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At the beginning of the work for this thesis, the aim is to devise a com-
parable baseline for the benchmarking of MulticoreBSP and Zefiros-BSPLib
for computations, and to reduce the communication cost parameter g and the
synchronization cost parameter [. After that, the aim is to extend the library
to more extensive cases, such as specialized synchronizations aimed at a spe-
cific subset of communication patterns. Finally, some existing programs are
compiled with the Zefiros-BSPLib implementation as well as the MulticoreBSP
implementation on the same machine, for a good comparison of real-world ex-
amples. This thesis is focused on a shared memory implementation. Many of
the ideas of this shared memory implementation can be ported to distributed
memory implementations, but this is out of the scope of this thesis.
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Preface

The motivation to write this thesis came from the masters course Parallel Al-
gorithms, in which I was introduced to the Bulk Synchronous Parallel (BSP)
model. The BSP model is designed around the idea of a BSP computer. A BSP
computer is best described as a set of processors that have their own private
memory, that is, inaccessible from other processors, and a communication net-
work, which provides a safe way to read or write certain parts of the private
memory of other processors. When using the BSP model to write algorithms,
this communication network can essentially be viewed as a black box: you do
not need to know the internal logic of the network, only how you can use it.
For this thesis, we will take a look inside this black box.

The masters course Parallel Algorithms mainly uses MulticoreBSP as an
implementation, written in C, which makes it hard, or even impossible to use
in combination with the more modern language, C++. Another downside is
that it adds a lot of repetitive programming tasks, like managing the size of
your variables. During the course, we wrote the (extensive) basis of a new im-
plementation in C++, Zefiros-BSPLib, that shares many of the same features as
MulticoreBSP !, but had the additional goals of reducing the amount of repet-
itive programming in the use of the library, as well as cross-platform com-
patibility. The aim was also compatibility with existing algorithms written
using MulticoreBSP . Most of these goals were reached, but due to the differ-
ence in compilers for C and C++, and different resolutions of timers used, the
benchmarks became incomparable between the implementations. This imple-
mentation was still a bit rough and a lot of optimization was possible. In this
thesis, we will go into detail on the optimizations of the black box on shared
memory architectures. Many of the ideas implemented on shared memory ar-
chitectures can be ported to distributed memory architectures, but again, this
is out of scope for this thesis.

On shared memory, all processors could theoretically access the memory of
other processors. So why would you need the communication network from
BSP to do so? Firstly, you need a safe way to access the memory. You can not
just read and write to the memory that is currently used by the other proces-
sor, as this could cause undefined behavior in your algorithm. You can not be
sure of the state of the variable without the framework to manage it. Secondly,
and even more important, if you use the BSP model to design your algorithm,
it is easily portable to distributed memory architectures, with even more pro-
cessors. A shared memory architecture usually comes with a limited number
of processors. On distributed architectures, processors and memory are dis-
tributed over different (sub) systems. Not all processors have direct access to
the same memory. Additional steps need to be taken for communication inside
the library, but this will not be discussed in this thesis.

More information on MulticoreBSP can be found in [2].



Chapter 1

The BSP model

This chapter will be an introduction to the Bulk Synchronous Parallel (BSP)
model. It gives a brief introduction into the mindset of writing BSP algorithms.

1.1 The model

The BSP model is an idealized model of a parallel computer. The model can
be used to structure the parallelization of algorithms in scientific comput-
ing, such as the LU decomposition, (sparse) matrix-vector multiplications, etc.
The model organizes the algorithms in supersteps, and after each superstep,
synchronization happens. This way many needed assumptions can be made
about the state of the algorithm, for example when we can be sure the variable
contains the desired value from a different processor.

The BSP model distinguishes two important parts of your algorithm: com-
putation and communication. Every algorithm incorporates computation, but
when writing parallel algorithms, the intermediate results need to be commu-
nicated to other processors before they can be used in further computations.
Computation is usually expressed in flops, floating point operations. The sim-
plest types of flops are addition, subtraction, multiplication and division. For
simplicity, we will assume the cost for each floating point operation is equal.
In practice, this is not the case, but we should not complicate our analysis at
such a low level. Usually, communication is much more costly than compu-
tation, so the focus usually lies on improving communication cost, while still
keeping the amount of work balanced between processors.

1.2 Supersteps

Supersteps in a BSP algorithm separate computations on locally known vari-
ables from communication. After each superstep, the state of the algorithm
on all processors is guaranteed. The supersteps are also used to analyze the
cost (in terms of time) of the algorithm. In a computation superstep, each pro-
cessor computes some result from their private memory. This can be a large
computation, like a (partial) matrix vector multiplication of a large matrix and
a large vector. After a computation superstep, usually a communication su-
perstep follows to communicate the intermediate result to the processors that
need this result in the next computation superstep. Between supersteps, syn-
chronization happens. In a computation superstep, synchronization ensures
that each processor is done with the computations. In a communication super-
step, synchronization ensures that every processor is done with queuing their
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communications, after which the synchronization will make sure the commu-
nications will be processed and written to the desired location in the other
processors.

In practice, successive computation and communication supersteps can of-
ten be combined, because we are usually sure that the computation is finished
before the communication is initiated by the processor itself. In our analysis,
we will separate them to simplify the analysis of the cost of our algorithms.

1.3 Different types of communication

In the BSP model, there are originally two types of communication possible:
writing to another processor, which we will call Put from now on, and reading
from another processor, which we will call Get. Often, the most natural way
to think about communication is to Get: the processor that needs the infor-
mation reads it from the other processor. The processor with the information
does not have to know who needs the information, he only needs to make it
available. When thinking in terms of Put, the processor that has the informa-
tion has to know who will need the information eventually. It might seem less
natural, but when we look into the black box of the communication network,
we see that Put should be preferred over Get. In the black box, every com-
munication is queued as a request to the other processor, and Get requires
an extra step in the internal logic of the synchronization. Moreover, the logic
that is written to Get information from another processor, can (in many cases)
easily be translated to Put operations from the other processor.

1.3.1 Put

In order to Put information to another processor, the processor that initiates
the communication, that wants to write to a different processor, translates the
local variable to a global index. Every processor usually has the same variable
under the same index. The Put request consist of a header, containing this
global index, and a copy of the payload itself. During the synchronization, the
target processor translates the global index back to its own local variable, and
writes the payload to this location. Synchronization ensures that the variable
in the other processor contains the local information at the beginning of the
next superstep.

1.3.2 Get

In order to Get information from another processor, we need to do a little more
work. The processor that initiates the communication, that wants to read from
a different processor, translates the local variable to a global index. The Get
request consists of just the header, with the global index. During the synchro-
nization, the target processor processes this header, queuing another request.
This new request is quite similar to the put request, containing the global in-
dex from the Get request and a copy of the local variable as payload. Then,
in the same synchronization, the processor that queued the Get request in the
tirst place writes the payload to its local destination variable. Synchronization
ensures that the variable contains the information from the desired location in
the other processor at the beginning of the next superstep.

Since we need an extra request for Get, the speed of Get will be slightly
worse than the speed of Put. In the cases that the algorithm can be written just
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as easily using Put, it is recommended to do it that way. In many cases, both
the target and the source of the request know which information needs to be
communicated. However, Get is still useful in the cases that only the processor
that initiates the Get communication knows which information is required.
For example, the communication could be conditional, depending om some
state that is only known to the processor that wants to Get information. In
order to rewrite the algorithm to use Put, we would need to communicate the
conditional value depending on the state of the target processor before we can
initiate Put. Aside from complicating your algorithm, this would require an
extra superstep, which usually has a higher cost penalty than using Get over
Put. In these cases, Get is preferred over Put.

1.3.3 Send

In an extension of the BSP model, a third type of communication is added:
sending an information payload with a tag, also called a label, to a different
processor. This way, the variable does not have to exist under a global in-
dex, but the receiving processor needs to know how to translate the tag to
the desired destination for the payload. This is very similar to Message Pass-
ing, which is a different model for writing parallel algorithms, but the differ-
ence is that in BSP, the sending of messages happens in bulk: everyone passes
messages at the same time and synchronizes in bulk. In message passing, it
happens pairwise and synchronization is also in pairs, not in bulk. Send in-
troduces much of the same logic that can be applied in message passing, but
still has the mindset of bulk synchronization.

Peeking into the black box of Send, synchronization is a bit more difficult.
For Send, synchronization should ensure that the message that is sent is in a
queue, accessible from the target processor, at the beginning of the next super-
step, and the queue for new requests is usable in the same superstep. What
this means internally for the communication network, is that when the Send
is performed, the tag and a payload containing a copy of the information are
queued at the sending processor. During the synchronization, the tag and the
payload are copied to a queue that will be accessible in the next superstep
for the receiving processor, and the Send queue at the sending processor is
cleared. This means that the payload will be copied twice: once at the source
processor to the queue, and once from the queue to another queue, accessible
from the target processor. For larger payloads, this becomes very inefficient.

Additionally, the size of the tag should be synchronized between the pro-
cessors. Send should only be used if a global index for the variable becomes
nearly impossible, or if this severely simplifies the logic in the algorithm. For
Send to become useful, the implementation of the Send primitive in the li-
brary should be restructured.

1.3.4 Registration of variables

As mentioned, variables used as target for communication need to be regis-
tered globally before they can be used. Registration of variables is called Push,
you push it onto a stack. De-registration is called Pop, you pop it from the
stack. In both MulticoreBSP and Zefiros-BSPLib, it is not a pure stack, because
you can Pop variables in a different order than the order of Push.
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1.4 Synchronization

The communication part of the BSP model is quite straightforward. Nothing
too complicated has happened yet, aside from how the synchronization hap-
pens internally. Synchronization is therefore the biggest part of the black box
of the communication network. Details will be explained later, but the difficult
part of the synchronization is that all three types of communication, together
with registering and de-registering of variables, can happen in the same su-
perstep. All of these have to happen in a certain order to ensure the correct
behavior of the BSP algorithms.

1.5 The BSP cost

The time analysis of any BSP algorithm can be expressed as the BSP cost. The
BSP cost takes the cost of communication and synchronization into account.
The cost of communication and synchronization will be different for different
machines, and even more for different architectures. The cost of communica-
tion and synchronization on shared memory architectures will be considerably
less than it is on distributed systems, where communication and synchroniza-
tion goes over the (local) network, for example via TCP. The parameters g and
[ are to be determined for the BSP computer you are going to use. A way to
get an approximation will be discussed later, in section 5.1.

To analyze the cost of an algorithm as generically as possible, we separate
the BSP cost into three parts. The computation cost, which is the approximate
number of floating point operations (flops) of the computation on each pro-
cessor. The number of flops should be nearly equivalent for every processor,
but in the case it is not, the maximum number is taken for the BSP cost, as the
other processor will have to wait for this processor to finish its computations.
Computation is expressed as an integer number of flops. The communication
cost is computed by multiplying the amount of real numbers communicated
by the communication cost parameter g. This g is different for different BSP
computers. Again the maximum number of communications is taken for the
computation of the BSP cost. Note that both incoming and outgoing commu-
nication should be taken into account. Finally, we have the synchronization cost.
This is computed by multiplying the number of supersteps in the algorithm by
the synchronization cost parameter [. The parameters g and [ are approxima-
tions of the amount of time it takes to communicate or synchronize, multiplied
by the number of flops per second the BSP computer can perform.

It is often useful to analyze the cost per superstep. The superstep cost is then

w+ hg +1,
(s) p(s)

send’ ' “receive

}) , where

w®) and h(*) are the number of flops and the number of communicated real
number respectively for processor s.

where w = maxp<s<p w®) and h = maxo<s<p (max{h
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The total cost of the BSP algorithm then becomes

S S S
W+Hg+Sl=> (wi+hg+1) =Y wi+g» hi+S5l,
i=1 i=1 i=1
where W, H, S are usually written as functions of the problem size, and written
in terms of {%W . Another important terminology in the analysis of the BSP cost

is the h-relation. An h-relation is a communication superstep, where © is as
before, so each processor sends and receives at most h real numbers. A full
h-relation is an h-relation where each processor sends and receives exactly h
real numbers. The cost of an h-relation reduces to hg + [, because we do not
have computation here.

1.6 Example BSP algorithm

An algorithm that is commonly used to introduce BSP algorithms, is the inner
product of two vectors. For the sequential case, the algorithm is described by
Algorithm 1.1. It is just the sum of the element-wise products. To transform
the algorithm to a BSP algorithm, we want to split this sum over the proces-
sors. In this example, it is quite easy, because the order in which the elements
are summed up is not important. Different types of distributions of data are
possible. The most general distributions are block distributions, cyclic distri-
butions and block-cyclic distributions. The block distribution splits the data
into p contiguous blocks, p being the number of processors used in the algo-
rithm. Cyclic distribution assigns every element with index s+%-p to processor
s, where 0 < s < p, where p is again the number of processors used in the al-
gorithm. The block-cyclic distribution is a hybrid between the two previous:

it separates the dataset into blocks of size ¢ < {%—‘ , and the blocks are assigned

to processors like elements were in the cyclic distribution.

For the inner product algorithm, any distribution would be suitable. For
the sake of simplicity, the cyclic distribution is used. The cyclic distribution
can also be described by a function ¢ mapping the index of an element i to
the processor with number ¢, P(t). For the cyclic distribution, this function
is ¢(i) = ¢ mod p. Every processor computes the partial inner product for
the indices assigned to the processor, in a computation superstep. Then, in
a communication superstep, every processor communicates its partial inner
product to all other processors. Finally, every processor computes the sum of
all partial inner products to compute the full inner product. The pseudo code
is in Algorithm 1.2. The notation P(t¢) is an enumeration of the processors,
with 0 <t < N, where N is the number of used processors.

Of course, instead of communicating the partial inner product to every
processor, you could communicate the partial inner product from all proces-
sors to processor 0, and let processor 0 compute the full inner product. This
might seem like it would be less work, but because of the parallelism, the cost
would be the same if we were to send the information to every other pro-
cessor, instead of just to processor 0. The maximum of the received and sent
communication does not change. While processor 0 is computing the sum of
the partial inner products, the other products are idle, so why not compute it
on all processors simultaneously. The latter is the mindset of BSP algorithms:
every processor eventually has the result of the computation, so that it can be
used as part of a bigger algorithm. If we would just compute the final sum on
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processor 0, we would need an extra communication superstep to distribute
the final sum again, resulting in a higher BSP cost.

Algorithm 1.1: Sequential inner product algorithm!.

Input : x,y: vector of length n.
Output: o =xTy.
a:=0;
fori:=0ton —1do
o= o+ LY

Algorithm 1.2: Inner product algorithm for processor P(s), 0 < s < p'.

Input : x,y: vector of length n,
distr(x) = distr(y) = ¢,
with ¢(i) =¢ mod p, for 0 <i < n.
Output: o = x"y.
0 ag:=0;
fori:=s ton —1 step pdo
Qs = Qs + T;3Y5;
@ fort:=0top—1do
put o in P(t);
@ a:=0;
fort:=0top—1do
Q= o+ Oy

!These algorithms are reconstructed from [1].



Chapter 2

Implementation

This chapter describes the work done prior to the start of this thesis. For the
shared memory implementation Zefiros-BSPLib, we need a way to separate
the processors data, but we need to share some data in order to communi-
cate. Here, we make a clear distinction between shared memory and private
memory. Private memory contains all variables allocated at a certain proces-
sor. When we register a variable with Push, the variable is accessible via the
shared memory of all processors. The data for communication is all written in
shared memory by the library.

2.1 Registration

In order to communicate, we first need to register the variable that we want
to share with other processors. We do this by registering the pointer to the
variable and the size in bytes. To make this mapping, we will keep track of a
stack S and a map M. The pointer pis added to S at the next available index, .
Then, in the map we store an object containing this index and the size, so it can
be viewed as amap M : p — (ip,sizey). The stack can also be viewed as a map
S i, — p. New entries can be added to the map by Push, and entries can be
removed by Pop. These are regular function names in the context of a stack.
The stack that we use here is not a pure stack, in the sense that for a pure stack,
we could only remove the top element. Here, we can Pop the variables in the
stack in any order. This data structure was easily implementable with the C++
data structures std: : vector for the stack, and std: : map for the map.

2.2 Communication

Communication consists of two parts: header and payload. This is true for any
type of communication. The headers are stored in a queue, and the payload
is stored in a StackAllocator. This is a data structure we came up with to
efficiently manage the storage of multiple payloads. The StackAllocator is
a stack of bytes, in which we can allocate blocks of arbitrary sizes. This way, we
can store payloads of any size in contiguous memory, without preallocation
of a fixed size buffer. After communication, the stack cursor is reset to the
bottom of the stack. The allocated size does not change. When allocating a
block after that, the existing information above the cursor is overwritten. The
StackAllocator tests whether the block fits in the stack. If not, the stack is
resized so that the new block will fit. The resize is done with a factor 1.6, close
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to the golden ratio'. Upon allocation of such a block, the location of the cursor
at the beginning of the data is returned. The internal logic of the different types
of communication will now be discussed in more detail. When the library is
compiled in debug mode, the stack is filled with random data upon reset, to
also test if the information is overwritten correctly. Otherwise, old data might
be reused without us noticing. If the random data is used, we know there is
something wrong with the improvements made to the library.

221 Put

Before calling Put, the variable p has to be registered in a previous superstep,
by the processor that makes the request. We assume p’ is registered under the
same index i,y = i), by the target processor. For Put, the header is of the form

(ip,size,offset,stack location).

Upon calling Put, the information is copied from the source and added to
the stack allocator. The pointer p is mapped to i,, and the header is added
to the queue. The request queues are separated for each targeted processor.
Because we work on shared memory, the stack allocator can be shared for all
target processors. The stack cursor ensures each processor can retrieve the
right data. The shared stack allocator prevents memory fragmentation, and
reduces the number of resizes needed to fit the different payloads. During the
synchronization, every processor looks at the shared memory of the other pro-
cessors, and processes the Put request queue targeted at the processor. While
it processes the queue, it extracts the information from the stack allocator of
the source processor. The global index i, = i,y is mapped to the pointer p’
local to the target processor, and the payload is then written at the offset that
was in the header. After everyone is ready, the stack allocator cursor is reset,
without shrinking the stack.

2.2.2 Get

Before calling Get, the variable p has to be registered in a previous superstep,
by the processor that makes the request. We assume p’ is registered under the
same index i,y = i,. The variable ¢ does not necessarily have to be registered,
but it is allowed. For Get, the header is of the form

(ip,size,offset,q).

Upon calling Get, only the request header is queued. Then during the syn-
chronization, all processors clear their own get stack allocator, and look at the
shared memory of the other processors. If a Get request is queued to the pro-
cessor, it makes another request itself, a buffered get request, with a header of
the form

(¢, size,stack location),

targeted at the processor that made the Get request. They map the global in-
dex i, = iy to their local pointer p/, then copy the payload from p/, starting

!More on the golden ratio is at http://mathworld.wolfram.com/GoldenRatio.
html. In theory, this works better than rescaling with a factor 2, because memory will be bet-
ter reusable for re-allocation as explained in https://crntaylor.wordpress.com/2011/
07/15/optimal-memory-reallocation-and-the-golden-ratio/.
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at the offset that was in the header, and allocate it in the stack allocator for
the buffered Get request with the requested size. The stack cursor that is re-
turned from the stack allocator, together with the pointer ¢ and the size from
the header, both unchanged, are queued as a buffered Get request. This is
all done in the shared memory of the target of the Get request. After all Get
requests are buffered, every processor again looks at the memory of the other
processors for the buffered Get requests. Every processor then copies the pay-
load to their own destination ¢q. The variable ¢ does not necessarily have to
be known by the other processor, but can be seen as an identifier for the Get
request. Without this ¢, we would need a second mapping from ¢ — j, and
Jq — ¢. This is not necessary with this construction.

2.2.3 Send

For send, the header is a little different. No mapping of pointer p to i, is
needed. Instead, Send requests are accompanied by a tag. The tag itself is
similar to the payload, but often has a much smaller size. The header is of the
form

(payload stack cursor,sizepayicad,tag stack cursor,sizetag).

Upon calling Send, the tag and the payload are copied to a stack allocator, and
the returned indices, together with the sizes, are queued in the shared data of
the sending processor. The tag data and payload are written in the same stack
allocator. During synchronization, every processor looks at the shared data of
the other processors, and merges the Send request queues and stack allocators
to its own shared data, into a single queue and a single stack allocator. The
queues and stack allocators of the sending processors are then cleared. This
merged queue is then available in the next superstep with Get Tag and Move.
GetTag retrieves the tag data. After the user has decided what to do with the
data belonging to this tag, the data can be retrieved with Move. At the end of
the superstep, the merged queue and stack allocator are cleared.

2.3 Synchronization

Every type of communication and every variable (de-)registration is only queued
before we start to synchronize. Synchronization ensures everything is deliv-
ered in the expected order and with the expected value. Synchronization en-
sures that everyone is done with this superstep, and that after the synchro-
nization all Get requests are retrieved from the target processor, Put requests
are written in the target processor, variables are properly registered or de-
registered, and Send requests are available in the target processor at the be-
ginning of the next superstep. Internally, the synchronization also ensures that
the queues and stack allocators are properly cleared. Synchronization is often
viewed as a barrier. After this barrier, the state of the algorithm is again en-
sured. Internally however, multiple barriers are needed to ensure the proper
order of synchronization.
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2.3.1 Synchronization order

Different types of communication can happen in the same superstep, and the
order in which they are processed is very important. To ensure they are han-
dled in the proper order over all processors, the synchronization contains in-
ternal synchronization points. Synchronization points ensure that all proces-
sors are at the same stage of synchronization. Synchronization points can be
viewed as internal barriers for the synchronization. The restrictions on the
order of synchronization are as follows:

i. Every processor needs to be completely finished with computations be-
fore Get requests are buffered. Otherwise, older intermediate values
could be buffered.

ii. Every processor needs to be finished with computation before Put re-
quests are processed. Otherwise, values could be overwritten before the
target processor is done with its computation on this variable.

iii. Buffering of Get requests has to be completed on all processors before
processing the buffered Get requests and before processing the Put re-
quests. The former is immediately clear. The latter is necessary, because
otherwise values written from the Put requests could be buffered as Get
requests.

iv. Tag size needs to be synchronized over all processors before processing
Send requests.

v. Pop, Put and (buffered) Get request need to be completely processed
on all processors before Push requests are processed. This ensures that
the new variables from Push requests can not be accessed too early on.

vi. Send requests need to be completely processed into the receiver queue
on all processors before clearing the sender queues.

vii. Put requests need to be processed on al processors before clearing Put
payload buffers.

viii. Put buffers can be cleared at the beginning of the next superstep without
internal synchronization points.

ix. Push requests need to be finished before the beginning of the next su-
perstep.

Taking these restrictions into account, the pseudo-code in Algorithm 2.1
describes the order of the synchronization and the minimal number of inter-
nal synchronization points. We will call the internal synchronization points
SyncPoint in the pseudo-code. The ClearPutBuffers () could be placed
after the last SyncPoint, but this way the synchronization will end more si-
multaneously, and it does not really matter for the performance.

2.3.2 Synchronization points

As mentioned, these internal synchronization points can be viewed as barriers.
With C++, two simple barriers are easily implementable.
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Algorithm 2.1: Synchronization pseudo-code

1 function Sync ()

2 // This ensures 1. and ii.
3 SyncPoint();

4 ProcessTagSizeUpdate();
5 BufferGetRequests();
6 // This ensures iii. and iv.

7 SyncPoint();

8 ProcessPopRequests();

9 ProcessSendRequests();

10 ProcessPutRequests();

11 ProcessGetRequests();

12 // This ensures v., vi. and vii.
13 SyncPoint();

14 ClearSendRequests();

15 ClearPutBuffers();

16 ProcessPushRequests();

17 // This ensures ix.

18 SyncPoint();

19 end function

The first is a spin barrier. Each processor reads the current generation num-
ber, and then decreases a counter. After they decreased the counter, they con-
tinuously reread the generation number, until the generation number is in-
creased. The last processor to reach the counter decreases it to 0, and resets the
counter. After the counter is reset, the processor increases the generation so
that the other processors can also continue. std: :atomic_uint_fast32_t
is used for the counter and the generation number, which means operations
such as read, write, increment, decrement, add, subtract happen atomically,
that is, we can ensure that each of these operations is completed before the next
happens. The most important operation for the spin lock is the decrement-
and-read of the atomic variable. This operation decrements the counter and
returns the value afterwards, all before the next operation can happen. This
way, we can ensure that every processor gets the correct counter value. It is
called a spin barrier, because every processor spins on the check whether the
generation has changed.

The second is a condition variable barrier. A condition variable has a func-
tion wait, in which a condition is checked. The condition in this case being
the change of generation number. The condition variable barrier has a simi-
lar counter as the spin barrier. If the decremented value is nonzero, wait is
called. This triggers the operating system to put the process on hold, and to
release the processor. When the counter hits zero and the last processor has
entered the barrier, it calls a notify_all to wake up all threads again. The
upside of the condition variable barrier is that it relieves the processor of the
stress of computations, whereas the spin barrier constantly keeps comparing
the generation numbers. Another upside is that we can now test the correct-
ness of our algorithm for more processors than the machine actually possesses:
because the process is put on hold, another process can occupy the same pro-
cessor, thus we can emulate a system with more processors. The spin barrier
claims the processor for itself. The downside of a condition variable barrier
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is that the overhead of putting the thread on hold is quite large, as this has
effects all the way down to the scheduler of the operating system. This makes
the synchronization much more costly, as we have multiple synchronization
points in one synchronization.

For this purpose, a third option is suggested, a mixed barrier. The mixed
barrier, as the name suggests, is a mix of the spin barrier and the condition
variable barrier. The counter and generation work just like the spin barrier.
The processor first enters the spin barrier. Instead of possibly spinning indef-
initely, the processor spins until it has reached a predefined number of itera-
tions. The spinning would stop earlier if the generation number changes. If
however, the maximum number of iterations is reached and the generation
has not changed, the processor will wait on the condition variable. Once the
counter hits zero, the generation is increased first, and then all processors that
are waiting for the condition variable will be notified by notify_all. This
way, if some are spinning and some are waiting for the condition variable, ev-
eryone will continue. The upside of this barrier is that in case the algorithm
is truly balanced in both computation and communication, no processor will
ever reach the condition variable, so we will not have the overhead of the
putting on hold by the operating system scheduler. Another upside is that we
can still emulate a system with more processors than the physically available
processors. A downside is that, even though the algorithm is truly balanced,
background interference from the system may still sometimes claim a proces-
sor for a number of iterations. This could cause one of the processors to enter
the spin barrier slightly delayed, and all other processors to enter the condition
variable barrier. Due to the wake up time, it could cost some synchronization
to re-balance barrier entry times, slowing down the algorithm. That being
said, the benchmark in section 5.1 does not suffer from this background inter-
ference on the machine it was tested on. Algorithms with larger supersteps are
more likely to suffer from overhead of the condition variable barrier, as small
interruptions that did not affect small supersteps may now stack up to cause a
large enough delay.
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Improving the implementation

The first version of the implementation has now been discussed. As it was
a first version, a lot of optimization was possible. These improvements were
done as part of this thesis. Some of these improvements are aimed both at
improving communication and synchronization cost.

3.1 Dynamic request queue allocation

In the first version of the library, request queues were completely cleared, free-
ing up the allocated memory, and allocating new memory as needed. This
turned out to add a lot of time overhead to the communication, as well as syn-
chronization time. In order to keep the flexibility of the dynamic allocation of
memory, but still reduce the overhead from queue resizes, a queue similar to
the stack allocator is introduced. Instead of clearing the queue and freeing the
memory, the head and the tail of the queue are reset to the first element in the
queue. New requests overwrite older requests, and resizing of the allocated
memory for the queue again happens with a factor 1.6. This way, the over-
head for resize is minimized to the few occasions that the new queue of size
1.6 times the old size is exceeded. In general program such as the FFT or the
LU decomposition, communication volume stays the same or even decreases
over the course of the algorithm. This causes the overhead of resizing only
to appear in the early stages of the algorithm. This new request queue has a
generalized implementation for all Put, Get, Send, Push and Pop requests.
Not only does it reduce the communication time, but also the synchronization
time, as the memory is not freed during synchronization anymore.

3.2 Reducing congestion during synchronization

In the first version of the library, every processor had the same order in which
the communication was handled from the other processors, namely 0,1, ..., p—
1. This caused congestion at the shared memory of the processors, because
every processor was accessing it at the same time. Instead of starting at 0, we
could also start at our own processor number s, so the order would become
s,s+1,..,p—1,0,1,...,s — 1. Different ways of ordering could be thought of,
and this idea was generalized in [3], where it is referred to as a Latin Square. A
Latin square is an n x n matrix, filled with n different symbols. Each symbol
occurs exactly once in every row, and once in every column. The larger n is,
the more variations of the Latin square exist. Any Latin square could be used,
but in the most general case, the example above should satisfy. This is also
the most simple one to implement in code. The example presented above is
easily implemented by duplicating the for loop and changing the bounds. As
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this would almost double the amount of code, and because it would make
the code unmaintainable, this is not very desirable. This is where the C++
templates and lambda functions come in handy. The library now contains a
function

BSPUtil::SplitFor(start,split,end,body),

where body is a lambda function with the loop iterator as argument. The loop
can then be written as follows.

BSPUtil::SplitFor( 0, s, p, [&] ( uint32_t i )
{

// Process requests from processor i1 to me

P

This way, we can write the for loop quite naturally, and the C++ lambdas do
not affect performance. We can use this for-loop to improve every type of
synchronization of communication. The split for-loop is only used internally,
but could also be used for other applications.

3.3 Reducing the number of synchronization points

The synchronization currently needs four internal synchronization points, be-
cause some types of communication or registration need to be performed be-
fore all others. But in a general superstep, not every type of communication is
actually used. For this purpose, we introduce the specialized synchronization
interface.

3.3.1 Specialized synchronizations

The specialized synchronization interface consists of
SyncPutRequests, SyncGetRequests, SyncSendRequests.

Turns out, we can do most of these specialized synchronizations with only
two internal synchronization points. That is possibly a 50% reduction of the
synchronization parameter /.

For Put, we need one internal synchronization point to ensure everyone is
done. Then we can process the Put requests. After the Put requests are com-
pleted, we need another one to ensure all Put requests have been processed
so that is another synchronization point. Finally, the buffers can be cleared
without synchronization, as this happens locally.

For Get, we also need to ensure everyone is done, so that is one inter-
nal synchronization point. After that, we clear the buffers and add the Get
requests to the buffer. We need another internal synchronization point to en-
sure everyone is done buffering. After that, the buffered Get requests can be
processed without further synchronization, because the buffers would only be
cleared after the first synchronization point in the next synchronization.

For send, we also need an internal synchronization point to ensure every-
one is done. Then we can merge the queues and stack allocators to the single
queue and single stack allocator needed in the next superstep. This requires
another synchronization point to ensure everyone is done. We can then safely
clear the send buffers and begin the next superstep without further synchro-
nization points.
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This way, we have reduced the number of internal synchronization points
to two instead of four for every type of communication. We could do some-
thing similar for registration and de-registration, but these often only hap-
pen during initialization and at the end of the algorithm, so this is probably
not worth the trouble. Combined specialized synchronizations could be intro-
duced, but are deprecated by the following section.

3.3.2 Bringing specialized- to general synchronization

For the specialized synchronizations, the user needs to check that he only has
a certain kind of communication during the superstep to be able to make use
of specialized synchronizations. This can be bothersome, as algorithms can
improve over time, and different types of communication can be introduced
to improve the algorithm. Having to check the correctness of the chosen spe-
cialized synchronizations is prone to errors. It would be better to incorporate
this in the general synchronization. The solution is quite straightforward.

Before the first synchronization point, every processor looks at its own
shared memory and keeps track of booleans for which type of communica-
tion or registration has happened. This happens only once at the beginning
of the synchronization, not for every call to communication functions. These
booleans are stored in shared memory. Immediately after the first synchroniza-
tion point, the booleans are merged with an or operation over all processors.
This ensures that every processor knows of the global presence of all types
of communication and registration. If globally there exists a request of a cer-
tain type, every processor will enter the synchronization points corresponding
to that type of request. This way, we have the power of the specialized syn-
chronization points with minimal overhead for the computation and merging
of the synchronization booleans. The improved synchronization is shown in
Algorithm 3.1.

This does not completely deprecate the specialized synchronizations. If the
user is absolutely sure the specialized synchronization can be used, this pre-
vents the overhead of computing and merging the synchronization booleans.
This is especially useful when a large number of processors is used.
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Algorithm 3.1: Improved synchronization pseudo-code

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

function Sync ()

ComputeSyncBooleans();

// This ensures i. and ii.

SyncPoint();

MergeSyncBooleans();

ProcessTagSizeUpdate();

BufferGetRequests();

if syncBools.hasTagSizeUpdate or syncBools.hasGetRequests then
// This ensures iii. and iv.

SyncPoint();

ProcessPopRequests();

ProcessSendRequests();

ProcessPutRequests();

ProcessGetRequests();

if syncBools.hasSendRequests or syncBools.hasPopRequests or
syncBools.hasPutRequests or syncBools.hasGetRequests then
// This ensures v., vi. and vii.

SyncPoint();

ClearSendRequests();

ClearPutBuffers();

ProcessPushRequests();

if syncBools.hasPushRequests or syncBools.nothing then
// This ensures ix.
SyncPoint();

end function
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Profiler

To improve on an algorithm, it is often useful to have some visualization of
the communication pattern, and the actual timing of each superstep. As men-
tioned, we ignored some terms in the analysis of the cost of a BSP algorithm.
Under normal circumstances, the analysis is quite accurate, but sometimes, the
result might still be very different to the expectations. Without proper visual-
izations, it can be very cumbersome for the user to write their own profiler
for every separate algorithm, over and over. For this purpose, a profiler is
included with Zefiros-BSPLib.

4.1 Data collection

In order to give useful output, we need to collect several types of data. We
need communication time, computation time and synchronization time for
separate supersteps. We need the size and number of the payloads for sepa-
rate supersteps. Superstep numbers can also be very useful, to give an average
of the time each superstep takes in terms of computation and communication
and synchronization. The distinction between communication and synchro-
nization is a bit of gray area. Large parts of communication routines happen
during synchronization. Therefore, these two are usually most useful added
together, instead of separately.

At the beginning of each superstep, a timer is started. This keeps track
of the time of the entire superstep. At the beginning of each communication,
another timer is started. At the end of the communication, the timer is stopped
and the elapsed time is added to the communication time of the superstep.
At the beginning of the synchronization, the communication timer is started
again, and at the end of the synchronization, the synchronization time is also
added to the communication time. The superstep timer is stopped, and the
communication and synchronization times are subtracted from the superstep
timer to get the computation time.

A manual override is also possible, to manually start and stop the commu-
nication timer. This is useful when there is a large communication loop. The
loop introduces some overhead, which is not really computation, but would
otherwise be counted as computation. We can simply put

BSPProf::InitCommunication();
// Loop

3 BSPProf::FinishCommunication () ;

around the loop, and the library handles the rest. Timings for command line
input from the user are not very useful to include in the profiler timings, as this
would cost much more than the average superstep. In order to avoid record-
ing these timings, we can PauseRecording () and ResumeRecording () as
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needed to exclude it from the profiler. Supersteps can be marked in two ways:
MarkSuperstep () simply increases the superstep counter.
MarkSuperstep (1) resets the superstep counter to . This way, if we have
a loop containing multiple supersteps, we can categorize them by superstep
number.

Finally, we need to count the number of incoming and outgoing requests
for each processor, and compute the accumulated size of incoming and outgo-
ing communication for each processor. This is done immediately after the first
synchronization point. If there is actual data to be collected, we need another
synchronization point right after the data collection, as other processors might
start to manipulate the data otherwise. This is necessary in the current version,
because every processor also looks at the data of other processors to collect its
own profiler data. In a next version, it would be better to only look at requests
originating from the processor itself, and store it in a sender-receiver matrix of
size p x p, to later add up to a total received volume.

Currently there is already a form of matrix data of size p x p, but this ma-
trix is split into rows. Each processor contains a row with information about
how much he is sending to each of the other processors. To get a complete
picture of this information, the processor needs to look at the Get requests of
all other processors. Instead of keeping track of a single row, each processor
could also keep track of both a column and a row: a column with the amount
of received information of Get requests that the processor itself has queued,
and a row with sent information from Send and Put requests. These queues
are all guaranteed to be finished before the processor itself enters the synchro-
nization. The rows of each of the processors can then be concatenated to form
a p x p matrix, and then each of the columns can be added to the columns of the
matrix to complete the information. Textually, this is easy to grasp, but when
it comes to thread-safe data collection, this is slightly harder than it seems, but
could be implemented in a next version. The advantage of only collecting data
from the queues of the processor itself, is that it can be done before the first
synchronization point, and no extra synchronization will be needed after data
collection.

4.2 Visualization
The profiler has quite some built in visualization options.

i) A stacked bar plot with on the horizontal axis the elapsed time and on the
vertical axis the maximum number of bytes sent or received by a proces-
sor. This corresponds to the 1(*) in our cost analysis. On the horizontal
axis, the width of the bars is communication+synchronization time. The
width of the gaps is computation time. The height of each of the parts
of the stacked bars represents the size for a specific processor. This type
of visualization is similar to the visualizations in the Oxfort BSP toolset
profiler [4]. Each of the individual parts is connected by a dashed line,
to make it a little more readable, this is the addition made by Zefiros-
BSPLib. Also, Zefiros-BSPLib does not separately plot sending and re-
ceiving information. Instead, the maximum of the two is plotted. An
example of this in the following chapter, in Figure 5.4.
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ii)

iif)

vi)

vii)

This is similar to the previous plot, but instead of the size in bytes, the
number of requests is reported. An example of this in the following
chapter, in Figure 5.4.

This is similar to the first item. Again, this is a stacked bar plot with
the size in bytes per processor. Instead of the time on the horizontal
axis, the superstep numbers are shown under the bar, and the width
does not have any specific meaning. The bars are grouped by superstep
number, and a confidence interval is added to the tops of the bars to
show the minimum and maximum size for that superstep for each of the
processors. An example of this in the following chapter, in Figure 5.5.

This is similar to the previous plot, but instead of the size in bytes, the
number of requests is again reported. An example of this in the following
chapter, in Figure 5.5.

This is another bar plot, this time also categorized by superstep number
on the horizontal axis. This bar plot has two colors stacked on top of
each other, the top for communication and synchronization, the bottom
for computation. Each superstep has p such double bars. From this plot,
imbalance in either communication or computation time can be read,
and the ratio between computation and communication can be seen for
each superstep. Confidence intervals are added to the tops of the bars,
to indicate the maximum and minimum time needed for that specific
superstep by the processor. An example of this in the following chapter,
in Figure 5.6.

This plot contains the ratio

tlmecommunication/(tlmecomputation + synchronization)a

plotted for each superstep, not categorized but in chronological order.
This is a more readable plot of the ratio, and can be used to analyze if
the BSP algorithm is communication or computation bound, and if the
behavior changes over the course of the algorithm. An example of this
in the following chapter, in Figure 5.8.

The final visualization is a plot of the matrices described before. For
each superstep, such a matrix is plotted. The rows indicate the send-
ing processor, the column contains the receiving processor. Each matrix
entry contains the number of bytes sent from the row processor to the
column processor. This is visualized by a heat map: increasingly dark
color means more communication. An example of this in the following
chapter, in Figure 5.7. Communication patterns are visualized in this
plot.

These were all the useful plots that came to mind. Since the data collection
and visualization is accessible to the user, more plots could be added later
when needed.

4.3

Profiler options

A profiler is nice during development of the algorithm, but in production, we
do not want to show the profiler each run of a certain algorithm. For this
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purpose, the profiler is opt-in. The profiler can easily be substituted by a pro-
filer with less options, for example a profiler without the matrix plots. An
entirely different profiler could also easily be implemented and used by the
library, without changing the code of the library. As the profiler is opt-in, the
default profiler is a VoidRecorder. This is a special profiler with empty func-
tions. The C++ compiler has dead code removal, so empty functions will be
optimized such that there is no call to the empty function in the compiled pro-
gram. The different parts of the profiler can easily be turned on or off, as will
be explained in future documentation of the library.
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Real world applications

Now that we have discussed the implementation and improvements of the
Zefiros-BSPLib library, we can test it in some real world applications, to see
how larger algorithms can be designed as a BSP algorithm. As discussed in
chapter 1, the communication parameter g and the synchronization parame-
ter [ are to be determined per architecture. For this purpose, the bspbench
benchmarking tool was written for the BSPedupack, a library for educational
purposes, also containing some examples of portable BSP algorithms, like the
Fast Fourrier Transform and the LU decomposition, which will be discussed
in the next sections.

5.1 Benchmark

The bspbench utility was written to benchmark a generic BSP library that
adheres to the BSP interface, on a generic BSP computer. This program outputs
the communication and synchronization parameters in terms of flops. This is
done by first measuring the approximate number of floating point operations
that can be performed per second by the BSP computer. After that, h-relations
are performed for 1 < h < hyqq, and the time per h-relation is measured. This
time is, like the cost of an h-relation, assumed to be linear with respect to h.
This seems to be accurate, at least for shared memory architectures. The data
collected from the h-relations is then processed by a Least Squares algorithm
to approximate the parameters g and /. We will be using the Ordinary Least
Squares (OLS) algorithm. The OLS algorithm gives the best estimation for b
iny; = bz; + ¢, that is, the sum of squared residuals S(b) = >~ (y; — br;)? =
> € is minimized by the algorithm. We could also write this in vector
notation, which would give S(b) = |y — bx||3, where |-[|, = \/(-,-) and (z,y)
is the dot-product of x and y. Then

Q : <X7Y>
P =g SO =

This is proven in the following lemma.

Lemma 5.1.1. Let x,y € R".The OLS linear estimator

A <X, Y>

- 2
Xl

minimizes S(b) = Y1 (y; — bx;)?.
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Proof. We begin this proof with rewriting S(b) and collecting terms of b.

S(b) = Z(yz‘ —ba;)? = |y — bx||3 = (y — bx,y — bx)
=1
=(y,y) — b(x,y) — b{y,x) + b* (x,x)
= |lyll5 — 2b (x,y) + b |Ix]5 -

Since this is a quadratic equation and the coefficient in front of b? is positive,
we know that the global minimum of this function is located at the value of b
for which %S (b) = 0. The g satisfying this condition should satisfy

0

_9 =2 (12— ? Il
0= abs(b)‘b:g = 55 (115 =20 Gy + 07 3) |

= —2(z,y) + 28 ||,
which is equivalent to

B <x7y>

= 5 -
(i

O

Suppose we would now run the benchmark and collect ¢;, for h-relations
with A € hg,ho +1,...,h1 —1,h1. We now have a way to compute the best
estimation for g in fﬁ = ﬁg + €, but the equation we have is of the form
tn = hg +1. Puth = (hg,hg + 1,...,h; — 1,h1)T. Since

Et=E(¢h+!1+¢€) =gEh+ [+ Ee = gEh+1[+ Ee,

we can now write ?ﬁ =tp,—Et=hg+1+¢e, — (gEh+ 1+ Ee) = ﬁg + €, with
h=h—FEh=h-— htho and €; = €p. We can further simplify the algorith by

1
[h—Ehfl, =3 (h — Eh)* = (b — ho)(ha — ho + 1)(hn — ho — 2).
heh

We now have the estimation for g, but not yet for I. We now have the approxi-
mation #(h) = h - g + . We have translated (Eh, Et) to (0,0) so that it is a point
on the linear approximation in the origin. Translating this back, we get that
(Eh, Et) must be on the linear approximation, that is #(Eh) = Eh - g + [ = Et.
We can compute the value of [ from this equality by [ = Et — Eh - g. We now
have all the ingredients fo the algorithm. The least squares algorithm adapted
for h-relations is shown in Algorithm 5.1. The assignment of h is only sym-
bolic. The difference (h — h) and index in the computation of g can be done in
the loop iteration.

What remains now is the measurement of ¢;. This can simply be done by
measuring the time of each h-relation several times and taking the average to
get a more stable approximation. The measurement is done on full h-relations,
to give a worst case estimation of the time per h-relation. Theoretically, there
should be no difference in the time of an h-relation and a full h-relation, but
in practice there is often a slight difference. This is done in the bspbench of
the BSPedupack. Included with the library is a modernized version, which
uses more of the C++ data structures. The modernized version also contains an
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optimized measurement of the number of flops per second, where the compu-
tation loop is written in assembly to reduce the effects of loop overhead. This
assembly version is also more stable when compiled on different compilers,
which optimize loops differently if written in C++.

Algorithm 5.1: Ordinary Least Squares for the bspbench

[y

[9,1] := function OLS (hg, h1,t)
2 h:= (h(), ho + 1, ...hl - 1,h1)T;

1= Ehehth .

‘" hi—ho+1’

7 hi+ho.

4 h:= 71; Q.

5 g ::7(Zheh(h —h) - (th — %)) ) (hl—ho)(hl—hl()%rl)(hl—h0—2)"

7 end function

Now that we have the theory on how to benchmark the library, this can
be brought into practice. The BSPedupack contained a benchmark for a gen-
eral BSP implementation. The benchmark in BSPedupack is aimed at Put
communication. As discussed in chapter 2, the speed Put, Get and Send is
probably not equal. To see how this turns out in practice, Zefiros-BSPLib has
a modernized version of this benchmark tool, containing benchmarks for all
three types of communication. BSPedupack contains two versions of the least
squares algorithm. One of the versions is quite similar to the least squares al-
gorithm explained above, but differs in the way that the algorithm is adapted
to the form of the data. A different approach is used to solve the problem that
the data does not fit a straight line through the origin, but rather a straight line
intersecting the y-axis somewhere above the origin.

The benchmark results of Zefiros-BSPLib are shown in Figure 5.1. We can
see that indeed, Put is the fastest of the three. The penalty of using Get is not
that big, but shows an overhead due to the use of two requests, Get requests
and Buffered Get requests. Send is far more expensive due to the merging
of the communication queues. This shows that our expectations were right.
Improvements could be made on Send if we could figure out a way to prevent
the extra copy of memory induced by the merging of the queues.

The implementation before this thesis was not yet faster than the Multi-
coreBSP implementation, mostly on par, in terms of time. To see if the im-
provements in this thesis really made a difference compared to the Multi-
coreBSP implementation, a comparison has to be made with the benchmark
applied to MulticoreBSP . Due to the difference in compilers, C for Multi-
coreBSP and C++ for Zefiros-BSPLib, the computation rate shown in the bench-
mark is quite different.

The experiments with bspbench are conducted on a desktop computer
with a four core hyper-threaded processor. This is a virtualization technique
to simulate the existence of eight cores, with latency hiding. Up to four cores
can be used optimally. bspbench applied to MulticoreBSP measures a compu-
tation rate of approximately 475 Mflops/s, whereas Zefiros-BSPLib measures
a computation rate of approximately 7000 Mflops/s on the same machine.
When optimized using the assembly loop, the computation rate of Zefiros-
BSPLib is approximately 10000 Mflops/s, while MulticoreBSP is only 6000
Mflops/s with the ported assembly loop. This shows how much this measure
can differ on the same machine. The library is not to blame for this difference,



5.1. Benchmark 25

as this loop does not interact with the library. The difference is due to different
ways of optimization by the different compilers. A more reliable comparison
between the two libraries is to look at the last h-relation of both. For Put, this
is 0.030408 ms versus 0.012462 ms for MulticoreBSP versus Zefiros-BSPLib.

In order to fully compare the two libraries, we need to measure each type
of communication. bspbench from BSPedupack can easily be adapted to
measure a different type of communication. We see that Zefiros-BSPLib beats
MulticoreBSP on every type of communication. We can also see that the or-
dering in terms of speed is roughly the same. Get and Put are comparable in
terms of speed, with Put having a slight advantage over Get. Send is much
slower for both libraries.
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— Get
12 Send

S

@

Time (micro seconds)

0 100 200 300 400 500
h-relation

FIGURE 5.1: Plot of the timings of the different h-relations, fitted with the least
squares approximation. Timings are in us.
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—— MCBSP Get
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FIGURE 5.2: Plot of the timings of Zefiros-BSPLib versus MulticoreBSP . Timings
are in ps.
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5.2 LU decomposition

The second example is the LU decomposition in the BSPedupack. This sec-
tion will be a summary of the LU decomposition in [1], with the addition of
some interesting profiler images. The LU decomposition in BSPedupack uses
a slightly different distribution of the data, which we will discuss briefly with-
out going too much into detail. Since we are working with matrices here, it is
more natural to think of the processors as a matrix of processors. This changes
the enumeration of processors to P(s,t), with0 < s < Mand 0 < ¢t < N,
where M is the number of processor rows and N is the number of processor
columns. The distribution used in the LU decomposition is a matrix distribu-
tion. The distribution function of a matrix distribution is of the form

¢:{(,7):0<i,j<n}—={(s5t):0<s<MAO<t<N},

so it maps an element of the data matrix to a processor in the processor matrix.
It can be written as

QZ)(Z?j) = (¢0(Z)j)7¢1(7’7]))

Moreover, if it can also be written as

¢(Z7]) = (¢0(7’)7 ¢1(J))a

that is ¢ is independent of j and ¢; independent of i, the matrix distribu-
tion is called Cartesian. The LU decomposition uses the M x N cyclic matrix
distribution for its matrix. This is described by

¢(i,5) = (i mod M,j mod N).

Before we can parallelize the algorithm, we first need to know the basics
about an LU decomposition, and the sequential algorithm we will be paral-
lelizing. The LU decomposition decomposes an n x n non-singular matrix A
into a lower triangular part L and an upper triangular part U, both n x n ma-
trices, such that LU = A. This is useful for solving linear systems like Az = b.
Due to the structure of triangular matrices, solving becomes easy. It can be
done row by row, starting from the bottom for upper triangular matrices, and
from the top for lower triangular matrices. Each row immediately gives a solu-
tion for one new variable. We begin by solving Ly = b for y, and then solving
Uz = y for x. The solution then satisfies Az = (LU)xz = L(Ux) = Ly = b. This
is one example of the uses of an LU decomposition.
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FIGURE 5.3: LU decomposition of a 7 x 7 matrix at the start of stage £ = 3. The
values of L and U computed so far and the computed part of A fit exactly in one
matrix!.

The algorithm most suitable for parallelization, that is also more robust,
is the LU decomposition with partial pivoting. During the algorithm, a per-
mutation matrix P, which is just an identity matrix with swapped rows, will
also be computed, such that LU = PA. The permutation matrix P comes from
the partial pivoting during the algorithm. Every iteration, a pivot row will be
chosen, by looking at the nonzero column below and choosing the one with
the largest absolute value. This is done to ensure we are not eliminating with
a zero pivot element, as this would cause division by zero. This row will be
swapped with the top row of the remaining sub-matrix, and will be used to
eliminate the first non-zero column below. The pivot row will be stored in U,
and the factors of the elements in the column below the pivot row, divided by
the pivot element, will be stored in the next column of L. Because the pivot
element divided by itself is always 1 (provided the matrix is non-singular),
the diagonal of the matrix L will be the identity matrix. Thus, L — I,, will be
strictly lower diagonal, that is, it has only 0 on its diagonal. Every iteration,
one row of U will become fixed, and one column of L will become fixed. Since
the rows of U will be 0 where the column of L — I,, is nonzero, and vice versa,
we can store the values of the two matrices in the same matrix. The nonzero
elements do not overlap. The remaining sub-matrix in the lower right corner
exactly fits the remaining part of A. This is more memory efficient, since we
only need to allocate one matrix instead of three. It is visualized in Figure 5.3.
In the algorithm the matrix A will be used as the matrix of the current state,
containing the fixed parts of L and U, and the remaining sub-matrix which is
yet to be processed. The input matrix will be called A(”) and the output matrix
will be A in its final state, such that A = (L — I,,) + U.

We can extract L by taking the lower triangle of A, excluding the diagonal,
and adding I,. The upper triangle, including the diagonal, will be U. We now
have the equality LU = PA©), or equivalently LUz = PA®z = Pb. Suppose
we now want to solve A(”)z = b again. We now begin by solving Ly = Pb for
y, and then Uz = y for z. The solution then satisfies

Az = (P1P)AO g = P~Y(PAOYy = P7ILUz == P~'Ly = P"'Pb =,

as desired. Finally, the permutation matrix can also be stored as a vector 7 of

1This figure is reconstructed from [1].
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length n to reduce memory usage, and for simpler permutations in the pro-
gram. Row swapping using the permutation vector is much cheaper than
matrix-matrix multiplication with a permuted identity matrix. The sequen-
tial algorithm is shown in Algorithm 5.2. The sequential cost can be easily
determined by translating the for loops to summations of the number of flops
in the loop body. For the sake of simplicity, we will mainly focus on floating
point operations, not on swaps, assignments or comparisons for determining
the maximum element in the column. In the real algorithm, they do contribute,
but not as dominantly as the floating point operations. Starting with the inner
loops, we can easily see that for a certain £ in the outer loop, the cost of the
double loop over i and j is (n — k — 1)(n — k — 1) iterations, times one division
and one subtractions, so 2(n — k — 1)? flops. The loop before that has another
n — k — 1 divisions. We now need to sum over k for the outer loop, so the final
cost will be

n-1 n—1
- k1 an—k—1) =S @R =
Tsequ:O(Q(n k—12+n—k 1);:0(% th =%~ 5 &

which can easily be proven by induction over n.

Algorithm 5.2: Sequential LU decomposition with partial row pivoting?.

Input :A: n x nmatrix, A = A©),

Output: A: n x n matrix, A = L — I, + U, with
L: n x n unit lower triangular matrix,
U: n x n upper triangular matrix,
7: permutation vector of length n,

such that agro()im = (LU);j,for 0 < i,j < n.
fori:=0ton—1do
T =1,
fork:=0ton—1do
r:=argmax(|a;| : k <i <n);
swap (7, 7r);
forj:=0ton—1do
swap(ak;, arj);
fori:=k+1ton—1do
ik 1= Qi [ akk;
fori:=k+1ton—1do
forj:=k+1ton—1do
Ajj = Qjj — Gk Akj;

In order to parallelize the algorithm, we need to distribute the input and
output data. The matrix will be M x N cyclic, as discussed. The permutation
vector m will be distributed the same way as the first column of the matrix is
distributed, and only processor column 0 will store this information, as it is
not really needed during computations, only for output. The pivot element
is computed in parallel by the processors of the first column of the remaining
part of A. Each processor determines the index of element with the largest
absolute value in their local memory, then communicates both the index and
the value of the largest element to the other processors in the same column.

2This algorithm is reconstructed from [1].
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Then all processors in that column determine the index of the global maxi-
mum element, and they also compute the values that have to be stored in the
next column of L. Then they communicate the index of the pivot row to all
the processors in the same processor row. This is done in supersteps (0) — (3)
of Algorithm 5.3. In supersteps (4) — (5), the row swap is performed. It has
to be done in two supersteps, because the two rows are (usually) not stored
in the same processors. The variables with ~ are temporary variables. In su-
perstep (0’), each processor in row ¢ mod M needs to know the factor previ-
ously stored in a;;, from column k, which is now part of L. Only processor
P(i mod M,k mod N) knows the value, so we need to somehow broadcast
it to the entire row. The same goes for the value a;; from row &, which is the
pivot row that is now part of U. Each processor in column j; mod N needs
to know this value, so we need to broadcast it to the entire column somehow.
For this purpose, a two-phase broadcast is used, which is why the broadcast
has two superstep numbers assigned. Phase 0 of each broadcast is merged to-
gether into one superstep, superstep (6), and phase 1 of each broadcast is done
in superstep (7).

The two-phase broadcast is discussed and explained in much detail in [1],
but will only briefly and textually be explained here. Broadcasting a vector
of length n from one processor to all other processors would have a BSP cost
of (p — 1)ng + l. The two-phase broadcast first distributes the vector over all

processors. The processor keeps {ﬂ elements to itself, and also sends that

amount to each of the other processors, so that each processor has approx-
imately the same number of elements of that vector. This is phase 0 of the

two-phase broadcast, which has a BSP cost of (n — {%-‘ )g + I. In phase 1, each

processor sends his part of the vector to all other processors. This phase has a
BSP cost of (p — 1) {%] + [. The total BSP cost for the two phase broadcast will
be

n
Throadcast = (n + (p - 2) ’Vp-‘ )g + 2l ~ 2ng + 2l,

which is much less than (p — 1)ng + [, as long as of course p > 3 and [ is not
too large.

For a M x N cyclic distribution, we need p = M - N available processors.
The complete cost analysis in [1], but the important part is that M ~ N =
/P is the optimal choice for M and N, and the BSP cost of the algorithm is
approximately
2n3  3n? n 3n2g

3p * 2\/p VD
for this choice of M, N. The dominating factor in the sequential algorithm is
%. The dominating factor in the parallel algorithm is now %, which is a
factor p smaller than the sequential algorithm. Of course, the entire cost is still
not reduced by a factor p, but at least it will come close. This is always what
we are after. The LU decomposition is an interesting test case, because we can
see how much the improvements made to the library affect the performance
of a computation bound algorithm.

The BSPedupack contains a bsplu function and an executable program
to test the function, bsplu_test. These can be compiled without changes
to the code using Zefiros-BSPLib. However, to get useful profiler output, we

need to add some annotations in the program. The version with annotations

Try =~ + 8nl,
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is in Appendix A. The textual supersteps do not have a one on one correspon-
dence with the program supersteps. As mentioned before, the consecutive
computation and communication supersteps can often be merged into only
one program superstep. As a result, the program merges supersteps {(0"), (0),
(1)} into Superstep 0,{(2), (3)}into Superstep 1,{(4),(5)} into Superstep
2,and renames (6) and (7) to Superstep 3 and Superstep 4. The merge of
{(4),(5)} might seem odd, because we first have communication, and then as-
signment of temporary variables into the real matrix, but this is only to make
it textually more clear what is happening. The temporary variables are in-
duced by the communication buffers, and are only used textually to prevent
confusion about the state of the variables.

The LU decomposition has some interesting profiler images. Figure 5.4
shows the number of bytes communicated and the number of requests that
were used to communicate those bytes. The width of the bars represents the
time it took to communicate and to synchronize. The space between the bars
is computation time. Figure 5.4 (A) is similar to the image in [1] that was cre-
ated using Oxford BSP toolset profiler [4]. This new image is created using
the Zefiros-BSPLib Profiler. Figure 5.4 (B) gives some more insight into why
some of the rather tiny bars in (A) have such a large width. It shows that both
the size in bytes and the number of requests affect the communication and
synchronization time. The latter is more likely to be of influence on shared
memory architectures. On distributed memory architectures, all information
is bundled before it is sent to another processor, and the actual sending and
receiving of the bundled information will be much more expensive than the
separation back into requests. On shared memory, both have a large influence
on the communication time. Figure 5.5 is quite similar, but now it just shows
the average number of bytes and the average number of requests in each su-
perstep. The vertical lines are confidence intervals for the communication
amount in that superstep. It is now more clear that the amount of bytes and
the amount of requests does not change in Superstep 0 and Superstep
1, but it does change in the other supersteps. This is due to the decrease in
size of the remaining part of A. Figure 5.6 shows the amount of time each
processor takes for computation and communication+synchronization in each
superstep. It becomes more clear now that communication and synchroniza-
tion takes a huge portion of the time. Time varies per processor, but not too
much. Figure 5.7 shows the patterns in communication more clearly. We can
now also see that the pattern does not change too much over the course of the
algorithm, the amount of bytes just decreases. This can be seen by the fading
colors in the supersteps. Figure 5.8 shows the ratio between computation and
communication+synchronization per superstep. Due to the small timing val-
ues, this sometimes leads to a ratio 0, which is never true. What we can see
from this image, is that most of the time, the ratio varies around % This in-
dicates that the algorithm is communication bound, or at least for this matrix
size and distribution.

It would now be interesting to compare this example between MulticoreBSP
and Zefiros-BSPLib. As it turns out, the difference is not too large. Both li-
braries are tested on a 200 x 200 matrix, with M = 4 and N = 1. The large
synchronization time we saw in the profiler output could partly be due to data
collection by the profiler. This should be filtered out for the profiler output
in a later release. The timing is 0.001234 seconds versus 0.001304 seconds for
Zefiros-BSPLib versus MulticoreBSP . There is a slight advantage of Zefiros-
BSPLib over MulticoreBSP , and as we noticed in the cost analysis, the LU
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decomposition is mainly computation bound, and the difference is indeed not
that large between libraries, which usually indicates that most of the time is
spent on computation.

This observation differs from the profiler output in Figure 5.6. This profiler
output showed that communication took a large part of the time. This is prob-
ably explained by Figure 5.4, where we can see that the number of requests is
usually large. A large numbers of requests causes extra overhead over a small
number of requests with the same size, and even more so with the profiler
enabled.

#communications, width represents fime #communications, width represents time
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max(send, receive)
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Time (s) Time (s)
(A) (B)

FIGURE 5.4: Profiler output showing the number of bytes and the number of re-
quests communicated for the parallel LU decomposition with M = 8, N = 1,n =
100. Width of the bars and the gaps represent communication and computation
time respectively. The zoom functionality of the GUI is used to zoom in on the
initial stages of the algorithm.

Proc 7
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FIGURE 5.5: Profiler output showing the number of bytes and the number of re-
quests communicated for the parallel LU decomposition with M = 8, N = 1,n =
100. The bars are grouped by superstep. The vertical lines represent confidence
intervals in which the amount varies for that superstep.
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FIGURE 5.6: Profiler output for the parallel LU decomposition with M = 8, N =
1,n = 100, showing the time each processor takes in each superstep. The time is
separated into computation time and computation and synchronization time. The
vertical lines are confidence intervals for the times.
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FIGURE 5.7: Profiler output for the parallel LU decomposition with M = 2, N =
2,n = 20, showing the communication pattern per superstep in each small matrix.
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Ratio comp/(comm + sync) per superstep

M

Superstep

comp/(comm + sync)

100

FIGURE 5.8: Profiler output for the parallel LU decomposition with M =
2,N = 2,n = 20, showing ratio between computation and communica-
tion+synchronization per superstep.
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Algorithm 5.3: Parallel LU decomposition algorithm for P(s, t).2

Input : A:n x n matrix, A = A©), distr(A) = M x N cyclic.

Output: A: n x n matrix, distr(A) = M x N cyclic, A = L — I, + U, with
L: n x n unit lower triangular matrix,
U: n x n upper triangular matrix,
7: permutation vector of length n, distr(m) = cyclic in P(x,0),

such that aq(TO()i)j = (LU);j,for 0 < 4,5 < n.
ift=0then for all::0<:<nA? mod M = sdo
T =1,
fork:=0ton —1do
if ¥ mod N =t then

© rs = argmax(|ajk| : k <i<nAi mod M = s);
o)) put s and a,_ j in P(x,1);
@) Smax ‘= arg max(|a,, x| : 0 < g < M);

ri= /r.smax;

for alli: k<i<nAi mod M =sAi#rdo
Uik *= @ik ) Qrk;
®) put rin P(s, x);

@ if £ mod M = s then
if t = 0 then put 7 as 7y, in P(r mod M, 0);
forallj:0<j<nAj mod N=tdo
put ay; as ag; in P(r mod M, t);
if » mod M = s then
if t = 0 then put 7, as 7, in P(k mod M,0);
forallj:0<j<nAj mod N=tdo
put a,; as a,; in P(k mod M, t);

5) if & mod M = s then
if t = 0 then 7, := 7,
forallj:0<j<nAj mod N=tdo
aj := Grj;
if r mod M = s then
if t = 0 then 7, := 7y;
forallj:0<j<nAj mod N=tdo
Qrj 1= Qkj;
6)/(7) broadcast((a;x : k <i<nAi mod M =s),P(s,k mod N), P(s,x));
6)/(7) broadcast((ax; : k < j <nAj mod N =t),P(k mod M,t), P(x,t));

0) for alli: k <i<nAi mod M =sdo
forallj:k<j<nAj mod N=tdo
Aij 1= Qij — AigQkj,

3This algorithm is reconstructed from [1].



5.3. Fast Fourier Transform 35

5.3 Fast Fourier Transform

Finally, we will discuss the Fast Fourrier Transform (FFT) that is included in
BSPedupack. This section is again a summary of the beginning of a chapter in
[1], stating some of the points what makes the FFT a suitable and interesting
test case. The FFT is a faster algorithm for the Discrete Fourier Transform
(DFT). The DFT is a way to compute the Fourier Transform of a discrete vector.
A Fourier Transform is a way to express a T-periodic function f : R — C' as a
series of complex powers of e. A T-periodic function is a function that satisfies
f({t+T) = f(t) forallt € R. The Fourier series associated with f is of the form

f(t): Z CkeQﬂ'ikt/T7

k=—o00

where the Fourier coefficients are defined by

1" :
cp = T/O f(t)e_Qﬂ—lkt/Tdt.

To discretize this, we could for example sample n equidistant points of the
interval [0,T]. Then using the trapezoidal rule for numerical integration, we
obtain

e :

Q

LT (1) R~ g eibtyr , ST
T |z e T

n—1

Z f(tj)ef%rijk/n'

§=0

The DFT of a complex vector x = (xg, 1, ..., r,_1)T € C" is then defined
by a vector y = (vo, y1, ---, Yn—1)T € C" with

n—1
Yk = ije_QMjk/”, for0 <k <n.
=0

The inverse of a DFT is simply defined by
1 n—1 N
v = kzoyke2”k/", for0 <j <n.

This is equivalent to the DFT itself, except for the sign in the power of e
and the factor 1. This would require n — 1 complex additions and n com-
plex multiplications if we assume the powers of e have been precomputed
and stored in a table. Complex addition requires two real additions, since
(a4 bi) + (¢ + di) = (a + ¢) + (b + d)i, whereas complex multiplication re-
quires one real addition, one real subtraction and four real multiplications,
since (a + bi)(c + di) = (ac — bd) + (ad + bc)i. There are n entries in y, all
requiring 8n — 2 flops. This results in a sequential cost of 8n% — 2n flops. We

—27i/n —2mijk/n

use w, = e , so that we can write e = w)". In matrix form, this
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becomes y = Fy,x, with (F},) 5 = wi'.

The FFT algorithm improves on this in a very simple and elegant way, by
a (not as simple) observation. Since w2 = = e(=2mijk/n)2) — /2, we can split the
sum into even and odd indices and write

n/2—1 n/2—1
ik 25k (2j+1)k
Yk = g zjw) = g xojwi’" + E Lj41W)y (2j+1)

n/2—1 n/2—1

_ L k . gk
— Z acgjwn/Q + Wy Z x2]+1wn/2,
J=0 J=0

assuming n is even. We can recognize two FFT in these sums, one for the odd
and one for the even indices. This new Fourier transform is of length n/2, so
we have to restrict the output indices k to 0 < k£ < n/2. To get an expression
for the output indices n/2 < k < n, we introduce k' = k — n/2, which now

satisfies 0 < k' < n/2 again. By observing w'" /2 = 1L,wp?, we get that
Y = yk’+n/2
n/2—1 n/2—1 '
= Z TojW n/ k +n/2) + wa’+n/2 Z $2j+1wfl(/kz+n/2) for 0 < k/ < n/2
3=0
n/2 1 n/2 1

= Z Tojw n/2 w Z x2]+1w for0<k: <n/2.

The sums are again in the form of an FFT, but now for n/2 < k < n. Now
comes the elegant part: if we look at the sums, we see that they the first sum
in both equations is equal, and that the second sum is also equal in both equa-
tions. The only difference is that we add them up in the first equation, and
subtract them in the second equation. We now only have to compute both
sums once, and if we add them up, we get y;, if we subtract the second from
the first, we get yj,,/2. If we first compute all the half length Fourier trans-
forms with the DFT algorithm, this would cost 2 (8(n/2)? — 2(n/2)) = 4n*—2n
flops. Combining the results would cost n/2 complex multiplications, for the
second sum with the coefficient w¥ in front, n/2 complex additions for ele-
ments 0 < k < n/2 and n/2 subtractions for elements n/2 < k < n, resulting
n (6 + 2+ 2) - (n/2) flops. The total cost is already reduced from 8n? — 2n
to 4n? + 3n flops. Instead of using the DFT, we could also apply FFT for the
smaller sums. This requires n/2 to also be even. If we want to repeat this until
we are only left with a single element in the sum, we would require n to be a
power of 2, which we will assume from now on for simplicity.

This algorithm is recursive, because each FFT applies two FFT computa-
tions for its own sums. To analyze the cost of this recursive algorithm, we can
express the cost function of an FFT of length n recursively by

T(n) = 2T (g) + 5n.
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Following the recursion, we obtain

T@)zQT(%)+5n:2(ZT(%>+5%)+5n

=4T (g) +2-5n=..=nT(1) 4+ logyn - 5n = bnlogy n,

which is already far less than 8n? — 2n.

As recursive algorithms are hard to parallelize, we would like to formulate
it as a non-recursive algorithm first. In order to do this, we first rewrite the
recursive computation in matrix language. It can be written as

I Q F 0 z(0:2:n—-1)
_ |*n/2 n/2 n/2

where Q,, = diag(1,wan, w3, ...,ws: ). Note that the vector [z(0 : 2 : n —
1),z(1:2:n—1)]is a permutation of the vector x, which can also be achieved
using a permutation matrix. We will denote this by 5, the even-odd sort
matrix, such that

Spx = [m (5.2)

Each of the matrices I,,/5,€2,, /2, F},/2 are n/2 x n/2 matrices, forming n x n
matrices by concatenation. The matrix containing two identical copies of F;,
is a block diagonal matrix, with all zero entries on the off-diagonal blocks.
These blocks can also be interpreted as 0 - F}, 5. This is a useful observation,
as we can now simplify the notation using the Kronecker product of matrices
A® B. Let Abe a ¢ x r matrix and B a m x n matrix. Then A ® Bisaqm x rn
matrix defined by

apoB  ...a0,—1 B
A®B= :
aq_LOB e aq_LT_lB

Among the many useful properties of the Kronecker product, there are three
we will now be using.

Lemma 5.3.1. The Kronecker product has the following properties.

i. Let A, B, C be matrices. Then

(A®B)®C=A® (B® Q).

ii. Let A, B, C, D be matrices such that AC and BD are defined. Then

(A® B)(C ® D) = AC ® BD.

iii. Let m,n € N. Then
I, @I, = L.

The middle matrix in (5.1) can now be written as Iy ® F}, /o. The left most
matrix will be labeled as B,,. The new notation is now Fy,x = B, (I, ® F;, /2) Spx.
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This holds for all vectors x, so we can conclude that
Fp = By(Iy ® F,, 5)Sn

is a matrix factorization of F;,. If we write the middle term in the form I; ® F), .,
and apply the factorization again, we obtain

Iy @ Foi = Il Ii] @ [Byyi(I2 @ Fyy21)) Syl

(B

= (Ix @ Byi) (Ikd] ® [(I2 ® Fyyy2k)) Snykl)

= (It @ Bpi) Ik @ I ® Fyy o)) Ik @ Sy yic)
= (I ® Bpi)(I2k ® Fpyj(2k)) Ik ® Spyk)-

Since each of the I} ® S,/ is a permutation matrix, the product of all these
matrices is again a permutation matrix. We will use the notation

Ry = (12 ® 82)...(I4 ® Sy 1) (T2 @ Sy ) (I1 @ Sp).

By repeatedly applying the factorization on the middle term, and collecting
the right hand side, we obtain the following theorem.

Theorem 5.3.2. (Cooley and Tukey [5] — DIT)
Let n be a power of two with n > 2. Then

Fn= (1 ®Bn)(I2® By, /9)(I4 @ By 4)-..(In/2 ® B2) Ry,

with R,, as described before.

All this is still to rewrite the algorithm into a form that can be parallelized.
In the form we have now, we can first apply the permutations from x’ = R,,x
at the beginning, and then we can iteratively multiply by (1,,/, ® By), starting
with k& = 2 and multiplying k£ by 2 in each iteration. This is the basis for
the non-recursive algorithm: we have no recursive definition of F;, anymore.
Still, there are many complications to overcome before we can parallelize the
algorithm. One of these difficulties is the distribution of the coefficients wy,.
This should be such that every processor can access the needed coefficients,
without needing to store or precompute the entire table itself. Another is the
distribution of the two vectors itself, and the split into supersteps. All this is
discussed in detail in [1], but since we are interested in how the improvements
of the library impact the efficiency of the algorithm, we will now skip to the
cost analysis of the algorithm.

As explained in [1], the cost of the parallel FFT is greatly simplified in the
case p < y/n. Since we work on shared memory, the number of processors is
limited. Therefore, any size n easily satisfies this inequality. The BSP cost is

then

onl
N8N | o1 4 3l
p

TFFT,1<p§\/ﬁ =
Only three supersteps are needed if the proper distribution is chosen: one com-
putation, followed by one communication, and finally one more computation.
In the first superstep, a block distribution is chosen. During the communica-
tion superstep, the vector is redistributed into group-cyclic distribution. Dur-
ing the computation, each processor distributes its own part to all processor
that will own that part in the next superstep. This is done using a buffer, and
the own elements are relocated as well, causing the processor to send and re-
ceive exactly 27 real numbers, twice the number of complex numbers. The
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computation cost of the non-recursive algorithm would be the same as the
recursive algorithm, as explained in [1]. The computations can be divided
equally due to the assumptions on n, and we do not need to collect results
afterwards anymore, so the resulting cost is just the cost of the sequential al-
gorithm, divided by the number of processors, which is the optimal case for a
parallel algorithm. What makes this an interesting test case, is the fact that the
ratio between the amount of computations and the amount of communication
is much smaller than for the LU decomposition.

To reduce the initialization time, some loops in the code were changed,
for example m = 1 : 1 : logyn, with & = 2™ to replace a loop where & is
initialized with value 2, and multiplied by 2 in every iteration. We can then
multiply by £ by shifting the bits of the binary representation of an integer m
positions. If we label the bits by b;, then each bit contributes to b, - 27 in the
number, where b; € {0, 1}. Shifting the bits one position produces a number
with b, = bj,and by = 0. Integer division can be done by shifting in the other
direction. Binary operations such as those shifts are usually much cheaper
than their multiplication or division counterparts. Multiplication or division
by a constant power of two is often optimized by the compiler to be done
with these binary shifts, but loop iterations can sometimes not be optimized
in this way. To help the compiler optimize the loop, writing the binary shifts
manually can increase the speed of the computation. This is not guaranteed,
but it often does help.

In the initialization, this tactic does increase the speed of computations.
However, for the FFT it can only be applied in one of the outer loops of the
algorithm (for the algorithm, see [1]). This results in only a minor increase
of speed, but the speed is more stable over different runs of the algorithm.
Writing binary operations is often more obscuring than it is a speed gain. In
cases like this, binary operations are justified, but should, as a rule of thumb,
always be accompanied by a comment explaining the operation. For example:

// k = 2"m
// x =y / k
3 X =y >>m;

N

Looking at the computation and communication cost, the difference is not
as huge as for the LU decomposition, a factor of O(log, n) instead of a factor
of O(n) for LU. We will now experiment to see how much we can improve by
using Zefiros-BSPLib over MulticoreBSP . The experiment we will be looking
at is a parallel FFT, using 4 processors and a complex vector of length 8192. In
practice, the vector is often much larger, but we need to apply the FFT multiple
times in order to get a stable average time per FFT. We do this by applying the
FFT 10000 times, 5000 times FFT and 5000 times the inverse FFT. We also count
initialization time, for the precomputation of the weights and the permutation
matrix. This results in the following output of the algorithm in BSPedupack:

Zefiros-BSPLib MulticoreBSP

Time per initialization = I Time per initialization =
0.000115 sec 2 0.000170 sec
Time per FFT = 0.000048 sec 3 Time per FFT = 0.000090 sec
Computing rate in FFT = 4 Computing rate in FFT =
11396.872477 Mflop/s 5 6119.505399 Mflop/s
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Both initialization and FFT speed have increased significantly with Zefiros-
BSPLib, showing that for algorithms with a large communication part, the cost
can be greatly reduced by a faster library implementation.

The FFT also has some interesting profiler output. From Figure 5.10, it
seems the initialization is imbalanced. However, each processor has a differ-
ent parameter which is part of a sin and cos computation. The number of sin
and cos operations is equal, and so is the rest of the initialization. This huge
difference is due to the way the sin and cos are implemented. Several checks
are done to determine in which range the number lies, and then different al-
gorithms are used for different ranges. Apparently, the algorithm processor 0
had to use was much more costly. This is unpredictable over different architec-
tures and different compilers. This program output is generated on Windows.
Running the same program on Linux, with a different compiler, but the same
computer, resulted in processor 0 and 4 being swapped in terms of computa-
tion time.

Figure 5.11 shows that each FFT computation takes roughly the same amount
of time in terms of both computation and communication. However, the first
FFT is slightly more costly, as buffers are allocated in the first FFT, and reused
in the next. However, it is unusual to run a program and compute a single
FFT. This is usually part of a larger algorithm, or in a series of more compara-
ble FFT computations. The overhead of Zefiros-BSPLib is then only visible for
the first or first few supersteps.

Figure 5.12 is not rather interesting to look at, as there are no special com-
munication patterns like the LU decomposition had. However, this is in gen-
eral a picture of an algorithm utilizing full h-relations.

Figure 5.9 shows that the ratio between computation and communication
is rather stable over the different FFT computations, slightly more than a factor
10. Analyzing the cost of the parallel algorithm for these parameters, neglect-
ing the synchronization cost for now, as we only need one synchronization,

1
the ratio is approximately 212" / (2?” g) = 3275. This would imply g ~ 3, but

this is not really realistic, even on shared memory. The communication of the
FFT is rather optimal, as we only need to separate the communication into p
parts for this setup. This is not the general case. What it does show however,
is that the BSP cost analysis is a good approximation of the cost of the parallel
algorithm: the ratio between computation and communication matches the re-
ality up to a minor factor, which is introduced by the fact that we neglect some
of the code in our cost analysis, like loop iteration and allocation of variables
in memory.
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FIGURE 5.9: Profiler output for the FFT with p = 4 and n = 8192. The ratio per
superstep is shown. The ratio seems to be stable for the FFT and inverse FFT, and
slightly different for the initialization and de-initialization of the algorithm.
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FIGURE 5.10: Profiler output for the FFT with p = 4 and n = 8192. Average compu-
tation, communication and synchronization time per superstep, grouped by super-
step number. Averaged over 5 normal and 5 inverse FFT computations.
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FIGURE 5.11: Profiler output for the FFT with p = 4 and n» = 8192. Communi-
cation amount per superstep is shown on the vertical axis. The width of the bars
and the gaps is an indication of the communication+synchronization time and the
computation time respectively. The 10 bars represent 5 normal FFT and 5 inverse
FFT computations, interchanged.
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FIGURE 5.12: Profiler output for the FFT with p = 4 and n = 8192. Communication
patterns for the processors are visualized. All FFT and inverse FFT computations
require the same amount and same pattern of communication.
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Conclusion

In most cases, the cost parameters of the library are not really taken into ac-
count until the last moment. In this thesis we have seen that a good implemen-
tation of communication and synchronization can even cut the execution time
of an algorithm in half. Most speed is gained when the algorithm has only
a small factor of difference in cost between computation and communication,
like the FFT, in contrast with the LU decomposition that is computation bound
by a factor of O(n).

Some of the improvements done on Zefiros-BSPLib are more portable than
others, when improving a distributed memory implementation. The Latin
square is highly portable and is expected to give comparable improvements,
while the Stack Allocators will most likely have less of an impact on dis-
tributed memory than it had on shared memory, because the information is
already bundled and the actual exchange of information is far more expensive
than the allocation of buffers.

The general idea is that abstraction in the code causes overhead in the run-
time of the algorithm. For Zefiros-BSPLib, abstraction has proven useful in the
optimization of the internals of the library.

The added Mixed Barrier in Zefiros-BSPLib is a nice addition for educa-
tional purposes. Correctness of the algorithm can be tested on more than the
physically available cores that the computer actually has. It is also recom-
mended to use the Mixed Barrier in the early stages of the algorithm develop-
ment, as this is more processor-friendly than spinning indefinitely until every-
one is done, in case of a computational imbalance. Using the profiler, we can
then detect such imbalances and then try to fix them in our code.

Improvements can still be made on Send, as the time of this communica-
tion type is much larger than the other types of communication. This holds
for both Zefiros-BSPLib and MulticoreBSP . Other improvements could be
thought of that have not yet been mentioned in any form during this thesis.
For example, synchronization in distinct subsets of the total processor set. This
could be implemented in the form

BSPLib: :Subdivide ( /+ subdivision definition =*/ ).

Extreme care needs to be taken in order to guarantee that the sets are really
distinct, otherwise deadlocks that were not possible with the BSP standard
could be reintroduced. The use of this is apparent from the LU decomposition
matrix plot in Figure 5.7. In some supersteps, only pairs of processors need
to communicate. It is redundant to wait for the other processors to finish be-
fore continuing on to the next superstep. If every processor follows the same
pattern of subdivisions, this would never cause a deadlock. Feasibility of the
subdivision should be checked for examples like the LU decomposition, to see
if the communication pattern can easily enough be translated to a subdivision,
before deciding if this is worthwhile.
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Appendix A

C++ code for the parallel LU
decomposition

LISTING A.1: bsplu.cpp

1 #include "bspedupack.h"

3 #define EPS 1.0e-15

4

5 void bsp_broadcast ( double xx, int n, int src, int s0, int stride, 5
6 int p0, int s, int phase )

8 /+ Broadcast the vector x of length n from processor src to

9 processors sO+txstride, 0 <= t < p0. Here n >= 0, p0 >= 1.
10 The vector x must have been registered previously.

11 Processors are numbered in one-dimensional fashion.

12 s = local processor identity.

13 phase= phase of two-phase broadcast (0 or 1)

14 Only one phase is performed, without synchronization.
15 */

17 int b, t, tl, dest, nbytes;

19 b= (n%$p0=07? n/p0:n/p0+1); /» block size x/
20

21 if ( phase == 0 && s == src )

22 {

23 for (t = 0; t < p0; t++ )

24 {

25 dest = s0 + t » stride;

26 nbytes = std::min( b, n - t * b ) x SZDBL;

28 if ( nbytes > 0 )

29 {

30 bsp_put ( dest, &x[t x b], x, t » b x SZDBL, nbytes );
31 }

32 }

33 }

34

35 if ( phase == 1 && s % stride == s0 % stride )

36 {

37 t = (s - s0 ) / stride; /+ s = sO+txstride «/
38

39 if (0 <=1t && t < p0)

40 {

41 nbytes = std::min( b, n — t * b ) x SZDBL;

42

43 if ( nbytes > 0 )

44 {

45 for ( tl = 0; tl < p0; tl++ )
46 {



Appendix A. C++ code for the parallel LU decomposition 45

47 dest = s0 + tl % stride;

48

49 if ( dest != src )

50 {

51 bsp_put ( dest, &x[t = b], x, t » b x SZDBL, nbytes );

58 } /+ end bsp_broadcast */

60 int nloc( int p, int s, int n )

61 {

62 /+ Compute number of local components of processor s for vector
63 of length n distributed cyclically over p processors. x/

65 return (n+p-s —-1) / p;

66

67 } /* end nloc x/

68

¢ void bsplu( int M, int N, int s, int t, int n, int xpi, double xxa )
70 {

71 /+ Compute LU decomposition of n by n matrix A with partial pivoting.
72 Processors are numbered in two-dimensional fashion.

73 Program text for P(s,t) = processor s+t=xM,

74 with 0 <= s < M and 0 <= t < N.

75 A is distributed according to the M by N cyclic distribution.

76 */

77
78 int nloc( int p, int s, int n );
79 double x*pa, =xuk, =1k, *Max;

80 int nlr, nlc, k, i, j, r, »Imax;

81

82 nlr = nloc( M, s, n ); /x number of local rows =*/

83 nlc = nloc( N, t, n ); /* number of local columns =*/

84 bsp_push_reg( &r, SZINT );
85

86 if ( nlr > 0 )

87 {

88 pa = al0];
89 }

90 else

91 {

922 pa = NULL;

95 bsp_push_reg( pa, nlr x nlc * SZDBL );
96 bsp_push_reg( pi, nlr %= SZINT );

97 uk = vecallocd( nlc );

98 bsp_push_reg( uk, nlc x SZDBL );

99 lk = vecallocd( nlr );

100 bsp_push_reg( 1k, nlr % SZDBL );

101 Max = vecallocd( M );

102 bsp_push_reg( Max, M % SZDBL );

103 Imax = vecalloci( M );

104 bsp_push_reg( Imax, M x SZINT );

105

106 /* Initialize permutation vector pi =/
107 if (t == )

108 {

109 for (1 = 0; i < nlr; i++ )

110 {
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pi[i] = i « M + s; /* global row index =/

bsp_sync () ;
BSPProf::ResumeRecording () ;
BSPProf::MarkSuperstep( 0 );

for ( k = 0; k < n; k++ )

{
int kr, krl, kc, kcl, imax = 0, smax, sl, tl;
double absmax, max, pivot;

/+ Initialise smax to non-existent index =/

smax = -1;

/*xxxx*x Superstep 0 xxxx*x*/

kr = nloc( M, s, k ); /* first local row with global index >= k x/
krl = nloc( M, s, k + 1 );

kc = nloc( N, t, k );

kcl = nloc( N, t, k + 1 );

if (( k $ N == ) /% k=kc*N+t =/

/* Search for local absolute maximum in column k of A */

absmax = 0.0;
imax = -1;
for (i = kr; i < nlr; i++ )
{
if ( fabs( a[i][kc] ) > absmax )
{
absmax = fabs( al[i] [kc] );
imax = i;
}
}
if ( absmax > 0.0 )
{
max = al[imax] [kc];
}
else
{
max = 0.0;

/* Broadcast value and local index of maximum to P (*,t) =/
for ( s1 = 0; sl < M; sl++ )
{
bsp_put ( sl + t » M, &max, Max, s % SZDBL, SZDBL );
bsp_put ( sl + t *» M, &imax, Imax, s * SZINT, SZINT );

bsp_sync () ;
BSPProf::MarkSuperstep () ;

/ %k ok ok kK Superstep 1 K,k kkkKx/

if ((k $ N ==+t )

{
/+ Determine global absolute maximum (redundantly) =/
absmax = 0.0;

for ( sl = 0; sl < M; sl++ )
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if ( fabs( Max([sl] ) > absmax )
{
absmax = fabs( Max([sl] );
smax = sl;

if ( absmax > EPS )
{

r = Imax[smax] * M + smax; /* global index of pivot row =/
pivot = Max[smax];
for (1 = kr; i < nlr; i++ )
{
ali] [kc] /= pivot;
}
if ( s == smax )
{
al[imax] [kc] = pivot; /* restore value of pivot =/

/+ Broadcast index of pivot row to P (x,*) */
for ( tl = 0; tl < N; tl++ )
{

bsp_put( s + t1 » M, &r, &r, 0, SZINT );
}
}
else
{
bsp_abort ( "bsplu_at _stage %$d: matrix is_singular\n",

bsp_sync () ;
BSPProf::MarkSuperstep () ;

/ %k kK ok K Superstep 2 ******/
if (k $ M == 35 )
{
/* Store pi (k)
if | = 0 )
{
bsp_put( r $ M,

in pi(r) on P(rsM,0) */

spilk / M], pi, ( r / M )*SZINT, SZINT

/% Store
bsp_put( r $ M + t = M,

row k of A in row r on P (r3%M,t) =/
alk / Ml, pa, (

if (r $ M == s )
{
if (t == 0)
{
bsp_put( k $ M, &pil[r / M], pi, ( k / M )*SZINT, SZINT

bsp_put( k $ M+ t » M, alr / M], pa,

bsp_sync();
BSPProf::MarkSuperstep();

r / M )*nlc = SZDBL,

( k / M )*nlc » SZDBL,

nlc x= SZDBL

nlc x SZDBL

)i

)i
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239 /**xx*x% Superstep 3 xxxx*x/

240 /+ Phase 0 of two-phase broadcasts */

241 if ((k $ N == )

242 {

243 /* Store new column k in 1k =/

244 for (i = krl; 1 < nlr; i++ )

245 {

246 1k[i - krl] = alil[kc];

247 }

248 }

249

250 if (k $ M == 5 )

251 {

252 /+ Store new row k in uk */

253 for ( j = kcl; j < nlc; j++ )

254 {

255 uk[j - kcl] = alkrl[3];

256 }

257 }

258

259 bsp_broadcast ( 1k, nlr - krl, s + ( k % N )=xM, s, M, N, s + t = M,
260 bsp_broadcast ( uk, nlc - kecl, (k $ M) +t M t M 1, M, s + t
261 bsp_sync();

262

263 BSPProf::MarkSuperstep () ;

264

265 [k kxxx Superstep 4 Kok ok k Kk k

266 /* Phase 1 of two-phase broadcasts =/

267 bsp_broadcast ( 1k, nlr - krl, s + ( k % N )=x*M, s, M, N, s + t x M,
268 bsp_broadcast ( uk, nlc - kecl, (k $ M) +t M t M 1, M, s + t
269 bsp_sync () ;

270

271 BSPProf::MarkSuperstep( 0 );

272

273 /*xxxxx Superstep 0 xxxx*x*/

274 /* Update of A x/

275 for (1 = krl; 1 < nlr; i++ )

276 {

277 for ( j = kcl; j < nlc; j++ )

278 {

279 alil[j] -= 1lk[i - krl] % uk[J - kcl];
280 }

281 }

282 }

283
284 BSPProf::PauseRecording () ;

285
286 bsp_pop_reg( Imax );
287 vecfreei ( Imax );

288 bsp_pop_reg( Max );
289 vecfreed( Max );
290 bsp_pop_reg( 1k );
291 vecfreed( 1k );

292 bsp_pop_reg( uk );
293 vecfreed( uk );

294 bsp_pop_reg( pi );
295 bsp_pop_reg( pa );
296 bsp_pop_reg( &r );
297

298 } /+ end bsplu */

=

*
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LISTING A.2: bsplu_test.cpp

1 #include "bspedupack.h"

2

3 /x This is a test program which uses bsplu to decompose an n by n

4 matrix A into triangular factors L and U, with partial row pivoting.
5 The decomposition is A(pi(i),j)=(LU) (i,]3), for 0 <= 1i,j < n,

6 where pi is a permutation.

7

8 The input matrix A is a row-rotated version of a matrix B:

9 the matrix B is defined by: B(i,j)= 0.5%xi+1 if i<=j

10 0.5«x3+0.5 i>7,

11 the matrix A is defined by: A(i,j)= B((i-1) mod n, 7).

13 This should give as output:

14 the matrix L given by: L(i,3Jj)= 0 if i<3,

15 =1 i=j,

16 = 0.5 i>7.

17 the matrix U given by: U(i,3])=1 if i<=7,

18 =0 i>J.

19 the permutation pi given by: pi(i)= (i+1l) mod n.

21 Output of L and U is in triples (i, 3,L\U(i,7J)):

22 (i,3,0.5) for i>j

23 (i,3,1) for i<=j

24 Output of pi is in pairs (i,pi(i))
25 (i, (i+1) mod n) for all i.

27 The matrix A is constructed such that the pivot choice is unique.

28 In stage k of the LU decomposition, row k is swapped with row r=k+1.

29 For the M by N cyclic distribution this forces a row swap
30 between processor rows.
31 %/

33 uint32_t M, N;
35 void bsplu_test ()

36 {
37 int nloc( int p, int s, int n );

38 void bsplu( int M, int N, int s, int t, int n, int xpi, double *x*a );

39 int p, pid, g9, s, t, n, nlr, nlc, i, j, iglob, jglob, =xpi;
40 double x+*a, timeO, timel;

42 bsp_begin( M x N );

43 BSPProf::PauseRecording () ;

44 p = bsp_nprocs(); /* p=MxN */
45 pid = bsp_pid();

47 bsp_push_reg( &M, SZINT );
48 bsp_push_reg( &N, SZINT );
49 bsp_push_reg( &n, SZINT );
50 bsp_sync () ;

52 if ( pid == 0 )

53 {

54 printf( "Please_enter matrix_size _n:\n" );
55

56 //*

57 #1fdef _WIN32

58 scanf_s( "%d", &n );

59 #else

60 scanf ( "%d", &n );

61 fendif

62 /*/
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63 n = 100;

64 [ xx/

65

66 for ((g=0; g < p; gtt+ )

67 {

68 bsp_put( g, &M, &M, 0, SZINT );
69 bsp_put( g, &N, &N, 0, SZINT );
70 bsp_put( g, &n, &n, 0, SZINT );

74 bsp_sync();

75 bsp_pop_reg( &n ); /* not needed anymore x/
76 bsp_pop_reg( &N );

77 bsp_pop_reg( &M );

79 /* Compute 2D processor numbering from 1D numbering */
80 s =pid $ M; /x 0 <= s < M «/
81 t =pid / M; /+* 0 <=t < N %/

83 /+* Allocate and initialize matrix =*/

84 nlr = nloc( M, s, n ); /* number of local rows =/

85 nlc = nloc( N, t, n ); /* number of local columns =/
86 a = matallocd( nlr, nlc );

87 pi = vecalloci( nlr );

89 if ( == 0 && t == )

90 {

91 printf( "LU_decomposition_of %d by %d _matrix\n", n, n );
92 printf( "using_the_%d_by_%d _cyclic_distribution\n", M, N );
93 }

9%

95 for (i = 0; i < nlr; i++ )

96 {

97 iglob = i * M + s; /% Global row index in A */

98 iglob = ( iglob - 1 + n ) % n; /* Global row index in B */
99

100 for ( 3 = 0; j < nlc; j++ )

101 {

102 jglob = j * N + t; /% Global column index in A and B */
103 alil[j] = ( iglob <= jglob ? 0.5 % iglob + 1 : 0.5 * ( jglob + 1 ) );
104 }

105 }

106

107 if (s == 0 && t == )

108 {

109 printf( "Start_of LU_decomposition\n" );

110 }

111

112 bsp_sync () ;

113 time0 = bsp_time();

114

115 bsplu( M, N, s, t, n, pi, a );
116 bsp_sync();

117 timel = bsp_time();

118

119 if (s == 0 && t == 0 )

120 {

121 printf( "End_of LU _decomposition\n" );

122 printf( "This_took_only %.61f seconds.\n", timel - timeO );
123 printf ( "\nThe_ output, permutation is:\n" );

124 fflush( stdout );
125 }
126
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127 if (t == 0)

128 {

129 for (i =0; 1 < nlr; i++ )

130 {

131 iglob = 1 » M + s;

132 printf ( "i=%d, pi=%d, proc=(%d,%d)\n", iglob, pil[i], s, t );
133 }

134

135 fflush( stdout );

136 }

137

138 bsp_sync () ;
139

140 if (s == 0 && t == 0 )

141 {

142 printf( "\nThe_output matrix_is:\n" );
143 fflush( stdout );

144 }

145

146 for (i = 0; i < nlr; i++ )

147 {

148 iglob = i » M + s;

149

150 for ( jJ = 0; j < nlc; Jj++ )

151 {

152 jglob = j » N + t;

153 printf ( "i=%d, ,j=%d, _,a=%f, _proc=(%d, %d)\n",
154 iglob, jglob, alill3jl, s, t );
155 }

158 vecfreei( pi );
159 matfreed( a );

161 bsp_end () ;

164 int main( int argc, char xxargv )

165 {

166

167 bsp_init ( bsplu_test, argc, argv );

168

169 printf( "Please_enter number of processor rows_M:\n" );

171 // *

172 #ifdef _WIN32

173 scanf_s( "%d", &M );
174 #else

175 scanf ( "%d", &M );
176 #endif

178 printf( "Please_enter number of processor columns N:\n" );
179

180 #ifdef _WIN32

181 scanf_s( "%d", &N );

182 felse

183 scanf ( "%d", &N );

184 fendif

185 /*/

186 M = 8;

187 N = 1;

188 [/ xx/

189

190 if (M » N > bsp_nprocs () )
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191 {

192 printf( "Sorry, not_enough processors available.\n" );
193 fflush( stdout );
194 exit (1 );

195 }

196

197 bsplu_test () ;
198 exit( 0 );

199

200 } /* end main x/
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