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0 Introduction

L.E.J. Brouwer founded intuitionism with the philosophy that mathematics is a personal endeavour
that exists as mental constructions. It was an immediate result of this philosophy that the Law of
Excluded Middle (LEM), a central tenant to mathematics, could not hold. For everything was a
construction and therefore having φ∨¬φ meant having either a construction of φ or a construction
of ¬φ which often, as with any unproven theorem, is not the case.
Intuitionism was later formalized by Andrej Kolmogorov and Brouwer’s student Arend Heyting.
From their work we get the Brouwer-Heyting-Kolmogorov interpretation of intuitionistic logic
which states what is intended to be understood to be a proof for any given logical formula:

• A proof of φ ∧ ψ is a proof of φ and a proof of ψ.

• A proof of φ ∨ ψ is a proof of either φ or ψ and an indication as to which is the case.

• There is no proof of ⊥.

• A proof of φ→ ψ is an algorithm which converts a proof of φ into a proof of ψ.

• A proof of ¬φ is a proof of φ → ⊥. In other words it is an algorithm that converts a proof
of φ into an absurdity.

• A proof of ∃xφ(x) is an element x along with a proof of φ(x).

• A proof of ∀xφ(x) is an algorithm that converts any x into a proof of φ(x).

This, however, was not meant to be the basis of intuitionism itself. In the words of Heyting:

Logic is not the ground upon which I stand. How could it be? It would in turn need
a foundation, which would involve principles much more intricate and less direct than
those of mathematics itself. A mathematical construction ought to be so immediate
to the mind and its result so clear that it needs no foundation whatsoever.
[Heyting, 1971, p. 6]

It was, nonetheless, useful as a means for studying intuitionistic mathematics. The study of logic
that arises from intuitionism has since grown with, among other things, realizability as well as the
logic of topoi in category theory.
This paper focuses on a version of set theory created by John Myhill in a 1971 paper as part of
an attempt to “extend [the results of a modification of realizability] to an intuitionistic version
of Zermelo-Fraenkel set-theory”.[Myhill, 1973, p. 206] To this end he kept all the axioms of ZFC
except those which implied LEM, namely regularity and choice which he replaced with the axiom
he called transfinite induction (the current version also uses an alternative version of replacement).
The resulting theory had models in which, among other things, all functions from the reals to the
reals were continuous, the complex numbers were no longer algebraically closed, and many classical
definitions of ordinals failed to coincide.
The intention of this paper is to give an idea of how Intuitionistic Zermelo Fraenkel (IZF) can be
studied through the lens of Heyting-valued models, models analogous to the the Boolean-valued
models used to study ZFC as shown in [Bell, 1985] and [Bell, 2014]. In doing so, however, we
remain within the context of ZFC. As such we are not holding ourselves to the philosophies of
intuitionism but rather approaching it as an outsider trying to recognize patterns within the
system of mathematics that has developed from it. IZF is itself already a tool for such a task, like
any formalization of intuitionistic logic, as is suggested by Heyting [Heyting, 1971]. We hope this
approach is somewhat consistent with his ideas on the study of intuitionism through formalization.
We begin with a brief description of a formal system of logic that we use to approximate intu-
itionistic reasoning. We continue with a mention of the axioms in IZF and a few of its properties.
Afterward we present the necessary tools from ZFC for constructing a Heyting-valued model be-
fore carrying out the construction itself. The rest of the paper is devoted to properties of the
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model and proving two results about IZF, namely the independence of the Axiom of Choice from
Zorn’s Lemma and the consistency of there being a partial surjective function from a subset of
the natural numbers object N to the set NN of all functions from N to itself.
We assume the reader has a degree of familiarity with formal first order logic. Having some
familiarity with axiomatic set theory will also be quite helpful. Both are treated in the paper but
only briefly and we focus on a couple interesting or relevant aspects instead of constructing a good
basis for the subject. A couple of examples touch on basic ideas in topology, specifically opens,
interiors and connected spaces but knowledge of the subject is not essential to understanding the
main focus.
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1 Preliminaries

1.1 A Formalization for Intuionistic Logic

Let us begin with a brief description of a formal derivation system for intuitionistic first-order
logic. We use a Hilbert-style calculus with the following axioms1

φ→ (ψ → φ)

φ→ [ψ → (φ ∧ ψ)]

(φ ∧ ψ)→ φ (φ ∧ ψ)→ ψ

φ→ (φ ∨ ψ) ψ → (φ ∨ ψ)

[φ→ (ψ → χ)]→ [(φ→ ψ)→ (φ→ χ)]

(φ→ χ)→ [(ψ → χ)→ [(φ ∨ ψ)→ χ]]

(φ→ ψ)→ [(φ→ ¬ψ)→ ¬φ]

¬φ→ (φ→ ψ)

x = x x = y ∧ φ(x)→ φ(y)

(1)

and whenever t can be substituted for x without binding any occurences of t as a variable in φ

φ(t)→ ∃xφ(x) ∀xφ(x)→ φ(t) (2)

Definition 1.1. Given some first-order language L and some theory Γ define the relation Γ ` φ
inductively as follows for any L-sentence φ

1. If φ is any of the axioms stated above then Γ ` φ

2. If φ ∈ Γ then Γ ` φ

3. If Γ ` φ and Γ ` φ→ ψ then Γ ` ψ (modus ponens)

And for x free in ψ

4. If Γ ` ψ → φ(x) then Γ ` ψ → ∀xφ(x)

5. If Γ ` φ(x)→ ψ then Γ ` ∃xφ(x)→ ψ

A sentence φ is derivable from Γ if Γ ` φ. Additionally we write ` φ for ∅ ` φ. Classical logic is
obtained from intuitionistic logic by adding any one of the following (intuitionistically equivalent)
axioms

Law of excluded middle (LEM) φ ∨ ¬φ
Law of double negation ¬¬φ→ φ

Law of contraposition (¬ψ → ¬φ)→ (φ→ ψ)

None of these are derivable solely from the axioms in (1) or (2), and neither are the following2

De Morgan’s law ¬(φ ∧ ψ)→ (¬φ ∨ ¬ψ)

Weakened law of excluded middle ¬¬φ ∨ ¬φ

The following, however, does hold
` ¬¬¬φ→ ¬φ (3)

To show this it is useful to have the following theorem [see Kleene, 1952, p. 90]

1For a more detailed account of the calculus see [Kleene, 1952] or [van den Berg, 2015]
2Chapter VI of [Kleene, 1952] addresses this along with a number of similar results for the intuitionistic calculus
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Theorem 1.2 (Deduction Theorem). In the Hilbert-style proof calculus, Γ ∪ {φ} ` ψ if and only
if Γ ` φ→ ψ.

Furthermore it can be shown that ` φ → φ for all φ with some manipulation of the axioms and
rules of deduction as in [van den Berg, 2015, p. 2]. With this in hand we proceed

Proof of (3).
First we assert that

` φ→ ¬¬φ (4)

By the first and seventh axioms we have

` φ→ (¬φ→ φ)

` (¬φ→ φ)→
(
(¬φ→ ¬φ)→ ¬¬φ

)
so by rules 1, 2 and 3 in combination with ` ¬φ→ ¬φ we have

{φ} ` ¬¬φ

from which the result follows via 1.2. Now, using the first axiom again we have

` ¬¬¬φ→ (φ→ ¬¬¬φ)

and therefore by Theorem 1.2 and (4) in combination with rule 1 we have

{¬¬¬φ} ` φ→ ¬¬φ
{¬¬¬φ} ` φ→ ¬¬¬φ

(5)

now using the seventh axiom again gives us

` (φ→ ¬¬φ)→
(
(φ→ ¬¬¬φ)→ ¬φ

)
which, using rule 3 in combination with (5) gives us

{¬¬¬φ} ` ¬φ

from which the desired result follows via Theorem 1.2.

We argue further in this section without explicit use of the calculus however we will think of it as
the underlying notion of derivability in intuitionism and return to it later.

1.2 Intuitionistic Zermelo Fraenkel set theory

In this subsection and the next we will argue with constructive proofs, that is, without making use
of the Law of Excluded Middle or its equivalents, in order to remain consistent with intuitionistic
logic. The theory of IZF is constructed using the first-order language L with equality which has
as its single binary operation ∈. IZF has the following axioms:

1. Extensionality
∀x, y[∀z(z ∈ x↔ z ∈ y)→ z = y]

2. Pairing
∀x, y∃w∀z[z ∈ w ↔ (z = x ∨ z = y)]
Using this axiom singleton {x} can be defined to be the set {x, x} and the ordered pair 〈x, y〉
is the set {{x}, {x, y}}.

3. Collection
∀x[(∀y ∈ x∃zφ(y, z))→ ∃w∀y ∈ x∃z ∈ wφ(y, z)]
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4. Powerset
∀x∃w∀z[z ∈ w ↔ ∀y ∈ z(y ∈ x)]

5. Separation
∀x∃w∀z[z ∈ w ↔ (z ∈ x ∧ φ(z))]

6. Empty Set
∃x∀z[z ∈ x↔ z 6= z]
The set satisfying this axiom is, by extensionality, unique and we refer to it with the notation
∅.

7. Union
∀x∃w∀z[z ∈ w ↔ ∃y ∈ x(z ∈ y)]

8. Infinity
∃x[∅ ∈ x ∧ ∀y ∈ x(y+ ∈ x)]
Here y+ is shorthand for the set y ∪ {y} (which is a set by union and pairing, and again,
unique by extensionality).

9. Induction
∀x[(∀y ∈ xφ(y))→ φ(x)]→ ∀xφ(x)

The variables in each axiom are understood to range over a universe of sets. It is helpful, however,
to be able to talk about collections of sets, or, classes, that themselves are not necessarily sets. To
this end we use {x | φ(x)} to denote a definable class, that is, the collection of all sets that satisfy
some condition φ and try to mention explicitly when such a class is a set. In doing this we use a
particular abuse of notation, for any set x and any definable class A we take x ∈ A to mean φ(x)
and also say “x is in A”. When A is a set the symbol ∈ is the usual relation symbol. The universe
of all sets will be denoted by V .

Definition 1.3. A relation R is a class of ordered pairs and we understand xRy to mean 〈x, y〉 ∈ R.

A function f is a special relation namely one for which 〈x, y〉, 〈x, y′〉 ∈ f implies y = y′. Given
a function f we define dom(f) to be the class {x | ∃y[〈x, y〉 ∈ f ]} and ran(f) to be the class
{y | ∃x[〈x, y〉 ∈ f ]}.
The class {x | x = τ ∧ φ} where τ is not free in φ is of particular interest and, for it, we use the
shortened notation {τ | φ}. Thus defined, {τ | φ} is a set by separation on the singleton {τ},
furthermore τ ∈ {τ | φ} iff φ. A couple other notations: we use 0 interchangeably with ∅ and the
shorthands 1 and 2 for the sets {0} and {0, 1} respectively.

In order to give a sense of how IZF differs from classical set theory we give a few examples
of common notions that imply LEM. Without LEM the formula ¬∃xφ(x) is no longer equiva-
lent to ∀x¬φ(x). One major consequence of this is that asserting a set x is non-empty or that
x 6= ∅ is not the same as asserting ∃y[y ∈ x]. Any set satisfying the latter condition is inhabited.
Furthermore call a class A is discrete or decidable if ∀x, y ∈ A[x = y ∨ x 6= y]. Now we have

Proposition 1.4. The following are equivalent to LEM

(i) Membership is decidable: ∀x∀y(x ∈ y ∨ x 6∈ y).

(ii) The universe of all sets, V, is discrete.

(iii) The powerset P (1) is equal to 2.

(iv) 2 is well-ordered, i.e. every inhabited subset of 2 has a least element.

Proof.
LEM→ (i)
This is true by definition of LEM.
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(i)→ (ii)
For all x, y ∈ V it follows from (i) that x ∈ {y} ∨ x 6∈ {y}. Now x ∈ {y} ↔ x = y hence the
first part of the or implies x = y directly, while the second leads to a contradiction and therefore
x 6= y.

(ii)→ (iii)
Let x ∈ P (1), by (ii) we have x = 1 ∨ x 6= 1. Now y ∈ x implies y ∈ 1 and therefore y = 0
so by extensionality x = 1. It follows that assuming x 6= 1 and y ∈ x leads to a contradiction
therefore y 6∈ x for all y and so x = 0. Thus x ∈ P (1) implies x = 1∨x = 0 from which (iii) follows.

(iii)→ (iv)
Let x ⊆ 2 be inhabited and let ≤ be the ordering defined on 2 such that 0 ≤ 1 then assuming
(iii) implies ≤ is a well ordering. For all y ∈ x we have y = 0 ∨ y = 1. Now consider the set
A = {0 | 0 ∈ x}. Since A is a subset of 1 it follows, by (iii), that A = 1 ∨ A 6= 1. In the first
case 0 ∈ x and therefore x has a least element, namely 0. In the second case y = 0 leads to a
contradiction therefore ∀y ∈ x[y = 1] and since x is inhabited 1 ∈ x therefore 1 is the least element.

(iv) implies LEM
Assuming 2 has some well ordering ≤ assume, without loss of generality, that 0 ≤ 1. Now consider
the set A = {0 | φ} ∪ {1}, this is a subset of 2 and therefore has some least element a. Now by
definition of A we have a = 0 ∨ a = 1. In the first case 0 ∈ A and therefore φ must hold. In the
second assuming φ leads to a contradiction since it follows from 0 ∈ A that 0 = 1, so ¬φ holds.

The following proposition is also of interest

Proposition 1.5. The Axiom of Choice implies LEM

Proof. Given a formula φ let f be the function on 2 = {0, 1} with f(0) = {τ} and f(1) = {τ | φ}.
By the Axiom of Choice there exists a choice function g for f which, by definition, takes values in
2 and is such that f(g(x)) = x. Since 2 is discrete we have

g({τ}) 6= g({τ | φ}) ∨ g({τ}) = g({τ | φ})

Now g({τ}) = g({τ | φ}) implies

{τ} = f(g({τ})) = f(g({τ | φ})) = {τ | φ}

and therefore φ. On the other hand g({τ}) 6= g({τ | φ}) implies

{τ} 6= {τ | φ}

which contradicts φ therefore ¬φ follows. Thus

g({τ}) 6= g({τ | φ}) ∨ g({τ}) = g({τ | φ})→ φ ∨ ¬φ

and so LEM holds.

Let us say that a set A is infinite if it satisfies ∅ ∈ A∧∀y ∈ A(y+ ∈ A). Axiomatically there exists
some such A in any model of IZF. We define

N =
⋂
{K ⊂ A | K is an infinite set}

Since for any other infinite set A′ the intersection A∩A′ is both infinite and a subset of A it follows
that N ⊆ A′ so N is the least infinite set in IZF. From this follows immediately the principle of
induction on N that is

∀B
[
∅ ∈ B ∧ ∀b ∈ B[b+ ∈ B]→ N ⊆ B

]
Hence the object N is analogous to the natural numbers in ZFC. We now have the following
definitions
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Definition 1.6.

(i) A set A is countable if there exists a surjection f : N→ A

(ii) A set A is subcountable if there exists a partial function f on some subset of N that is a
surjection on A

Classically these definitions are equivalent; intuitionistically, however, only (i) → (ii) holds. As-
suming any partial function can be extended to a total function implies LEM and as we will we
can construct models in which there exist subcountable sets that are not countable. Note that
this, in turn, implies that LEM is in fact refutable in certain models of IZF.

1.3 Heyting Algebras and Frames

In this section we describe an algebra that corresponds with intuitionistic logic upon which we we
will build the model. The construction is primarily derived from [Bell, 1985].

Definition 1.7. A lattice is a poset P such that for any two elements x, y ∈ P the set {x, y} has
an infimum, or meet, and a supremum, or join.

For any lattice we can therefore define the binary operations ∧ and ∨ that send a pair, x, y to
their meet and join, respectively. A lattice is bounded if it has a maximum, or top, and minimum,
or bottom, element. In this case we denote the top element by > and bottom element by ⊥.

Examples.

(i) The two element set {>,⊥} with ⊥ ≤ > is a bounded lattice.

(ii) For any set A the powerset P (A), ordered by inclusion, is a bounded lattice. The meet and
join operations are the intersection and union of sets respectively. The top element is A and
the bottom element is ∅.

(iii) For any topological space (X, T ) the set of opens O(X) ordered by inclusion is a bounded
lattice. The meet and join operations are again intersection and union, and the top and
bottom elements are X and ∅.

A bounded lattice can be characterized by the following equations

1. x ∨ ⊥ = x, x ∧ > = x

2. x ∨ x = x, x ∧ x = x

3. x ∨ y = y ∨ x, x ∧ y = y ∧ x

4. x ∨ (y ∨ z) = (x ∨ y) ∨ z, x ∧ (y ∧ z) = (x ∧ y) ∧ z

5. (x ∨ y) ∧ y = y, (x ∧ y) ∨ y = y

By this the following two things are meant. First, any bounded lattice will satisfy the equations
above. Second, any set P with binary operations ∧ and ∨ along with designated elements > and
⊥ that satisfy the above equations becomes a bounded lattice with the partial ordering x ≤ y iff
x ∧ y = x.
A lattice is distributive if for all x, y, z ∈ H we have

(x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z) and (x ∧ y) ∨ z = (x ∨ z) ∧ (y ∨ z)
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The two conditions are actually equivalent. Both implications are proved similarly so only one is
shown here. Assuming the first equivalence we have

(x ∨ z) ∧ (y ∨ z) = (x ∧ (y ∨ z)) ∨ (z ∧ (y ∨ z))
= ((x ∧ y) ∨ (x ∧ z)) ∨ z
= (x ∧ y) ∨ ((x ∧ z) ∨ z)
= (x ∧ y) ∨ z

Given a subset A of P we denote its supremum by
∨
A and its infimum by

∧
A if they exist.

Definition 1.8. A lattice is complete if any set A has both an infimum and a supremum.

To show that poset is complete it is sufficient to show that it has all infimums since for any set, the
infimum of its upper-bounds is its supremum. A similar reasoning shows that it is also sufficient
to show that a poset has all supremums.

Definition 1.9. A Heyting algebra is a bounded lattice in which, for any two elements a and b,
the set

{z | a ∧ z ≤ b}

has a greatest element a⇒ b. If, in addition, it is a complete lattice, it is called either a complete
Heyting algebra or a frame.

Examples.

(i) P (A) is a frame. For B,C ∈ P (A) we have B ⇒ C =
⋃
{D | D∩B ⊆ C} and the operations∧

and
∨

are the operations
⋂

and
⋃

respectively.

(ii) The bounded lattice O(X) of opens on some topological space is also a frame. The join of
a set of opens is equal to its union and the meet equal to the interior of its intersection. In
other words for Y ⊆ O(X) we have ∨

Y =
⋃
Y

∧
Y =

◦︷ ︷⋂
Y

Furthermore for U1, U2 ∈ O(X) we have

U1 ⇒ U2 =
⋃
{U | U ∩ U1 ⊆ U2}

where U is assumed to be open.

(iii) {>,⊥} is a Heyting algebra however it is complete iff LEM holds. Namely, for any φ if join∨
{> | φ} is an element of {>,⊥} one of

∨
{> | φ} = > or

∨
{> | φ} = ⊥ must be true. The

first equality implies φ while the second implies ¬φ.

The operation ⇒ can be characterized by the following equations

6. x⇒ x = >

7. x ∧ (x⇒ y) = x ∧ y

8. y ∧ (x⇒ y) = y

9. x⇒ (y ∧ z) = (x⇒ y) ∧ (x⇒ z)

9



For every frame H the following holds

x ∧
∨
A =

∨
a∈A

x ∧ a

Namely, for all z ∈ H we have

x ∧
∨
A ≤ z ↔

∨
A ≤ x⇒ z

↔ a ≤ x⇒ z for all a ∈ A
↔ x ∧ a ≤ z for all a ∈ A

↔
∨
a∈A

x ∧ a ≤ z

In particular every frame is also a distributive lattice. The reasoning above is always true if A is
a two-element set, so every Heyting algebra is a distributive lattice as well.

Definition 1.10. The pseudocomplement of and element x is the element x∗ = x⇒ ⊥.

An element x is complemented if x ∨ x∗ = >. For such x the following holds

a ∧ x ≤ y → (a ∧ x) ∨ x∗ ≤ y ∨ x∗

↔ (a ∨ x) ∧ (x ∨ x∗) ≤ y ∨ x∗

↔ (a ∨ x) ≤ y ∨ x∗

→ a ≤ y ∨ x∗

Furthermore
x ∧ (y ∨ x∗) = x ∧ y ≤ y

And therefore x ⇒ y = y ∨ x∗. In particular, x∗∗ = ⊥ ∨ x = x. Note that not every element is a
Heyting algebra is necessarily complemented. For instance in O(X) where (X, T ) is a connected
topological space X and ∅ are the only complemented elements.

Definition 1.11. A complete subalgebra of a Heyting algebra H is a subset that is closed under
the restriction of all operations in H.

1.3.1 The Frame HC

Here we will define a Heyting algebra following [Bell, 2014] that will be of particular use later.
First a few definitions, in the following we assume (P,≤) to be some arbitrary poset.
For p ∈ P let ↓p = {q ∈ P | q ≤ p}.

Definition 1.12. A sieve is a set I ⊆ P with the property that ↓p ⊆ I for each p ∈ I.

A set T sharpens or is a sharpening of a set S if for each q ∈ T there exists p ∈ S such that q ≤ p.

Definition 1.13. A coverage C of P is a map sending each p ∈ P to a family of sets C(p) such
that C ⊆↓p for all C ∈ C(p) and, given q ≤ p and C ∈ C(p), there exists C ′ ∈ C(q) that sharpens
C.

A set A ⊆ P is C-closed if it satisfies ∃C ∈ C(p)[C ⊆ A]→ p ∈ A

Lemma 1.14. For any coverage C of a poset P the set HC of C-closed sieves (ordered by inclu-
sion) is a frame.

Proof. First note that for any non-empty set A ⊆ HC, the intersection
⋂
A is itself a C-closed

sieve. Namely if p ∈
⋂
A and q ≤ p then for all a ∈ A, we have p ∈ a and so q ∈ a from which it

follows that q ∈
⋂
A. Similarly if there exists S ∈ C(p) such that S ⊆

⋂
A then for all a ∈ A it
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holds that S ⊆ a and so also p ∈ a since each a ∈ A is C-closed, thus p ∈
⋂
A. Therefore

⋂
A is

an element of HC and since HC is ordered by inclusion it is, by definition, the infimum of A. The
definition for

∨
A follows immediately since

∨
A =

∧
{b | ∀a ∈ A[a ≤ b]}.

It is left to show that a⇒ b is well defined for a, b ∈ HC. Consider the set

S = {p | (a ∩↓p) ⊆ b}

We assert that a ⇒ b = S. First, S is a sieve since for all p ∈ S and q ≤ p we have ↓ q ⊆↓p and
so (a ∩↓q) ⊆ (a ∩ ↓p) ⊆ b. Now let there be C ∈ C(p) with C ⊆ S, then for arbitrary p′ ∈ a ∩ p↓
there exists C ′ ∈ C(p′) that sharpens C since C is a coverage and p′ ≤ p. It follows then, because
S is a sieve, that C ′ ⊆ S. Therefore for p′′ ∈ C ′ we have p′′ ∈ b since ↓ p′′ ⊆↓ p′ = a ∩ ↓ p′,
and thus, C ′ ⊆ b. Now since b is C-closed it follows that p′ ∈ b and because p′ was an arbitrary
element of a ∩↓p we have a ∩↓p ⊆ b so p ∈ S and therefore S is C-closed.
Now let p ∈ a, it follows from the definition of membership in S that p ∈ b ∩ S implies p ∈ b so
a ∧ S = a ∩ S ≤ b. Then for arbitrary c ∈ HC such that c ∧ a ≤ b and p ∈ c we have ↓ p ⊆ c
since c is a sieve and therefore a ∩ ↓p ⊆ a ∩ c ⊆ b and so, by definition, p ∈ S hence c ≤ S. Thus
S = a⇒ b.

1.4 Classical Set Theory: ZFC

We argue from this point on in ZFC. This section follows the exercises and proofs given in [Jech,
2003] and [Moerdijk and van Oosten, 2014]. The notions of induction and recursion are essential
to the construction of Heyting-valued models and they are the primary focus of this section. At
the end we prove in a lemma some of the well known classical properties of ordinals that will also
prove helpful. Sentences in ZFC are written, as with IZF, using the first-order language L with
equality and the binary operation ∈. Its axioms are all those of IZF with, instead of collection
and induction the axioms

Replacement
∀x[(∀y ∈ x∃!zφ(y, z))→ ∃w∀y ∈ x∃z ∈ wφ(y, z)

Regularity
∀x∃y ∈ x[y ∩ x = ∅]

As well as the Axiom of Choice which can be formulated

∀x∃f [fun(f) ∧ dom(f) = x ∧ ∀y ∈ x(y 6= ∅ → f(y) ∈ y)]

which corresponds to the idea that, for any collection of non-empty sets we can ‘chose’ an element
from each. An equivalent formulation is

∀f [fun(f)→ ∃s(fun(s) ∧ dom(s) = ran(f) ∧ ∀x ∈ dom(f)[s(f(x)) = x])]

which means that every surjective function f : A → B has a ‘section’ s : B → A such that
s(f(x)) = x.

Both induction and recursion are dependent on the idea of a well-founded relation defined be-
low.

Definition 1.15. A relation R on a class X is well-founded on X if the class Ru = {x ∈ X | xRu}
is a set for all u ∈ X and for any set S ⊆ X there exists some s ∈ S such that {s′ ∈ S | s′Rs} is
empty, that is, s′Rs does not hold for any s′ ∈ S.

Note that R is irreflexive for if xRx then R fails the second property for the set {x}. A set T is
R-transitive if Rx ⊆ T for every x ∈ T . Given a set S and a well-founded relation R it will be
useful to be able to construct an R-transitive set containing S. To this end let S̃ =

⋃
s∈S

Rs and

11



define the sequence (Sn)n∈N recursively as such: S0 = S and Sn+1 = Sn ∪ S̃n. Now T (S) =
⋃
n∈N

Sn

has the desired property. Namely, for any x ∈ T (S) and any arbitrary y such that yRx, there
exists some n such that x ∈ Sn, and therefore y ∈ Sn+1 ⊆ T (S).

Lemma 1.16. If R is a well-founded relation, any non-empty, definable class C has an R-minimal
element, that is, an element e such that cRe for no c in C.

Proof. Let C = {x | φ(x)} be non-empty. For c in C consider the set C ′ = {c′ ∈ T ({c}) | φ(c′)}.
Because C ′ is a set by separation on the set T ({c}) there exists an element e ∈ C ′ such that c′Re
for no c′ ∈ C ′. Now if there exists x such that xRe and φ(x) both hold then it follows that x ∈ C ′,
which is contradiction. Therefore e is as desired.

With this we can now prove

Proposition 1.17 (Principle of Induction). The following holds for any well founded relation R

∀y[∀x
(
xRy → φ(x)

)
→ φ(y)]→ ∀xφ(x)

Proof. Assume ∀y[∀x
(
xRy → φ(x)

)
→ φ(y)] and let C = {x | ¬φ(x)} be non-empty. By 1.16

there exists an R-minimal element e of C, so for e we have ∀x[xRe → φ(x)]. It follows then by
the assumption that φ(e), a contradiction, hence C is empty from which follows ∀xφ(x).

This will be the primary tool in a lot of the proofs we go over including the principle of recursion.

Proposition 1.18 (Principle of Recursion). For any well founded relation R on a class X and a
class function F on pairs (x, g) where x is an object in X and g is a function on Rx there exists
a unique function G such that G(x) = F (x,G|Rx) for all x in X.

Proof. First we prove uniqueness. Let G and Z satisfy the theorem for some function F and
assume ∀y[yRx→ G(y) = Z(y)] then

G(x) = F (x,G|Rx) = F (x, Z|Rx) = Z(x)

Therefore, by induction, G(x) = Z(x) for all x in X so G = Z.
Using this we can then prove existence. Assume that for all yRx there exists Gy defined on T ({y})
such that Gy(z) = F (z,Gy|Rz). Now let

Gx = {〈x, F (x,
⋃
yRx

Gy)〉} ∪
⋃
yRx

Gy

That Gx is a well-defined follows from the uniqueness of the Gy’s and the fact R is well-founded.
First, for any elements y, y′ of X we have Gy|dom(Gy)∩dom(Gy′ )

= Gy′ |dom(Gy)∩dom(Gy′ )
by unique-

ness, it follows then that the union Gy ∪ Gy is a well defined function. Second x 6∈ dom(
⋃
yRx

Gy)

since R is well-founded. To see this let x ∈ T (y) for some yRx, there exists then, a sequence
y1, ..., yn such that ynRyn−1, y1Ry, and xRyn; however, as such the set {y, y1, ..., yn, x} has no
minimal element.
Now Gx is defined on T ({x}) and is such that Gx(z) = F (z,Gx|Rz) thus by induction there exists
such a Gx for all x. Define G(x) = Gx(x) then for yRx we have Gx(y) = Gy(y) = G(y) therefore
G(x) = Gx(x) = F (x,Gx|Rx) = F (x,G|Rx).

The relation ∈ is well founded since we have ∈ u = u and the axiom of regularity ensures that for
all u there exists some x ∈ u such that y 6∈ x for all y ∈ u. It follows then that the principles of
induction and recursion hold for ∈. Particularly the axiom of recursion from IZF holds in ZFC as
well.

12



Definition 1.19. An ordinal is an ∈-transitive set α that is linearly ordered by ∈, that is to say,
for any β, γ ∈ α one of β ∈ γ, β = γ, γ ∈ β holds.

We will usually refer to ordinals using lower-case greek letters. A few facts about ordinals are
useful and are summarized in the following lemma.

Lemma 1.20.

(i) Every ordinal is itself a set of ordinals.

(ii) For ordinals α ⊆ β we have α = β ∨ α ∈ β

(iii) The class of all ordinals is linearly ordered by ∈

(iv) Any non-empty class of ordinals has a least element

(v) The union of a set of ordinals is itself an ordinal

Proof.
(i)
For any ordinal α let β be such that β ∈ α. We wish to show that β is ∈-transitive and linearly
order by ∈. To this end consider arbitrary ξ, γ such that ξ ∈ γ ∈ β. First, it follows from
transitivity of α, that γ ∈ α and therefore ξ ∈ α. Since ξ = β and β ∈ ξ both contradict the fact
that ∈ is well-founded (consider the set {ξ, γ, β}) we must have ξ ∈ β. Second, for all β ∈ α and
γ, γ′ ∈ β we have γ, γ′ ∈ α therefore one of γ′ ∈ γ, γ′ = γ, γ ∈ γ′ must hold.
(ii)
Assume α ( β then β−α has a minimal element, call it γ. Now if ξ ∈ γ, then ξ must be in β but
not in β − α so ξ ∈ α and therefore γ ⊆ α. Furthermore for ζ ∈ α, since β is linearly ordered by
∈, one of γ ∈ ζ, γ = ζ, ζ ∈ γ must hold, the first two imply γ ∈ α which contradicts γ ∈ β − α so
ζ ∈ γ and therefore α ⊆ γ and so γ = α.
(iii)
Given any two ordinals α, β assume α 6= β. If β − α is empty then β ( α and so by (ii) β ∈ α.
Otherwise, let γ be a minimal element of β−α then γ ⊆ α as shown above, and since γ ( α would
imply γ ∈ α which is a contradiction, we must have γ = α and so α ∈ β.
(iv)
Given a class of ordinals A we can find a minimal element ξ by 1.16 which is then also a least
element by (iii).
(v)
Let A be a set of ordinals. For all β ∈

⋃
A and γ ∈ β we have β ∈ α for some α ∈ A and therefore

γ ∈ α since α is transitive, thus γ ∈
⋃
A and therefore

⋃
A is transitive. Now for any β, β′ ∈

⋃
A

we have β ∈ α and β′ ∈ α′ for some ordinals α, α′ in A which means by (i) that β and β′ are also
ordinals and therefore by (iii) one of β ∈ β′, β = β′, β′ ∈ β must hold, so

⋃
A is linearly ordered

by ∈.

Note that for any ordinal α the successor α+ = α ∪ {α} is an ordinal as well as this is a specific
instance of (v).

2 Frame Valued Models

We now proceed to construct the model following the procedure in [Bell, 1985] and [Bell, 2014].
It is common to associate x with a characteristic function χx for which x ⊆ dom(χx). We can
think of a characteristic function as holding all necessary information about the set that it repre-
sents. Commonly, a characteristic function will take the values χx(z) = 1 if z ∈ x and χx(z) = 0
otherwise. As such, it takes values on {0, 1} can therefore be seen as a mapping to some algebra
of truth values (think of {0, 1} as the two valued Boolean algebra {>,⊥}). We generalize this
notion by examining functions that maps potential elements of a set to any Heyting algebra. This
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is motivation for the following construction.
Given some Heyting algebra H we wish to construct a universe V (H) of so called H-valued func-
tions, that is functions with range in H, that will come to act as the universe of all sets. As
characteristic functions are mappings of sets to truth values we would also like this to be the case
for u ∈ V (H) and so we consider only functions that are homogenous that is, functions whose
domains are themselves sets of homogenous H-valued functions.
To this end we define for each ordinal α the set

V (H)
α = {u | fun(u) ∧ ran(u) ⊆ H ∧ ∃ξ ∈ α[dom(u) ⊆ V (H)

ξ ]}

The universe of homogenous H-valued functions is then the class

V (H) = {u | ∃α[u ∈ V (H)
α ]}

As such, V (H) is precisely the class of all sets u that satisfy

fun(u) ∧ ran(u) ⊆ H ∧ dom(u) ⊆ V (H)

To see this, first, given v ∈ V (H), let rank(v) denote the least ordinal α such that v ∈ V
(H)
α .

Now for some function u with domain in V (H) that takes values in H consider then the ordinal
α =

⋃
{rank(v) | v ∈ dom(u)}. For all v ∈ dom(u) we then have rank(v) ∈ α+ and therefore

u ∈ V (H)
α+ .

Lemma 2.1. The relation v ∈ dom(u) is a well-founded relation on V (H).

Proof. Since dom(u) is a set it suffices to show that there exists v′ ∈ dom(u) such that w ∈ dom(u)
for no w ∈ dom(v′). The set of ordinals {rank(v) | v ∈ dom(u)} has a least element α, let
v′ ∈ dom(u) be such that rank(v′) = α. Now for arbitrary w ∈ dom(v′) there exists ξ ∈ α such

that w ∈ V (H)
ξ and therefore either rank(w) ∈ ξ or rank(w) = ξ. It follows then by transitivity of

α that rank(w) ∈ α. Therefore we must have w 6∈ dom(u) since α is minimal with regard to ∈ in
{rank(v) | v ∈ dom(u)}.

It follows immediately from 2.1 that we can perform induction on y ∈ dom(x).

The structure of V (H) allows for a mapping of logical sentences φ to truth values JφK in H.
Such sentences are written in the first order language LH with equality that has the relation ∈
and a constant for every element u ∈ V (H). Given definitions for JφK and JψK we define the
mapping J·K as follows:

Jφ ∧ ψK = JφK ∧ JψK

Jφ ∨ ψK = JφK ∨ JψK

Jφ→ ψK = JφK⇒ JψK

J¬φK = JφK∗

J∃x[φ(x)]K =
∨

u∈V (H)

Jφ(u)K

J∀x[φ(x)]K =
∧

u∈V (H)

Jφ(u)K.

Now all that is left is to determine values for the atomic sentences Ju = vK and Ju ∈ vK. The
guiding intuition in doing this will be as follows: We, again, wish to have each function in V (H)

act as a characteristic function and so it should carry the structure of the set it represents. Hence,
given some u, v in V (H) we want

Ju ∈ vK =
∨

y∈dom(v)

[
v(y) ∧ Ju = yK

]
.
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In other words we wish u to be equal to some y which v indicates is within the set it represents.
The notion of equality is guided by the axioms of extensionality, namely

Ju = vK =
∨

y∈dom(v)

[
v(y)⇒ Jy ∈ uK

]
∧

∨
x∈dom(u)

[
u(x)⇒ Jx ∈ vK

]
.

Which can be thought to mean “u and v are equal if whenever u indicates x is within the set it
represents then x is in the set represented by v and vis versa”.
The desired definitions can be achieved by simultaneous recursion. We start by defining a new
relation R on the class of ordered pairs {〈u, v〉 | u, v ∈ V (H)}. Let 〈u′, v′〉R〈u, v〉 iff u′ ∈ dom(u)
and v′ = v or v′ ∈ dom(v) and u′ = u.

Lemma 2.2. The relation R is well founded.

Proof. First R〈u, v〉 is a set by replacement on dom(u)× dom(v). Now, given a set A of ordered
pairs, the sets {u | ∃v[〈u, v〉 ∈ A]} and {v | ∃u[〈u, v〉 ∈ A]} have, respectively, minimal elements u′

and v′ with regard to the relation x ∈ dom(y). Therefore, 〈u′, v′〉 is a minimal element of A, for
if there existed 〈u′′, v′′〉R〈u′, v′〉 it would contradict the minimality of either u′ or v′ by definition
of R.

Now define a class function F as follows, given 〈u, v〉 ∈ V (H)×V (H) and a function g : R〈u, v〉 → H3

with components gi, let F (〈u, v〉, g) = 〈a, b, c〉 where

a =
∨

y∈dom(v)

[v(y) ∧ g3(〈u, y〉)]

b =
∨

x∈dom(u)

[u(x) ∧ g3(〈x, v〉)]

c =
∧

x∈dom(u)

[u(x)⇒ g1(〈x, v〉)] ∧
∧

y∈dom(v)

[v(y)⇒ g2(〈u, y〉)]

Now by Proposition 1.18 there exists a unique function G that satisfies G(x) = F (x,G|Rx) for all
x ∈ V (H) × V (H). We then define Ju = vK and Ju ∈ vK by saying 〈Ju ∈ vK, Jv ∈ uK, Ju = vK〉 =
G(〈u, v〉). The following lemma shows that, as such, Ju ∈ vK is well defined.

Lemma 2.3. We have the equalities G1(〈u, v〉) = G2(〈v, u〉) and G3(〈u, v〉) = G3(〈v, u〉)

Proof. By induction on R: let the statement be true for R〈u, v〉 then we have

G1(〈u, v〉) =
∨

y∈dom(v)

[v(y) ∧G3(〈u, y〉)] =
∨

y∈dom(v)

[v(y) ∧G3(〈y, u〉)] = G2(〈v, u〉)

and

G3(〈u, v〉) =
∧

x∈dom(u)

[u(x)⇒ G1(〈x, v〉)] ∧
∧

y∈dom(v)

[v(y)⇒ G2(〈u, y〉)] =

∧
y∈dom(v)

[v(y)⇒ G1(〈y, u〉)] ∧
∧

x∈dom(u)

[u(x)⇒ G2(〈v, x〉)] = G3(〈v, u〉) (6)

We have then as an immediate consequence, the following corollary

Corollary 2.3.1. For all u, v ∈ V (H) the equality Ju = vK = Jv = uK holds.

Note that V (H) |= Jφ → ψK iff JφK ≤ JψK since exactly then is JφK ⇒ JψK = >, this fact will
frequently be used without mention.
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2.1 Consistency with Intuitionistic logic

We say a sentence φ is true in V (H) (notation V (H) |= φ) if JφK = >. All the axioms of the
Hilbert-style calculus for intuitionistic first-order logic are true in V (H) and the rules of inference
hold in the following sense: If Γ is a theory such that φ is true in V (H) for all φ ∈ Γ then Γ ` ψ
implies V (H) |= ψ. This result follows fairly quickly from the definition of J·K and the nature of
the operations ∧,∨,⇒ in any Heyting algebra for most of the axioms. We will treat a specific few
cases relating to the language LH here. An important consequence of this is that for any theory
Γ that is true in V (H) showing that V (H) |= φ implies ¬φ is not a consequence of Γ. If it were we
would have > = JφK ∧ J¬φK = JφK ∧ JφK∗ = ⊥, a contradiction.

Lemma 2.4. The following is true for arbitrary u, v, and w:

(i) V (H) |= u = u, additionally u(x) ≤ Jx ∈ uK for all x ∈ dom(u).

(ii) V (H) |= u = v ∧ u = w → v = w

(iii) V (H) |= u = v ∧ v ∈ w → u ∈ w

(iv) V (H) |= u = v ∧ w ∈ v → w ∈ u

(v) V (H) |= u = v ∧ φ(v)→ φ(u)

Proof.

(i) We proceed by induction, assume Jx = xK for all x ∈ dom(u) then for x ∈ dom(u) we have

Jx ∈ uK =
∨

x′∈dom(u)

[
u(x′) ∧ Jx′ = xK

]
≥ u(x) ∧ Jx = xK = u(x) (7)

and so
Ju = uK =

∧
x∈dom(u)

[
u(x)⇒ Jx ∈ uK

]
≥

∧
x∈dom(u)

[
u(x)⇒ u(x)

]
= >

It is an immediate consequence of this that u(x) ≤ Jx ∈ uK for all u ∈ V (H) and x ∈ dom(u)
since (i) implies that (7) is universally true.

(ii) We, again, use the induction principle for V (H). Assume that for x ∈ dom(u) we have
∀v, w ∈ V (H)

[
Jx = vK ∧ Jx = wK ≤ Jv = wK

]
. Note that by definition of J· = ·K

v(y) ∧ Ju = vK ≤ v(y) ∧
∧
y∈v

[
v(y)⇒ Jy ∈ uK

]
≤ Jy ∈ uK

Using this twice we get

Ju = wK ∧ Ju = vK ∧ v(y) ≤ Ju = wK ∧ Jy ∈ uK

=
∨

x∈dom(u)

[
u(x) ∧ Ju = wK ∧ Jy = xK

]
≤

∨
x∈dom(u)

[
Jx ∈ wK ∧ Jy = xK

]
Now, by the induction hypothesis we have

Jx ∈ wK ∧ Jy = xK =
∨

z∈dom(w)

[
w(z) ∧ Jz = xK ∧ Jy = xK

]
≤

∨
z∈dom(w)

[
w(z) ∧ Jz = yK

]
= Jy ∈ wK

(8)
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thus
Ju = wK ∧ Ju = vK ∧ v(y) ≤ Jy ∈ wK

and therefore Ju = wK∧ Ju = vK ≤ v(y)⇒ Jy ∈ wK for all y ∈ dom(v). By symmetry we then
also have Ju = wK ∧ Ju = vK ≤ w(z)⇒ Jz ∈ vK for all z ∈ dom(w) so

Ju = wK ∧ Ju = vK ≤
∧

y∈dom(v)

[
v(y)⇒ Jy ∈ wK

]
∧

∧
z∈dom(w)

[
w(z)⇒ Jz ∈ vK

]
= Jv = wK

as desired.

(iii) Given (ii), the equation (2) provides the desired result.

(iv) Again using definition of J· = ·K in combination with (iii) we get

Ju = vK∧Jw ∈ vK =
∨

y∈dom(v)

[
v(y)∧Jy = wK∧Ju = vK

]
≤

∨
y∈dom(v)

[
Jy = wK∧Jy ∈ uK

]
≤ Jw ∈ uK

(v) We proceed by induction on the structure of φ. The atomic cases are handled in (ii)-(iv).
The following equations cover induction for ∧,∨,∃ and ∀ respectively:

Jφ(v) ∧ ψ(v)K ∧ Ju = vK = Jφ(v)K ∧ Ju = vK ∧ Jψ(v)K ∧ Ju = vK ≤ Jφ(u)K ∧ Jψ(u)K

Jφ(v) ∨ ψ(v)K ∧ Ju = vK = (Jφ(v)K ∧ Ju = vK) ∨ (Jψ(v)K ∧ Ju = vK) ≤ Jφ(u)K ∨ Jψ(u)K

Jv = uK ∧ J∃φ(w, v)K =
∨

w∈V (H)

[
Jv = uK ∧ Jφ(w, v)K

]
≤

∨
w∈V (H)

Jφ(w, u)K

Jv = uK ∧ J∀φ(w, v)K =
∧

w∈V (H)

[
Jv = uK ∧ Jφ(w, v)K

]
≤

∧
w∈V (H)

Jφ(w, u)K

For the implication conjunction we have then

Jφ(u)K ∧ Jv = uK ∧ (Jφ(v)K⇒ Jψ(v)K) ≤ Jv = uK ∧ Jφ(v)K ∧ (Jφ(v)K⇒ Jψ(v)K)

≤ Jv = uK ∧ Jψ(v)K

≤ Jψ(u)K

Therefore
Jv = uK ∧ (Jφ(v)K⇒ Jψ(v)K) ≤ Jφ(u)K⇒ Jψ(u)K.

The case for ¬φ follows directly since J¬φK = JφK∗ = JφK⇒ ⊥.

The following lemma is another consequence of 2.4 and will be used often in calculating values for
J·K.

Lemma 2.5. The following equalities hold:

(i) J∃v ∈ uφ(v)K =
∨
x∈u

[
u(x) ∧ Jφ(x)K

]
(ii) J∀v ∈ uφ(v)K =

∧
x∈u

[
u(x)⇒ Jφ(x)K

]
Proof.
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(i) To begin, by definition of the mapping J·K we have

J∃v ∈ uφ(v)K = J∃v(v ∈ u ∧ φ(v))K

=
∨

v∈V (H)

[
Jv ∈ uK ∧ Jφ(v)K

]
=

∨
v∈V (H)

∨
x∈dom(u)

[
u(x) ∧ Jv = xK ∧ Jφ(v)K

]
=

∨
x∈dom(u)

[
u(x) ∧

∨
v∈V (H)

Jv = x ∧ φ(v)K
]

Now by Lemma 2.4 we have Jv = x ∧ φ(v)K ≤ Jφ(x)K and by Corollary 2.3.1 we have
Jx = x ∧ φ(x)K = Jφ(x)K therefore∨

x∈dom(u)

[
u(x) ∧

∨
v∈V (H)

Jv = x ∧ φ(v)K
]

=
∨
x∈u

[
u(x) ∧ Jφ(x)K

]
which gives the desired equality.

(ii) First

J∀v ∈ uφ(v)K = J∀v(v ∈ u→ φ(v))K =
∧

v∈V (H)

[
Jv ∈ uK⇒ Jφ(v)K

]
(9)

Now given v ∈ V (H) we have∧
x∈u

[
u(x)⇒ Jφ(x)K

]
∧ Jv ∈ uK =

∧
x∈u

[
u(x)⇒ Jφ(x)K

]
∧

∨
x∈dom(u)

(
u(x) ∧ Jv = xK

)
=

∨
x∈dom(u)

[∧
x∈u

[
u(x)⇒ Jφ(x)K

]
∧ u(x) ∧ Jv = xK

]
≤

∨
x∈dom(u)

[
Jφ(x)K ∧ Jx = vK

]
≤ Jφ(v)K

Therefore for all v ∈ V (H) we have∧
x∈dom(u)

[
u(x)⇒ Jφ(x)K

]
≤ Jv ∈ uK⇒ Jφ(v)K

Furthermore∧
v∈V (H)

[
Jv ∈ uK⇒ Jφ(v)K

]
≤

∧
v∈dom(u)

[
Jv ∈ uK⇒ Jφ(v)K

]
≤

∧
v∈dom(u)

[
u(v)⇒ Jφ(v)K

]
so (9) is equivalent to

∧
x∈dom(u)

[
u(x)⇒ Jφ(x)K

]
as desired.

Finally we have

Proposition 2.6. V (H) |= LEM iff H is a Boolean algebra.

Proof. Assume V (H) |= LEM then given a ∈ H let u be the function {〈∅, a〉} then J∅ ∈ uK = a. It
then follows from V (H) |= ∅ ∈ u ∨ ¬(∅ ∈ u) that

a ∨ a∗ = J∅ ∈ uK ∨ J¬(∅ ∈ u)K = >

so a is complimented. Since a is an arbitrary element of H we can conclude that all elements of
H are complemented and that it is therefore a Boolean algebra.
Conversely, if H is a Boolean algebra we have Jφ∨¬φK = JφK∨ JφK∗ = > and so V (H) |= LEM.
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2.2 Existence in V (H)

The fact that a sentence of the form ∃xφ(x) is true in V (H) need not imply that we can actually
find an element u such that V (H) |= φ(u). There are, however, certain conditions that ensure this
is the case and we present two in this section.

Proposition 2.7 (Unique Existence Principle). If V (H) |= ∃!xφ(x) then there is a u ∈ V (H) such
that V (H) |= φ(u)

Proof. Since
∨

x∈V (H)

[[φ(x)]] = > we can find, using what is called a collection argument, an ordinal

α such that
∨

x∈V (H)
α

[[φ(x)]] = >. Let H̃ = {h ∈ H | ∃x ∈ V (H)(h = Jφ(x)K)} we can then find a

set X (be it be AC and replacement or collection) such that ∀h ∈ H̃∃x ∈ X[Jφ(x)K = h], now let

α =
⋃
x∈X

rank(x) then X ⊆ V (H)
α and therefore

∨
x∈V (H)

α

[[φ(x)]] =
∨

x∈V (H)

[[φ(x)]] = >

Let dom(u) = V
(H)
α and u(v) = [[∃w[φ(w) ∧ v ∈ w]]]. Now unique existence implies that Jφ(a)K ∧

Jφ(b)K ≤ Ja = bK. It follows that

Jφ(x)K ∧ J∃w[φ(w) ∧ v ∈ w]K =
∨

w∈V (H)

[
Jφ(x)K ∧ Jφ(w)K ∧ Jv ∈ wK

]
≤

∨
w∈V (H)

[
Jx = wK ∧ Jv ∈ wK

]
≤ Jv ∈ xK

and so Jφ(x)K ≤ J∃w[φ(w) ∧ v ∈ wK ⇒ Jv ∈ xK. Additionally the fact that Jφ(x)K ∧ x(y) ≤ Jy ∈
x ∧ φ(x)K along with the definition of u(y) gives us, for arbitrary x ∈ V (H)

x(y)⇒ Jy ∈ uK ≥ x(y)⇒ u(y) ≥ x(y)⇒ Jy ∈ x ∧ φ(x)K ≥ Jφ(x)K

therefore

[[u = x]] =
∧

y∈dom(x)

[
x(y)⇒ [[y ∈ u]]

]
∧

∧
v∈V (H)

α

[
[[∃w[φ(w) ∧ v ∈ w]]]⇒ [[v ∈ x]]

]
≥ Jφ(x)K

Thus it can be concluded that Jφ(u)K = J∃x[φ(x) ∧ x = u]K = J∃x[φ(x)]K = >.

Before we move onto the next condition we will need a couple definitions and an important lemma.

Definition 2.8. Given a Heyting algebra H an anti-chain is a subset A of H such that a1∧a2 = ⊥
for all a1, a2 ∈ A with a1 6= a2.

Definition 2.9. Given some collection of sets {ui | i ∈ I} and {ai | i ∈ I} ⊆ H the mixture∑
i∈I ai · ui is the function u with dom(u) =

⋃
i∈I
dom(ui) and u(x) =

∨
i∈I
ai ∧ Jx ∈ uiK

Lemma 2.10 (Mixing Lemma). Let u be the mixture
∑
i∈I ai · ui. If

ai ∧ aj ≤ Jui = ujK

for all i, j ∈ I then
ai ≤ Jui = uK.

In particular the result holds when {ai | i ∈ I} is an anti-chain.
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Proof.
First, we have for x ∈dom(u)

ai ∧
∨
j∈J

aj ∧ Jx ∈ ujK =
∨
j∈J

ai ∧ aj ∧ Jx ∈ ujK

≤
∨
j∈J

Jui = ujK ∧ Jx ∈ ujK

≤ Jx ∈ uiK

Furthermore for y in dom(ui)

ai ∧ ui(y) ≤ ai ∧ Jy ∈ uiK ≤ u(y) ≤ Jy ∈ uK

Therefore ai ≤ u(x)⇒ Jx ∈ uiK for all x ∈dom(u) and ai ≤ ui(y)⇒ Jy ∈ uK for all y in dom(ui).
Hence ai ≤ Jui = uK.

A set B refines a set A if for all b ∈ B there exists some a ∈ A such that b ≤ a. A Heyting algebra
H is refinable if for every subset A ⊆ H there exists some anti-chain B in H that refines A and
has the same join, that is,

∨
A =

∨
B.

Proposition 2.11 (Refinable Existence Principle). If H is refinable then V (H) satisfies the exis-
tence principle, that is, if V (H) |= ∃xφ(x) we can find u ∈ V (H) such that V (H) |= φ(u).

Proof. Assuming V (H) |= ∃xφ(x) we can, by a collection argument, find some ordinal α such that∨
v∈V (H)

α

Jφ(v)K = >

Now let {ai | i ∈ I} be a refinement of the set

{Jφ(v)K | v ∈ V (H)
α }

Such that
∨
i∈I
ai =

∨
v∈V (H)

α

Jφ(v)K. Then, using the Axiom of Choice, we can choose for every ai

some vi ∈ V (H) such that ai ≤ Jφ(vi)K. Now let u be the mixture
∑
i∈I ai · vi. By the Mixing

Lemma we have

> =
∨
i∈I
ai

=
∨
i∈I
ai ∧ Jvi = uK

≤
∨
i∈I

Jφ(vi)K ∧ Jvi = uK

≤ Jφ(u)K

Therefore V (H) |= φ(u).

2.3 The natural mapping (̂·) : V → V (H)

Given a complete subalgebra H ′ of H we can think of the associated model V (H′) as a submodel
of V (H), that is to say V (H′) ⊆ V (H) and the mappings J·KH′

and J·KH are consistent. The first
assertion can be seen quickly since any H ′-valued function is also an H-valued function and so it
follows by induction on x ∈ dom(u). For the second assertion we have the following lemma.

Definition 2.12. A formula φ is restricted if all its quantifiers are of the form ∃y ∈ x or ∀y ∈ x

20



Given this definition we have the following lemma

Lemma 2.13. For any complete subalgebra H ′ of H and any restricted formula φ(x1, ..., xn) with
variables in V (H′) the equality Jφ(x1, ..., xn)KH = Jφ(x1, ..., xn)KH

′
holds.

Proof. We proceed by induction on the complexity of φ. First, for the atomic formulas Ju = vK
and Ju ∈ vK: given 〈u, v〉 ∈ V (H′) × V (H′) let the following

Jx = yKH = Jx = yKH
′

Jx ∈ yKH = Jx ∈ yKH
′

Jy ∈ xKH = Jy ∈ xKH
′

be true for all 〈x, y〉 such that either x = u and y ∈ dom(v) or x ∈ dom(u) and y = v (this is a
well founded relation as shown in Lemma 2.2). Then

Ju ∈ vKH
′

=
∨
y∈v

H′[
v(x) ∧ Ju = yKH

′]
=
∨
y∈v

H′[
v(x) ∧ Ju = yKH

]
= Ju ∈ vKH

and

Ju = vKH
′

=
∧
y∈v

H′[
v(y)⇒ Jy ∈ uKH

′]
∧
∧
x∈u

H′[
u(x)⇒ Jx ∈ vKH

′]
=
∧
y∈v

H[
v(y)⇒ Jy ∈ uKH

]
∧
∧
x∈u

H[
u(x)⇒ Jx ∈ vKH

]
= Ju = vKH

We have then by induction that the atomic cases are true for all pairs u, v ∈ V (H′).
Now given φ, ψ such that JφKH

′
= JφKH and JψKH

′
= JψKH we also have the following by com-

pleteness of H ′:

Jφ ∧ ψKH
′

= JφKH
′
∧H

′
JψKH

′
= JφKH ∧H JψKH = Jφ ∧ ψKH

Jφ ∨ ψKH
′

= JφKH
′
∨H

′
JψKH

′
= JφKH ∨H JψKH = Jφ ∨ ψKH

Jφ→ ψKH
′

= JφKH
′
⇒H′

JψKH
′

= JφKH ⇒H JψKH = Jφ→ ψKH

J¬φKH
′

= (JφKH
′
)∗ = (JφKH)∗ = J¬φKH

The final step is by induction on the well founded relation x ∈ dom(u), let Jφ(x)KH
′

= Jφ(x)KH

for all such x then

J∃x ∈ uφ(v)KH
′

=
∨

x∈dom(u)

H′[
u(x) ∧H

′
Jφ(x)KH

′]
=

∨
x∈dom(u)

H
[
u(x) ∧H Jφ(x)KH

]
= J∃v ∈ uφ(v)KH

and

J∀x ∈ uφ(v)KH
′

=
∧

x∈dom(u)

H′[
u(x)⇒H′

Jφ(x)KH
′]

=
∧

x∈dom(u)

H
[
u(x)⇒H Jφ(x)KH

]
= J∃v ∈ uφ(v)KH

There is a natural mapping (̂·) : V → V ({>,⊥}) defined by û = {〈v̂,>〉 | v ∈ u} (this is well defined
by recursion on v ∈ dom(u)). Since >,⊥ is a complete subalgebra of any Heyting algebra H we

can also think of (̂·) as being a mapping from V to V (H). We have the following properties for (̂·)

Lemma 2.14.
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(i) Ju ∈ v̂K =
∨
x∈v

Ju = x̂K for all v ∈ V and u ∈ V (H)

(ii) u ∈ v ↔ V (H) |= û ∈ v̂ and u = v ↔ V (H) |= û = v̂

(iii) For all x ∈ V ({>,⊥}) there exists a unique v ∈ V such that V ({>,⊥}) |= x = v̂

(iv) For any formula φ
φ(x1, ..., xn)↔ V ({>,⊥}) |= φ(x̂1, ..., x̂n)

moreover for any restricted formula ψ

ψ(x1, ..., xn)↔ V (H) |= ψ(x̂1, ..., x̂n)

Proof.
(i)
Ju ∈ v̂K =

∨
y∈dom(v̂)

v̂(y) ∧ Ju = yK =
∨
x∈v
> ∧ Ju = x̂K =

∨
x∈v

Ju = x̂K

(ii)
Assume u ∈ v then by (i)

Jû ∈ v̂K =
∨
y∈v

Jû = ŷK ≥ Jû = ûK = >

It follows then that, assuming u = v

Jû = v̂K =
∧
x∈û

[
û(x)⇒ Jx ∈ v̂K

]
∧
∧
y∈v̂

[
v̂(y)⇒ Jy ∈ ûK

]
=
∧
x∈u

Jx̂ ∈ v̂K ∧
∧
y∈v

Jŷ ∈ ûK

= >

since x ∈ u↔ x ∈ v.
For the converse implication we proceed by induction. Let Jx̂ ∈ ŷK = > → x ∈ y, Jŷ ∈ x̂K = > →
y ∈ x, and Jx̂ = ŷK = > → x = y be true for all 〈x, y〉 such that one of x ∈ u and y = v, x = u
and y ∈ v is true. We have then

Jv̂ ∈ ûK =
∨
x∈u

Jx̂ = v̂K

by (i). Note then that since the mapping (̂·) : V → V (H) is actually a composition of the mapping
:̂ V → V ({>,⊥}) and the inclusion of V ({>,⊥}) into V (H) we have Jx̂ = v̂KH = Jx̂ = v̂K{>,⊥} by 2.13.
Therefore Jx̂ = v̂K = > or Jx̂ = v̂K = ⊥ for all x ∈ u. It follows then, if we assume Jv̂ ∈ ûK = >,

there must exist some x′ ∈ u such that Jx̂′ = v̂K = >. By the induction hypothesis this means
x′ = v and therefore v ∈ u. The case for u ∈ v can be shown in the same way using symmetry of
J· = ·K
Similarly Jv̂ = ûK =

∧
x∈u

Jx̂ ∈ v̂K ∧
∧
y∈v

Jŷ ∈ ûK and so Jx̂ ∈ v̂K = Jŷ ∈ ûK = > for all x ∈ u and y ∈ v

therefore by the induction hypothesis z ∈ u ↔ z ∈ v and so by extensionality u = v. Thus the
hypothesis is true for all pairs 〈u, v〉 ∈ V × V .
(iii)
Uniqueness follows from (ii) since Jx = v̂K ∧ Jx = ûK ≤ Jv̂ = ûK. For existence we proceed
once again by induction. Let the hypothesis be true for all y ∈ dom(x) then by the axioms of
replacement and separation we have a set v = {z | ∃yz ∈ dom(x)[x(yz) = > ∧ Jẑ = yzK = >]}. As
such, for all z ∈ v we have

Jẑ ∈ xK =
∨

y∈dom(x)

[
x(y) ∧ Jẑ = yK

]
≥ x(yz) ∧ Jyz = ẑK = >
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And for y ∈ dom(x) either x(y) = ⊥ in which case x(y)⇒ Jy ∈ v̂K = > or y = yz′ for some z′ ∈ v
from which it follows that Jy ∈ v̂K =

∨
z∈v

Jyz′ = zK ≥ Jyz′ = z′K = > Therefore we have

Jx = v̂K =
∧

y∈dom(x)

[
x(y)⇒ Jy ∈ v̂K

]
∧
∧
z∈v

Jẑ ∈ xK ≥ >

(iv)
The first part is proved by induction on the structure of φ. The second follows immediately by
2.13. The atomic cases for the first part are proven in (iii). For the connectives note that since
J·K maps to {>,⊥} we have

Jφ ∧ ψK = JφK ∧ JψK = > iff JφK = > and JψK = > iff φ ∧ ψ

Jφ ∨ ψK = JφK ∨ JψK = > iff JφK = > or JψK = > iff φ ∨ ψ

Furthermore
J¬φK = JφK∗ = > iff JφK = ⊥

which by the induction hypothesis contradicts φ since φ ↔ JφK = > therefore J¬φK = > → ¬φ.
Then, assuming ¬φ we have

J¬φK = JφK∗ = >∗ = ⊥

so ¬φ→ J¬φK = ⊥ and thus

Jφ→ ψK = JφK⇒ JψK = > iff JφK = ⊥ or JψK = >
iff JφK∗ = > or JψK = >
iff ¬φ ∨ ψ
iff φ→ ψ

Finally, for a sentence of the form ∃xφ(x) if J∃xφ(x)K =
∨

x∈V {>,⊥}
Jφ(x)K = > then there must exist some

x ∈ V {>,⊥} such that Jφ(x)K = > and we can find, by (iii), v ∈ V such that Jv̂ = xK = > and
since > = Jv̂ = xK ∧ Jφ(x)K ≤ Jφ(v̂)K it follows that φ(v) holds and therefore also ∃xφ(x).
Assume then that ∃xφ(x) holds, we can find some v ∈ V such that φ(v) holds and it follows that
J∃xφ(x)K =

∨
x∈V {>,⊥}

Jφ(x)K ≥ Jφ(v̂)K = >.

This also proves the case for ∀xφ(x) since in {>,⊥} it holds that J¬∃x¬φ(x)K =
( ∨

x∈V {>,⊥}
Jφ(x)K∗

)∗
=∧

x∈V {>,⊥}
Jφ(x)K∗∗ =

∧
x∈V {>,⊥}

Jφ(x)K = J∀xφ(x)K

Note that in particular (iv) implies that for φ satisfying the necessary conditions we have

¬φ↔ JφK∗ = > ↔ JφK = ⊥

2.4 The Axioms of IZF in V (H)

We have now built up enough theory that we can prove all the axioms of IZF to be true in V (H).
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Extensionality

Proof. We have, given x, y ∈ V (H)

J∀z[z ∈ x↔ z ∈ yK = J∀z[(z ∈ x→ z ∈ y) ∧ (z ∈ y → z ∈ x)]K

=
∧

z∈V (H)

[
Jz ∈ xK⇒ Jz ∈ yK

]
∧

∧
z∈V (H)

[
Jz ∈ yK⇒ Jz ∈ xK

]
≤

∧
z∈dom(x)

[
Jz ∈ xK⇒ Jz ∈ yK

]
∧

∧
z∈dom(y)

[
Jz ∈ yK⇒ Jz ∈ xK

]
≤

∧
z∈dom(x)

[
x(z)⇒ Jz ∈ yK

]
∧

∧
z∈dom(y)

[
y(z)⇒ Jz ∈ xK

]
= Jx = yK

Which gives us
J∀x, y[∀z(z ∈ x↔ z ∈ y)→ z = y]K = >

Furthermore for arbitrary z ∈ V (H) we have Jx = yK ∧ Jz ∈ xK ≤ Jz ∈ yK so Jx = yK ≤ Jz ∈ xK⇒
Jz ∈ yK and thus

J∀x, y[x = y → ∀z(z ∈ x↔ z ∈ y)]K = >

Given a sets u, v ∈ V (H) the existence of their pairing as well as their powersets, unions and any
set by separation on u or v is unique by extensionality. Therefore, for any of the axioms just
named, we can find, by the Unique Existence Principle, some w ∈ V (H) that satisfies that axiom
for u and v. In the following such sets will be denoted in the usual way so for instance P (a) will
denote an element of V (H) satisfying ∀x[x ∈ P (a)↔ ∀y ∈ x[y ∈ a]].
Lemma 2.4 has the consequence that, given u ∈ V (H) such that V (H) |= ∀x[x ∈ u ↔ φ(x)], we
have for any v ∈ V (H)

J∀y(y ∈ v ↔ φ(y))K = Jv = uK

Since the two sentences are equivalent by extensionality. From here on we will use this fact without
mention.

Pairing

Proof. Given u, v ∈ V (H) consider the function w = {〈u,>〉, 〈v,>〉}. For w it holds that

Jz ∈ wK =
(
w(u) ∧ Jz = uK

)
∨
(
w(v) ∧ Jz = vK

)
= Jz = uK ∨ Jz = vK = Jz = u ∨ z = vK

Note in particular that x ∈ z ∧ y ∈ z ∧ ∀w ∈ z[w = x ∨ w = y] is a restricted formula in variables

x, y, z so by 2.14 {̂x, y} satisfies the axiom of pairing for x̂, ŷ in V (H). In particular 〈x̂, ŷ〉 = 〈̂x, y〉
is true in V (H).

Powerset

Proof. Given u ∈ V (H) let w be a function with domain Hdom(u) (the set of all functions from
dom(u) to H) and let w(x) = J∀y ∈ x(y ∈ u)K then by 2.4

Jv ∈ wK =
∨

x∈dom(w)

[
J∀y ∈ x(y ∈ u)K ∧ Jx = vK

]
≤ J∀y ∈ v(y ∈ u)K
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Now given v consider the function a with dom(a) = dom(u) and a(z) = Jz ∈ uK ∧ Jz ∈ vK. It
follows that a(z)⇒ Jz ∈ vK = > for all z ∈ dom(a) since a(z) ≤ Jz ∈ vK therefore

J∀y ∈ v[y ∈ u]K =
∧

y∈dom(v)

[
v(y)⇒ Jy ∈ uK

]
=

∧
y∈dom(v)

[
v(y)⇒

(
Jy ∈ uK ∧ v(y)

)]
≤

∧
y∈dom(v)

[
v(y)⇒ a(y)

]
≤

∧
y∈dom(v)

[
v(y)⇒ Jy ∈ aK

]
∧

∧
z∈dom(a)

[
a(z)⇒ Jz ∈ vK

]
= Jv = aK

Now by construction we have a ∈ dom(w). Additionally J∀y ∈ a(y ∈ u)K = > since a(y) ≤ Jy ∈ uK
for all y ∈ dom(a). Thus

J∀y ∈ v[y ∈ u]K ≤ J∀y ∈ a(y ∈ u)K ∧ Jv = aK = w(a) ∧ Jv = aK ≤ Jv ∈ wK

Union

Proof. Given u ∈ V (H) let w be the function with dom(w) =
⋃

v∈dom(u)

dom(v) and w(x) =
∨

v∈Ax
v(x)

where Ax = {v ∈ dom(u) | x ∈ dom(v)}. Then

Jy ∈ wK =
∨

x∈dom(w)

[
Jx = yK ∧

∨
v∈Ax

v(x)
]

=
∨

x∈dom(w)

∨
v∈Ax

[
v(x) ∧ Jx = yK

]
=

∨
v∈dom(u)

∨
x∈dom(v)

[
v(x) ∧ Jx = yK

]
= J∃v ∈ u(y ∈ vK

Separation

Proof. Given u ∈ V (H) let dom(w) = dom(u) and w(x) = Jx ∈ uK ∧ Jφ(x)K then

Jz ∈ wK =
∨

y∈dom(w)

Jy ∈ uK ∧ Jφ(y)K ∧ Jy = zK ≤
∨

y∈dom(w)

Jφ(z)K ∧ Jz ∈ uK = Jφ(z) ∧ z ∈ uK

and

Jφ(z) ∧ z ∈ uK =
∨

y∈dom(u)

u(y) ∧ Jz = yK ∧ Jφ(z)K ≤
∨

y∈dom(u)

Jy ∈ uK ∧ Jz = yK ∧ Jφ(y)K

=
∨

y∈dom(u)

w(y) ∧ Jz = yK = Jz ∈ wK

Empty Set

Note that since Ju = uK = > for all u ∈ V (H) it follows that Ju 6= uK = Ju = uK∗ = ⊥. Therefore,
for any function w ∈ V (H) with ran(w) ⊆ {⊥} we have

Ju ∈ wK =
∨

x∈dom(w)

[
w(x) ∧ Ju = xK

]
= ⊥ = Ju 6= uK

and so w satisfies the empty set axiom.
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Infinity

Proof. The set ∅̂ is the empty function and therefore satisfies the empty set axiom in V (H). So,
because

∅̂ ∈ x ∧ ∀y ∈ x(y+ ∈ x)

is a restricted formula it follows from 2.14 that N̂ satisfies the axiom of infinity since N satisfies
the axiom in V .

It is true in V (H) that N̂ is the smallest set satisfying the axiom of infinity. Let A be such that

V (H) |= ∅ ∈ A ∧ ∀a ∈ A[a+ ∈ A]. We immediately have ∅̂ ∈ A, and since n̂+ = n̂+ it follows by
induction on N that

JN̂ ⊆ AK =
∧
n∈N

Jn̂ ∈ AK = >

Collection

Proof. Given u ∈ V (H) and x ∈ dom(u) there exists by a collection argument some ordinal αx
such that

∨
y∈V (H)

Jφ(x, y)K =
∨

y∈V (H)
αx

Jφ(x, y)K. For α = {αx | x ∈ dom(u)} and v, the function with

domain V
(H)
α and range {>}, we have

J∀x ∈ u∃yφ(x, y)K =
∧

x∈dom(u)

[
u(x)⇒

∨
y∈V (H)

Jφ(x, y)K
]

=
∧

x∈dom(u)

[
u(x)⇒

∨
y∈V (H)

α

Jφ(x, y)K
]

=
∧

x∈dom(u)

[
u(x)⇒ J∃y ∈ vφ(x, y)K

]
= J∀x ∈ u∃y ∈ vφ(x, y)K ≤ J∃w∀x ∈ u∃y ∈ wφ(x, y)K.

Induction

Proof. We proceed by induction on the well-founded relation y ∈ dom(x), let

a = J(∀y ∈ xφ(y))→ φ(x)K =
∧

y∈dom(x)

[
x(y)⇒ Jφ(y)K

]
⇒ Jφ(x)K

assuming a ≤ Jφ(y)K for all y ∈ dom(x) it follows that a ≤ b ⇒ Jφ(y)K for any b so we have in
particular a ≤

∧
y∈dom(x)

[
x(y)⇒ Jφ(y)K

]
. Therefore, by definition of a we have

a = a ∧
∧

y∈dom(x)

[
x(y)⇒ Jφ(y)K

]
≤ Jφ(x)K

So by induction we have for all x, v ∈ V (H)

v ≤
∧

u∈V (H)

J(∀y ∈ uφ(y))→ φ(u)K ≤ J(∀y ∈ xφ(y))→ φ(x)K ≤ Jφ(x)K.

Therefore
∧

u∈V (H)

J(∀y ∈ uφ(y))→ φ(u)K ≤
∧

u∈V (H)

Jφ(u)K.

With the above axioms we now have the equipment to define the notion of a function in V (H).
We begin by constructing the object A×B for A,B ∈ V (H). Let C be the set of all singletons of
A constructed using separation on P (A) and C ′ the set

{x ∈ P (A ∪B) | ∃a ∈ A, b ∈ B[x = {a, b}]}
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(using pairing with again powerset and separation). Now A×B is the set

{x ∈ P (C ∪ C ′) | ∃a ∈ A, b ∈ B[x = 〈a, b〉]}

Using this we can define the formula fun(f) as

∃A,B[x ∈ f → x ∈ A×B] ∧ ∀a, b, b′[(〈a, b〉 ∈ f ∧ 〈a, b′〉 ∈ f)→ b = b′]

Given f such that V (H) |= fun(f) we write dom(f) for the set {a | ∃b[〈a, b〉 ∈ f ]} and ran(f) for
{b | ∃a[〈a, b〉 ∈ f ]} the existence of both follows from separation on A × B. Furthermore we will
occasionally use the notation [[f(x) = y]] = [[〈x, y〉 ∈ f ]].

3 Implications in IZF

3.1 Zorn’s Lemma and the Axiom of Choice

In this section we give a proof that, by assuming Zorn’s lemma when constructing the V (H) it
ends up always being in the model. We let Zorn’s lemma take the form:

If X is a poset such that every chain in X has a supremum in X, then it has a maximal element.

This is slightly different than the usual statement which only requires that chains in X have upper
bounds in X. However, though the existence of suprema is a stronger requirement on X this
version is, classically, still strong enough to prove the Axiom of Choice which, in turn, proves the
usual statement of Zorn’s lemma.3

Definition 3.1. A set u ∈ V (H) is inhabited if it has a definite element, that is if there exists
some v ∈ V (H) such that Jv ∈ uK = >.

Note that V (H) |= ∃x(x ∈ u) does not necessarily imply that u has a definite element. For
instance take H̃ to be the Heyting algebra {>,⊥, a, b, c} with c ≤ a, c ≤ b as well as a, b, c ≤ >
and ⊥ ≤ a, b, c as suggested below

⊥

c

a b

>

We have
Jv = ∅K =

∧
y∈dom(v)

v(y)∗

Note that h∗ = ⊥ for all h ∈ H̃ − {⊥}. Therefore Jv = ∅K = > iff ran(v) ⊆ {⊥} otherwise
Jv = ∅K = ⊥. Furthermore for v with ran(v) ⊆ {⊥} we have

Jv = 1̂KH̃ ≤ J∅ ∈ vKH̃ = ⊥

Let u be the function {〈∅, a〉, 〈1̂, b〉}. Then

Jx ∈ uKH̃ = (a ∧ Jx = ∅KH̃) ∨ (b ∧ Jx = 1̂KH̃) < >
3See for instance the proof of Proposition 1.4.3 from Moerdijk and van Oosten [2014] which works with either

formulation
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However
J∃x(x ∈ u)KH̃ =

∨
x∈V (H̃)

Jx ∈ uKH̃ ≤ J∅ ∈ uKH̃ ∨ J1̂ ∈ uKH̃ = a ∨ b = >

So V (H̃) |= ∃x(x ∈ u) while u has no definite element. This motivates the following definition and
lemma

Definition 3.2. Given u ∈ V (H) a core C of u is a subset C ⊆ V (H) such that Jc ∈ uK = > for all
c ∈ C and for all v ∈ V (H) that satisfy Jv ∈ uK = > there exists some c ∈ C for which Jv = cK = >.

The following two proofs follow those in [Bell, 2014].

Lemma 3.3. Every u ∈ V (H) has a core.

Proof. Given u ∈ V (H) let

ax = {〈z, u(z) ∧ Jz = xK〉 | z ∈ dom(u)}.

By collection on the set
{f ∈ Hdom(u) | ∃y ∈ V (H)[f = ay]}

there is a set W ⊆ V (H) such that for all y ∈ V (H) there exists x ∈W such that ax = ay. Now let

C = {x ∈W | Jx ∈ uK = >}.

For any y if x is such that ax = ay then

u(z) ∧ Jz = xK = u(z) ∧ Jz = yK

for all z ∈dom(u). Therefore Jy ∈ uK = > implies there exists x ∈W for which

> =
∨

z∈dom(u)

[
u(z) ∧ Jz = yK

]
=

∨
z∈dom(u)

[
u(z) ∧ Jz = yK ∧ Jz = xK

]
≤ Jx = yK

It also follows then that Jx ∈ uK = >, so x ∈ C. Hence C is a core for u

Proposition 3.4. Zorn’s Lemma is true in V (H).

Proof. Let (X,≤X) be such that

V (H) |= (X,≤X) is an inhabited poset and every chain in X has a supremum

More formally, X and ≤X are elements of V (H) and for ≤X the following holds

V (H) |= ∀z ∈≤X [z ∈ X ×X] ∧ ∀x, y[(〈x, y〉 ∈≤X ∧〈y, x〉 ∈≤X)→ x = y]

∧ ∀x ∈ X[〈x, x〉 ∈≤X ] ∧ ∀x, y[(〈x, y〉 ∈≤X ∧〈y, z〉 ∈≤X)→ 〈x, z〉 ∈≤X ]. (10)

Which states that ≤X is a poset on X. Furthermore, using v ⊆ X as shorthand for ∀u ∈ v[u ∈ X]
and x ≤X y as shorthand for 〈x, y〉 ∈≤X we have

V (H) |= ∀v
[
[v ⊆ X ∧ ∀x, y ∈ v(x ≤X y ∨ y ≤X x)]

→ ∃z ∈ X[∀x ∈ v(x ≤X z) ∧ ∀w ∈ X(∀x ∈ v(x ≤X w)→ z ≤X w]
]

(11)

Or in other words, every chain in X has a supremum. By taking v = ∅ we see that X must be
inhabited. Now let C be a core for X, we define a new relation ≤C by saying that x ≤C y iff
Jx ≤X yK = > for any x, y ∈ C. That (C,≤C) is a poset follows immediately from (10). Moreover,
since suprema are unique, there exists, by the Unique Exsitence Principle, some z ∈ V (H) such
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that V (H) |= z ∈ X (again taking the supremum of the empty set). Therefore, since C is a core
for X, C must also be inhabited. Now given a chain K in C the set

k = {〈x,>〉 | x ∈ K}

is a chain in X. To see this note that

Jy ∈ kK =
∨
x∈K

Jy = xK ≤ Jy ∈ XK.

Furthermore for all x, y ∈ K we have either x ≤C y or y ≤C x and therefore Jx ≤X y∨ y ≤X xK =
>. It then follows that

Ju ∈ kK ∧ Jv ∈ kK =
∨
x∈K

Ju = xK ∧
∨
y∈K

Jv = yK

=
∨
x∈K

∨
y∈K

[
Jv = yK ∧ Ju = xK

]
=
∨
x∈K

∨
y∈K

[
Jv = yK ∧ Ju = xK ∧ Jx ≤X y ∨ y ≤X xK

]
≤ Ju ≤X v ∨ v ≤X uK.

Because k is a chain in X we have

V (H) |= ∃z ∈ X[∀x ∈ k(x ≤X z) ∧ ∀w ∈ X(∀x ∈ k(x ≤X z)→ w ≤X z]
]

and again, since suprema are unique, there exists by the Unique Existence Principle s ∈ V (H) for
which s is in X and is the supremum of k is true in V (H). Now let s′ ∈ C be such that Js′ = sK = >
then s′ is the supremum of K in C. Thus every chain in C has a supremum and it follows from
Zorn’s lemma (in ZFC) that C has a maximal element c. We claim

V (H) |= c is a maximal element of X.

Given a ∈ V (H) define Z by dom(Z) =dom(X) and

Z(x) = Jx = a ∧ x ∈ X ∧ c ≤X xK ∨ Jx = cK.

As such we have

Ja ∈ X ∧ c ≤X aK =
∨

x∈dom(X)

[
X(x) ∧ Ja = xK ∧ Jc ≤X aK

]
≤

∨
x∈dom(X)

[
Jx ∈ XK ∧ Ja = xK ∧ Jc ≤X xK

]
≤

∨
x∈dom(X)

[
Z(x) ∧ Jx = aK

]
= Ja ∈ ZK.

(12)

Now we consider arbitrary u, v ∈ V (H). It follows quickly from Jc ∈ XK = > that

Ju ∈ ZK ≤ Ju ∈ XK.

Furthermore, we have

Ju ∈ Z ∧ v ∈ ZK ≤
(
Ju = a ∧ u ∈ X ∧ c ≤X uK ∨ Ju = cK

)
∧ (Jv = a ∧ v ∈ X ∧ c ≤X vK ∨ Jv = cK

)
≤
(
Jc ≤X uK ∧ Jv = cK

)
∨
(
Jc ≤X vK ∧ Ju = cK

)
∨
(
Jv = cK ∧ Ju = cK

)
∨
(
Ju = aK ∧ Jv = aK

)
≤ Jv ≤X uK ∨ Ju ≤X vK ∨ Ju = vK
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Therefore Z is a chain in X and we can again find a definite element w of X that is the supremum
of Z. Furthermore

Jc ∈ ZK =
∨

x∈dom(X)

Jx = cK ≥ Jc ∈ XK = >

so Jc ≤X wK = >. Now for w′ ∈ C such that Jw = w′K = > we have c ≤C w′ and therefore w′ = c
since c is maximal in C. Combining this with 12 gives us

Ja ∈ X ∧ c ≤x aK ≤ Ja = cK.

And therefore it is true in V (H) that c is maximal in X.

By Proposition 1.5 the Axiom of Choice implies LEM and therefore, by 2.6 it can only hold in
V (H) if H is a Boolean algebra. Proposition 3.4 shows that, in contrast, Zorn’s lemma is always
true in V (H) and therefore that it, intuitionistically, does not imply AC.

3.2 Subcountability of NN

In this section we construct a model in which NN is subcountable as done in [Bell, 2014]. To
clarify: N is the natural numbers object as defined at the end of section 1.2. In section 2.4 we
showed that N̂ satisfied this condition. So we seek to construct a model V (H) that satisfies

V (H) |= There exists a partial surjection f : N̂→ N̂N̂

It happens that a more general case is true. We can construct, for any arbitrary sets A and JI

with A infinite, a model in which the above holds for Â and Ĵ Î . We we show this in two parts.
First we give a number of conditions on H from which the desired result follows. We then show
that a specific instance of the Heyting algebra HC (see 1.3.1) meets those conditions.

3.2.1 Subquotients and Preserving Exponentials

Let us begin with a condition for the existence of some partial function f : Â → B̂ for arbitrary
sets A,B.

Proposition 3.5. Given sets A and B, the following are equivalent:

(i) There exists a subset {uab | a ∈ A, b ∈ B} of H such that {uab | b ∈ B} is an anti-chain for
each a ∈ A and

∨
a∈A

uab = > for all b ∈ B.

(ii) There exists f such that V (H) |= fun(f) ∧ dom(f) ⊆ Â ∧ ran(f) = B̂

Proof. (i)→(ii)

Define f ∈ V (H) as follows: dom(f) = {〈â, b̂〉 | a ∈ A, b ∈ B} and f(〈â, b̂〉) = uab. First,

[[x ∈ f ]] =
∨

〈a,b〉∈A×B

uab ∧ [[x = 〈â, b̂〉]] ≤
∨

〈a,b〉∈A×B

Jx = 〈â, b̂〉]] = Jx ∈ Â× B̂]]

Furthermore note that

[[〈â, b̂〉 ∈ f ]] =
∨

〈a′,b′〉∈A×B

ua′b′ ∧ J〈â′, b̂′〉 = 〈â, b̂〉]] = uab

since J〈â′, b̂′〉 = 〈â, b̂〉]] = ⊥ by Lemma 2.14 for 〈a′, b′〉 6= 〈a, b〉. Hence we have

[[〈â, b̂〉 ∈ f ]] ∧ [[〈â, b̂′〉 ∈ f ]] = uab ∧ uab′ ≤ [[̂b = b̂′]],
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because {uab | a ∈ A, b ∈ B} is an anti-chain. Thus, V (H) |= fun(f) ∧ dom(f) ⊆ Â. Additionally

[[∀b ∈ B̂∃a ∈ Â[〈â, b̂〉 ∈ f ]]] =
∧
b∈B

∨
a∈A

[[〈â, b̂〉 ∈ f ]] =
∧
b∈B

∨
a∈A

uab = >

so V H |= ran(f) = B̂.

(ii) → (i)

Given f that satisfies (ii) let uab = [[〈â, b̂〉 ∈ f ]]. For b 6= b′ it follows from V (H) |= fun(f) that

uab ∧ uab′ = [[〈â, b̂〉 ∈ f ]] ∧ [[〈â, b̂′〉 ∈ f ]] ≤ [[̂b = b̂′]] = ⊥

so {uab | b ∈ B} is an anti-chain. Furthermore∧
b∈B

∨
a∈A

[[〈â, b̂〉 ∈ f ]] = [[∀b ∈ B̂∃a ∈ Â[f(a) = b]]] = [[ran(f) = B̂]] = >

So,
∨
a∈A

uab = > for all b ∈ B.

We say B is a subquotient of A in V (H) when A and B satisfy the conditions in Proposition 3.5.
The idea now is, given some A, I, J , to have this be true for A and JI . This, however, is not yet
the result we desire. We want there to be a partial surjection onto the H-set of all functions Î to
Ĵ . However it may be true in V (H) that g is a function from Î to Ĵ without g being an element

of ĴI . The following condition on H eliminates this possibility.

Definition 3.6. Given sets I, J , a Heyting alegebra is said to be ⊥− (I, J) distributive if, for all
{aij | i ∈ I, j ∈ J} such that {aij | j ∈ J} is an anti-chain for each i ∈ I the following holds∧

i∈I

∨
j∈J

aij =
∨
f∈JI

∧
i∈I
aif(i)

It is completely ⊥-distributive if it is ⊥− (I, J) distributive for all I, J .

Now, we define the set JI ∈ V (H) of all functions from I to J more precisely using the axioms of
IZF as the set

{f ∈ P (I × J) | fun(f) ∧ dom(f) = I}

We then have

Proposition 3.7. The following are equivalent

(i) H is completely ⊥-distributive

(ii) V (H) preserves exponentials, that is, V (H) |= (Ĵ)Î = (̂JI) for all sets I, J

Proof. (i)→(ii)
First note

Jg ∈ Ĵ ÎK ≤ Jfun(g) ∧ dom(g) = Î ∧ ran(g) ⊆ ĴK

= Jfun(g)K ∧ J∀i ∈ Î∃j ∈ Ĵ [〈i, j〉 ∈ g]K

=
∧
i∈I

∨
j∈J

[
Jfun(g)K ∧ J〈̂i, ĵ〉 ∈ gK

] (13)

Now Jfun(g)K∧J〈̂i, ĵ〉 ∈ gK∧J〈̂i, ĵ′〉 ∈ gK ≤ Jĵ = ĵ′K = ⊥ for j 6= j′ so {Jfun(g)K∧J〈̂i, ĵ〉 ∈ gK | j ∈ JK}
is an anti-chain and it follows from H being ⊥-distributive that (13) is equal to
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∨
f∈JI

∧
i∈I

[
Jfun(g)K ∧ J〈̂i, f̂(i)〉 ∈ gK

]
Now for arbitrary f ∈ JI we have

Jg ∈ Ĵ ÎK ∧ Jv ∈ gK ∧
∧
i∈I

J〈̂i, f̂(i)〉 ∈ gK = Jg ∈ Ĵ ÎK ∧ J∃i ∈ Î∃j ∈ Ĵ [v = 〈̂i, ĵ〉 ∧ 〈̂i, ĵ〉 ∈ g]K ∧
∧
i∈I

J〈̂i, f̂(i)〉 ∈ gK

=
∨
i∈I

∨
j∈J

[
Jv = 〈̂i, ĵ〉 ∧ 〈̂i, ĵ〉 ∈ gK ∧ Jg ∈ Ĵ ÎK ∧

∧
i′∈I

J〈î′, f̂(i′)〉 ∈ gK
]

≤
∨
i∈I

∨
j∈J

[
Jv = 〈̂i, ĵ〉 ∧ 〈̂i, ĵ〉 ∈ gK ∧ Jg ∈ Ĵ ÎK ∧ J〈̂i, f̂(i)〉 ∈ gK

]
≤
∨
i∈I

∨
j∈J

Jv = 〈̂i, f (̂i)〉K

=
∨
i∈I

Jv = 〈̂i, f (̂i)〉K

= Jv ∈ f̂K

And additionally

Jv ∈ f̂K ∧
∧
i∈I

J〈̂i, f̂(i)〉 ∈ gK =
∨
i∈I

[
Jv = 〈̂i, f̂(i)〉K ∧

∧
i′∈I

J〈î′, f̂(i′)〉 ∈ gK
]

≤
∨
i∈I

[
Jv = 〈̂i, f̂(i)〉K ∧ J〈̂i, f̂(i)〉 ∈ gK

]
≤
∨
i∈I

Jv ∈ gK = Jv ∈ gK

Therefore Jg ∈ Ĵ ÎK ∧
∧
i∈I

J〈̂i, f̂(i)〉 ∈ gK ≤ Jg = f̂K, combined this produces

Jg ∈ Ĵ ÎK =
∧
i∈I

∨
j∈J

[
Jg ∈ Ĵ ÎK∧J〈̂i, ĵ〉 ∈ gK

]
=
∨
f∈JI

∧
i∈I

[
Jg ∈ Ĵ ÎK∧J〈̂i, f̂(i)〉 ∈ gK

]
≤
∨
f∈JI

Jg = f̂K = Jg ∈ ĴIK

Hence Ĵ Î ⊆ (̂JI). To show the other direction we begin by noting that for all f ∈ JI we have

J∀x ∈ f̂∃i ∈ Î∃j ∈ Ĵ [x = 〈i, j〉]K =
∧

〈i,f(i)〉∈f

J∃i ∈ Î∃j ∈ Ĵ [ ̂〈i, f(i)〉 = 〈i, j〉]K

≥
∧

〈i,f(i)〉∈f

J ̂〈i, f(i)〉 = 〈̂i, f̂(i)〉K = >.

Additionally,

J〈̂i, ĵ〉 ∈ f̂K =
∨

〈i′,f(i′)〉∈f

J〈̂i, ĵ〉 = 〈î′, f̂(i′)〉K = J〈̂i, ĵ〉 = 〈̂i, f̂(i)〉K

since Jû = v̂K = ⊥ for u 6= v. Therefore,

J〈̂i, ĵ〉 ∈ f̂K ∧ J〈̂i, ĵ′〉 ∈ f̂K = J〈̂i, ĵ〉 = 〈̂i, f̂(i)〉K ∧ J〈̂i, ĵ′〉 = 〈̂i, f̂(i)〉K ≤ Jĵ = ĵ′K

and it follows that V (H) |= fun(f̂) ∧ dom(f̂) ⊆ Ĵ . Lastly

J∀i ∈ Î∃j ∈ Ĵ [〈i, j〉 ∈ f̂K =
∧
i∈I

∨
j∈J

J〈̂i, ĵ〉 ∈ f̂K ≥
∧
i∈I

J〈̂i, f̂(i)〉 ∈ f̂K = >.

From there it can be concluded that
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J∀f ∈ (̂JI)[f ∈ Ĵ Î ]K ≥
∧
f∈JI

Jfun(f̂) ∧ dom(f̂) = Î ∧ ran(f̂) ⊆ ĴK = >,

so (̂JI) ⊆ Ĵ Î .

(ii)→(i)
Let V (H) preserve exponentials and let {aij | i ∈ I, j ∈ J} be such that {aij | j ∈ J} is an

anti-chain for all i ∈ I. Take then f ∈ V (H) with domain {〈̂i, ĵ〉 | i ∈ I, j ∈ J} and f(〈̂i, ĵ〉) = aij
then V (H) |= fun(f) ∧ ran(f) ⊆ Ĵ ∧ dom(f) ⊆ Î. This can be seen as in Proposition 3.5. First,

Jx ∈ fK =
∨

i∈I,j∈J
aij ∧ Jx = 〈̂i, ĵ〉K ≤ J∃i ∈ Î∃j ∈ Ĵ [x = 〈i, j〉]K

Additionally J〈̂i, ĵ〉 ∈ fK = aij since, again, J〈̂i, ĵ〉 = 〈̂i, ĵ′〉K is equal to > if j = j′ and equal to ⊥
otherwise. So J〈̂i, ĵ〉 ∈ fK ∧ J〈̂i, ĵ′〉 ∈ fK = aij ∧ aij′ ≤ Jĵ = ĵ′K since {aij | j ∈ J} is an anti-chain.
Which gives the desired result. Now∧
i∈I

∨
j∈J

aij =
∧
i∈I

∨
j∈J

J〈̂i, ĵ〉 ∈ fK = J∀i ∈ Î∃j ∈ Ĵ [〈i, j〉 ∈ fK = Jdom(f) = IK = Jf ∈ Ĵ ÎK

= Jf ∈ (̂JI)K =
∨
g∈JI

Jf = ĝK =
∨
g∈JI

[ ∧
i∈I,j∈J

aij ⇒ J〈̂i, ĵ〉 ∈ ĝK ∧
∧
i∈I

J〈̂i, ĝ(i)〉 ∈ fK
]

(14)

Note that J〈̂i, ĵ〉 ∈ ĝK = ⊥ for j 6= g(i) and so aij ⇒ J〈̂i, ĵ〉 ∈ ĝK = a∗ij ≥ aig(i) since aij ∧aig(i) = ⊥
as well for such j. Furthermore when j = g(i) then J〈̂i, ĵ〉 ∈ ĝK = > = aij ⇒ J〈̂i, ĵ〉 ∈ ĝK. Therefore

since J〈̂i, ĝ(i)〉 ∈ fK = aig(i) we see that (2) is equal to
∨
g∈JI

∧
i∈I
aig(i).

An equivalent condition is that H be locally connected. An element c ∈ H is connected if, whenever
A is an anti-chain,

∨
A = c implies c = a for some a ∈ A. A Heyting algebra H is connected if its

top element > is connected. A Heyting algebra is locally connected if all its elements are the join
of a set of connected elements.4 We now have

Proposition 3.8. The following are equivalent

(i) H is completely ⊥ distributive

(ii) H is locally connected

Proof. (i)→(ii)
Call an element b is a-complemented if there exists c such that b ∧ c = ⊥ and b ∨ c = a. Note
that the a-complement of b is unique for if c and c′ are a-complements of b then c = c∨ (c′ ∧ b) =
(c ∨ c′) ∧ a = c ∨ c′ so c ≥ c′ and a similar argument shows that c′ ≥ c. Let a − b denote the
a-complement of b if it exists. Now given a ∈ H let I be the set of all a-complemented elements
of H and define {bij | i ∈ I, j ∈ {0, 1}} as bi0 = i and bi1 = a − i. Then, bi0 ∧ bi1 = ⊥ for all i.
Furthermore, given some g ∈ {0, 1}I let Fg = {0, 1}I − {g}. Since H is completely ⊥ distributive
it is ⊥− (I, {0, 1}) distributive and so we have

a =
∧
i∈I
bi0 ∨ bi1 =

∨
f∈{0,1}I

∧
i∈I
bif(i) =

∧
i∈I
big(i) ∨

∨
f∈Fg

∧
i∈I
bif(i)

It will be shown that all
∧
i∈I
big(i) are connected and therefore that a is the join of a set of connected

elements. For f 6= g there exists some i such that f(i) 6= g(i) and so bif(i) ∧ big(i) = ⊥. Therefore

4Note if we take H to be the Heyting algebra of opens on some topology these two conditions are equivalent to
it being connected or locally connected in the topological sense.
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∧
i∈I
big(i)∧

∨
f∈Fg

∧
i∈I
bif(i) = ⊥ so

∧
i∈I
big(i) is a-complemented. Now let d∧d′ = ⊥ and d∨d′ =

∧
i∈I
big(i)

then d has a-complement d′ ∨
∨

f∈Fg

∧
i∈I
bif(i) so for some i, the element big(i) equals either d or its

a-compliment. In the first case
∧
i∈I
big(i) = d and in the second case

∧
i∈I
big(i) ≤ d′ ∨

∨
f∈Fg

∧
i∈I
bif(i) so

∧
i∈I
big(i) =

∧
i∈I
big(i) ∧

(
d′ ∨

∨
f∈Fg

∧
i∈I
bif(i)

)
= d′ ∨ ⊥ = d′

(ii)→(i)
Let {aij | i ∈ I, j ∈ J} be a set in H such that {aij | j ∈ J} is an anti-chain for each i ∈ I. Let c be
connected, since H is locally connected it suffices to show that c ≤

∨
f∈JI

∧
i∈I
aif(i) ↔ c ≤

∧
i∈I

∨
j∈J

aij

since each is the join of all connected elements less than or equal to them. First if c ≤
∨

f∈JI

∧
i∈I
aif(i)

then for fixed i, we have c ≤
∨

f∈JI
aif(i) =

∨
j∈J

aij so c ≤
∧
i∈I

∨
j∈J

aij . Next let c ≤
∧
i∈I

∨
j∈J

aij then for

fixed i, we have c ≤
∨
j∈J

aij so c = c ∧
∨
j∈J

aij =
∨
j∈J

c ∧ aij . Note now that since {aij | j ∈ J} is an

anti-chain so is {c ∧ aij | j ∈ J}; therefore it follows from c being connected that c = c ∧ aij for
some ji ∈ J . Now if c 6= ⊥ then c ≤ aij and c ≤ aij′ implies j = j′ since aij ∧ aij′ = ⊥ otherwise,
hence ji is unique. Let g(i) = ji for each i then c ≤

∧
i∈I
aig(i) ≤

∨
f∈JI

∧
i∈I
aif(i) (if c = ⊥ this result

is trivial).

3.2.2 Constructing V (HC)

We will now fix A and B for the rest of this section and assume A is infinite. For HC we use the
underlying poset P of all finite partial functions from A to B with the ordering q ≤ p iff p ⊆ q.
Consider then the mapping C defined by

C ∈ C(p)↔ ∃b ∈ B[C = {q | b ∈ range(q) ∧ q ≤ p}]

When an element C ∈ C(p) is defined as above we will refer to it as the cover of p determined by
its corresponding element b.
In order to check that C is indeed a coverage of P as defined in Definition 1.13 we need to show
that for all C ∈ C(p) it holds that C ⊆ p↓ and for p′ ≤ p and there exists some C ′ ∈ C(p′) that
sharpens C. The first condition follows directly from the definition of C. For the second condition
note that if b determines C ∈ C(p) then the element C ′ ∈ C(p′) also determined by b is a subset
of C since

b ∈ range(q) ∧ q ≤ p′ → b ∈ range(q) ∧ q ≤ p

and hence also a sharpening thereof since for all q ∈ C ′ we have q ∈ C and q ≤ q.
Before we continue we provide a useful rule for calculating joins in HC with the help of a small
lemma.

Lemma 3.9. For all S ∈ C(p) and q1, q2 ∈ S there exist q3, q4, q5 ∈ S such that q1 ≤ q3, q2 ≤ q4
and q5 ≤ q3, q4.

Proof. Let b be the element that determines S. If b ∈ p then q3 = q4 = q5 = p satisfy the
lemma. Assume then that b 6∈ p. There exist some a1, a2 such that q1(a1) = q2(a2) = b so that
q3 = p∪{〈a1, b〉} ⊆ q1 and q4 = p∪{〈a2, b〉} ⊆ q2 are well defined functions such that q1 ≤ q3 and
q2 ≤ q4. Finally q5 = q3 ∪ q4 is well defined as well and q5 ≤ q3, q4.

Now we have

Lemma 3.10. If {Ui | i ∈ I} be an anti-chain of C-closed sieves then
⋃
i∈I
Ui is C-closed.
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Proof. To start ∅ is trivially C-closed and so it is the bottom element in HC. In light of this
{Ui | i ∈ I} being an anti-chain is equivalent with it being a set of pairwise disjoint sieves. Let
then S ⊆

⋃
i∈I
Ui and let q1, q2 be arbitrary elements of S. Since S ⊆

⋃
i∈I
Ui and {Ui | i ∈ I} is

pairwise disjoint there exists some unique i1, i2 ∈ I such that q1 ∈ Ui1 and q2 ∈ Ui2 . Now construct
q3, q4, q5 as in Lemma 3.9. There exists a unique i3 ∈ I such that q3 ∈ Ui3 . However, since Ui3 is
a sieve and q1 ≤ q3 it must also be true that q1 ∈ Ui3 and so i3 = i1 and q3 ∈ Ui1 . By the same
logic q4 ∈ Ui2 . Now q5 ∈ Ui1 since q5 ≤ q3 and q5 ∈ Ui2 since q5 ≤ q4 so i1 = i2. Since q1, q2 were
arbitrary it follows that S ⊆ Ui for some i ∈ I and therefore p ∈ Ui ⊆

⋃
i∈I
Ui.

The following corollary is an immediate consequence of Lemma 3.10 and the fact that HC is
ordered by inclusion.

Corollary 3.10.1. For any anti-chain {Ui | i ∈ I} in HC the join
∨
i∈I
Ui =

⋃
i∈I
Ui.

Using this we can show that HC as constructed satisfies the conditions of the previous section in
the next two propositions.

Proposition 3.11. HC is completely ⊥-distributive and therefore preserves exponentials.

Proof. Let {Uij | i ∈ I, j ∈ J} be such that {Uij | j ∈ J} is an anti-chain for all i ∈ I then in light
of Corollary 3.10.1 it suffices to show that

⋂
i∈I

⋃
j∈J

Uij =
⋃

f∈JI

⋂
i∈I
Uif(i) since

∨
A =

⋃
A for any

anti-chain A ⊆ HC.
First for arbitrary f̃ ∈ JI and ĩ ∈ I we have⋂

i∈I
Uif̃(i) ⊆ Uĩf̃ (̃i) ⊆

⋃
j∈J

Uĩj

and so
⋃

f∈JI

⋂
i∈I
Uif(i) ⊆

⋂
i∈I

⋃
j∈J

Uij . Now let p ∈
⋂
i∈I

⋃
j∈J

Uij then given ĩ, p ∈
⋃
j∈J

Uĩj and since each

{Uĩj | j ∈ J} is pairwise disjoint there exists a unique j̃ such that p ∈ Uĩ,j̃ . Let g ∈ JI be the

function for which g(̃i) = j̃ for all ĩ ∈ I then p ∈
⋂
i∈I
Uig(i) and so

⋂
i∈I

⋃
j∈J

Uij ⊆
⋃

f∈JI

⋂
i∈I
Uif(i). Hence

HC is completely ⊥-distributive and so by Proposition 3.7 it also preserves exponentials.

Proposition 3.12. V (HC) |= B̂ is a subquotient of Â

Proof. By Proposition 3.5 it suffices to show that there exists a set {Uab | a ∈ A, b ∈ B} of
C-closed sieves such that {Uab | b ∈ B} is an anti-chain for each a ∈ A and

∨
a∈A

Uab = P = > for

each b ∈ B. Let Uab = {p ∈ P | 〈a, b〉 ∈ p}. As defined, Uab is C-closed for let S ⊆ Uab for some
S ∈ C(p) determined by b′. Since p is finite and A infinite we can find a1, a2 ∈ A− dom(p) such
that a1 6= a2. Now g1 = p∪{〈a1, b〉} and g2 = p∪{〈a2, b〉} are both elements of S and g1∩ g2 = p.
Since g1, g2 ∈ Uab, we have 〈a, b〉 ∈ g1 ∩ g2, and so 〈a, b〉 ∈ p from which it follows that p ∈ Uab.
Additionally for b 6= b′ the join Uab ∩ Uab′ is empty since p ∈ Uab ∩ Uab′ implies p is not well
defined. Finally given b ∈ B let W be a C-closed sieve such that Uab ⊆W for all a ∈ A. Then for
p ∈ P , the C-cover of p determined by b is a subset of W , and so p ∈W , hence W = P .

Thus if we let A = N and B = NN then by Proposition 3.12 we have

V (HC) |= N̂N is a subquotient of N̂

and by Proposition3.11

V (HC) |= N̂N = N̂N̂

and therefore the object NN is subcountable in V (HC).
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Proposition 3.13. LEM is refutable in V (HC), specifically, not all partial functions can be ex-
tended to total functions.

Proof. Assume LEM holds in V (HC) and Fix g ∈ NN and let f̃ be an element of V (HC) that satisfies

V (HC) |= f̃ = f ∪ {〈n̂, ĝ〉 | n̂ 6∈ dom(f)}

Then fun(f̃) and ran(f̃) = N̂N̂ are both true in V (HC). Since LEM holds n̂ ∈dom(f)∨ n̂ 6∈dom(f)
must also be true in V (HC) for all n ∈ N and it follows that

V (HC) |= f̃ is a surjection from N̂ to N̂N̂ (15)

Now let
h = {〈〈n̂, f̃(n̂)(n̂)+〉,>〉 | n ∈ N}

Then h ∈ N̂N̂ is true in V (HC). Additionally, for all m ∈ N we have

J〈m̂, h〉 ∈ f̃K ≤ Jf̃(m̂)(m̂) = f̃(m̂)(m̂)+K = ⊥

Therefore
J∃m ∈ N̂(〈m,h〉 ∈ f̃)K =

∨
m∈N

J〈m̂, h〉 ∈ f̃K = ⊥

Which contradicts (15)
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