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Abstract

This thesis describes the use of time-varying quadrupole electric fields to trap
gold nanospheres. Colloidal particles, 100 nm in diameter are extracted from
their solution and injected into the trap via electrospray. The particles’ response
is studied at atmosphere as well as in a medium vacuum. A perturbing frequency
is introduced alongside the main trapping frequency to allow the particles’ re-
sponse to resonant frequencies to be studied. Nonlinearities in the particles’
response are discussed.
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1 Introduction

1 Introduction

This thesis describes the development of a trap based on the quadrupole ion trap
(QIT). The trap was used to study the behaviour and features of gold nanoparticles.
This thesis forms part of a greater project that aims to investigate the interaction of
femtosecond laser pulses with various materials under ablation conditions.

1.1 The Quadrupole Ion Trap

The electric field schema which underpins the QIT was developed as a focusing tech-
nique for particle accelerators in the late 1940s and early 1950s. This technique,
called strong focusing, relies on passing a particle beam through alternating electric
fields to focus the beam along orthogonal axes. The technique was first developed by
Christofilos, who filed a patent in 1950 [1]. The first published work in this emerging
field, by Courant, Livingston, and Snyder in 1952 [2], describes the usage of strong
focusing to construct a more efficient synchrotron. The seminal description of strong
focusing as a trapping principle came from Wolfgang Paul in 1953 [3], a development
for which he shared the 1989 Nobel Prize.

The QIT is, however, not only used for trapping. The particle’s confinement within
the trap is predicated by the particle’s charge-to-mass ratio. Via a careful adjustment
of the confinement parameters, particles will be ejected from the trap based on their
charge-to-mass ratio, while other particles are left stably trapped [4]. This allows the
QIT to be used as a mass spectrometer.

1.2 Description of Motivation

This thesis is written as preparatory work for future ablation experiments. Other
experiments are done in parallel to this work. Refer to the work by Scholten [5],
Clarijs [6], and Zomer [7] for more details of these other experiments. Trapping
conductive nanometre-sized particles in free space would allow them to be studied
without the effects related to a deposition substrate.

Ablation is the process of removing material from a surface. Laser ablation accom-
plishes this at low powers via evaporation, and at high powers by direct plasma con-
version. The process of direct plasma conversion is an active area of research [8] [9].
Spherical, nanometre-sized targets reduce the dimensionality of the problem. Due
to the small size, the distribution of transient material properties is essentially re-
duced to a constant over the ablation time line. This makes modelling and numerical
simulations considerably less complex.

For these reasons, we set out to trap gold nanoparticles in a quadrupole trap.
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2 Theory

2 Theory

This section describes the theory involved in trapping nanoparticles. The nanopar-
ticles are extracted from a colloidal gold suspension via an electrospray process.
The extracted nanoparticles are then trapped using time-varying electric fields from
quadrupole electrodes. The effects of atmosphere on this trapping system are also
discussed.

2.1 Colloids and Electrospray

A colloidal fluid is any solvent with nanoparticles suspended in it, where the nanopar-
ticles do not significantly dissolve in the solvent. These nanoparticles are typically
between the sizes of 1 nm and 1 µm [10].

We choose to use colloidal nanoparticles for this thesis because they meet the qual-
ifications described in Sec. 1.2. Additionally, these particles are manufactured to
reliable tolerances, and easy to acquire. Refer to Sec. 3.1 for details of the specific
nanoparticles used for this thesis.
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Figure 2.1: Schematic showing the electrospray process.

Electrospraying involves the aerosolization of a liquid by method of Coulomb repul-
sion. This is accomplished by applying high voltage to a volume of liquid, with an
aperture for the volume to expand through.

The volume of liquid will form a droplet at the aperture, with surface tension across
the droplet defined by the viscosity of the liquid, the size of the aperture, and the
pressure of the backing volume. By adjusting the volume pressure together with the
high voltage, it is possible to overcome the surface resistance of the liquid droplet at
the aperture.
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2 Theory

The droplet then breaks apart, aerosolizing, due to the Coulomb repulsion felt by
the ions in the liquid. Refer to Fig. 2.1 for a schematic diagram of the electrospray
process.

In general, a droplet of liquid with surface tension γ, radius r and electric permittivity
ε will hold some charge q. A limit on the charge, qr, beyond which the surface tension
is overcome, was experimentally identified by Lord Rayleigh [11]. This Rayleigh limit
is defined as

qr = 8πε1/2γ1/2r3/2. (2.1)

In this thesis, the droplet is formed at the end of a thin tube, and the charge comes
from a potential difference between an applied electric field in the fluid and an anode
plate. The electric field then will be

E =
2V

R ln (2d/R)
, (2.2)

where V is the applied voltage, R the radius of the aperture, and d the distance to
the anode [12]. Picking values for these three variables that approach the Rayleigh
limit will cause the droplet to deform. This will typically take the form of a cone,
known as the Taylor Cone. Refer to Fig. 2.2 for images of the Taylor cone.

Figure 2.2: Droplet at the end of a needle tip, under an applied voltage of 3 kV. The Taylor cone
forms at the needle tip, followed by the electrospray.

At the Rayleigh limit the electrostatic repulsion overcomes the surface tension, and
the tip of the cone will elongate until a droplet is ejected towards the anode. This
droplet will eject further progeny droplets, aerosolizing and evaporating to the point
where only the gold nanoparticles are left.

Refer to Sec. 3.1 for experimental details of the electrospray construction.
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2.2 The Paul Trap

It has long been known that electrostatic forces alone cannot be used to confine a
charged particle in free space [13]. This issue is typically resolved by the addition
of a magnetic field, creating a Penning Trap [14], or by varying the electric fields in
time, creating a Paul Trap [3]. The Paul Trap relies on switching the electric fields
between electrodes more quickly than the particle can escape the trap. This causes
a time-averaged stability, despite the trap being unstable in at least one axis at any
particular time. It does this by generating a multi-pole field, and then switching the
field between opposite poles. A quadrupole is the simplest version of this method.

x-axis

y-axis

r0

Figure 2.3: Schematic of the quadrupole trap. The
hyperbolae represent the electrodes. The minimum

distance from the central trap axis to the rod
surface is given as r0. The axes can be defined in

any orientation.

The following derivation largely follows March [15] before introducing corrections
discussed in Hasegawa et al. [16]. For an idealized test particle in a quadrupole trap,
the potential φ(x, y, z) within the device is

φ(x, y, z) = A(λx2 + σy2 + γz2) + C, (2.3)

where A describes the potential between opposite electrodes and C is a fixed term
applying to all electrodes. λ, σ and γ are weighting constants. Note that x-, y- and
z-motions are all independent. Any electric field must satisfy the Laplace condition,
∇2φ = 0. Applying this to Eq. (2.3) yields
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2 Theory

∇2φ =
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= 0, (2.4)

with these partial derivatives taking the form

∂φ

∂x
=

∂

∂x
(Aλx2) = 2Aλx. (2.5)

Their second derivatives work out to

∂2φ

∂x2
= 2λA,

∂2φ

∂y2
= 2σA,

∂2φ

∂z2
= 2γA. (2.6)

Substituting Eq. (2.6) into Eq. (2.4) yields

∇2φ = A(2λ+ 2σ + 2γ) = 0, (2.7)

and since A is a non-zero term, 2.7 becomes

λ+ σ + γ = 0. (2.8)

For a two-dimensional system, we choose the lowest order solution, where

λ = −σ = 1; γ = 0. (2.9)

Substituting Eq. (2.9) into Eq. (2.3) gives

φ(x, y, 0) = φ(x, y) = A(x2 − y2) + C. (2.10)

To determine the constants A and C, we will now consider the form of the field from
a hyperbolic rod. A quadrupole trap has two sets of rods, with the equations

x2

x2
0

− y2

a2
= 1,

x2

b2
− y2

y2
0

= 1, (2.11)

for the x- and y-rods, corresponding respectively to the conditions x = ±x0 for
y = 0 and y = ±y0 for x = 0. For the quadrupole potential to be formed correctly,
the hyperbolae must share common asymptotes, such that a = ±x and b = ±y.
In practice, nearly all QIT devices are built such that a circle with radius r0 can be
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inscribed tangentially to the nearest surface of each electrode, such that the equations
describing the electrode surfaces become

x2 − y2 = r2
0, x2 − y2 = −r2

0, (2.12)

for the x- and y-electrodes respectively.

In this two dimensional set-up, particles enter the QIT along the z-axis, and react
to the switching electric fields with some small oscillations along the x- and y-axes.
This is referred to as the secular oscillation, and depends on the particle charge-to-
mass ratio. All particles with similar charge-to-mass ratios will experience the same
secular frequency whilst in the trap.

The potential described in Eq. (2.3) results from the difference between the potentials
applied to the x- and y-rod sets, φ0 = φx−φy. Considering the rod sets individually,
φx and φy are defined as

φx = A(r2
0) + C, and φy = A(−r2

0) + C. (2.13)

Note that C is a fixed term representing a direct current (DC) offset from ground.
For the rest of this derivation it shall be set to zero. Combining the two φ terms
gives

φ0 = 2Ar2
0, A =

φ0

2r2
0

. (2.14)

Thus, Eq. (2.10) becomes

φ(x, y) =
φ0

2r2
0

(x2 − y2). (2.15)

Now consider a test particle subjected to this potential. Setting the y-component to
zero gives

φ(x, 0) =
φ0x

2

2r2
0

. (2.16)

The field at point (x, y = 0) is then

∂φ(x, 0)

∂x
=
φ0x

r2
0

, (2.17)
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and the resulting electrical force acting on the test particle is

Fx = −e∂φ(x, 0)

∂x
= −eφ0x

r2
0

, (2.18)

where the e has a minus because the forces fall off in intensity away from the cen-
ter. Assuming this force is the predominant cause of motion, Newton’s second law
produces

−m
(
d2x

dt2

)
= −eφ0x

r2
0

. (2.19)

Consider a periodic potential, of the form

φ0 = 2(U + V cos Ωt), (2.20)

where U is a DC voltage, applied with opposite polarities to the x- and y-electrodes.
V is a zero-to-peak alternating current (AC) voltage, with Ω as its frequency. Com-
bining these two equations creates

m

(
d2x

dt2

)
= −2e

(U + V cos Ωt)x

r2
0

. (2.21)

For future convenience, 2.21 can be rewritten as

(
d2x

dt2

)
= −

[
2eU

mr2
0

+
2eV cos Ωt

mr2
0

]
x. (2.22)

2.3 The Mathieu Equation

The traditionally expressed [17] form of the Mathieu equation is

d2u

dξ2
+ (au − 2qu cos 2ξ)u = 0, (2.23)

where u is a displacement, and ξ is a dimensionless parameter equal to Ωt
2 . The pa-

rameters au and qu are dimensionless stability parameters. These parameters describe
boundaries where the equation produces stable results. Solving for them gives insight
into what physical properties are important for stable trapping. If one considers the
first and second order derivatives of ξ
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d

dt
=
dξ

dt

d

dξ
=

Ω

2

d

dξ
, (2.24)

and

d2

dt2
=
dξ

dt

d

dξ

[
d

dt

]
=

Ω2

4

d2

dξ2
, (2.25)

this leads to

d2u

dt2
=

Ω2

4

d2u

dξ2
. (2.26)

Now, substituting Eq. (2.26) into Eq. (2.23)

d2u

dt2
= −

[
Ω2

4
au − 2× Ω2

4
qu cos Ωt

]
u, (2.27)

leads to combining Eq. (2.27) with Eq. (2.22)

−
[

2eU

mr2
0

+
2eV cos Ωt

mr2
0

]
u = −

[
Ω2

4
au −

Ω2

2
qu cos Ωt

]
u, (2.28)

to describe the u-displacement of the test particle in the trap. Solving for au and qu

ax =
4eU

mr2
0Ω2

, qx = − 2eV

mr2
0Ω2

, (2.29)

where e is the charge and m is the mass of the test particle, r0 is the minimum
distance from trap center to the surface of the electrodes. U is a DC voltage applied
with opposite polarities to the electrode sets, and V a zero-to-peak AC voltage with
Ω as its frequency.

Refer to Fig. 2.4 for a diagram of the Mathieu equation stability parameters. This
diagram shows both the x- and z-axis stability zones, as well as the overlapping zone
where there is two-axis stability.

2.4 Atmospheric corrections to the Mathieu Equation

Atmospheric damping is accounted for by adding a friction term to Eq. (2.22)
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2 Theory

Figure 2.4: The Mathieu equation stability parameters q and a against each other. The
lines indicate the boundaries of the stable regions. The blue zone indicates stability along
the x-axis, and the green zone along the z-axis. The yellow region is the overlap between

two regions, and thus is the only stable region along both axes.

(
d2x

dt2

)
+
β

m

dx

dt
+

[
2eU

mr2
0

+
2eV cos Ωt

mr2
0

]
x = 0. (2.30)

Similarly to Sec. 2.3, the variable ξ accounts for the time component

ξ =
Ωt

2
, t =

2ξ

Ω
,

∂

∂t
=

Ω

2

∂

∂ξ
,

d2

dt2
=

Ω2

4

d2

dξ2
. (2.31)

This allows Eq. (2.30) to be rewritten as

(
d2x

dξ2

)
+

2β

mΩ

dx

dξ
+

[
4eU

mΩ2r2
0

+
4eV cos Ω2ξ

mΩ2r2
0

]
x = 0. (2.32)

Now, the same a and q parameters defined in Eq. (2.29) are joined by an additional
variable κ
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2 Theory

κ =
β

mΩ
, (2.33)

permitting the Mathieu equation of Eq. (2.23) to be rewritten as

d2u

dξ2
+ 2κ

du

dξ
+ (au − 2qu cos 2ξ)u = 0. (2.34)

The variable β is still not defined, so now the form of damping the particle will
experience must be considered. The nanoparticle, in its secular motion perpendicular
to the trap axis, will encounter the residual gas left in the vacuum chamber. The
friction from this produces drag. First, what sort of drag this is must be established.
The Knudsen number is a measure of the relative size of a test particle to the length
scale of the problem, and is given by

Kn =
`mfp

a
, (2.35)

where a is a typical length of the test particle, in this case the diameter, and `mfp

is the mean free path of the fluid. a for these particles is 100 nm. The vacuum was
typically in the order of 10 Pa, where the `mfp of air is 690 µm. This gives a Knudsen
number of 6900.

A small spherical test particle in a viscous fluid will experience resistance described
by Stoke’s Law [18]. However, Stoke’s Law assumes a viscous particle-fluid boundary
with no relative flow. In the case of high Knudsen numbers, this is not the case. One
can use the Cunningham correction factor to account for this slippage [19]

C = 1 + 2Kn +
(
A1 +A2 · e

−A3
Kn

)
. (2.36)

The values of A1, A2, and A3 have been experimentally determined for air [20]

A1 = 1.257, A2 = 0.400, A3 = 0.55. (2.37)

Thus the corrected Stoke’s Law is

F =
6πaηV

C
, (2.38)

where a is the particle radius, η the viscosity of the fluid, V the fluid’s motion relative
to the particle, and C is the Cunningham correction factor.
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Now, if β is defined as

β =
6πaη

C
, (2.39)

then κ as defined in Eq. (2.33) accounts for the drag experienced from air resistance,
and is unit-less.

Refer to Fig. 2.5 for diagrams of the atmosphere-corrected stability zones. The rows,
upper and lower, show the diagrams for normal operating pressures and for atmo-
sphere respectively. The columns, left and right, show the diagrams for a smaller
and larger test particle respectively. Note that the normal operating pressure dia-
grams are essentially indistinguishable from each other, and from Fig. 2.4. For small
values of κ this correction is very minor. However, the diagrams for atmospheric
pressure clearly indicate the dominance of the κ term. Additionally, the size of the
test particle plays a much smaller role in higher vacuums. Again, there is practically
no difference visible between the two test particles at operating pressures. Yet, at
atmosphere, the larger test particle has a clearly broader stability zone.
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2 Theory

Figure 2.5: The Mathieu equation atmosphere corrected stability parameters q and a
against each other. The blue zone indicates stability along the x-axis, and the green zone

along the z-axis, and the yellow region is the stable region along both axes.
The upper row shows the diagrams for 20Pa, and the lower row for normal atmosphere.

The right column of diagrams is for particle radius 50 nm, and the left for 150 nm.
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3 Experiment Design

3 Experiment Design

The purpose of this section is to describe the individual components of the exper-
imental apparatus, and how they are used to perform the experiments. All of the
work in this set of experiments begins by extracting gold nanoparticles from a col-
loidal suspension and injecting them via electrospray into the quadrupole trap. Refer
to the report by N. D. Kosters [21] for the work done prior to this thesis.

3.1 Nanoparticles and Electrospray

We use a colloidal suspension of gold nanoparticles from NanoComposix, product
number AUPN100. The particles in this suspension are gold spheres with a diameter
100± 5 nm, coated in polyvinylpyrrolidone (PVP), and suspended in water at a con-
centration of 0.05 mg/mL. PVP is a surfactant, chosen because it reduces particle
aggregation and is stable across a wide variety of solvents. PVP acquires a negative
charge at neutral pH, producing a repulsive force between the nanoparticles.

Samples from this suspension were further diluted with ethanol at ratios determined
by the particular experiment. Where filtering is required, this is accomplished using
millipore syringe filters, with a pore size of 0.22 µm. Prior to use, the sample of
ethanol and colloidal suspension together was left in an ultrasonic bath for periods
not longer than five minutes.

Figure 3.1: The spraying and trapping system at atmosphere.

Refer to Fig. 3.1 for a picture of the electrospray set-up. The electrospray was
achieved by connecting a nonconducting syringe to a conducting needle tip, and
placing these opposite a grounded plate to form a cathode anode system. This needle
tip has inner diameter 200 µm and is connected to a high voltage power supply which
produces up to 3 kV. The needle tip to grounding plate distance varied between 40
and 140 mm. We experimentally determined the optimum conditions for electrospray
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3 Experiment Design

to be a tip-plate distance of 100 mm, with a negative potential of 2.5 kV across the
needle.

3.2 The Quadrupole Trap

4 mm

3 mm

2.66 mm
z-axis

skimmer plate

Figure 3.2: Schematic of trap, front and side views.

As discussed in Sec. 2.2, a time-varying electric field can be used to trap charged
nanoparticles. The trap used for this thesis consists of four stainless steel rods,
150 mm in length and radius 3 mm, with a two-axis symmetry about a central axis
running lengthwise along the rods. The rods are set with 2 mm clearance from each
other, giving a minimum distance of 2.66 mm between the rod surface and the central
axis of the trap. See Fig. 3.2 for a schematic diagram.

The rods are set into polyoxymethylene (POM) endpieces. Both end pieces have an
additional hole drilled on the central trap axis, allowing a probe laser to be aligned
along this axis. The rod spacing is sufficient such that there is optical access along
this axis, permitting light scattered from the nanoparticles to be collected. At one
end, the rod mounting holes are drilled through the POM, allowing for electrical
connections to be made to the rods. At the other end, the outside of the POM is
fitted with a stainless steel plate, centred on the trap axis, with a tapered hole drilled
in the middle. This skimmer plate provides the anode in the electrospray process,
and the taper helps focus the spray in to the trap.
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3.3 Electronics

The rods are electrically connected in diagonally opposite pairs, with one pair set to
ground and the other pair connected through a voltage amplifier to a signal generator.
Thus the independent variables are the frequency (Ω) and amplitude (V ) of the signal
produced at the signal generator. These control the frequency (ωtrap) and amplitude
(Vtrap) of the electric field in the trap. We operated the trap in the range between 30
and 10 kHz, and between 20 and 200 V. Using the trap stability parameters discussed
in Sec. 2.3, and putting in the above values, one can see that we expect charge-to-mass
ratios in the order of 1 C/kg.

Figure 3.3: Schematic of the electronic system of the trap.

3.4 The Vacuum Chamber

Figure 3.4: The vacuum chamber, from left to right: exterior view; interior view showing the
skimmer plate and trap; interior view from the imaging system point of view.

The vacuum chamber for this thesis was designed to reach a medium vacuum, or
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approximately 10 Pa. It is constructed symmetrically along three orthogonal axes,
which match those defined previously for the trap. It provides for optical access along
all three axes, though some ports are blocked by pumping or measuring equipment.
The chamber is pumped by a 5 m3/h scroll pump, with a typical ultimate vacuum
under 7 Pa. The pumping line includes a micrometer needle valve as well as a higher-
volume valve, allowing for precision control of the flow rate of the evacuation of the
chamber. Refer to Fig. 3.4 for photographs of the vacuum chamber.

3.5 The Imaging System

Figure 3.5: The imaging system.

The imaging system for this thesis consists of two lenses, a mirror, and a camera.
Due to the layout vacuum chamber, the trap is only visible from perpendicular views.
The distance from trap center to viewport is 144 mm. A 150 mm focal length lens is
placed just beyond this viewport, with the central axis of the trap at its focus. The
subsequent optical path is adjusted to meet experimental constraints, but is always
run through a lens tube to block out background light. A second lens is placed at
the focal distance before the camera, as a telescope lens. Thus the magnification of
the particles is based only on the ratio of the focal lengths of the lenses. The camera
lens is swapped as needed based on the experiment. Refer to Fig. 3.5 for a schematic
of the imaging system.
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4 Trapping Gold Colloids

This section describes the work of trapping the particles, and their general behaviour
in the trap under various operating conditions. Particle studies in the trap first
focused on one dependent variable, the charge-to-mass ratio of the particle. This
was found by keeping the amplitude of the trap, Vtrap, fixed, and varying ωtrap, the
frequency of the trap. At some point, the particle would be ejected from the trap.
This is the point where the stability boundary described in the Mathieu equations is
crossed. As demonstrated in Sec. 2.3, the point in frequency space where the stability
boundary is crossed gives an upper bound on the charge-to-mass ratio. Subsequent
work adds a second driving frequency, which allows us to examine a trapped particle’s
resonance peaks.

4.1 Trapping in Atmosphere

Trapping in standard atmosphere benefits from the fact that the correction term of
the Mathieu equation, as shown in Fig. 2.5, widens the stability zone considerably.
This is evident in the frequencies where particles are trapped. Due to this broadening
of the stability zone, particle trapping is more simple. However, this broadening also
makes it difficult to test individual parameters.

For this experiment, the Vtrap was set near 100 V and ωtrap was varied between 600
and 30 Hz. Particles are loaded into the trap, and their responses to the change in
driving signal is observed as a change in their secular motion.

Figure 4.1: Particles trapped at standard atmosphere
The trap is set to Vtrap = 109.8V and ωtrap = 500Hz.

The camera is set to 60ms integrations, with a gain of 0 dB.

Fig. 4.1 shows particles in the trap at atmosphere. On the left side, a wide-angle
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4 Trapping Gold Colloids

view shows five particles in the trap, with one highlighted. Note how the particles do
not lie on a single axis. The low frequency of the trapping means that the particles
deviate further from the trap axis. This deviation is based on their charge-to-mass
ratios. Additionally, loose trapping causes the particles to be much more reactive to
the atmosphere surrounding them.

On the right side, the highlighted particle is shown close up. This particle exhibits
comatic aberration. This comes from an acrylic cylinder installed around the trap in
an attempt to control air flow. Within the particle’s coma, there is a visible brighter
bar. This is the actual particle, exhibiting the secular motion about the trap axis,
over the camera’s integration time.

Typical trap ejection frequencies in atmosphere are between 30 and 60 Hz. This
corresponds to κ damping terms which completely dominate the Mathieu equation.
Thus, trapping at atmosphere is easier, due to broadened stability zones. However,
precise correlation of individual parameters in the stability term to measurements of
the particle’s behaviour in the trap are more difficult.

4.2 Trapping in Vacuum

Trapping in vacuum benefits from the fact that the atmospheric correction is re-
duced, which makes experimenting with the particles more simple. The particles
are not actually trapped in vacuum. Instead, they are trapped in atmosphere, as
described in Sec. 4.1. Then the vacuum chamber is sealed, greatly reducing the air
movement within the trap. Next, ωtrap is raised to 5000 Hz, which is considerably
above the stability threshold for typical particles at medium vacuum pressure. Then
the atmosphere is pumped out of the vacuum chamber.

The pumping must proceed carefully, so as to not eject the particles from the trap.
During pump out, the particles move along the free axis of the trap, pulled along
by air flow within the chamber. If the chamber is well sealed, the airflow is directed
towards the center of the trap. This causes some divergence of particles from the free
axis of the trap, as the particles approach each other and Coulomb repulsion causes
them to buckle.

The free axis movement undergoes a qualitative change during the pump out. The
particles realign to the central trap axis. This results in the particles moving along
the free axis of the trap, eventually sitting a points dependant on their electrostatic
repulsion from each other. The particles now form an ordered array along the trap
axis, with their behaviour influencing each other such that they begin to move col-
lectively.

In this experiment, the Vtrap was set at 100 V and ωtrap was varied between 5000 and
500 Hz. The vacuum chamber pressure was typically 12.5± 7.5 Pa.
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Figure 4.2: Figures of Particles in Vacuum
The pressure in the vacuum chamber is 12.5± 7.5Pa.

The trap is set to Vtrap = ∼100V and ωtrap = 5000Hz.
The camera is set to 60ms integrations, with a gain of 0 dB.

Fig. 4.2 shows two pictures of the trap in vacuum. On the left side, a wide-angle view
shows many particles in the trap, with one highlighted. Notice how these particles
are on-axis, due to ωtrap being significantly higher in vacuum.

On the right side, the highlighted particle is shown close up. The comatic aberration
is significantly reduced. Additionally, note that the particles no longer have such a
strong bar shaped appearance. This also comes from the trapping frequency higher
in vacuum. With the κ coefficient reduced to a minor correction, the stability term
q from the Mathieu equation will now accurately reflect the charge-to-mass ratio of
the particle.

Fig. 4.3 shows a histogram of the charge-to-mass ratios of 262 particles. The trap
fits less than forty particles at a time, and typically less than half that survive the
pump out. As such, this data is constructed over separate experimental runs, and
contains experimental variations. We take measurements via turning down ωtrap until
a particle is flung from the trap, and then noting that frequency. The details of this
experiment are discussed in [22].

Homogeneous nanoparticles, loaded into the trap by a uniform electrospray process,
would have a reasonably uniform charge-to-mass ratio. Charge scales by the square of
the particle radius, while mass scales by the cube of the particle radius. Aggregates of
particles would therefore have a much wider spread in charge-to-mass ratios. Through
this entire thesis work, there has been evidence that individual particles are forming
aggregates. This graph confirms that the particles trapped are aggregates.

Due to the fact that aggregates would form with discrete mass steps, the charge-to-
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Figure 4.3: Charge-to-mass ratios for some 250 particles.

mass ratio of smaller aggregates would show these discrete steps. By taking a large
amount of data, we had expected that different species of aggregate would become
visible in the charge-to-mass ratio histogram. Unfortunately, the hoped-for taxonomy
of aggregates did not materialize. This implies that the aggregates are large.

4.3 Resonance Peaks

A more precise measure of the charge-to-mass ratio is possible if the particle’s res-
onant frequency response can be examined. Using a single trap frequency signal,
particles are flung from the trap before they reach their resonance peaks. To study
this resonance response, a second signal generator is introduced to the experiment.
The signals from both generators are mixed in a purpose-built frequency mixer. For
labelling purposes, the first signal is named the trap signal. The second signal is
named the tickle signal [23].

Fig. 4.4 shows a schematic diagram of the frequency mixer. The mixer takes the
two signals as inputs, runs both over voltage dividers, and outputs one signal to
the amplifier. The amplitude of the first signal, Vtrap, is left relatively unchanged.
The amplitude of the second signal, Vtickle, is reduced to some 2.63 % of its input
value. The mixer exhibits beating if the frequencies are to close to each other. To
accommodate this, the two frequencies were always kept more than 5 Hz apart from
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Figure 4.4: Schematic of the frequency mixer.

each other.

The introduction of the second signal allows a particle to be kept with a stable ftrap,
but to be made to resonate by adjusting the ftickle across the particle’s resonant
frequency. To do this, a particle is loaded into the trap, and its charge-to-mass ratio
is bounded as described in Sec. 4.2. Then ftrap is set 10% away from this boundary,
and an expectation value for ftickle is calculated. With Vtickle set to the minimum
possible, ftickle is introduced and swept in frequency space over the expected value.
Vtickle is progressively increased with each sweep until the particle responds. Once
the particle becomes responsive, the sweep range is bisected, the time spent on each
step of the sweep (dwell time) is doubled, and Vtickle is returned to the minimum.
Vtickle is again increased until a response was noted, and the process is repeated.

Fig. 4.5 shows a particle being swept over its resonance peak. The first picture shows
the particle stably trapped. The second picture shows the particle near its resonance
peak. The particle’s secular motion perpendicular to trap axis has increased signifi-
cantly. This increase in secular motion is a measure of the resonance. By measuring
increases in the secular motion, we can find the resonance peaks of a particle. The
frequency of this resonance peak is a much better indicator of the charge-to-mass ra-
tio of a particle than the frequency at which the particle is flung from the trap. This
is because a particle which crosses the stability boundary, experiences an exponential
increase in its instability. This exponential increase can begin quite slowly. Thus, it
is quite easy to note the incorrect value for unstable boundary.

Additionally, measuring the width of the resonance peak can give information about
the mass of the particle. The κ coefficient is dependent on the radius of the particle,
but is insensitive to its electric charge. Thus, knowing the charge-to-mass ratio
precisely, and examining the damping of the particle during the resonance sweep
would give some hints as to its mass.
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Figure 4.5: Figures of a Particle Resonating
The pressure in the vacuum chamber is 12.5± 7.5Pa.

The trap is set to Vtrap = ∼100V and ωtrap = 5000Hz.
The camera is set to 60ms integrations, with a gain of 0 dB.
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5 Analysis and Results

This section describes the behaviour of the particles in the trap under the influence
of two trapping frequencies, as described in Sec. 4.3. It focuses on two different
examples of nonlinear behaviour, in the frequency domain and the time domain.

Resonating particles appear on the camera as bars, due to their increased secular
motion. The strength of their resonance can be measured as the length of this bar.
By taking images of the particle periodically, the progression of the resonance can be
tracked over time. By setting the signal generator to make a frequency sweep, the
progression of the resonance can also be tracked in the frequency domain.

5.1 Data Analysis

Refer to Sec. 3.5 for a more complete discussion of the imaging system. The recording
settings of the camera are adjusted from experiment to experiment to optimize the
acquired data. The sets of images are analysed after the fact, using the OpenCV
software library and the Python programming language.

Figure 5.1: A particle near its resonance peak, and the region
of interest box taken by the analysis software.

Particles at their resonance peaks become difficult to spot, but they remain on the
trap axis. This software looks for local maxima in intensity along the trap axis.
When the software identifies the region in which the particle is, and extracts this
region from the rest of the image. It takes a comparably sized region from a different
part of the image, to perform a background subtraction. Fig. 5.1 shows a close up of
the particle near its resonance peak, and the region of interest taken by the software.
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Figure 5.2: Images showing the data analysis process
The right image shows the integration of the region of interest box, with a Gaussian fit

The left image shows the width of these fits for every frame of a ten second video.

Next, the software integrates the region of interest along the z-axis, to negate the
free movements the particles make in this direction. This produces a one-dimensional
array, which records the intensity of the particle’s motion away from the trap axis. A
Gaussian function is fitted to the data by a fitting program. The fitted width of this
Gaussian function is taken as a measurement of the particle’s movement away from
the trap axis. This width is then converted from pixels to micrometers via the pixel
pitch of the camera and the lens choices for the experiment. By performing this fit
on every frame of a video, we can create a graph of the changes in a particle’s secular
motion over time. Fig. 5.2 shows the steps of the data analysis process.

The graphs presented in this section are made up of data points acquired in this
way. In the frequency domain, the signal generator creating the ftickle signal is made
to sweep through a defined range of frequencies, with a defined dwell time. The
progression in the time domain is relatively simple to keep ordered.

5.2 Frequency Domain

To perform this experiment, the resonant frequency of the particle is identified via
the method described in Sec. 4.2. When the sweep range has been reduced to a
manageable size, the dwell time of the sweep and the amplitude of ftickle are balanced
to produce a good result. Then the direction of the sweep is reversed, while the other
parameters are kept the same. These two sweeps are then compared.

In the frequency domain, the particle’s response is limited by the dwell time of
the sweep. The particle’s calculated relaxation time is on the order of 0.5 s. To
accommodate this, the sweeps in this experiment are run at 1 Hz/s.

Fig. 5.3 shows ftickle against the particle secular motion. The two graphs are sweeps
over the same particle, with equivalent experimental conditions. The right image
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Figure 5.3: Particle secular motion, under the influence of ftickle swept over resonance.
Both images show the same particle, with the same conditions in the trap except for Vtickle.

The left image shows the particle resonance with Vtickle = 34.0mV.
The right image shows the particle resonance with Vtickle = 33.9mV.

was made with Vtickle set 126 µV less than the left one. Note that the y-axis of these
graphs is not the same.

Each graph shows two sweeps each, the blue from lower frequency to high and the
green from high frequencies towards low. The theoretically calculated resonance
peaks is ftickle ≈ 1850 Hz.

These graphs demonstrate a shift of the resonance peak. This implies a delay, or
hysteresis, in the particle’s response to the frequency sweep. This hysteresis is related
to the direction of the frequency sweep. The graphs also show complex structure in
the resonance peak. The complexity within the structure changes both with the
direction of the sweep, as well as its intensity.

The observed hysteresis in the resonance peak, and the attendant differences in the
structure of the peak, indicates nonlinearity in the response model.

5.3 Time Domain

Sweeping over the resonance peak indicates that the particles behave nonlinearly. By
giving the particles longer to come to resonance, smaller driving amplitudes can be
used. The goal of this experiment was to find a driving amplitude small enough to
discover some repeatability in the resonance response.

To perform this experiment, the resonant frequency of a particle in the trap is identi-
fied via the method described in Sec. 4.2. The sweeping is turned off, with ftickle is set
to the resonant frequency, and Vtickle set to the minimum. We then raise Vtickle until
the particle begins to show additional secular motion. The particle is then stabilized
again, by removing the influence of ftickle. Lastly, using values for Vtickle less than
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initial one, the particle’s response over longer periods of time is observed.

Typically, a particle would still be to responsive, even at the minimum possible
values for Vtickle. In this case, the value of ftrap would be adjusted to be further
away from the stability boundary. The experiments begin with ftrap = 110% of the
stability boundary, and can be pushed as far as 130% before the system becomes
unmanageable. Fig. 5.4 shows a particle being made to resonate in this way. The
timeline of this resonance is approximately 15 s.

Figure 5.4: Particle secular motion under the influence of a stable perturbing signal.
Here ftrap is set to 1750Hz, which is approximately 133% of the stable value,

and ftickle is fixed at 660.9Hz, with amplitude 1.355mV.
The pressure in the chamber is 7.2Pa.

Fig. 5.5 shows the same particle as Fig. 5.4, but at three different values of Vtickle.
Note that the time scale on the x-axis of the graphs changes significantly. Fig. 5.5a
shows the particle generally increasing in motion over a period of 15 s. Fig. 5.5b
shows the particle exhibiting considerably more complex motion, though it does still
eventually increase, and reaches the same level of secular motion at 25 s. Fig. 5.5c
shows the particle coming in and out of resonance, and still not reaching a stable
condition after 65 s. These graphs represent a difference of 6.3 µV in the perturbing
signal, the minimum the system was able to produce. At this point, the signal to
noise ratio of the amplifier is a significant factor in the tickle signal.

The complexity of the increase in the particle’s secular motion, and the sensitivity
the particle has to its experimental conditions, imply there is a strong nonlinearity
in the response model.
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(a)

(b)

(c)

Figure 5.5: Secular motion under the influence of a stable Vtickle. Refer to Fig. 5.4 for the
experimental details of the trap.
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6 Conclusion, Discussion and Outlook

In this thesis we have demonstrated the use of a quadrupole trap to contain and
study gold nanoparticles. Trapping was investigated under different atmospheric
conditions, and procedures were developed for stable, long term trapping in a medium
vacuum. We used frequency sweeping to establish charge-to-mass ratio values for
statistically significant numbers of particles, and identified from this that the particles
were aggregating. We introduced a second signal to the trapping system, and used
this to bring the particles near their resonant frequencies in a stably trapped fashion.
Thus we were able to study the properties of the particles near resonance as well.

We attempted several variations on dilution and filtration of the colloidal suspension
prior to the electrospray, and found these to have negligible effects on the aggregates
in the trap. We identified that the aggregation therefore results from during or
after the electrospray. Additionally, the pump out of the vacuum chamber is a mass
selective process, which results in only the more larger aggregates being left in the
trap. Finally, particles in the trap were observed to behave in strongly nonlinear
fashions. It is likely that these effects are related to the particles in the trap being
aggregates, rather than single colloids.

We recommend that further consideration be given to the aggregation of the colloids.
Establishing the mass of the trapped particles is essential prior to ablation, and is a
major stumbling point other physical investigations as well.

A technique called polarimetry could be used to identify the mass of the particles.
Polarizing the illuminating laser beam would also polarize the light scattered by the
particles within the trap. By varying polarization of the incoming laser beam, and
measuring the intensity of the scattered light through a known polarizing filter, one
can make a graph of the preferential scattering for various polarizations. By doing
this with two different frequencies of incoming light, one is able to compare the two
graphs and identify the mass of the particle.

Also of note the Coulomb crystal. As described in Sec. 4.2, particles in the trap
interacted visibly with one another. This interacting group of particles can be treated
as a Coulomb crystal. The distances between these particles is related to their electric
charge. From the charge, and the charge-to-mass ratio, it is possible to discover the
mass of the particles.

The particle’s response in the presence of a potential wall could also be used to
identify its charge, and thus its mass. Potential walls could be created locally via
segmenting the trap. Using several of these segments, particles could also be moved
about the free axis of the trap as needed. This would be extremely useful for bringing
particles into the focus of a laser beam.

Once the particles in the trap have been characterized, we can proceed with ablation.
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