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1 Introduction

The law of large numbers states that the sample average of a sequence of inde-
pendent and identically distributed random variables converges in probability
towards the distribution mean as the number of samples increases. Let us state
this in mathematical notation. Let (Xi)i≥1 a sequence of i.i.d. random variables
with sample average Xn = 1

n

∑n
i=1Xi. Then for all ε > 0, δ > 0 there exists an

integer N such that when n ≥ N

P
(
|Xn − E

[
Xn

]
| ≥ ε

)
< δ. (1)

Note that we have fixed the distribution a priori. What if the distribution
is itself not certain? Say that the distribution is selected, unknown to us, from
a collection C. We can extend Equation 1 as follows:

sup
D∈C

{
PD
(
|Xn − E

[
Xn

]
| ≥ ε

)}
< δ

In this case the N provides a minimum of samples regardless the precise dis-
tribution D. In a similar fashion we can extend Equation 1 to allow different
distributions for each individual Xi, i = 1, 2, . . . , n. This allows us to make
statements when we only have information about certain properties of the ran-
dom variables involved. In general, statements providing bounds both in terms
of distance and probability of samples with their expected value are called con-
centration bounds.

We will start with a concise overview of probability theory in Section 2.
This overview includes the sigma-algebra, probability space, conditional ex-
pectation and stochastic process. In Section 3 we cover a number of con-
centration inequality theorems. The inequalities covered are Markov inequali-
ties, Azuma’s inequality, McDiarmid’s inequality, Hoeffding’s inequality and the
Chernoff bound. Finally in Section 4 we will give a number of applications in
the topics of statistical learning and the random geometric traveling salesman
problem (TSP). Under statistical learning we cover PAC learnable, the ERM
algorithm and Rademacher complexity. Under random geometric TSP we cover
a result by McDiarmid and a result by Rhee and Talagrand.

2 Probability theory

In this section we provide an overview of definitions and theorems within the
field of probability theory used in the rest of this paper.

A sample space is a set. This sample space is understood as containing
the possible outcomes of an experiment. Elements of a sample space are called
samples. A subset of a sample space is named an event. Typically, multiple
events can occur.
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2.1 Sigma-algebra

A natural thought is to group a number of events one might observe together.
A formal way to describe such a family of events is the sigma-algebra.

Definition 1 (Sigma-algebra). Let Ω denote a sample space, and let F be a set
containing subsets of Ω. Then F is a sigma-algebra if it satisfies

1. Ω is in F

2. if A ∈ F then Ω−A ∈ F

3. if a countable number of elements A1, A2, A3, . . . ∈ F then the union A1 ∪
A2 ∪A3 ∪ . . . ∈ F

Elements of a sigma-algebra are called measurable sets. It follows that
intersections of elements in a sigma-algebra are also contained in the sigma-
algebra because for A,B in some sigma-algebra F on Ω we have that A ∩ B =
Ω− ((Ω−A)∪ (Ω−B)). Based on the sigma-algebra we introduce a number of
definitions.

Definition 2 (Sub-sigma-algebra). Let Ω a sample space and let F a sigma-
algebra of Ω. Then G is a sub-sigma-algebra if G is also a sigma-algebra of Ω
and G ⊂ F .

Definition 3 (Generated sigma-algebra). Let Ω a sample space. Let F be a
set of subsets of Ω. The sigma-algebra generated by F , notation σ(F ), is the
intersection of all sigma-algebras containing F .

Theorem 1. Let F be a set of subsets of Ω. Then σ(F ) is a sigma-algebra.

Proof. We will prove all properties of the sigma-algebra. Let A be the set of all
sigma-algebras containing F . Then for all F ∈ A we have that Ω ∈ F . Hence,
Ω ∈ σ(F ). Let A ∈ σ(F ). It follows that for all F ∈ A we have that A ∈ F .
Hence, for all F ∈ A we have that Ω−A ∈ F . Therefore, Ω−A ∈ σ(F ). Let a
countable number of elements A1, A2, A3, . . . ∈ σ(F ). Then each of the elements
A1, A2, A3, . . . is contained in all sets in A. Hence the union of these elements
is also contained in all sets in A. Therefore the union A1 ∪ A2 ∪ A3 ∪ . . . is in
σ(F ).

Definition 4 (Borel algebra). Let F = {(a, b) | a < b ∈ R}. The Borel algebra,
notation B, is the sigma-algebra generated by F .

The following theorem lists some sets contained in the Borel algebra.

Theorem 2. For all a, b ∈ R, a < b we have that

• (a,∞) ∈ B

• (∞, a) ∈ B
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Proof. Recall that unions of a countable number of elements in the sigma-
algebra B are elements of B . We have that (a,∞) = ∪n∈N(a, a+ 2n). Likewise,
(∞, a) = ∪n∈N(a− 2n, a).

We end this subsection with the following important concept.

Definition 5 (Measurable function). Let X,Y two sets and let FX the corre-
sponding sigma-algebra of X and let FY the corresponding sigma-algebra of Y .
Then the function f : X → Y is (FX ,FY )-measurable if the preimage of all
elements in FY are contained in FX . That is,

E ∈ FY =⇒ f−1(E) = {x ∈ X | f(x) ∈ E} ∈ FX .

2.2 Probability space

A key part of probability theory is to assign probabilities to events. For this,
we define the probability measure.

Definition 6 (Probability measure). Let F a sigma-algebra on a sample space
Ω. A function P : F → R is called a probability measure if it satisfies the
following axioms:

• P is non-negative: for all E ∈ F , P(E) ≥ 0

• P(Ω) = 1

• Let E1, E2, E3, . . . ∈ Ω a countable collection of disjoint sets. Then it must
hold that P(E1 ∪ E2 ∪ E3 ∪ . . .) = P(E1) + P(E2) + P(E3) . . .

We have defined all the concepts required to define a probability space, which
provides a mathematical setting to probability.

Definition 7 (Probability space). Let Ω a set, F a sigma-algebra on Ω and P
a probability measure on Ω. Then the triple (Ω,F ,P) is a probability space.

For the remainder of this probability theory section we assume the context
of the probability space (Ω, F , P), i.e. we assume that the variables Ω, F , P are
defined as above.

Definition 8 (Almost surely). Within the context of a probability space, one
says that an event E happens almost surely if P (E) = 1.

Definition 9 (Random variable). A random variable is a (F ,B)-measurable
function f : Ω→ R.

2.3 Independence

There are definitions of independence between multiple mathematical objects.
We will use the following definition as basis.
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Definition 10 (Independence of sigma-algebras). Let F and G be sigma-algebras.
We say that F and G are independent if for all A ∈ F , B ∈ G we have that

P (A ∩B) = P (A)P (B) .

To extend this definition to random variable we define a method to obtain
a sigma-algebra based on random variables.

Definition 11 (Sigma-algebra generated by random variables). Let X1, X2, . . . , Xn

random variables. We define the sigma-algebra generated by the random vari-
ables X1, X2, . . . , Xn, notation σ(X1, X2, . . . , Xn), as follows

σ(X1, X2, . . . , Xn) = σ({X−1i (A) | A ∈ B, i ∈ {1, 2, . . . , n}}).

Definition 12 (Independence of random variables). Let X and Y be random
variables. We say that X and Y are independent if the generated sigma-algebras
σ(X) and σ(Y ) are independent.

Another definition of independence which is often used is the following.

Definition 13 (Independence of random variables). Let X and Y be random
variables. We say that X and Y are independent if for all A,B ∈ B

P (X ∈ A, Y ∈ B) = P (X ∈ A)P (X ∈ B) .

We will show that the first definition is sufficient for the second definition.
To avoid confusion, we will refer to the first form of independence using sigma-
algebras as ”independence in the first sense” and we will refer to the second
form of independence using probabilities directly as ”independence in the second
sense”.

Theorem 3. Let X and Y be random variables. Then independence in the first
sense of X and Y implies independence in the second sense of X and Y .

Proof. Assume σ(X) and σ(Y ) independent. Let A,B ∈ B. We have that by
definition

P (X ∈ A, Y ∈ B) = P
(
X−1(A) ∩ Y −1(B)

)
.

Also we have that X−1(A) ∈ F and Y −1(B) ∈ G. This result together with the
definition of independence in the first sense implies that

P
(
X−1(A) ∩ Y −1(B)

)
= P

(
X−1(A)

)
P
(
Y −1(B)

)
.

With the identities
P (X ∈ A) = P

(
X−1(A)

)
and

P (Y ∈ B) = P
(
Y −1(B)

)
we see that P (X ∈ A, Y ∈ B) = P

(
X−1(A)

)
P
(
Y −1(B)

)
.
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To be clear, we will use the definition of independence in the first sense in
this paper from now on, unless otherwise noted.

Definition 14 (Independence of a random variable and sigma-algebra). Let X
be a random variable and let F be a sigma-algebra. We say that X and F are
independent if σ(X) and F are independent.

Definition 15 (Independent copy). Let X a random variable. An independent
copy of X is a random variable which is independent of X and has the same
distribution as X.

2.4 Simple functions

A simple function is a function which can be written as a sum of weighted
indicator functions of events.

Definition 16. Let n ∈ N, the events E1, E2, . . . , En ∈ Σ disjoint and define
the corresponding constants c1, c2, . . . , cn ∈ R. Then

X =

n∑
i=1

ci1Ei

is a simple function, where 1Ei is the indicator function.

Simple functions can be used to approximate any non-negative measurable
function.

Theorem 4 (Simple function approximation). Let f : Ω→ [0,∞) a measurable
function. Then a sequence of simple functions s1 : Ω → [0,∞), s2, s3, . . . exists
such that

1. The sequence is non-decreasing. For all ω ∈ Ω and i ≥ 1 it holds that
si(ω) ≤ si+1(ω).

2. The sequence is bounded by f . For all ω ∈ Ω and i ≥ 1 it holds that
si(ω) ≤ f(ω).

3. The sequence approximates f pointwise. For all ω ∈ Ω it holds that
limn→∞ sn(ω) = f(ω).

Proof. Define for all i ≥ 1 the function gn : [0,∞)→ [0,∞) by

gn(x) =

{
b2nxc
2n if x < n

n if x ≥ n

We will show that the sequence (gn ◦ f)n≥1 is the desired sequence (sn)n≥1
by proving the three properties.

We will proof the first property with three cases. Let n ∈ N. For the first

case, assume that 0 ≤ x < n. In this case we have that gn(x) = b2nxc
2n =
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2b2nxc
2n+1 ≤ b2

n+1xc
2n+1 = gn+1(x). For the second case, assume that n ≤ x < n + 1.

Then gn(x) = n = b2n+1nc
2n+1 ≤ b2n+1xc

2n+1 = gn+1(x). For the third case, assume
that n+ 1 ≤ x. Then gn(x) = n ≤ n+ 1 = gn+1(x).

For the second property, observe that for all x ≥ 0 and n ≥ 1

gn(x) =

{
b2nxc
2n if x < n

n if x ≥ n
≤

{
2nx
2n if x < n

x if x ≥ n
= x.

Hence we have that (gi ◦ f)(x) ≤ f(x).
For the third property, we have that for all x ≥ 0

lim
n→∞

gn(x) = lim
n→∞

b2nxc
2n

= lim
n→∞

x = x.

For all ω ∈ Ω, set x = f(ω) to obtain

lim
n→∞

sn(ω) = lim
n→∞

gn(f(ω)) = lim
n→∞

gn(x) = x = f(ω).

2.5 Convergence

An important result in probability theory is the dominated convergence theo-
rem.

Definition 17 (Dominated convergence theorem). Let Y a random variable
such that E [|Y |] < ∞ and let X1, X2, . . . a sequence of random variables such
that for all n = 1, 2, . . . we have that |Xn| ≤ Y . Then if for some random
variable X it holds that for all ω ∈ Ω we have that limn→∞Xn(ω) = X(ω)
almost surely, then limn→∞ E [Xn] = E [X].

We do not proof this theorem here. Instead, we refer to [5] which provides
an elementary proof for the continuous random variable case.

2.6 Conditional expectation

An important concept for the theorems outlined in this paper is conditional
expectation. A general definition is the following.

Definition 18 (Conditional expectation). Let X a random variable such that
E
[
X2
]
< ∞ and let G a sub-sigma-algebra of F . Then the random variable

Y : Ω→ R is a conditional expectation of X given G, denoted by E [X | G], if

• Y is (G,B)-measurable

• E [Y 1A] = E [X1A] for all A ∈ G.

This definition is not constructive. However, it is possible to prove that
conditional expectation is unique in the almost surely sense. To provide this
proof, we start with a lemma.
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Lemma 5. Let G a sigma-algebra. Let X and X ′ (G,B)-measurable random
variables, and let ε ∈ R. Then (X −X ′)−1 [(ε,∞)] ∈ G.

Proof. Let ε ∈ R and let ω ∈ Ω. Note that X(ω) > X ′(ω) + ε is equivalent with
the existence of a q ∈ Q such that X(ω) > q > X ′(ω) + ε. Therefore we have
that

{ω ∈ Ω | X(ω) > X ′(ω)+ε} = ∪q∈Q{ω ∈ Ω | X(ω) > q}∩{ω ∈ Ω | X ′(ω) < q−ε}.

Rewriting with the preimage gives

(X −X ′)−1 [(ε,∞)] = ∪q∈QX−1 [(q,∞)] ∩X ′−1 [(q − ε,∞)] .

Because X and X ′ are (G,B)-measurable we have that for all q ∈ Q it holds

that X−1 [(q,∞)] ∈ G and X ′
−1

[(q − ε,∞)] ∈ G. Because G is a sigma-
algebra we have that the union of countable elements in G is in G. Hence,
(X −X ′)−1 [(ε,∞)] ∈ G.

Theorem 6 (Uniqueness). Let X a random variable such that E
[
X2
]
<∞ and

let G a sub-sigma-algebra of F . Define Y and Y ′ both conditional expectations
of X given G. Then

P (Y = Y ′) = 1.

Proof. Let ε > 0. Define the event Eε = (Y − Y ′)−1 [(ε,∞)] = {ω ∈ Ω |
Y (ω)− Y ′(ω) > ε}. By Lemma 5 we have that Eε ∈ G. From the definition of
conditional expectation it follows that

E [Y 1Eε ] = E [Y ′1Eε ] = E [X1Eε ] .

It follows that
E [(Y − Y ′)1Eε ] = 0.

However, when ω ∈ Eε it holds that Y (ω)− Y ′(ω) > ε > 0. So it follows that

0 = E [(Y − Y ′)1Eε ] > E [ε1Eε ] .

Given that 1Eε only takes outcomes 0 and 1, it holds that P (1Eε = 1) = 0. This
is by definition equal to P (Y − Y ′ > ε) = 0.

Define for n ∈ N ε(n) = 2−n, then define

E = ∪n∈NEe(n).

This gives P (1E = 1) = 0 which is equivalent to 0 = P (Y − Y ′ > 0) = P (Y > Y ′).
Therefore P (Y ≤ Y ′) = 1. If we repeat the proof with the inequality signs re-
versed, we find that P (Y ≥ Y ′) = 1. We conclude that P (Y = Y ′) = 1.

From now on, we will write the conditional expectation instead of a condi-
tional expectation, as the conditional expectation is unique in the almost surely
sense.

We can condition on random variables as well by using the generated sigma
algebra. This is captured in the following definition.
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Definition 19 (Conditional expectation on random variables). Let Y , X1, X2,
. . ., Xn random variables. Then define

E [Y | X1, X2, . . . , Xn] = E [Y | σ(X1, X2, . . . , Xn)] .

We list some useful properties of the conditional expectation below.

Theorem 7 (Law of total expectation). Let G sub-sigma-algebras of F , and let
X a random variable. Then

E [E [X | G]] = E [X] .

Proof. From the definition of conditional expectation, we obtain that for all
A ∈ G

E [E [X | G] 1A] = E [X1A] .

If we set A = Ω, then 1A becomes the constant function x 7→ 1 and the result
follows.

Theorem 8 (Tower property). Let G1,G2 sub-sigma-algebras of F such that
G1 ⊂ G2 and let X a random variable. Then we have almost surely that

E [E [X | G2] | G1] = E [X | G1] .

Proof. We show that the conditional expectation properties for E [X | G1] also
hold for E [E [X | G2] | G1]. Then by uniqueness of conditional expectation we
have proven the theorem.

By definition E [E [X | G2] | G1] is (G1,B)-measurable.
We have that for all A ∈ G1

E [E [E [X | G2] | G1] 1A] = E [E [X | G2] 1A] .

We also have that for all A ∈ G2

E [E [X | G2] 1A] = E [X1A] .

Because G1 ⊂ G2 we have therefore that for all A ∈ G1

E [E [E [X | G2] | G1] 1A] = E [X1A] .

Theorem 9. Let G a sigma-algebra, and let X,Y random variables. If X is
(G,B)-measurable, then E [XY | G] = XE [Y | G].

Proof. It suffices to show that for all A ∈ G that

E [XY 1A] = E [XE [Y | G] 1A] .

We will first show that this proof holds for X = 1E where E ∈ G. We have for
all A ∈ G that

E [XY 1A] = E [Y 1A∩E ] = E [E [Y | G] 1A∩E ] = E [XE [Y | G] 1A] .
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Let n ∈ N and define E1, E2, . . . , En ∈ G disjoint and a1, a2, . . . , an ∈ R. We
can extend this proof to all simple functions X =

∑n
i=1 ai1Ei , by using linearity

as follows:

E [XY 1A]

= E

[
n∑
i=1

ai1EiY 1A

]

=

n∑
i=1

aiE [1EiY 1A]

=

n∑
i=1

aiE [1EiE [Y | G] 1A]

= E

[
n∑
i=1

ai1EiE [Y | G] 1A

]
= E [XE [Y | G] 1A] .

We now prove it for the class of non-negative X. Because of Theorem 4, there
exists a non-decreasing sequence X1, X2, . . . of simple functions of the form
Ω→ [0,∞) such that for all x ∈ Ω we have thatXn(x)→ X(x), and furthermore
Xn(x) ≤ X(x) for all n ∈ N. Therefore we have that |XnY 1A| ≤ |XY 1A|. This
allows us to apply Theorem 17 (dominated convergence theorem), such that for
all A ∈ G

E [XY 1A] = lim
n→∞

E [XnY 1A] = lim
n→∞

E [XnE [Y | G] 1A] = E [XE [Y | G] 1A] .

Finally, we can remove the non-negative restriction on X by taking positive
and negative parts. Define X+ : Ω → R, x 7→ max(X(x), 0) and X− : Ω →
R, x 7→ −min(X(x), 0). We can write X = X+−X−. Both of X+ and X− are
non-negative. Define −E = {−x | x ∈ E} for some set E ⊂ R. Because

(X+)−1(E) =

{
X−1(E ∪ (−∞, 0]) if 0 ∈ E
X−1(E ∩ (0,∞)) otherwise

(X−)−1(E) =

{
X−1(−E ∪ [0,∞)) if 0 ∈ E
X−1(−E ∩ (−∞, 0)) otherwise

it holds that X+ and X− are (G,B)-measurable. Therefore we have for all A ∈ G
that

E [XY 1A]

= E
[
(X+ −X−)Y 1A

]
= E

[
X+E [Y | G] 1A

]
− E

[
X−E [Y | G] 1A

]
= E [XE [Y | G] 1A] .
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Theorem 10 (Pulling out independent factors). Let F a sigma-algebra. Let X
a random variable independent of F . Then

E [X | F ] = E [X] .

Proof. We will proof that E [X] is a conditional expectation of E [X | F ]. Be-
cause E [X] is a constant, it is (F ,B)-measurable. For the second property, we
have to prove that

E [E [X] 1A] = E [X1A] .

Observe that σ(1A) = {A,Ω−A, ∅,Ω}. Because F is a sigma-algebra containing
A, we have that {A,Ω − A, ∅,Ω} ⊂ F . From the definition of independence
between F and X it follows that X and 1A are independent. So we have that

E [X1A] = E [X]E [1A] = E [E [X] 1A] .

Theorem 11. Let F a sigma-algebra and let X1, X2, . . . , Xn random variables.
Let X ′1 an independent copy of X1 and let further X1 and X ′1 independent of
all X2, X3, . . . , Xn and of F . Let f : Ωn → R an arbitrary function. For
convenience, define X = (X1, X2, . . . , Xn) and X ′ = (X ′1, X2, . . . , Xn). Then
almost surely

E [f(X) | F ] = E [f(X ′) | F ] .

Proof. We will show that E [f(X ′) | F ] is a conditional expectation of E [f(X) | F ].
By definition, E [f(X ′) | F ] is (F ,B)-measurable. Therefore we are left to prove
that for all A ∈ F it holds that

E [E [f(X ′) | F ] 1A] = E [f(X)1A] .

By definition of E [f(X ′) | F ] this is equivalent to

E [f(X ′)1A] = E [f(X)1A] .

Similar to the proof of Theorem 10, we have that X1 and 1A are independent.
Analogously we have that X ′1 and 1A are independent. Therefore we have
that both X1 and X ′1 are independent of all other random variables in the
expectation, and as X ′1 is an independent copy of X1, it must be the case that
the expectations are equal.

2.7 Stochastic process

In this subsection we will provide concepts which allow us to describe experi-
ments in which knowledge about particular random variables might change over
time. The first thing to define, then, is a set of multiple random variables.

Definition 20 (Stochastic process). A stochastic process (Xi)i∈I is a collection
of random variables for some index set I.

11



Here I could be seen as the index set of time moments. To represent a
changing state of knowledge over time, we define filtration.

Definition 21 (Filtration). A filtration is a collection of sigma-algebras (Fi)i∈I
for some totally ordered index set I such that if i, j ∈ I, i < j then Fi ⊂ Fj.

The limited knowledge of a filtration is linked to that of a random variable
with the following definition.

Definition 22 (Adapted). Let I an index set. A stochastic process (X)i∈I is
adapted to a filtration (Fi)i∈I if Xi is (Fi,B)-measurable for all i ∈ I.

Given a stochastic process, it can be useful to define a filtration which is
adapted to it. Such a filtration is the natural filtration.

Definition 23 (Natural filtration). Let X = (X1, X2, X3, . . .) a stochastic pro-
cess. Then the natural filtration of X is defined by the filtration (N1,N2,N3, . . .)
where

Ni = σ(X1, X2, . . . , Xi).

We show that this definition is well-defined.

Theorem 12. Let X = (X1, X2, X3, . . .) a stochastic process, and let N =
(N1,N2,N3, . . .) the natural filtration of X. Then X is adapted to N .

Proof. This follows directly from the definition.

We can use conditional expectation to define a martingale. A Martingale
defines a stochastic process such that given the knowledge at time i, the expec-
tation of the next random variable is equal to the one of time i.

Definition 24 (Martingale). Let I a totally ordered index set. Let (X)i∈I a
stochastic process adapted to a filtration (Gi)i∈I such that E [|Yi|] < ∞ for all
i ∈ I. Then (X)i∈I is called a martingale if

E [Xj | Gi] = Xi

for all j > i.

3 Concentration inequalities

In this section we provide a number of concentration inequalities.

3.1 Markov inequalities

Theorem 13 (Extended Markov inequality). Let X be a random variable and
let f a strictly increasing real-valued positive function such that E [f(X)] <∞.
Then for any ε ∈ R it holds that

P (X ≥ ε) ≤ E [f(X)]

f(ε)
.
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Proof. Because f is strictly increasing the events f(X) ≥ f(ε) and X ≥ ε are
equivalent for any ε. In other words

P (f(X) ≥ f(ε)) = P (X ≥ ε) .

The result follows by the Markov inequality on f(X).

Corollary 13.1 (Exponential Markov inequality). Let X be a random variable.
Then for any λ > 0, ε ∈ R

P (X ≥ ε) ≤ e−λεE
[
eλX

]
Proof. Consider the function f(x) = eλx, where λ > 0. This function is non-
negative and strictly increasing. Therefore we can apply this function to the
extended Markov inequality to obtain for a random variable X:

P (X ≥ ε) ≤
E
[
eλX

]
eλε

= e−λεE
[
eλX

]
.

3.2 McDiarmid’s inequality

The following lemma from [6] will be used to prove McDiarmid’s inequality.

Lemma 14. Let X be a random variable for which E [X] = 0 and a ≤ X ≤ b
for some constants a, b ∈ R. Then for any λ > 0

E
[
eλX

]
≤ exp

(
λ2(b− a)2

8

)
.

Proof. Let λ > 0. We start by observing that x 7→ eλx is a convex function.
Considering the points a and b, we have by definition of convex that for any
t ∈ [0, 1]

eλ(ta+(1−t)b) ≤ teλa + (1− t)eλb.

Define x = ta+ (1− t)b. Then t = b−x
b−a for x ∈ [a, b]. This gives

eλx ≤ b− x
b− a

eλa +
x− a
b− a

eλb

hence we have

E
[
eλX

]
≤ E

[
b−X
b− a

eλa +
X − a
b− a

eλb
]

=
b

b− a
eλa − a

b− a
eλb.

Let λ̂ = λ(b− a) and p = −a
b−a . It follows that 1− p = b

b−a . Because E [X] = 0,
it holds that a ≤ 0 ≤ b. Hence p ≥ 0. Likewise, 1 − p ≥ 0. Combining gives
0 ≤ p ≤ 1. Therefore we have that

13



b

b− a
eλa − a

b− a
eλb

= (1− p)eλa + peλb

= (1− p)e−pλ(b−a) + pe(1−p)λ(b−a)

= (1− p)e−pλ̂ + pe(1−p)λ̂

= e−pλ̂
(

1− p+ peλ̂
)

= exp
(
−pλ̂+ log

(
1− p+ peλ̂

))
.

Define f : R → R by f(x) = −px + log (1− p+ pex). Observe that E
[
eλX

]
≤

ef(λ̂) = exp
(
−pλ̂+ log

(
1− p+ peλ̂

))
. We will finish the proof by bounding

f(λ̂). By Taylor’s theorem we can write f as the sum of a linear approximation
of f at 0 and a remainder:

f(λ̂) = f(0) + f ′(0)λ̂+
f ′′(ε)

2
λ̂2 (2)

for some 0 ≤ ε ≤ λ̂. We have

f ′(x) = −p+
pex

1− p+ pex

and

f ′′(x) =
(1− p)pex

(1− p+ pex)2
.

For f and f ′ we have f(0) = f ′(0) = 0. Plugging this in equation 2 we obtain

f(λ̂) =
f ′′(ε)

2
λ̂2.

We provide an upper bound for f ′′. First we show that f ′′ is a decreasing
function on the domain [0,∞). The derivative of the numerator is (1 − p)pex.
The derivative of the denominator is 2pex(p(ex − 1) + 1). Given that 0 ≤ p ≤ 1
we see that for x ≥ 0 the derivative of the denominator is larger or equal to the
derivative of the numerator. As a result f ′′ is decreasing on [0,∞). Furthermore,
we show that f ′′(0) ≤ 1

4 :

f ′′(0) =
(1− p)p

(1− p+ p)2
= (1− p)p ≤ 1

4
.

Combining these two results implies that f ′′(λ̂) ≤ 1
4 for all λ̂ > 0.

So

f(λ̂) ≤ f ′′(λ̂)

2
λ̂2 ≤ 1

8
λ̂2 =

λ2(b− a)2

8
.
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We show in the following corollary that Lemma 14 also holds for conditional
expectations.

Corollary 14.1. Let F a sigma-algebra. Let X be a random variable for which
E [X | F ] = 0 and a ≤ X ≤ b for some constants a, b ∈ R. Then for any λ > 0

E
[
eλX | F

]
≤ exp

(
λ2(b− a)2

8

)
.

Proof. The proof is the same as the proof of Lemma 14, except that expectations
are replaced by expectations conditioned on F . Namely we have that

E
[
eλX | F

]
≤ E

[
b−X
b− a

eλa +
X − a
b− a

eλb | F
]

=
b

b− a
eλa − a

b− a
eλb.

As in Lemma 14, define λ̂ = λ(b − a), p = −a
b−a and f : R → R, f(x) =

−px+ log (1− p+ pex). Then

b

b− a
eλa − a

b− a
eλb = ef(λ̂) ≤ exp

(
λ2(b− a)2

8

)
.

The following theorem is an extended version of Azuma’s inequality. A
similar theorem is proven in [6].

Theorem 15. Let X0, X1, X2, . . . , Xn be a martingale adapted to a filtration
F0 ⊂ F1 ⊂ . . . ⊂ Fn, bounded by ai ≤ Xi − Xi−1 ≤ bi for all i = 1, 2, . . . , n.
Then for any ε > 0

P (|Xn −X0| ≥ ε) ≤ 2 exp

(
−2ε2∑n

i=1(bi − ai)2

)
.

Proof. We start by proving the upper bound. By the exponential Markov in-
equality we obtain for all λ > 0

P (Xn −X0 ≥ ε) ≤ e−λεE
[
eλ(Xn−X0)

]
.

In which

E
[
eλ(Xn−X0)

]
= E

[
eλ(Xn−Xn−1)eλ(Xn−1−X0)

]
= E

[
E
[
eλ(Xn−Xn−1)eλ(Xn−1−X0) | Fn−1

]]
Observe that eλ(Xn−1−X0) is (Fn−1,B)-measurable. Therefore we can apply
Theorem 9 to see that

E
[
E
[
eλ(Xn−Xn−1)eλ(Xn−1−X0) | Fn−1

]]
= E

[
E
[
eλ(Xn−Xn−1) | Fn−1

]
eλ(Xn−1−X0)

]
15



With some basic properties and the definition of a martingale we obtain that

E [Xn −Xn−1 | Fn−1]

= E [Xn | Fn−1]− E [Xn−1 | Fn−1]

= Xn−1 − E [Xn−1 | Fn−1]

= Xn−1 −Xn−1 = 0.

Also an ≤ Xn −Xn−1 ≤ bn. Therefore we can apply Corollary 14.1 to bound
the expectation by

E
[
exp

(
1

8
(λ(bn − an))2

)
eλ(Xn−1−X0)

]
= exp

(
1

8
(λ(bn − an))2

)
E
[
eλ(Xn−1−X0)

]
Using induction, we can expand this to

exp

(
λ2

8

n∑
i=1

(bi − ai)2
)

so that we obtain for our original equation:

P (Xn −X0 ≥ ε) ≤ exp

(
−λε+

λ2

8

n∑
i=1

(bi − ai)2
)
.

To get the best bound, we would like to minimize the exponent for any ε. This
is done by setting

λ =
4ε∑n

i=1(bi − ai)2

which proves the upper bound

P (Xn −X0 ≥ ε) ≤ exp

(
−2ε2∑n

i=1(bi − ai)2

)
.

The bound of P (X0 −Xn ≥ ε) follows by symmetry, and the result follows by
combining the lower and upper bound.

The following definition plays a key role in the proof of McDiarmid’s in-
equality.

Definition 25 (Doob martingale). Let X1, X2, . . . , Xn a stochastic process
adapted to the filtration ∅ = F0 ⊂ F1 ⊂ F2 ⊂ . . . ⊂ Fn, and let f a real
valued function taking X1, X2, . . . , Xn as arguments. Then the Doob martin-
gale of f with respect to the random variables X1, X2, . . . , Xn is defined as the
sequence

Bi = E [f(X1, X2, . . . , Xn) | Fi]

for all i = 0, 1, . . . , n.
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Specifically the definition implies that B0 = E [f(X1, X2, . . . , Xn)] and that
if Fn is the sigma-algebra included in the triple of the probability space, then
Bn = f(X1, X2, . . . , Xn). For completeness, we provide the following theorem
and proof.

Theorem 16. The Doob martingale is a martingale with respect to its filtration.

Proof. We will prove that the Doob martingale has the martingale property:

E [Bi+1 | Fi]
= E [E [f(X1, X2, . . . , Xn) | Fi+1] | Fi]
= E [f(X1, X2, . . . , Xn) | Fi]
= Bi

for all i = 0, 1, . . . , n− 1.

The following theorem was first proven by McDiarmid in [6]. The proof here
however differs from the proof in [6] as it applies the previously proven Azuma’s
extended inequality to a Doob martingale.

Theorem 17 (McDiarmid’s inequality). Let X = (X1, X2, . . . , Xn) a vector of
independent random variables and let f : Rn → R a function such that replacing
the i’th argument with an arbitrary value does not change the function more than
ci ∈ R. That is,

|f(x1, . . . , xi−1, ai, xi+1, . . . , xn)− f(x1, . . . , xi−1, bi, xi+1, . . . , xn)| ≤ ci

for all variables x1, x2, . . . , xn, ai, bi in all arguments i = 1, 2, . . . , n.
Then

P (|f(X)− E [f(X)] | ≥ ε) ≤ 2 exp

(
−2ε2∑n
i=1 c

2
i

)
.

Proof. Let B1, B2, . . . , Bn a Doob martingale of function f with respect to
X1, X2, . . . , Xn and its natural filtration Fi for all i = 1, 2, . . . n. We will show
that this martingale has the assumptions required for Theorem 15. Therefore
we are required to bound Bi −Bi−1 for all i = 1, 2, . . . , n. It holds that

Bi −Bi−1 = E [f(X) | Fi]− E [f(X) | Fi−1] .

Let X ′i be an independent copy of Xi and let X ′i and X1, X2, . . ., Xn be
independent. Define further X ′ = (X1, X2, Xi−1, X

′
i, Xi+1, . . . , Xn). It holds

that Xi and X ′i are independent of Fi−1 because Fi−1 is the natural filtration
of X1, X2, . . . , Xi−1. Therefore by Theorem 11 it is true that

E [f(X) | Fi−1] = E [f(X ′) | Fi−1] .

When plugging this into Bi −Bi−1 we obtain

Bi −Bi−1
= E [f(X) | Fi]− E [f(X ′) | Fi]
= E [f(X)− f(X ′) | Fi] .
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The constraint on the function f implies that there exists some ai, bi ∈ R
such that bi − ai = ci and

ai ≤ f(X)− f(X ′) ≤ bi.

It follows that

ai ≤ E [f(X)− f(X ′) | Fi] = Bi −Bi−1 ≤ bi

for all i = 1, 2, 3, . . . , n. From Theorem 16 it follows that B1, B2, B3, . . . , Bn is
adapted to the filtration (Fi)i∈{1,2,3,...,n}. Hence we can apply Theorem 15 to
obtain

P (|Bn −B0| ≥ ε) = P (|f(X)− E [f(X)] | ≥ ε) ≤ 2 exp

(
−2ε2∑n
i=1 c

2
i

)
.

An inequality theorem known as Hoeffding’s inequality [4] follows directly
from Mcdiarmid’s inequality. This inequality provides concentration bounds for
bounded independent random variables.

Theorem 18 (Hoeffding’s inequality). Let X1, X2, . . . , Xn independent random
variables such that ai ≤ Xi ≤ bi for suitable constants ai, bi ∈ R for all i =
1, 2, . . . , n. Define X = 1

n

∑n
i=1Xi. For all ε > 0

P
(
|X − E

[
X
]
| ≥ ε

)
≤ 2 exp

(
−2ε2n2∑n

i=1 (bi − ai)2

)
.

Proof. Observe that X is a function of X1, X2, . . . , Xn and is bounded in each
coordinate i = 1, 2, . . . , n by bi−ai

n .

In turn, Hoeffding’s inequality is a generalization of a result first obtained
by Chernoff [2]. This result provides concentration bounds for random variables
with a Bernoulli distribution.

Theorem 19. Let X1, X2, . . . , Xn independent and identical Bernoulli dis-
tributed random variables, where each variable takes on values in the set {0, 1}.
Define X = 1

n

∑n
i=1Xi. For all ε > 0

P
(
|X − E

[
X
]
| ≥ ε

)
≤ 2e−2nε

2

.

Proof. Apply Hoeffding’s inequality with bi = 1, ai = 0 for all i = 1, 2, . . . , n.
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3.3 Chernoff bound

The following lemma and theorem are based on a paper by Chernoff[3].

Lemma 20 (Chernoff Lemma). Let X1, X2, . . . , XN independent Bernoulli dis-
tributed. Let X the sum of X1, X2, . . . , XN . Then for all t > 0 and a ≥ 0

P (X ≥ a) ≤ e−ta
∏
i

E
[
etXi

]
.

Proof. By the extended Markov inequality we have for any t > 0 and a ≥ 0

P (X ≥ a) ≤
E
[
etX
]

eta
= e−taE

[
etX
]
.

Because X1, X2, . . . , XN are independent it holds that∏
i

E
[
etXi

]
= E

[
etX
]
.

Therefore
P (X ≥ a) ≤ e−ta

∏
i

E
[
etXi

]
.

Theorem 21 (Multiplicative Chernoff bound). Let X1, X2, . . . , XN indepen-
dent Bernoulli distributed. Let X = X1 +X2 + . . .+XN . Then

P (X > (1 + δ)E [X]) ≤
(

eδ

(1 + δ)1+δ

)E[X]

.

Proof. From Lemma 20 we immediately obtain for all t > 0

P (X > (1 + δ)E [X]) ≤ exp (t(1 + δ)E [X])
∏
i

E
[
etXi

]
.

Define P (Xi = 1) = pi for all i ∈ {1, 2, . . . , n}. This allows us to evaluate
the expectation

E
[
etXi

]
= pie

t + (1− pi) = pi(e
t − 1) + 1.

Observe that for all x ≥ 0 it holds that x+1 ≤ ex, which is evident when taking
derivatives on both sides. When applying this result we see that

pi(e
t − 1) + 1 ≤ exp(pi(e

t − 1))

Hence we obtain for the product∏
i

E
[
etXi

]
≤
∏
i

exp(pi(e
t − 1)) = exp(E [X] (et − 1)).
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We have arrived at

P (X > (1 + δ)E [X])

≤ exp(t(1 + δ)E [X]) exp(E [X] (et − 1))

= exp(E [X] (t(1 + δ) + et − 1))

= exp((t(1 + δ) + et − 1))E[X].

Setting t = log(1 + δ) gives

exp((t(1 + δ) + et − 1))E[X] =

(
eδ

(1 + δ)1+δ

)E[X]

.

This proves the desired result.

4 Statistical learning

Statistical learning (see [10] for an overview) is concerned with the finding of
a function or algorithm with certain desired properties through learning on
a training set. Potential candidate functions are named classifiers. In our
set-up, we will look at independent and identically distributed samples with a
distribution D over the domain X × Y where X denotes the set of input and Y
the set of output which a desired classifier should have. Note that it is possible
to observe multiple different output elements for the same input element. For
example, assume that X is the number of wheels on a car and Y represents
car colors. There exist multiple cars of different color with the same number of
wheels. A classifier is a function h : X → Y . We name the set of all classifiers H.
To allow some granularity in determining whether or not a classifier is correct,
we use a non-negative function l : H × X × Y → R, the loss function, which
maps to each classifier for each input and output a value which indicates how
far off a classifier is on that certain input, where 0 denotes no loss. For example

l(h, x, y) =

{
0 if h(x) = y

1 otherwise

which is called the 0-1 loss function.

4.1 PAC learnable

An important goal in statistical learning is to find a classifier h ∈ H which has
minimal loss. For this purpose we introduce a statistical learning algorithm:
an algorithm which takes a finite number of samples and returns a classifier
h ∈ H, determined entirely by those samples. We will use theory introduced by
Valiant[8]. This theory aims to identify statistical learning algorithms which are
able to find a classifier with minimal loss through sampling. This identifying
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is done through a special statistical learning algorithm property: agnostic PAC
learnable. The definition is given below. The definition requires that an agnostic
PAC learnable algorithm finds a classifier with minimal loss except for two
relaxations. The first one is that the algorithm is only approximately correct:
the loss of the sample can be larger than the minimal loss, up to an error of
ε. The second one is that there is a chance δ that nothing is guaranteed about
the outcome of the algorithm. These limitations give rise to the name Probably
Approximately Correct (PAC) [1].

Definition 26 (Agnostic PAC learnable). A statistical learning algorithm is
called agnostic PAC learnable if for all ε, δ > 0 a N ∈ N exists such that for all
distributions over X × Y we can run the algorithm on at least N i.i.d. samples
returning a classifier h ∈ H such that

P(x,y)∼D

(
E [l(h, x, y)] ≥ min

h′∈H
E [l(h′, x, y)] + ε

)
≤ δ.

Next, we will prove that any finite class H is agnostic PAC learnable through
the Empirical Risk Minimizer (ERM) algorithm (see for example [9]).

First we introduce the sample average.

Definition 27 (Sample average). Let S a finite number of samples, and let h
a classifier. Then define the sample average by

lS(h) =
1

|S|
∑

(x,y)∈S

l(h, x, y).

Note that an algorithm can calculate the sample average in a finite amount
of time if S is finite.

Definition 28 (ERM algorithm). The ERM algorithm is a statistical learning
algorithm on finite H, which returns a classifier with minimal average sample
error. That is, for a finite sample S it returns an h such that

lS(h) ≤ lS(h′)

for all h′ ∈ H.
The algorithm works by calculating for each h ∈ H the average sample error,

and then picking the h with the lowest average sample error.

Theorem 22. If H is finite, and l is bounded, i.e. there exists a, b ∈ R such
that a ≤ l(h, x, y) ≤ b for all values of h ∈ H,x ∈ X, y ∈ Y , then the ERM
algorithm is agnostic PAC learnable.

Proof. Let us observe n i.i.d. samples {(x1, y1), (x2, y2), . . . , (xn, yn)} = S ∼ Dn

for some n ∈ N. Let h ∈ H the returned function from executing the ERM
algorithm on S. Then l(h, x1, y2), l(h, x2, y2), . . ., l(h, xn, yn) forms an i.i.d.
sample. Additionally let h′ ∈ H−{h}. Then it follows that L = (Li)i∈{1,...,n} =
(l(h′, xi, yi)−l(h, xi, yi))i∈{1,...,n} forms a set of i.i.d. random variables. However,
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note that L is not bounded by a, b, but instead by a − b ≤ Li ≤ b − a for all
i = 1, 2, . . . , n. The sample average of L can be written by L = lS(h′) − lS(h).
We can apply Hoeffding’s inequality to L

P
(
|L− E

[
L
]
| ≥ ε

)
≤ 2 exp

(
− 2ε2n

((a− b)− (b− a))2

)
= exp

(
− ε2n

2(a− b)2

)
It follows by symmetry that

P
(
L− E

[
L
]
≥ ε
)
≤ exp

(
− ε2n

2(b− a)2

)
.

Note that

P
(
L− E

[
L
]
≥ ε
)

= P
(
lS(h′)− lS(h)− E

[
lS(h′)

]
+ E

[
lS(h)

]
≥ ε
)

= P
(
E
[
lS(h)

]
− E

[
lS(h′)

]
− ε ≥ lS(h)− lS(h′)

)
.

Because of the ERM algorithm, we have that lS(h)− lS(h′) ≤ 0. Therefore

P
(
E
[
lS(h)

]
− E

[
lS(h′)

]
− ε ≥ lS(h)− lS(h′)

)
≤ P

(
E
[
lS(h)

]
− E

[
lS(h′)

]
− ε ≥ 0

)
≤ P

(
E
[
lS(h)

]
≥ E

[
lS(h′)

]
+ ε
)

≤ exp

(
− ε2n

2(b− a)2

)
.

Let (x, y) ∼ D. Observe that E
[
lS(h)

]
= E [l(h, x, y)] and similarly E

[
lS(h′)

]
=

E [l(h′, x, y)].
From this it follows that

P
(
E [l(h, x, y)] ≥ min

h′∈H
E [l(h′, x, y)] + ε

)
= P (there exists h′ ∈ H such that E [l(h, x, y)] ≥ E [l(h′, x, y)] + ε)

≤ |H| exp

(
− ε2n

2(b− a)2

)
.

To finish the proof, define

δ = |H| exp

(
− ε2n

2(b− a)2

)
it follows that when

n ≥ 2(b− a)2

ε2
ln

(
|H|
δ

)
we have that

P
(
E [l(h, x, y)] ≥ min

h′∈H
E [l(h′, x, y)] + ε

)
≤ δ

which is the definition of agnostic PAC learnable.
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4.2 Rademacher complexity

It is also possible to extend the concept of agnostic PAC learnable to certain
infinite classes H. An elegant way to do this is by using the Rademacher Com-
plexity.

Definition 29 (Rademacher complexity). Let H consist of real-valued clas-
sifiers and let S = {(x1, y1), (x2, y2), . . . (xn, yn)} a sample with elements in-
dependently distributed by D and draw independently σ1, σ2, . . . , σn from the
Rademacher distribution, i.e. P (σi = 1) = P (σi = −1) = 1

2 . Then the empirical
Rademacher complexity is defined by

R̂S(H) = E

[
sup
h∈H

1

n

n∑
i=1

σil(h, xi, yi)

∣∣∣∣∣ S
]
.

The Rademacher complexity is defined by

RS(H) = E
[
R̂S(H)

]
= E

[
sup
h∈H

1

n

n∑
i=1

σil(h, xi, yi)

]
.

The following theorem shows the importance of the Rademacher complexity.
It bounds the difference between the sample loss of a sample and the expectation
of the sample loss by the sum of the Rademacher complexity and an arbitrary
ε with probability going to 1 for n to infinity.

Theorem 23. Let the loss function be bounded to [0, 1] and let S = {(x1, y1),
(x2, y2) , . . . , (xn, yn)} a sample with elements independently distributed by D.
Then for all ε ∈ (0, 1)

P
(

sup
h∈H

{
E
[
lS(h)

]
− lS(h)

}
≥ 2RS(H) + ε

)
≤ exp

(
−ε2

2n

)
.

Proof. Pick some h ∈ H. Define f(S) = suph∈H
{
E
[
lS(h)

]
− lS(h)

}
. We

will bound the difference of f(S) and E [f(S)] using McDiarmid’s inequal-
ity. Observe that E

[
lS(h)

]
does not depend on S and recall that lS(h) =

1
n

∑
(x,y)∈S l(h, x, y). Therefore, when replacing a single element in S by an

arbitrary other element, f(S) does not change more than 1
n . This allows us

to apply McDiarmid’s inequality to f where we treat each element in S as a
separate argument:

P (|f(S)− E [f(S)] | ≥ ε) ≤ 2 exp

(
−ε2

2n

)
.

It follows that

P (f(S) ≥ E [f(S)] + ε) ≤ exp

(
−ε2

2n

)
.
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Hence to prove the theorem it suffices to show that E [f(S)] ≤ 2RS(H). Let
S′ = {(x′1, y′1), (x′2, y

′
2), . . . , , (x′n, y

′
n)} be an independent copy of S. Then

f(S)

= sup
h∈H

{
E
[
lS(h)

]
− lS(h)

}
= sup
h∈H

{
E
[
lS′(h)

]
− lS(h)

}
= sup
h∈H

{
E
[
lS′(h)

]
− E

[
lS(h) | S

]}
Because S′ is an independent copy of S, we have that S and lS′(h) are

independent for all h ∈ H. So by Theorem 10 (pulling out independent factors)
we see that

sup
h∈H

{
E
[
lS′(h)

]
− E

[
lS(h) | S

]}
= sup
h∈H

{
E
[
lS′(h) | S

]
− E

[
lS(h) | S

]}
= sup
h∈H

{
E
[
lS′(h)− lS(h) | S

]}
.

For all h ∈ H it holds that

E
[
lS′(h)− lS(h) | S

]
≤ E

[
sup
h∈H

{
lS′(h)− lS(h)

}
| S
]
.

Therefore

sup
h∈H

{
E
[
lS′(h)− lS(h) | S

]}
≤ E

[
sup
h∈H

{
lS′(h)− lS(h)

}
| S
]
.

We have established that

f(S) ≤ E
[

sup
h∈H

{
lS′(h)− lS(h)

}
| S
]
.

Therefore we have in expectation that

E [f(S)] ≤ E
[

sup
h∈H

{
lS′(h)− lS(h)

}]
.

Introduce the independent random variables σ1, σ2, . . . , σn distributed by
the Rademacher distribution. Then

E
[

sup
h∈H

{
lS′(h)− lS(h)

}]
= E

[
sup
h∈H

{
lS(h)− lS′(h)

}]
= E

[
sup
h∈H

{
1

n

n∑
i=1

l(h, xi, yi)− l(h, x′i, y′i)

}]
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Define the samples

ui =

{
(xi, yi) if σi = 1

(x′i, y
′
i) otherwise

and

u′i =

{
(x′i, y

′
i) if σi = 1

(xi, yi) otherwise

for all i = 1, 2, . . . , n. Define U = (u1, u2, . . . , un) and U ′ = (u′1, u
′
2, . . . , u

′
n).

Note that U and U ′ together contain all the elements contained in S and S′

together. As stated, (xi, yi) and (x′i, y
′
i) are identically and independently dis-

tributed for all i = 1, 2, . . . , n. Therefore we can swap the sample sets S and S′

by U and U ′ and still obtain the same result in expectation. More formally:

E

[
sup
h∈H

{
1

n

n∑
i=1

l(h, xi, yi)− l(h, x′i, y′i)

}]
= E

[
sup
h∈H

{
1

n

n∑
i=1

(l(h, ui)− l(h, u′i))

}]
.

This is equal to

E

[
sup
h∈H

{
1

n

n∑
i=1

σi(l(h, xi, yi)− l(h, x′i, y′i))

}]
.

It follows that

E [f(S)]

≤ E

[
sup
h∈H

{
1

n

n∑
i=1

σi(l(h, xi, yi)− l(h, x′i, y′i))

}]

≤ E

[
sup
h∈H

{
1

n

n∑
i=1

σil(h, xi, yi)

}
+ sup
h∈H

{
1

n

n∑
i=1

−σil(h, xi, yi)

}]
.

Observe that −σi is also distributed by the Rademacher distribution for all i =
1, 2, . . . , n. Therefore we have by the definition of the Rademacher complexity:

E [f(S)] ≤ 2RS(H).

5 Random geometric traveling salesman prob-
lem

The traveling salesman problem can be stated as follows. Define the points
P1, P2, . . . , Pn ∈ R2 and the set P = {P1, P2, . . . , Pn}. Give an order, known
as a tour T = (t1, t2, . . . , tn) in which to visit all points in P such that the
total of all distances between each two sequential points is minimized, i.e.
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∑n
i=2 d(Pti−1 , Pti) is minimal, where d is the euclidean metric. In the ran-

dom geometric version, the points are independent random variables, uniformly
distributed over the unit square [0, 1]2. The length of the shortest tour can be
expressed as t : ([0, 1]2)n → R. We will show that the length t(P ) of the shortest
tour is concentrated strongly around its mean.

We start with a result from McDiarmid [6].

Theorem 24. For all ε > 0, it holds that

E
[
|t(P )− E [t(P )] | ≥ ε

√
n) ≤ 2 exp

(
−ε2

4

)]
Proof. We will prove this theorem by applying McDiarmid’s inequality. Let
δ > 0. Observe that the distance between two points lying in the unit square
can never be larger than

√
2. Hence the difference in t arising from a move of

a single point can never be larger than 2
√

2. Therefore McDiarmid’s inequality
gives

P (|t(P )− E [t(P )] | ≥ δ) ≤ 2 exp

(
−2δ2∑n

i=1(2
√

2)2

)
= 2 exp

(
−δ2

4n

)
.

Substitute δ = ε
√
n for the desired result.

An improved bound has been discovered by Rhee and Talagrand [7]. This
bound uses Azuma’s inequality. First we prove a useful lemma.

Lemma 25. Let P = {P1, P2, . . . , Pn} a set of independent random variables,
uniformly distributed over the unit square. For some point x ∈ [0, 1]2, let D(P, x)
be the distance between x and the closest point in P . Then

E [D(P, x)] ≤ 2√
n
.

Proof. Let x ∈ [0, 1]2. Denote a ball centered at x with radius r ∈ [0,
√

2] by
B(x, r). Let A be the area of B(x, r)∩[0, 1]2. We have that D(P, x) > r precisely
when all of the points P1, P2, . . . , Pn are outside of the area A. Therefore

P (D(P, x) > r) = (1−A)n.

We will determine an expression of the form A ≥ cr2 for some constant
c ∈ R, which holds for all x and r. The area A can be decreased by moving x to
one of the four corners of the unit square. Therefore assume without generality
that x is at one of the four corners of the unit square. By symmetry all corners
are equivalent. We will handle three cases for r, which are illustrated in Figure
1. Assume r ≤ 1. In this case precisely a quarter of the circle B(x, r) intersects
with the unit square, and as such A = π

4 r
2. Assume 1 < r <

√
2. We have that

of the quarter circle a part falls out of the unit square. Therefore A < π
4 r

2, and
without loss of generality we can state that r > 1. As r increases, the overlap
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Figure 1: The three cases of B(x, r) intersecting with the unit square. On the
left, r ≤ 1. In the middle, 1 < r <

√
2. On the right, r =

√
2.

relative to r2 decreases. Therefore we only need to consider r =
√

2. If r =
√

2,
the unit square falls entirely inside B(x, r), and we have that A = 1 = 1

2r
2.

Therefore c = 1
2 .

It follows that A ≥ 1
2r

2 = cr2. So,

P (D(P, x) > r) ≤ (1− cr2)n.

We will apply Fubini’s theorem, which states that under certain conditions
we can can change the order of integration. Let f : R → R the probability
density function of D(P, x). Then∫

[0,∞)

P (D(P, x) > r) dt

=

∫
[0,∞)

∫
[t,∞)

f(s) dsdt

=

∫
[0,∞)

∫
[0,∞)

1[t,∞)(s)f(s) dsdt

=

∫
[0,∞)

∫
[0,∞)

1[t,∞)(s)f(s) dtds

=

∫
[0,∞)

f(s)

∫
[0,∞)

1[t,∞)(s) dtds

=

∫
[0,∞)

f(s)

∫
[0,∞)

{
1 if s ≥ t
0 otherwise

dtds

=

∫
[0,∞)

sf(s) ds

= E[D(P, x)].
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So we have that

E [D(P, x)] ≤
∫ √2

0

(1− cr2)n dr.

Because 1− cr2 ≤ e−cr2 we have that∫ √2

0

(1− cr2)n dr. ≤
∫ √2

0

e−cnr
2

dr.

With substituting we see that∫ √2

0

e−cnr
2

dr =

∫ √2

0

e−(
√
cnr)2 dr =

∫ √ 2
cn

0

e−r
2

dr ≤
√

2

cn
.

With the identity c = 1
2 we see that

E [D(P, x)] ≤ 2√
n
.

Theorem 26. Define the constant c = exp( 1
8
√
2

+ 1). Then for all ε > 0

P
(
|t(P )− E [t(P )] | ≥ ε

√
n
)
≤ 2 exp

(
−ε2n

8 ln(c(n− 1))

)
.

Proof. Define for each i ∈ {1, 2, . . . , n} Ti = E [t(P ) | P1, P2, . . . , Pi]. Further
define the set P ′ = {P1, . . . , Pi−1, P

′
i , Pi+1, . . . , Pn}, where P ′i is an independent

copy of Pi and independent of all other P1, P2, . . . , Pn, i.e. an independent
uniform random point in the unit square. Then

Ti − Ti−1
= E [t(P ) | P1, P2, . . . , Pi]− E [t(P ′) | P1, P2, . . . , Pi−1]

= E [t(P ) | P1, P2, . . . , Pi]− E [t(P ′) | P1, P2, . . . , Pi]

= E [t(P )− t(P ′) | P1, P2, . . . , Pi] .

It follows that

|Ti − Ti−1| ≤ E [ |t(P )− t(P ′)| | P1, P2, . . . , Pi] .

Let i ∈ {1, 2, . . . , n − 1}. Define P− = P − {Pi} = P ′ − {P ′i}. Consider
the increase in length for the shortest tour through P− when adding a point
x ∈ [0, 1]2. This point can be added to the tour by adding at most two edges
between x and the closest point in P−. The length of these edges is given by
D(P−, x). Therefore

t(P−) ≤ t(P ) ≤ t(P−) + 2D(P−, Pi)
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and
t(P−) ≤ t(P ′) ≤ t(P−) + 2D(P−, P ′i ).

By combining these inequalities we obtain

−2D(P−, P ′i ) ≤ t(P )− t(P ′) ≤ 2D(P−, Pi).

So

−E
[
2D(P−, P ′i ) | P1, P2, . . . , Pi

]
≤ E [t(P )− t(P ′) | P1, P2, . . . , Pi]

≤ E
[
2D(P−, Pi) | P1, P2, . . . , Pi

]
.

Observe that by Theorem 11, in the expectation

E
[
2D(P−, P ′i ) | P1, P2, . . . , Pi

]
all variables P ′i , Pi+1, Pi+2, . . . , Pn can be replaced by independent copies. So
we have that

E
[
2D(P−, P ′i ) | P1, P2, . . . , Pi

]
≤ E [2D({Pi+1, Pi+2, . . . , Pn}, P ′i ) | P1, P2, . . . , Pi]

= E [2D({Pi+1, Pi+2, . . . , Pn}, P ′i )] .

Indeed we can apply Lemma 25 for the points Pi+1, Pi+2, . . . , Pn and we
obtain that

− 4√
n− i

≤ E [t(P )− t(P ′) | P1, P2, . . . , Pi] ≤
4√
n− i

and so for all i < n

|Ti − Ti−1| ≤
4√
n− i

.

From Theorem 24 we obtain that for all i ∈ {1, 2, . . . , n}, specifically i = n, it
holds that

|Ti − Ti−1| ≤ 2
√

2.

Finally, we can apply Theorem 15 to find that for all ε > 0

P (|t(P )− E [t(P )] | ≥ ε)
= P (|Tn − T0| ≥ ε)

≤ 2 exp

(
−2ε2

2
√

2 +
∑n−1
i=1

16
n−i

)

= 2 exp

(
−ε2

√
2 +

∑n−1
i=1

8
i

)

≤ 2 exp

(
−ε2√

2 + 8 + 8 ln(n− 1)

)
.
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Set c = exp( 1
8
√
2

+ 1) to obtain

P
(
|t(P )− E [t(P )] | ≥ ε

√
n
)
≤ 2 exp

(
−ε2n

8 ln(c(n− 1))

)
.

References

[1] Dana Angluin. Queries and concept learning. Mach. Learn., 2(4):319–342,
April 1988.

[2] Herman Chernoff. A measure of asymptotic efficiency for tests of a hypoth-
esis based on the sum of observations. Ann. Math. Statistics, 23:493–507,
1952.

[3] Herman Chernoff. A measure of asymptotic efficiency for tests of a hypoth-
esis based on the sum of observations. Ann. Math. Statist., 23(4):493–507,
12 1952.

[4] Wassily Hoeffding. Probability inequalities for sums of bounded random
variables. J. Amer. Statist. Assoc., 58:13–30, 1963.
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