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1 Introduction

Consider an innovation race between two pharmaceutical companies for a new kind of me-
dicine. In economical terms, two firms are facing a Research & Development investment
opportunity in the new medicine. Both are in the position to invest now, but also have the
option to postpone the investment. Investing now means the advantage of gaining a larger
market share, obtaining a first-mover advantage. However, it also means that this firm has
to make the decision without knowing what the other firms and the market will do and
how they will react to his decision to invest. The firm that decides to defer investment and
wait will be able to observe what the other firms will do and thereby has the advantage of
having more information to base his decision on.
This simple case shows that two main elements will influence the decision the management
of a firm has to make. On the one hand the management has to deal with uncertainty. It
doesn’t know what the market will do. Will the demand of that specific medicine increase
or decrease and will production prices go up or down? Another point of uncertainty is the
price of the investment since this is volatile. On the other hand, the management has to
take into account the actions of other firms, in particular that of his competitors. Deferring
his investment because he expects demand to fall, includes the risk that his competitors
will invest first and gain a larger market share, but does give him more information. It is
a decision between knowledge building and strategic positioning.
Two mathematical tools are used to weigh above-mentioned options. The theory of option
pricing, introduced by Black and Scholes in 1973 (see [1]), will be used to cope with uncer-
tainty. It gives us a way to value the option at a given moment in time. The interaction
between firms will be analysed by applying a game theoretic approach. Competitive in-
teraction is important in the valuation of real options. The theory of option games is the
combination of these two successful theories, real options and game theory.
A real option is called ’real’ because it usually pertains to tangible assets instead of finan-
cial instruments such as securities. The underlying asset for a real option is often illiquid
and not easy to trade. In this paper the underlying asset is the present value of project’s
or investment’s cash flows, the value of an investment to the firm. This value is driven
by competition, demand and the quality of the management. The value of the underlying
asset of a financial option, a share, is more easy to asses (for example on the stock market).
A trader cannot influence or control the value of a financial option, while the management
of a firm can control the value of the real option by managerial decisions. Their actions
can affect the value of the real option.
Thus in this paper the underlying asset is a real option a firm may gain when it under-
takes certain actions. For example, by investing in new machinery or R&D it can expand
its business. As we have seen, a real option differs from a financial option in the sense
that the underlying asset is different. However, there are more differences. For example,
there doesn’t exist a contract between the owner and the seller of the option. Secondly,
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a real option can be held by various firms at the same time. Real options are often not
exclusively for one firm. Other firms also have the possibility to invest in a certain project.
Thirdly, a firm cannot trade its option. An real option is firm specific since it depends on
the capabilities of the firm and the market in which the firm acts. Nevertheless, despite
this differences the theory of option pricing can be used to valuate real options.
In this paper I will investigate the interaction between two firms that invest in Research
& Development (R&D). Thereby I will follow the paper ’An R&D investment game under
uncertainty in real option analysis’ by G. Villani, 2008 (see [2]). The aim is to show the
effects of moving first and acquiring a first mover advantage against the effects of deferring
the investment and thereby generate information revelation.

This paper will start with an introduction in option pricing. An option is the right, but not
the obligation to buy or sell a certain asset for a fixed price at a specific moment in time
or before a certain date. An option is a financial derivative, which means that its payoff
depends on the value of the underlying asset. The introduction will start with the simple
binomial two-period model to make the idea of option pricing clear. This binomial model
will be extended. In 1973 Black and Scholes introduced a way to value financial options.
The limit of the binomial option pricing model is the Black-Scholes formula for pricing
options. However, as we will see, the underlying assumptions of the Black-Scholes model
are not all applicable to the situation of real options. We therefore have to relax some of
these assumptions and introduce exchange and compound options as a way to value real
options. Finally, the theory of evaluating compound exchange options will be applied to
the above-mentioned problem of two firms facing an R&D-investment. We will be able to
derive the final payoffs of two firms after which game theory can be applied.
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2 Option pricing: binomial model

As mentioned before, an option is the right, but not the obligation to buy or sell a certain
asset for a fixed price at a specific date or before a certain date. (see [3], p. 5). There
are different kind of options. The first distinction that can be made is that between a call
and a put option. A call option is the right to buy a certain asset, for example a share,
whereas a put option is the right to sell. (see [4], p.4) Another important discrimination
is that between American and European options. American options give the holder of the
option the right to exercise the option on any date before the expiration date T , while a
European option can only be exercised at maturity time T . (see for example [5], p. 325) An
American option is thus at least as valuable as the European option. For the application
to real options the American call option is relevant. A firm ’owns’ the right to invest in a
project and can do this at any moment in time and not just at maturity time T .
The main difference between real options and financial options is that real options are often
not exclusively for one firm. However, the valuation of a real option is analogous to that
of a financial option. Instead of a stock the underlying asset is the value of the project.
The value of the project will depend of future cash flows and is therefore uncertain, just
like stock prices.

It will become clear with a simple example of an European call option, which underlying
asset is a stock, in an one-period binomial model.

2.1 One-period binomial model

Let St be the price per share of a certain stock at time t. The possible future values of St
are known. These are the values one can see in the scheme below. However, it is uncertain
which of the possible future values St will be. At time t = 0 we know the current value
of the share but we are not sure what the future values will be. One cannot predict the
future stock values. Let’s assume that with probability p the value of the share at time
t = 1 will be S1(H) = uS0, where H stands for ’head’ (from tossing the coin), and with
probability q = 1 − p that its value will become S1(T ) = dS0, where T stands for ’tail’.
The probabilities p en (1 − p) are the market probabilities. Assume that d < 1 < u ∈ R.
In a scheme this will look like the following:
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We know the possible future stock prices. However, we don’t know how the stock prices
will evolve exactly. Now we will introduce an option which can protect the investor a bit
against this risk of the market. At time t = 0 an investor can buy an option for a price V0.
This option gives him the right to buy the share at t = 1 for a fixed price K, the so-called
strike price. Our target is to determine V0, the value of the option at t = 0. An example
will make things clear.
Suppose S0 = 4 , d = 1

2 and u = 2. We assume that the short-term interest r rate is known
and constant overtime and that it is possible to borrow and lend money at the riskless rate
r. Additionally, the stock doesn’t pay any dividend and there are no transaction costs for
buying or selling shares. (see the assumptions made in [1]) Then we will get the following
scheme:

Suppose further that the strike price is 5 (K = 5), r = 0.25 and that the (market)chance
that the share will be worth S1(H) and S1(T ) is both 1

2 (p = q). The value of the option
at t = 1 depends on whether the stock prices will evolve up or downward (H or T ). If the
price evolves upward to 8 at time one the owner of the option will exercise the option since
he can buy a share for K = 5 instead of 8. On the other hand, if S1 = 2 it is cheaper to
buy the share for 2 and therefore not use to option, the option is worthless. The value of
the option will be either V1(H) = (S1(H) − K)+ or V1(T ) = (S1(T ) − K)+, thus in our
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example 3 or 0.1 In general, the value of an option at t = 1 is: (see [5], p. 321)

V1(T ) = (dS0 −K)+ V1(H) = (uS0 −K)+ (1)

The main assumption in the theory of option pricing is that riskless profitable arbitrage
is not possible. In other words, we have a perfect financial market. The option should be
priced fairly such that an investor can not set up a trading strategy that guarantees him
that he has zero probability of losing money and positive probability of making money.
Then he would be able to make a profit without any risk of losing money. (see [6], p. 3-4)
The main implication of this assumptions is that d < 1+r < u. To make this clear, imagine
for example that d ≥ (1 + r). Then the investor could borrow money at the riskless rate
r to buy a stock. No matter what the market does, the stock value will always increase
more than the debt of the investor. He can sell the stock and still have money left after he
has repaid his debt.
Under the non-arbitrage assumption it is possible to determine the (fair) value of the
option. An investor composes a portfolio ζ, which is a combination of cash Ψ and shares
S. The value of the portfolio at t = 1 is:

ζ1 = (1 + r)(C0 −∆0S0) + ∆0S1

The first part of this expression represents the amount of cash Ψ the investor has. At t = 0
it had C0. However, he might have bought some share of stock ∆0 at t = 0. Multiplying
this term by (1 + r) gives the value of his money stock at t = 1. The second part of the
value of the portfolio is determined by the current value of his shares of stock, ∆0S1. The
non-arbitrage assumption requires that the payoff of the option is equal to the value of the
portfolio ζ, thus that ζ1 = V1 no matter if stock prices go up or down. The objective is to
set up a portfolio with combinations of risk-free borrowing or lending money and buying
or selling shares of the stock, or another asset, such that the same value as the option
is created. (see [6], p. 5-9) One cannot create a portfolio that has always a value larger
than the option since that would violate the non-arbitrage assumption. In other words,
the hedge ratio ∆0 should be such that the following equalities hold: (see [7], p. 5-7)

ζ1(H) = (1 + r)(C0 −∆0S0) + ∆0S1(H) = V1(H) (2)

ζ1(T ) = (1 + r)(C0 −∆0S0) + ∆0S1(T ) = V1(T )

Substracting these equalities from each other and solving for ∆0 gives:

∆0 =
V1(H)− V1(T )

S1(H)− S1(T )
. (3)

1The subscript ’+’ implies that you take the maximum of what is in between the brackets and zero.
Thus X = (y − 5)+ = max[0, y − 5].
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At t = 0, when he also buys the option, the investor of our example above should buy
∆0 = 3−0

8−2 = 1
2 share of stock. We also want to know the number of units of cash Ψ

(risk-less bonds) the investor should hold. Solving equality (2) for Ψ = C0 −∆0S0 gives:

Ψ = C0 −∆0S0 =
V1(H)−∆0S1(H)

1 + r

=
S1(H)V1(T )− S1(T )V1(H)

(1 + r)(S1(H)− S1(T ))

To avoid arbitrage, the portfolio value and the value of the call option should also be the
same at t = 0. (see [8], p. 18; [9], p. 1-2; [4], p. 4))

V0 = ζ0 = Ψ + ∆0S0 (4)

=
S1(H)V1(T )− S1(T )V1(H)

(1 + r)(S1(H)− S1(T ))
+

V1(h)− V1(T )

S1(H)− S1(T )
S0

=
V1(H)− V1(T )

uS0 − dS0
S0 +

V1(T )uS0 − V1(H)dS0

(1 + r)(uS0 − dS0)

=
V1(H)− V1(T )

u− d
+
uV1(T )− dV1(H)

(1 + r)(u− d)

=
1

1 + r

[
1 + r − d
u− d

V1(H) +
u− 1− r
u− d

V1(T )

]
One can see that the terms r−d

u−d and u−r
u−d add up to one which means one can see them as

probabilities. We call them the risk-neutral probabilities. The time-zero price V0 will be:

V0 =
1

1 + r
· [p̂V1(H) + q̂V1(T )] (5)

p̂ = (1 + r − d)/(u− d) (6)

q̂ = 1− p̂.

Formula (5) , is called the risk-neutral pricing formula for the one-period binomial model,
since we use risk-neutral probabilities p̂ and q̂. (see [7], p. 7). The risk-neutral probability
p̌ gives the probability that the stock price becomes uS0 when everyone is risk-neutral.
It are probabilities such that at each t ∈ [0, T ] the stock price is equal to the discounted
expectation of the future stock price,2

S0 =
1

1 + r
[p̂S1(H) + (1− p̂)S1(T )]. =

1

1 + r
Ê[S1]. (7)

We divide by 1 + r to get the present value. In the example above p̂ = 0,75
1,5 = 0, 5 and q̂ is

therefore also 0,5. Consequently, according to formula (5) the value of the option at t = 0
is 1

1.25 · (0.5 · 3 + 0.5 · 0) = 1.20.

2In other words, the stock prices are a martingale.
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2.2 Multi-period model

The one-period model can be extended to a multi-period model with N periods. We still
assume that the stock prices evolve over time according to a multiplicative binomial model
over discrete periods. The stock prices follow a random walk:

St+1 =

{
uSt if ωt = H
dSt else

(8)

This means that the value of an option at t = N is VN (ω1, . . . , ωN ) = (SN (ω1, . . . , ωN ) −
K)+ with ωt ∈ {H, T}. The possible values of the option at expiration date are known.
By going backward from the final node (t = N) we can calculate all the values Vt until V0

by applying the following formula, which is the generalization of formula (5):

Vt(ω1, . . . , ωt) =
1

1 + r
· [p̂Vt+1(ω1, . . . , ωtH) + q̂Vt+1(ω1, . . . , ωtT )] (9)

=
1

1 + r
Ê[Vt+1]

in which,

Vt+1(ω1, . . . , ωtH) = (uVt(ω1, . . . , ωt)−K)+

Vt+1(ω1, . . . , ωtT ) = (dVt(ω1, . . . , ωt)−K)+

The probabilities p̂ and q̂ won’t change over time since we assumed that the interest rate
is constant and we have a binomial model (which implies constant u and d). If we use the
same method as we did with the one-period binomial model to calculate V0 we would have
to calculate 2N values which is quite undoable for a model with for example 100 periods.
Instead of going backward from the final node calculating all the values Vn we can use a
more efficient method.
The risk-neutral pricing formula (9) can be extended such that we don’t we have to calculate
all the option values for every single period. Suppose we know VN , then we can calculate
the value of the option at any time n without calculating all the values in between by the
following formula:

Vn(ω1, . . . , ωn) = Ê

[
VN

(1 + r)N−n
∣∣n](ω1, . . . , ωn) for all ω1, . . . , ωn (10)

I will show intuitionally that this is true for V0. The Ê is again the expected value under
the risk-neutral probability measure P̂ = (p̂, 1 − p̂). According to the formula above we
can determine the value of an option at time zero without calculating all the values Vt
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with t 6= N , namely by V0 = Ê[ VN
(1+r)N

]. Consider the probability space Ω containing all

the combinations of H and T by which V0 can evolve to a value VN . For the two-period
model this will be Ω = {HH,HT, TH, TT}. The probability that V2(HH) will be reached
is p2, q2 that V2(TT ) will be reached and pq that it will be V2(HT ) or V2(TH). In general,
the probability that VN (ω1, . . . , ωn) is reached is piqN−i in which i is the number of heads
and N − i the number of tails (this is because the coin tosses are independent). Each path
with exactly i upward moves and N − i downward moves gives the same stock price. The
option price can be seen as the discounted average of all possible values at t=N:

V0 =
1

(1 + r)N
Ê[VN ] =

1

(1 + r)N

∑
VN (ω1, . . . , ωN ) · P (ω1, . . . , ωN ) (11)

for all elements of Ω, thus for all possible paths. Since i follows a binomial distribution
formula (11) can be rewritten in the following way: (see [10], p. 201)

V0 =
1

(1 + r)N

N∑
i=0

(
N

i

)
p̂i · (1− p̂)N−iVN (ω1, . . . , ωN )

=
1

(1 + r)N

N∑
i=0

(
N

i

)
p̂i · (1− p̂)N−i(uidN−iS0 −K, 0)+. (12)

A lot of payoffs at the end nodes, at t = N , will be zero since VN will often be smaller
than K. Let a denote the positive integer that states the boundary between the values
VT that are positive and that are zero. Therefore a will be the smallest integer such
that uadN−aS0 > K, it represents the minimum number of upward steps the stock price
must take for the call to finish in-the-money. The condition uadN−aS0 > K results in

a = b
ln[ K

S0d
N ]

ln[u
d

] c + 1. Since for i < a the value of the option at maturity is zero (VN = 0)

formula (12) can be rewritten in the following way: (see [11], p. 238)

V0 =
1

(1 + r)N

N∑
i=a

(
N

i

)
p̂i · (1− p̂)N−i(uidN−iS0 −K)

One can split this expression into two components:

V0 = S0

N∑
i=a

(
N

i

)
p̂i · (1− p̂)N−i u

idN−i

(1 + r)N
−K 1

(1 + r)N

N∑
i=a

(
N

i

)
p̂i · (1− p̂)N−i

= S0Φ(a, N, p̂′)−K 1

(1 + r)N
Φ(a, N, p̂), (13)

in which

p̂′ =
up

r
and 1− p̂′ = d(1− p)

r
.
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In expression (13) Φ(a, N, p̂’) is the complementary binomial distribution which denotes
the probability for having at least a successes in N trials. (see [12], p. 70) It represents
the probability that i < a, the probability that the option ends up in a situation in which
the strike price K will actually be paid. The first part of equation (13) is the current
value of the underlying asset S, multiplied by a complementary binomial probability. As
we saw above, this can be seen as a kind of discounted average of all possible values at
t = N . The second part of the equation is the discounted exercise price K multiplied by
the complementary binomial distribution.
Conclusion, one can interpret the value of a call option as the discounted expected future
values of the option in a risk-neutral world.

3 Convergence to The Black-Scholes model

In 1973 Fisher Black and Myron Scholes ([1]) provided a solution for pricing a call option.
It was the beginning of many papers about option pricing. Black and Scholes stated the
following option pricing formula:

V0 = S0N(d1)−Ke−rTN(d2) (14)

where

d1 =
ln( k

S0
) + rT + 1

2σ
2T

σ
√
T

d2 =
ln( k

S0
) + rT − 1

2σ
2T

σ
√
T

.

The binomial model described in the previous chapter can be extended to a continuous time
model by dividing the period till maturity time T in N subintervals and let N approach
infinity. The binomial option pricing model converges to the Black-Scholes model under
certain conditions. In other words, Black-Scholes is a special limiting case of the binomial
discrete situation above. (see [10], p. 205) The binomial model only allows for two different
values at a particular time. If in the above situation the stock prices changed every day,
making N larger will make it possible to let them change every hour, every minute or even
more often.
Till now r represented the risk-free rate over a certain fixed period of time, for example the
yearly interest rate. Now the interest rate ř will denote the interest rate over an interval,
the compounded interest rate. However, we don’t want the interest obtained after T to
depend on the number of intervals N . The total return at t = T should be the same when
the interest is compounded every interval (N) or only yearly as we saw in the binomial
model. For the continuous model we need a ř such that the interest over the fixed time
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period T is always the same. (see [11], p. 247) Normally the investment opportunity grows
with (1 + r) per year if r is the annual rate: Vt = (1 + r)tV0. Now we have more intervals
so the interest rate is compounded more often than once a year, Vt = V0(1 + r

N )Nt. If we
make the compounding period infinitesimally small, thus take the limit of N to infinity, the
continuously compounding rate can be found, limN→∞(1+ ř

N )NT = eřT . The Black-Scholes
formula needs a continuously compounded risk-free rate. The ’new’ rate in the continuous
model will be eřt with t ∈ [0, T ]. The interest rate ř is such that

eřT = (1 + r)N , (15)

in which r is the risk-free interest rate. By using the continuously compounded risk-free
rate we can rewrite the Cox Ross-Rubinstein Formula (13) by:

V0 = S0Φ(a, N, p̂′)−Ke−rTΦ(a, N, p̂) (16)

This formula has the same structure as the Black-Scholes formula (14). To prove that
the binomial model converges to the Black-Scholes model we have to prove that the com-
plementary binomial distribution Φ converges to the Normal distribution N(d2). I will
only prove the second term of equations (13) and (14) since the proof of the left part is
equivalent.

By making N approach infinity the length of the interval approaches zero. When the length
of the intervals becomes smaller and smaller adjustments have to be made to the interval-
dependent variables u, d and p̂ such that they still have realistic values. It’s not realistic
that a stock price rises by for example 200% in only a second and can again rise by 200% in
the following second. When prices can change every second instead of only say once a day
we don’t want them to have the same percentage up and down every second. They have
to be dependent on the number of intervals N so that we get empirically realistic results
when N gets larger and thus the intervals smallers. In the binomial model we saw that the
stock price experienced a rate of return at each step of u with probability p̂ and of d with
probability (1− p̂). Following Cox et al., it is easier to work with logaritmes in this case,
resulting in respectively ln(u) and ln(d). These are the continuously compounded rates of
return of the asset. The stock price at expiration is ST = S0u

idN−i. Taking the logarithm
on both sides gives:

ln(
ST
S0

) = i ln(u) + (N − i) ln(d) (17)

= i ln(
u

d
) +N ln d (18)

Here, ln(ST /S0) is the natural logarithm of one-plus-return for holding the stock over the
N periods. It is equivalent to a continuously compounded return over the N periods.
The number of upward movements is denoted by i and is binomial distributed. The ex-
pected value and variance of i will therefore be Np̂ and Np̂(1 − p̂) respectively. The µ is
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the stock’s annual expected return and σ2 the variance of returns. The expected value and
variance of ln( St

S0
) will then become:

E[ln(
St
S0

)] = E[i] ln(
u

d
) +N ln(d)

= Np̂ln(
u

d
) +N ln(d)

= Nµ̂

V ar(ln(
ST
S0

)) = V ar(j) ln(
u

d
)2 + 0

= Np̂(1− p̂) ln(
u

d
)2

= Nσ̂2

We want to find appropriate expressions for u, d and p̂, to solve the problem of unrealistic
stock prices. As stated above, the empirical values of the mean and the variance of ln(ST

S0
)

are µ̂N and σ̂2N and assume that the actual ones are µT and σ2T respectively. Then we

want µ̂N to converge to µT and σ̂2N to σ2T when N approaches infinity. (see [11], p.
248-249)

p̂N ln(
u

d
) +N ln(d)→ µT

Np̂(1− p̂) ln(
d

u
)2 → σ2T.

In order to keep the binomial property let the third restriction be d = 1/u. Now we have
three equations with three variables which can be solved, giving:

u = e
σ
√

T
N d = e

−σ
√

T
N p̂ =

1

2
+

1

2

µ

σ

√
T

N
(19)

If u, d and p̂ are defined as above then σ̂2N → σ2T and µ̂N → µT when N →∞. (see[10],
p. 356) Besides, if u, d and p̂ are defined like this, together with expression (17), one can
show that the Φ(a,N, p̌) converges to N(d2). We can rewrite expression (17). This will

give i =
ln(

ST
S0

)−N ln(d)

ln(u
d

) . In paragraph 3.2 an expression for a was derived. Rewriting this

expression gives:

a− 1 =

⌊
ln[ K

S0dN
]

ln[ud ]

⌋
=

ln[ K
S0dN

]

ln[ud ]
− ε, with ε ∈ [0, 1). (20)
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From the Cox Ross-Rubinstein formula (16): (see [11], p. 251)

1− Φ(a,N, p̂) = P (i ≤ a− 1)

= P

(
i−Np̂

Np̂(1− p̂)
≤ a− 1−Np̂

Np̂(1− p̂)

)
= P

(
ln(ST

S0
)−N ln(d)−Np̂ ln(ud )

Np̂(1− p̂) ln(ud )
) ≤

ln(KS0
)−N ln(d)− ε ln(ud )−Np̂ ln(ud )√

Np̂(1− p̂) ln(ud )

)
(21)

Analogous to what we discussed before, ln(ST
S0

) = i ln(ud )+N ln(d). Therefore, in the case of

continuous time, the mean and variance of ln(ST
S0

), which is the continuously compounded
rate of return of the stock, are as followed:

µ̂p̂ = p̂ ln(
u

d
) + ln(d) σ̂

P̂
= p̂(1− p̂) ln(

u

d
)2 (22)

These equalities can be substituted in expression (21), resulting in:

1− Φ(a,N, p̂) = P

(
ln(ST

S0
)− µ̂p̂N

σ̂p̂
√
N

≤
ln(KS0

)− µ̂p̂N − ε ln(ud )

σ̂p̂
√
N

)
. (23)

Result (23) still depends on the number of intervals N . However, the Black-Scholes Model
doesn’t depend on N but on T . By using convergence, N →∞, one can get rid of the N .
We will evaluate how the terms in (23) will behave when N approaches infinity.

The first term to discuss is σ̂p̂
√
N . From expression (22)

σ̂p̂
√
N =

√
p̂(1− p̂) ln(

u

d
)2
√
N. (24)

Substituting the expressions for u, d and p̂ gives

σ̂p̂
√
N =

√
p̂(1− p̂) · 2σ

√
T√
N
·
√
N (25)

=

√
(
1

2
+

1

2

µ

σ

√
T

N
) · (1

2
− 1

2

µ

σ

√
T

N
) · 2σ

√
T . (26)

Now one can easily see that as N approaches infinity,

σ̂p̂
√
N → σ

√
T . (27)
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Definition 1. The lognormal distribution LN(µ, σ2) is the distribution of eX where X ∼
N(µ, σ2). If Y = eX ∼ N(µ, σ2) then E[Y ] = eµ+ 1

2
σ2

and var(Y ) = (eσ
2 − 1)e2µ+σ2

.

The second term to discuss is µ̂p̂. Remember that we assumed that the asset prices follow

a lognormal distribution, thus ST
S0

follows a lognormal distribution. Remember also that

ln(ST
S0

) has mean µp̂N and variance σp̂N . According to Definition 1, ln(ST
S0

) follows a normal

distribution with mean µp̂N and variance σp̂N and therefore E[ST
S0

] = eµp̂N+ 1
2
σ2
p̂N . Taking

the log on both sides gives

ln
(
E[
ST
S0

]
)

= µp̂N +
1

2
σ2
p̂N. (28)

Expression (6) for the risk neutral probability p̂ can be rewritten,

1 + r = p̂u+ (1− p̂)d. (29)

Besides, remember that the stock price at time t is uSt−1 with risk-neutral probability p̂
and dSt−1 with probability (1− p̂). Therefore,

E[ST ] = p̂uE[ST− T
N

] + (1− p̂)dE[ST− T
N

]

= (p̂u+ (1− p̂)d)E[ST− T
N

],

in which T
N is the length of an interval. By induction,

E[ST ] = (p̂u+ (1− p̂)d)N · E[S0].

Since N is the number of intervals it is also the number of times the stock price ’changes’.
Using expression (29) and the expression we have found for the continuously compounded
risk-free rate erT , (15),

E[
ST
S0

] = (1 + r)N = erT .

Now take the logarithm on both sides:

ln
(
E[
ST
S0

]
)

= rT. (30)

Now we have two expressions for ln(E[ST
S0

]), namely (28) and (30). Equalising them gives

rT = µp̂N +
1

2
σ2
p̂N.
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Finally, an expression for µ̂p̂ is found when N approaches infinity. Since we have seen that

σ̂p̂
√
N → σ

√
T ,

µ̂p̂N → rT − 1

2
σ2T as N →∞. (31)

The third and last term of which we want to know how it behaves when N approaches
infinity is ε ln(ud ). That one is quite straightforward when the expressions for u and d (19)
are substituted. Since ε ∈ [0, 1) we can conclude that

ε ln
(u
d

)
= 2εσ

√
T

N
→ 0 as N →∞. (32)

We examined the behaviour of the three terms of expression (23). We can conclude that
when N goes to infinity

ln(KS0
)− µ̂p̂N − ε ln(ud )

σ̂p̂
√
N

→
ln(KS0

)− rT + 1
2σ

2T

σ
√
T

.

By applying the Central Limit Theorem we can find that

1− Φ(a,N, p̂)→ N(z), z =
ln(KS0

)− rT + 1
2σ

2T

σ
√
T

whenN approaches infinity. The final step is to use the well-known property of the standard
normal distribution, 1−N(z) = N(−z) and that − ln(ab ) = ln( ba). See that −z is equal to
d2 in equation (14),

1− (1− Φ(a,N, p̂)) = Φ(a,N, p̂)→ 1−N(z) = N(−z) = N(d2)

Therefore the proof is compleet. The binomial model of Cox-Ross and Rubinstein converges
to the Black-Scholes model.
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4 Assumptions of the Black-Scholes model

Implicitly we have made some assumptions while deriving the Black-Scholes formula. For
convenience, the assumptions are shown here. The Black-Scholes model assumes that (see
[1], p. 640) :

i) The option is a European option, which means that it can only be exercised at maturity
time T .

ii) The interest rate r is constant. It is possible to lend and borrow any amount of cash
at the riskless interest rate r.

iii) The underlying asset, the stock prices, follows a random walk. The stock prices are
lognormal distributed. This means that the underlying asset follows a Geometric
Brownian motion (see [13], p. 115):

dSt
St

= µdt+ σdWt (33)

where Wt is a Wiener process and µ (the percentage drift) and σ (the percentage
volatility) are constants. A Wiener process is a stochastic process which is a limiting
(continuous) case of the random walk (8) we used in the binomial model. If one takes a
random walk with very small steps, one gets an approximation of the Wiener Process.
Formule (33) is an example of a random walk. (see [8], p. 23)
Absolute changes in asset prices is not what interests us. We are interested in rate of
returns on the stock, which can at any time t be expressed by (33). In this expression
µdt is the drift term which is in this context a measure of the average rate of growth
of asset prices, or the rate of return of the underlying asset. The term σdWt gives
the random change in asset prices due to external factors in which dWt represents a
random sample from a normal distribution N(0, 1).

One can also prove that if u and d are chosen as in (19) then the binomial distribution
of St converges to the Geometric Brownian motion (33) as the number of intervals N
approaches infinity. (see for a proof for example [8])

The Geometric Brownian motion (33) can also be written in the form:

St = S0e
σWt+(µ− 1

2
σ2)t.

It is the solution to the lognormal stock price stochastic differential equation (33). (see
[13], p. 116) At fixed time t, this expression has a log-normal distribution LN(ln(S0)+
µt, σ

√
t). Now we can clearly see why we used that St follows a log-normal distribution

in the proof of the convergence of the binomial pricing model to the Black-Scholes
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model.
The last comment I want to make to this item is the fact that the solution of the
Black-Scholes model (14) does not contain the rate of return µ while it does contain
the riskless rate r which isn’t a part of the Geometric Brownian motion (33). This is
caused by the fact that the Black-Scholes model is based on the idea that the investor
can create a riskless portfolio where the risk associated with the stochastic stock prices
is eliminated. We assumed that riskless arbitrage is impossible and therefore the
expected rate of return of the portfolio should be equal to the riskless rate r. See also
assumptions ii) and viii).

iv) The underlying asset pays no dividend.

v) The variance of return σ (or the measure of standard deviation about the mean return)
on the underlying asset is constant.

vi) The exercise price K is known and fixed.

vii) There exist no transaction costs.

viii) There are no riskless arbitrage opportunities.

These are quite strong assumptions and for our application to real options we need to relax
some of them. First of all, an investment opportunity can usually be exercised at any
moment in time and not just at maturity time T . Real options are more comparable to
American than European options since American option can be exercised at any moment
before T . Secondly, it is not realistic to assume that a real option doesn’t pay dividend.
In the case of real options, the opportunity costs that arise when deferring an investment
project can be seen as dividends. As long as one doesn’t exercise his option to buy shares
he won’t get the dividend inherent with owning shares. An analogous reasoning applies to
deferring the option to invest in a project. The firm misses the potential project cash flows
as long as it doesn’t invest. (see [2]) Thirdly, the exercise price will not be constant over
time in case of real options. The investment cost will, among other things, depend on the
market share of a firm. The exercise price is particularly uncertain for R&D investments.
(see [14], p. 1)
A solution for this last problem is introduced by Margrabe in 1978 ([15]). He said that
the investment opportunity should not be seen as a simple call option but as an exchange
option. An exchange option gives the holder the right, but not the obligation, to exchange
one asset for another. He can exchange the asset he owns, the delivery asset Y , for the
optioned asset X. Thus the exchange option has two underlying assets, Y and X, whereas
the simple option only one. In the context of real options Y is the amount to invest in
a project, the investment cost, and X is the current value of the project to the firm, the
present value of future cash flows. Both X and Y are random variables. (see [16], p. 13)

The last element that Black-Scholes doesn’t take into account is the interaction between
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firms. An investment opportunity is normally not hold by one singular firm. Therefore,
the optimal exercise strategy should take in consideration the actions of competitors also
owning this option to invest. The strategic interaction will be considered by using com-
pound options. The compound option was introduced in Geske, 1978 ([17]). A compound
option is an option on an option. The underlying asset of the option is again an option.
An R&D investment is often not made once and in isolation. It involves a series of in-
vestments in which exercising the first option will give the firm the right to exercise the
following option as well. Latter opportunities are only available if earlier opportunities are
undertaken. The R&D program is cut into smaller pieces and at each stage the firm can
reconsider whether it will provide additional funding for the next stage. This might sound
a bit abstract but will become clear later when we apply the theory to a real option situ-
ation. The compound option will be used to analyse the two stage R&D investment case.
However, having compound options also implies that the fifth Black- Scholes assumption
doesn’t hold. The variance rate of the return on the stock, or project, is not constant but
depends on the value of the firm.

5 Exchange option

An American exchange option gives the owner the right to exchange one asset for another at
any moment before the expiring date T . Margrabe was the first to introduce a theoretical
model for the valuation of an exchange option. He did that in 1978. However, he only dealt
with the European exchange option, or equivalent, for American options that don’t pay
any dividend. Remember that the owner of an exchange option can exchange the options
he owns, the delivery asset Y , for the optioned asset X. At maturity date T , the value of
the exchange option will be given by:

VT = (XT − YT )+

The model of the exchange options builds on the Black-Scholes model. Therefore we again
assume that the the underlying assets, X and Y , follow a geometric Brownian motion of
the form (see assumption iii):

dXt

Xt
= (µx − δx)dt+ σxZ

X
t (34)

dYt
Yt

= (µy − δy)dt+ σyZ
Y
t

cov
(dXt

Xt
,
dYt
Yt

)
= ρdt (35)

In which µx and µy are, as with the Black-Scholes model for a simple European option,
the expected rates of return on the assets X and Y respectively and σx and σy the variance
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rates. The δx en δy are the dividends. All these parameters are assumed to be non-negative
and constant. The Zt expresses again two Wiener processes at time t.

McDonald and Siegel showed in 1985 ([18]) that under this condition (34) the value of the
European Exchange option on an asset that pays dividend is given by:

Vt = Xte
−δx(T−t)N1(d1)− Yte−δy(T−t)N1(d2) (36)

where

N1(di) =

∫ di

0

e−z
2/2

√
2π

dz , the standard univariate normal distribution function

d1 =
ln(PeδT ) + 1

2σ
2T

σ
√
T

;

d2 =
ln(PeδT )− 1

2σ
2T

σ
√
T

;

P =
X

Y
;

δ = δx − δy;
σ2 = σ2

x + σ2
y − 2ρ

If dividends are set to zero, one gets the formula of Margrabe for European exchange
options that don’t pay any dividend. I argued that the model for exchange options builds
on the Black-Scholes model. To see this, remember that a call option is a special kind of
exchange option, where the delivery asset Y, the investment price, is constant over time.
This means that dYt/Yt = 0, which in turn implies that Y pays dividend at the riskless rate
r (δy = r) and that the variance rate of the delivery asset Y is zero (σ2

y = 0). Consequently,
if the variance rate of Y is zero then the expected rate of return of Y must be the riskless
rate r to avoid arbitrage, µd = r. On top of that, assumption iv) states that the underlying
asset X doesn’t pay any dividend (δx = 0). Substituting these parameter restrictions in
formula (36) results in the Black-Scholes formula for simple call options in which X is the
stock price (S in the Black-Scholes model) and Y the strike price K.
The only difference in the underlying assumption of a Geometric Brownian motion when
dividend is paid, is the term δxdt (compare (33) and (34)). Although it stands in the
same position as the µ it does disappear in the final solution (36), while µ didn’t appear
in the basic Black-Scholes formula (33). This is because the argument about setting up a
riskless portfolio doesn’t hold for dividend. Dividends influence the value of the underlying
asset in a positive way. Deferring investment means that one doesn’t get the dividends
till he invests. Lastly, one can also observe that the riskless rate r disappeared in the
formula for European exchange options (36). This is due to the fact that the value V0 is
linearly homogeneous in the asset prices X and Y . The argument that eliminated risk in
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the simple Black-Scholes model now also makes the portfolio costless. No arbitrage in the
case of exchange options means a zero return on the portfolio instead of a return of r.

Up to this point, the focus has been on European options. However, since exercising an
investment is also possible before maturity time T, we need a formula for the valuation
of American exchange options on dividend-paying assets. If the underlying asset pays a
positive dividend, early exercise will often be better than deferring investment till t = T .
Imagine now that the option can be exercised at two moments in time, T and T

2 . It is
obvious that the option will not be exercised at time T

2 if:

VT
2

= XT
2
eδx

T
2 N1(d1)− YT

2
eδy

T
2 N1(d2) > XT

2
− YT

2
. (37)

In that case the opportunity cost of exercising the option will be more than the benefits.
Carr 1988 ([16]) introduced the expression P = X/Y which turns the previous expression
in:

Pe−δx
T
2 N1(d1)− e−δy

T
2 N1(d2) > P − 1 (38)

There is a P̌ that makes the firm indifferent at T
2 between exercising the option or not; it

turns expression (38) into an equality. If P > P̌ at t = T
2 the option will be exercised. One

can see this expression as an European exchange option with maturity date T which pays
(X−Y )+. I will not go into detail in the derivation of the formula for an American exchange
option. The following expression was derived by Carr ([16]) for valuing an American
exchange option exercisable at time T

2 and T :

Vcarr =Xe−δxTN2(−ď1, d1;−ρ1)− Y e−δyTN2(−ď2, d2;−ρ1) (39)

+Xe−δx
T
2 N1(ď1)− Y e−δy

T
2 N1(ď2)

Where:

δ = δx − δy

d1(P, T ) =
ln(p)− δT + 1

2σ
2T

σ
√
T

d2(P, T ) =
ln(p)− δT − 1

2σ
2T

σ
√
T

ď1 ≡ d1

(
P

P̌
,
T

2

)
ď2 ≡ d2(

P

P̌
,
T

2
)

N1(d) is the standard univariate normal distribution function

N2(x1, x2, ρ) is the standard bivariate normal distribution function

evaluated at x1 and x2 with correlation ρ.
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Armada ([19]) tried to improve the formula of Carr. He evaluated the American exchange
options by using the Richardson extrapolation process on the formula of Carr which resulted
in the following formula:

Vaeo ' Vcarr +
Vcarr − Veeo

3

=
4Vcarr − Veeo

3
(40)

in which Vcarr is the formula introduced by Carr in 1988 (39) and Veeo the value of an
European exchange option (eeo), see equation (36).

6 Compound exchange option

We are almost there. The last step to take before we can apply our theory to real options is
to find an expression for the value of a compound American exchange option. Geske ([17])
was the first to introduce a theory for pricing options on options. A compound option is
an option which underlying asset is again an option. Consequently, the variance of the rate
of return on the underlying asset is not constant as the Black-Scholes model assumes (see
assumption v).
A compound exchange option involves the opportunity to deliver one asset in return for an
exchange option. The delivery option will be the same in each exchange. In the application
to real options this will be the investment cost. It does not mean that the investment cost
is constant, but that it will be cash that is exchanged for an investment at every stage.
The underlying exchange option S is the opportunity to make the next investment in the
R&D investment stages, in our case the development stage. In short, we have a compound
American exchange option which underlying asset is an exchange option.

Suppose β is the exchange ratio, meaning that the exercise price is a fraction β of asset Y ,
the investment cost. Thus β is the fraction of Y required for R&D. (see [20], p. 136)
The value of a compound option will be: Vcompound = (VS − βY )+, in which VS is the
value of the underlying exchange option S. However, we want to express the value of
the compound option in terms of assets X and Y since those values are observable. The
underlying asset S is an exchange option thus VS(X,Y, T ) = (X − Y )+ which resulted in
the McDonald & Siegel formula for an exchange option (36). This gives:

Vcompound(X,βY, T ) = (VS − βY )+

= (Xe−δxTN1(d1(P ))− Y e−δyTN1(d2(P ))− βY )+, (41)

in which βY is the exercise price. The compound option will be exercised if the value of
the underlying exchange option VS is larger than the exercise price:

Xe−δxTN1(d1(P ))− Y e−δyTN1(d2(P )) > βY. (42)
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We will follow the same line of reasoning and apply the same trick as we did above with
the exchange option. Introduce P = X

Y , such that the exercise condition only depends on
one random variable:

Pe−δxTN1(d1(P ))− e−δyTN1(d2(P )) > β (43)

What is now left looks familiar. The left-hand side of this condition is the Black-Scholes
formula (see formula (14)) of a call option on the price ratio P with an exercise price of
K = 1 and a risk-free rate r of zero. Again there will be a P̌ such that condition (43)
becomes an equality. Then the firm is indifferent between exercising the option or not.
According to Villani ([21], p. 4), the value of a compound American exchange option is
given by:

Vcaeo(VS(X,Y, T − t1), βY, t1) '4Vpcaeo(Vpaeo(X,Y, T − t1), βY, t1)

3
(44)

− Vceeo(Veeo(X,Y, T − t1), βY, t1)

3
(45)

Thus the value of a compound American exchange option Vcaeo is defined by this expres-
sion. Vpcaeo is the value of a pseudo compound American exchange option. A pseudo
compound American exchange option is a compound option whose underlying asset is a
pseudo American exchange option. A pseudo American exchange option is an exchange
option that can not, as normally with an American option, be exercised at any moment
before the expiration date. However it is more flexible than an European option since it
can be exercised at ť = T+t1

2 and at t = T with t1 < T . The price of a pseudo compound
American exchange option therefore is:

Vpcaeo = e−rt1Ě[max(Vpaeo(Xt1 , Yt1 , T )− βYt1 , 0)]. (46)

Recall that Ě was the expected value under the risk-neutral probability measure. The value
of an American exchange option that is exercisable at two moments in time is defined by
the expression found by Carr, see expression (39). The expiration date of the pseudo
compound American exchange option is t1 and its exercise price is βY .
Vceeo is the value of a compound European exchange option whose underlying asset is an
European exchange option and with expiration date t1. Carr (1988) showed that the value
of such an option is given by:

Vceeo(Veeo(X,Y, T ), βY, t1) =Xe−δxTN2(ď1, d1, ρ)− Y e−δyTN2(ď2, d2, ρ) (47)

− βY e−δyt1N(ď2).

It took some time but we have found an expression for the value of a compound American
exchange option, namely (45). Now we have the tools to start the R&D investment game
between two firms.
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7 The game: real options

Two firms, firm A and B, are facing an R&D investment. Following Villani ([2]), we
simplify the game by assuming that it is a two-stage investment. First a firm has to invest
in ’Research’ and then in ’Development’. I will clarify the game by using a timeline:

The expiration date of the compound option is t1. Both company A and B have two
options at t0. They can either invest in R&D at t0 or wait and defer their investment
decision till t1. If a firm decides to invest while the other decides to wait the first firm
will gain a first mover advantage. By moving first it will be able to gain a larger market
share than the firm that decided to postpone investment. He will gain a market share
opportunity α ∈ (1

2 , 1] which implies that the other firm (the follower) will gain a market
share of (1 − α) ∈ [0, 1

2 ]. However, waiting can also be an advantage since that will give
that firm more information about what the other firm will do and what the effect of the
first investment is. For example, suppose the first investment (the research) stage is a first
drilling. If oil is found the firm will have a first-mover advantage. However, the other firm
also knows whether there is oil in that area or not and can therefore make a better, more
accurate, decision in the future since it has more information to base its decision on.
Assume that the probabilities of having a successful research investment are q and p for firm
A and B respectively, which means that the investment success is Bernoulli distributed.
When the first investment of A is a success, X = 1, and else X = 0. Same holds for B,
Y = 1 means a successful investment, while Y = 0 means a failure. If the investment of A
is successful, for example if oil is found during the first drilling, the success probability p
of firm B will change to p+. He has more information so if he decides to invest in a later
stage this decision will be based on more information so the probability of a successful will
increase. On the other hand, if A’s investment fails then B’s success probability p changes
to p−. We want to find explicit expressions for this p+ and p−. We will start with p+.

p+ = P (X = 1|Y = 1) =
P (X = 1

⋂
Y = 1)

P (Y = 1)
(48)
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There are four combinations possible for X and Y , depending on whether both, none or
one of them is successful: (0, 0), (1, 0), (0, 1) and (1, 1). The probabilities that these
combinations occur are respectively p00, p10, p01 and p11, the so called bivariate bernoulli
distribution. We need to find an expression for p11. The variables X and Y are Bernoulli
distributed thus the expected values are E[X] = q and E[Y ] = p and the variances q(1−q)
and p(1− p) respectively. Then the correlation between X and Y is:

corr(X,Y ) =
cov(X,Y )√

var(X)
√
var(Y )

=
E[XY ]− E[X]E[Y ]√
q(1− q)

√
p(1− p)

=
(1 · p11 + 0 · p10 + 0 · p01 + 0 · p00)− pq√

q(1− q)
√
p(1− p)

=
p11 − pq√

q(1− q)
√
p(1− p)

(49)

Rewriting this expression gives:

p11 = corr(X,Y )
√
q(1− q)

√
p(1− p) + pq.

Therefore p+ is:

p+ =
p11

q

=
corr(X,Y )

√
q(1− q)

√
p(1− p) + pq

q

= p+

√
1− q
q
·
√
p(1− p) · ρ(X,Y ).

Analogous to described above we can derive expressions for the other probabilities:

p+ = p+

√
1− q
q
·
√
p(1− p) · ρ(X,Y )

p− = p−
√

q

1− q
·
√
p(1− p) · ρ(X,Y )

q+ = q +

√
1− p
p
·
√
q(1− q) · ρ(Y,X)

q− = q −
√

p

1− p
·
√
q(1− q) · ρ(Y,X).

The correlation (ρ) between X and Y (or Y and X) is a measure of information revelation
from Y to X (and vice versa). When both firms decide to invest at t0 or defer their
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investment till t1 no information will be revealed to one of the firms, thereby ρ will be
0. There are three situation possible. Both firms can decide to invest at t0 or decide
simultaneously to defer investment. If both firms decide to invest at the same time they
will both gain equal market share, namely α = 1

2 . The third situation is that one of the two
firms moves first, while the others waits. Suppose the total market share that can be gained
by the R&D investment is X (thus X is the current value of the project to the firm) and
Y is again the investment cost, but this time the investment cost for the total investment.
That means that the investment cost is proportional to the market share. If investing will
make firm A gain a market share of α, the investment cost will be αY . Let R denote the
first-stage investment in research and R = βY , a fraction of the total investment cost Y .
Another important assumption is that the firms can exercise their investment opportunity
(the second stage) at anytime before maturity time T . This reflects the flexibility that is
normal with investment opportunities. The management of a firm can decide whether it
wants to invest and when. The investment opportunity can therefore be considered as an
American option. Assuming that the dynamics of the value of the investment to the firm
(X) and the investment cost (Y ) are reasonably approximated by a geometric Brownian
motion, the option pricing theory can be used to value the investment option.
We will now go through the three possible situations. In all these situation we will consider
the payoff of the players at t0.

7.1 Firm A moves first, B waits

Without loss of generality, suppose that A decides to invest in research at t0 while B
decides to postpone investment. As a result, A will gain a market share α ∈ (1

2 , 1] and
B a share of 1 − α. If the investment of A turns out to be successful then B’s success
probability will become p+. Firm B still owns the (development) investment option which
will cost him (1− α)Y and he can execute it at any moment between t1 and T . Investing
will give him a market share (1− α)X. However, if B wants to undertake this investment
he first has to do the first investment R. The option to this investment R expires at
t1. It is a compound American exchange option with maturity date t1 and exercise price
R = βY . The underlying option is the development option which can be executed at
anytime between t1 and T and with exercise price (1− α)Y . The underlying option is an
exchange option since one asset, the investment cost (1−α)Y , can be exchanged for another
asset, in this case a share of the total market, (1−α)X. In terms of the theory above, the
underlying exchange option is p+VS((1− α)X, (1− α)Y, T − t1) and the compound option
Vcaeo(p

+VS((1−α)X, (1−α)Y, T −t1), βY, t1), in which p+ in the probability that the R&D
investment will be successful. Firm B will only exercise the compound option if the value
of the underlying option VS is larger than the exercise price R:

Vcaeo(p
+VS , βY, t1) = (p+VS((1− α)X, (1− α)Y, T − t1))−R)+ (50)
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Using equation (45), the value of the compound option of firm B when he postpones his
investment till t1 will be

Vcaeo(p
+) '4Vpcaeo(p

+Vpaeo((1− α)X, )1− α)Y, T − t1), βY, t1)

3
(51)

− Vceeo(p
+Veeo((1− α)X, (1− α)Y, T ), βY, t1)

3

in case of a successful R&D investment of firm A, and

Vcaeo(p
−) '4Vpcaeo(p

−Vpaeo((1− α)X, )1− α)Y, T − t1), βY, t1)

3
(52)

− Vceeo(p
−Veeo((1− α)X, (1− α)Y, T ), βY, t1)

3

when the investment of A will turn out to be a failure. Since the chance of a failure of the
R&D investment of firm A is (1-q) and that of a success q the expected value of the option
of B at t0 will be:

ΠB = qVcaeo(p
+) + (1− q)Vcaeo(p−). (53)

The payoff of firm A when he moves first will be different. He invests an amount R at t0
and then owns the American exchange option to undertake the development investment,
αY . He can execute this option at anytime between t0 and T . The payoff will therefore be

LA = −R+ qVaeo

= −R+ q

(
4Vcarr(αX,αY, T )− Veeo(αX,αY, T )

3

)
. (54)

In which the expression of Armada, (40), is used to value the American exchange option
Vaeo.
Now we will turn over to the second situation.

7.2 Firm A and B invest in R&D

In this situation both firms invest simultaneously in R&D at t0. More precisely, they invest
in research R at t0 and between t0 and T they can both decide to also undertake the second-
stage investment. However, they can only take the development investment if the research
investment was successful. As a result, both firm A and B hold the development option
with respectively probability q and p. We have already seen that in this case information
revelation will not take place, thus ρ(X,Y ) = ρ(Y,X) = 0 and therefore p = p+ = p− and
q = q+ = q−, and both firms will gain an equal share of the market, α = 1

2 . At t0 both
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firms have already invested R and own the exchange option to the development investment
(see the formula of Armada , (40)). Consequently, their payoffs will look like this:

ZA = −R+ qVS(
1

2
X,

1

2
Y, T )

' −R+ q

(
4Vcarr(

1
2X,

1
2Y, T )− Veeo(1

2X,
1
2Y, T )

3

)
(55)

ZB = −R+ pVS(
1

2
X,

1

2
Y, T )

' −R+ p

(
4Vcarr(

1
2X,

1
2Y, T )− Veeo(1

2X,
1
2Y, T )

3

)
(56)

Now the final situation will be discussed.

7.3 Both firm A and B wait

The last possible situation is the one in which both firms decide to not invest R at t0 and
postpone their investment decision till t1. Since again both firms will invest simultaneously
the market share α will be 1

2 and ρ(X,Y ) = ρ(Y,X) = 0. The value of the compound option
at t0 will therefore be:

WA = Vcaeo
(
qVS(

1

2
X,

1

2
Y, T ), βY, t1

)
(57)

WB = Vcaeo
(
pVS(

1

2
X,

1

2
Y, T ), βY, t1

)
(58)

7.4 In a matrix

The three situation with their corresponding payoffs can be put in a matrix. Both firms
have two possible strategies at t0, namely waiting or investing. The best strategy of a
firm depends on what the other firm does and the amount of information revelation. I will
discuss this in chapter 9. The matrix belonging to this game is:
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ZB ΠB

ZA LA

LB WB

ΠA WA

Invest Wait

Invest

Wait

Firm B

F
ir

m
A

Payoff Matrix Investment Game

Decisions of the firms are made simultaneously. The corresponding game is therefore a
strategic form game. The firms are not informed about which action the other firm has
taken.

8 The strategies

Game theory is the study of mathematical models of conflicts and cooperation between
rational decision-makers. (see [24], p.1) The main idea in game theory is that rational
players will choose the strategies that belong to a Nash equilibrium. If there is only one
Nash equilibrium the players know what strategy to follow. However, in many cases there
are multiple equilibria. In such a case, it’s not immediately clear what the players should
do. Then the Nash equilibria have to be observed more closely to see what is the best
strategy for players. One can do this for example by introducing extra rationality criteria.
In the matrix above it is not immediately clear what the best strategies for firm A and B
are since the payoffs in the different situations depend on various parameters. Let’s try to
find the Nash equilibria of this game.

Definition 2. Let A en B denote the set of possible strategies of firm A and B respectively.
A pair of strategies (a∗, b∗), a ∈ A and b ∈ B, is a Nash equilibrium if a∗ is the best reply
to b∗ and vice versa. In other words Uplayer1(a∗, b∗) ≥ Uplayer1(a, b∗) for every a ∈ A and
Uplayer2(a∗, b∗) ≥ Uplayer2(a∗, b) for every b ∈ B. The U denotes the utility (or payoff) the
players obtain from playing that strategy.

In this game the sets of strategies are clear, SA = SB ={Invest, Wait}. The main assump-
tion in game theory is that players are rational. (see [22], p. 4) Both firms will try to
maximise the profit they can obtain given what the other firm will do. They will solve the
problem maxa∈SA

U(g(a)) and maxb∈SB
U(g(a)) in which g(j) is a function that associates

a payoff (utility) with each action.
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8.1 The influence of the project value X

Assume that firm B chooses to invest. Then firm A will wait if ΠA > ZA because of the
rationality assumption. There will be a situation in which all parameters are such that
Π∗j = Z∗j for j ∈ {A,B}. In words, if one of the firms chooses to invest, the other firm
will be indifferent between investing and waiting. Let X∗za and X∗zb be the corresponding
value of the project to firm A en B respectively in this case. It depends on the amount of
the future cashflows the firm expects to receive due to the investment. If demand of the
product seems to be in a rising trent or prices go up because of scarcity then the firm may
expect the future cashflows to increase. Therefore X will increase.
Denoting X∗z = max(X∗za, X

∗
zb), if X > X∗z both firms will prefer investment at t0 above

waiting when the other firm invests since Πj < Zj . In the situation of decreasing demand
or prices, X will be smaller than X∗k = min(X∗za, X

∗
zb), both firms will prefer waiting, since

in that case Πj > Zj . Thus in case X > X∗z there will be at least one Nash equilibrium,
namely (Invest, Invest), since none of the firms will then have an incentive to change his
strategy.
Following the same line of reasoning there will exist X∗wa and X∗wb for which both firms are
indifferent between investing and waiting if the other firm decides to wait, Lj = Wj for j ∈
{A,B}. Let the maximum of the two project values be denoted by X∗r = max(X∗wa, X

∗
wb)

and X∗q = min(X∗wa, X
∗
wb). If X > X∗r it will be rational for both players to invest if the

other firm decides to wait since Lj > Wj .
Now suppose X > max(X∗r , X

∗
z ). Then there will be one Nash equilibria:

Z∗B ΠB

Z∗A L∗A

L∗B WB

ΠA WA

Invest Wait

Invest

Wait

Firm B

F
ir

m
A

The stars (*) show the rational reactions of the firms to the possible actions of the other
firm. Only in the case of (Invest, Invest) the actions are the best replies to the action of
the other firm and consequently it is a Nash equilibrium, see Definition 2. In the situation
that X < min(X∗k , X

∗
q ), Lj < Wj and Πj > Zj . We will get the following matrix:
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ZB Π∗B

ZA LA

LB W ∗B

Π∗A W ∗A

Invest Wait

Invest

Wait

Firm B
F

ir
m

A

In this case there is again one Nash equilibrium, namely (Wait, Wait).
Now assume that X∗r < X∗k , implying Xwj < Xzj . If the value of the project X is
smaller than X∗q then Πj > Zj and Wj > Lj . This is the situation described above. The
corresponding Nash equilibrium is (Wait, Wait). If X ∈ (X∗q , X

∗
r ) then Πj > Zj for all j,

and Wj < Lj in which j is the firm that has the lowest critical value X∗wj and Wl > Ll with
l being the other firm. Then the Nash equilibrium will also be (Wait, Invest) if X∗wa > X∗wb
and (Invest, Wait) if X∗wa < Xwb.
The third possibility is that X ∈ (X∗r , X

∗
k). Then investing is the best reaction for both

firms if the other firm waits (Πj > Zj). However, if one firm decides to invest, the best
reply for the other firm is to wait since Wj < Lj . Thus when the value of the project falls
within this range there will be two pure strategy Nash equilibria, (Wait, Invest) and (Invest,
Wait). In this situation there exists, apart from the two pure Nash equilibria (Wait, Invest)
and (Invest, Wait), a third Nash equilibrium. It’s Nash equilibrium in mixed strategies.
A mixed strategy is an assignment of a probability to each pure strategy. Imagine that
player A invests if the coin lands heads and waits if the coin lands tails. Then player A is
considered to play a mixed strategy. A mixed strategy Nash equilibrium is an equilibrium
where at least one player is playing a mixed strategy. Consider the strategy (q, 1-q) of
firm B. He will invest with probability q and wait with probability 1 − q. The best reply
of firm A to this strategy is invest respectively wait if:

0 · q + 7(1− q) > 2q + 6(1− q)
0 · q + 7(1− q) < 2q + 6(1− q).

Thus ’invest’ is best reply if q < 1
3 and ’wait’ is best reply if q > 1

3 . They are both best
replies when q = 1

3 . The same holds for firm B. Consider the strategy (p, 1-p) of firm
A. Then waiting is the best reply for firm B if q > 1

3 and investing if q < 1
3 . Again both

replies are best replies in the case q is equal to 1
3 . Therefore, there is a mixed strategy Nash

equilibrium where both firms invest by probability 1
3 . We won’t consider the case of mixed

strategies further here since it is not very relevant in the case of real options. It’s unlikely
that a firm will use probabilities in defining its strategy in investments. The management
of a firm will not make its investment decisions dependent on throwing a coin. (see [23],
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p. 7)

If X increases even more, one of the equilibria (Invest, Wait) and (Wait, Invest) will disap-
pear since waiting is in that case not always the best reply for the firms when the other firm
invests. The only equilibrium left then is (Wait, Invest) or (Invest, Wait), again depending
on whether firm A or firm B has the highest critical value X∗wj . When X rises above the
last critical value X∗z it will be bigger than all the critical values. For both firms investing
will therefore be the best reply when the other firm invest but also if the other firm decides
to wait. Investing is a dominant strategy for both firms. The Nash equilibrium in this case
is (Invest, Invest).

8.2 The effect of information revelation

As I mentioned before, more information revelation (higher ρ) will lead to a higher success
probability p+ and thus to higher payoffs if the R&D investment of the first mover was
successful. However, in case of failure a higher level of information revelation will lead to
a lower success probability p− for the firm that moves second. To see this, remember the
success probabilities were:

p+ = p+

√
1− q
q
·
√
p(1− p) · ρ(X,Y )

p− = p−
√

q

1− q
·
√
p(1− p) · ρ(X,Y )

q+ = q +

√
1− p
p
·
√
q(1− q) · ρ(Y,X)

q− = q −
√

p

1− p
·
√
q(1− q) · ρ(Y,X)

where q and p are the success probabilities of firm A and B respectively. Remember, the
correlation between X and Y , ρ(X,Y ), is a measure of information revelation from Y to
X. For simplicity, assume that the information revelation from the investment of firm A
to B is the same as to the investment of firm B to firm A, meaning ρ(X,Y ) = ρ(Y,X).
There are some restrictions on ρ(X,Y ). Since p+ and p− are probabilities 0 ≤ p− ≤ 1 and
0 ≤ p+ ≤ 1. That implies that ρ(X,Y ) must be such that:

p+ = p+

√
1− q
√
q

√
p(1− p) · ρ(X,Y ) ≤ 1

p− = p+

√
q

√
1− q

√
p(1− p) · ρ(X,Y ) ≥ 0.
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These two restrictions imply that

ρ(X,Y ) = min

[√
p(1− q)√
q(1− p)

,

√
q(1− p)√
p(1− q)

]
. (59)

The correlation between X and Y represents the information revelation. Consequently,
information revelation will therefore only have an effect on the Nash equilibria if one firm
decides to invest at t0 while the other decides to postpone its investment. This means that
in the case above information revelation will only affect Πi with i ∈ {A,B}, the payoff of
the firm moving second. An increase in information revelation means an increase in Πi

and as a result an increase in X∗za and X∗zb, which means an increase in both X∗z and X∗k .
This in turn will enlarge the ranges (X∗r , X

∗
k) and (X∗k , X

∗
z ), which have two and one Nash

equilibrium respectively as we have seen before. The reason that also the latter interval
enlarges is due to the fact that X∗z will increase faster compared to X∗k as ρ(X,Y ) increases.
An increase in X∗z implies that the value of the project to the firms X has to be higher in
order to achieve the Nash equilibrium (invest, invest). This makes sense, since an increase
in information revelation makes waiting more attractive compared to investing at t0. If the
first-stage investment R of one firm reveals a lot of useful information for the follower the
success probability of the second firm will increase.

8.3 The effect of first mover advantage

In the previous section one could see that an increase in ρ(X,Y ) makes waiting more
attractive for both firms. The effect of an increase in α will have the opposite effect.
Nevertheless, α effects all the payoffs. As a result, not only X∗k and X∗z will decrease when
α becomes larger, but also X∗q and X∗r will be affected negatively. Overall, investing will
become more attractive for both firms. The payoff to the leader will increase and the payoff
to the follower will decrease.
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9 Conclusion

Despite the differences in nature of financial and real option, the theory of option pricing is
found to be useful for evaluating the value of an R&D investment option. By considering
exchange options the value of flexibility of time is taken into account, since the value
of an investment will not be constant over time. By considering compound options, we
take into account the different stages in R&D. Moreover, game theory can be used by
firms to evaluate the competitive interactions. The decisions taken by the players of the
R&D investment game is a decisions between strategic positioning and knowledge building.
Making decisions fast means that you are a step ahead of your competitors resulting in a
larger market share. On the other hand, patience can also be worth a lot. An increase
in the information revelation between the first and second mover increases the success
probability of the second firm, making waiting a better action. However, this positive
effect only appears in the case of a successful research investment by the firm going first.
We have also seen that an increase in the market share that can be gained, indeed makes
investing first a better action.
The critical values X∗q , X∗r , X∗k and X∗z can help the firm evaluating its best strategy. These
values can be used to determine the ranges. When X < X∗q we found one Nash equilibrium,
namely (Wait, Wait). When X ∈ (X∗q , X

∗
r ) the optimal Nash strategy is waiting for the

firm with the highest critical value of the project X∗zj with j ∈ {a, b}. That means that the
firm with a higher success probability invests earlier in R&D then the other firm. In this
interval an increase in information revelation won’t have any effect since in this interval
the value of the project is below the critical values X∗wa and X∗wb anyways; firms already
prefer waiting above investing when the other firm invests.
When X ∈ (X∗r , X

∗
k) investing is best for the firm if the other firm waits and vice versa.

An increase in information revelation will increase this interval. The critical market values
go up. When X ∈ (X∗k , X

∗
z ) there is again one Nash equilibrium. The firm with a higher

success probability invests earlier in R&D then the other firm. However, now information
revelation does have an effect. An increase in information revelation will enlarge this
range. It increases the critical project values for investing of both firm since information
revelation makes waiting more attractive. If the information revelation is higher for one
firm this might increase the critical value such that it exceeds the critical value of the other
firm, making waiting more attractive. The Nash equilibrium strategy will switch from
investing to waiting for that firm and from waiting to investing for the other firm. If the
success probability of firm A is higher than B for example, then investing will be the Nash
policy for firm A and waiting for firm B.
The effect of the size of the market share is opposite to that of information revelation. An
increase in the market share decreases all the critical values of both firms. A growth in
the first mover’s advantages results in an increase in the value of the firm going first and a
decrease in the value of the firm going second. Evidently, in the case of α = 1, the value of
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the option to the second firm is zero. Instead, an increase in information revelation results
in an increase in the value of the follower, but it doesn’t affect the value of the firm going
first.
Firms can use the option game theory to help making their managerial decisions. Monte
Carlo simulations can be used to evaluate an R&D compound exchange option. In further
studies, it might be interesting to investigate the advantages to both firms of cooperating
in join ventures. They can cooperate in research to save costs and benefit both from it.
Information revelation will then not be of any relevance. Another interesting point to look
at is the effect of the height of the ’dividends’ of the project. The higher the ’dividends’ of
the project, the higher the opportunity cost of deferring investment.
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[4] J. Franke, W.K. Härdle, C.M. Hafner, Statistics of Financial Markets, Springer: New
York, 2015.

[5] V. Capasso, D. Bakstein, An introduction to continuous-time stochastic processes,
Springer: New York, 2015, Imprint: Birkhäuser.
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