
The Logic of Unprovability

Mark Kamsma, University of Utrecht
Supervised by Jaap van Oosten

2016-06-20

Abstract

The first incompleteness theorem of Kurt Gödel states that a theory in
which we can develop most of modern arithmetic is incomplete. We will
take a look at such a theory: Peano Arithmetic (PA). We will develop
the tools to formulate a sentence that essentially asserts in PA that it is
not provable. Then we use this sentence to prove both Gödel’s first and
second incompleteness theorems, where the second states that PA cannot
prove its own consistency. To prove Gödel’s first incompleteness theorem
also for consistent extensions of PA we will use Rosser sentences. These
are sentences that are equivalent in PA to the assertion that a disproof
of them occurs before any proof of them. After developing the necessary
technical tools, we prove that Rosser sentences need not to be all provably
equivalent but there are constructions where they are.

1 Introduction

In this paper we provide the theory that is needed to prove the famous incom-
pleteness theorems of Kurt Gödel. Then we prove these theorems. After that
we are ready to take a look at so called Rosser sentences.

In more detail: in section 2 we will take a look at recursive functions and
some of their important properties. Then in section 3 we will talk about Peano
Arithmetic, a powerful theory in which one can develop most of modern arith-
metic. We will show that we can represent the recursive functions in Peano
Arithmetic, which is why they are such an important tool. After that we are
finally ready for Gödel’s incompleteness theorems in section 4. The first of these
theorems states that Peano Arithmetic is incomplete. The second theorem states
that Peano Arithmetic cannot prove its own consistency. These theorems are
based on the construction of a sentence that essentially says “I am not prov-
able”. We will then shift focus to Rosser sentences, these are sentences that
basically say “a disproof of me occurs before any proof of me”. In section 5 we
will take a closer look at these Rosser sentences and how they can also be used
to prove Gödel’s first incompleteness theorem for Peano Arithmetic and also for
consistent extensions of Peano Arithmetic. Then in section 6 we will develop
some technical tools that allow us to reason about Rosser sentences. These tools
are then used in section 7 where we prove that not all Rosser sentences need to
be provably equivalent, but also that there are constructions where all Rosser
sentences are provably equivalent.

1

This paper is heavily based on [2] and [1]. Sections 2, 3 and 4 are based on
chapters 3, 4 and 5 in [1]. Unless noted otherwise, the definitions and results
in those sections are from [1], possibly reformulated to match the style of this
paper. Then section 5 functions as a bridge between the content of [1] and [2]:
the main result in that section is from [1], but its definitions ready us for the
next sections. Sections 6 and 7 are completely based on [2] and a bit of [3].

We will also need to agree on a convention for N. In this paper we will use
the convention that 0 ∈ N.

2 Recursive functions

2.1 Primitive recursive functions

Before diving into primitive recursive functions we will first agree on some no-
tation. When we talk about the function x

y , we have not specified whether we

mean (x, y) 7→ x
y or (y, x) 7→ x

y or even (x, y, z) 7→ x
y . These are all different

functions. That is what the λ − notation is for. If ~x is a sequence of variables
x1, . . . , xn, then λ~x.F denotes the function (x1, . . . , xn) 7→ F (~x).

Example 2.1. The functions (x, y) 7→ x
y , (y, x) 7→ x

y and (x, y, z) 7→ x
y would

be written as λxy.xy , λyx.xy and λxyz.xy respectively.

Now that is out of the way we can define primitive recursive functions. These
functions will become very important in the next sections. In section 3 we will
show that we can represent primitive recursive functions using logical formulas.

Definition 2.1. The class of primitive recursive functions is a subclass of all
functions Nk → N (for any k ∈ N). It contains the zero function, successor
function and all projections, and is closed under composition and primitive re-
cursion. To be more precise, it is generated by the following clauses:

1. the zero function Z = λx.0 is primitive recursive;

2. the successor function S = λx.x+ 1 is primitive recursive;

3. the projections Πk
i = λx1, . . . , xk.xi (for 1 ≤ i ≤ k) are primitive recursive;

4. given primitive recursive functions G1, . . . , Gl : Nk → N and H : Nl → N,
then λ~x.H(G1(~x), . . . , Gl(~x)) is said to be defined by composition and is
primitive recursive;

5. given primitive recursive functions G : Nk → N and H : Nk+2 → N, then
we can define F : Nk+1 → N by primitive recursion as follows:

F (0, ~x) = G(~x)

F (y + 1, ~x) = H(y, F (y, ~x), ~x)

and F is primitive recursive.

Note that in clause 5 it is possible that k = 0. In that case G is just a constant
and F is defined by

F (0) = G

F (y + 1) = H(y, F (y))

which is also primitive recursive.

2

Definition 2.2. A k-ary relation is a subset of Nk. One can define such a
relation using its characteristic function. For a relation A, that is a function
χA : Nk → N such that

χA(~x) =

{
0 ~x ∈ A
1 else

We speak of a primitive recursive relation if the characteristic function of the
relation is primitive recursive.

To get a grip on what kind of functions are primitive recursive we will consider
a few examples. These are based on the examples in [1] on pages 34-35, but
they are reformulated to fit the style of this paper.

Example 2.2. We will define the function λxy.x+ y using primitive recursion
to show that it is primitive recursive. We take G to be Π1

1(y), so we have
F (0, y) = G(y) = Π1

1(y) = y = 0 + y. We can define H by composition as
λabc.S(Π3

2(a, b, c)). Then we have F (x + 1, y) = H(x, F (x, y), y) = H(x, x +
y, y) = S(Π3

2(x, x + y, y)) = S(x + y) = (x + 1) + y, and so F is defined by
primitive recursion.

Example 2.3. Using the result from example 2.2 we can define λxy.xy by prim-
itive recursion, and thus show that it is primitive recursive. Take G to be the
zero function. Then F (0, y) = G(y) = 0 = 0y. We will compose H of projections
and the function λxy.x+y from example 2.2 as follows: H(a, b, c) = Π3

2(a, b, c)+
Π3

3(a, b, c). Then we have F (x+1, y) = H(x, F (x, y), y) = H(x, xy, y) = xy+y =
(x+ 1)y, and so F is defined by primitive recursion.

We will end this section with a useful proposition which allows us to define
primitive recursive functions by cases. Event hough this proposition is the same
as proposition 3.3 in [1], its proof is heavily reliant on exercise 26 in [1].

Proposition 2.1. If G1, G2 and H are primitive recursive functions Nk → N,
and F is defined by

F (~x) =

{
G1(~x) H(~x) = 0

G2(~x) else

then F is also primitive recursive.

Proof. Define sg, the sign function, and its complement sg as follows

sg(x) =

{
1 x > 0

0 else
sg(x) =

{
0 x > 0

1 else

Note that the “else” case in both definitions is equivalent to x = 0 since we
work in N. So we can define sg using primitive recursion: set sg(0) = 0 and
sg(x + 1) = 1. In the same way we can define sg. Thus both sg and sg are
primitive recursive.

We can now easily see that F is primitive recursive since

F (~x) = sg(H(~x))G1(~x) + sg(H(~x))G2(~x).

Note that we used the fact that λxy.x + y and λxy.xy are primitive recursive,
as we have seen in examples 2.2 and 2.3. �

3

2.2 Total recursive functions

The primitive recursive functions are defined for every possible input. As will
become clear, we will also want to be able to talk about functions that are not
defined for every possible input. We denote such a partial function F that maps
some of the elements of a set X to elements of a set Y as F : X ⇀ Y .

Later on we will be interested in so called computable functions. These are
the partial functions F : Nk ⇀ N for which there is an algorithm so that for all
inputs for which F is defined this algorithm calculates the output of F .

We can extend the class of primitive recursive functions to a class of partial
recursive functions. It is a well known result that the classes of partial recursive
functions and the computable functions are the same.

Before defining this class of functions we will need to agree on one more
piece of notation: the Kleene equality w. For two partial functions F : Nk ⇀ N
and G : Nk ⇀ N we let F (x) w G(x) mean that F (x) is defined precisely when
G(x) is defined, and when they are defined we have F (x) = G(x).

Definition 2.3. The class of partial recursive functions Nk ⇀ N (for any k ∈ N)
is generated by the following clauses.

1. All primitive recursive functions are partial recursive.

2. Given partial recursive functions G1, . . . , Gl : Nk ⇀ N and H : Nl ⇀ N,
then F (~x) = λ~x.H(G1(~x), . . . , Gl(~x)) defined by composition is partial

recursive. Note that F is defined for all ~x ∈
⋂l

i=1 dom(Gi) such that
(G1(~x), . . . , Gl(~x)) ∈ dom(H).

3. Given a partial recursive function G : Nk+1 ⇀ N, then F : Nk ⇀ N defined
by µy.G(~x, y) = 0 is said to be defined by minimization and is partial
recursive. This notation means that F (~x) is defined precisely when there
exists a y such that ∀i ≤ y we have that (~x, y) ∈ dom(G) and G(~x, y) = 0,
and F (~x) is then the smallest y that satisfies this property.

It is of course possible for partial recursive function to be defined for all its input
values. In that case we also call it a (total) recursive function.

Definition 2.4. A partial recursive function F : Nk ⇀ N is called (total)
recursive if dom(F) = Nk.

As we can speak about a primitive recursive relation, we can now also speak
about a recursive relation. A k-ary recursive relation is a subset of Nk so that
there is a recursive function that can determine for any ~x ∈ Nk whether or not
~x is part of that relation.

There are also recursively enumerable (or r.e.) relations. A k-ary recursively
enumerable relation is a subset of Nk so that there is a recursive function that
enumerates all members of Nk.

Before making this precise in definitions we point out that there are many
bijections between N and Nk for any k ∈ N. As we will see in subsection
4.1, some of these bijections are primitive recursive and thus recursive. So by
interpreting the output of (partial) recursive functions using such a bijection we
can act like they map to Nk.

Definition 2.5. A subset A ⊆ Nk is called a recursive relation if its character-
istic function χA is recursive.

4

Definition 2.6. A subset A ⊆ Nk is called recursively enumerable (or r.e.) if
it is either empty or there is a recursive function F : N → Nk such that for all
~a ∈ A there is an n ∈ N with F (n) = ~a. Also, if ~a 6∈ A then for all n ∈ N we
have F (n) 6= ~a.

The difference between a recursive relation and recursively enumerable one may
not directly be clear. Every recursive relation is of course recursively enumer-
able. However, not every recursively enumerable relation is recursive. Suppose
we are given a k-ary recursively enumerable relation A, and an arbitrary element
~x ∈ Nk. Then if ~x is part of A, we can recursively determine this. However, if
~x is not part of A then we can not necessarily recursively determine this.

We have slightly deviated here from the definition of recursively enumerable
in [1] because it will suit us more later on. We will however prove in the following
lemma that our definition and the definition from [1] are equivalent.

Lemma 2.1. A set A ⊆ Nk is recursively enumerable iff there is a recursive set
B ⊆ Nk+1 such that A = {~x ∈ Nk : ∃y((~x, y) ∈ B)}.

Proof. The case where A or B is empty is clear. So we assume that A and B
are not empty.

(⇒) Suppose A is recursively enumerable, and let F be a recursive function
that enumerates A. Now define χB : Nk+1 → N as follows:

χB(~x, y) =

{
0 if F (y) = ~x

1 else

Then clearly B = {(~x, y) ∈ Nk+1 : χB(~x, y) = 0} is satisfactory, and it is
recursive because by definition χB is a recursive characteristic function for B.

(⇐) Let χB be a recursive characteristic function for B. We now describe an
algorithm that enumerates all elements of A. As we discussed earlier there is a
partial recursive function that gives the same output as the algorithm. Because
the algorithm outputs something on every input (input n gives the nth element
of the enumeration), it is total recursive. We iterate through all elements (~x, y)
of Nk+1 using a recursive bijection N→ Nk+1. At each step of the iteration we
check if χB(~x, y) equals 0. If this is the case we output ~x, otherwise we just
continue.

For any ~x ∈ A we must have that χ(~x, y) = 0 for some y. Since we iterate
through all elements of Nk+1 we must encounter (~x, y) at some time, and thus
~x is output by the algorithm. For any ~x that is not an element of A there is
no y such that χ(~x, y) = 0, so ~x is never output by the algorithm. We conclude
that this algorithm enumerates exactly the elements of A. �

2.3 The recursion theorem

A useful property of the partial recursive functions is that there is a universal
algorithm for them. That is, there is a partial recursive function Ψ such that
given a partial recursive function F : Nk ⇀ N there is some integer e such that:

Ψ(k, e, ~x) w F (~x).

5

For Ψ to be truly a universal algorithm, we would have to replace ~x by a
single integer coding ~x. Since this can easily be done using primitive recursive
functions, we will not concern us with it.

What is more important is the following notation. The integer e we described

above is called the index of F . This allows us to write ϕ
(k)
e for F . If k = 1 we

may omit the superscript and just write ϕe for F .
In other words for every partial recursive function F : Nk ⇀ N, there is some

index e such that:
ϕ(k)
e (~x) w F (~x).

But as ϕ
(k)
e (~x) is just an abbreviation for Ψ(k, e, ~x) we also have that ϕ

(k)
e (~x) is

a partial recursive function for every e and k.
To conclude this section we will state the recursion theorem. We will do so

without proof, as it is a well known result and proving it requires quite some
tools that are beyond the scope of this paper. For the interested reader, a proof
is provided in [1] (corollary 3.20). We will however state the primitive recursive
version of the theorem (as mentioned in [1], page 52), as this makes it possible
to formalize any functions we define using this theorem in the theory PA (we
describe PA in the next section).

Theorem 2.1 (Kleene’s recursion theorem). There is a primitive recursive
function Gn such that for all x1, . . . , xn, e:

ϕ
(n)
Gn(e)(x1, . . . , xn) w ϕ(n+1)

e (x1, . . . , xn, Gn(e)).

The recursion theorem allows us to define a partial recursive function based on
itself. More precise: we can define a partial recursive function based on another
partial recursive function with some index e. We can then use the recursion
theorem to find a value for e such that e is also the index of the partial recursive
function we are defining, giving us a self-referential partial recursive function.

3 Peano arithmetic

Definition 3.1. We consider the language LPA consisting of the constants 0
and 1, and the binary function symbols · and +. We can then define the theory
PA of Peano Arithmetic in LPA, with the following axioms:

(A1) ∀x¬(x+ 1 = 0)

(A2) ∀xy(x+ 1 = y + 1→ x = y)

(A3) ∀x(x+ 0 = x)

(A4) ∀xy(x+ (y + 1) = (x+ y) + 1)

(A5) ∀x(x · 0 = 0)

(A6) ∀xy(x · (y + 1) = (x · y) + x)

(A7) ∀~x[(ϕ(0, ~x) ∧ ∀y(ϕ(y, ~x) → ϕ(y + 1, ~x))) → ∀yϕ(y, ~x)] for every formula
ϕ(y, ~x)

6

The first six axioms are pretty clear. The seventh item is actually a set of axioms,
one for every formula ϕ(y, ~x). Such a set of axioms is called an axiom scheme.
In this case it states that one can use induction to prove that a formula holds.
Which is why these axioms are called the induction axioms or the induction
scheme.

Definition 3.2. It is clear that N with its usual addition and multiplication is
a model of PA. We call this the standard model of PA and denote it by N .

The theory of PA is actually very strong, and many properties of elementary
number theory can be expressed and proved in it. The following proposition
proves some basic properties of PA. More properties will be discussed in section
3.1. Properties (P1) and (P3) are proved in [1], proposition 4.1, the rest of the
proof was left as an exercise (exercise 50).

Proposition 3.1. The following basic properties hold in PA:

(P1) PA ` ∀xyz(x+ (y + z) = (x+ y) + z)

(P2) PA ` ∀xy(x+ y = y + x)

(P3) PA ` ∀x(x = 0 ∨ ∃y(x = y + 1))

(P4) PA ` ∀xy∃z(x+ z = y ∨ x = y + z)

(P5) PA ` ∀xyz(x+ z = y + z → x = y)

Proof. For each of these properties we will use the induction scheme to prove
them. For all these proofs we reason in PA.

For (P1) we let ϕ(z) be ∀xy(x + (y + z) = (x + y) + z). Using (A3) we
directly have PA ` ϕ(0). Now suppose that ϕ(z) holds, then using (A4) we see
that x+ (y+ (z+ 1)) = x+ ((y+z) + 1) = (x+ (y+z)) + 1 = ((x+y) +z) + 1 =
(x + y) + (z + 1). We conclude that PA ` ∀z(ϕ(z) → ϕ(z + 1)) and thus
PA ` ∀zϕ(z).

To prove (P2) we let ϕ(x) be ∀y(x + y = y + x). We will first prove ϕ(0)
and ϕ(1), both using induction. So let ψ0(y) and ψ1(y) be 0 + y = y + 0 and
1 + y = y + 1 respectively. Clearly PA ` ψ0(0). Now suppose that ψ0(y) holds,
then using (P1) and (A3) we find 0 + (y + 1) = (0 + y) + 1 = (y + 0) + 1 =
y + 1 = (y + 1) + 0. So PA ` ∀y(ψ0(y) → ψ0(y + 1)) and therefore PA ` ϕ(0).
Since PA ` ϕ(0) we see that PA ` ψ1(0) must also hold. Suppose that ψ1(y)
holds, then using (P1) we get 1 + (y + 1) = (1 + y) + 1 = (y + 1) + 1. Thus
PA ` ∀y(ψ1(y)→ ψ1(y+1)) and we have now also proven that PA ` ϕ(1). Now
this is out of the way we only need to prove PA ` ∀x(ϕ(x)→ ϕ(x+1)). Suppose
ϕ(x) holds, then using (P1) multiple times and using the fact that PA ` ϕ(1) we
find (x+1)+y = x+(1+y) = x+(y+1) = (x+y)+1 = (y+x)+1 = y+(x+1).
This concludes our proof of (P2).

We can see (P3) very quickly, for let ϕ(x) be x = 0 ∨ ∃y(x = y + 1). Then
we see directly that PA ` ϕ(0)∧ ∀xϕ(x+ 1), so we conclude that PA ` ∀xϕ(x).

For (P4) let ϕ(x) be ∀y∃z(x+ z = y∨x = y+ z). Combining (P2) and (A3)
we find that PA ` ϕ(0) (namely, take z = y). Now suppose ϕ(x) holds. Let
y be any element, then there is some z such that x + z = y or x = y + z. To
prove ϕ(x+ 1) we reason by cases. First, suppose z = 0. Then we have x = y,

7

hence x+ 1 = y + 1 so we find that z = 1 satisfies. If z 6= 0 there are two cases
left: x + z = y and x = y + z. In the first case we use (P3) to find a z′ such
that z = z′ + 1. Then by (P1) and (P2) we have y = x + z = x + (z′ + 1) =
x+ (1 + z′) = (x+ 1) + z′. In the last case we simply make use of (A4) once to
see that x+1 = (y+z)+1 = y+(z+1). This proves PA ` ∀x(ϕ(x)→ ϕ(x+1))
and so PA ` ∀x(ϕ(x)).

For (P5) we let ϕ(z, x, y) be x+ z = y+ z → x = y. Clearly PA ` ϕ(0, x, y).
Suppose that x + z = y + z → x = y holds, and suppose that x + (z + 1) =
y + (z + 1). Using (A4) we see that x + (z + 1) = y + (z + 1) is equivalent to
(x+ z) + 1 = (y + z) + 1, thus by (A2) we have that x+ z = y + z. Then using
the induction hypothesis we conclude that x = y. So PA ` ∀xy[ϕ(0, x, y) ∧
∀z(ϕ(z, x, y)→ ϕ(z + 1, x, y))] and thus by induction PA ` ∀xyzϕ(z, x, y). �

In what follows we will use proposition 3.1 without mentioning it, because the
properties stated there are natural. The same holds for the axioms of PA.
Although we might sometimes refer to them when things need to be a bit clearer.

It will be useful to add an ordering < to PA. We can do this without adding
axioms. The sentence ∃z(x + (z + 1) = y) defines a discrete linear order with
a least element which also satisfies the least number principle, as we will soon
see. Because we will need this ordering a lot, we will introduce a new symbol
for it.

Definition 3.3. The notation x < y abbreviates ∃z(x + (z + 1) = y). We
will also use ∃x < yψ and ∀x < yψ as abbreviations for ∃x(x < y ∧ ψ) and
∀x(x < y → ψ) respectively. Finally, like one would expect x ≤ y abbreviates
x < y ∨ x = y, and x 6= y abbreviates ¬(x = y).

Using this new notation we will now prove our claim about the ordering < gives
to PA. Eventhough this is also a proposition in [1] (proposition 4.2), its proof
was left as an exercise (exercise 51).

Proposition 3.2. PA proves that the ordering < satisfies the following prop-
erties.

(1) It is a discrete linear order. That is, for all x, y, z, we have:
¬(x < x),
x < y ∧ y < z → x < z,
x < y ∨ x = y ∨ y < x,
x < y → (x+ 1 ≤ y).

(2) It has as least element 0. That is, for all x we have x = 0 ∨ 0 < x.

(3) It satisfies the least number principle. That is, for all formulas ψ we have
∃wψ(w)→ ∃y(ψ(y) ∧ ∀x < y¬ψ(x)).

Proof. First we prove that PA ` ∀x(x < x + 1). Recall that x < x + 1 is just
an abbreviation for ∃z(x+ (z + 1) = x+ 1). We can then let z be 0 and we are
done.

Now for property (1), we will first prove that ¬(x < x) for all x. Suppose
that there would be an x such that x < x, then there would be some z such
that x + (z + 1) = x which is equivalent to (z + 1) + x = 0 + x. But this
would mean that z + 1 = 0, which is impossible, hence ¬(x < x). To prove

8

x < y ∧ y < z → x < z, we let a and b be such that x + (a + 1) = y and
y+ (b+ 1) = z. Then (x+ (a+ 1)) + (b+ 1) = z thus x+ (((a+ 1) + b) + 1) = z,
so x < z. The third item was x < y ∨ x = y ∨ y < x, we use (P4) here to see
that there is some z such that either x+ z = y or x = y + z. If z = 0, then we
have that x = y. Otherwise we can find a z′ such that z = z′ + 1, so we either
have x+ (z′ + 1) = y or y + (z′ + 1) = x thus x < y or y < x. Now for the last
item, suppose x < y then there is some z such that x + (z + 1) = y. In case
z = 0 we have x+ 1 = y, otherwise there is some z′ such that z = z′+ 1. Filling
this in we get (x+ 1) + (z′ + 1) = y, so x+ 1 < y.

Property (2) is a direct consequence of (P3), for x is either 0 or we find some
z such that x = z + 1, hence 0 + (z + 1) = x and so 0 < x.

Only property (3) is now left to prove. We reason in PA and aim for a
contradiction. So suppose that for a formula ψ we have a w such that ψ(w),
but that there is no smallest y such that ψ(y). Let ϕ(x) be the formula:

∀y(ψ(y)→ x < y).

We will use induction to prove ∀xϕ(x). Since there is no smallest y such that
ψ(y) holds we cannot have ψ(0) and thus we have ϕ(0). Now suppose that ϕ(x)
holds, then we cannot have ψ(x + 1). This can be seen as follows: since x + 1
cannot be the smallest element for which ψ holds, there must be a z < x+1 (and
thus z ≤ x) such that ψ(z) holds. By the induction hypothesis on ϕ we must
have x < z. So we conclude that z ≤ x and x < z which is a contradiction. So
no such z can exist and thus ψ(x+ 1) cannot hold. By the induction hypothesis
and the fact that ψ(x+ 1) does not hold we conclude that ϕ(x+ 1) holds.

Now we have proven ∀xϕ(x) by induction we see that ϕ(w) must also hold.
But then ψ(w) → w < w, which is a contradiction with the assumption that
ψ(w). We conclude that there must be a smallest y such that ψ(y) holds. �

3.1 Coding sequences in PA

As mentioned earlier, PA is very strong and we can express and prove various
properties of elementary number theory in it. It is exactly this strength that
enables us to prove its incompleteness in section 4. But first we will use this
strength to develop a tool for coding sequences in PA.

Our proofs in this section will require us to use standard arithmetical iden-
tities like the ones in proposition 3.1. So we will extend this proposition here
with some more properties. We will however not prove these properties, since
their proof is not very interesting. One can prove them by continuing the proof
of proposition 3.1 in the same fashion.

Proposition 3.3 (proposition 3.1 continued). The following basic properties
hold in PA:

(P6) PA ` ∀xyz((x · y) · z = x · (y · z))

(P7) PA ` ∀xy(x · y = y · x)

(P8) PA ` ∀xyz(x · (y + z) = x · y + x · z)

(P9) PA ` ∀xyz(z 6= 0 ∧ x · z = y · z → x = y)

9

Now we have enough basic properties to prove that PA supports division with
remainder. However, since the properties in proposition 3.3 are natural we will
not mention it when we use them.

Theorem 3.1 (Division with remainder).

PA ` ∀xy(y 6= 0→ ∃ab(x = a · y + b ∧ 0 ≤ b < y))

Furthermore, PA proves that a and b are unique.

Proof. We will use induction on x here. Clearly 0 = 0 · y + 0. Assume that
there are a and 0 ≤ b < y such that x = a · y + b. Then since b < y we have
that b + 1 ≤ y because < is a discrete order. Suppose that b + 1 < y, then
x+1 = a ·y+(b+1). If on the other hand b+1 = y, then x+1 = (a+1) ·y+0.
This completes our induction proof.

We now only need to prove uniqueness of a en b. Suppose there are x, y such
that x = a · y + b = a′ · y + b′ with 0 ≤ b, b′ < y. Assume that a < a′. Then we
have that a+ 1 ≤ a′, thus

x = a · y + b < a · y + y ≤ a′ · y,

which is a contradiction. So we have a′ ≤ a, and by symmetry a ≤ a′ so a = a′.
It now also follows directly that b = b′. �

We can use theorem 3.1 to define the least common multiple or lcm and greatest
common divisor or gcd. For that we will introduce the shorthand notation a|b
for ∃c(a · c = b). Let x, y ≥ 1, then clearly x|x · y ∧ y|x · y. By the least number
principle we find a minimal z > 0 such that x|z ∧ y|z. We denote this z by
lcm(x, y). Clearly lcm(x, y) ≤ x · y.

By theorem 3.1 we can now find an a and 0 ≤ b < lcm(x, y) such that
x · y = a · lcm(x, y) + b. So we have x|b ∧ y|b. From this it follows that b = 0,
because otherwise 0 < b < lcm(x, y), which would contradict the minimality of
lcm(x, y). This means that x·y = a·lcm(x, y) for some a, and we will denote this
a by gcd(x, y). Since lcm(x, y) = y ·w for some w we have x ·y = gcd(x, y) ·y ·w,
thus x = gcd(x, y) · w. Therefore gcd(x, y)|x, and gcd(x, y)|y in the same way.

This is actually the greatest common divisor. For suppose there is some
g > gcd(x, y) with g|x and g|y, then x = g · x′ and y = g · y′ for some x′ and y′.
Which means we would have x · y = g · x′ · y, so x · y′ = x′ · y and thus x|x′ · y
and y|x′ · y. Let w be such that x = gcd(x, y) · w, then clearly x′ < w. By the
definition of gcd(x, y) we have gcd(x, y) ·w · y = x · y = gcd(x, y) · lcm(x, y) and
thus lcm(x, y) = w · y. But then x′ · y < w · y = lcm(x, y) which contradicts the
minimality of lcm(x, y). So there is no g > gcd(x, y) with g|x and g|y.

This gives us the necessary tools to formulate Bézout’s theorem for PA, which
is the final tool that is needed for coding sequences in PA. We will however omit
the proof and only state the theorem here.

Theorem 3.2 (Bézout’s theorem for PA).

PA ` ∀xy ≥ 1∃a ≤ y, b ≤ x(a · x = b · y + gcd(x, y))

Proof. See theorem 4.8 in [1]. �

10

Now we can code a sequence of numbers. Suppose we are given a sequence
x0, . . . , xn−1. Note that the first index of our sequence is 0. This is convenient
since we use the convention that 0 ∈ N.

Let m = max(x0, . . . , xn−1, n)!, then we claim that for all 0 ≤ i < j < n we
have that m(i+ 1) + 1 and m(j + 1) + 1 are coprime. If they were not coprime,
there would be a d > 1 such that d|m(i + 1) + 1 and d|m(j + 1) + 1. So there
would be d1, d2 ≥ 1 such that d = d1 · d2, d1|m and d2|j − i. Since j − i < n
we have j − i|m by the definition of m and hence d2|m. At least one of d1 and
d2 has to be strictly greater than 1. Without loss of generality, assume d1 > 1.
Then d1|m and d1|m(i+ 1) + 1, which is a contradiction. So m(i+ 1) + 1 and
m(j + 1) + 1 are coprime.

Using this property we can apply the Chinese remainder theorem (which is
based on Bézout’s theorem) to find a number a such that a ≡ xi modm(i+1)+1
for all 0 ≤ i < n. So in a way, the pair (a,m) codes the sequence x0, . . . , xn−1.

The next theorem states a few properties that will prove to be very useful.
Namely that for every x there is a sequence starting with x, that every sequence
can be extended by any x and that every element in the sequence is smaller
than a. The last property may not seem directly useful, but it is a technical
detail that we will need later on.

Before stating the theorem we will need to agree upon some notation once
more. Let rm(x, y) denote the remainder of x divided by y, and (a,m)i will
denote the ith element in the sequence coded by (a,m). That is (a,m)i =
rm(a,m · (i+ 1) + 1).

Theorem 3.3. The following properties hold when coding sequences in PA:

(1) PA ` ∀x∃am((a,m)0 = x)

(2) PA ` ∀lxam∃bn(∀i < l((a,m)i = (b, n)i) ∧ (b, n)l = x)

(3) PA ` ∀ami((a,m)i ≤ a)

Proof. Again, we refer to [1]. This time to theorem 4.9. �

3.2 Representing primtitve recursive functions in PA

The language LPA does not have constants for all the natural numbers, but it
will be useful to express the natural numbers in PA. To this end we will define
an abbreviation for terms that represent the natural numbers in PA. We let the
integer 0 be represented by 0̄, which is simply the term 0. Then for n ∈ N we
define n+ 1 to be n+ 1. So for example, the number 3 would be represented by
the term 3 = ((0 + 1) + 1) + 1. Note that n̄ is a term in PA, and the + we use
in its definition is the function symbol + from LPA, not the + from the natural
numbers N .

The difference between function symbol + from LPA and the addition oper-
ator + from N is also very important in the following proposition. There they
are linked together, but one should still keep in mind that they have different
meanings. The same holds for the · and < symbols.

The following proposition is taken from exercise 62 in [1].

11

Proposition 3.4. Let n and m be elements of N . Then the following properties
hold:

(1) PA ` n+m = n+m;

(2) PA ` n ·m = n ·m;

(3) PA ` n < m ⇐⇒ n < m;

(4) PA ` ∀x(x < n↔ x = 0 ∨ . . . ∨ x = n− 1) if n > 0.

Proof. Property (1) follows directly from proposition 3.1 (P1), which describes
the associativity of the + operator in PA, and the fact that PA ` 0 + 1 = 1.
Property (2) also follows from the basic algebraic properties of PA. When
working out n ·m we get a concatenation of n ·m times the symbols 1 and +,
which is n ·m.

Property (3) requires a bit more work. Suppose that PA ` n < m, then we
have that PA ` ∃z(m = n+(z+1)). That means that N |= ∃z(m = n+(z+1)),
from which it clearly follows that n < m. Suppose now that n < m, then
m − n ≥ 1 and thus m = n + (z + 1) with z = m − n − 1. So by (1) we have
PA ` m = n+ (z + 1) and thus PA ` n < m.

We will prove (4) using induction to n. Suppose n = 1, then we have to
prove that PA ` ∀x(x < 1↔ x = 0). If x < 1 we either have x+1 = 1, in which
case x = 0, or we have x+1 < 1 but that is impossible since then 1 ≤ x+1 < 1.
So x < 1→ x = 0, and the converse is trivial. Now suppose that (4) holds for n,
we want to prove it for n+1. So let x < n+ 1, then either x+1 = n+ 1 = n+1,
in which case x = n or x+ 1 < n+ 1 = n+ 1 and thus x < n, in which case we
use the induction hypothesis to conclude that x = 0 ∨ . . . ∨ x = n− 1. Hence
x < n+ 1 → x = 0 ∨ . . . ∨ x = n. The converse is again trivial, when using
(3). �

We can classify formulas based on their quantifiers. We distinguish quantifiers
that are bounded and quantifiers that are unbounded. The bounded quantifiers
are of the form ∃x < tϕ(x) or ∀x < tϕ(x) where t is some term not containing
x. The unbounded quantifiers are just all the other quantifiers.

Definition 3.4. An LPA-formula is a ∆0-formula if all its quantifiers are
bounded. A Σ1-formula is one of the form ∃x1 . . . xkϕ(x1, . . . , xk) where ϕ(x1, . . . , xk)
is a ∆0-formula. Similarly, a Π1-formula is of the form ∀x1 . . . xkϕ(x1, . . . , xk)
with ϕ(x1, . . . , xk) a ∆0-formula. Finally, a formula ϕ is called a ∆1-formula if
ϕ and ¬ϕ are equivalent to a Σ1-formula in PA.

When relating PA to N the Σ1-formulas are very important because of Σ1-
completeness, which states that a Σ1-sentence is true in N if and only if it is
provable in PA. This is also stated in exercise 63 of [1]. We will present a proof
here.

Theorem 3.4 (Σ1-completeness). For every Σ1-formula ϕ(x1, . . . , xk) we have
that for all n1, . . . , nk ∈ N :

PA ` ϕ(n1, . . . , nk) ⇐⇒ N |= ϕ(n1, . . . , nk).

In particular this means that a Σ1-sentence is provable in PA if and only if it
is true in N .

12

Before proving theorem 3.4 we will introduce a useful lemma. This lemma
actually says the same, but then for ∆0-formulas. Before we state and prove that
lemma, we will cover some theory on the form of formulas which we will need in
our proof of the lemma. First, it is easy to see that the following equivalences
hold for any formulas α and β (not only in PA, but in every theory):

¬¬α↔ α,

¬(α ∧ β)↔ ¬α ∨ ¬β,
¬(α ∨ β)↔ ¬α ∧ ¬β,
¬(α→ β)↔ α ∧ ¬β,
¬∃xα(x)↔ ∀¬α(x),

¬∀xα(x)↔ ∃¬α(x).

We can use these to bring a formula ϕ in a form ϕ′ that is equivalent, but where
each occurrence of the symbol ¬ is of the form ¬χ with χ an atomic formula.
It will be useful to give this form a name.

Definition 3.5. For every formula, there is an equivalent formula such that
each occurrence of the negation symbol only applies to atomic formulas. This
form is called the negation normal form.

Lemma 3.1. For every ∆0-formula ϕ(x1, . . . , xk) we have that for all n1, . . . , nk ∈
N :

PA ` ϕ(n1, . . . , nk) ⇐⇒ N |= ϕ(n1, . . . , nk).

Proof. The implication from the left to the right is trivial, since N is a model
for PA. We will show the converse first for quantifier-free sentences. So let ψ be
a quantifier-free sentence with N |= ψ. Bring ψ into negation normal form to
obtain ψ′, we will show with induction to the number of binary logic symbols
in ψ′ that PA ` ψ′. When ψ′ has 0 binary logic symbols, the possible forms
are: t1 = t2, t1 < t2, ¬(t1 = t2) and ¬(t1 < t2) for terms t1 and t2. Since
every term in N that does not contain variables evaluates to some integer, the
interpretations tN1 and tN2 are integers. Which means that one of the cases
tN1 = tN2 , tN1 < tN2 , tN1 6= tN2 or ¬(tN1 < tN2) holds. Using proposition 3.4 we

see that PA ` tN1 = tN2 , PA ` tN1 < tN2 , PA ` tN1 6= tN2 or PA ` ¬(tN1 < tN2),
depending on the case. Thus PA ` ψ′.

Now suppose that the induction hypothesis holds for quantifier-free sentences
in negation normal form with m binary logic symbols, and that ψ′ has m + 1
binary logic symbols. Then ψ′ is of one of the following forms: α ∧ β, α ∨ β or
α → β. Since α and β both have at most m binary logic symbols, we can use
the induction hypothesis to obtain

PA ` α ⇐⇒ N |= α,

and likewise for β. In the first case we have N |= α and N |= β. Thus PA ` α
and PA ` β, from which it follows that PA ` α ∧ β. In the second case we
either have N |= α or N |= β, so PA ` α or PA ` β. From both it follows that
PA ` α ∨ β. For the third case we either have N |= β, thus PA ` β and thus
PA ` α → β, or we have N |= ¬β, thus N |= ¬α. In which case we can apply

13

the induction hypothesis to the negation normal form of ¬α (note that bringing
it in negation normal form does not change the amount of binary logic symbols)
and conclude that PA ` ¬α, so again PA ` α → β. In all three cases we see
that PA ` ψ′.

Now that we have established the converse for quantifier-free formulas, we
can finish the proof by showing that ϕ(n1, . . . , nk) is equivalent to a quantifier-
free sentence ψ in PA. Because then it is also equivalent to ψ in N , and we
find:

N |= ϕ(n1, . . . , nk) =⇒ N |= ψ =⇒ PA ` ψ =⇒ PA ` ϕ(n1, . . . , nk).

To transform ϕ(n1, . . . , nk) into a quantifier-free sentence we will simply replace
all of its subformulas containing quantifiers by something equivalent. The first
occurrence of a quantifier has to be of the form ∀y < tχ(y) or ∃y < tχ(y). Here
t is some term not containing any variables, because ϕ(n1, . . . , nk) contains no
free variables and we are looking at the first occurrence of a quantifier. So the
interpretation tN of t in N is just an integer. If the subformula containing the
quantifier was of the form ∀y < tχ(y), it is equivalent in PA to χ(0) ∧ . . . ∧
χ(tN − 1) (or ¬⊥ if tN = 0). If it was of the form ∃y < tχ(y), it is equivalent

in PA to χ(0) ∨ . . . ∨ χ(tN − 1) (or ⊥ if tN = 0). We can now replace the
subformula by another formula that is equivalent but where the quantifier has
been eliminated. By repeating this progress of replacing subformulas we obtain
the sentence ψ we were looking for. �

Proof of theorem 3.4. We can now prove theorem 3.4. Again, the implica-
tion from the left to the right is trivial. So suppose that ϕ is a Σ1-formula, and
that for n1, . . . , nk ∈ N we have that

N |= ϕ(n1, . . . , nk).

Note that ϕ(n1, . . . , nk) is actually of the form ∃x1 . . . xmϕ
′(n1, . . . , nk, x1, . . . , xm)

for some ∆0-formula ϕ′. Since ϕ(n1, . . . , nk) is true inN there must be a1, . . . , am ∈
N such that ϕ′(n1, . . . , nk, a1, . . . , am) is true inN . Using lemma 3.1 we see that
PA ` ϕ′(n1, . . . , nk, a1, . . . , am), hence PA ` ∃x1 . . . xmϕ

′(n1, . . . , nk, x1, . . . , xm).
So we conclude that PA ` ϕ(n1, . . . , nk). �

We will finish this subsection with a theorem that lets us represent primitive
recursive functions as ∆1-formulas. To do so we will introduce one more abre-
viation. We let ∃!xϕ(x) mean “there is exactly one x such that ϕ(x)”, or more
formally:

∃x∀y(ϕ(y)↔ x = y).

The proof of this theorem is mostly taken from theorem 4.13 in [1], it is however
adjusted a bit to make it work for ∆1-formulas and not only Σ1-formulas (like
in [1]).

Theorem 3.5. Let F : Nk → N be a primitive recursive function, then there is
a ∆1-formula ϕF (~x, y) with k+ 1 free variables such that for all n1, . . . , nk ∈ N:

PA ` ϕ(n1, . . . , nk, F (n1, . . . , nk)), (1)

PA ` ∀x1, . . . , xk∃!yϕ(x1, . . . , xk, y). (2)

14

Proof. The primitive recursive functions are generated inductively. So we can
use induction on their generation to prove theorem 3.5. For the zero function Z,
successor function S and projections Πk

i a formula is easy to find: ϕZ(x, y) =
(y = 0), ϕS(x, y) = (y = x + 1) and ϕΠk

i
(x1, . . . , xk, y) = (y = xi) respectively.

These are all ∆0-formulas and thus ∆1-formulas. Furthermore, they clearly
satisfy properties (1) and (2).

Now suppose that F is defined by composition of H,G1, . . . , Gm, that is

F (~x) = H(G1(~x), . . . , Gm(~x)).

By the induction hypothesis we find ∆1-formulas ϕH , ϕG1 , . . . , ϕGm that satisfy
properties (1) and (2). Now, let ϕF (~x, y) be

∃y1 . . . ym(ϕG1(~x, y1) ∧ . . . ∧ ϕGm(~x, ym) ∧ ϕH(y1, . . . , ym, y)),

then ϕF is a Σ1-formula. From the definition of ϕF is follows that it satisfies
property (1). Property (2) follows from the fact that ϕH , ϕG1 , . . . , ϕGm all
satisfy property (2).

To prove that ϕF is a ∆1-formula, we will show that ¬ϕF (~x, y) is equivalent
to

∃y1 . . . ym(ϕG1
(~x, y1) ∧ . . . ∧ ϕGm

(~x, ym) ∧ ¬ϕH(y1, . . . , ym, y)),

which we will call ψ(~x, y). Then using the fact that ϕH is a ∆1-formula (and
thus ¬ϕH is a Σ1-formula) we see that this is indeed a Σ1-formula. Note that
¬ϕF (~x, y) is clearly equivalent to

∀y1 . . . ym(¬(ϕG1
(~x, y1) ∧ . . . ∧ ϕGm

(~x, ym)) ∨ ¬ϕH(y1, . . . , ym, y)).

Suppose that ¬ϕF (~x, y) holds in PA. By property (2) of ϕG1 , . . . , ϕGm there
must be y1, . . . , ym such that ϕG1

(~x, y1) ∧ . . . ∧ ϕGm
(~x, ym), which means that

¬ϕH(y1, . . . , ym, y), and so ψ(~x, y), must hold in PA. Now suppose that ψ(~x, y)
holds in PA, then we have y1, . . . , ym such that ϕG1

(~x, y1)∧ . . .∧ ϕGm
(~x, ym)∧

¬ϕH(y1, . . . , ym, y). For any other sequence y′1, . . . , y
′
m we have by property (2)

of ϕG1 , . . . , ϕGm that ¬ϕGi(~x, y
′
i) for at least one 1 ≤ i ≤ m, hence ¬(ϕG1(~x, y1)∧

. . . ∧ ϕGm
(~x, ym)). So we see that ¬ϕF (~x, y) holds in PA, which concludes our

proof of ¬ϕF (~x, y) being equivalent to ψ(~x, y).
The last possibility is that F is defined by primitive recursion. That is, there

are functions G,H such that

F (0, ~x) = G(~x),

F (z + 1, ~x) = H(z, F (z, ~x), ~x).

Using the induction hypothesis we find ∆1-formulas ϕG(~x, y) and ϕH(z, u, ~x, y)
that satisfy properties (1) and (2). We define ϕF (z, ~x, y) as follows:

∃am(ϕG(~x, (a,m)0) ∧ ∀i < zϕH(i, (a,m)i, ~x, (a,m)i+1) ∧ y = (a,m)z).

The idea behind this is that the pair (a,m) encodes the sequence of outcomes
of F (0, ~x), . . . , F (z, ~x). We will show that properties (1) and (2) hold for ϕF by
induction to z. We will use theorem 3.3 repeatedly here.

We first look at the case where z = 0. Then ϕF (z, ~x, y) is nothing more
than ∃am(ϕG(~x, (a,m)0) ∧ y = (a,m)0). By property (1) of ϕG we have that

15

ϕG(x1, . . . , xk, G(~x)) holds. Then using theorem 3.3 we find a,m such that
(a,m)0 = G(~x), and we can conclude that property (1) holds for ϕF . Since
there is exactly one y′ such that ϕG(~x, y′) holds for all ~x there also must be
exactly one y such that ϕF (0, ~x, y) holds, which proves property (2) for ϕF .

Now suppose that properties (1) and (2) hold for ϕF (z, ~x, y), then we have
a pair (a,m) that encodes the sequence F (0, ~x), . . . , F (z, ~x). This is the only
sequence that can satisfy

ϕG(~x, (a,m)0) ∧ ∀i < zϕH(i, (a,m)i, ~x, (a,m)i+1)

because of property (2) of ϕG and ϕH . Using theorem 3.3 we find an encoding
(a′,m′) for a sequence that extends the sequence encoded by (a,m) by F (z +
1, ~x). By property (1) of ϕH we find that this sequence satisfies

ϕG(~x, (a′,m′)0) ∧ ∀i < (z + 1)ϕH(i, (a′,m′)i, ~x, (a
′,m′)i+1).

By definition of (a′,m′) we have that (a′,m′)z+1 = F (z + 1, ~x), thus property
(1) is satisfied. By property (2) of ϕH and ϕG this is also the only possible
sequence, so we conclude that property (2) is also satisfied for ϕF .

Recall that (a,m)i is just an abbreviation. For example ϕG(~x, (a,m)0) is
just short for

∃c, d < a(a = c · (m+ 1) + d ∧ 0 ≤ d < m+ 1 ∧ ϕG(~x, d)),

which is a Σ1-formula, since ϕG is a ∆1-formula. It is here that we used (3)
from theorem 3.3. This means that ϕF is equivalent to a Σ1-formula. Now we
consider ¬ϕ(z, ~x, y), or equivalently

∀am(¬(ϕG(~x, (a,m)0) ∧ ∀i < zϕH(i, (a,m)i, ~x, (a,m)i+1)) ∨ y 6= (a,m)z).

We define ψ(z, ~x, y) as

∃am(ϕG(~x, (a,m)0) ∧ ∀i < zϕH(i, (a,m)i, ~x, (a,m)i+1) ∧ y 6= (a,m)z),

which is equivalent to a Σ1-formula. We claim that ¬ϕ(z, ~x, y) is equivalent to
ψ(z, ~x, y). Suppose that ¬ϕ(z, ~x, y) holds in PA. Using property (2) of ϕG and
ϕH we find a sequence y0, . . . , yz such that

ϕG(~x, y0) ∧ ϕH(0, y0, ~x, y1) ∧ . . . ∧ ϕ(z − 1, yz−1, ~x, yz)

holds in PA. By theorem 3.3 this means that we have a pair (a,m) encoding
the sequence y0, . . . , yz. Thus there are a,m such that

ϕG(~x, (a,m)0) ∧ ∀i < zϕH(i, (a,m)i, ~x, (a,m)i+1),

which means that y 6= (a,m)z and so ψ(z, ~x, y) holds in PA. Now suppose that
ψ(z, ~x, y) holds in PA, then we have a sequence encoded by (a,m) such that

ϕG(~x, (a,m)0) ∧ ∀i < zϕH(i, (a,m)i, ~x, (a,m)i+1) ∧ y 6= (a,m)z).

Furthermore, the sequence (a,m)0, . . . , (a,m)z is unique by property (2) of ϕG

and ϕH . So for any (a′,m′) encoding a sequence we either have that

ϕG(~x, (a,m)0) ∧ ∀i < zϕH(i, (a,m)i, ~x, (a,m)i+1)

does not hold, or it holds in which case we must have that (a′,m′)z = (a,m)z
by uniqueness and so y 6= (a′,m′)z. In both cases we conclude that ¬ϕF (z, ~x, y)
holds in PA. So ¬ϕF (z, ~x, y) is indeed equivalent to ψ and we conclude that ϕF

is a ∆1-formula. �

16

Definition 3.6. If, given a function F : Nk → N, we can find a formula ϕF as
in theorem 3.5 then it is called provably recursive. This formula ϕF is also said
to represent F . However, that is in fact a weaker notion. Because property (2)
is not required then, but instead we must have for all n1, . . . , nk that

PA ` ∃!yϕF (n1, . . . , nk, y).

In both cases ϕF does not even need to be a ∆1-formula, a Σ1-formula is good
enough.

In the definition above we mention that for that definition we do not need ϕF to
be a ∆1-formula. However, we did prove theorem 3.5 for ∆1-formulas because
that will be needed later on when proving Gödel’s incompleteness theorems.

3.3 Representing total recursive functions in PA

As we have seen in the previous subsection, primitive recursive functions are
important because we can represent them in PA. Similar results hold for the
total recursive functions. In this subsection we will take a look at these results.

The following theorem is not mentioned in [1], but is necessary later in
sections 6 and 7.

Theorem 3.6. Let ϕ(x) be a Σ1-formula, then the set {x ∈ N : N |= ϕ(x)} is
recursively enumerable.

Proof. Since ϕ(x) is a Σ1-formula, it is of the form ∃y1, . . . , ykψ(x, y1, . . . , yk)
for some ∆0-formula ψ(x, y1, . . . , yk). As we argued in the proof of lemma 3.1,
we can transform ψ(x, y1, . . . , yk) into a quantifier-free formula if x, y1, . . . , yk
are integers. That means there is an algorithm that can simply check whether
or not ψ(x, y1, . . . , yk) is true.

We will now describe an algorithm that enumerates all of {x ∈ N : N |=
ϕ(x)}. We iterate through the set Nk+1. For each element (x, y1, . . . , yk) we
can check whether or not ψ(x, y1, . . . , yk), and thus ϕ(x), is true. Whenever this
is the case, we output x.

The described algorithm clearly enumerates exactly the elements of {x ∈ N :
N |= ϕ(x)}, so this set is recursively enumerable. �

Theorem 3.5 proves that we can represent primitive recursive functions in a
slightly stronger manner than them just being Σ1-represented, as we defined
in definition 3.6. We can also represent total recursive functions, but they can
only be Σ1-represented.

Theorem 3.7. Every total recursive function is Σ1-represented in PA.

The proof of theorem 3.7 requires some results that are beyond the scope of this
paper. For the full proof we refer to [1] theorem 4.14. We will provide a sketch
of the proof below.

Proof sketch of theorem 3.7. Suppose we are given a total recursive func-
tion F : Nk → N. Using the results that are beyond the scope of this paper
one is able to construct a primitive recursive set A ⊆ Nk+2 with the following
property. There is at least one y such that (x1, . . . , xk, y,m) ∈ A, precisely when

17

F (x1, . . . , xk) = m. By theorem 3.5 there is a Σ1-formula ϕ(x1, . . . , xk, y,m)
that represents A. That is, for all x1, . . . , xk, y,m ∈ N we have:

(x1, . . . , xk, y,m) ∈ A⇔ PA ` ϕ(x1, . . . , xk, y,m),

(x1, . . . , xk, y,m) 6∈ A⇔ PA ` ¬ϕ(x1, . . . , xk, y,m).

This formula ϕ can be used to construct a ∆0-formula S(x1, . . . , xk, z,m) such
that:

PA ` ∃ymϕ(x1, . . . , xk, y,m)↔ ∃!z∃mS(x1, . . . , xk, z,m).

Using the way S(x1, . . . , xk, z,m) is constructed one can check relatively easy
that ∃zS(x1, . . . , xk, z,m) represents F . �

4 Gödel’s incompleteness theorems

The incompleteness theorems of Gödel rely on the power of PA. More precisely,
they rely on the power of PA being able to make statements about its own
theorems. To do so we first need to find some way of coding formulas and
proofs. We will discuss the necessary tools to do so in subsection 4.1. After
that we are finally ready to state and prove Gödel’s incompleteness theorems.

4.1 Coding formulas and proofs

It is well known that there are bijections from N×N to N. One of these bijections
is

j(n,m) =
1

2
(n+m)(n+m+ 1) + n,

which is a primitive recursive function because it is composed multplication and
addition. In fact, the function j enumerates the elements in N×N as displayed
in figure 1.

(0, 0)

(0, 1)

(1, 0)

(0, 2)

(1, 1)

(2, 0)

...

...

. . .

. . .

Figure 1: Bijection from N× N to N.

18

Because j is bijective, we can find functions j1 and j2 such that

j(j1(z), j2(z)) = z.

In this specific case the functions j1 and j2 are primitive recursive. We can now
define a bijective function from Nk to N for any k.

Definition 4.1. We define the bijections jk : Nk → N as follows:

j1(x) = x

jk+1(x1, . . . , xk+1) = j(jk(x1, . . . , xk), xk+1).

The projection functions, jki : N→ N (with 1 ≤ i ≤ k) are functions satisfying

jk(jk1 (z), . . . , jkk (z)) = z

for all z ∈ N, and are defined by

j1
1(z) = z

jk+1
i =

{
jki (j1(z)) if 1 ≤ i ≤ k
j2(z) if i = k + 1

Using the fact that j, j1 and j2 are primitive recursive, we see that the functions
jk and jki are also primitive recursive for all k ∈ N and 1 ≤ i ≤ k.

These functions give us a way of coding sequences. A sequence (x1, . . . , xk)
is nothing but an element of Nk. Here we see N0 as the set that contains a
unique element (−), the empty sequence. We introduce the notation 〈x1, . . . , xk〉
to denote the code for the sequence (x1, . . . , xk), and 〈〉 denotes the code for
the empty sequence. So 〈x1, . . . , xk〉 is just an integer, coding the sequence
(x1, . . . , xk).

Definition 4.2. We code sequences as follows:

〈〉 = 0

〈x1, . . . , xk〉 = j(k, jk(x1, . . . , xk)) + 1

Being able to code sequences gives us the necessary tools to code formulas and
proofs. This means that to every formula ϕ we will be assigned some integer
pϕq that uniquely determines the formula. This integer pϕq is called the Gödel
number for formula ϕ.

We will code formulas as follows (in fact, we use the exact same way as in
[1] section 5.1). We assume that the variables in LPA are numbered v0, v1, . . .,
and we use the following “code book” where we from now on take < to be a
symbol of LPA.

0 1 v + · = < ∧ ∨ → ¬ ∀ ∃
0 1 2 3 4 5 6 7 8 9 10 11 12

We code terms by recursion. So p0q = 〈0〉, p1q = 〈1〉, pviq = 〈2, i〉, pt + sq =
〈3, ptq, psq〉 and pt · sq = 〈4, ptq, psq〉. We code formulas likewise by recursion,
so for example pϕ ∧ ψq = 〈7, pϕq, pψq〉.

19

Because the coding of formulas is done recursively and the sequences are
coded by primitive recursive functions, we can use primitive recursive functions
to describe properties like “the main connective of this formula is ∧”.

Likewise we can specify a code book for proof trees and recursively code
proof trees (this is worked out in [1], section 5.2). Then we can also use primi-
tive recursive functions to express properties like “the conclusion of this tree is
reached using → introduction”. Even more important: we can create a primi-
tive recursive predicate Prf(y, x) that says “y is the code of a correct proof in
PA for the formula coded by x”.

4.2 Gödel’s first incompleteness theorem

The proof of Gödel’s first incompleteness theorem heavily relies on the diago-
nalization lemma. Before proving this lemma we note that the properties “x
codes a formula ϕ” and “y codes a term t” can be described using primitive re-
cursive functions. This makes it possible to define a primitive recursive function
Sub(x, y, i) as follows:

Sub(x, y, i) =

{
pϕ[s/vi]q if “y codes a formula ϕ” and “x codes a term s”

0 else

Lemma 4.1 (Diagonalization lemma). Let ϕ be an LPA-formula with free vari-
able v0, then there is an LPA-formula ψ with the same free variables as ϕ except
for v0, such that:

PA ` ψ ↔ ϕ[pψq/v0].

If ϕ is Π1, then ψ can be chosen to be Π1 as well.

Proof. The function Sub(x, y, i) is primitive recursive, so λxy.Sub(x, y, 0) is
also primitive recursive. By theorem 3.5 there is a ∆1-formula S that represents
λxy.Sub(x, y, 0) in PA. We let T be the ∆1-formula that represents the primitive
recursive function n 7→ pnq in PA. Recall that we thus have the following
properties for S and T and all n,m ∈ N:

PA ` S(n,m,Sub(n,m, 0)) (1)

PA ` ∀xy∃!zS(x, y, z) (2)

PA ` T (n, pnq) (3)

PA ` ∀x∃!zT (x, z) (4)

Since ϕ has v0 free, we can define a formula C to be equivalent to:

∀xy(T (v0, x) ∧ S(x, v0, y)→ ϕ[y/v0]),

and we let ψ be defined by:
C[pCq/v0].

We claim that this is the ψ we are looking for. It is clear that if ϕ is a Π1-formula,
that C can be chosen to be a Π1-formula and hence ψ is a Π1-formula.

To prove the claim about ψ we reason in PA. Suppose that ψ and thus

∀xy(T (pCq, x) ∧ S(x, pCq, y)→ ϕ[y/v0])

20

holds. By (1) we have that

T (pCq, ppCqq)

holds, and by (3) we have that

S(ppCqq, pCq, pC[pCq/v0]q)

holds. Therefore we can conclude that ϕ[pC[pCq/v0]q/v0] holds, and thus by
the definition of ψ we have ϕ[pψq/v0] so ψ → ϕ[pψq/v0].

Now suppose that ϕ[pψq/v0] holds. For x = ppCqq and y = pC[pCq/v0]q
the formula

T (pCq, x) ∧ S(x, pCq, y) (5)

holds by (1) and (3). By (2) and (4) these are the only values for x and y such
that formula (5) holds. So the only values for x and y for which formula (5)
holds are exactly those values such that

T (pCq, x) ∧ S(x, pCq, y)→ ϕ[y/v0].

So we conclude that

∀xy(T (pCq, x) ∧ S(x, pCq, y)→ ϕ[y/v0])

holds, which is exactly ψ. Thus ϕ[pψq/v0]→ ψ and our proof is completed. �

In section 4.1 we mentioned the existence of a primitive recursive predicate
Prf(y, x) that says “y is the code of a correct proof in PA for the formula coded
by x”. Let Prf(y, x) be a Σ1-formula representing this predicate. We can define
a proof predicate Th(x) as ∃yPrf(y, x). In other words: Th(x) is true whenever
the formula coded by x is provable in PA.

Proposition 4.1. The proof predicate Th(x) described above satisfies the fol-
lowing properties, for any two LPA formulas ϕ and ψ:

(1) If PA ` ϕ, then PA ` Th(pϕq).

(2) PA ` Th(pϕq) ∧ Th(pϕ→ ψq)→ Th(pψq).

(3) PA ` Th(pϕq)→ Th(Th(pϕq)).

Proof. For property (1) we suppose that PA ` ϕ. That means there is a
proof of ϕ, which can be coded by some y ∈ N. Hence PA ` Prf(y, pϕq), thus
PA ` Th(pϕq).

To prove property (2) we reason in PA. Suppose that Th(pϕq) and Th(pϕ→ ψq)
hold, then there are x and y that code proofs for ϕ and ϕ→ ψ respectively. We
can combine these two proofs using→ elimination to find a new proof coded by
z for ψ. So Prf(z, pψq) holds and we have proven property (2).

Property (3) is actually a consequence of a more general result called for-
malized Σ1-completeness. This theorem asserts that for any Σ1-formula ϕ we
have that PA ` ϕ → Th(pϕq). Proving formalized Σ1-completeness actually
comes down to formalizing theorem 3.4 in PA. To see how this is exactly done
we refer to theorem 5.7 of [1]. Because Th is a Σ1-formula, we can apply this
theorem to Th(pϕq) and thereby obtain property (3). �

21

The first incompleteness theorem of Gödel states that there is some sentence G,
the Gödel sentence, that is independent of PA. That is, PA proves neither G
nor ¬G.

Theorem 4.1 (Gödel’s first incompleteness theorem). There is an LPA-sentence
G, the Gödel sentence, that is independent of PA.

Proof. Apply the diagonalization lemma, lemma 4.1, to the formula ¬Th(v0)
to obtain a formula G such that

PA ` G↔ ¬Th(pGq).

To prove that PA 6` G, we assume that PA ` G and aim for a contradiction.
Using property (1) of proposition 4.1 we see that PA ` Th(pGq). But by the
choice of G we also have that PA ` ¬Th(pGq). Thus PA would have to be
inconsistent, which is not the case.

Now we suppose that PA ` ¬G. Again we aim for a contradiction to prove
that PA 6` ¬G. By the choice of G we have that PA ` Th(pGq). Since N is a
model of PA, we have that Th(pGq) is tue in N . So there is some x coding a
proof of G in PA, thus PA ` G. This would again mean that PA is inconsistent,
which is not the case. �

4.3 Gödel’s second incompleteness theorem

The second incompleteness theorem of Gödel makes use of his first incomplete-
ness theorem to show that PA does not prove its own consistency. To formalize
this we need the following notation.

Definition 4.3. For a theory T we define the LPA-sentence Con(T) as

¬ThT (p⊥q),

where ThT (x) is a proof predicate in PA for the theory T . In particular,
Con(PA) is ¬Th(p⊥q).

We are now ready to formulate Gödels second incompleteness theorem. We will
however first prove a result that is a bit more general, from which the second
incompleteness theorem will easily follow. We first look at a lemma (taken from
exercise 79 in [1]) that is necessary, then we will state and prove this more
general result.

Lemma 4.2. Given an LPA-formula ϕ that satisfies properties (1) and (2) in
the same way as Th does in proposition 4.1, we have

PA ` ϕ(pα ∧ βq)↔ ϕ(pαq) ∧ ϕ(pβq).

Proof. We first note that from properties (1) and (2) it follows that if PA `
α → β, then PA ` ϕ(pαq) → ϕ(pβq). We use property (1) to obtain PA `
ϕ(pα→ βq). Then by property (2) we have PA ` ϕ(pα→ βq) ∧ ϕ(pαq) →
ϕ(pβq). So by combining the two we have PA ` ϕ(pαq)→ ϕ(pβq). We will use
this property quite a few times in this proof.

22

Since PA ` α ∧ β → α and PA ` α ∧ β → β, we have:

PA ` ϕ(pα ∧ βq)→ ϕ(pαq)

and
PA ` ϕ(pα ∧ βq)→ ϕ(pβq).

So we conclude that

PA ` ϕ(pα ∧ βq)→ ϕ(pαq) ∧ ϕ(pβq).

To prove the converse we note that PA ` α→ (β → α ∧ β), thus:

PA ` ϕ(pαq)→ ϕ(pβ → α ∧ βq).

Hence

PA ` ϕ(pαq) ∧ ϕ(pβq)→ ϕ(pβ → α ∧ βq) ∧ ϕ(pβq)→ ϕ(pα ∧ βq),

where we used property (2) again for the last step. �

Theorem 4.2. Given an LPA-formula ϕ that satisfies the same properties as
Th in proposition 4.1, and any LPA-sentence ψ such that PA ` ψ ↔ ¬ϕ(pψq)
we have that

PA ` ψ ↔ ¬ϕ(p⊥q).

Proof. We have that PA ` ⊥ → ψ, so PA ` ϕ(p⊥q) → ϕ(pψq). By the
assumption on ψ we then have PA ` ψ → ¬ϕ(pψq)→ ¬ϕ(p⊥q).

For the converse we use the assumption on ψ to see that:

PA ` ϕ(pψq)→ ϕ(p¬ϕ(pψq)q).

Also by property (3) we have that PA ` ϕ(pψq) → ϕ(pϕ(pψq)q). Combining
the two using lemma 4.2 we have:

PA ` ϕ(pψq)→ ϕ(p¬ϕ(pψq) ∧ ϕ(pψq)q),

which is just PA ` ϕ(pψq)→ ϕ(p⊥q). Taking the contraposition and using the
assumption on ψ again we finally obtain

PA ` ¬ϕ(p⊥q)→ ¬ϕ(pψq)→ ψ.

Which concludes our proof. �

Theorem 4.3 (Gödel’s second incompleteness theorem).

PA 6` Con(PA)

Proof. Apply Gödel’s first incompleteness theorem (theorem 4.1) to obtain a
sentence G that is independent of PA and satisfies PA ` G ↔ ¬Th(pGq). We
then apply theorem 4.2 with G in the role of ψ and Th in the role of ϕ to see
that:

PA ` G↔ Con(PA).

Now, if PA would prove its own consistency it would also prove G. But G is
independent of PA, so PA does not prove its own consistency. �

23

5 Rosser sentences

In the proof of Gödel’s first incompleteness theorem we reasoned that since
PA ` Th(pGq) we must have N |= Th(pGq), which is valid because N is a
model of PA. However, this proof cannot be used for consistent extensions of
PA. For example, the theory PA∪{¬G} is a consistent extension of PA but N
is not a model of it since N |= G.

Using the so called Rosser trick it is possible to prove Gödel’s first incom-
pleteness theorem for any consistent extension of PA, using only its consistency
and Σ1-completeness (theorem 3.4). For this Rosser used a notion of one proof
coming before another. To formalize this, we will introduce some new notation.
The following definitions are taken from [2], and slightly adjusted to fit the
context of this paper.

Definition 5.1. Let ϕ and ψ be LPA-sentences of the forms ∃xϕ′(x) and
∃yψ′(y) respectively. The we define ϕ � ψ to be an abbreviation of:

∃x(ϕ′(x) ∧ ∀y < x¬ψ′(y)),

and ϕ ≺ ψ will be an abbreviation of:

∃x(ϕ′(x) ∧ ∀y ≤ x¬ψ′(y)).

Furthermore we let ϕ � ψ mean ψ � ϕ (likewise for � and ≺), and ϕ ≡ ψ
means ϕ � ψ ∧ ψ � ϕ.

Recall that Th(pϕq) is just short for ∃xPrf(x, pϕq). So we can apply this no-
tation to the sentences Th(pϕq) and Th(p¬ϕq), getting Th(pϕq) � Th(p¬ϕq).
This gives a notion of a proof of ϕ ‘coming before’ a proof of ¬ϕ. This of
course depends on how one codes proofs. We have established that here in the
primitive recursive predicate Prf.

From here on it will no longer be necessary to fix a certain proof predicate.
We will however need to formally define what we see as a proof predicate.

Definition 5.2. A Σ1-sentence Th(x) is a standard proof predicate for an ex-
tension PA+ of PA, if it satisfies the following properties for any LPA-sentences
ϕ and ψ and any Σ1-sentence σ:

(D1) If PA+ ` ϕ, then PA+ ` Th(pϕq);

(D2) PA+ ` Th(pϕ→ ψq) ∧ Th(pϕq)→ Th(pψq);

(D3) PA+ ` σ → Th(pσq) (formalized Σ1-completeness).

Note that we do not exclude the case that PA+ = PA.

Clearly our usual proof predicate is a standard proof predicate, by proposition
4.1. Even though property (3) of 4.1 is not exactly formalized Σ1-completeness,
we have seen in its proof that our usual proof predicate possesses that property.
So in what follows we can assume that at least one standard proof predicate
exists. If we are talking about an extension PA+ of PA, we can modify our
proof predicate to accept the extra axioms of PA+.

24

Let Th be any standard proof predicate for some extension PA+ of PA (with
possibly PA+ = PA). Define the formula ρTh(x) to be

Th(〈10, x〉) � Th(x).

So when ϕ is some LPA-sentence, ρTh(pϕq) is

Th(p¬ϕq) � Th(pϕq).

Definition 5.3. A Rosser sentence (for the standard proof predicate Th) is a
sentence R such that

PA+ ` R↔ ρTh(pRq).

Where PA+ is some extension of PA or PA itself, and Th is a standard proof
predicate for PA+.

Note that by the diagonalization lemma, lemma 4.1, every standard proof pred-
icate has at least one Rosser sentence.

Essentially a Rosser sentencce asserts that a proof of its negation occurs
before a proof of the sentence itself. It is exactly this property that allows us
to prove Gödel’s first incompleteness theorem using Rosser sentences.

Theorem 5.1 (Gödel’s first incompleteness theorem using Rosser sentences).
For any consistent extension PA+ of PA we can find a Rosser sentence R that
is independent of PA+.

Proof. Let Th+ be a standard proof predicate for PA+, we write ρ for ρTh+ .
Note that because Th+ is a Σ1-sentence, it is of the form ∃yPrf+(y, x) for some
formula Prf+(y, x). This means that Prf+(y, x) actually says “y is the code
of a proof in PA+ for the formula coded by x”. Now let R be a Rosser sentence
for Th+ , we claim that R is independent of PA+.

Suppose that PA+ ` R, then we must have PA+ 6` ¬R because PA+ is
consistent. This means that we have some natural number coding a proof for R
in PA+ and no natural number coding a proof of ¬R in PA+. Thus the sentence

∃xPrf+(x, pRq) ∧ ∀y ≤ x¬Prf+(y, p¬Rq)

is true in N . This is by definition exactly Th+(pRq) ≺ Th+(p¬Rq). As this is
a true Σ1-sentence in N , we can use Σ1-completeness (theorem 3.4) to see that
it holds in PA and hence in PA+. Because

PA+ `Th+(pRq) ≺ Th+(p¬Rq) →
¬(Th+(p¬Rq) ≺ Th+(pRq)) →
¬ρ(pRq) →
¬R,

we have that PA+ ` ¬R which gives a contradiction.
Now suppose that PA+ ` ¬R, then by consistency of PA+ we have PA+ 6` R.

Thus by the same reasoning as above we have a Σ1-sentence that is true in N :

Th+(p¬Rq) ≺ Th+(pRq),

which is just ρ(pRq). Therefore PA+ ` ρ(pRq) and thus PA+ ` R which again
gives a contradiction. �

25

6 Modal logic for Rosser sentences

As we have seen in section 5, Rosser sentences are quite an important tool
when reasoning about PA and its extensions. This can lead to questions about
these very Rosser sentences. One of those questions is whether or not all Rosser
sentences are equivalent. This question is answered in section 7. To answer such
questions we would like to have some sort of logic system in which we can reason
about Rosser sentences. In this section we will show how one can develop such
a system.

Definition 6.1. The language LL consists of the standard boolean connec-
tives (¬,∧,∨,→,↔), the one place connective �, the constants ⊥ and > and
countably many atoms p1, p2,

The theory L is defined in the language LL and has the following axiom
schemes. Here A and B are LL formulas.

(L1) All boolean tautologies (like A ∨ ¬A).

(L2) �(A→ B) ∧�A→ �B.

(L3) �A→ ��A.

(L4) �(�A→ A)→ �A.

It also has the following rule: A/�A. That is, whenever A is provable, �A also
is provable.

In modal logic �A normally means “necessarily A”, we will however read it a
bit differently. For us it will mean “A is provable”. This is made precise in the
following definition.

Definition 6.2. An interpretation is a map (·)∗ that assigns to each atom of
LL an LPA-formula, extended to assign an LPA-formula to each LL-formula
while satisfying (for any two LL-formulas A,B):

(1) ⊥∗ is ⊥, and >∗ is ¬⊥;

(2) (A ∧B)∗ is A∗ ∧B∗ (and likewise for all other boolean connectives);

(3) �A is Th(pA∗q).

Where Th is some fixed standard proof predicate. So in fact, the interpretation
(·)∗ is based on Th.

The definitions above give us a way to reason about provability using modal
logic. However, we want to reason about Rosser sentences. So we will need to
introduce some notion of a proof occuring before another proof. To this end we
will again use the symbols ≺ and �.

Definition 6.3. We extend LL to LR by adding the symbols ≺ and �. Also,
the following formation rule is added in LR: �A ≺ �B and �A � �B are well
formed formulas whenever A and B are. The Σ-formulas of LR are those with
principal connective �, ≺ or �.

Our definition of an interpretation (·)∗ naturally extends to LR formulas by
adding the requirement (�A � �B)∗ = (�A)∗ � (�B)∗ and likewise for ≺.

26

Lemma 6.1. For any interpretation (·)∗ we have that if A is a Σ-formula, then
A∗ is a Σ1-formula.

Proof. There are three possible principal connectives for A, namely �, ≺ or �.
This means that the interpretation A∗ is of one of the following forms Th(pϕq),
Th(pϕq) ≺ Th(pψq) or Th(pϕq) � Th(pψq) for some formulas ϕ and ψ. All of
these are Σ1-formulas, so A∗ is a Σ1-formula. �

One might ask if the following holds: if every interpretation of a formula A is
a Σ1-formula, then A is equivalent to some Σ-formula. This is however not the
case. A counterexample to this would be �A ≺ �B ∧ �C ≺ �D for distinct
A,B,C,D. Clearly every interpretation of this formula is a Σ1-formula, but it
can never be equivalent to a Σ-formula.

6.1 The theories R− and R

Definition 6.4. The theory R− in the language LR has the same rules as L
and has the following axiom schemes.

(R1) All schemes from L, but then for all LR-formulas.

(R2) A→ �A, for every Σ-formula A.

(R3) The order axioms for � and ≺ (see below).

The theory R is R− together with the rule �A/A.

To talk about the difference between R− and R we first need one more definition.

Definition 6.5. A derived rule of some theory T is a rule which can be derived
from the axioms and rules already present in that theory. So A/B is a derived
rule of T if T ` A⇒ T ` B.

We can actually show that R− and R are different because �A/A is not a
derived rule of R−. We will do this in subsection 6.3.

The order axioms mentioned in definition 6.4 are as follows. The first four
schemes express that � pre-orders true formulas (keep in mind that all these
formulas must have principal connective �):

A→ A � A,
A � B → A,

A � B ∧B � C → A � C,
A ∨B → A � B ∨B ≺ A.

The next two schemes state that ≺ is the strict pre-order associated with �:

A ≺ B → A � B,
A � B → ¬(B ≺ A).

The last scheme requires that all true formulas must occur before false ones:

A ∧ ¬B → A ≺ B.

We are now ready to state the main result of this section.

27

Theorem 6.1 (Arithmetical completeness of R).

R ` A⇐⇒ for every interpretation (·)∗, PA ` A∗.

Proof. One can prove

R ` A⇒ for every interpretation (·)∗, PA ` A∗

right now. We will not fully write down the proof here, because it just comes
down to checking that the set of theorems of PA is closed under the translated
rules of R. This is done in [3] (lemma 2.3) for the theory L. Proving this for R
just requires to additionally check for scheme (2), the rule �A/A and the order
axioms (refering to the numbering from definition 6.4).

Scheme (2) is just the translated version of formalized Σ1-completeness. The
rule �A/A also holds for PA, because if PA ` (�A)∗ we have N |= (�A)∗ which
is just N |= Th(pA∗q). This means that there is a proof for A∗ in PA. The
order axioms are easily checked with our definition of � and ≺ in PA.

Proving the converse requires a lot more work. We will focus on doing so in
the rest of this section. �

6.2 Kripke models

Kripke models are for modal logic what truth tables are for propositional logic.
These models define which formulas are valid and which are not. In this sub-
section we will define Kripke models for R−.

We will first define a frame. A frame is an irreflexive tree-like partial order
C on some finite set. Because it is a tree-like order, we will call the elements of
the finite set nodes (even though a common term for Kripke models would be
worlds here). The root of the tree is the ‘largest’ element, that is: we have bCa
whenever b is a descendant of a.

Definition 6.6. A Kripke model (for R−) is a pair (C,), where C is a frame
and is a relation between the nodes of the frame and formulas of LR, satisfying
the following.

(1) The relation respects boolean operations, for example: if a is a node,
a A∧B iff a A and a B. In particular, this also holds for negation:
a 6 A iff a ¬A.

(2) We have that �A holds at node a iff A holds at all of the descendants of
a. That is, a �A iff for all bC a, b A.

(3) We have Σ-persistence, thus if A is a Σ-formula and a A for some node
a, then for all bC a we have b A.

(4) We require each of the order axioms (definition 6.4, item (3)) to hold at
every node.

We read a A as “A holds at a”, and we say that A is valid in (C,) if A
holds at every node. If A does not hold at some node of (C,), we call (C,)
a countermodel to A.

28

To get a bit of an idea of how these models work, and because we will need it
later, we will state a small lemma here. This lemma is not stated in [2], it is
made up for this paper.

Lemma 6.2. Every Kripke model is a countermodel to ¬�A for every formula
A.

Proof. Let (C,) be any Kripke model. Since it is finite, it must have a leaf
node a. As there is no node b such that b C a, we have ∀b C a(b A) for
every formula A. Hence we must have that a �A, and so we have a 6 ¬�A.
So ¬�A does not hold at a and the Kripke model is thus a countermodel to
¬�A. �

Kripke models have to respect boolean operations. So whether or not a certain
formula holds at a certain node completely depends on whether or not its sub-
formulas hold at that node. One would like to describe only a part of a Kripke
model, namely the part that says something about a formula we are interested
in, and then extend that to a complete Kripke model.

Definition 6.7. A set S is called adequate if it closed under subformulas and
contains �A � �B and �A ≺ �B whenever it contains �A and �B.

An S-model is a pair (C,) such that requirements (1) - (4) from definition
6.6 hold for the formulas in S. An A-model is then an S-model where S is the
smallest adequate set containing A.

We can now formalize that a part of a Kripke model can be extended to an
actual Kripke model.

Lemma 6.3. If S is adequate and (C,) is an S-model, then there exists a
relation ′ such that (C,′) is a Kripke model and and ′ agree on the
formulas of S.

Proof. We will not provide a complete proof here, but we will give an idea of
why this would work. As we have stated before, what a Kripke model decides
about a certain formula depends entirely on its subformulas. So to extend an
S-model to a Kripke model, we only need to define what that Kripke model
decides about the atoms that do not occur in S. Whether or not these atoms
hold at a certain node does not influence whether or not the formulas in S hold
at that node. An easy construction would be to let every atom that does not
occur in S hold at every node. Of course, then some construction is necessary
to make sure requirements (2) - (4) from definition 6.6 are met, but that is easy
to do. �

6.3 Completeness of R−

In this subsection we will prove that the Kripke models we defined for R−

actually describe the valid formulas of R−. This is formalized in the following
theorem.

29

Theorem 6.2 (Completeness of R−). For all LR-formulas A we have:

R− ` A ⇐⇒ (1)

A is valid in all Kripke models ⇐⇒ (2)

A holds at the root in every Kripke model. (3)

In proving this theorem we will use a result from [3], namely corollary 1. This
states that for any LL-formula A such that L 6` A, there is a Kripke model for
L such that A does not hold at some node in that model. A Kripke model for
L is a pair (C,) such that (1) and (2) from definition 6.6 hold.

If (C,) is a Kripke model (either for R− or L), and a is some node in that
model, then the restriction to a and all of its descendants is also a Kripke model.
So when given a countermodel to some formula A, there is some node a where
A does not hold. Restricting this countermodel to a and its descendants gives
us a Kripke model where A does not hold at the root.

Proof of theorem 6.2. We first prove (1) ⇒ (2). Let T be the set of the
formulas that are valid in all models. We will show that this set contains all
the instances of the axioms of R, and is closed under the rules of R. This is
actually an extension of the proof of theorem 3.5 in [3], where a similar result
was proved for the theory L. We will start with the axiom schemes from L.

(L1) Because every model has to respect boolean relations, boolean tautologies
have to be valid in every model.

(L2) Suppose that �(A → B) ∧ �A holds at node a, then A → B ∧ A must
hold at every descendant of a. So B must hold at every descendant of A,
and therefore �B holds at a.

(L3) Suppose �A holds at node a, then A must hold at all of its descendants. So
for each descendant b of a we have that A holds for all the descendants of
b. So �A holds at b, but that means that �A holds at all the descendants
of A. Thus ��A holds at a.

(L4) Suppose that there is a model (C,) where �(�A → A) → �A does
not hold at some node a (for some formula A). Then we must have that
a �(�A→ A) and a 6 �A. Now let X be the set of all descendants of a
where A does not hold. It must be non-empty because otherwise we would
have a �A. Let b be a C-minimal element of X. For any cC b we have
that c 6∈ X thus c A, so we have that b �A. Because a �(�A→ A)
and b C a, we must have b �A → A. Since also b �A we must have
b A, which contradicts b ∈ X. So there can be no countermodel to
�(�A→ A)→ �A.

That T is closed under the rule A/�A, we can see easily. For let A ∈ T , then
it holds at every node in every model. So for any node a we have that A holds
at all of its descendants, and thus �A holds at a.

It now remains to show that T also contains all instances of (R2) and (R3).
It is clear that T contains all instances of (R3) as these are the order axioms
and are by definition required to hold at every node. For (R2) we let A be any
Σ-formula, and suppose it holds at node a. By Σ-persistence we then must have
that A holds at every descendant of a, and thus �A holds at a.

30

The implication (2) ⇒ (3) is direct. For the implication (3) ⇒ (1) we will
prove ¬(1) ⇒ ¬(3) instead, as in theorem 3.1 of [2]. So assume that R− 6` A.
As we discussed before starting the proof of this theorem, a likewise result was
already proved for L. We will aim to use that result by translating the LR-
formula A to some LL-formula A′. For this, let S be an adequate set containing
A and let D1, . . . , Dn be the formulas of S with principal connective � or ≺. Let
p1, . . . , pn be distinct atoms of LL, that do not occur in S. For any LR-formula
B, the LL-formula B′ will be the result of substituting pi for Di throughout B.

For any formula B we define �B to be B ∧ �B. We let X be the set that
contains the following LL-formulas:

• �(pi → �pi), for all 1 ≤ i ≤ n;

• �B′, for each order axiom B only involving formulas of S.

The set X actually holds the translated version of the axioms of R− that L is
missing. Because the axioms of R− are schemes it satisfies the rule B(p)/B(C)
for any two formulas B,C and any atom p. This means that since R− 6` A, we
must have R− 6` A′, from which it follows that L 6` ∧X → A′ (here ∧X is the
conjunction of all formulas in X).

We can now apply the result we discussed before we started this proof to
find a Kripke model (C,) such that ∧X ∧ ¬A′ holds at its root. From this
we will construct an S-model (C,′). We keep the same nodes and the same
ordering C on them, and we define ′ as follows. For any B ∈ S and any node
a we let ′ be such that

a ′ B ⇐⇒ a B′.

That this is indeed an S-model follows from the fact that (C,) is a Kripke
model for L. So it only remains to check (3) and (4) of definition 6.6. These
easily follow from the fact that ∧X holds at the root of (C,), which means
∧X is valid in (C,) because for any formula B we have: if �B holds at the
root then B holds at every node.

To conclude we can now apply lemma 6.3 to extend (C,′) to a Kripke
model for R− where A does not hold at the root. �

As was promised in subsection 6.1 we will show here that �A/A is not a derived
rule of R−. We will not really need this result later on, but it is a nice example
of how Kripke models and theorem 6.2 can be used.

Corollary 6.1. The rule �A/A is not a derived rule of R−.

Proof. Before really starting our proof we note that for any A we have

R− ` �⊥ → �A.

This can be seen quickly by applying the rule A/�A to obtain R− ` �(⊥ → A),
after which we use axiom (L2) from definition 6.1.

We will now aim to show that R− ` �(�> ≺ �⊥) and then that R− 6`
�> ≺ �⊥. For that we reason in R− by cases. Again using the rule A/�A we
have that �> holds. Now suppose that ¬�⊥ holds, then by the order axioms
we have �> ≺ �⊥. This is a Σ-formula, so by axiom (R2) it follows that
�(�> ≺ �⊥) holds. If �⊥ would hold, then we can use the remark at the start

31

of this proof with �> ≺ �⊥ in the role of A to find �(�> ≺ �⊥). So in either
case �(�> ≺ �⊥) holds.

To show that R− 6` �> ≺ �⊥ we will use theorem 6.2 by giving a counter-
model to �> ≺ �⊥. It will be enough to specify an S-model, where S is the
smallest adequate set containing �> ≺ �⊥. Let C be an order only containing
the point a. Then as a is a leaf node we have a �> and a �⊥, so we can
set a �⊥ ≺ �>. By the order axioms we then must have a 6 �> ≺ �⊥. Ex-
tending this S-model to a Kripke model gives us a countermodel to �> ≺ �⊥
and thus by theorem 6.2 we have R− 6` �> ≺ �⊥. �

6.4 Completeness of R

As with R− we would like to describe the valid formulas of R using Kripke
models. In this subsection we will do so. To that end we will first need a few
defintions.

Definition 6.8. For any LR-sentence A we let SA be

∧{�B → B : �B is a subformula of A}.

We call a Kripke model A-sound if SA holds at its root.

This enables us to define the soundness rule, which is the counterpart in LR to
the Σ1-completeness of PA.

Definition 6.9 (Soundness rule). For all Σ-formulas A:

(SA→ A)/A.

For any interpretation (·)∗ this is already a derived rule of PA. Because suppose
that (SA → A)∗ is provable in PA, then it must be true in N . Since (SA)∗ is
always true in N , we have that A∗ must be true in N . Because A is a Σ-formula,
we have that A∗ is a Σ1-formula and by Σ1-completeness it is thus provable in
PA.

The soundness rule happens to be a derived rule ofR as well. However, seeing
that requires a bit more work. It is actually a corollary to a more important
theorem that expresses the completeness of R like theorem 6.2 did for R−.

In [2] a new theory R+ is introduced, which is R together with the soundness
rule. We will however take a different approach (as is also suggested in [2]),
which allows us to omit everything about R+.

Theorem 6.3 (Completeness of R). For any LR-formula A we have:

R 6` A⇐⇒ there is an A-sound countermodel to A.

Proof. For the implication from the left to the right we can use the proof from
[2]. Suppose that R 6` A. For any integer n we mean by �nA that A is prefixed
by n times a �. Because of the rule �A/A we must have R 6` �nA for all n.

We define X to be the set

{�B : �B is a subformula of A},

32

andN is the cardinality of this set. Because R 6` �N+1A and thus R− 6` �N+1A,
we can use theorem 6.2 to find a countermodel (C,) to �N+1A. That means
that there must be a sequence of nodes aN+1 C aN C . . .C a1 C a0 such that

a0 ¬�N+1A, a1 ¬�NA, . . . , aN+1 ¬A.

Now define Xi to be {�B ∈ X : ai �B}, then by Σ-persistence we have for
i ≤ j that Xi ⊆ Xj . So we can apply the pigeonhole principle to find an i with
Xi = Xi+1. This means that for every �B ∈ Xi+1 we also have that ai �B,
thus ai+1 B. So for all �B ∈ X we must have ai+1 �B → B, which is the
same as ai+1 SA. Restricting (C,) to ai+1 and all of its descendants gives
us an A-sound countermodel to A.

For the converse we will apply a lemma we state and prove later, lemma 6.9.
It is here that we deviate from [2]. Given an A-sound countermodel to A, this
lemma gives us an interpretation (·)∗ such that PA 6` A∗. Furthermore, we have
already proved the implication

R ` A⇒ for every interpretation (·)∗, PA ` A∗

from theorem 6.1. By assumption we have an A-sound countermodel to A, so
we apply lemma 6.9 to obtain an interpretation (·)∗ such that PA 6` A∗. Using
the contraposition of the implication we just mentioned, we find R 6` A. �

We can now show that the soundness rule is actually a derived rule of R. The
proof of this corollary gives us a nice example on how to use the completeness
of R.

Corollary 6.2. The soundness rule is a derived rule of R.

Proof. Let A be a Σ-formula such that R ` SA → A, and suppose for a
contradiction that R 6` A. Then by theorem 6.3 we find an A-sound counter-
model (C,) to A. As A is a Σ-formula, it cannot hold at the root because
of Σ-persistence. Note that S(SA → A) is equivalent to SA, so (C,) is also
(SA → A)-sound. Thus SA → A must hold at every node, because otherwise
we would have an (SA→ A)-sound countermodel to SA→ A. In particular it
must hold at the root, so we have that both SA→ A and SA hold at the root
which implies that A holds at the root. This gives us a contradiction, so we
must have R ` A. �

6.5 Arithmetical completeness of R

One way to describe a proof predicate is by using a total recursive function. We
can do this as follows, for a total recursive function f we will think of f(n) as
a code for the set of theorems proved by proofs with code ≤ n. For brevity’s
sake we will no longer speak about “a code for a set” or “a code for a proof”,
but we will just speak about a “set” or a “proof”.

To actually define a proof predicate based on a total recursive function f we
will need some Σ1-formula Thf (x) that essentially says ∃y(x ∈ f(y)). We could
use theorem 3.7, which gives a Σ1-formula ϕf (y, x) representing f . This easily
gives us a predicate Thf (x). However, we would like to base this proof predicate

33

on the index of f so we can apply the recursion theorem. In [2] (section 5) it is
mentioned that one can find a Σ1-formula σ(e, x) such that the following lemma
holds.

Lemma 6.4. We can find a Σ1-formula σ(e, x), such that for any index e, PA
proves the following.

(1)
⋃

range(ϕe) = {x : σ(e, x)}.

(2) For all x, y ∈
⋃

range(ϕe) we have that there is some n such that x ∈ ϕe(n)
and y 6∈ ϕe(m) for all m ≤ n, if and only if σ(e, x) ≺ σ(e, y).

Proof. It is not mentioned in [2] how one would construct such a formula
σ(e, x), so we will do so here. For this it will be useful to understand intuitively
what the formula would mean. We want σ(e, x) to hold whenever there is a
proof of x according to ϕe. Since σ(e, x) has to be a Σ1-formula, it must be of
the form ∃yP (y, e, x) where we can interpret P (y, e, x) as “according to ϕe there
is proof ≤ y of x”. For this we define the partial recursive function p(y, e, x) as
follows:

p(y, e, x) =

{
0 if x ∈ ϕe(y)

undefined else

Note that with x ∈ ϕe(y) we actually mean the partial recursive function that
checks if x is an element of the finite set coded by ϕe(y). Now p(y, e, x) is
defined (and is thus 0) exactly when there is proof ≤ y of x according to ϕe. If
we let τ be the Σ1-formula representing the Kleene T-predicate (as in [1]), we
can now define P (y, e, x) to be

∃zτ(3, ep, j
3(y, e, x), z),

where ep is the index of the function p we defined before. Now clearly P (y, e, x) is
a Σ1-formula, so ∃yP (y, e, x) is also a Σ1-formula and we have found the desired
definition for σ(e, x). Verifying properties (1) and (2) that we mentioned above
is easy now. �

We can now rightfully speak about a proof predicate based on an index e of
some total recursive function f . When we speak about the proof predicate Thf

based on some total recursive function f , we actually mean that it is based on
the index e of f . Such a proof predicate is not necessarily a standard proof
predicate in the sense of definition 5.2. We will however describe a way of
constructing f so that we can prove in PA that Thf is in fact a standard proof
predicate, and so that it has some other useful properties we will state and prove
later.

Constructing f and an interpretation (·)∗ based on f . We will now
construct a total recursive function f and an interpretation (·)∗ based on f ,
given an A-sound countermodel to some LR-sentence A and a standard proof
predicate Th. An interpretation (·)∗ based on f is just an intertpretation such
that (�A)∗ is mapped to Thf (pA∗q).

So assume that (C,) is an A-sound countermodel to A, and label its nodes
{1, . . . , n} such that 1 is the root. For a finite adequate set containing A, we let
S be that set together with the negations of the formulas in that set. We also

34

create a new node 0 that is not contained in the model and let 0 B iff 1 B
for all B ∈ S.

Because Th is a standard proof predicate, it is a Σ1-formula. Therefore the
set {x : Th(x)} is recursively enumerable. So there must be a total recursive
function g enumerating the set {x : Th(x)}. So we can use ∃y(x = g(y)) to
formalize “there is a proof of x”.

Before continuing we will define a primitive recursive function h : N →
{0, . . . , n} here and some term l in PA. Note that we will actually see h as a
map from the natural numbers to the nodes of the Kripke model (together with
0).

Definition 6.10. To define a primitive recursive function h : N → {0, . . . , n}
and some term l in PA we will use the recursion theorem, so in fact we define
them based on some index e and let the recursion theorem provide a suitable
index. Basically we will define h such that h(0) = 0 and h(m+ 1)E h(m), and
l as the limit of h (i.e. l = limm→∞ h(m)) if that exists or n+ 1 otherwise.

So we set h(0) = 0. Now suppose that h(m) is defined, we check if g(m) is
pl 6= jq for some j C h(m) (or in the case h(m) = 0, for some 1 ≤ j ≤ n). If
this is the case, we set h(m + 1) = j, otherwise we set h(m + 1) = h(m). This
completes the definition of h and l.

We will now give the definition of f and the interpretation (·)∗ based on f . More
precisely, we will actually define a function F (e, x) and the interpretation will
be based on the function defined by the index e. Then we can use the recursion
theorem to find the desired function f and intepretation (·)∗.

First we define (·)∗ for the atoms of LR. Let the atoms be p1, p2, . . ., then if
pk ∈ S:

p∗k = ∨{l = i : i pk and 0 ≤ i ≤ n} ∧ k = k,

which is just ⊥ ∧ k = k if pk holds at no node. If pk 6∈ S we just set

p∗k = l = 0 ∧ k = k.

Now no matter the index of f , we have that (·)∗ is one-to-one, that {A∗ :
A is an LR-formula} is recursive and that we can reconstruct A from A∗.

We will define f in multiple stages. At each stage we define one or more
outputs of f . We keep track of the amount of f that is defined in km: at stage
m we have defined f(n) for all n < km.

Stage m. Each stage will consist of two steps. Roughly speaking we want to
output the formula that is coded by g(m), unless it is of the form pB∗q for some
�B ∈ S. In that case it depends on the value of h(m) and what the node with
number h(m) decides about the formulas in S. We will now make this more
precise.

Step 1. If g(m) is of the form pB∗q for some �B ∈ S we set f(km) =
f(km − 1), otherwise we set f(km) = f(km − 1) ∪ {g(m)}. If km happens to be
0, then we interpret f(km − 1) as the empty set.

Step 2. We only do something in this step when m = 0 or when h(m) 6=
h(m−1), otherwise we set km+1 = km+1 and go to stage m+1. We let Y be the
set of B∗ such that �B ∈ S and h(m) �B and, if m > 0, h(m−1) 6 �B. We
define the equivalence relation E on Y such that B∗EC∗ iff h(m) �B � �C∧

35

�C � �B. Now let E1, . . . , Es be the equivalence classes of Y , in increasing
order under ≺. For each 1 ≤ i ≤ s we set

f(km + i) = f(km) ∪ E1 ∪ . . . ∪ Ei.

Now set km+1 = km + s+ 1 and go to stage m+ 1.
This completes the definition of f .

Before we can actually do something useful with f , we first have to prove a
few technical lemmas. In what follows we will use the same notation as in the
definition of f .

Lemma 6.5. For the term l from definition 6.10 we have the following proper-
ties:

(1) PA ` 0 ≤ l ≤ n,

(2) PA ` l = i→ Th(pl C iq) for all 1 ≤ i ≤ n,

(3) PA ` l = i→ ¬Th(pl 6= jq) for all j C i (or 1 ≤ j ≤ n in case i = 0),

(4) N |= l = 0.

Proof. We will only provide a sketch of the proof, for the full proof we refer
to [3], lemma 4.1. Property (1) can easily be seen using the property that
h(m+ 1)E h(m) and the fact that h(m) is defined for all m and h(m) ≤ n for
all m.

For property (2) we note that PA proves that h(m′) E h(m) for all m and
m′ ≥ m. So l = i implies that there is some m such that h(m) = i so PA proves
lEi which is equivalent to l = i∨ lCi. Since there is some m such that h(m) = i
we have that PA proves l 6= i, so PA must prove l C i.

For property (3) we reason in PA, assuming l = i. If there would be some
proof of l 6= j for j C i (or 1 ≤ j ≤ n in case i = 0), then we would have l E j
and thus l 6= i. Which is a contradiction, so l 6= j is not provable.

Finally for (4), if l = i > 0 were to hold in N there must be some proof of
l 6= i in PA. But then N |= l 6= i, which gives a contradiction. So we must have
N |= l = 0. �

Lemma 6.6. For B ∈ S and 0 ≤ i ≤ n we have:

i B ⇒ PA ` l = i→ B∗,

i 6 B ⇒ PA ` l = i→ ¬B∗.

Proof. We will prove this using induction on formulas. For atoms this lemma is
obviously true, and the induction step for the boolean connectives is immediate.

If B is of the form �C and i B, then we reason in PA and assume l = i.
Since l = i there must be a smallest m such that h(m) = i. Then since i �C
we have that f outputs C∗ at stage m, thus (�C)∗ holds. Now if i 6 �C, then
�C holds at no parent of i. Since we assume l = i we must have iEh(m) for all
m. So there is not stage at which C∗ will be output by f , thus (¬�C)∗ holds.

36

If B is of the form �C ≺ �D, we again reason in PA. Assume that i
�C ≺ �D we must have i �C. Thus C∗ is ouput by f . Let m be the first
stage where C∗ is output by f . We must have i E h(m), so by Σ-persistence
we cannot have h(m) �D � �C. This means that at stage m we either have
that D∗ is not output at all or that it is output after C∗. In both cases we have
(�C ≺ �D)∗. The case where B is of the form �C � �D is similar.

In the case that i 6 �C ≺ �D we note that ¬(�C ≺ �D) and ¬�C∨�D �
�C are equivalent. So simply applying the arguments above we see that the
lemma also holds in this case. Finally, if we have i 6 (�C � �D) we can again
use similar reasoning by noting that ¬(�C � �D) and ¬�C ∨ �D ≺ �C are
equivalent. �

Corollary 6.3. If B ∈ S and 1 B, then N |= B∗.

Proof. Since B ∈ S and 1 B we must have 0 B. So using lemma 6.6 we
find PA ` l = 0→ B∗, so N |= l = 0→ B∗. By lemma 6.5 we have N |= l = 0,
so we conclude that N |= B∗. �

Lemma 6.7. For all �B ∈ S and all 0 ≤ i ≤ n, we have:

i �B ⇒ PA ` l = i→ Th(pB∗q),

i 6 �B ⇒ PA ` l = i→ ¬Th(pB∗q).

Proof. Assume that 1 ≤ i ≤ n and suppose i �B, then for all j C i we have
j B. As there are only finitely many such j, we can apply lemma 6.6 to find
PA ` l C i→ B∗ and therefore PA ` Th(pl C i→ B∗q). By lemma 6.5 we also
have PA ` l = i→ Th(pl C iq), so we have:

PA ` l = i→ (Th(pl C iq) ∧ Th(pl C i→ B∗q)),

and thus PA ` l = i→ Th(pB∗q).
Now, still assuming 1 ≤ i ≤ n, suppose that i 6 �B. Then there must be

some j C i such that j ¬B. Using lemma 6.6 we find PA ` l = j → ¬B∗.
Thus PA ` Th(pl = j → ¬B∗q), and thus PA ` Th(pB∗ → l 6= jq). By lemma
6.5 we also have that PA ` l = i → ¬Th(pl 6= jq). So, reasoning in PA under
assumption that l = i, we cannot have Th(pB∗q) because then we would have
both Th(pl 6= jq) and ¬Th(pl 6= jq). Thus we must have ¬Th(pB∗q), which
leads to the conclusion PA ` l = i→ ¬Th(pB∗q).

Now assume that i = 0, and suppose that 0 �B. Because (C,) is A-
sound we have i �B → B, and thus 0 B. Furthermore, since 0 and 1 agree
on all formulas in S we also have 1 B and 1 �B. Hence i B for all
0 ≤ i ≤ n, so by lemma 6.6 we have PA ` l = i → B∗ for all 0 ≤ i ≤ n. Since
PA ` 0 ≤ i ≤ n by lemma 6.5, we must have PA ` B∗ and thus PA ` Th(pB∗q).
So we certainly have PA ` l = 0→ Th(pB∗q).

The last possibility is i = 0 and 0 6 �B. This means that there is some 1 ≤
j ≤ n such that j 6 B. Thus by lemma 6.6 we have PA ` Th(pl = j → ¬B∗q),
and thus PA ` Th(pB∗ → l 6= jq). Since also PA ` l = 0 → ¬Th(pl 6= jq), we
can again reason in PA under the assumption that l = 0 to find that ¬Th(pB∗q)
must hold. That is, PA ` l = 0→ ¬Th(pB∗q). �

37

We now can finally prove that Thf is indeed a standard proof predicate. We
do so by showing that f outputs exactly the formulas that are theorems of PA
according to the standard proof predicate Th.

Lemma 6.8.
PA ` ∀x(Th(x)↔ Thf (x))

Proof. This amounts to showing that
⋃

range(f) and range(g) are the same.
We reason in PA. By the construction of f the only formulas where these sets
may not agree are those of the form B∗ with �B ∈ S.

Since PA ` 0 ≤ l ≤ n we can reason in PA by cases. Using lemma 6.7 and
the fact that S is finite, we see that PA proves for each B∗ such that �B ∈ S
that Th(pB∗q) exactly when l �B and thus when f outputs B∗. �

Lemma 6.9.
PA 6` A∗.

Proof. For all 0 ≤ i ≤ n we have that PA +l = i is consistent. Since (C,) is a
countermodel to A, we must have i ¬A for some 1 ≤ i ≤ n. So by lemma 6.6
we have PA ` l = i→ ¬A∗. But then if PA ` A∗ we would have that PA +l = i
proves both A∗ and ¬A∗, which contradicts its consistency. So we must have
PA 6` A∗. �

We can now finally prove the arithmetical completeness of R.

Conclusion of the proof of theorem 6.1. The following was left to prove:

for every interpretation (·)∗, PA ` A∗ =⇒ R ` A.

We complete this proof by proving the contraposition of this statement. So
suppose that R 6` A, then by theorem 6.3 we find an A-sound countermodel to
A. We can use this countermodel to construct a total recursive function f as
we described in this subsection. For the interpretation (·)∗ based on f we have
by lemma 6.9:

PA 6` A∗.

This concludes our proof. �

7 Equivalence of Rosser sentences

In this section we will present the final result we discuss in this paper. We will
show that there are standard proof predicates where not all Rosser sentences
are provably equivalent, but also that there are standard proof predicates where
all Rosser sentences are provably equivalent. However, this still does not say
anything about the usual proof predicate we defined and used in section 4.

We will base our proofs on existing standard proof predicates to construct
new standard proof predicates. These new proof standard predicates should be
equivalent in the sense that they prove the same formulas. This is made precise
in the following definition.

38

Definition 7.1. Two standard proof predicates Th and Th′ are provably equiv-
alent if

PA ` ∀x(Th(x)↔ Th′(x)).

7.1 Inequivalent Rosser sentences

Theorem 7.1. Given a standard proof predicate Th, we can find a provably
equivalent standard proof predicate Th′ so that not all Rosser sentences for Th′

are provably equivalent.

Proof. Let B = �⊥ ≺ �(⊥∧⊥) and C = �(⊥∧⊥) ≺ �⊥. We will describe a
Kripke model in stages. First we make sure that the nodes satisfy the formulas
as they do in figure 2a. We must then have ¬�B, ¬�¬B, ¬�C and ¬�¬C at
the root. So we can extend the Kripke model so that the formulas in figure 2b
hold at the corresponding nodes.

•
¬B,¬C

•
¬B,C

•
B,¬C

(a) Kripke model (1).

•
¬�(B ↔ C)

•
�B ≺ �¬B,
�¬C ≺ �C

•
�¬B ≺ �B,
�C ≺ �¬C

(b) Kripke model (2).

Figure 2: Kripke models for inequivalent rosser sentences.

Now define A = �(B ↔ �¬B ≺ �B) ∧ �(C ↔ �¬C ≺ �C) ∧ ¬�(B ↔ C).
By inspecting the Kripke model we specified we find that it is A-sound. Also
by lemma 6.2 we have that it is a countermodel to ¬�(B ↔ C) and thus to A.
So we have an A-sound countermodel to A, therefore we can use corollary 6.3
to see that N |= A∗ because A holds at the root. It is here that we use our
standard proof predicate Th to construct a provably equivalent standard proof
predicate Th′ and an interpretation (·)∗ based on Th′ (Th and Th′ are provably
equivalent by lemma 6.8).

This means that N |= (�(B ↔ �¬B ≺ �B))∗, so

N |= Th′(pB∗ ↔ Th′(p¬B∗q) ≺ Th′(pB∗q)q)

and thus
PA ` B∗ ↔ Th′(p¬B∗q) ≺ Th′(pB∗q).

In other words, B∗ is a Rosser sentence for Th′. In the same way C∗ is a Rosser
sentence for Th′. Now finally, because N |= ¬Th′(B∗ ↔ C∗) we have that
PA 6` B∗ ↔ C∗ so B∗ and C∗ are not provably equivalent. �

39

7.2 Equivalent Rosser sentences

Our goal in this subsection will be to prove the following theorem. Before stating
it however, we will need to extend our definition of standard proof predicate with
two more properties. For a standard proof predicate Th, these properties are
as follows:

(+1) PA proves that “{x : Th(x)} is closed under tautological consequence and
it contains all Σ1-sentences ϕ such that N |= ϕ”.

(+2) PA proves that for any formula ϕ(x, y) we have “if Th(p∀xyϕ(x, y)q), then
for all constant terms t, s we have Th(pϕ(t, s)q).”.

Note that the usual proof predicate possesses these properties. In [2] only the
first property is required. However, as is pointed out in [4] this is not enough.
So we have required one more property as is suggested in [4]. This will only
make a difference in the proof of lemma 7.1 (lemma 6.3 in [2]).

Theorem 7.2. Given a standard proof predicate Th also satisfying (+1) and
(+2), we can find a provably equivalent standard proof predicate Th′ so that all
Rosser sentences for Th′ are provably equivalent.

Before proving theorem 7.2 we will once more describe a recursive function f
using the recursion theorem, so that f defines a standard proof predicate Thf

(like we did in subsection 6.5). For this we again assume that g is a recursive
function that, provably in PA, enumerates {x : Th(x)}.

Definition of f based on Th. We will keep track of two things. One
is the so called Rosser list, essentially this list keeps track of the sentences of
which we have already seen that they are a Rosser sentence. The second thing
is a bell that can ring. This bell will ring at most once, and it does so when
we encounter the proof or disproof of a Rosser sentence. We will now give the
precise definition of f in stages. This definition is in fact based on some index
e for f that is provided by the recursion theorem.

Stage m. Each stage consists of two steps. The first step is always executed,
the second step is only executed if the bell rings in the first step. As will become
clear, once the bell has rung we will no longer go to the next stage. In other
words: we only consider the stages in which the bell has not yet rung and the
stage in which it rings (if it rings).

Step 1. If g(m) is of the form pϕq or p¬ϕq for some ϕ on the Rosser list, we
ring the bell and go directly to step 2. Otherwise we set f(m) = g(m) and we
take another look at g(m). If g(m) is pϕ↔ Thf (p¬ϕq) ≺ Thf (pϕq)q for some
ϕ then we add ϕ to the Rosser list, unless ¬ϕ is already on the Rosser list or ϕ
is ¬ψ and ψ is already on the Rosser list. This ensures that at most one of ϕ
and ¬ϕ is on the Rosser list for any ϕ. Now we go to stage m+ 1.

Step 2. If we have come here the bell has just rung. Suppose the Rosser
list consists of {ϕ1, . . . , ϕn}. We distinguish two cases. In the first case g(m) =
pϕiq for some 1 ≤ i ≤ n. Then we define f(m), . . . , f(m + 2n − 1) to be
pϕ1q, . . . , pϕnq, p¬ϕ1q, . . . , p¬ϕnq (in that order). In the second case we have
g(m) = p¬ϕiq for some 1 ≤ i ≤ n. We then define f(m), . . . , f(m+ 2n− 1) to
be p¬ϕ1q, . . . , p¬ϕnq, pϕ1q, . . . , pϕnq (in that order). In both cases we continue
by enumerating all LPA-sentences.

This completes the definition of f , which is to be formalized in PA.

40

Before finally proving theorem 7.2 we will first prove three lemmas about f .
In what follows we will use the terms and definitions from the definition of f .

Lemma 7.1. PA proves that “if the bell rings, then {x : Th(x)} is inconsistent,
that is Th(p⊥q)”.

Proof. We reason in PA. Suppose that the bell rings at stage m because
g(m) = pϕq for some ϕ on the Rosser list. If g(i) = p¬ϕq for some i < m then
we have Th(pϕq) and Th(p¬ϕq), so clearly Th(p⊥q) (by lemma 4.2). Otherwise
we have g(i) 6= p¬ϕq for all i < m. So f outputs pϕq before p¬ϕq, and so we
have that

Thf (pϕq) ≺ Thf (p¬ϕq).

Which is a Σ1-sentence, thus Th(pThf (pϕq) ≺ Thf (p¬ϕq)q).
Because ϕ is on the Rosser list, we must have that g outputs pϕ↔ Thf (p¬ϕq) ≺

Thf (pϕq)q. Thus g must output pThf (p¬ϕq) ≺ Thf (pϕq)q at some time.
It is here that we diverge from the proof in [2] and we continue as in [4].

Moving out of PA shortly, we can see that:

PA ` ∀xy[Thf (x) ≺ Thf (y)→ ¬(Thf (y) ≺ Thf (x))].

So we must have:

PA ` Th(p∀xy[Thf (x) ≺ Thf (y)→ ¬(Thf (y) ≺ Thf (x))]q).

We now move back in PA, we can use property (+2) to see that we have
Th(pThf (pϕq) ≺ Thf (p¬ϕq) → ¬(Thf (p¬ϕq) ≺ Thf (pϕq))q). Therefore we
have both Th(p¬(Thf (p¬ϕq) ≺ Thf (pϕq))q) and Th(pThf (p¬ϕq) ≺ Thf (pϕq)q).
So using lemma 4.2 we can conclude that Th(p⊥q) holds.

The other case, where g(m) = p¬ϕq for some ϕ on the Rosser list, does not
use property (+2). We may again assume that g(i) 6= pϕq for all i < m, be-
cause otherwise Th(p⊥q) would directly follow. This means that Thf (p¬ϕq) ≺
Thf (pϕq) is a true Σ1-sentence, and thus we must have:

Th(pThf (p¬ϕq) ≺ Thf (pϕq)q).

Because ϕ is on the Rosser list, we must have:

Th(pϕ↔ Thf (p¬ϕq) ≺ Thf (pϕq)q).

Since also Th(p¬ϕq) we have:

Th(p¬(Thf (p¬ϕq) ≺ Thf (pϕq))q).

So we conclude that both Th(pThf (p¬ϕq) ≺ Thf (pϕq)q) and Th(p¬(Thf (p¬ϕq) ≺
Thf (pϕq))q) hold, so using lemma 4.2 we find Th(p⊥q). �

Lemma 7.2.
PA ` range(f) = range(g).

Proof. We reason in PA. If the bell never rings then by construction f outputs
the exact same sentences as g. If the bell rings f outputs all LPA-sentences,
and so does g by lemma 7.1. �

41

Note that lemma 7.2 actually proves that Thf is a standard proof predicate and
that it is provably equivalent to Th.

Lemma 7.3. If ϕ is a Rosser sentence for Thf , then ϕ is eventually put on
the Rosser list.

Proof. We do not reason in PA now. This means that the bell will never ring.
Let ϕ be a Rosser sentence for Thf , and assume that it is never put on the
Rosser list. Then that must be because there is some Rosser sentence ψ for Thf

such that ϕ = ¬ψ or ¬ϕ = ψ. One of these sentences must be true in N , but
no Rosser sentence can be true in N . So ϕ must be on the Rosser list. �

Conclusion of the proof of theorem 7.2. For any two Rosser sentences ϕ
and ψ we must have, by lemma 7.3, that they are both on the Rosser list at
some stage m. We can now reason in PA as follows: neither pϕq nor pψq has
been output by g at a stage ≤ m and they are both on the Rosser list. By
construction of f we have that f outputs p¬ϕq before pϕq iff it outputs p¬ψq
before pψq. In other words

Thf (p¬ϕq) ≺ Thf (pϕq)↔ Thf (p¬ψq) ≺ Thf (pψq),

and thus ϕ↔ ψ. �

References

[1] J. van Oosten, Gödel’s Incompleteness Theorems, Lecture notes, http:

//www.staff.science.uu.nl/~ooste110/syllabi/godelmoeder.pdf

February 2015.

[2] D. Guaspari, R.M. Solovay, Rosser sentences, Annals of Mathematical Logic,
Volume 16, Issue 1, pages 81-99, 6 June 1978.

[3] R.M. Solovay, Provability interpretations of modal logic, Isreal Journal of
Mathematics, Volume 25, pages 287-304, 1976.

[4] C. von Bülow, A remark on equivalent Rosser sentences, Annals of Pure and
Applied Logic, Volume 151, pages 62-67, 2008.

42

http://www.staff.science.uu.nl/~ooste110/syllabi/godelmoeder.pdf
http://www.staff.science.uu.nl/~ooste110/syllabi/godelmoeder.pdf

	Introduction
	Recursive functions
	Primitive recursive functions
	Total recursive functions
	The recursion theorem

	Peano arithmetic
	Coding sequences in PA
	Representing primtitve recursive functions in PA
	Representing total recursive functions in PA

	Gödel's incompleteness theorems
	Coding formulas and proofs
	Gödel's first incompleteness theorem
	Gödel's second incompleteness theorem

	Rosser sentences
	Modal logic for Rosser sentences
	The theories R- and R
	Kripke models
	Completeness of R-
	Completeness of R
	Arithmetical completeness of R

	Equivalence of Rosser sentences
	Inequivalent Rosser sentences
	Equivalent Rosser sentences

