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1 Introduction

In this thesis we will optimize a module solving a set of discrete equations as presented in
an open source medicament prescription system. We will further call this module solver.
Below we will first give a definition of the relevant terms and then give a general description
of how the original solver works. For an overview of the terms discussed in this section,
see figure 1. In the next chapter we will describe the specifications of the system and
thereafter the enhancements we made. We will present our results by investigating a sam-
ple case which we use to test a prototype of the current version and a prototype of our
optimized version of the solver. We conclude with our final recommendations for making
the solver more efficient.

Figure 1: The relevant terms for the solver module

Equations

We distinguish two kinds of equations: a sum equation and a product equation. Both
are defined by a dependent left-hand side variable, say y, and a list of arguments, say
[x1, x2, ..., xn−1, xn]. If this were a sum equation, the equation is y = x1+x2+...+xn−1+xn.
We may assume all product equations consist of two arguments, so n = 2 for product
equations.

Variables

Every variable has a possible range of values it can assume. These values are real numbers
larger than zero. Our knowledge about the values of some arguments in an equation can
restrict the possible values of others. The program applies these restrictions by changing the
minimum and maximum of the possible values. For example, if in an equation y = x1 ∗ x2

we know the maximum value of x1 is 10 and the maximum value of x2 is 20, this implies
the value of y can never become larger than 10 ∗ 20 = 200. So the program will set the
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maximum value of y to 200. It is important that this change is always a restriction, so the
variables may never take on incompatible values. If the maximum of y was already set to,
say, 190, the maximum of y is not changed, for then it would be able to take on values that
are not compatible with its previously set maximum. In the next section we will provide
all implications certain minima and maxima may have on other variables.

We represent the possible values of a variable by either a finite list of real positive
numbers or a Range. A Range is a range of numbers limited by either a minimum, a
maximum, a basic unit or a combination of these. The basic unit is a number that divides
all possible values of the variable. For example, for a variable xn ∈ N the basic unit is 1.
When all three are known, the Range becomes a list of numbers. For example, a Range
of minimum 2, maximum 7 and a basic unit of 1.5 is the list [3, 4.5, 6]. In section 2.1 we
will provide a deeper analysis of these and other restrictions. As you can see, a list takes
on discrete values and a Range is continuous when it is not yet transformed to a list.

Solver

The solver takes a list of equations and after a restriction (e.g. a maximum is changed) is
added to one of the variables in these equations, it checks what the implications are for all
other variables. This is done by checking for each equation whether the known restrictions
provide a new restriction. An equation is checked by rewriting it several times so that
every variable becomes a left-hand side variable. For example, y = x1 ∗ x2 is rewritten
as x1 = y/x2 and x2 = y/x1. Next, new restrictions are found by applying the rules as
presented in section 2.2. If a new restriction is set, the process is repeated, again checking
the implications for each equation. Once all equations are checked and no changes occur
anymore, the user (or the program) may provide new input, only choosing from the possible
values. After every input the solver systematically reduces the possible solution space for
all variables to guarantee that possible values are always valid. An equation is considered
solved when all variables have single values. By providing new input every equation can
eventually be solved.

In the medicament prescription system GenPres where this solver module originated
from, the solver is applied to assist the user in choosing proper drug prescriptions. For
example, dependent on the dose a doctor may want to give a patient, the system provides
him/her with a list of options to choose from regarding portion, frequency, etc. The aim
of this system is to improve the quality and efficiency of electronic prescribing.[1]
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2 Specifications

In this section we present specifications of the solver.

2.1 Calculation rules for adding information to a variable

We will present a synopsis of how we deal with adding more information to a variable (a
minimum, maximum, basic unit or list) to provide a deeper understanding of the specifi-
cations of the solver module. We will present the rules we implemented in the prototype
program, in particular pointing out which values overrule and which values are overrid-
den. In general we may state that restrictions, these being a minimum, maximum or basic
unit, overrule any given list. Within these restrictions, the minimum and maximum values
change along with the value of a list. When a minimum or maximum is added we must
always check that either the minimum or maximum is not set yet or that it’s an actual
restriction, so the new minimum is higher than the set minimum and vice versa with a
maximum. For the implementation, see the code in appendix D, lines 35-148.

When setting a maximum, there are essentially three important cases: either the min-
imum and basic unit are known and there is no list set, only the basic unit is known and
there is not list set, or the variable already has a list set. In the first case a list is created by
starting at the first number above the minimum divisible by the basic unit. Then elements
are added to the list by constantly increasing each element by the basic unit, until it is just
below the maximum. Finally, the new minimum and maximum are added to the variable.
The second case is similar, only now the minimum is automatically set at the value of the
basic unit. Because all values must be larger than zero and divisible by the unit number,
the minimum value must be the unit number. The list and new maximum are subsequently
set. In the last case the new maximum overrules the existing list, so the elements above
the new maximum are removed and the highest element below the maximum is set as the
new maximum.

When setting a minimum, only the last of the above cases is needed, for when a max-
imum and basic unit are known, the second case is applied and a minimum is already
automatically set. So, for a minimum the only thing we need to do is check for a set list
what the implications of the new minimum are. The list is filtered so it only contains
values above the minimum and the minimum is set as the lowest element in the resulting
list.

Next we will consider the basic unit. Again we distinguish three cases: either the
minimum and maximum are set and the list not, the maximum is set and the list not, or
the list is set. The first two cases coincide with the first two of the maximum, so we will
not cover these any further. In the last case the list is filtered, so that only elements of
which the basic unit is a divisor remain. If necessary, the minimum and maximum are
altered. The list may not become empty, so the basic unit must always divide at least one
element of the list. We will come back to this in section 5.

Finally, when a list is set, we do not distinguish cases, but do check the minimum and
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maximum values. Let’s without loss of generality consider the checks for the minimum
value. If it is not set, the minimum of the list becomes the new minimum. If it is set,
however, we must check whether this minimum is lower than the minimum of the list. If
this is the case, no additional checks are necessary and we set the minimum of the list as
the new minimum. If this is not the case, we must filter the list to match the set minimum.
The new minimum is again the lowest element that meets the restriction.

2.2 Restrictions imposed by arguments of equations

As stated earlier, known properties of arguments of an equation may pose restrictions on
the possible values of other arguments in the equation. See appendix C, lines 1-78, for how
the restrictions are implemented in the code of our prototype.

We will present table 1 containing all formulas for the restrictions on simple sum and
product equations with two variables. We also present division and subtraction equations.
These are useful when equations are rewritten to other left-hand side variables. We only
discuss restrictions posed by known minima and maxima. Nothing can additionally be said
about restrictions posed by the basic unit of an argument until all possible values in the
arguments are known. There is, however, a restriction for the basic unit when a list is set
for a variable. This will be discussed in section 5. For all formulas, we should keep in mind
that the restriction should always be stricter than the known value. This is ensured by
taking the maximum of the known value and the new value in case of a minimum and the
minimum of the known value and the new value in case of a maximum. This is of course
not necessary if the value is not assigned yet. For readability purposes we have chosen not
to include these rules in our table. We arranged our findings on known attributes of the
arguments in an equation. If a combination of these attributes is known, a combination of
the formulas apply.

Most formulas speak for themselves, but we’d like to make some additional remarks
about the first two rows. These rows treat the single known values. All formulas here are
without loss of generality only written for x1. As you can see, y appears as a known value
only in these rows. This is because in the other rows x1 and x2 take the place of y in the
rewritten formulas. If only one variable is known, however, we must also check the known
values of y. The known values mentioned in the table are the only ones that provide new
information, so the other ones are omitted. It is important to mention that the restriction
in field [1, 2] of the table is not the sharpest possible. If x1 = max(y) is set, there are no
more possible values for x2. This problem is discussed in section 5.

We have chosen to present the sum formula in the table as a simple formula with two
arguments. The restrictions for a sum y = x1 +x2 + ...+xn with n variables are similar, so
we shall describe them here based on table 1. First, let’s consider field [2, 2] in the table.
The restriction becomes as follows:

min(y) =
∑

i:min(xi) is set

min(xi)
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The above restriction is also a more generalized version of the restriction in field [3, 2]. For
the restriction in field [5, 2] we get:

max(y) =
n∑

i=1

max(xi), max(xi) is set

Finally for field [4, 4].

min(xi) = min(y)−
∑

j∈{1,2,..,i−1,i+1,..,n}

max(xj), min(y) and max(xj) are set

The formula in field [6, 4] is found by replacing min by max and vice versa, only it is slightly
different. This formula can applied for any known values min(xj), not all minimum values
have to be known. For more details, see section 5. In these last two formulas it is important
that min(y) is only set if it is a positive number and if the maximum is larger than the
minimum.

max(xi) = max(y)−
∑

j:min(xj) is set, j 6=i

min(xj), max(y) is set
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3 Optimization

In this section we will present all enhancements we made to the original solver. First, we
will explain our changes in a general manner and then we will describe the workings of our
new program more thoroughly and illustrate it with an example.

3.1 General structure

The original solver program has a few weaknesses, causing it to become slow in certain
cases. During the iterative process of checking each equation after a change in the vari-
ables, no distinction is made between what equations to check and in what order to check
them. Simply all are checked. The program also immediately calculates the resulting list
once all arguments in an equation are lists. This may result in creating very long lists and
then having to calculate a product of two long lists. The calculation time increases with an
order of magnitude of n∗m with lists of length n and m. Our main focus for improvement
was on these points.

We started off by adding a tool for the representation of equations. These were first
only presented in a list. Now, the equations are also stored as a matrix, showing which
variable appears in which equation. For every system of I equations in which a total of J
variables appear, we will create an I × J matrix A, see figure 2.

A =


a1,1 a1,2 · · · a1,J
a2,1 a2,2 · · · a2,J

...
...

. . .
...

aI,1 aI,2 · · · aI,J


Figure 2: The general form of the matrix A with aij ∈ {0, 1}

The value of aij is 1 when variable j appears in equation i and 0 if it doesn’t. This
representation gives us the possibility of accessing all relevant equations, given a variable,
and vice versa. We also still keep a list of equations in which is preserved what kind of
equation it is and what the left and right hand variables are, as described in the first
section. Not all variables appear in all equations, so the matrix contains many zeros. It
is therefore a sparse matrix. Because the matrix sizes are small, the matrix is stored as a
dense array, instead of in a sparse format.

Next, we implemented a method carefully choosing the order of evaluation of the equa-
tions. When a variable changes, we will only check the equations in which the variable
appears, for it can only induce changes in these equations. By checking these equations
other variables may change. The equations in which these changed variables appear are
added to a queue by an insertion sort, sorted by the number of variables. An insertion sort
is viable because the queue always has a relatively small size. If a certain equation already
appears in the queue, it is not added, for every equation only had to be checked once.

9



Finally, an improvement is to postpone the calculation of a product or a sum as long as
possible. Once the arguments of an equation are lists of values, the possible values of the
left-hand side variable are the sum or product of all combinations of these lists. Our obser-
vation is that calculating a product or sum does not provide any more information about
the minimum and maximum values of a variable, only about the intermediate values. The
intermediate values are only needed as an output to the user. By postponing the calcula-
tion, lists will often be more restricted, so of a smaller size. This reduces the calculation
time. So, instead of calculating the product or sum as soon as it is possible, we postpone
the calculation until new input is required from the user. For further recommendations on
this subject, see section 5.

3.2 Algorithms

Here we will describe the workings of the program in a more detailed manner. We will
present two algorithms, one for the original solver and one for the new solver.

Algorithm 1 The original Solver

1: procedure OriginalSolver(tochecklist, checkedlist)
2: if tochecklist is empty then return checkedlist
3: else
4: i = first equation of tochecklist
5: If required, change the minimum and maximum values of variables in i
6: if no variables change then
7: return OriginalSolver(tochecklist - i, checkedlist + i)
8: else
9: return OriginalSolver(tochecklist + checkedlist, empty list)

This algorithm is initiated with as tochecklist the list of all equations and an empty list
as checkedlist. In the equations in tochecklist a variable is restricted, so the algorithm will
find all restrictions that follow from this restriction. Line 5 refers to restricting minima
and maxima as explained in section 2.2. Notice that in line 9 the algorithm starts all over
again, again with as input all equations and an empty list.
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Algorithm 2 The new Solver

1: procedure NewSolver(queue, checkedlist)
2: if queue is empty then return checkedlist
3: else
4: i = first equation of queue
5: If required, change the minimum and maximum values of variables in i
6: if any variables change then
7: for all changed variables x do
8: for all equations y in which x appears do
9: if y is not in queue then add y to queue sorted by number of variables

10: return NewSolver(queue - i, checkedlist + i)

The new algorithm differs from the previous one in initialization and in how it deals
with changing variables. Notice that tochecklist is now called queue, for its function is
slightly different. Upon initialization checkedlist is still an empty list, but in the queue are
only the equations in which the changed variable appears. Then every time new variables
change, the equations in which this variable appears are added to the queue. An equation
is only added when it is not yet in the queue. It is inserted by an insertion sort, so that
an equation is added after other equations in the queue, but still sorted by number of
variables. The current equation is then always removed from the queue and added to
checkedlist. Please note there may be no double equations in checkedlist, so any duplicate
added will override a previous value. This is not included in the algorithm for readability
purposes.

In the code in appendices A and B the solver methods have no return value. This is
because all changes are done directly in global variables. Again for readability purpose we
presented our above algorithms with a return value.

11



3.3 Example

Below we will present a simple example consisting of a few equations and a new input
value. We will give the execution of the new program after one alteration in the variables.
In contrast to the code in the appendices, here we will begin counting the equation and
variable numbers at 1 instead of 0. Take the following equations and their corresponding
matrix:

1. x1 = x5 · x6

2. x4 = x1 · x5

3. x1 = x2 + x3

4. x5 = x6 + x7 + x8

Say the following values are already set:

• min(x1) = 2

• min(x2) = 2

The second value was found by executing the program after the first value, so we’re certain
these values don’t contradict each other. Now take a new input: max(x6) = 20. We’ll show
step by step what the queue is, what equation is being checked and what new information
is deduced from which equation.

First, the solver will be executed with as input the equations in which x6 appears, so
we look in the matrix in column 6. See figure 3. Equations 1 and 4 are added to the queue:

queue = [eq1, eq4]

Figure 3: Column 6

We take the first equation of the queue, eq1. This equation is rewritten as x1 = x5 · x6,
x5 = x1/x6 and x6 = x1/x5. Because we know min(x1) and max(x6), the second formula
provides more information:

min(x5) =
2

20
= 0.1

The known values now are:
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• min(x1) = 2

• min(x2) = 2

• min(x5) = 0.1

• max(x6) = 20

Looking in column 5 of the matrix gives us the new queue:

queue = [eq1, eq2, eq4]

Notice the new equations are inserted before the longer equation 4. Equation 1 provides
no new information, so it is removed from the queue and we move on to the next element:
equation 2. Because we know min(x1) and min(x5) this formula provides:

min(x4) = 2 · 0.1 = 0.2

Adding this to the known values and looking in column 4 of the matrix provides:

• min(x1) = 2

• min(x2) = 2

• min(x4) = 0.2

• min(x5) = 0.1

• max(x6) = 20

queue = [eq2, eq4]

After checking every rewritten formula of equation 2 and afterwards equation 4, our queue
is empty, so no other changes may occur. The above values are our final values and the
solver is finished. New input may be provided by the user or the program. Here we
conclude our example.

13



4 Results

We had no practical problem to test our program on, so we provided a synthetic test
input. We first derived a system of equations from the equations used in GenPres, so we
got a coherent system of equations. We then provided our own test input. We tested our
prototype of the original solver (for the code, see appendix B) and the new solver (for the
code, see appendix A).

In our test case no sum or product of lists has to be calculated. Postponing this
calculation was an enhancement we presented in section 3.1. We have implemented this
concept in our prototype, but we found this did not improve the speed of the program
significantly. For more information, see section 5.

Below, we present the input and the results.

4.1 Sample Cases

Equations:

1. x1 = x2 · x3

2. x4 = x1 · x5

3. x6 = x7 · x8

4. x1 = x7 · x9

5. x4 = x7 · x10

6. x2 = x7 · x11

7. x9 = x12 + x13 + x14

8. x6 = x15 + x16 + x17 + x18

Input values:

• max(x1) = 30

• min(x2) = 5

• min(x4) = 4

• max(x7) = 20

• max(x10) = 35

• max(x9) = 1

• max(x11) = 10
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• unit(x7) = 0.2

• max(x9) = 1

• max(x6) = 30

• unit(x4) = 10

• max(x12) = 0.3

• max(x13) = 0.1

• min(x13) = 0.1

• max(x16) = 7

• max(x17) = 3

• max(x18) = 5

• min(x12) = 0.2

• min(x15) = 2

• min(x14) = 0.2

• min(x17) = 3

• min(x18) = 1

• min(x16) = 0.4

4.2 Original solver program

We find that especially equations 7 and 8 leads to speed loss in the original solver. These
equations contain variables that only appear there. Changes in these variables generally do
no lead to changes in many other equations. Because for every new restriction the original
solver checks each equation, many unnecessary equations are checked. These kinds of sum
equations are common in the GenPres program.

The original solver program checked 325 equations during this input and this cost a
total of 2688 milliseconds.
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4.3 New solver program

The queue worked well on this input. By checking only required equations, significantly
fewer equations had to be checked.

The new solver program checked 93 equations and this cost a total of 842 milliseconds.

In conclusion, the new program checked
325

93
≈ 3.5 times less equations and it took

2688

842
≈ 3.2 times less time. Please note the calculation time is dependent on many factors,

like computing power, the way the prototype was written, etc.

Figure 4: The final results
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5 Recommendations

We’d like to conclude with a few recommendations for further improvement and future
work.

As mentioned in section 2.1, if a list of a variable is set, the possible values of its basic
unit must be bound to divisors of at least one element of that list. This is to assure that
the list will not become empty if a basic unit is chosen. If the basic unit divides no element
of the list, it becomes empty. This means there are no more possible values for the variable.
We have not implemented this in our prototype yet, so this will need to be further explored.

As mentioned in section 2.2, if in a sum equation the left-hand side variable y has
a set maximum, this has implications for the right-hand side variables. Their sum may
never exceed this maximum, so their maximum must be restricted. We can’t just set their
maximum to max(y), for if this maximum is chosen, all other values would have to be
zero. Note that values always had to be positive and non-zero. One thing we can do is
set their maximum to max(y) minus the sum of all known minima of the right-hand side
variables. Then at least these variables can have a possible value, must this maximum be
chosen. Still, there’s the problem of the variables that have no minimum set yet. A possible
solution would be to initialize every value with a certain minimum above zero. This may
depend on the variable. For example, in practice this minimum may be the measurement
accuracy of a certain measurement system.

In section 3.1 we suggested to improve the solver program by postponing the calculation
of a product or sum. We implemented this concept in our prototype as followed: in the
original solver we check if a sum or product can be calculated at the beginning of the
solver method (see appendix B, lines 8-15) and in the new solver we do this at the end
of the solver method (see appendix A, lines 59-66). However, this offered no significant
improvement in the speed of the prototype program. This is because we call the solver
method after each modification. While running the solver method once, lists may not
be restricted significantly. For example, we call the solver method after changing a unit
number. In this case, no large changes may occur at all. Changing the unit number may
induce small changes, though, so we do have to call the solver method. In general, the
calculation is only needed as output to the user. By postponing the calculation as long as
possible, longer than we did in our prototype, we believe an additional great amount of
calculation time can be saved.
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Appendices
As appendices we will include the code written in C# to test the new program. In some
places in the code a global variable from the class Program is used. Program.eqs is our list
of equations and Program.matrix is the matrix derived from these equations. Please note
we use the double type to represent values, but rounding can be risky and cause errors. To
avoid rounding errors, the original code, which is written in F#, uses the type BigRational.

A Code of prototype new solver

1 pub l i c s t a t i c void NewSolve ( List<Equation> tocheckRef )
{

List<Variable> changedvars = new List<Variable >() ;
L ist<Equation> tocheck = new List<Equation >() ;
tocheck . AddRange( tocheckRef ) ;

6 Equation cur rent = tocheck . F i r s tOrDefau l t ( ) ;
// I f the queue i s empty , done

i f ( cur rent == nu l l ) re turn ;
e l s e i f ( cur rent . GetType ( ) . Equals ( typeo f ( ProductEquation ) ) )
{

11 changedvars = checkProductMinMax ( r e f cur rent ) ;

tocheck . Remove( cur rent ) ;
// I f the equat ion doesn ’ t change , go on and check the r e s t o f the queue

i f ( changedvars . Count ( ) == 0) { NewSolve ( tocheck ) ; }
16 // I f i t does change , add a l l equat ions in which the changed va r i ab l e appears to the queue

// in a so r t ed way and without dup l i ca t e s , and check the new queue
e l s e
{

f o r each ( Var iab le changedvar in changedvars )
21 {

List<Equation> changedeqs = Function . getEquat ions ( changedvar , Program . eqs ) ;
f o r each ( Equation changedeq in changedeqs )
{

i f ( ! tocheck . Contains ( changedeq ) )
26 {

Function . I n s e r t i o nSo r t ( changedeq , tocheck ) ;
}

}
}

31 NewSolve ( tocheck ) ;
}

}
e l s e i f ( cur rent . GetType ( ) . Equals ( typeo f ( SumEquation ) ) )
{

36 changedvars = checkSumMinMax( r e f cur rent ) ;

tocheck . Remove( cur rent ) ;
// I f the equat ion doesn ’ t change , go on and check the r e s t o f the queue

i f ( changedvars . Count ( ) == 0) { NewSolve ( tocheck ) ; }
41 // I f i t does change , add a l l equat ions in which the changed va r i ab l e appears to the queue

// in a so r t ed way and without dup l i ca t e s , and check the new queue
e l s e
{

f o r each ( Var iab le changedvar in changedvars )
46 {

List<Equation> changedeqs = Function . getEquat ions ( changedvar , Program . eqs ) ;
f o r each ( Equation changedeq in changedeqs )
{

i f ( ! tocheck . Contains ( changedeq ) )
51 {

Function . I n s e r t i o nSo r t ( changedeq , tocheck ) ;
}

}
}

56 NewSolve ( tocheck ) ;
}

}
//Check f o r each equat ion i f the product or sum can be ca l cu l a t ed

fo r each ( Equation eq in Program . eqs )
61 {

i f ( eq . GetType ( ) . Equals ( typeo f ( ProductEquation ) ) )
eq . ca l cproduct ( ) ;

i f ( eq . GetType ( ) . Equals ( typeo f ( SumEquation ) ) )
eq . ca lcadd ( ) ;

19



66 }
}

B Code of prototype original solver

pub l i c s t a t i c void Or i g ina lSo lv e ( List<Equation> eqtocheckre f , L ist<Equation> eqchecked )
2 {

List<Variable> changedvars = new List<Variable >() ;
L ist<Equation> eqtocheck = new List<Equation >() ;
eqtocheck . AddRange( eq tocheck r e f ) ;
Equation current = eqtocheck . F i r s tOrDefau l t ( ) ;

7
//Check f o r each equat ion i f the product or sum can be ca l cu l a t ed

fo r each ( Equation eq in Program . eqs )
{

i f ( eq . GetType ( ) . Equals ( typeo f ( ProductEquation ) ) )
12 eq . ca l cproduct ( ) ;

i f ( eq . GetType ( ) . Equals ( typeo f ( SumEquation ) ) )
eq . ca lcadd ( ) ;

}

17 // I f there are no more equat ions to check , done
i f ( cur rent == nu l l ) re turn ;
e l s e i f ( cur rent . GetType ( ) . Equals ( typeo f ( ProductEquation ) ) )
{

changedvars = checkProductMinMax ( r e f cur rent ) ;
22

// I f the equat ion doesn ’ t change , go on and check the r e s t o f the equat ions
i f ( changedvars . Count ( ) == 0) { eqtocheck . Remove( cur rent ) ;

eqchecked .Add( cur rent ) ; Or i g ina lSo lv e ( eqtocheck , eqchecked ) ; }
// I f i t does change , check a l l equat ions a l l over again

27 e l s e Or i g ina lSo lv e ( eqchecked . Concat ( eqtocheck ) . ToList ( ) , new List<Equation >() ) ;
}
e l s e i f ( cur rent . GetType ( ) . Equals ( typeo f ( SumEquation ) ) )
{

changedvars = checkSumMinMax( r e f cur rent ) ;
32

// I f the equat ion doesn ’ t change , go on and check the r e s t o f the equat ions
i f ( changedvars . Count ( ) == 0) { eqtocheck . Remove( cur rent ) ;

eqchecked .Add( cur rent ) ; Or i g ina lSo lv e ( eqtocheck , eqchecked ) ; }
// I f i t does change , check a l l equat ions a l l over again

37 e l s e Or i g ina lSo lv e ( eqchecked . Concat ( eqtocheck ) . ToList ( ) , new List<Equation >() ) ;
}

}

C Code of helper functions

//Checks what minimum and maximum va lues change and changes these f o r a product equat ion
pub l i c s t a t i c List<Variable> checkProductMinMax ( r e f Equation eq )
{

i f ( eq . GetType ( ) . Equals ( typeo f ( SumEquation ) ) )
5 { throw new System . ArgumentException ( ”Not a product equat ion ” ) ; }

List<Variable> v a r l i s t = new List<Variable >() ;
double xmin = eq .Y.Min ;
double xmax = eq .Y.Max ;
double min1 = eq . Xs . ElementAt (0) .Min ;

10 double max1 = eq . Xs . ElementAt (0) .Max ;
double min2 = eq . Xs . ElementAt (1) .Min ;
double max2 = eq . Xs . ElementAt (1) .Max ;

//The checks f o r the equat ion x=x1∗x2
15 i f (min1 != −1 && min2 != −1 && (xmin == −1 | | min1 ∗ min2 > xmin ) )

{ eq .Y. SetMin (min1 ∗ min2 ) ; v a r l i s t .Add( eq .Y) ; }
i f (max1 != −1 && max2 != −1 && (xmax == −1 | | max1 ∗ max2 < xmax) )
{ eq .Y. SetMax (max1 ∗ max2) ; v a r l i s t .Add( eq .Y) ; }
//The checks f o r the equat ion x1=x/x2

20 i f ( xmin != −1 && max2 != −1 && (min1 == −1 | | xmin / max2 > min1 ) )
{ eq . Xs . ElementAt (0) . SetMin (xmin / max2) ; v a r l i s t .Add( eq . Xs . ElementAt (0) ) ; }
i f (xmax != −1 && min2 != −1 && (max1 == −1 | | xmax / min2 < max1) )
{ eq . Xs . ElementAt (0) . SetMax (xmax / min2 ) ; v a r l i s t .Add( eq . Xs . ElementAt (0) ) ; }
//The checks f o r the equat ion x2=x/x1

25 i f ( xmin != −1 && max1 != −1 && (min2 == −1 | | xmin / max1 > min2 ) )
{ eq . Xs . ElementAt (1) . SetMin (xmin / max1) ; v a r l i s t .Add( eq . Xs . ElementAt (1) ) ; }
i f (xmax != −1 && min1 != −1 && (max2 == −1 | | xmax / min1 < max2) )
{ eq . Xs . ElementAt (1) . SetMax (xmax / min1 ) ; v a r l i s t .Add( eq . Xs . ElementAt (1) ) ; }
re turn v a r l i s t . D i s t i n c t ( ) . ToList ( ) ;

30 }

//Checks what minimum and maximum va lues change and changes these f o r a sum equat ion
pub l i c s t a t i c List<Variable> checkSumMinMax( r e f Equation eq )

20



{
35 i f ( eq . GetType ( ) . Equals ( typeo f ( ProductEquation ) ) )

{ throw new System . ArgumentException ( ”Not a sum equat ion ” ) ; }
List<Variable> v a r l i s t = new List<Variable >() ;
L ist<double> mins = new List<double >() ;
L ist<double> maxs = new List<double >() ;

40 List<double> knownmins ;
List<double> knownmaxs ;
double xmin = eq .Y.Min ;
double xmax = eq .Y.Max ;
f o r ( i n t i = 0 ; i < eq . Xs . Count ( ) ; i++)

45 {
mins .Add( eq . Xs . ElementAt ( i ) .Min) ;
maxs .Add( eq . Xs . ElementAt ( i ) .Max) ; //The l i s t s o f a l l va lues

}
knownmins = mins .Where (x => x != −1) . ToList ( ) ;

50 knownmaxs = maxs .Where (x => x != −1) . ToList ( ) ; //The l i s t s o f known va lues
// I f no va lues are known , no va r i a b l e s w i l l change

i f ( knownmins . Count ( ) == 0 && knownmaxs . Count ( ) == 0) return v a r l i s t ;
//The checks f o r the equat ion x=x1+x2 i f at l e a s t on min value i s known

i f ( knownmins . Count ( ) != 0 && (xmin == −1 | | knownmins .Sum() > xmin ) )
55 { eq .Y. SetMin ( knownmins .Sum() ) ; v a r l i s t .Add( eq .Y) ; }

//The checks f o r the equat ion x=x1+x2 i f a l l max va lues are known
i f (knownmaxs . Count ( ) == eq . Xs . Count ( ) && (xmax == −1 | | knownmaxs .Sum() < xmax) )
{ eq .Y. SetMax (knownmaxs .Sum() ) ; v a r l i s t .Add( eq .Y) ; }

//The checks f o r the equat ion x i = x − ( x1 + x2 + . . .+ xi−1 + xi+1 + . . .+ xn )
60 f o r ( i n t i = 0 ; i < eq . Xs . Count ( ) ; i++)

{
List<double> minsWithouti = new List<double >() ;
L ist<double> maxsWithouti = new List<double >() ;
minsWithouti . AddRange(mins ) ;

65 maxsWithouti . AddRange(maxs ) ;
minsWithouti . Remove(mins [ i ] ) ;
maxsWithouti . Remove(maxs [ i ] ) ;
knownmins = maxsWithouti .Where (x => x != −1) . ToList ( ) ;
knownmaxs = maxsWithouti .Where (x => x != −1) . ToList ( ) ;

70 i f ( xmin != −1 && knownmaxs . Count ( ) == eq . Xs . Count ( ) − 1 && xmin − knownmaxs .Sum() > 0
&& (mins [ i ] == −1 | | xmin − knownmaxs .Sum() > mins [ i ] ) && (maxs [ i ] == −1 | | xmin −

knownmaxs .Sum() < maxs [ i ] ) )
{ eq . Xs . ElementAt ( i ) . SetMin (xmin − knownmaxs .Sum() ) ; v a r l i s t .Add( eq . Xs . ElementAt ( i ) ) ; }
i f (xmax != −1 && knownmins . Count ( ) == eq . Xs . Count ( ) − 1 && xmax − knownmins .Sum() > 0

&& (maxs [ i ] == −1 | | xmax − knownmins .Sum() < maxs [ i ] ) && (mins [ i ] == −1 | | xmax −
knownmins .Sum() > mins [ i ] ) )

75 { eq . Xs . ElementAt ( i ) . SetMax (xmax − knownmins .Sum() ) ; v a r l i s t .Add( eq . Xs . ElementAt ( i ) ) ; }
}
re turn v a r l i s t . D i s t i n c t ( ) . ToList ( ) ;

}

80 //Creates a matrix from a l i s t o f equat ions that shows in which equat ion which va r i ab l e appears
pub l i c s t a t i c i n t [ , ] ToMatrix ( List<Variable> vars , L ist<Equation> eqs )
{

i n t numbereq = eqs . Count ( ) ;
i n t numbervars = vars . Count ;

85 i n t [ , ] matrix = new in t [ numbereq , numbervars ] ;
f o r ( i n t i = 0 ; i < numbereq ; i++)
{

f o r each ( Equation eq in eqs )
{

90 fo r each ( Var iab le var in vars )
{

i f ( eq . Contains ( var .Num) ) matrix [ eq .Num, var .Num] = 1 ;
e l s e matrix [ eq .Num, var .Num] = 0 ;

}
95 }

}
re turn matrix ;

}

100 //Returns the equat ions in which the given va r i ab l e appears
pub l i c s t a t i c List<Equation> getEquat ions ( Var iab le var , L ist<Equation> eqs )
{

List<Equation> r e s u l t = new List<Equation >() ;
f o r ( i n t i = 0 ; i < eqs . Count ( ) ; i++)

105 { i f ( Program . matrix [ i , var .Num] == 1) r e s u l t .Add( eqs [ i ] ) ; }
re turn r e s u l t ;

}

// Caculates a l l p o s s i b l e combinations o f sums without dup l i c a t e s g iven two va r i a b l e s
110 pub l i c s t a t i c List<double> Addl i s t s ( List<double> var1 , List<double> var2 )

{
List<double> r e s u l t = new List<double >() ;
f o r each ( double va l1 in var1 )
{

115 fo r each ( double va l2 in var2 )
{

i f ( ! r e s u l t . Contains ( va l1 + val2 ) )
r e s u l t .Add( val1 + val2 ) ;

}
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120 }
re turn r e s u l t ;

}

// Caculates a l l p o s s i b l e combinations o f products without dup l i c a t e s g iven two va r i a b l e s
125 pub l i c s t a t i c List<double> Produc t l i s t s ( List<double> var1 , List<double> var2 )

{
List<double> r e s u l t = new List<double >() ;
f o r each ( double va l1 in var1 )
{

130 fo r each ( double va l2 in var2 )
{

i f ( ! r e s u l t . Contains ( va l1 ∗ val2 ) )
r e s u l t .Add( val1 ∗ val2 ) ;

}
135 }

re turn r e s u l t ;
}

//Finds the lowest number above arg that i s d i v i s i b l e by mult
140 pub l i c s t a t i c double Round( double arg , double mult )

{
double i = mult ;
whi le ( i < arg ) i += mult ;
r e turn i ;

145 }

// I n s e r t s an equat ion so r t ed by the number o f v a r i a b l e s
pub l i c s t a t i c List<Equation> I n s e r t i o nSo r t ( Equation elem , List<Equation> queue )
{

150 in t l ength = queue . Count ( ) ;
i f ( l ength == 0)

queue .Add( elem ) ;
f o r ( i n t i = 0 ; i < l ength ; i++)
{

155 i f ( queue . ElementAt ( i ) . Xs . Count ( ) > elem . Xs . Count ( ) )
{ queue . I n s e r t ( i , elem ) ; break ; }
e l s e i f ( i == queue . Count ( ) − 1)

queue .Add( elem ) ;
}

160 return queue ;
}

D Code of variable and equation classes

pub l i c c l a s s Var iab le
{

pub l i c double Min { get ; s e t ; } //The minimum
pub l i c double Max { get ; s e t ; } //The maximum

5 pub l i c double Unit { get ; s e t ; } //The bas i c un i t
pub l i c List<double> L i s t { get ; s e t ; }//The l i s t o f p o s s i b l e va lues
pub l i c i n t Num { get ; s e t ; } //The number i nd en t i f y i n g the va r i ab l e
pub l i c Var iab le ( double min , double max , double unit , i n t i )
{

10 Min = min ;
Max = max ;
Unit = unit ;
L i s t = new List<double >() ;
Num = i ;

15 }

pub l i c Var iab le ( List<double> l i s t , i n t i )
{

Min = l i s t .Min ( ) ;
20 Max = l i s t .Max( ) ;

Unit = −1;
L i s t = l i s t ;
Num = i ;

}
25

pub l i c Var iab le ( i n t i )
{

Min = −1;
Max = −1;

30 Unit = −1;
L i s t = new List<double >() ;
Num = i ;

}

35 pub l i c void SetMax ( double max)
{

// Fi r s t , check that the maximum i s not s e t yet or that i t ’ s a s t r i c t e r maximum than the prev ious one
i f ( t h i s .Max == −1 | | max < t h i s .Max)
{
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40 // I f the bas i c un i t and minimum are a l ready known ,
//add the l i s t with as minimum the lowest mul t ip l e o f the ba s i c un i t above the minimum
//and as maximum the h ighe s t mult itude o f the bas i c un i t

i f ( t h i s .Max == −1 && th i s . Unit != −1 && th i s .Min != −1 && th i s . L i s t . Count ( ) == 0)
{

45 double i = Function . Round( t h i s .Min , t h i s . Unit ) ;
t h i s .Min = i ;
whi le ( i <= max)
{ t h i s . L i s t .Add( i ) ; i += th i s . Unit ; }
t h i s .Max = i ;

50 }
// I f the bas i c un i t i s a l ready known ,
//add the l i s t with as minimum the bas i c un i t and as maximum the h ighe s t mult itude o f the ba s i c un i t

e l s e i f ( t h i s .Max == −1 && th i s . Unit != −1)
{

55 double i = th i s . Unit ;
t h i s .Min = i ;
whi le ( i <= max)
{ t h i s . L i s t .Add( i ) ; i += th i s . Unit ; }
t h i s .Max = i ;

60 }
// I f the l i s t i s a l ready set , adapt i t s va lues to the new maximum
e l s e i f ( t h i s . L i s t . Count ( ) != 0)
{

t h i s . L i s t = th i s . L i s t .Where (x => x <= max) . ToList ( ) ;
65 t h i s .Max = th i s . L i s t .Max( ) ;

}
e l s e t h i s .Max = max ;

}
}

70
pub l i c void SetMin ( double min )
{

// Fi r s t , check that the minimum i s not s e t yet or that i t ’ s a s t r i c t e r minimum than the prev ious one
i f ( t h i s .Min == −1 | | min > t h i s .Min)

75 {
// I f the l i s t i s a l r eady set , adapt i t s va lues to the new minimum

i f ( t h i s . L i s t . Count ( ) != 0)
{

t h i s . L i s t = th i s . L i s t .Where (x => x >= min) . ToList ( ) ;
80 t h i s .Min = th i s . L i s t .Min ( ) ;

}
e l s e t h i s .Min = min ;

}
}

85
pub l i c void SetUnit ( double un i t )
{

// I f the maximum and minimum are a l ready known ,
//add the l i s t with as minimum the lowest mul t ip l e o f the ba s i c un i t above the minimum

90 //and as maximum the h ighe s t mult itude o f the ba s i c un i t
i f ( t h i s . Unit == −1 && th i s .Max != −1 && th i s .Min != −1 && th i s . L i s t . Count ( ) == 0)
{

double i = Function . Round( t h i s .Min , un i t ) ;
t h i s .Min = i ;

95 t h i s . Unit = unit ;
whi le ( i <= th i s .Max)
{ t h i s . L i s t .Add( i ) ; i += th i s . Unit ; }
t h i s .Max = i ;

}
100 // I f the maximum i s a l ready known ,

//add the l i s t with as minimum the bas i c un i t and as maximum the h ighe s t mult itude o f the ba s i c un i t
e l s e i f ( t h i s . Unit == −1 && th i s .Max != −1 && th i s . L i s t . Count ( ) == 0)
{

double i = th i s . Unit ;
105 t h i s .Min = i ;

t h i s . Unit = unit ;
whi le ( i <= th i s .Max)
{ t h i s . L i s t .Add( i ) ; i += th i s . Unit ; }
t h i s .Max = i ;

110 }
// I f the l i s t i s a l r eady set , adapt i t s va lues to the new bas i c un i t

e l s e i f ( t h i s . L i s t . Count ( ) != 0)
{

t h i s . Unit = unit ;
115 t h i s . L i s t = th i s . L i s t .Where (x => x % unit == 0) . ToList ( ) ;

t h i s .Min = th i s . L i s t .Min ( ) ;
t h i s .Max = th i s . L i s t .Max( ) ;

}
e l s e t h i s . Unit = unit ;

120 }

pub l i c void Se tL i s t ( List<double> l i s t )
{

double min = l i s t .Min ( ) ;
125 double max = l i s t .Max( ) ;

t h i s . L i s t = l i s t ;
//For the minimum check i f i t i s a l r eady s e t and i f the new l i s t needs to be r e s t r i c t e d
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i f ( t h i s .Min == −1) t h i s .Min = min ;
e l s e

130 {
i f ( t h i s .Min <= min) t h i s .Min = min ;
e l s e
{

t h i s . L i s t = th i s . L i s t .Where (x => x >= th i s .Min) . ToList ( ) ;
135 t h i s .Min = th i s . L i s t .Min ( ) ;

}
}

//For the maximum check i f i t i s a l r eady s e t and i f the new l i s t needs to be r e s t r i c t e d
i f ( t h i s .Max == −1) t h i s .Max = max ;

140 e l s e
{

i f ( t h i s .Max >= max) t h i s .Max = max ;
e l s e
{

145 t h i s . L i s t = th i s . L i s t .Where (x => x <= th i s .Max) . ToList ( ) ;
t h i s .Max = th i s . L i s t .Max( ) ;

}
}

}
150 }

pub l i c c l a s s Equation
{

pub l i c Var iab le Y { get ; s e t ; } //The l e f t−hand s i d e va r i ab l e
155 pub l i c List<Variable> Xs { get ; s e t ; }//The r ight−hand s i d e va r i ab l e

pub l i c i n t Num { get ; s e t ; } //The number i d e n t i f y i n g the equat ion

pub l i c Equation ( Var iab le y , Var iab le [ ] xs , i n t i )
{

160 Y = y ;
Xs = new List<Variable >() ;
Xs . AddRange( xs ) ;
Num = i ;

}
165

pub l i c bool Contains ( i n t i ) //Checks i f a equat ion conta ins va r i ab l e i
{

i f ( t h i s .Y.Num == i ) return true ;
f o r each ( Var iab le var in t h i s . Xs)

170 i f ( var .Num == i ) return true ;
re turn f a l s e ;

}

// I f i t i s po s s i b l e , c a l c u l a t e the sum of the r ight−hand s i d e v a r i a b l e s o f t h i s equat ion
175 pub l i c void calcadd ( )

{
bool cond i t i on = true ;
List<double> r e s u l t = new List<double >() ;

//Only c a l c u l a t e when a l l v a r i a b l e s o f the equat ion have non−empty l i s t s
180 f o r ( i n t i = 0 ; i < t h i s . Xs . Count ( ) ; i++)

{
i f (Xs . ElementAt ( i ) . L i s t . Count ( ) == 0)

cond i t i on = f a l s e ;
}

185 i f ( cond i t i on )
{

// Ca lcu la te a l l p o s s i b l e sums o f the r ight−hand s i d e v a r i a b l e s
List<List<double>> l i s t s = th i s . Xs . S e l e c t ( x => x . L i s t ) . ToList ( ) ;
r e s u l t = l i s t s . Aggregate ( ( x , y ) => Function . Add l i s t s (x , y ) ) ;

190 // Set t h i s as the l e f t hand va r i ab l e
t h i s .Y. Se tL i s t ( r e s u l t ) ;

}
}

195 // I f i t i s po s s i b l e , c a l c u l a t e the product o f the r ight−hand s i d e v a r i a b l e s o f t h i s equat ion
pub l i c void ca l cproduct ( )
{

bool cond i t i on = true ;
List<double> r e s u l t = new List<double >() ;

200 //Only c a l c u l a t e when a l l v a r i a b l e s o f the equat ion have non−empty l i s t s
f o r ( i n t i = 0 ; i < t h i s . Xs . Count ( ) ; i++)
{

i f (Xs . ElementAt ( i ) . L i s t . Count ( ) == 0)
cond i t i on = f a l s e ;

205 }
i f ( cond i t i on )
{

// Ca lcu la te a l l p o s s i b l e products o f the r ight−hand s i d e v a r i a b l e s
List<List<double>> l i s t s = th i s . Xs . S e l e c t ( x => x . L i s t ) . ToList ( ) ;

210 r e s u l t = l i s t s . Aggregate ( ( x , y ) => Function . P r oduc t l i s t s (x , y ) ) ;
// Set t h i s as the l e f t hand va r i ab l e

t h i s .Y. Se tL i s t ( r e s u l t ) ;
}

}
215 }
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pub l i c c l a s s ProductEquation : Equation
{

pub l i c ProductEquation ( Var iab le x , Var iab le [ ] xs , i n t i )
220 : base (x , xs , i )

{
}

}

225 pub l i c c l a s s SumEquation : Equation
{

pub l i c SumEquation ( Var iab le x , Var iab le [ ] xs , i n t i )
: base (x , xs , i )

{
230 }

}

25


