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Abstract

In classical (normal) fluids when a object moves faster than the speed of sound it
creates wakes patterns in the form of cones. This phenomenon was also observed
in superfluid Bose-Einstein condensates by Cornell [1]. We will redo these ex-
periments using a tightly focused blue detuned laser and moving atomic cloud.
Wake formations of both the superfluid and the classical fluid are observed si-
multaneously in our experiments. These measured angles will be compared with
the corresponding angles predicted by theory with a determined speed of sound
of 4.8 mm/s. The wake angles generated in the superfluid correspond with the-
ory for an expected speed of sound of 4.8 mm/s. The wake angles generated
in the normal fluid however correspond with theory for an unexpected speed of
sound of 77 mm/s. We have also extended the existing theory on the formation
of supersonic wakes for finite potential barriers. The results predict that the size
and speed of the barrier with respect to the condensate will start to suppress
higher order wake patterns.
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Introduction

1 Introduction

The first Bose-Einstein Condensates (BEC) was realized experimentally in 1995 with rubidium, lithium, and

sodium (later awarded the Nobel price in 2001 [2], [3]) 70 years after the publication of the paper in which

Albert Einstein theoretically predicted this new phase using the same method Satyendra Nath Bose used for

the quantum statistics of photons. When a boson gas reach a critical temperature under a certain density

the atoms start to fall to the lowest available ground state. The atoms that macroscopically occupy the

ground state condenses to a new quantum phase called Bose-Einstein Condensate. In this phase each

individual wavefunction starts to overlap to form one single wavefunction, thus allowing for experiments on

the phenomena of quantum mechanics on a macroscopic scale.

1.1 Bose-Einstein Condensate

In the classical picture particles in a gas move randomly with respect to each other
with large velocity. When a gas is cooled down and its density increases one would
expect that it would undergo two classical phase transitions, namely the transition
from gas to fluid and fluid to solid. Albert Einstein however published a paper in
1924 where he applied the method used by Satyendra Nath Bose on photon gas to a
bosonic gas. Here he discovered that an ideal bosonic gas has a critical temperature
and density, when reached the system starts to condensate into a new quantum phase
where the atoms will macroscopically occupy the ground state. This is possible due
to a fundamental property bosons have which is the symmetry under the interchange
of two bosons, which gives rise to the Bose-Einstein distribution:

f(εk) =
1

e(εk−µ)/kBT − 1
. (1.1)

Here εk is the energy of a single-particle state of momentum k, µ is the chemical
potential, T is the temperature, and kB is the Boltzmann constant. The transition
temperature for a non-interacting Bose gas can be calculated with the condition
that all atoms can be accommodated in excited states and µ = 0. The result is the
critical temperature given as kBTc ≈ 0.94~(ωxωyωzN)1/3 for atoms in a 3D harmonic-
oscillator potential with ωx, ωy, and ωz corresponding to the trapping frequency of
the potential in the x, y, and z direction respectively.
In this regime inter-particle distances are of the same order as the de Broglie wave-
length given as:

ΛT =

√
2π~2

mkBT
. (1.2)

Here ~ is the reduced Planck constant and m is the mass of the sodium atom. Atoms
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Introduction

can be viewed as matter waves where the distance between each other is so small
that the matter wave begin to overlap into one single matter wave. The phase-space
density Φ which is defined as the number of atoms consisting in a volume ΛT is
expressed as

Φ = n(r)Λ3
T ≈ 1. (1.3)

Then for the inter-particle distance to reach the regime of the de Broglie wavelength
the phase-space density must reach approximately unity. Eq. 1.3 shows that the only
free parameters are the density n(r) and the temperature T , where n(r) goes linearly
and T goes to the power of -3/2 making the temperature the more favorable one to
manipulate. This does not mean the density can be ignored, the density must be in
a region where it is not too large that it goes to the liquid or solid phase or too small
where the critical temperature goes to 0.

1.2 Superfluidity

One of the interesting phenomena in a BEC is superfluidity. The criteria for calling a
behavior superfluid is historically based on the behavior of the phase of 4He below Tλ
called He-II. Some important differences of a superfluid compared to a normal fluid
are the existence of quantized vortices in a rotated system and frictionless flow up to
a critical velocity, below this critical velocity no modes are excited. This velocity is
also known as the Landau critical velocity derived by Lev Davidovich Landau. He
determined that if the gradient of the excitation spectrum ε(p) for a momentum p has
a nonzero minimum, than that value is defined as the critical velocity below which
no modes can be excited:

vc = min

(
εp
p

)
6= 0. (1.4)

For pure phonon excitations at zero temperature the critical velocity is equal to the
Bogoliubov speed of sound. The existence of a critical velocity in a sodium BEC is
know to exist and was also observed [4].

1.3 Čerenkov Effect

In the classical case when a object moves through a medium at supersonic speeds it
creates a density modulation in the shape of a cone where the aperture is dependent
on the Mach number M as sin(φ) = c/v = 1/M . Analogous to this is the Čerenkov
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Introduction

effect for charged particle moving through a dielectric medium faster than the phase
velocity of light in that medium. This results in the emission of light moving or-
thogonal with respect to the cone surface where the aperture behaves the same as
for the Mach cone with c as the group velocity. By applying the theory of Čerenkov
radiation onto a superfluid with excitations according to the Bogoliubov dispersion
relation one can produce wave patterns that are analogous to the Mach cone.

1.4 Thesis Outline

This thesis contains the Bogoliubov-Čerenkov theory describing wakes in BECs at the
supersonic region. These phenomenons are experimentally observed. First a short
introduction on the type of atom (sodium) and the method of creating a BEC and
imaging it is discussed in chapter 2. Chapter 3 will start with the discussion on the
speed of sound in a BEC. Next it will discuss the the setup to create a potential barrier
for the experiment and the interactions between atom and light. It will continue onto
the discussion of moving the BEC with different velocities using the magnetic fields
that traps the atomic cloud (see Sec. 2.3 and 2.4). The measured velocities are
shown in the final section of chapter 3. Chapter 4 will start with the introduction to
the Bogoliubov-Čerenkov theory with a delta-potential as barrier. Next a Gaussian
potential is applied to the theory and in the last section results are presented from
the wake experiments. Chapter 5 will start with discussing the results of the wake
experiments followed by the conclusions and it will end with an outlook.
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2 Bose-Einstein Condensate of Sodium

The recipe to create a gas cloud cold and dens enough to start a condensation to the Bose-Einstein

quantum phase is to first create a beam of sodium gas using a recirculating oven containing a solid block of

pure sodium, then by slowing the average speed of the atoms in the beam down by shining resonant laser

light from opposite direction to the beam. After having slowed the atoms down to the order of 40 m/s, they

are confined in a dark spot Magneto-Optical Trap (MOT) which is a combination of laser light detuned

from resonance and a quadrupole magnetic field. The atoms are then transferred to a Magnetic Trap (MT)

and a technique called evaporative cooling is applied. This final process cools the cloud down to below the

critical temperature where the system will start to condense. Finally two imaging methods are used to

detect the results from the BEC, namely absorption imaging and phase-contrast imaging (PCI).

2.1 Sodium Atoms

For the experiment 23Na atoms will be used and the focus will on the transitions
between the hyperfine structures of the levels 32S1/2 and 32P3/2 state which are
detuned from each other by 589.2 nm (508.8 THz). The 32S1/2 ground state also
has a hyperfine splitting of Fg = 1, 2 due to the nuclear spin and electron angular
momentum coupling. The 32P3/2 excited state has a hyperfine splitting of Fe =
0, 1, 2, 3. The detuning between the hyperfine states are found in Ref. [5]. The
important transitions for cooling sodium atoms is the closed cycling transition 32S1/2,
Fg = 2 → 32P3/2, Fe = 3 and the repumping transition 32S1/2, Fg = 1 → 32P3/2,
Fe = 2. The repumping is necessary, because of the small splitting of the hyperfine
levels in the 32P3/2 state there is a slight change that atoms will excite to the Fe = 2
level due to off-resonant scattering and then fall to the 32S1/2, Fg = 1 state. This
happens where the magnetic field is nearly zero which is at the zero-crossing of the
Zeeman slower and at the center of the MOT (see Sec. 2.3).
To cool sodium atoms one must first heat it to a temperature of 300 ◦C. This is
done in the oven where the atoms will reach speeds up to 800 m/s. The atoms will
therefore exit the oven at large velocity through two diaphragms that will collimate
the atomic beam. It will next enter the Zeeman slower where the coils will generate
a magnetic field such that it shifts the hyperfine state according to the Doppler shift
that the atom at a specific speed is experiencing, therefore the stream of atoms stays
resonant with the laser light. When the atoms exit the Zeeman slower and enter
the main experimental chamber with a velocity in the order of 10 m/s they will be
trapped in the MOT which is in the center of the chamber.

2.2 Laser System

As mentioned in the previous section, in order to slow sodium atoms at large veloc-
ities one need to excite them from their ground state to an excited state. A laser
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Beam Power

MOT XY 34 mW
MOT Z 14 mW
MOT repumper 5 mW
Zeeman 120 mW
Zeeman repumper 15 mW
Spin polarizer 2 mW
Probe (side) 0.012 mW
Probe (top) 0.12 mW

Table 2.1: The power of each laser beam needed. The MOT XY, Z, and Zeeman are split from the
TA-SHG Pro 14095 laser. The other ones are split form the TA-SHG Pro 14074.

system that is able to generate a precise frequency that locks on that exact exci-
tation frequency is therefore essential to the cooling process. A schematic sketch
of the most recent setup of the laser system can be found in Ref. [6]. The com-
plete system consist of two Toptica TA-SHG Pro diode lasers each able to deliver
up to 1.2 W of power at the wavelength of 589 nm with a linewidth below 500 kHz.
For a full description on the diode laser, see Ref. [7]. The frequency of the lasers
are locked onto specific atomic hyperfine transitions using the saturated absorption
spectroscopy method with a sodium vapor cell reference. The TA-SHG Pro 14095
laser is locked to the Fg = 2→ Fe = 3 transition which will be used for the generat-
ing the cycling transition light for the MOT XY and Z beam (See Sec. 2.3) and the
Zeeman slower beam (see Sec. 2.1). The TA-SHG Pro 14074 laser is locked to the
Fg = 1 → Fe = 1, 2 crossover which will be used for generating the probe (see Sec.
2.5, spin polarization (see Sec. 2.4), and repumping transition light (see Ref. 2.1).
Table 2.1 shows how much power goes into each beam path.

2.3 Dark Spot Magneto-Optical Trap

The diode lasers are placed on a separate optical table and each beam path is cou-
pled to an optical fiberport. The beam is directed via polarization-maintaining single
mode fiber optic patch cables to their designated positions on the main experimental
table containing the high vacuum chamber, Zeeman slower, and oven.
When the atoms enter the ultra-high vacuum chamber it would have reached veloci-
ties below the capture velocity of the MOT of around 40 m/s. The basic principle of
a MOT is to trap a cloud of atoms by having three retro-reflecting laser beams, each
orthogonal with respect to the other, that is detuned below the cycling transition
frequency and a quadrupole magnetic field. The combination of the magnetic field
inducing a Zeeman shift and an atom moving away from the MOT center inducing a
Doppler shift will result to radiation pressure that will cool and confine the atoms. A
extra feature that is added compared to a traditional bright MOT is an extra beam
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containing a hole in the middle that is resonant with the repumping transition. The
idea behind this feature is containing atoms that have fallen to the Fg = 1 ground
state. The Fg = 1 is a dark state due to their invisibility to the cycling light of the
MOT. Because the density of a bright MOT is limited due to light-assisted inelastic
two-body collisions and ground state atoms that re-absorb emitted photons which
create an repulsive force. It is possible to exceed the limitation in the density of the
bright MOT by implementing the dark state atoms. The atoms in the dark state
experience a reduced radiation pressure in the dark spot and this reduces the losses
in the dark spot MOT.

2.4 Evaporative Cooling in the Magnetic Trap

The atoms in the dark spot MOT are cooled by the Doppler cooling mechanism, this
mechanism has a temperature limit called the Doppler temperature where it can not
go below. Since the temperature limit is still far to large for Bose-Einstein conden-
sation to take place another method is needed to cool further towards the critical
temperature. Evaporative cooling is used as the next cooling method to reach the
critical temperature.
After the dark spot MOT is loaded the atoms are transfered to the MT generated by
the coils in a cloverleaf configuration for radial trapping and pinch-bias coils for axial
trapping. In the MOT all three magnetic sub-states mF = −1, 0, 1 of the Fg = 1 are
confined. But due to nature of those three sub-states and their interaction with a
magnetic field, only one sub-state can be trapped magnetically. Atoms in the mF = 0
sub-state does not interact with the magnetic field, the mF = 1 state are high field
seekers and the mF = −1 state are low field seekers. Since the MT creates a field
minimum near the center of the vacuum chamber, it can only trap atoms that are
in the mF = −1 sub-state. This yields to having a transition efficiency of 33%. To
increase this one must apply a method called spin polarization where a beam of σ−

polarized resonant light is shone onto the cloud for 700 ms under a strong magnetic
field. This will effectively pump atoms from the mF = 0, 1 state to the mF = −1
sub-state. The method yields a number increase of up to 50% in the MT.
After transitioning the atoms to the MT, the final cooling procedure will be executed.
The technique evaporative cooling as the name implies cools the system by ”evapo-
rating” the hotter atoms. The experimental setup comprises of a well-placed antenna
that generates a radio-frequency signal that induces a spin-flip onto the atoms forcing
the transition Fg = 1, mF = −1 → Fg = 1, mF = 0, 1. The most important feature
of this method is that it is energy selective. This means that the resonant frequency
is proportional to the magnetic field:

gLµBmF |B(r)| = ~ωrf . (2.1)

Here gL is the Landé g-factor, µB is the Bohr magneton, and ωrf is the radio fre-
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quency. Since the energy of the atom is also proportional to the magnetic field
as E = gLµBmF |B(r) − B(0)| one can selectively expel the atoms in the higher
energy state from the MT. By lowering the frequency more atom of the energy
E > ~|mF |(ωrf − ω0) are expelled, where ω0 is the frequency correspondent to the
bottom of the MT. This forces the whole system to rethermalize resulting to a net
increase of density and decrease in temperature.

2.5 Imaging

There is currently two methods available to image the cloud, namely absorption
imaging and PCI. There are two beam paths for the probe beam to travel, which
path the probe beam travels can be switch via a mirror on a flippable mount. This
results to two imaging angles, namely side imaging and top imaging. For side imaging
the probe beam passes the cloud from an angle with respect from the horizontal plane,
it has a demagnification factor of 2.7. For top imaging the probe beam passes the
cloud from the top, it has a magnification factor of 3.

2.5.1 Absorption Imaging

Absorption imaging can be applied in both side and top imaging. The method is
based on the principle of shining resonant light onto the cloud therefore casting a
shadow onto the camera due to the absorption of photons. By exposing the cloud to
resonant light, it gets destroyed due to all the atoms being excited from its ground
state therefore it is impossible to take multiple pictures of the same BEC.
The imaging procedure consists of three pictures: one of the atomic cloud Iatoms, one
of only the probe light Iprobe, and one with only the background light Ibackground.
The transmittance I/I0, which is the quantity of the normalized picture of the cloud,
can be calculated by applying the Lambert-Beer law:

I

I0
=
Iatoms − Ibackground

Iprobe − Ibackground
(2.2)

= e−OD.

The optical density (OD) is related to the density distribution of the atomic cloud
by the following equation:

OD = σncolumn. (2.3)

Here σ is the cross section σ = Cg,e
3λ2

2π with Cg,e as the relative transition strength
and λ as the wavelength of the probe light. OD is a 2D image of a 3D cloud this
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means that ncolumn is the column density which is a 2D density distribution with
the dimension of depth integrated out. The column density for the thermal and
condensate in a cigar shaped trap is

nth(r, z, t) =
mk2

BT
2

2πωr~3 (1 + ω2
r t

2)3/2 (1 + ω2
z t

2)
g2

[
e

µ
kBT
− r2

x2
r,th

− z2

x2
z,th

]
,

nc(r, z, t) =

√
2mµ3 (1 + ω2

r t
2)

3πωra~2
max

[
1− x2

r2
r,c

− z2

x2
z,c

, 0

]3/2

.

(2.4)

Here ωr, ωz are the angular trap frequencies of the radial and axial direction respec-
tively, a is the scattering length, and t is the expansion time when trap is turned
off. Below Tc µ in the thermal column density is zero and above Tc the condensate
column density is zero since the condensate is non-existent [8]. The spatial widths of
the thermal cloud and condensate, xi,th,c with i = r, z, are defines as

kBT =
m

2

(
ω2
i x

2
i,th

1 + ω2
i t

2

)
,

µ =
1

2
mω2

rxi,c(0)2.

(2.5)

Here i = r, z so xi,th are the spatial widths of the thermal cloud and xi,c(0) is the
spatial width of the condensate at t = 0. Eq. 2.5 shows that the temperature of
the system can be extracted from the spatial width of the thermal cloud and the
chemical potential is extracted from the width of the condensate if there is a BEC
otherwise it is contained in the Boltzmann distribution function. Since a BEC does
not expand homogeneously the spatial widths of a cigar shaped condensate expands
according to its trapping frequencies

xr,c = xr,c(0)
√

1 + ω2
r t

2,

xz,c = xz,c(0)

[
1 +

ω2
r

ω2
z

(
ωrt arctan(ω2

r t
2)− ln(

√
1 + ω2

r t
2)
)]
.

(2.6)

By inserting Eq. 2.6 into Eq. 2.5 one can extract the chemical potential in a expansion
experiment.
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Figure 2.1: The top graph shows an absorption picture in top imaging with an expansion
time of 10 ms. The bottom graph show a PCI picture of the BEC in-situ.

2.5.2 Phase-Contrast Imaging

The other imaging method available is PCI. In the current constructed setup PCI
can only be applied in top imaging. The principle is to use the refractive index of the
atomic cloud to induce a phase shift, therefore the phase difference of the light from
the cloud and background will result into a intensity profile which can be observed.
The atomic cloud is projected onto the camera using two lenses which result in the
magnification factor of 3. The first lens is focused at the atomic cloud and the second
lens is focused on the camera to give a sharp image of the cloud. In between the
second lens and the camera there is phase plate with a edged hole (called phase spot)
with a diameter of 50 µm. The background light will be focused onto the phase spot,
the depth of the phase spot will result into a phase shift. The phase spot in the
imaging setup is chosen to give a θ = π/3 phase shift.
The use of refractive index of the cloud means the probe light cannot be resonant
which means that the PCI method is non-destructive. This opens up possibilities
like making multiple images of the same BEC in-situ. It also demands that density
of the cloud must be high enough to induce a significant phase shift. Whereas in
absorption imaging one could image the atomic cloud far above Tc in side imaging,
PCI can only image the cloud near Tc and below. But also in expansion experiments
absorption imaging is favorable over PCI due to the fast expansion of atomic cloud.
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The transmittance of the image is

I

I0
= 3− 2 cos(θ) + 2 cos(θ − φ)− 2 cos(φ),

φ =
kα

2ε0
ncolumn.

(2.7)

The phase φ depends on the column density ncolumn defined in Eq. 2.4. Here k =
2π/λ, α is the complex polarizability, and ε0 is the electric permittivity in vacuum.
Fig. 2.1 shows an example for both absorption imaging and PCI.
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3 Supersonic Flow

To generate Čerenkov wakes in BECs means that an object must travel faster than the phase velocity of the

dispersive medium. This gives rise to two questions on generating Čerenkov wakes: How fast is the phase

velocity of the medium and how can an object move faster than this phase velocity? For generating any

type of excitations in a BEC the speed limit is the Landau critical velocity. Though not all excitations will

generate observable Čerenkov wakes, but sound-like excitations (long wavelength phonons) can create such

density modulations. Thus the main goal will be to move an object (a focused laser) through the BEC

faster that the speed of sound.

3.1 Sonic Speed Limit

Čerenkov wakes are generated when the speed of an object is above the speed of
sound. For the case of a boson gas below Tc this is not so trivial since there exist
two sounds: a density fluctuation mainly in the thermal cloud (or normal fluid)
called first sound and a density fluctuation mainly in the BEC cloud (or superfluid)
called second sound. The general definition for first and second sound is that the
first sound is a almost pure density wave and second sound is a almost pure thermal
wave, but for a boson gas the density and temperature fluctuation is coupled due to
weak interaction. The result is that the specific heat at constant pressure Cp and
volume Cv not equally large. Therefore the second sound has a significant impact
on the density function on the superfluid making the separation between density
and thermal wave propagation impossible. To simplify the idea lets consider a pure
BEC at non-zero temperature in the Thomas-Fermi limit. Now one can write down
a simplified hydrodynamic equation for the perturbed density δn from the time-
dependent Gross-Pitaevskii equation where the kinetic pressure term is neglected:

∂2δn

∂t2
= ∇

(
c2(r)∇δn

)
. (3.1)

cB(r) =

√
4π~2a

m2
n(r). (3.2)

The density perturbation is given relative to its equilibrium as δn = n− neq and for
a boson gas at T = 0 the speed of sound in the superfluid is equal to the Bogoliubov
speed of sound. Eq. 3.2 shows that it is proportional to the square root of the local
density of the condensate.
When taking into account the normal fluid the speed of sound derivate from Eq. 3.2.
Two models on the sound propagation in a two fluid system are available, namely
the Zaremba, Griffin, and Nikuni (ZGN) model and the Landau model. Both pre-
dict that below Tc the speed of second sound is slower than cB, until T is near the

11



Supersonic Flow

CB@mm�sD

-150 -100 -50 50 100 150

1

2

3

4

z@mDH´10
-6L

Figure 3.1: The left graph shows the density distribution of a pure condensate for
µ = 2.8 kHz. The right graph shows the sound velocity distribution.

temperature of an avoided crossing. There first and second sound interchange their
characteristics and superfluid sound reaches cB exponentially and the normal fluid
vanishes. Between T near the avoided crossing and Tc the speed of second sound is
theoretically and experimentally determined at roughly 0.9− 0.95cB [9].
The distribution of the Bogoliubov speed of sound can be determined using Eq. 3.2
and the column density for the condensate in Eq. 2.4. The density and the sound
speed distribution of plotted in Fig. 3.1. The chemical potential used to calculate
the distribution is the averaged value of expansion measurements done the same day
as the Čerenkov wake experiments. The expansion measurements were done in ab-
sorption imaging with an expansion time of 10 ms. The result is 〈µ〉 = 2.8 kHz. The
BEC will move in the axial direction, it is then important to know the sound speed
in that axes. For this we define the radial average density as 〈n〉(z) = n(0, 0, z)/2.
By plugging the radial average density into Eq. 3.2 we get a top speed of 4.8 mm/s.
This will be used as the speed of sound of the BEC throughout this thesis. The
approximation is made that this speed is constant over the BEC since Fig. 3.1 show
a strong immediate rise in cB towards the peak value. Also as will be shown later
on the velocities of the moving BEC will be much larger than this speed of sound
therefore effects due to low cB at the edges will be negligible.

3.2 Gaussian Barrier Setup

The setup is split into two parts. The first part consist of the Ventus which generates
green laser light, a telescope, an acousto-optic modulator (AOM), a shutter and a
fiberport, where the light is directed via a optical fiber to the second part of the setup.
The green laser is generated by a solid-state Continuous Wave laser that emits light
at 532 nm with a maximum power of 1.5 W. Explanation on operating the laser and
re-calibration can be found in the operating manual [10]. The telescope consists of
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Figure 3.2: A schematic overview of the setup. Part (A) and (B) are seperate parts linked by
a optical fiber. Part (A) is the main part with the vacuum chamber and part (B) is where the

Ventus is stationed.
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two lenses with a focus of 75 mm and −40 mm, respectively. The combination yields
a magnification of 1.875. The reason is to shrink the beamspot so that the cut-off of
the entering the AOM can be minimized resulting in an increase of efficiency. The
function of the AOM is to quickly switch the light on and off since the shutter closing
time is too slow. The shutter is implemented as an extra feature to make sure no
light enters the fiberport.
The second part of the setup consists of a fiberport, two lenses, a λ/2 plate and a
polarizing beam splitter cube. The first lens with a focus of 75 mm is for collimating
the beam, since the fiberport has a numerical aperture of na = 0.12. The radius of
the collimated beam can be calculated with the following equation:

na = sin(θ) =
r√

r2 + f2

⇒ r =

√
na2f2

1− na2
.

(3.3)

This yields a radius of 9 mm. The λ/2 plate is implemented to maximize the efficiency
that is split by the beam splitter cube. The final lens with a focus of 250 mm will
create a tight focus on the BEC.

3.2.1 Gaussian Beam Optics

To create a tight focus onto the BEC one must first know what the important pa-
rameters are and how they relate with each another. This becomes clear by looking
at the following equations:

w0 =
λ

π

(
f

wL

)
, (3.4)

DOF =
2λ

π

(
f

wL

)2

. (3.5)

Where w0 and wL denotes the radius of the Gaussian at the focus and lens respec-
tively, the radius is defined as the length where intensity is decreased to 1/e2 from
its peak value. λ is the wavelength which is in our case 532 nm, f is the focus length
of the lens and DOF (depth of focus) as the distance where the area of the beam
grows to

√
2 with respect to the area at the focus.

For this setup the focus length is 250 mm and wL is 18 mm, therefore w0 is 4.7 µm
and DOF is 261 µm. The DOF is large compared to the radial size of the BEC
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Figure 3.3: The top two graphs is the intersection of the BEC center where the hole is
caused by the dimple. The Gaussian dimple (A) and BEC (A) are fitted fitted seperately. The

bottom picture (C) shows the absorption image of the dimple in the BEC.

within the expansion time of 10 ms which is within the timespan of the experiments
of interest.

3.2.2 Atom-Laser Interaction

When an atom is subjected to light, the electric field induces an atomic dipole moment
that oscillates with the driving frequency of the electric field. The strength of the
dipole moment is dependent on the electric field and the atomic polarizability. The
interaction potential is dictated by the time averaged dipole moment and electric
field given by

Udip(r) = −1

2
〈pE〉 = −Re[α]

2ε0c
I(r), (3.6)
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Power 4.6 mW
Diameter (2σ) 10.0± 0.2 µm
Udip,peak 19.7 µK
Γsc 0.5 s−1

Table 3.1: The properties of the focused laser beam that was shown in Fig. 3.3.

Γsc(r) =
〈ṗE〉
~ω

=
Im[α]

~ε0c
I(r). (3.7)

Eq. 3.6 and 3.7are expressions for the atom-field interaction potential and scattering
rate of a dipole in a external field E. p is the dipole moment p = αE, with α as
the complex polarizability, and I(r) is the external field intensity. The two equations
show that the potential depends on the intensity and the real part of α, whereas the
scattering rate depends on the intensity and imaginary part of α.
To calculate the potential and scattering rate it is important to know what α is.
Consider the Lorentz’s classical oscillator model of a electron (me) with charge -q
bound to the atom-core with an eigenfrequency (ω0) corresponding to the optical
transition frequency and a damping rate (Γω) corresponding to the radiation of the
oscillating electron according to the Larmor equation. The equation of motion is
given by

ẍ+ Γωẋ+ ω2
0 = −qE(t)

me
. (3.8)

Since the green laser is far-detuned with respect to the resonance frequency, the
scattering rate will be very low and the saturation of the excited state is negligible.
This is good, because a significant difference between the quantum model and the
classical model is the possibility of the excited state getting overpopulated due to
high intensities of the external laser field. When this happens the classical model is
no longer valid it since it does not include no higher and lower states. Therefore it
is a good approximation, Eq. 3.6 and Eq. 3.7 becomes

Udip(r) = −3πc2

2ω3
0

(
Γ

ω0 − ω
+

Γ

ω0 + ω

)
I(r), (3.9)

Γsc(r) =
3πc2

2~ω3
0

(
ω

ω0

)3( Γ

ω0 − ω
+

Γ

ω0 + ω

)2

I(r), (3.10)

with I(r) =
2P

πw2
0

e
− 2r2

w2
0 . (3.11)
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Γ is the natural linewidth. ω0 is the resonant frequency and I(r) is the intensity of
the external field for a Gaussian profile. Eq. 3.9 and Eq. 3.10 shows that there are
two frequencies of ω, a resonant contribution which is ω = ω0 and a counter-rotating
term ω = −ω0. The detuning of the green laser is |ω0 − ω| = 3.4 × 1014 which is
20 times smaller than the counter-rotating term and 10 times smaller than ω0, the
difference in magnitude is large enough to apply the rotating-wave approximating
where the counter-rotating term can be neglected and ω/ω0 ≈ 1. Eq. 3.9 and 3.10
are simplified to

Udip(r) = −3πc2

2ω3
0

(
Γ

ω0 − ω

)
I(r),

Γsc(r) =
3πc2

2~ω3
0

(
Γ

ω0 − ω

)2

I(r).

(3.12)

Fig. 3.3 shows the image of the BEC interaction with a blue-detuned focused laser
beam. The laser beam has a power of 4.6 mW, the hole is fitted with a Gaussian
function and the diameter of the hole is defined as two times the width w0 as defined
in Sec. 3.2.1. The size of the hole is shown in table 3.1. This is in reasonably close
agreement with the value calculated. Reasons for why it is larger than the expected
size could be that the focus is not perfectly aligned at the BEC, also due to the
nature of the setup there are always weak diffraction patterns present in the form of
Airy disks where the higher orders may contribute to the size of the hole depending
on the amount of power of the laser beam.
The peak potential and scattering rate generated by the laser assuming the beam
waist of 10 µm are also shown in table 3.1 and having the defect potential peak
at 19.7 µK means that it is well above the critical temperature for Bose-Einstein
Condensation and can be seen as a hard barrier by the condensate.

3.3 Oscillations in the Magnetic Trap

To move to a BEC with respect to the focused laser we chose to move the BEC while
keeping the laser stationary. This method requires the magnetic trap to manipulate
its field on trapped atomic cloud. In the Thomas-Fermi limit the trapping potential
near the center of the MT field has a harmonic form

U = U0 +
m

2

[
ω2
ρ(x

2 + y2) + ω2
zz

2
]
, (3.13)

the radial and axial trap frequencies are ωρ = 102 Hz and ωz = 15 Hz, respectively. If
the BEC is placed away from its trap center it will gain potential energy. Therefore by
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Figure 3.5: The top graph shows the magnetic field strength of the MOT and MT coils in
the axial direction. The bottom graph shows the magnetic field strength of the MOT and

MT coils combined.
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letting the BEC fall in its suspended position it will oscillate in the trap according to
the trap frequency, all the potential energy will be transfered to kinetic energy when
it reaches the trap center. Fortunately the configuration of the MOT coils allows
us to move the magnetic field minimum in the axial direction. By slowly increasing
the strength of the MOT field, the BEC can be moved adiabatically away from its
original trap center. When the MOT field is switched off, the BEC finds itself back in
its original trap potential, but displaced by a distance from the center. The velocity
in the trap is given by the conservation of energy, v(z) = ωzz.
Fig. 3.4 shows the cross section layout of the magnetic coils. The coils are hollow
square shaped copper wires with glassfiber isolation. Note that one full loop consist
of two squares (one on the upper-half and one at the lower-half). The most important
contributions to the magnetic trap are the gradient coils for radial confinement and
the pinch/bias coils for axial confinement. The gradient coils are situated on two
sides of the vacuum chamber and each side is configured like a cloverleaf. The pinch
and the bias (in series) are also both situated on two sides, where their polarities
are opposite from each other. A shunt is implemented with the pinch/bias so that
the bias can be bypassed by up to 125 A. The MOT coils is in an anti-Helmholtz
configuration and will generate a gradient field contribution in the axial direction.
The gradient will displace the magnetic minimum from its original trap center which
is shown in Fig. 3.5.
The magnetic field of the MOT coils in the axial direction can be calculated by
assuming that each loop can be approximated as a closed circle and the geometrical
shape of the wire is negligible with respect to its distance to the trap center. Thus we
approximate that the current will flow at the center of a square wire with radius Ri
and distance from the center plane dj . There are a total of 24 loops on each side, see
Fig. 3.4. The dimensions of the wires including the isolation layer is 3.9 mm×3.9 mm.
The magnetic field generated by the MOT coils is calculated using equation

BMOT(z) =
4∑
i=1

6∑
j=1

µ0I

2Ri

 1(
1 +

(
z
Ri
− dj

2Ri

)2
)3/2

− 1(
1 +

(
z
Ri

+
dj

2Ri

)2
)3/2

 .
(3.14)

During experiments the magnetic coils are operating at 362 A for the gradient coils
and 200 A for the pinch/bias coils. The MOT coils generating the gradient field
plotted in Fig. 3.5 is at 20 A. During the experiment the MOT coils will generate
currents up to 35 A.
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Figure 3.6: Graph (A) shows the position of the center of the BEC versus time. The fit
yields the results of the velocity of the BEC (see table 3.2). Graph (B) shows the velocity

versus current.

Current Velocity Mach

15 A 32.9± 0.6 mm/s 6.9
30 A 88.5± 1.3 mm/s 18.4
31 A 94.6± 0.9 mm/s 19.7
32 A 98.1± 1.2 mm/s 20.4
33 A 104.1± 1.0 mm/s 21.7
34 A 106.5± 0.7 mm/s 22.2
35 A 109.5± 0.7 mm/s 22.8

Table 3.2: The fit results from Fig. 3.6 and its respective Mach number.
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3.4 Measurements

The velocities generated are experimentally determined using PCI with a time inter-
val of 3 ms between each shot. To increase the time resolution extra measurements
are done where a delay of 1 and 2 ms is implemented before the imaging sequence.
This increases the time resolution to 1 ms between each data point.
The current through the MOT coils for the experiment are set between 30 - 35 A and
one at 15 A to check for a linear behavior. After switching off the MOT coils the
BEC will be pulled back to the magnetic trap center and when the edge reaches the
center, the MT is turned off completely so that it can expand freely with a constant
velocity moving in the axial direction. Using PCI its position in time is determined
as is shown in Fig. 3.6(A). The velocities extracted from the fit is shown in table 3.2.
From Fig. 3.6(B) it is clear that the velocity generated by the MOT field is linear
with respect to the current. This is due to the fact that the MOT field is linearly
dependent on the current resulting in a linear displacement. The velocity generated
due to the displacement is also linear, so clear why the velocity goes linear with the
current. 35 A is the stable limit that the power supply of the MOT coils can deliver.
Going above this value resulted in an unstable magnetic field causing a rippling effect
on the edges of the BEC.
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4 Čerenkov Wakes

The theory on Čerenkov radiation was originally based on charged particles in a dielectric medium where

the excited modes are electromagnetic waves radiating outwards in a cone analogous to the Mach cone.

This theory can be expanded upon on other natural phenomena and it is quite remarkable that the basic

features resemble that of the Čerenkov radiation [11,12]. In the general case one must construct the

dispersion relation which will contain information on what kind of excitations will be emitted in that

particular medium. Then by imposing the Čerenkov condition onto the dispersion relation disturbances in

the medium due to the excited modes can be studied.

4.1 Bogoliubov-Čerenkov Theory

Lets start with the standard time-dependent Gross-Pitaevskii equation

i~
∂Ψ(r, t)

∂t
=

(
−~2∇2

2m
+ V (r) + g|Ψ(r, t)|2

)
Ψ(r, t). (4.1)

Applying the Bogoliubov approximation with minor adjustment to the external po-
tential V(r) will result in an expression for the perturbed density. This expression
contains the wake patterns that can be interpreted as the Čerenkov emission of the
Bogoliubov excitations. The first minor adjustment is the external potential, by
adding an extra defect term which will move with a velocity v with respect to the
condensate. For explaining the theory the barrier will assume the defect to be a delta
potential. Also the condensate will be assumed to be homogeneous and uniformly
flowing at a constant speed, this means the only external potential present will be
that of the defect, and the defect itself will induce a weak density perturbation.
The dispersion relation for the elementary excitations can be calculated from the
linear Bogoliubov approximation

ω(k) = v · k±

√
k2

2m

(
~2k2

2m
+ 2gn0

)
. (4.2)

The full derivation of the method is shown in App. A. The second term is the Bo-
goliubov dispersion relation for v = 0 which is defined as Ω(k). Eq. 4.2 shows the
behavior of the excitations in a BEC where at long wavelengths it behaves sound-like
with a linear spectrum and for short wavelength it goes quadratic like a free-particle
spectrum with a mean-field contribution. This dispersion behavior is crucial for the
existence of superfluidity in the BEC.
Now lets consider moving the BEC throught a small barrier Vdδ(r). The introduction
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Figure 4.1: A 1D representation of the two terms of the denominator of Eq. 4.3, where the
velocity v is 0.8 times the speed of sound on the left and 1.5 on the right. The dashed line is

the function v · k and the solid line is Ω(k).

of the Čerenkov condition (explained in App. B) to the linear Bogoliubov approxi-
mation will result to the following expression for the density:

ñ = 1 + 4Vd

∫ ~2k2

2m

(v · k)2 − k2

2m

(
~2k2

2m + 2g|ψ0|2
)eik·r dk

(2π)D
. (4.3)

ñ is the normalized density n/n0. The integral of Eq. 4.3 shows that there are
values for k where the denominator is zero. This realization is very important
for understanding Čerenkov wakes. Equating the denominator to zero, (v · k)2 −
k2

2m

(
~2k2

2m + 2g|ψ0|2
)

= 0, this will actually recover the Čerenkov condition in the

restframe of the BEC. Then by taking the square root of the expression will return
to Eq. 4.2. Fig. 4.1 shows the two terms plotted separately for a moving defect
of v = 1.5c. Ω is the second term in the denominator, µ is the chemical potential,
and ζ is the healing length defined as ζ =

√
~2/mµ. The points where the two lines

cross correspond to the the denominator being zero. Fig. 4.2 shows the 2D plane in
k-space where the two terms cross each other, line in Fig. 4.2 is called the locus of
the excited modes whose energy is ω = 0. It has an aperture angle θ indicating the
Čerenkov cone in k-space at k � 1, which is shown at the dashed lines. The relative
group velocity, defined as v

′
g = ∇k(v · k − Ω(k)) moves in the direction normal to

the locus.
Fig. 4.2 shows that there is only a crossing of the two terms at k 6= 0 if the velocity
of the barrier with respect to the BEC is faster than the speed of sound defined as
c =

√
gn/m. If this condition is not met then the locus will be empty and no modes

that is resonant with ω(k) = 0 will be excited, although if the velocity is above the
Landau critical velocity it will excite other modes. Only if the barrier reaches ve-
locities of Mach (M = v/c) one or higher it can excite the mode which can create
Čerenkov wakes.
Lets now concentrate on solving the integral of Eq. 4.3. First to simplify the integral
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Figure 4.2: The 2D shape of the locus with velocity of 1.5 time the speed of sound. The
solid line is the path where the values for k correspond to the excited modes. The dashed

lines is the tangent of the locus at kx, ky = 0.

lets set ~,m, g, |ψ0|2, and Vd to 1, also the integral will be evaluated for the 2D case.

δñ = 2

∫
k2

(v · k)2 − k2(k2/4 + 1) + i0

dk

(2π)2
. (4.4)

An extra term is now added which will shift the poles an infinitesimal amount in
the positive imaginary direction. This is done to add the boundary condition that
at t = −∞ no excitations resonant with the Bogoliubov mode is present or with
other words that the potential barrier is switched on very slowly such that it will
not create any excitations. Then by transforming the Cartesian coordinates to polar
coordinates the equation becomes

kx = k cos(θ), ky = k sin(θ),

x = r cos(η), y = r sin(η),

δñ = − 2

π2

∫ π

−π

∫ ∞
0

keikr cos(θ−η)

k2 − k2
0 − i0

dkdθ,

with k0 = 2
√

(M cos(θ))2 − 1.

(4.5)

Here it is assumed that the defect moves in the x̂ direction with a velocity M times
the speed of sound, simplifying v · k = Mk cos(θ). Then one can perform a contour
integral of k by first separating it into a sine and cosine. By doing this Eq. 4.5 is
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Čerenkov Wakes

-k0 - i0

k0 + i0

D A

C B

Re

Im

Figure 4.3: The red line is the chosen contour path which encircles all positive k0 poles. The
blue dot shows such a pole for a given value θ and M.

split into a even and odd function.

∫
keikα

k2 − k2
0 − i0

dk →
∫
f(k) + ig(k)

k2 − k2
0 − i0

dk,

f(k) = ke−αIm[k] cos(αRe[k]), g(k) = ke−αIm[k] sin(αRe[k]),

with α = r cos(θ − η).

(4.6)

Fig. 4.3 shows the contour path. Point A goes to infinity in the real axes, point
B goes to infinity in both real and imaginary axes, point C goes to infinity in the
imaginary axes and negative infinity in the real axes, and point D goes to negative
infinity in the real axes.
Path A→B is zero due to the fact that Re[k] → ∞, the denominator due to its
quadratic nature will then dominate and with the condition α > 0 the exponential
will converge to zero in the limit Im[k]→∞ . Path B→ C is zero only if α > 0 due
to the fact that Im[k]→∞. Therefore the exponential which is the dominating term
goes to zero. Path C → D is zero for the same reason as for path A → B only the
limit of Re[k] has switched sign. Path D → A is therefore the only remaining path
which is not zero. Since f(k) is an odd function, the integral of f(k) is zero, g(k) on
the other hand is even. Now by applying the residue theorem Eq. 4.6 becomes

h(k) =

∮
f(k) + ig(k)

k2 − k2
0 − i0

dk →
∫ ∞

0

2ig(k)

k2 − k2
0 − i0

dk = 2πiRes(h(k), k0),

Res(h(k), k0) = i sin(αRe[k0]).

(4.7)

On the condition that k0 is real this is because there exist a region of excluded
directions for the group velocity which correspond to the unperturbed region inside
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the Čerenkov cone. Also note that Eq. 4.2 contains a ± sign. This corresponds
to the positive and negative energies of the Bogoliubov excitation. Which can be
seen as particle- and hole-like excitations and are images of each other under the
transformation k → −k and ω → −ω. To select the particle-like excitations in the
polar coordinate integral means selecting the right interval for the integration over
the angle θ. For the case of the defect moving in the positive x̂ direction with respect
to the BEC means that the right half locus contains the particle-like excitations, see
Fig 4.2. The integration limit of θ is [−π/2, π/2]. The final equation becomes

δñ =
4

π

∫ π
2

−π
2

sin(αRe[k0])dθ. (4.8)

Fig. 4.4 shows the result of the density modulation. As mentioned earlier the relative
group velocity of the excited mode moves in the direction normal to the locus. And
for k � 1 where the dispersion is sound-like it has a Čerenkov cone indicated as
the dashed line for Fig. 4.2. These modes propagates in the same direction and so
the density has concentrated conical sheets in the 2D surface geometry in real space
around the direction of v

′
g, Eq 4.9 shows the geometry in k- and real-space for mode

in the sound-like region of Ω = ck and from the geometry the equation for the Mach
number is deduced [13].

k2
y = kx(

v2

c2
− 1),

y2 =
c2x2

v2 − c2
,

=⇒ sin(φ) =
c

v
=

1

M
,with M as the Mach number

(4.9)

4.2 Gaussian Potential

The solution given in Eq. 4.8 is for a defect potential that is a delta function. So the
focus of the laser is infinitely small. In reality this is impossible and the focus of our
laser has a finite radius (see Sec. 3.2.1). So now we implement a Gaussian potential

Vd(r) =
2Vd
πσ2

e−
2r2

σ2 ⇐⇒ Ṽd(k) = Vde
−σ2k2/2. (4.10)

A nice feature of the Gaussian function is that after performing a Fourier transform
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Figure 4.4: Density distribution of a BEC moving through a delta potential at Mach 1.5
(left) and Mach 8 (right).

it retains its form as seen in Eq. 4.10. By plugging Eq. 4.10 into Eq. 4.3 will result
into the following equation for the perturbed density

δñ =
4

π

∫ π
2

−π
2

sin (αRe[k0]) e−σ
2k20/2dθ. (4.11)

Eq. 4.11 now also depends on the beam waist σ which will dictate the amplitude and
wake patterns in the density. When σ is small The exponent term goes to 1 and the
excited wake patterns form according to Fig. 4.4. But when σ increases the exponent
grows and starts to dominate over the sin(αRe[k0]) term, therefore it destroys the
periodic wake patterns at large distances at the front of the barrier. The suppression
of these wake patterns draws closer to the barrier for increasing σ and speed until
there is only the zeroth order wake left. Fig. 4.5 shows four situations for increasing
σ. The area in front of the potential where the density is relatively higher in respect
to the rest of the condensate increases for increasing σ in the opposite direction of
the moving condensate. This asymmetry can be explained with the notion that flow
around the barrier above the speed of sound result in drag force. This drag force
is caused by the pressure difference around potential barrier [14]. Since the barrier
moves above the critical velocity means atoms cannot flow frictionless around it.
Atoms will accumulate at the front of the barrier due to elastic collisions against the
barrier where will fly back in the same direction as the barrier with the same velocity.

4.3 Measurements

The measurements were done in the various velocities discussed in Sec. 3.4. To move
the BEC away from the the MT center we ramp up the MOT current for 700 ms (see
Sec. 3.3). We do this to be sure that the displacement goes adiabatically therefore
minimizing any loss that will result from it. After the BEC is displaced we immedi-
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Figure 4.5: Density distribution of a BEC moving through a Gaussian potential at Mach 8.
The beam σ varies, at the top left σ = 0.1, top right σ = 0.15, bottom left σ = 0.2, and

bottom right σ = 0.3.
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Figure 4.6: The horizontal density cross section at the center of the Gaussian potential
barrier with a BEC moving at Mach 8. The beam σ varies for (A) a δ-function, (B) σ = 0.1,

(C) σ = 0.15, and (D) σ = 0.2.

Figure 4.7: A BEC moving through a potential barrier with different velocities. (A) has a
velocity v = 109.5, for (B) v = 106.5, for (C) v = 104.1, for (D) v = 98.1, for (E) v = 94.1,

and for (F) v = 88.5.
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Figure 4.8: The white arrow indicates the wake which starts at the beginning of the trail.
The red arrow indicates the wake that was created at the end of the trail. The green dot is

the estimated position of the potential barrier when the wake at the end was created.

Figure 4.9: 5 example cross sections of the pixel column of the image. The sharp drop in
signal gives a high contrast for formation of the wake. The trail of the potential barrier is

fitted with a Gaussian (shown by the red solid lines). The two vertical red line indicate the
region of the Gaussian of 3σ width. The green lines indicate the position of the wake.

ately switch of the MOT current, this causes a sudden change in the magnetic field.
The BEC will obtain potential energy due to this displacement from the MT field
minimum. The result is that it falls back towards the center converting its poten-
tial energy to kinetic energy. The time it takes for the edge of the atomic cloud
to reach the potential barrier is determined experimentally. This period is found to
be 18 ms and is found to be the same for all six velocity settings. After 18 ms the
MT field is turned off and the the atomic cloud is allowed to expand freely while
moving through the potential barrier. The expansion time is set to 5 ms, after that
we probe the event with absorption imaging. Fig. 4.8 shows an example image for
all six velocities. From the data shown in the figure we analyze the wakes that is
most clear in the picture. This is the wake indicated with the white arrow in Fig. 4.8.
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Figure 4.10: A schematic drawing on the calculation of the angle gained from the radial
expansion of the condensate.

The analysis is done by horizontal cropping the image. In this cropped image where
wake is most visible we look at the vertical cross section for each pixel column of
the image. Due to the high contrast of the wake, the start of the wake in the cross
section is determined using an algorithm which gives an estimated position of the
sharp signal drop in the pixel column. We also determine the center position of
the trail left by the potential barrier to determine a tilt. The cause of the tilt is
that the BEC does not move perfectly horizontal with respect to the picture. We
then fit a straight line to the obtained positions of the wake and the center of the trail.

When a BEC is released from its magnetic trap is does not expand homogeneously.
The radial expansion velocity goes as vr(t) = r(0)

√
t−2 + ω2

r . This will contribute
to an additional angle increase with respect to the expansion time. Fig. 4.10 shows
schematically how the additional angle is calculated. Assume the potential barrier
passes an atom with a radial velocity at t = 0. Excluding the formation of wakes,
the barrier will see that atom at t = t

′
at an angle

θ = arctan(
r0

√
1 + ω2

r t
2

vzt
). (4.12)

Here vz is the velocity of the barrier in the axial direction with respect to the atom.
This is plotted in Fig. 4.11 for the six velocities. The angle as a function of time for
all six velocities shows negligible differences with respect to each other. The figure
also shows that for t > 2 ms the radial velocity behaves linearly, this means the ad-
ditional angle will be constant.

The upper and lower angles are calculated separately with respect to the tilt of the
trail and also the averaged angle which is half of the sum of the upper and lower
angle. They are plotted in Fig. 4.12 with the angle correction due to the expansion.
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Figure 4.11: The angle of a radially expanding atom in the condensate with respect to the
object. The graph contains the angle with respect to the expansion time for the four larges

velocities. The left line is at t = 0.14 ms and the right line at t = 0.75 ms

The data point with the correction of t = 5 ms is clearly to high from the expected
Mach angle. We varied the angle correction for different expansion times and to get
close to the theoretical prediction we had to set the expansion time to t = 0.14 ms.
This is not realistic which means the predictions by the theory does not correspond
to the data.

To try and somehow match the data points we increased the speed of sound from 4.8
to 77 mm/s. The results are plotted in Fig. 4.13 with the corrected expansion time
of 5 ms. The data are here in good agreement with the predicted theoretical values.

Finally we also measured the angle of the wake that appears at the end of the trail
which is indicated with a red arrow in Fig. 4.8. Since the contrast of this wake is too
low we cannot apply the same algorithm to determine the position of the wake. To
measure the angle we use an image analysis program called Fiji1. The angles are a
rough estimate determined using Fiji with an error margin of 4◦. The error margins
are determined by increasing and decreasing the angle to a value where it seems that
the angle stops corresponding to that of the wake. The results are plotted in Fig.
4.14. The uncorrected data set still seems to high. Then after an expansion time
correction of t = 0.75 ms shows that the data is in good agreement with the theory.
To be sure we have chosen the correct expansion time we can calculate the position of
the barrier in the past since we know that the velocity is constant. By subtracting the
0.75 ms from the 5 ms and the multiplying the difference with the respective velocity
will result in the distance traveled from the position of 5 ms to 0.75 ms back in time.

1http://fiji.sc/
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Figure 4.12: The data points are the measured angles of the four fastest settings (see Fig.
4.7(A,B,C,D)). The top set of data points are corrected for an expansion time of 5 ms and

the bottom set of data point are corrected for an expansion time of 0.14 ms. The solid line is
the mach angle sin(θ) = M−1.

Figure 4.13: Here the speed of sound is set to 77 mm/s. The data points are the measured
angles of the four fastest settings (see Fig. 4.7(A,B,C,D)). The solid line is the mach angle

sin(θ) = M−1.
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Figure 4.14: The measured angles at the tail end. The blue data points are the uncorrected
angle values and the red data point are the corrected data points. The solid line is the mach

angle sin(θ) = M−1.

This position is indicated with a green dot in Fig. 4.8. The resulting positions is in
good agreement with the place where the barrier should be to generate the respective
wakes at the end of the trail.
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5 Discussions

5.1 Discussion

The speed of sound of 77 ms which as deduced from changing the speed of sound
of the medium so that the data points correspond to theory extremely large. The
wakes originating from the beginning of the trail are not wakes of the condensate,
but of the normal fluid. The breaching of the speed of sound is therefore not that of
second sound, but first sound. But even for normal cloud this is speed of sound is
very large. We looked at two models for first sound, namely the ideal Bose gas and
the interacting Bose gas model [15]. In the ideal Bose gas the speed of sound depends
on the temperature of the system. The temperature of an average BEC measured
in a expansion experiment conducted on the same day as the wake experiments was
690 nK. The temperature and speed of sound are related in the following equation:

c2
1 =

ζ(5/2)

ζ(3/2)

5kBT

3m
. (5.1)

Here ζ(n) is the Riemann zeta function with ζ(5/2) = 1.341 and ζ(3/2) = 2.612.
To have a speed of sound of 77 mm/s the system must have a temperature of 19 µK.
This is an unrealistically large heating for a system of T = 690 nK.
For the interacting Bose gas model the speed of sound is dependent on the local
density given as

c2
1 =

n(r)U0

m
. (5.2)

Here U0 is the interaction energy defined as U0 = 4π~2a/m with a as the scattering
length. The resulting density for a speed of sound of 77 mm is 6.49× 1022 m−3. The
local density here is more than 200 times larger than the peak density of the BEC
shown in Fig. 3.1. This is also unrealistically large even if atoms will accumulate at
the front of the barrier (see Sec. 4.2). So both models give unsatisfactory results to
explaining the extreme rise in the speed of sound. Another explanation is that the
wakes at the beginning of the trail does not behave according to the Mach angle.
The accumulation of density shown in Fig. 4.5 was done assuming that the density
was homogeneous and the condensate was infinitely large. The rise in density in front
of the barrier is therefore not constrained. The predicted asymmetry between the
front and back of the barrier was already observed, but the dampening of the wake
patterns due to a non-zero beam waist was never observed.
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5.2 Conclusion

We have successfully been able to give a velocity of up to 109.5 mm/s to the BEC.
This equates to a maximum of Mach 22.8 where the speed of sound in the condensate
is determined to be 4.8 mm/s. This enabled us to create the right conditions for the
Čerenkov wakes to occur. The Bogoliubov-Čerenkov theory gave good insight and
understanding on the formation of wake patterns. To conclude, we have successfully
observed Čerenkov wakes of the normal and condensate fluid simultaneously. The
wake coming from the condensate is at the end of the trail and the wake coming from
the normal fluid is at the beginning of the trail.
We now also have a Bogoliubov-Čerenkov theory for a finite sized potential barrier.
We predict that the wake patterns will get suppressed for larger velocities and/or
larger surface area of the barrier. And the surface area where density increase at the
front of the barrier also increase due to the finite size of the barrier.
The measured angle from the condensate is in good agreement with the expected
Mach angle. The measured angle from the normal fluid however is only in good
agreement for the speed of sound of 77 mm/s. The ideal Bose gas model and interac-
tion Bose gas model cannot explain the large value in speed of sound in the normal
fluid. These models describe the normal fluid separately from the superfluid. Models
where both fluid interact with each other may contain key insight on the formation
of these wakes in the normal fluid.
Although clear wake formations have been observed there is still room for improve-
ment and there are still some open questions on this topic. These will be discussed
in the next section.

5.3 Outlook

Although the wakes from the normal fluid has a high contrast, the contrast of the
condensate wakes are to low to perform proper analysis on the angle. If the image
can be made right after the condensate hits the barrier, it is possible see an early
formation of the wakes which should result in much higher contrast. This can best
be done by moving the position of the potential barrier back so that after 5 ms the
barrier just enters the BEC.
Another problem that arises is the high density of the condensate, this causes the
signal in the image to drop to zero. This overshadows all the small patterns of the
wake which prevented us from observing the effects predicted in the theory. Fig.
5.1 shows such an picture. The MOT currents are set to 15 A corresponding to
Mach 6.9. It is clear from the figure that everything is overshadowed due to the
high density. By decompressing the MT one could decrease the density since it is
the density that determines the signal output. Detuning the probe is not an option,
because the absorption by the condensate is not homogeneous. Measurement done
showed various irregular holes while for other parts the signal still drops to zero. If
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Figure 5.1: MOT current of 15 A corresponding to a velocity of 32.9 mm/s (Mach 6.9). The
white dot in the center is the potential barrier.

successful wake measurements at lower velocities will be possible and should be done.
And PCI may be an option by one must take into account the signal is dependent on
the phase difference due to the density which may result in oscillations in the signal.
This may form a problem when trying to observe higher order wake patterns in the
density.
Finally it is still unclear what kind of mechanism causes the large wake angles at
the beginning of the trail. The interactions between the normal and superfluid could
play a roll in this since the barrier not only move through the condensate, but also
must move past the normal fluid. It is advisable to do wake measurements above
Tc. This will give answers to the wake angles for the normal fluid. The wake angles
of the normal fluid should tell us whether the wakes (white arrow of Fig. 4.8) are
purely from the normal fluid. Or if there is an underlying mechanism between the
normal and superfluid that causes the increase of the wake angle.
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Appendix A : The Linear Bogoliubov Approximation

Consider a small perturbation to the groundstate wavefunction of a uniform gas
ψ = ψ0 + δψ. Then by implementing it into the Gross-Pitaesvkii equation will result
into an expression for the small perturbed wave function (note that for this linear
approach all quadratic terms of δψ are neglected)

i~
∂δψ

∂t
= −~2∇2

2m
δψ + V δψ + g

(
2|ψ0|2δψ + ψ2

0δψ
∗)

−i~
∂δψ∗

∂t
= −~2∇2

2m
δψ∗ + V δψ∗ + g

(
2|ψ0|2δψ∗ + ψ∗20 δψ

)
.

(A.1)

Then with the assumption that the perturbed wavefunction has the following form
Eq. A.1 can be written in terms of u(r) and v(r):

[
−~2∇2

2m
+ V + 2g|ψ0|2 − µ− ~ω

]
u(r)− gψ2

0v(r) = 0[
−~2∇2

2m
+ V + 2g|ψ0|2 − µ+ ~ω

]
v(r)− gψ∗20 u(r) = 0.

(A.2)

δψ = e−iµt/~ (u(r)e−iωt + v∗(r)eiωt
)
, e−iµt/~ is the overall phase factor that is chosen

to cancel out the effects of the phases of ψ2
0 and ψ∗20 . Eq. A.2 is also known as the

Bogoliubov equations. If the gas is now assumed uniform so the external potential
term vanishes, the chemical potential is then defined as µ = g|ψ0|2. If the gas also
flows uniformly with a constant velocity, the wavefunction can be transformed with
respect to the lab restframe: ψ(r, t) → ψ(r + vt, t). Then by applying the Fourier
transform Eq. A.2 can be written as

(
~2k2

2m + g|ψ0|2 − (~ω − ~k · v) −gψ2
0

−gψ∗20
~2k2

2m + g|ψ0|2 + (~ω − ~k · v)

)(
uk
vk

)
= 0. (A.3)

Here the ~k · v term is the result of the partial time derivative term of the trans-
formation with respect to the lab restframe. Eq. A.3 is then only consistent if
the determinant of the matrix is zero, this condition will result in a spectrum for
elementary excitations:

ω = v · k±

√
k2

2m

(
~2k2

2m
+ 2g|ψ0|2

)
. (A.4)
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The first term gives rise to the flow of the BEC, the second term is the Bogoliubov
dispersion relation for a BEC at rest. In the regime of large wavelengths, k � 1,
Eq. A.4 is linear which indicates that the spectrum is sound-like and the speed of
sound in the lab frame is obviously the speed of sound in the BEC restframe plus the
velocity of the flowing BEC. In the regime of small wavelengths, k]� 1, Eq. A.4 is
parabolic which resembles the spectrum of free particles.
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Appendix B : Čerenkov Condition In BEC

Figure B.1: A schematic representation of the Čerenkov effect where the red arrow indicated
the direction the particle is moving and blue the direction emitted wave.

In the classical case of Čerenkov radiation let there be a particle that travels with a
velocity faster than the phase velocity of light c in the current medium n. Then the
distance which the particle has traveled from point A to point B is xp = βct, with
β = v/c. Thus the distance which the electromagnetic wave that was emitted at point
A has traveled is c

n t. If one included every wave emitted on the path of the particle
then there would exist a plane wave front where the emitted waves are coherent, see
Fig. B.1. This will give the following relation, also known as the Čerenkov condition,

cos(θ) =
1

βn
=

ω

vk
−→ ω = v · k. (B.1)

Now lets consider a small perturbation again to the ground state wavefunction, but
now also consider adding an extra defect Vd(r) to the external potential. This changes
only the potential term of Eq. A.1 to Vd(r)ψ0 giving the following equation:

i~
∂

∂t

(
δψ

δψ∗

)
=

(
−~2∇2

2m + g|ψ0|2 gψ2
0

−gψ∗20
~2∇2

2m − g|ψ0|2

)(
δψ

δψ∗

)
+ Vd(r)

(
ψ0

−ψ∗0

)
. (B.2)

Now by taking the same assumptions and approach as in appendix B. Eq. B.2 can
be rewritten as
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L
(
uk
vk

)
= Ṽd

(
ψ̃0

−ψ̃0
∗

)
(B.3)

L =

(
−~2k2

2m − g|ψ0|2 + (~ω − ~k · v) gψ2
0

gψ∗20 −~2k2

2m − g|ψ0|2 − (~ω − ~k · v)

)
(B.4)

Ṽd and ψ̃0 are the Fourier transforms of the defect potential and unperturbed wave-
function. Note that L is diagonalizable, so knowing this one can multiply the matrix
with its inverse to get the following expression

(
uk
vk

)
= L−1Ṽd

(
ψ̃0

−ψ̃0
∗

)
. (B.5)

L−1 is the inverted matrix L. Eq. B.5 gives the solution for the perturbed wave func-
tion in k-space. And the perturbed wavefunction is defined as δψk = e−iµt/~(uke

−iωt−
v∗−ke

iωt). Now plugging in the solution of Eq. B.5 into δψk and δψ∗k and applying

the Čerenkov condition will result into the following two equations:

ψ∗0δψk = Ṽd

(
−2~2k2

2m

)
|ψ0|2

k2

2m

(
~2k2

2m + 2g|ψ0|2
)
− (v · k)2

ψ0δψ
∗
k = Ṽd

(
−2~2k2

2m

)
|ψ0|2

k2

2m

(
~2k2

2m + 2g|ψ0|2
)
− (v · k)2

(B.6)

The assumption is made for the Čerenkov condition in BEC that the excitations
behave according to the Bogoliubov dispersion relation. And since the BEC is also
moving with a velocity v, one need to correct Eq. B.1 accordingly. Therefore ω = 0
where ω is Eq. B.4.
Now the complete density distribution of a moving BEC with the presence of a
defect potential can be calculated in steady state. For simplicity the defect potential
is chosen to be a delta potential so that Vd can be taken out of the integral.

n = |ψ0 + δψ|2 = |ψ0|2 + ψ∗0δψ + ψ0δψ
∗ = n0 + δn

δn = 4Vdn0

∫ ~2k2

2m

(v · k)2 − k2

2m

(
~2k2

2m + 2g|ψ0|2
)eik·r dk

(2π)D
(B.7)
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