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Chapter 1

Introduction

The mathematician is and has always been in search of the truth. Model theory
is in fact one of the specialisations in mathematics where this search has always
been very important. It focuses on the relation between a formal language and
its models. Out of the languages, combined with some auxiliary symbols, we
can build up sentences. These sentences can help us describe things about the
models. In this way we can define a truth in a model, and it is this truth
definition that is the relation between the language and its models. The truth
definition we call a semantic property, a property that deals with interpretation
or meaning. Besides truth, another semantic property is falsity, as are the
amalgamation property and the congruence extension property, which will be
studied in this paper. In contrast to the semantics we have the syntax, which
focuses purely on the formal structure of the language used. For example the
symbols used in a sentence or the length of a sentence are syntactical properties.
This gives the notion of syntactical characterisations of semantic properties, thus
a equivalence between the meaning of a property and a formal description of
the language that makes the property hold.

In this thesis we shall try to make clear the syntactical characterisations
of some amalgamation properties as well as of the congruence extension prop-
erty for certain theories. Hereby we will follow the steps of Paul Bacsich and
Dafydd Rowland Hughes, who have described the characterisations in Syntactic
Characterisations of Amalgamation, Convexity and Related Properties [2].

We shall use chapter 2 to describe our notational conventions, give some
examples of syntactic characterisations and introduce the notion of generalised
atomic sets of formulas. We will also prove some general lemmas which form
the basis of the rest of the thesis. In chapter 3 we will focus on the syntacti-
cal characterisations of the general amalgamation property, theories for which
injections are transferable and the strong amalgamation property. Finally in
chapter 4, we will focus on the syntactical characterisation of the congruence
extension property. Here we shall look at theories that are preserved under
homomorphisms, and especially at equational theories.
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Chapter 2

Preliminaries

The goal of this chapter is to give a basic background to the reader of this thesis
such that this thesis is fully readable. Therefore we shall first describe some
notational conventions, then some basics of model theory, some explanation
about syntactical characterisations, the description of the notion of generalised
atomic sets of formulas and we conclude with some important theorems in model
theory.

2.1 Notational Conventions

In this thesis we presume that the reader is familiar with the general concepts
of first-order logic and model theory. We shall use the notation introduced by
Ieke Moerdijk and Jaap van Oosten in [4] and [5].

We will write L for a language in predicate logic, and Gothic letters A,B, ... for
L-structures constructed from the domains A,B, ....

For each constant c, function symbol f and relation symbol R in L, we call
cA, fA and RA the respective interpretations in A.

We shall use Greek letters φ, ψ, ... for L-formulas and L-sentences, and denote
A |= φ for φ holds in A. We can extend the language L by adding a constant
for each a ∈ A, this language we shall denote by LA.

We will use s, t, ... for constant terms of L and x, y, z for variables. By
t̄, x̄, ȳ, ā, ... we will denote lists of constants or variables, and by variables and
lists of variables which are written differently we assume them to be disjoint,
unless the context proves differently. By ā ∈ A we denote a list ā whose elements
are all elements of A.

We write T for an L-theory, and use A |= T if A is a model of the theory T .
With T |= φ we mean that the sentence φ holds in every model of T .
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2.2 Basic Notions of Model Theory

We will now give some important definitions in Model Theory, that are used
throughout this thesis. We get this definitions from Jaap van Oosten in [5].

First we look at reducts and expansions. Let L ⊆ L′ be two languages, with
B an L′-structure. If we now restrict the interpretation function of B to L, we
get a L-structure A. We then describe B as the L′-expansion of A and A as the
L-reduct of B.

If we have the language L and an L-structure A, we can extend the language
to LA as stated above. When we have the interpretation of aA = a, ∀a ∈ A,
then A becomes an LA-structure and is called the natural expansion of A to LA.

Now we shall have a look at functions in Model Theory. Let A and B be
L-structures. A function f : A → B that sends every element from A to an
element from B such that they commute with the interpretations of the ele-
ments in the structures A and B, is called a homomorphism of L-structures. To
commute with the interpretation, we have the following demands:

i) For all constants c in L, f(cA) = cB.

ii) For all function symbols g in L and ā ∈ A, f(gA(ā)) = gB(f(ā)).

iii) For all function symbols R in L and ā ∈ A, if ā ∈ RA then f(ā) ∈ RB.

We shall denote such a homomorphism by f : A→ B.
If there is a homomorphism f : A → B and a homomorphism g : B → A,

such that g is the inverse of f , then f and g are called isomorphisms and the
structures A and B are said to be isomorphic. Two isomorphic structures also
satisfy the same L-sentences. If two L-structures A and B satisfy the same
L-sentences, they are said to be elementarily equivalent, which we notate by
A ≡ B.

If there is a homomorphism f : A → B, which is injective and for every
relation symbol R of L and every n-tuple ā ∈ A, if f(ā) ∈ RB then ā ∈ RA,
then f is called an embedding.

If there is an embedding f : A→ B, such that for every L-formula φ(x̄) and
every ā ∈ A, A |= φ(x̄) ⇐⇒ B |= φ(f(x̄)) holds, then f is called an elementary
embedding.

We shall now focus on different kinds of L-formulas. If a formula contains
neither connectives nor quantifiers, it is called an atomic formula. In practice
this comes down to formulas of the form t = s and t̄ ∈ R, where s and t are
terms and t̄ is a tuple of terms of L and R is a relation symbol of L. Atomic
and negated atomic formulas together are called basic formulas.

Positive formulas are those L-formulas that are not negated, thus not us-
ing the negation or the implication, and open formulas are the ones not using
quantifiers. When we speak of universal L-formulas, we mean formulas of the
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form ∀x̄φ, where φ is an open L-formula. The same idea holds for existential
formulas, which are of the form ∃x̄φ.

We can also combine the definitions. Thus we have universal-existential
formulas, which are formulas of the form ∀x̄∃ȳφ, where φ is again an open
L-formula, and in the same way existential-universal formulas. But also for
example positive existential formulas, which are of the form ∃x̄φ, where φ is a
positive open L-formula.

Now we have seen the different kinds of formulas, we can look at theories and
diagrams. Let T and T ′ be two L-theories. If T ′ has exactly the same models
as T , then T ′ is called a set of axioms of T .

Diagrams are sets of L-sentences that are true in a certain L-structure. If A
is an LA-structure, then the diagram of A is the set of basic LA-sentences that
hold in A. We denote this by ∆(A). We also have the positive diagram, ∆+(A),
the set of atomic LA-sentences that hold in A, and the elementary diagram,
∆el(A), the set of all LA-sentences that hold in A.

2.3 Syntactical Characterisations

Now we have made clear our notational conventions, we shall have a closer
look at syntactical characterisations. At first we shall take a closer look at the
classical preservation theorems, which were in fact the first syntactical charac-
terisations. We get these from [1] and [5] and shall not prove them here, but
rather use them as an explanation to syntactical characterisation.

Let T be an L-theory. We will link the preservation of the models of T un-
der certain operations of L-structures to the syntactical structure of axioms of
T . Here a set of axioms of T is a theory with the same models of T .

We have three general preservation theories, about preservation under sub-
structures, preservation under unions of chains and preservation under homo-
morphic images. Here we say a theory T is preserved under substructures if
and only if every substructure of a model of T is again a model of T . A theory
T is preserved under unions of chains if and only if the union of any chain of
models of T is again a model of T . And finally, a theory T is preserved under
homomorphic images if and only if every homomorphic image of a model of T
is a model of T .

Now we have described the semantic properties, we can give the syntactical
characterisations. These are in the following proposition.

Proposition 2.3.1 A theory T is preserved under substructures if and
only if it has a set of axioms consisting of universal sentences.

A theory T is preserved under unions of chains if and only if it has a set
of axioms consisting of universal-existential sentences.

A theory T is preserved under homomorphic images if and only if it has
a set of axioms consisting of positive sentences.
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We can see how the syntactic characterisations link the semantic properties
to some syntactical ones, such as just the use of universal sentences. The sin-
gularity of the preservation theorems is their gracefulness. They do not consist
of long and complex descriptions, and all follow the same style.

The last of these theorems we should bear in mind, for we will have to use
it in the last chapter about the congruence extension property.

2.4 Generalised Atomic Sets Of Formulas

To prove the syntactical characterisations in this paper, we shall use the notion
of a generalised atomic set of formulas, or GA set. We get this notion from
Keisler [3]. We shall first define what those sets are and how we can use them.
Then we shall show how they link with diagrams and then show some general
results that we can use in the following chapters.

Definition 2.4.1 A generalised atomic set of formulas is a set F of L-formulas
such that:

i. the set F is closed under substitution, i.e. if φ(x, x̄) ∈ F and x, x1, ..., xN
are mutually distinct, then,

a) for all variables y, φ(y, x̄) ∈ F ;

b) for all constants c, φ(c, x̄) ∈ F .

ii. the set F is closed under logical equivalence, i.e. if φ ∈ F and |= φ ↔ ψ
then ψ ∈ F .

iii. all the formulas x1 = x2 ∈ F , where x1 and x2 are distinct variables.

iv. falsum is in F , i.e. ⊥∈ F .

Example We shall give some examples of GA sets that will be used in this
paper:

1. The set [L] consisting of all L-formulas.

2. The set (L) consisting of all basic L-formulas, i.e. all formulas equivalent
to atomic and negated atomic L-formulas.

3. The set (L)+ consisting of all L-formulas equivalent to atomic L-formulas.

We can now describe some closure operations on the GA sets. We use
subsets of the set {∃,∀,∧,∨,¬} to describe a finitary closure operation on sets
of formulas. This means:

∃: if φ ∈ F then ∃xφ(x) ∈ F with x free in φ;

∀: if φ ∈ F then ∀xφ(x) ∈ F with x free in φ;

∧: if φ, ψ ∈ F then φ ∧ ψ ∈ F ;
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∨: if φ, ψ ∈ F then φ ∨ ψ ∈ F ;

¬: if φ ∈ F then ¬φ ∈ F .

Now let F be a GA set, then {∧,∨}F is the smallest set that contains F and is
closed under finite disjunction and conjunction. We can give for example the GA
set (L)+, consisting of formulas equivalent to atomic formulas. Then we have
that {∃,∀,∧,∨,¬}(L)+ is the smallest set that contains the atomic formulas of
L and is closed under ∃,∀,∧,∨ and ¬. This gives that {∃,∀,∧,∨,¬}(L)+ = [L].

When the closure consists of only one element, for example {∨}F , we shall
write ∨F . We shall repeat the abbreviation when there is another closure of
one element. We can write for example ∨ ∧ F for {∨}({∧}F ) or ∃{∀,¬}F for
{∃}({∀,¬}F ). Note that this means that, with F = (L), we have ∀∃(L) =
∀(∃(L)) = {∀}({∃}(L)). This gives that ∀∃(L) 6= ∃∀(L) 6= {∀,∃}(L).

We shall write ∀0 for the set {∧,∨,¬}(L)+ of open L-formulas, ∀1 for the
set ∀({∧,∨,¬}(L)+) of universal L-formulas, ∀+1 for the set ∀({∧,∨}(L)+) of
positive universal L-formulas, ∃1 for the set ∃({∧,∨,¬}(L)+) of existential L-
formulas and ∃+1 for the set ∃({∧,∨}(L)+) for the set of positive existential
L-formulas.

Furthermore, we shall use the notation F (A) for the GA-set of LA-formulas
generated by F , i.e. {φ(ā) : φ(x̄) ∈ F and ā ∈ A}.

With ∆F (A) we denote the set of all F (A)-sentences which hold in A. In
the special cases of ∆(L)+(A),∆(L)(A) and ∆[L](A), we shall write respectively
∆+(A),∆(A) and ∆el(A), which we have seen earlier.

We will now define the morphism induced by the GA sets and show a general
result of these morphisms.

Definition 2.4.2 Let F be a GA-set of L-formulas, let A and B be L-structures
and f : A→ B. Then f is called an F -morphism, or F -hom, if whenever φ ∈ F ,
ā ∈ A and A |= φ(ā), then B |= φ(f(ā)).

Lemma 2.4.3 Every F -morphism is an {∃,∧,∨}F -morphism.

Proof Let f be an F -morphism. Now consider the set G = {φ(x̄) : ∀ā ∈ A
(A |= φ(ā) then B |= φ(f(ā)))}. We can see by definition of the F -morphism,
that F ⊆ G. Now we shall prove that G is closed under conjunction, disjunction
and the existential quantifier.

First for conjunction, let φ1(x̄1), φ2(x̄2) ∈ G and let, with ā1, ā2 ∈ A,
A |= φ1(ā1) ∧ φ2(ā2). This gives that A |= φ1(ā1) and A |= φ2(ā2). Since
φ1(x̄1), φ2(x̄2) ∈ G, we have B |= φ1(f(ā1)) and B |= φ2(f(ā2)). Thus we see
that B |= φ1(f(ā1)) ∧ φ2(f(ā2)). Hence we have that φ1(x̄1) ∧ φ2(x̄2) ∈ G.

Secondly we consider disjunction. Again let φ1(x̄1), φ2(x̄2) ∈ G, but now let,
with ā1, ā2 ∈ A, A |= φ1(ā1) ∨ φ2(ā2). Thus we have that A |= φ1(ā1) or A |=
φ2(ā2) and, with the fact φ1(x̄1), φ2(x̄2) ∈ G, B |= φ1(f(ā1)) or B |= φ2(f(ā2)).
Thus we see that B |= φ1(f(ā1))∨ φ2(f(ā2)) and we have φ1(x̄1)∨ φ2(x̄2) ∈ G.
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Lastly we consider the existential quantifier. Let φ(x̄) ∈ G and let A |=
∃x̄φ(x̄). Then there is a ā ∈ A such that A |= φ(ā). With φ(x̄) ∈ G this gives
B |= φ(f(ā))}. We can see that then also B |= ∃x̄φ(x̄)}, hence ∃x̄φ(x̄) ∈ G.

We can conclude that G is closed under conjunction, disjunction and the
existential quantifier. Then, since F ⊆ G, we can also see that {∧,∨,∃}F ⊆ G.
Thus we have that f is an {∧,∨,∃}F -morphism.

From lemma 2.4.3 we get with the definition of homomorphism, embedding
and elementary embedding immediately the following corollary.

Corollary 2.4.4 An (L)+-morphism is a homomorphism, an (L)-morphism is
an embedding and an [L]-morphism is an elementary embedding.

Now we shall have a look at the relation between the F -morphism and the
diagram obtained by the set F .

Lemma 2.4.5 The following are equivalent:

i) There is an F -morphism f : A→ B;

ii) There is a LA-expansion of B which is a model of ∆F (A).

Proof Firstly i) =⇒ ii):
We assume i), so there is a f ∈ F -hom, which means f : A → B with for all
φ ∈ F and tuples ā ∈ A, if A |= φ(ā) then B |= φ(f(ā)). Let now aB = f(ā),
i.e. the interpretation of the element a ∈ A in B is the element f(a) ∈ B. Now
for all sentences φ in ∆F (A), we have φ ∈ F and A |= φ(ā) for some ā ∈ A (with
aA = a). This gives B |= φ(f(ā)) and thus B |= φ(aB). This holds for all φ in
∆F (A) and hence B with the described interpretation is a model of ∆F (A).
Now ii) =⇒ i):
We have B |= φ(āB) for all φ(x̄) ∈ F and ā ∈ A such that A |= φ(ā). Now let
f(a) = aB, i.e. let the function f send all elements a of A to the interpretation
of the element in B. Then we have that B |= φ(f(ā)) whenever φ(x̄) ∈ F , ā ∈ A
and A |= φ(ā), which gives that f ∈ F -hom.

When we now consider F = (L) and F = [L], this gives us the well known
equivalences between homomorphisms, embeddings and expansions.

Corollary 2.4.6 Giving a homomorphism f : A → B is equivalent to
giving an LA-expansion of B which is a model of ∆+(A).

Giving an embedding f : A → B is equivalent to giving an LA-expansion
of B which is a model of ∆(A).

Giving an elementary embedding f : A → B is equivalent to giving an
LA-expansion of B which is a model of ∆el(A).
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2.5 Basic Theorems of Model Theory

After the notion of GA sets, we shall now look at some more general model
theory. In this section we shall consider some examples of methods to link
models and theories. The first lemma we get from [5].

Lemma 2.5.1 Let A and B be two L-structures. Then the following are equiv-
alent:

i) A ≡ B;

ii) A and B have a common elementary extension.

Proof First we look at ii) =⇒ i):
If A and B have a common elementary extension, there is a C such that A � C
and B � C. Since A � A′ implies A ≡ A′, we now have A ≡ C and B ≡ C.
Thus, A ≡ C ≡ B.
Now we look at i) =⇒ ii):
To prove there is a common elementary extension, we consider the LAB-theory
T = ∆el(A) ∪∆el(B), with LAB = LA ∪ LB. Both are LAB-theories when we
take the constants from A and B disjoint. Now any model C of T is a common
elementary extension. So we have to prove a model exists. For this we shall use
a proof by contradiction.
Suppose T has no model, then some finite subset of T has no model, by the
Compactness Theorem. This means that there is a finite conjunction of elements
of ∆el(A) and ∆el(B), which has no model. So consider φ(ā) ∈ ∆el(A) and
ψ(b̄) ∈ ∆el(B) such that φ(ā)∧ ψ(b̄) is inconsistent. This means that A cannot
be expanded with interpretations for b̄ such that ψ(b̄A) holds. Then we know
that A |= ∀x̄¬ψ(x̄). But we know that B |= ∃x̄ψ(x̄) and A ≡ B, thus we have
a contradiction.

Lemma 2.5.2 Let L ⊆ L′, A an L-structure and B an L’-structure. Also
suppose that A is elementary equivalent to the L-reduct of B. Then there are
an L’-structure C, an elementary embedding f of L-structures and an elemen-
tary embedding f ′ of L’-structures, with the following diagram of embeddings:

A

B

C

f

f ′

Proof We can use the second part of the proof of lemma 2.4.1 to show this
result. This time we consider the L′AB-theory T = ∆el(A) ∪ ∆el(B), with
L′AB = LA ∪ L′B. Again we take the constants from A and B disjoint. Now
we get, with corollary 2.4.6, that any model C of T gives indeed the required
diagram.
So again for contradiction, suppose it has no model. This gives us, as above,
some φ(ā) ∈ ∆el(A) and ψ(b̄) ∈ ∆el(B) such that φ(ā) ∧ ψ(b̄) is inconsistent.
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We get that every L′B-structure satisfying ψ(b̄) cannot be expanded with inter-
pretations for ā such that it satisfies φ, thus it will satisfy ∀x̄¬φ(x̄). But this is
an L-sentence, A |= ∃x̄φ(x̄) and A is elementary equivalent to the L-reduct of
B, which gives a contradiction.

We take a look at the method of completing diagrams. This can be confusing
because we have two kinds of diagrams, the set of sentences and the image
of functions. When we speak of completing a diagram, we always focus on
the second one. We will use from [2] the way of describing when a diagram
can be completed. If there are for the condition Y functions f ′ : B → D
and g′ : C → D such that f ′ ◦ f = g′ ◦ g, whenever there are functions f :
A → B and g : A → C for the condition X, then we say that the diagram

A

B

C

D

f

g

f ′

g′

X

Y

can be completed. The next lemma is an example of such a diagram.

Lemma 2.5.3 Every diagram of elementary embeddings between L-structures

A

B

C

D

f

g

f ′

g′

f,g elementary embeddings,

f ’,g’ elementary embeddings

can be completed.

Proof Since f and g are elementary embeddings, we can use corollary 2.4.6 to
see that there are LA-expansions of B and C that are models of ∆el(A). To
get these expansions, we interpret the constants a ∈ LA as follows, aB = f(a)
and aC = g(a). Now we have that B and C are LA-structures and, with both
models of ∆el(A), B also elementary equivalent to the LA-reduct of C. Thus
we can see, with lemma 2.4.2, that there are elementary embeddings f ′ and g′

and an LA-structure D as in the diagram. Since D is an LA-structure, there
must be interpretations of the constants a ∈ LA. These interpretations must be
aD = f ′(f(a)) and aD = g′(g(a)), because f ′ and g′ are elementary embeddings
and hence D must be a model of ∆el(A). This also gives f ′(f(a)) = g′(g(a)),
thus the diagram is commutative.

Now we shall look at the so-called Diagram Lemma, which we get from [2].
This lemma will be shown to be very useful in the rest of this paper.

Lemma 2.5.4 Let T be an L-theory, F a GA set of L-formulas and A an
L-structure. Then for all φ(x̄) ∈ L and ā ∈ A the following are equivalent:

i) T ∪∆F (A) |= φ(ā);

ii) A |= ψ(ā) for some ψ(x̄) ∈ ∃{∧}F such that T |= ψ → φ,
i.e. there is a ψ(x̄) ∈ {ψ(x̄) ∈ ∃{∧}F : T |= ψ → φ} with A |= ψ(ā).
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Proof First i) =⇒ ii):
We assume T ∪∆F (A) |= φ(ā). Then by Compactness there is a finite subset
{χ1, ..., χn} ⊆ ∆F (A) such that T ∪{χ1, ..., χn} |= φ(ā). Now let χ be equivalent
to χ1 ∧ ... ∧ χn, and let χ′ be the L-formula, with b̄ ∈ A − {ā}, such that
χ = χ′(ā, b̄) and A |= χ′(ā, b̄). We now have T |= χ′(ā, b̄) → φ(ā), A |= χ′(ā, b̄)
and χ′(x̄, ȳ) ∈ {∧}F . This gives that T |= ∃ȳχ′(ā, ȳ) → φ(ā), A |= ∃ȳχ′(ā, ȳ)
and ∃ȳχ′(x̄, ȳ) ∈ ∃{∧}F . Now let ψ(x̄) be ∃ȳχ′(x̄, ȳ). Thus we have T |= ψ → φ,
A |= φ(ā) and φ(x̄) ∈ ∃{∧}F .
Now ii) =⇒ i):
Let there be a ψ(x̄) ∈ {ψ(x̄) ∈ ∃{∧}F : T |= ψ → φ}. There must be a
χ(x̄, ȳ) ∈ ∧F such that ψ(x̄) is ∃ȳχ(x̄, ȳ). Then, with A |= ψ(ā), there is a
b̄ ∈ A such that A |= χ(ā, b̄). Now let B be some model of T ∪∆F (A). Since
χ(ā, b̄) is a finite union of elements in F (A) and A |= χ(ā, b̄), now B |= χ(ā, b̄).
This gives B |= ∃ȳχ(ā, ȳ) ↔ ψ(ā). With the fact that T |= ψ → φ, this gives
B |= φ(ā) and thus T ∪∆F (A) |= φ(ā).

Finally, to conclude this chapter, we shall have a look at another lemma we
get from [2]. This lemma is a method of making a lot of statements simpler and
easier to read.

Lemma 2.5.5 Let S be a set of L-formulas and let for each φ ∈ S, Hφ be a set
of L-formulas. Then the following are equivalent:

i) T |=
∧
φ∈S(φ→

∨
ψ∈Hφ

ψ);

ii) for all φ ∈ S there is a ψ ∈ {∨}Hφ such that T |= φ→ ψ.

Proof First i) =⇒ ii):
We assume T |=

∧
φ∈S(φ →

∨
ψ∈Hφ

ψ). Let φ ∈ S, thus we have T |= φ →∨
ψ∈Hφ

ψ. Now we shall use a proof by contradiction. So suppose there is

no ψ ∈ {∨}Hφ such that T |= φ → ψ. Then we have for every finite subset
{ψ1, ..., ψn} ⊂ Hφ, T ∪ {φ} ∪ {¬ψ1, ...,¬ψn} is consistent. With compactness
this gives that T ∪ {φ} ∪ {¬ψ‖ψ ∈ Hφ} is consistent, but that contradicts with
T |= φ→

∨
ψ∈Hφ

ψ. Thus we have for all φ ∈ S there is a ψ ∈ {∨}Hφ such that

T |= φ→ ψ.
Now ii) =⇒ i):
If for all φ ∈ S there is a ψ ∈ {∨}Hφ such that T |= φ → ψ, we also have for
all φ ∈ S, T |= φ →

∨
ψ∈Hφ

ψ. This is simply equivalent to T |=
∧
φ∈S(φ →∨

ψ∈Hφ
ψ).
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Chapter 3

Amalgamation Properties

In this chapter we will take a look at the amalgamation properties, to give for
all of the properties a syntactical characterisation. Here we will stay closely to
the steps of Bacsich and Hughes in [2], so the definitions, lemmas and theorems
in this chapter are all from [2]. We will start with the general amalgamation
property, then have a short look at the property of Injections Transferable and
afterwards we will consider the strong amalgamation property.

3.1 The Amalgamation Property

We will start this section by giving some definitions. We will not only define
the amalgamation property itself, but also of the morphism property and amal-
gamation bases, since we need them to give a syntactical characterisation of the
amalgamation property.

Definition 3.1.1 (Morphism Property) Let T1, T2 and T3 be L-theories
and let F , G be GA sets of L-formulas. Then the triple < T1, T2, T3 > has
the (F,G)-Morphism Property ((F,G)-MP) if for all A1 |= T1 and A2 |= T2
there are A3 |= T3 and f : A1 → A3, g : A2 → A3 with f ∈ F -hom and
g ∈ G-hom.

Definition 3.1.2 (Amalgamation Base) Let T be an L-theory, A |= T and
E,F,G and H GA sets of L-formulas. Then A is an (E,F,G,H)-amalgamation
base ((E,F,G,H)-a. base) if any diagram M(T ) of the form

A

B

C

D

e

f

g

h

e ∈ E-hom, f ∈ F -hom,

g ∈ G-hom, h ∈ H-hom

can be completed.

Definition 3.1.3 (Amalgamation Property) Let E,F,G and H be GA sets

12



Bachelor thesis Nijs van Tuijl

of L-formulas. Then an L-theory T has the (E,F,G,H)-Amalgamation Prop-
erty ((E,F,G,H)-AP) if every model of T is an (E,F,G,H)-a. base.

With these definitions we can now consider some lemmas and theorems that
can help obtain the syntactic characterisations. But first we have to clarify some
more notation. When we consider the Joint Embedding Property (or JEP) we
mean the ((L), (L))-Morphism Property of the triple < T, T, T >. When we
simply denote amalgamation base (a. base) or Amalgamation Property (AP),
we consider the situation in which E = F = G = H = (L). Lastly, the property
Injections Transferable (or IT) implies the situation in which E = H = (L) and
F = G = (L)+.

The next proposition will show how the Morphism Property is linked to the
Amalgamation Property.

Proposition 3.1.4 Let E,F,G and H be GA sets of L-formulas, let T be an
L-theory and let A be a model of T . Then the following are equivalent:

i) A is an (E,F,G,H)-amalgamation base for T ;

ii) < T ∪∆E(A), T ∪∆F (A), T ∪ {a = a : a ∈ A} > has the (G(A), H(A))-
Morphism Property.

With the properties defined, we can now start to describe how we can find
a syntactic equivalence to the Amalgamation Property. We will start with the
Morphism Property and build from there.

Lemma 3.1.5 Let T1, T2 and T3 be L-theories. The following are equivalent:

i) < T1, T2, T3 > has the (F,G)-MP;

ii) for all sentences φ ∈ ∃{∨,∧}F , ψ ∈ ∃{∨,∧}G, if T1 ∪ {φ} and T2 ∪ {ψ}
are consistent then T3 ∪ {φ, ψ} is consistent.

Proof Firstly i) =⇒ ii):
Suppose T1 ∪ {φ} and T2 ∪ {ψ} are consistent. This gives us models A and B
such that A |= T1 ∪ {φ} and B |= T2 ∪ {ψ}. This means for some ā ∈ A, b̄ ∈ B
that A |= φ(ā) and B |= ψ(b̄). Now with i), there is a C |= T3 with f : A → C,
g : B → C with f ∈ F -hom and g ∈ G-hom. We have seen in 2.4.3 that an
F -morphism is equal to an {∃,∨,∧}F -morphism, hence we have C |= φ(f(ā))
and C |= ψ(g(b̄)). This gives us that C |= T3 ∪ {φ, ψ}.
Secondly ii) =⇒ i):
We will use contradiction, so suppose that < T1, T2, T3 > doesn’t have the
(F,G)-MP. Now let T1 ∪ {φ} and T2 ∪ {ψ} be consistent, with respectively the
models A and B. We know that there cannot be a model C of T3 such that
f : A → C, g : B → C with f ∈ F -hom and g ∈ G-hom. Since giving such
morphisms is equivalent to giving an LAB-expansion of a model such that it is
a model of ∆F (A) ∪∆G(B) (when we take the interpretations of the elements
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of A and B disjoint), we now see that T3 ∪ ∆F (A) ∪ ∆G(B) is inconsistent.
Then the Compactness Theorem gives that there is a finite subtheory which is
also inconsistent, thus there are some finite subsets of ∆F (A) and ∆G(B) that
united with T3 are inconsistent. This gives for some φ(x̄) ∈ ∧F , ψ(x̄) ∈ ∧G and
lists ā ∈ A and b̄ ∈ B such that A |= φ(ā) and B |= ψ(b̄), that T3 ∪ {φ(ā), ψ(b̄)}
is inconsistent. With φ(ā) ↔ ∃x̄φ(x̄), we now have that for all sentences φ ∈
∃{∨,∧}F , ψ ∈ ∃{∨,∧}G, T3 ∪ {φ, ψ} is inconsistent. Hence ii) does not hold.

With this lemma we can already see the way in which the properties link
between semantic properties and syntactic conditions. This lemma considers
existential sentences of GA sets, but when we take the contrapositive we are
able to consider universal sentences.

Corollary 3.1.6 Let T1, T2 and T3 be L-theories. The following are equivalent:

i) < T1, T2, T3 > has the (F,G)-MP

ii) for all sentences ξ ∈ ∀{∨,∧}F ′, χ ∈ ∀{∨,∧}G′, if T3 |= ξ ∨ χ then T1 |= ξ
or T2 |= χ, where F ′ = {¬φ : φ ∈ F} and G′ = {¬ψ : ψ ∈ G}.

Proof We can look at the contrapositive of ii) of lemma 3.1.5, i.e.:
for all sentences φ ∈ ∃{∨,∧}F , ψ ∈ ∃{∨,∧}G, if T3 ∪ {φ, ψ} isn’t consistent
then it doesn’t hold that T1 ∪ {φ} and T2 ∪ {ψ} are consistent.
We know that not consistent means inconsistent and ¬(φ∧ψ)↔ ¬φ∨¬ψ, thus:
for all sentences φ ∈ ∃{∨,∧}F , ψ ∈ ∃{∨,∧}G, if T3∪{φ, ψ} is inconsistent then
T1 ∪ {φ} is inconsistent or T2 ∪ {ψ} is inconsistent.
This gives, with basic conditions for theories:
for all sentences φ ∈ ∃{∨,∧}F , ψ ∈ ∃{∨,∧}G, if T3 |= ¬φ ∨ ¬ψ then T1 |= ¬φ
or T2 |= ¬ψ.
Now we can use ¬∃x̄φ(x̄)↔ ∀x̄¬φ(x̄), which gives finally:
for all sentences ξ ∈ ∀{∨,∧}F ′, χ ∈ ∀{∨,∧}G′, if T3 |= ξ ∨ χ then T1 |= ξ or
T2 |= χ, where F ′ = {¬φ : φ ∈ F} and G′ = {¬ψ : ψ ∈ G}.
It is clear now that this corollary is indeed equivalent to lemma 3.1.5.

When we recall that the JEP is the ((L), (L))-Morphism Property of the
triple< T, T, T > and that the set ∀1 of all universal L-sentences is ∀({∧,∨,¬}(L)+),
we see that the above is equivalent to the next corollary.

Corollary 3.1.7 A L-theory T has the JEP iff for all universal sentences φ, ψ
of L, if T |= φ ∨ ψ then T |= φ or T |= ψ.

With this equivalence we have a description of the JEP in terms of universal
sentences in an L-theory. This already gives a glimpse of how to describe a
syntactic equivalence of the Amalgamation Property. But before we can do
that, we have to look at the amalgamation bases first.

Theorem 3.1.8 Let T be an L-theory and let A be a model of T . Then the
following are equivalent:

14
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i) A is an amalgamation base for T ;

ii) for all φ1(x̄), φ2(x̄) ∈ ∀1 with T |= φ1 ∨ φ2 there are ψ1(x̄), ψ2(x̄) ∈ ∃1
such that T |= ψ1 → φ1, T |= ψ2 → φ2 and either A |= ∀x̄ψ1(x̄) or
A |= ∀x̄ψ2(x̄).

Proof With lemma 3.1.4 we see that A is an amalgamation base for T iff
< T ∪∆(A), T ∪∆(A), T ∪{a = a : a ∈ A} > has the ((L)(A), (L)(A))-morphism
property. We note that {¬φ : φ ∈ (L)} = (L), since (L) is closed under
negation. This gives us, with corollary 3.1.6, that < T∪∆(A), T∪∆(A), T∪{a =
a : a ∈ A} > has the ((L)(A), (L)(A))-morphism property iff for all sentences
φ1(x̄), φ2(x̄) ∈ ∀1 and ā ∈ A, if T ∪ {a = a : a ∈ A} |= φ1(ā) ∨ φ2(ā) then
T ∪ ∆(A) |= φ1(ā) or T ∪ ∆(A) |= φ2(ā). With lemma 2.4.3, we know that
T ∪ ∆(A) |= φi(ā) iff there is some ψi(x̄) ∈ {ψi(x̄) ∈ ∃1 : T |= ψi → φi} with
A |= ψi(ā). Now because of the fact that φ1(x̄), φ2(x̄) ∈ ∀1 and T ∪{a = a : a ∈
A} |= φ1(ā)∨φ2(ā), it even holds that there is a ψix̄ such that A |= ψi(ā) for all
ā ∈ A and thus A |= ∀x̄ψi(x̄). We now get that for all sentences φ1(x̄), φ2(x̄) ∈
∀1 and ā ∈ A, if T ∪ {a = a : a ∈ A} |= φ1(ā) ∨ φ2(ā) then T ∪∆(A) |= φ1(ā)
or T ∪ ∆(A) |= φ2(ā) iff for all < φ1(x̄), φ2(x̄) > ∈ {< φ1, φ2 >: φ1, φ2 ∈ ∀1
and T |= φ1 ∨ φ2} and some ψi ∈ {ψ ∈ ∃1 : T |= ψi → φi}, A |= ∀x̄ψ1(x̄) or
A |= ∀x̄ψ2(x̄). Hence we have the desired equivalence.

With this we almost have a syntactic characterisation of the Amalgamation
Property. All that is left to do is apply the definition of the amalgamation
property on theorem 3.1.8 to get the equivalence.

Corollary 3.1.9 Let T be a L-theory. The following are equivalent:

i) T has the Amalgamation Property;

ii) for all φ1(x̄), φ2(x̄) ∈ ∀1 with T |= φ1 ∨ φ2 there are ψ1(x̄), ψ2(x̄) ∈ ∃1
such that T |= ψ1 → φ1, T |= ψ2 → φ2 and T |= ψ1 ∨ ψ2.

Proof We know that T has the AP if and only if every model of T is an
amalgamation base. Thus with theorem 3.1.8 we have that every model A of T ,
A |= ∀x̄ψ1(x̄) or A |= ∀x̄ψ2(x̄) for all < φ1(x̄), φ2(x̄) > ∈ {< φ1, φ2 >: φ1, φ2 ∈
∀1 and T |= φ1∨φ2} and some ψi ∈ {ψ ∈ ∃1 : T |= ψi → φi}. This gives that for
all φ1, φ2 ∈ ∀1 and T |= φ1 ∨ φ2 we have some ψ1, ψ2 ∈ {ψ ∈ ∃1 : T |= ψi → φi}
such that T ∪ {ψ1} or T ∪ {ψ2} is consistent, which gives the characterisation.

3.2 Injections Transferable

In this section we shall have a look at theories for which injections are trans-
ferable. We recall that a theory T has IT if T has the ((L), (L)+, (L)+, (L))-
amalgamation property. Since we can see that this is close to the general amal-
gamation property, we can use the same steps to get the characterisation. So
we will start to look at a base for Injections Transferable.
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Lemma 3.2.1 Let T be a L-theory and A |= T . The following are equivalent:

i) A is a ((L), (L)+, (L)+, (L))-amalgamation base, thus a base for injections
transferable;

ii) for all formulas φ1 ∈ ∃+1 and φ2 ∈ ∃1, such that T ∪ {φ1, φ2} is inconsis-
tent, there exist formulas ψ1 ∈ ∃1 and ψ2 ∈ ∃+1 , such that T ∪{φ1, ψ1} and
T ∪ {φ2, ψ2} are inconsistent and either A |= ∀x̄ψ1(x̄) or A |= ∀x̄ψ2(x̄).

Proof We know that A is a ((L), (L)+, (L)+, (L))-amalgamation base if and
only if < T ∪ ∆(A), T ∪ ∆(A), T ∪ {a = a : a ∈ A} > has the ((LA)+, (LA)-
morphism property. We use lemma 3.1.5 and see that this holds if and only if
for all φ1(x̄) ∈ ∃+1 , φ2(x̄) ∈ ∃1, if T ∪ ∆(A) ∪ {φ1} and T ∪ ∆(A) ∪ {φ2} are
consistent then T ∪{a = a : a ∈ A}∪{φ1, φ2} is consistent. This is equivalent to
if T∪{a = a : a ∈ A} 2 φ1(ā)∧φ2(ā) then T∪∆(A) 2 φ1(ā) or T∪∆(A) 2 φ2(ā).
We can replace the last part by saying T∪∆(A) |= ¬φ1(ā) or T∪∆(A) |= ¬φ2(ā).
With lemma 2.4.3 this is equivalent to for all φ1(x̄) ∈ ∃+1 , φ2(x̄) ∈ ∃1, if T ∪{a =
a : a ∈ A} 2 φ1(ā)∧φ2(ā) then there are some ψ1(x̄) ∈ ∃1 and ψ2(x̄) ∈ ∃+1 such
that T |= ψ1 → ¬φ1, T |= ψ2 → ¬φ2 and A |= ψ1(ā)∨ ψ2(ā) for all ā ∈ A. Now
by noticing that T ∪{a = a : a ∈ A} 2 φ1(ā)∧φ2(ā) is equivalent to T ∪{φ1, φ2}
is inconsistent and T |= ψi → ¬φi equivalent to T ∪ {φi, ψi} is inconsistent, we
have the characterisation.

Now with the same proof as in 3.1.9, we can get from the characterisation of a
base for Injections Transferable to the syntactical characterisation of Injections
Transferable. Hence we have the following corollary.

Corollary 3.2.2 Let T be a L-theory. The following are equivalent:

i) Injections are transferable in T ;

ii) for all φ1(x̄) ∈ ∃+1 , φ2(x̄) ∈ ∃1 with T ∪ {φ1(x̄), φ2(x̄)} is inconsistent,
there are ψ1(x̄) ∈ ∃1 and ψ2(x̄) ∈ ∃+1 such that T ∪ {φ1(x̄), ψ1(x̄)} and
T ∪ {φ2(x̄), ψ2(x̄)} are inconsistent and T |= ψ1(x̄) ∨ ψ2(x̄).

3.3 The Strong Amalgamation Property

The last section of this chapter consists of getting a syntactic characterisation
of the strong amalgamation theorem. Our steps will be almost the same as in
section 3.1, with the general amalgamation property. The difference is that we
will not look at a ’Strong Joint Embedding Property”, but rather at a ’Strong
Embedding Property’. Once again we shall start with the definitions necessary
in this section.

Definition 3.3.1 (Strong Amalgamation Base) Let T be an L-theory and
A be a model of T . Then A is a strong amalgamation base (s.a. base) for T if
every diagram of the form
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A

B

C

D

f

g

f ′

g′

f, g, f ’ and g’ embeddings

f ’f(A) = f’(B)∩ g’(C)

can be completed.

Definition 3.3.2 (Strong Amalgamation Property) An L-theory T has the
Strong Amalgamation Property (SAP) if every model of T is a strong amalga-
mation base.

Definition 3.3.3 (Strong Embedding Property) Let T1, T2 and T3 be L
theories. Then the triple < T1, T2, T3 > has the Strong Embedding Prop-
erty (SEP) if given A1 |= T1 and A2 |= T2 there is A3 |= T3 and embeddings
f1 : A1 → A3 and f2 : A2 → A3, such that f1(A1) ∩ f2(A2) = D(A3). Here is
for any langage L, D(A) the substructure of A built on the constant terms of L.

We can now see the difference between the JEP and the SEP. The next
proposition shows that our SEP is well chosen, and it shows, quite similar
to proposition 3.1.4, the link between the strong embedding property and the
strong amalgamation property.

Proposition 3.3.4 Let T be an L-theory and A be a model of T . Then the
following are equivalent:

i) A is a strong amalgamation base for T ;

ii) < T ∪∆(A), T ∪∆(A), T ∪ {a = a : a ∈ A} > has the SEP.

Now we shall look at the syntactical characterisation of the strong embed-
ding property, which already gives a glimp of the characterisation of the strong
amalgamtion property itself.

Theorem 3.3.5 Let T1, T2 and T3 be L theories. Then the following are equiv-
alent:

i) < T1, T2, T3 > has the SEP;

ii) for all φ(x̄), ψ(ȳ) ∈ ∧(L), if T3 |= φ(x̄) ∧ ψ(ȳ) → x̄ ∩ ȳ 6= ∅ then there is
a list t̄ of constant terms of L such that either T1 |= φ(x̄)→ x̄ ∩ t̄ 6= ∅ or
T2 |= ψ(ȳ)→ ȳ ∩ t̄ 6= ∅.

Proof Firstly i) =⇒ ii):
At first we assume that < T1, T2, T3 > has the SEP. Now suppose that T3 |=
φ(x̄)∧ψ(ȳ)→ x̄∩ ȳ 6= ∅. If T1 ∪ {φ(x̄)} is inconsistent, then T1 |= φ(x̄)→ ⊥→
x̄ ∩ t̄ 6= ∅ thus T1 |= φ(x̄) → x̄ ∩ t̄ 6= ∅ holds. The same idea if T2 ∪ {ψ(x̄)} is
inconsistent.

So we will now consider the case where both T1 ∪ {φ(x̄)} and T2 ∪ {ψ(x̄)}
are consistent. So let A1 |= T1∪{φ(ā)} and A2 |= T2∪{ψ(b̄)} be some arbitrary
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models. Since < T1, T2, T3 > has the SEP, there is a A3 |= T3 and embeddings
f1 : A1 → A3, f2 : A2 → A3 such that f1(A1) ∩ f2(A2) = D(A3).

Since f1 and f2 are embeddings and φ(x̄), ψ(ȳ) ∈ ∧(L), we know with lemma
2.4.3 that A3 |= φ(f1(ā)) ∧ ψ(f2(b̄)). Now by the fact that T3 |= φ(x̄) ∧ ψ(ȳ)→
x̄ ∩ ȳ 6= ∅, there must be some a ∈ ā and some b ∈ b̄ such that f1(a) = f2(b).
Then by f1(A1) ∩ f2(A2) = D(A3), f1(a) = f2(b) ∈ D(A3). Since D(A) is
the substructure of A built on the constant terms of L, now a ∈ D(A1) and
b ∈ D(A2) must hold. Hence we see that there must be some list t̄ of constant
terms of L such that A1 |= φ(ā) → ā ∩ t̄ 6= ∅ and A2 |= ψ(b̄) → b̄ ∩ t̄ 6= ∅.
Since A1 and A2 are some arbitrary models of respectively T1 ∪ {φ(x̄)} and
T2∪{ψ(x̄)}, this must hold for all models. Thus we have T1 |= φ(x̄)→ x̄∩ t̄ 6= ∅
and T2 |= ψ(ȳ)→ ȳ ∩ t̄ 6= ∅, which certainly implies at least one of them holds.
Secondly ii) =⇒ i):
We know that for < T1, T2, T3 > to have the SEP, there must be for all A1 |= T1,
A2 |= T2 a model A3 |= T3 such that also A3 |= ∆(A1), A3 |= ∆(A2) and
A3 |= {a 6= b : a ∈ A−D(A1), b ∈ B −D(A2)}, i.e. T3 ∪∆(A1) ∪∆(A2) ∪ {a 6=
b : a ∈ A1 −D(A1), b ∈ A2 −D(A2)} is consistent. Here we can consider ∆(A)
in the language LA−D(A), since D(A) consists of constant terms of L.

Now suppose it is inconsistent. Then by the Compactness Theorem there
must be a finite subtheory that is inconsistent, hence we have some φ(x̄), ψ(ȳ) ∈
∧(L) and lists ā ∈ A1−D(A1), b̄ ∈ A2−D(A2) such that T3∪{φ(ā), ψ(b̄), ā∩ b̄ =
∅} is inconsistent, A1 |= φ(ā) and A2 |= ψ(b̄). This holds for all A1 |= T1,
A2 |= T2 and thus we see that T3 |= φ(x̄) ∧ ψ(ȳ) → x̄ ∩ ȳ 6= ∅. But since
ā ∈ A1 −D(A1) and A1 |= φ(ā), we see that for all lists t̄ of constant terms of
L we have A1 |= φ(ā)→ ā ∩ t̄ = ∅. For the same reason A2 |= ψ(b̄)→ b̄ ∩ t̄ = ∅.
This gives that T1 ∪ {φ(x̄)} ∪ {x 6= t : x ∈ x̄, t constant term of L} and
T2 ∪ {ψ(ȳ)} ∪ {y 6= t : y ∈ ȳ, t constant term of L} are consistent and never
T1 |= φ(x̄)→ x̄ ∩ t̄ 6= ∅ or T2 |= ψ(ȳ)→ ȳ ∩ t̄ 6= ∅.

Since the path to the syntactical characterisation of the amalgamation prop-
erty is quite similar to the one to the characterisation of the general amalga-
mation property, we shall now look at the characterisation for a strong amal-
gamation base. Since we already noted that we won’t consider a strong joint
embedding property, there will be no bypass and we can continue straight away.

Theorem 3.3.6 Let T be an L-theory and A a model of T . Then the following
are equivalent:

i) A is a strong amalgamation base for T;

ii) for all φ1(x̄1, z̄), φ2(x̄2, z̄) ∈ ∧(L) with T |= φ1(x̄1, z̄) ∧ φ2(x̄2, z̄) → x̄1 ∩
x̄2 6= ∅, there are ψ1(w̄n, z̄), ψ2(w̄n, z̄) ∈ {ψ(w̄n, z̄) ∈ ∨ ∧ (L) : T |=
φ(x̄, z̄) ∧ ψ(w̄n, z̄) → x̄ ∩ w̄n 6= ∅}, where n ∈ N and w̄n is w0, w1, ..., wn,
such that A |= ∀z̄(∃w̄nψ1(w̄n, z̄) ∨ ∃w̄nψ2(w̄n, z̄)).

Proof Firstly i) =⇒ ii):
So we assume A is a stong amalgamation base for T. This gives with lemma
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3.3.4 that < T ∪ ∆(A), T ∪ ∆(A), T ∪ {a = a : a ∈ A} > has the SEP. Now
we can use theorem 3.3.5 to see that for all φ1(x̄1, z̄), φ2(x̄2, z̄) ∈ ∧(L) and all
lists ā ∈ A, if T ∪ {a = a : a ∈ A} |= φ1(x̄1, ā) ∧ φ2(x̄2, ā) → x̄1 ∩ x̄2 6= ∅ there
is a list b̄ ∈ A − {ā} such that T ∪ ∆(A) |= φ1(x̄1, ā) → x̄1 ∩ (b̄ ∪ ā) 6= ∅ or
T ∪∆(A) |= φ2(x̄2, ā)→ x̄2 ∩ (b̄∪ ā) 6= ∅. Here we must use (b̄∪ ā) because the
interpretations of the list t̄ of constant terms of L can already (partially) be in
ā or is (partially) in A − {ā}, thus the list b̄ consists of the interpretations of
the missing constant terms.

We know that T ∪ ∆(A) is consistent and thus every subtheory must be
consistent. Since ∆(A consists of all open sentences that hold in A, this gives
that there must be an n ∈ N and some ψ1(w̄n, z̄), ψ2(w̄n, z̄) ∈ ∨ ∧ (L) with
w̄n = (w0, ..., wm), such that we can extend the list b̄ from above to a list
b̄ = (b0, ..., bn) ∈ A − {ā} to get T ∪ {ψ1(b̄, ā)} |= φ1(x̄1, ā) → x̄1 ∩ (b̄ ∪ ā) 6= ∅,
T∪{ψ2(b̄, ā)} |= φ2(x̄2, ā)→ x̄2∩(b̄∪ā) 6= ∅ and A |= ψ1(b̄, ā)∨ψ2(b̄, ā). We know
that A |= ψ1(b̄, ā)∨ψ2(b̄, ā) is logically equivalent with A |= ∀z̄(∃w̄nψ1(w̄n, z̄)∨
∃w̄nψ2(w̄n, z̄)), which is what we wanted.
Secondly ii) =⇒ i):
We assume that for all φ1(x̄1, z̄), φ2(x̄2, z̄) ∈ ∧(L) with T |= φ1(x̄1, z̄)∧φ2(x̄2, z̄)→
x̄1 ∩ x̄2 6= ∅, there are ψ1(w̄n, z̄), ψ2(w̄n, z̄) ∈ {ψ(w̄n, z̄) ∈ ∨ ∧ (L) : T |=
φ(x̄, z̄) ∧ ψ(w̄n, z̄) → x̄ ∩ w̄n 6= ∅}, where n ∈ N and w̄n is w0, w1, ..., wn, such
that A |= ∀z̄(∃w̄nψ1(w̄n, z̄) ∨ ∃w̄nψ2(w̄n, z̄)). Now we can extend the notion
T |= φ(x̄, z̄)∧ψ(w̄n, z̄)→ x̄∩w̄n 6= ∅ to T |= φ(x̄, z̄)∧ψ(w̄n, z̄)→ x̄∩(w̄n∪z̄) 6= ∅,
since if the intersection of x̄ with the w̄n isn’t empty, it still won’t be empty
when we unite the z̄ with the w̄n. Now we can substitute some z’s for w’s
such that we get some ψ′ with T |= φ(x̄, z̄) ∧ ψ′(w̄m, z̄) → x̄ ∩ (w̄m ∪ z̄) 6= ∅
and w̄m ∩ z̄ = ∅. Then we get for all ā ∈ A there is a b̄ ∈ A − {ā} such that
A |= ψ′1(b̄, ā) ∨ ψ′2(b̄, ā) and T |= ψ′1(w̄m, z̄) ∧ φ1(x̄, z̄) → x̄ ∩ (w̄m ∪ z̄) 6= ∅ and
T |= ψ′2(w̄m, z̄)∧φ2(x̄, z̄)→ x̄∩(w̄m∪ z̄) 6= ∅. Since A |= ψ′1(b̄, ā)∨ψ′2(b̄, ā) gives
that ψ′1 or ψ′2 in ∆(A), we get that T ∪∆(A) |= φ1(x̄, z̄) → x̄ ∩ (b̄ ∪ ā) 6= ∅ or
T∪∆(A) |= φ2(x̄, z̄)→ x̄∩(b̄∪ā) 6= ∅. We know that T |= φ1(x̄1, z̄)∧φ2(x̄2, z̄)→
x̄1 ∩ x̄2 6= ∅ implies T ∪ {a = a : a ∈ A} |= φ1(x̄1, ā) ∧ φ2(x̄2, ā)→ x̄1 ∩ x̄2 6= ∅.
Now we have that for all φ1(x̄1, z̄), φ2(x̄2, z̄) ∈ ∧(L) with T ∪{a = a : a ∈ A} |=
φ1(x̄1, ā) ∧ φ2(x̄2, ā) → x̄1 ∩ x̄2 6= ∅, T ∪∆(A) |= φ1(x̄, z̄) → x̄ ∩ (b̄ ∪ ā) 6= ∅ or
T ∪∆(A) |= φ2(x̄, z̄) → x̄ ∩ (b̄ ∪ ā) 6= ∅. With theorem 3.3.5 this is equivalent
to < T ∪∆(A), T ∪∆(A), T ∪ {a = a : a ∈ A} > has the SEP, which gives with
proposition 3.3.4 that A is a strong amalgamation base for T .

As we have seen in the sections 3.1 and 3.2, the characterisation for a base
is the most important step towards the characterisation of the whole property.
Thus we can use a same proof as in 3.1.9 to get the syntactical characterisation
of the strong amalgamation property.

Corollary 3.3.7 Let T be an L-theory. Then the following are equivalent:

i) T has the SAP;

ii) for all φ1(x̄, z̄), φ2(ȳ, z̄) ∈ ∧(L) there exist ψ1(ū, z̄), ψ2(v̄, z̄) ∈ ∨∧(L) such
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that if T |= φ1(x̄, z̄) ∧ φ2(ȳ, z̄) → x̄ ∩ ȳ 6= ∅ then T |= ψ1(ū, z̄) ∨ ψ2(v̄, z̄),
T |= φ1(x̄, z̄)∧ψ1(ū, z̄)→ x̄∩ū 6= ∅ and T |= φ2(ȳ, z̄)∧ψ2(v̄, z̄)→ ȳ∩v̄ 6= ∅.
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Chapter 4

The Congruence Extension
Property

In this chapter we look at the congruence extension property. To obtain a
syntactical characterisation we will once more follow the steps of Bacsich and
Hughes in [2]. We shall not give a general syntactical characterisation, as we did
in the last chapter, but solely focus on theories preserved under homomorphic
images. When we find a characterisation, we shall be even more specific and
look at equational theories. To give the characterisations we shall not, as in the
last chapter, define other notions to make small intermediate steps. Therefore
the proofs are quite long, but still they are understandable. However, before we
go to these characterisations, we shall look at the definition of the congruence
extension property.

Definition 4.0.1 (Congruence Extension Property) An L-theory T has
the Congruence Extension Property (CEP) if every diagram of the form

A

B

C

D

e

f

g

h

e and h embeddings

f and g surjections

can be completed.

4.1 Preserved Under Homomorphisms

In this section we shall give a syntactical characterisation of the congruence ex-
tension property for theories preserved under homomorphic images. We consider
only those theories, because it gives us the possibility to change the requirement
of a surjection g : B→ D to a simple homomorphism. It is possible, since g(B)
is a model of T by the fact that T is preserved under homomorphic images and
since g : B → g(B) is a surjection. What we gain by this transformation is
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the opportunity to use, like we did before, the method of diagrams, since for
the homomorphism we only have to find a model of ∆+(B), as we have seen in
corollary 2.4.6.

By concluding this, we can now give the syntactical characterisation.

Theorem 4.1.1 Let T be an L-theory preserved under homomorphic images.
Then the following are equivalent:

i) T has the CEP;

ii) for all φ1(x̄) ∈ ∃ ∧ (L)+ and φ2(x̄) ∈ ∧(L) with T ∪ {φ1(x̄), φ2(x̄)} is
inconsistent, there are ψ1(x̄) ∈ ∃1 and ψ2(x̄) ∈ ∃+1 such that T |= ψ1(x̄) ∨
ψ2(x̄) and T ∪ {φ1(x̄), ψ1(x̄)} and T ∪ {φ2(x̄), ψ2(x̄)} are inconsistent.

Proof We recall that T has the CEP if the diagram of the form

A

B

C

D

e

f

g

h

e and h embeddings

f and g surjections

can be completed. We have seen that we can weaken the demand for g of a
surjection to an homomorphism, since T is preserved under homomorphisms.
Thus we have that T has the CEP if and only if for every A |= T , there are
B,C |= T such that there is an embedding e from A in B, a surjection f form
A to C and T ∪∆+(B) ∪∆(C) is consistent.

With the help of the surjection f , we can denote the diagram of C with
constants from A. Thus we denote ∆(f(A)) = {χ(a1, ..., an) ∈ (LA) : C |=
χ(f(a1), ..., f(an))}. This gives that T has the CEP if and only if for every
A |= T the following holds: if there are B,C |= T such that there is an embedding
e from A in B and a surjection f from A to C, then T ∪∆+(B) ∪∆(f(A)) is
consistent. We shall call this expression (1).

Expression (2) states: for some ā ∈ A and for all φ1(x̄) ∈ ∃ ∧ (L)+ and
φ2(x̄) ∈ ∧(L) with T ∪ {φ1(x̄), φ2(x̄)} is inconsistent, T ∪ ∆(A) ∪ {φ1(ā)} or
T ∪∆+(A) ∪ {φ2(ā)} is inconsistent.

Now we claim that (1) and (2) are equivalent. We shall prove both ways by
contradiction. Firstly (1) implies (2):

Suppose (2) fails, thus there is a ā ∈ A such that T ∪∆(A)∪{φ1(ā)} and T ∪
∆+(A)∪{φ2(ā)} are consistent, for all φ1(x̄) ∈ ∃∧ (L)+ and φ2(x̄) ∈ ∧(L) with
T ∪{φ1(x̄), φ2(x̄)} is inconsistent. This gives a B |= T ∪∆(A)∪{φ1(ā)}, which
implies there is an embedding from A in B, and a C′ |= T ∪∆+(A) ∪ {φ2(ā)},
which implies there is an homomorphism A to C′. Since T is preserved under
homomorphisms, the last one also gives a substructure C of C′ which is a model
of T ∪∆+(A) ∪ {φ2(ā)} and which is the image of the homomorphism from A
to C′. Now we have found B,C |= T such that there is an embedding e from
A in B, a surjection f from A to C and B |= {φ1(ā)} and C |= {φ2(ā)}. With
T ∪ {φ1(x̄), φ2(x̄)} is inconsistent, we see that T ∪∆+(B)∪∆(f(A)) cannot be
consistent and thus (1) fails.
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Now secondly (2) implies (1). We suppose that (1) fails. This gives some
B,C |= T such that there is an embedding e from A in B, a surjection f from A
to C and T ∪∆+(B)∪∆(f(A)) is inconsistent. This gives with the Compactness
Theorem that there must be a finite subset of ∆+(B) and a finite subset of
∆(f(A)) such that the union with T is inconsistent. Hence there are φ

′

1(x̄, ȳ) ∈
∧(L)+, φ2(x̄) ∈ ∧(L), ā ∈ A and b̄ ∈ B − A such that T ∪ {φ′

1(x̄, ȳ), φ2(x̄)}
is inconsistent, B |= T ∪ ∆(A) ∪ {φ′

1(ā, b̄)} and C |= T ∪ ∆+(A) ∪ {φ2(ā)}.
Now we can choose φ1(x̄) to be ∃ȳφ′

1(x̄, ȳ). We see that we have for some
φ1(x̄) ∈ ∃ ∧ (L)+ and φ2(x̄) ∈ ∧(L) with T ∪ {φ1(x̄), φ2(x̄)} inconsistent, a
ā ∈ A such that B |= T ∪∆(A)∪ {φ1(ā)} and C |= T ∪∆+(A)∪ {φ2(ā)}. Thus
(2) fails. We see that (1) and (2) are equivalent and thus that T has the CEP
if (2) holds for all A |= T .

Now we can rewrite in (2) ’T ∪∆(A) ∪ {φ1(ā)} or T ∪∆+(A) ∪ {φ2(ā)} is
inconsistent’ by ’T ∪ ∆(A) ∪ {φ1(ā)} |=⊥ or T ∪ ∆+(A) ∪ {φ2(ā)} |=⊥’. This
we can rewrite to ’T ∪∆(A) |= φ1(ā) →⊥ or T ∪∆+(A) |= φ2(ā) →⊥’. With
lemma 2.4.3 this gives us that (2) is equivalent to for some ā ∈ A and for all
φ1(x̄) ∈ ∃ ∧ (L)+ and φ2(x̄) ∈ ∧(L) with T ∪ {φ1(x̄), φ2(x̄)} is inconsistent,
there is a ψ1(x̄) ∈ {ψ1(x̄) ∈ ∃1 : T |= ψ1(x̄) → (φ1(x̄) →⊥)} and a ψ2(x̄) ∈
{ψ2(x̄) ∈ ∃+1 : T |= ψ2(x̄)→ (φ2(x̄)→⊥)} such that A |= ψ1(ā) ∨ ψ2(ā). If this
must hold for all A |= T , we have that T |= ψ1(x̄) ∨ ψ2(x̄). Now we notice that
T |= ψ1(x̄) → (φ1(x̄) →⊥) is equivalent to T ∪ {ψ1(x̄)} |= φ1(ā) →⊥, which
is again equivalent to T ∪ {φ1(x̄), ψ1(x̄)} |=⊥. The last is the same as saying
T∪{φ1(x̄), ψ1(x̄)} is inconsistent. The same holds for T |= ψ2(x̄)→ (φ2(x̄)→⊥)
and T ∪ {φ2(x̄), ψ2(x̄)} is inconsistent. Thus we have T has the CEP if and
only if for all φ1(x̄) ∈ ∃ ∧ (L)+ and φ2(x̄) ∈ ∧(L) with T ∪ {φ1(x̄), φ2(x̄)} is
inconsistent, there is a ψ1(x̄) ∈ ∃1 such that T ∪ {φ1(x̄), ψ1(x̄)} is inconsistent
and a ψ2(x̄) ∈ ∃+1 such that T ∪ {φ2(x̄), ψ2(x̄)} is inconsistent, together such
that T |= ψ1(x̄) ∨ ψ2(x̄). Hence we have the desired characterisation.

4.2 Equational theories

In this section we will consider a special case of theories preserved under ho-
momorphic images, namely the equational theories. These are theories of the
language L, which is without relation symbols, with a set of axioms based on
equations, i.e. an equality s = t with s and t terms of the language L. This
clearly gives that the set of axioms of T consists of positive sentences only.
Thus, when we recall the preservation theorems of proposition 2.2.1, we see
that T is preserved under homomorphisms. So we can use theorem 4.1.1 to give
a characterisation.

Now before we shall give the characterisation, we shall first prove the fol-
lowing lemma, in order to keep the proof comprehensible.

Lemma 4.2.1 Let T be an equational L-theory. Then the following are equiv-
alent:

i) T has the CEP;
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ii) for all B |= T , embeddings from A in B and a, b ∈ A, we have ∆+(B) ∪
∆+(A) ∪ {a = b} ∪ {c 6= d : ∆+(A) ∪ {a = b} 2 c = d} is consistent.

Proof Since T is an L-theory preserved under homomorphic images, we can
use the same as in theorem 4.0.9, to show that T has the CEP if and only if for
all A |= T holds if there are B,C |= T such that there is an embedding e from A
in B and a surjection f from A to C, then T ∪∆+(B) ∪∆(f(A)) is consistent.
Now as B |= T it must hold that all equations in T are true in B. But then all
these equations also hold in ∆+(B), so it is the same to say ∆+(B) ∪∆(f(A))
is consistent.

Now we shall have a closer look at C, the homomorphic image of A. We
recall that giving a homomophism from A to B is the same as giving an LA-
expansion of B which is a model of ∆+(A). Considering our homomorphism
also has to be a surjection, we get that these homomorphic images are the
quotients of A by a set of equations. So let X be a set of equations a = b with
a, b ∈ A. The quotient of A modulo X is now the model A/X and the surjective
homomorphism f : A → A/X. We can see straightaway that A/X must be a
model of ∆+(A)∪X∪{c 6= d : ∆+(A)∪X 2 c = d}. Thus we can see that T has
the CEP if and only if for all A |= T holds if there is a B |= T such that there
is an embedding e from A in B and there is a set of equations X (as described
above), then ∆+(B) ∪∆+(A) ∪X ∪ {c 6= d : ∆+(A) ∪X 2 c = d} is consistent.

To show that the caseX = {a = b} is enough to prove T has the CEP, have to
make two remarks. At first we notice, with the Compactness Theorem, that for
consistency we only have to look at finite sets X. Secondly it is simple to prove
that if X = X1 ∪X2 and X1 ∩X2 = ∅, then giving a homomorphism from A to
A/X is equal to giving a homomorphism from A to A/X1 and afterwards giving
a homomorphism from A/X1 to (A/X1)X2. We shall prove this by showing that
A/X and (A/X1)X2 are logically equivalent. We know that A/X |= ∆+(A) ∪
X ∪ {c 6= d : ∆+(A) ∪X 2 c = d}. This gives that A/X1 |= ∆+(A) ∪X1 ∪ {c 6=
d : ∆+(A)∪X1 2 c = d}, which thereupon gives that (A/X1)X2 |= ∆+(A/X1)∪
X2∪{c 6= d : ∆+(A/X1)∪X2 2 c = d}. We note that ∆+(A/X1) = ∆+(A)∪X1,
because ∆+(A) ∪ X1 consists of all equations, and thus all positive sentences,
in A/X1. Hence we have (A/X1)X2 |= ∆+(A) ∪ X1 ∪ X2 ∪ {c 6= d : ∆+(A) ∪
X1 ∪ X2 2 c = d} and with X = X1 ∪ X2 this is equal to (A/X1)X2 |=
∆+(A) ∪ X ∪ {c 6= d : ∆+(A) ∪ X 2 c = d}, thus A/X and (A/X1)X2 are
logically equivalent.

At last we can use induction to show that the case X = {a = b} for some
a, b ∈ A proofs T has the CEP. At first we will look at the diagram in the case
∆+(B) ∪∆+(A) ∪ {a = b} ∪ {c 6= d : ∆+(A) ∪ {a = b} 2 c = d} is consistent.
Let D1 be a model. We get a diagram of the form

A B

A/{a = b} D1

e

f g

h

e and h embeddings

f and g surjections

and we see that in this case the diagram can be completed. Now our induction
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hypothesis is that for some set Xn = {a1 = b1, ..., an = bn}, for some n-tuples
ā, b̄ ∈ A, the diagram can be completed. We consider the set Xn+1 = {a1 =
b1, ..., an+1 = bn+1}. This gives that Xn+1 = Xn ∪ {an+1 = bn+1}. Our
induction hypothesis gives us a model D′ such that

A B

A/Xn D′

e

f ′
g′

h′

e and h embeddings

f and g surjections

can be completed. But now we have a D′ |= T , an embedding from A/Xn

into D′ and an+1, bn+1 ∈ A/Xn. We see that ∆+(D′) ∪∆+(A/Xn) ∪ {an+1 =
bn+1}∪{c 6= d : ∆+(A/Xn)∪{an+1 = bn+1} 2 c = d} is consistent, thus it gives
a D and the diagram

A B

A/Xn D′

A/Xn+1 D

e

f ′
g′

h′

f” g”

h

e, h and h’ embeddings

f, f’, g and g’ surjections

where f” ◦ f ′ is a surjection from A to A/Xn+1 and g” ◦ g′ a surjection from B
to D, which completes the diagram.

With the help of this lemma, we can now give the syntactical characterisation
of the congruence extension property for equational theories. Here we use the
set S, consisting of all the formulas φ(s, t, x, y, z̄) ∈ {∧}(L)+ such that T |=
φ(t, t, x, y, z̄)→ x = y.

Theorem 4.2.2 Let T be an equational L-theory. Then the following are equiv-
alent:

i) T has the CEP;

ii) for all φ(s, t, x, y, z̄) ∈ S there is a ψ(s, t, x, y) ∈ S such that
T |= φ(s, t, x, y, z̄)→ ψ(s, t, x, y).

Proof With lemma 4.2.1 we see that T has the CEP if and only if for all B |= T ,
embeddings from A in B and a, b ∈ A, ∆+(B) ∪ ∆+(A) ∪ {a = b} ∪ {c 6= d :
∆+(A)∪{a = b} 2 c = d} is consistent. Since there is an embedding from A in B,
all atomic formulas that hold in A must also hold in B, thus ∆+(A) ⊆ ∆+(B).
This gives ∆+(B) ∪∆+(A) ∪ {a = b} ∪ {c 6= d : ∆+(A) ∪ {a = b} 2 c = d} is
consistent if and only if for all c, d ∈ A such that ∆+(A) ∪ {a = b} 2 c = d,
∆+(B)∪{a = b, c 6= d} is consistent. We can rewrite the last as for all c, d ∈ A,
if ∆+(B) ∪ {a = b, c 6= d} is inconsistent (thus if ∆+(B) ∪ {a = b} |= c = d),
then ∆+(A) ∪ {a = b} |= c = d. Here we notice that the only assumptions in
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∆+(A) relevant for this statement are about c or d. So we are only interested
in the substructure of B that is generated by the set {a, b, c, d} and we can
replace in the statement ∆+(A) by ∆+({a, b, c, d}), the positive diagram of
the substructure generated by {a, b, c, d}. Thus we get that T has the CEP if
and only if for all B |= T and a, b, c, d ∈ B, if ∆+(B) ∪ {a = b} |= c = d
then ∆+({a, b, c, d}) ∪ {a = b} |= c = d. This gives that if there is a tuple
ē ∈ B and a sentence φ′(a, b, c, d, ē) ∈ ∆+(B) such that φ′(a, b, c, d, ē) ∧ a =
b → c = d, then there is a sentence ψ′(a, b, c, d) ∈ ∆+({a, b, c, d}) such that
ψ′(a, b, c, d) ∧ a = b → c = d. Since this must hold for all B ∈ T and all
a, b, c, d ∈ B, we get that there are φ(s, t, x, y, z̄), ψ(s, t, x, y) ∈ S such that
T |= ∀s, t, x, y(∃z̄φ(s, t, x, y, z̄)→ ψ(s, t, x, y)).
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