂t
+ gradg(s,u) Ht(u) = 0.

Rewriting the Floer equation in u into v gives∑
i=1,2

∂ϕ−1

∂xi

∣∣∣∣∣
vi

 ∂v

∂s
+ J ′(s, v)

∑
i=1,2

∂ϕ−1

∂xi

∣∣∣∣∣
vi

 ∂v

∂t
+ gradg′(s,v) Ht(ϕ

−1 ◦ v) = 0,

where x1 and x2 are the local coordinates.
The chart ϕ is a diffeomorphism, so we can rewrite the equation as

∂v

∂s
+ J ′(s, v)

∂v

∂t
+

∑
i=1,2

∂ϕ−1

∂xi

∣∣∣∣∣
vi

−1

gradg′(s,v) Ht(ϕ
−1 ◦ v) = 0.
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This equation holds also for v′. Now we are interested in the difference of the two equations
of v and v′. To write this difference as an equation in w, we need to Taylor expand multiple
parts of the equation. Start with the first order Taylor expansion of

T (s, v) =

∑
i=1,2

∂ϕ−1

∂xi

∣∣∣∣∣
vi

−1

gradg′(s,v) Ht(ϕ
−1 ◦ v)

to v. This gives that there exists a smooth function A such that

T (s, v)− T (s, v′) = A(s, t)(v − v′) = A(s, t)w. (10.1)

The first order Taylor expansion of

J ′(s, v)

gives that there exists a smooth function B such that

J ′(s, v)− J ′(s, v′) = B(s, t)w

So

J ′(s, v)
∂v

∂t
− J ′(s, v′)∂v

′

∂t
= J ′(s, v)

∂v

∂t
− J ′(s, v′)∂v

∂t
+ J ′(s, v′)

∂v

∂t
− J ′(s, v′)∂v

′

∂t

= B(s, t)
∂v

∂t
w + J ′(s, v′)

∂w

∂t
(10.2)

So by using Equalities 10.1 and 10.2 we get

0 = 0− 0 =
∂v

∂s
+ J ′(s, v)

∂v

∂t
+ T (s, v)−

(
∂v′

∂s
+ J ′(s, v′)

∂v′

∂t
+ T (s, v′)

)
=
∂w

∂s
+ J ′(s, v′)

∂w

∂t
+

(
B(s, t)

∂v

∂t
+ A(s, t)

)
w.

Note that v′ depends on (s, t) and C(s, t) = B(s, t)∂v
∂t

+A(s, t) depends also on (s, t). So
if we define the complex coordinates z = s − s0 + i(t − t0), the above Equation gets the
following shape

∂w

∂s
+ J ′(z)

∂w

∂t
+ C(z)w = 0,

with initial condition w(0) = 0 and where (J ′)2 = −Id.
Identify now the target space R2 of w with C. Then by applying Theorem 12 of Ap-
pendix A.6 of [HZ94], there exists a δ > 0 such that on Dδ = {z| |z| ≤ δ} ⊂ G there exist
a holomorphic map h : Dδ → C and a continuous map Φ : Dδ → GLR(R2) such that for
all z ∈ Dδ we have

det Φ(z) > 0, J(z)Φ(z) = Φ(z)i, w(z) = Φ(z)h̄(z).
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Since Φ(z) is invertible for all z ∈ Dδ, the last property could also be written as h̄(z) =
w(z)Φ−1(z). For z = 0 we get that 0 = w(0)Φ−1(0) = h̄(0) = h(0). The map h is
holomorphic, so z = 0 is an isolated zero in Dδ, or h is constant to zero in Dδ. If h is
constant to zero, then h̄ too, hence w is zero on Dδ. This implies that u(z) = u′(z) for
all z ∈ Dδ. Via an analytical continuation argument by repeating this argument we get
that u(z) = u′(z) for all z ∈ G, this contradicts the assumption that u(z) 6= u′(z) for all
points z ∈ ∂G. Therefore, z = 0 is an isolated zero in Dδ of the map h, so also for w.
This implies that (s0, t0) is an isolated point such that u(s0, t0) = u′(s0, t0).
Now we are left with the proof that deg(w,G, 0) < 0. Since we have chosen G to be
compact, there are only a finite amount of points zi in G ⊂ U such that u(zi) = u′(zi).
For sufficiently small εi > 0 holds

deg(w,G, 0) =
∑
i

deg(w,B(zi; εi), 0) =
∑
i

deg(h̄, B(zi; εi), 0) = −
∑
i

deg(h,B(zi; εi), 0)

since det Φ(z) > 0. The map h is holomorphic and has an isolated zero zi, this implies
deg(h,B(zi; εi), 0) ≥ 1. Hence deg(w,G, 0) < 0.

10.2 Crossing number for braids on the plane

The braid crossing number that is used to define the braid Floer homology on the disk
in [BGVW15] is defined via the winding number around the origin.

Definition 10.2. Let γ : I → R2\{(0, 0)} be a curve in the plane R2 that does not go
through the origin for I a bounded interval. The winding number W(γ, 0) around the
origin is then defined as

W(γ, 0) =
1

2π

∫
γ

α,

where α = (−ydx+ xdy)/(x2 + y2) for coordinates (x, y) ∈ R2.

Definition 10.3. For a closed braid z = (z1, . . . , zn) defined on the plane R2 with n
strands. This is defined in the same way as a closed braid on Mg for g > 2. Define the
braid crossing number for z as

Cross(z) =
∑
k 6=k′
W(zk − zk′ , 0).

Lemma 10.4. The braid crossing number Cross(z) for a braid z on the plane is an integer
and a braid invariant, i.e. Cross(z) = Cross(z′) for all z′ ∈ [z].
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Proof. The difference of two strands cannot be zero, because we are working with braids.
Therefore, the braid crossing number is well defined.
The winding number for a loop around the origin is an integer. We are only working with
closed braids, so we have that the braid z consists of one or multiple loops. The braid
crossing number is the sum of winding numbers of the difference of these loops, so it is
an integer.
To conclude that it is an braid invariant, I refer to Lemma 5.4 of [BGVW15].

We want to relate this braid crossing number with the local property of the last Subsection.
Therefore we need the following notation.

Definition 10.5. Let G = [a, a′]× [b, b′] for real numbers a, a′, b, b′ and Let w : G → R2

such that w|∂G 6= 0. Then denote by W [b,b′]
a (w), W [b,b′]

a′ (w), Wb
[a,a′](w) and Wb′

[a,a′](w)

the winding numbersW(w(a, ·), 0),W(w(a′, ·), 0),W(w(·, b), 0) andW(w(·, b′), 0) respec-
tively.

Lemma 10.6. Let G and w as in the above Definition, then(
W [b,b′]

a′ (w)−W [b,b′]
a (w)

)
−
(
Wb′

[a,a′](w)−Wb
[a,a′](w)

)
= deg(w,G, 0).

Proof. A short computation gives

deg(w,G, 0) =W(w|∂G) =
1

2π

∫
w|∂G

α

=
1

2π

∫
w|{a′}×[b,b′]

α− 1

2π

∫
w|{a}×[b,b′]

α− 1

2π

∫
w|[a,a′]×{b′}

α +
1

2π

∫
w|[a,a′]×{b}

α

=
(
W [b,b′]

a′ (w)−W [b,b′]
a (w)

)
−
(
Wb′

[a,a′](w)−Wb
[a,a′](w)

)

The first equality follows from the definition of the degree, see Subsection 1.6 of [Van14].

Corollary 10.7. Let G = [a, a′] × [b, b′] and w : G → R2 as in Theorem 10.1. Then for
every zero (s0, t0) of w in the interior of G, there exists an ε0 > 0 such that

W [b,b′]
s0+ε(w)−W [b,b′]

s0−ε(w) <Wb′

[s0−ε,s0+ε](w)−Wb
[s0−ε,s0+ε](w)

for all 0 < ε ≤ ε0.

Proof. This is a direct consequence of Theorem 10.1 and the above Lemma.
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10.3 Monotonicity Principle on the torus

The Monotonicity Principle brings the local change described in Theorem 10.1 and a braid
invariant, to conclude that such a local change gives a global change, i.e. a change in this
braid invariant. The Mononocity Principle depends highly on this braid invariant that
gets changed by the local crossing of two strands. The braid crossing number is used in
the case of a disk, see [BGVW15].
As we see in the definition of the braid crossing number in Definition 10.3, we need to take
the difference between two strands of a braid. This is the point wise difference between
two points of the plane for every time t. The problem is that for the spaces Mg with
g ≥ 1, they do not have a difference operation on them. To avoid this problem, I will use
the braid crossing number on a plane to find a braid invariant for certain braids on the
torus T2.
Let [x] rely ∈ ΓF1,n(T2) be relative braid class fiber on the torus, such that the free braid
x consists of one contractible braid. Also assume that the loops formed by the strands
of the skeleton y are contractible in the torus, i.e. they have trivial homotopy. I define
a braid invariant for such braids. Note that we do not assume that [x rel y] is a proper
class, this is only needed in the theorems of Section 9.
The torus can be viewed as a square such that its sides are identified as is indicated by the
arrows in Figure 10a. The representation of the torus by a square with its sides identified,
makes it possible to visualize a braid on a torus, see for example Figure 11a. Two strands
are going from the top to the bottom of the cube in this Figure. The sides of the cube
are identified with each other just as the square on the top indicates.
A closed braid can be made periodic, by running the time t in R instead of [0, 1] and then
repeat the braid over and over. The top and bottom faces of the cube are in this case
also identified in Figure 11a. Therefore, the cube represents the T3 torus of dimension 3.

(a) Torus as square. (b) Projection from above.

Figure 10: Torus.
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Another way to describe the torus is T2 = R2/Z2, see Figure 10b. The plane R2 is
the universal cover of the torus, see [Row16]. Use the map induced by the quotient
T2 = R2/Z2, to define lifts from the torus to the plane. The black dots in Figure 10b are
all the lifts from the black strand of Figure 11a viewed as a projection from above. The
red loop is one particular lift of the red strand of Figure 11a, also viewed as a projection
from above. The red dot indicates the starting and finishing point of the red strand. The
lift of the red strand together with the lifts of the black strand are a closed braid in the
plane with an infinite amount of strands. The part of this braid that contains the red lift
is illustrated in Figure 11b.
As mentioned above, note that all the lifts of the black strand together with this one
specific lift of the red strand form a closed braid in the plane with infinite strands. If
we define the crossing number for such a braid in the same way as in Definition 10.3, it
is in general not well defined. Then we would get an infinite sum that might diverges.
Luckily, in our case of black strands and a red strand, there are only three that contribute
to the crossing number, the rest has no winding with each other. This three strands are
the three drawn in Figure 11b. Viewed as projections in Figure 10b, this are the red loop
and the two black dots that lie in this red loop.

t

(a) A braid on the torus.

t

(b) A braid on the torus as braid on the plane.

Figure 11: Lifting braids from the torus to the plane.

The problem is of course that not every lift via this procedure forms a closed braid with
infinite strands on the plane. And if it forms a braid with infinite strands, there are
maybe an infinite amount of strands that contribute to the crossing number in the plane.
To prevent such trouble, look at a relative braid x rely with a free strand x that consists
of one contractible strand, and that loops formed by the strands of the skeleton y are
contractible.
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Use the projection from above to look at loop formed by the strand of the free braid. This
loop is contractible by assumption, so there is a homotopy that brings it to a point. If we
also transform the skeleton by the same homotopy, the relative braid class [x rely] is also
represented by a braid such that the strand of the free braid goes as a straight line. Since
we are looking for a braid invariant, we may assume that the strand of the free braid is
straight. Therefore, let the strand of the free braid be the black strand from the above
construction.
The skeleton y plays the same roll as the red strand from the above construction. Lift
the skeleton y on the torus T2/Z2 just once to the braid ỹ on the plane. The braid ỹ is
closed, because loops formed by the strands of the skeleton y are contractible. We also
have that ỹ cannot be on an infinite amount of 1 by 1 tiles of the plane. Therefore, there
are only a finite amount of strands that contribute to the crossing number in the plane.
Hence we found a crossing number for our relative braid x rel y. Denote this crossing
number by CrossT2(x rel y).
Note that this crossing number is a braid invariant for the lifted braid on the plane.
Therefore, this number can only change after two strands of this braid on the plane go
through each other. If two strands of the lift go through each other, then this also happen
for two strands on the torus. Hence CrossT2(x rel y) is a braid invariant for the relative
braid class [x rel y].
It is not always the other way around too, since if two strands of the skeleton braid
y on the torus go through each other, it does not always changes the crossing number
CrossT2(x rel y). However, if the strand of the free braid x goes through a strand of the
skeleton braid y, it does change the crossing number CrossT2(x rel y). This will be really
important in the next Theorem.

Theorem 10.8. Let [x]rely be a relative braid class on the torus T2. Also assume that the
free braid x consists of only one contractible strand and that loops formed by the strands
of the skeleton y are contractible.
Take u ∈ M([x] rel y), if for an s0 ∈ R we have that u(s0, ·) rel y ∈ Σ, then either
u(s0, ·) rel y ∈ Σ− or there exists an ε0 > 0 such that u(s0 ± ε, ·) ∈ LF1 rel y for all
0 < ε < ε0 and

CrossT2(u(s0 − ε, ·) rel y) > CrossT2(u(s0 + ε, ·) rel y).

Proof. Denote u = (u) and y = (y1, · · · , ym). Then u(s0, ·) rel y ∈ Σ gives that there is
a t0 ∈ [0, 1] such that u = yk for some 1 ≤ k ≤ m. Theorem 10.1 gives now that either
u = yk via analytical continuation, hence u(s0, ·) rel y ∈ Σ− or that (s0, t0) is an isolated
zero. We are left with the case that (s0, t0) is an isolated zero.
Pick the two lifts ũ(s0, ·) and ỹk(s0, ·) of the strands u(s0, ·) and yk(s0, ·) such that
ũ(s0, t0) = ỹk(s0, t0). Now define w̃ = ũ − ỹk. There is a smallest positive integer l
such that w̃(s, t) = w̃(s, t+ l) for all (s, t) ∈ R2. Now take all the times (t0, . . . , tn) of the
interval [0, l] such that (s0, ti) for i = 1, . . . , n are isolated zeros of w̃. Note that a point
is isolated for the braid on the plane then it is isolated for the braid on the torus.
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If we pick ε0 sufficiently small, then (s0, ti) is the only zero in [s0−ε, s0 +ε]× [ti−ε, ti+ε],
for all i = 1, . . . , n and all 0 < ε ≤ ε0. Furthermore, by isolation we can choose ε0 suffi-
ciently small to ensure that u(s, ·) rel y /∈ Σ for all 0 < |s− s0| ≤ ε0.
Now we start with computing CrossT2(u(s, ·) rel y) for s = s0 − ε and s = s0 + ε for all
0 < ε ≤ ε0, see also figure 12. Denote with tn+1 = t0 + l.

W [t0−ε,t0−ε+l]
s0+ε (w̃)−W [t0−ε,t0−ε+l]

s0−ε (w̃) =
n∑
i=0

(
W [ti−ε,ti+ε]

s0+ε (w̃)−W [ti−ε,ti+ε]
s0−ε (w̃) +W [ti+ε,ti+1−ε]

s0+ε (w̃)−W [ti+ε,ti+1−ε]
s0−ε (w̃)

)
− 0− 0 =

n∑
i=0

(
W [ti−ε,ti+ε]

s0+ε (w̃)−W [ti−ε,ti+ε]
s0−ε (w̃) +W [ti+ε,ti+1−ε]

s0+ε (w̃)−W [ti+ε,ti+1−ε]
s0−ε (w̃)

)
−

n∑
i=0

(
W ti+ε

[s0−ε,s0+ε](w̃)−W ti+1+ε
[s0−ε,s0+ε](w̃)

)
−

n∑
i=0

(
W ti+1−ε

[s0−ε,s0+ε](w̃)−W ti−ε
[s0−ε,s0+ε](w̃)

)
=

n∑
i=0

((
W [ti−ε,ti+ε]

s0+ε (w̃)−W [ti−ε,ti+ε]
s0−ε (w̃)

)
−
(
W ti+ε

[s0−ε,s0+ε](w̃)−W ti−ε
[s0−ε,s0+ε](w̃)

))
+

n∑
i=0

((
W [ti+ε,ti+1−ε]

s0+ε (w̃)−W [ti+ε,ti+1−ε]
s0−ε (w̃)

)
−
(
W ti+1−ε

[s0−ε,s0+ε](w̃)−W ti+1+ε
[s0−ε,s0+ε](w̃)

))
< 0

The inequality follows from the following two arguments. First note that locally the
winding number of w̃ on the plane is the same as on the torus, so

n∑
i=0

((
W [ti−ε,ti+ε]

s0+ε (w̃)−W [ti−ε,ti+ε]
s0−ε (w̃)

)
−
(
W ti+ε

[s0−ε,s0+ε](w̃)−W ti−ε
[s0−ε,s0+ε](w̃)

))
< 0,

because of Corollary 10.7. Secondly, w̃ has no zeros in [s0− ε, s0 + ε]× [ti + ε, ti+1− ε], so

n∑
i=0

((
W [ti+ε,ti+1−ε]

s0+ε (w̃)−W [ti+ε,ti+1−ε]
s0−ε (w̃)

)
−
(
W ti+1−ε

[s0−ε,s0+ε](w̃)−W ti+1+ε
[s0−ε,s0+ε](w̃)

))
=

n∑
i=0

deg(w̃, [s0 − ε, s0 + ε]× [ti + ε, ti+1 − ε], 0) = 0.

Note that Cross(ũ(s, ·) rel ỹ) = CrossT2(u(s, ·) rel y) for 0 < |s− s0| ≤ ε. We also have

W [t0−ε,t0−ε+l]
s0−ε (w̃) <W [t0−ε,t0−ε+l]

s0+ε (w̃).

The braid crossing number on the plane is made of such terms, so

CrossT2(u(s0 − ε, ·) rel y) > CrossT2(u(s0 + ε, ·) rel y).
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s0 + ε

s0

s0 − ε
(s0, t0)

t0 − ε
t0 + ε

(s1, t1)

t1 − ε
t1 + ε

(s2, t2)

t2 − ε
t2 + ε

(sn, tn)

tn − ε
tn + ε

tn+1 − ε

Figure 12: To computeW [t0−ε,t0−ε+l]
s0+ε (w̃)−W [t0−ε,t0−ε+l]

s0−ε (w̃), we use winding numbers over
the time intervals indicated in this Figure.

10.4 Conclusion

This Subsection goes back to the question of the Introduction. Namely

Question. If we already find some periodic solutions for a Hamiltonian system on a
compact symplectic manifolds, will the topology of these solutions on the manifold forces
more periodic solutions?

If we summarise the results into a Theorem, we get close to an answer.

Theorem 10.9. Let [x rely] be a proper relative closed braid class on the torus such that

(1) The free braid x consists of one contractible strand.

(2) The strands of the skeleton y form contractible loops.

Then we can define for a relative braid class fiber [x′] rel y ⊂ [x rel y] and a regular pair
(H, J) its braid Floer homology BFH(H, J, [x′] rel y).

Proof. Braid Floer homology is defined from a subcomplex of the Floer complex. There-
fore, the first thing we need is that the Floer homology from Part I is well defined. The
torus is a symplectic manifold and (H, J) is a regular pair, then by Theorem 7.1 the Floer
homology is defined.
The assumptions, [xrely] is proper and the free braid x consists of one contractible strand
give that the braid Floer homology BFH(H, J, [x′] rel y) is well defined if [x rel y] admits
the Monotonicity Principle, see Section 9.
For the extra assumptions that we are working on a torus and that the strands of the
skeleton y form contractible loops, Theorem 10.8 gives that the Monotonicity Principle
holds.

The conclusion is now that if we are in the situation of the above Theorem and the braid
Floer homology is in that case nontrivial, then we can conclude that the known solutions
represented by the skeleton y forces new solutions x.
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The above Theorem has a lot of restrictive assumptions. The next goal will be to remove
some of this assumptions, but some cannot be removed. We are using a Floer homology
that is made from contractible solutions, so we must assume that the strands of the free
braid x form contractible loops. Also the properness assumption is crucial.
On the other hand, the following assumptions are possibly not necessary:

(1) We are only looking for braids on a torus.

(2) The free braid x consist of just one strand.

(3) The strands of the skeleton y form contractible loops.

The only Theorem that depends on the assumption of the torus instead of an orientable
compact surface Mg for g ≥ 1 is Theorem 10.8. The property we used from the torus was
that its universal cover is the plane. On the plane we defined then a crossing number for
the torus. If g ≥ 2, the universal cover of Mg is the disk, see [Row16]. This gives maybe
also a possibility to define a crossing number for braids on Mg for g ≥ 2. The case of a
sphere g = 0 is even worse, which is already explained in the introduction of Section 8.
Then you would need a Floer homology that also works for the sphere M0 = S2.
The second assumption is not needed for braid Floer homology on a disk in [BGVW15].
They do not assume that the free braid x consits of just one strand. To remove this
assumption in our case, you should probaply use the same tricks as in case of a disk. For
a free braid x with n stands, you can rescale the time by dividing it with n!. Then the
loops formed with strands of a critical relative braid x rel y are 1-periodic solutions for
the Hamiltonian. You must also define a permuted Maslov index, just like the permuted
Conley-Zehnder index in the case of a disk, see Subsection 7.2 of [BGVW15]. The only
real problem will be finding a braid invariant that helps you to prove the Monotonicity
Principle.
The last assumption is a tricky one. The first thing to note is that I used a braid invariant
that changes if two strands go through each other. The problem on the torus is that there
is an example of a braid class that stays in the same class after an intersection of two
strands. This is the example where the skeleton y consist of one strand that is one of
the homotopy generators on the torus and the free braid x that consist of one constant
strand. If you now move the free braid along the other homotopy generator of the torus,
it will pass the skeleton braid without changing the relative braid class fiber [x] rel y.
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