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1 Introduction

In this thesis we will take a look at the development of the law of quadratic
reciprocity. What is necessary to come up with such a theorem and what
were the fundamental ideas connected to the quadratic reciprocity law which
mathematicians came up with through out the years?

We will start our journey with Fermat, whose little theorem became very
important in our story. Then we continue with Euler, the first mathematician
who stated the complete law of quadratic reciprocity and Legendre who did
some fundamental work, but eventually could not prove the quadratic
reciprocity law. The first person who did was Gauss, he actually gave eight
different proofs during his lifetime and we will study his third and fourth
proof.

In this thesis we have made use of modern notation. The difference is not
very large, because since the 17th century, mathematicians used a notation
that was similar to ours. Especially since the time of Euler (1707-1783) and
most of this thesis is about the time during and after Euler’s lifetime.

In this thesis we have tried to give a good overview of the development of
the quadratic reciprocity law. Which also means that we have tried to clarify
sources. It will be interesting to read if you are interested in number theory
and the historical development of a mathematical law. It is written in such
a way that first year mathematical students could understand it and even
motivated secondary school pupils. The only important pre-knowledge
someone must have is knowing how modulo calculations work. For Gauss’
fourth proof, it is useful to know the binomial coefficient. An introduction
in binomial series can be found in the book Calculus1.

We have made use of secondary literary sources like historical and number
theoretical source books, but the most important parts are based on the
original works from Euler, Legendre and Gauss. Sometimes we will not give
original proofs of theorem, because with modern mathematics there are much
easier to understand proofs, especially for the target audience. If this is the
case we will mention it.

Before we start, we will look at what the theorem is all about.
Quadratic reciprocity is a theorem about quadratic residues modulo a prime
number p. Lets look at the equation

x

2 ⌘ a mod p

where p is a prime number and a is an integer coprime to p. We say that a

is a quadratic residue modulo p if we can solve this equation for x 2 Z.
1R.A.Adams, C. Essex, Calculus, a complete source, 7th edition, Toronto, 2003, p. 549-552
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Example 1.1 Is 11 a quadratic residue modulo 53?
The question is; can we solve x

2 ⌘ 11 mod 53? By trying we can find that
x = 8 will work. Because 8

2 ⌘ 64 ⌘ 11 mod 53. That means that 11 is a
quadratic residue modulo 53.

To make things more clear in the first part of the thesis, we will introduce
the law of quadratic reciprocity. But first, let us introduce the symbol of
Legendre:

Definition (Legendre symbol) Let p be a prime number and a an integer
not divisible by p. Then

✓
a

p

◆
=

(
+1 if a is a quadratic residue modulo p

�1 if a is a quadratic non� residue modulo p

The Legendre symbol is defined as zero if p divides a.

We are now ready to state the full law of quadratic reciprocity.
Take two prime numbers p and q to begin with. We can now ask the questions
whether q is a quadratic residue modulo p or p is a quadratic residue
modulo q. These two questions are very different and at first sight it seems
that the answers can not be related to each other. But the law of quadratic
reciprocity relates the Legendre symbols

⇣
q

p

⌘
and

⇣
p

q

⌘
in a very beautiful

way:

Theorem 1.1 (Quadratic Reciprocity) Let p and q be different odd
primes, then

✓
�1

p

◆
= (�1)

p�1
2

✓
2

p

◆
= (�1)

p2�1
8

✓
p

q

◆✓
q

p

◆
= (�1)

p�1
2

q�1
2

Since the Legendre symbol is always +1 or -1, we can also write the last
formula as

✓
p

q

◆
=

✓
q

p

◆
(�1)

p�1
2

q�1
2

Example 1.2: Is 31 a quadratic residue modulo 43?
From theorem 3.1 below we can just try all 43�1

2

= 21 squares. But a faster
method is to calculate the Legendre symbol.
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✓
31

43

◆
=

✓
43

31

◆
(�1)

43�1
2

31�1
2

= �
✓
43

31

◆
= �

✓
12

31

◆
.

Because the Legendre symbol is multiplicative, we have
✓
12

31

◆
=

✓
4

31

◆✓
3

31

◆
.

We know that
�

4

31

�
= 1 because 2

2

= 4. We go further with
�

3

31

�

✓
3

31

◆
=

✓
31

3

◆
(�1)

3�1
2

31�1
2

= �
✓
1

3

◆

because
�
1

3

�
= 1, we have that

�
3

31

�
= �1 and

✓
31

43

◆
= (�1) · 1 · (�1) = 1

And we conclude that 31 is a quadratic residue modulo 43.

Example 1.3: For which prime p numbers is 7 a quadratic residue
modulo p?
We want to know when

⇣
7

p

⌘
equals 1.

✓
7

p

◆
=

⇣
p

7

⌘
(�1)

p�1
2

7�1
2

=

⇣
p

7

⌘
(�1)

p�1
2

We want that
�
p

7

�
and (�1)

p�1
2 have the same sign, then

⇣
7

p

⌘
= 1

We know that the quadratic residues modulo 7, are 1,2 and 4. That means
that the

�
p

7

�
equals 1 if p ⌘ 1, 2, 4 mod 7 and �1 if p ⌘ 3, 5, 6 mod 7. We

also know that (�1)

p�1
2 equals 1 if p ⌘ 1 mod 4 and �1 is p ⌘ 3 mod 4.

The Chinese remainder theorem gives us the following:

• If p ⌘ 1 mod 4 and p ⌘ 1 mod 7, then p ⌘ 1 mod 28

• If p ⌘ 1 mod 4 and p ⌘ 2 mod 7, then p ⌘ 9 mod 28

• If p ⌘ 1 mod 4 and p ⌘ 4 mod 7, then p ⌘ 25 mod 28

• If p ⌘ 3 mod 4 and p ⌘ 3 mod 7, then p ⌘ 3 mod 28

• If p ⌘ 3 mod 4 and p ⌘ 5 mod 7, then p ⌘ 19 mod 28

• If p ⌘ 3 mod 4 and p ⌘ 6 mod 7, then p ⌘ 27 mod 28

We conclude that 7 is a quadratic residue modulo p if
p ⌘ 1, 3, 9, 19, 25, 27 mod 28.

As we will see, the law of quadratic reciprocity is a beautiful theorem that
can be proven in many different ways.
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2 Preliminaries

2.1 Pierre the Fermat

As we go back in time, the first mathematician who can be related to
quadratic reciprocity was Pierre de Fermat2 (1601-1665). Fermat was a
French lawyer from Toulouse. He had an excellent educational background,
spoke Latin, Greek, Italian and Spanish fluently and was also well known
for his poetry in several languages. It is not known when Fermat became
interested in mathematics, but he did some great discoveries. Fermat is most
famous for his last theorem. Fermat stated in this theorem that there are
no integers a, b, c and n > 2 such that a

n

+ b

n

= c

n. For n = 2 we have
infinitely many solutions; take a = s

2� t

2, b = 2st and c = s

2

+ t

2, these are
all the solutions to this problem, for which the greatest common divisor of
a, b, c is 1

But for the proof that for all n > 2, there are no integer solutions,
we had to wait until 1995 when Andrew Wiles first proofs Fermat’s last
theorem3.

There is an age old tradition among mathematicians; they challenged each
other with problems to get respect for the discoveries they had done.
Fermat did the same in a letter to his friend Frenicle de Bessy,4 from 1640,
in which he stated that a

p�1 � 1 is divisible by p if p is prime number and
coprime to a. This is now known as Fermat’s little theorem and was the first
step towards quadratic reciprocity.
This theorem can be generalized as follows:

Theorem 2.1 (Fermat’s little theorem) Let p be a prime number and a

an integer, then p divides a

p � a. If p does not divide a, then p divides
a

p�1 � 1. In other words a

p�1 ⌘ 1 mod p.

The first proof of this theorem was given by Leonard Euler in 1736 in his
paper Theorematum Quorundam ad Numeros Primos Spectantium
Demonstratio,5 although Leibniz already gave a proof in 1680, but this proof
was only found in 1863 among the manuscripts that Leibniz had left. We
will prove this in a modern way, based on the proof given in
A Computational Introduction to Number Theory and Algebra.6

2Article: P. de Fermat, in G. Gillispie, ed. Dictionary of Scientific Biography vol. 4, New
York, 1971, p. 566-576
3A. Wiles, Modular elliptic curves and Fermat’s Last Theorem, Cambridge, 1995
4A translation of this letter can be found in [6], E.54, letter 2 (October 1640) from the
Fermat-Frenicle correspondence.
5[6] L. Euler, Theorematum Quorundam ad Numeros Primos Spectantium Demonstratio,
St. Petersburg, 1736
6V.Shoup, A Computational Introduction to Number Theory and Algebra, New York, 2008
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Proof First assume that p | a, then for obvious reasons p | ap � a, and we
are done.
Lets assume that p - a and consider the first p� 1 multiples of a

a, 2a, ..., (p� 1)a

If we look at these numbers modulo p we have

a ⌘ r

1

mod p

2a ⌘ r

2

mod p

.

.

.
(p� 1)a ⌘ r

p�1

mod p

Where 0 < r

i

 p� 1. All r
i

6= 0 otherwise p | a. If we have that ra and sa

are the same modulo p, we have that r ⌘ s mod p. Thus the p�1 multiples
are all distinct and nonzero. This means that they must be congruent to
1, 2, ..., (p� 1) in some order. If we multiply all these congruences together
we find

a· 2a· · · (p� 1)a ⌘ 1· 2· · · (p� 1) mod p

we can write this as

a

p�1

(p� 1)! ⌘ (p� 1)! mod p

dividing by (p-1)! gives

a

p�1 ⌘ 1 mod p

hence

a

p ⌘ a mod p

And we completed the proof.

Fermat was interested in the question wether you can write a prime number
p as p = x

2

+ y

2 for some integers x and y. Fermat knew that you can write
a prime number as sum of
squares if and only if p = 2 or p ⌘ 1 mod 4, which is strongly related to
what we now know as the first supplementary law of quadratic reciprocity:

x

2 ⌘ �1 mod p is solvable if and only if p ⌘ 1 mod 4

Fermat’s work can be seen as the first motivation for other mathematicians
to study such problems.

7



3 Leonard Euler

The first mathematician who can be related to quadratic reciprocity after
Fermat was Leonard Euler7 (1707-1783). Euler started by studying a lot of
Fermat’s work. Because Fermat left plenty of theorems behind without
proving them, Euler started by trying to prove some of Fermat’s theorems.
In 1736 Euler published his paper [6], in which he proved Fermat’s little
theorem for the first time. Euler published a total of 530 books and articles
during his lifetime, and after his death, this number increased to 886. It
took the academy of St. Petersburg almost 50 years before they published
all the work Euler left behind.8

Eventually Euler discovered the law of quadratic reciprocity. Unfortunately,
he could not prove quadratic reciprocity, but he came up with some
fundamental results that guided Legendre and Gauss.

Euler discovered that for any odd prime number p, exactly half of the
numbers between 0 and p are perfect squares modulo p, and the other half
are not. In other words, for any prime number p there are exactly p�1

2

perfect squares modulo p. The numbers that are perfect squares are called
quadratic residues, the ones that are not, are called quadratic non-residues.

Theorem 3.1 Let p be an odd prime, then there are exactly p�1

2

quadratic
residues and p�1

2

quadratic non-residues modulo p.

Example 3.1 What are the quadratic residues modulo 11? We determine
all x2

mod p for x = 1, 2, ..., 10, and we find

1

2 ⌘ 1 mod 11 2

2 ⌘ 4 mod 11 3

2 ⌘ 9 mod 11 4

2 ⌘ 5 mod 11 5

2 ⌘ 3 mod 11

6

2 ⌘ 3 mod 11 7

2 ⌘ 5 mod 11 8

2 ⌘ 9 mod 11 9

2 ⌘ 4 mod 11 10

2 ⌘ 1 mod 11

Observe that the row of quadratic residues 1, 4, 9, 5, 3, 3, 5, 9, 4, 1 is
symmetric.

Proof Let us look at all the squares 1

2

, 2

2

, ..., (p� 1)

2 modulo p. Since
x

2 ⌘ (�x)

2

mod p, the p� 1 integers form p�1

2

congruent pairs modulo p.
Therefore, there are at most p�1

2

quadratic residues and we just have to look
at x

2

mod p for x = 1, 2, ...,

p�1

2

, because all quadratic residues are
congruent to one of 12, 22, ...,

�
p�1

2

�
2

mod p. We have to prove that all p�1

2

7[2] Article: L. Euler, p. 467-484
8D.J. Struik, Geschiedenis van de wiskunde, Utrecht, 1965
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quadratic residues are different, which means that if x2 ⌘ y

2

mod p, for
x, y  p�1

2

, then x = y.

Assume that x

2 ⌘ y

2

mod p, for some 1  x, y <

p

2

. Then p divides
x

2 � y

2

= (x+ y)(x� y), thus p must divide (x+ y) or (x� y). Since p can
not divide (x+ y), because 0 < (x+ y) <

p

2

+

p

2

= p, it means that p divides
(x� y). This implies that x ⌘ y mod p.
We conclude that there are exactly p�1

2

different quadratic residues.

Euler was the first person to discover that the product of two quadratic
residues or the product of two non-residues is a quadratic residue, and that
the product of a quadratic residue and a quadratic non-residue is a quadratic
non-residue. In Legendre symbols this means the following:

✓
ab

p

◆
=

✓
a

p

◆✓
b

p

◆

Once we know this, we can assume that a is a prime number,
otherwise we can just factorize a and consider the problem a factor at a time.

After proving Fermat’s little theorem, Euler came up with his own theorem,
which can be seen as an extensive form of Fermat’s little theorem.

Theorem 3.2: (Euler’s criterion) Let p be a prime number and a an
integer not divisible by p. Then

a

p�1
2 ⌘

(
+1 mod p if a is a quadratic residue modulo p

�1 mod p if a is a quadratic non� residue modulo p

In other words, we have the following for the Legendre symbol
✓
a

p

◆
⌘ a

p�1
2

mod p

Proof We can write Fermat’s little theorem as a

p�1 � 1 ⌘ 0 mod p, and
observe that this is equivalent to

⇣
a

p�1
2 � 1

⌘⇣
a

p�1
2

+ 1

⌘
⌘ 0 mod p (1)

Hence, at least one of the factors on the left hand side must be congruent to
0 mod p. We will break this proof down in two parts,

⇣
a

p

⌘
= 1 and

⇣
a

p

⌘
= �1.
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First part

Let us first assume that
⇣

a

p

⌘
= 1. This means that a is a quadratic residue

mod p. Therefore there exists an x 2 N such that x

2 ⌘ a mod p. We can
raise both sides by p�1

2

and we find
�
x

2

� p�1
2 ⌘ a

p�1
2

mod p which is
equivalent to x

p�1 ⌘ a

p�1
2

mod p. We know from Fermat’s little theorem
that x

p�1 is equal to 1 mod p. We can conclude that if a is a quadratic
residue mod p, a

p�1
2 ⌘

⇣
a

p

⌘
⌘ 1. And if a is a quadratic residue mod p,

the first part of equation (1) will be zero.

We know that the equation x

p�1
2 �1 = 0 has at most p�1

2

roots, and because
there are p�1

2

quadratic residues, these are exactly the roots of x
p�1
2 �1 = 0.

Second part

Let us now assume that
⇣

a

p

⌘
= �1. This means that a is not a quadratic

residue modulo p. Since all these non-quadratic residues are roots of
x

p�1 � 1 = 0, but not from x

p�1
2 � 1 = 0 because of the first part, they have

to be roots of x
p�1
2

+1 = 0. By the same argument as in part 1, x
p�1
2

+1 = 0

has at most p�1

2

roots, and because there are p�1

2

quadratic non-residues,
these are exactly the roots of x

p�1
2

+1 = 0. Thus all quadratic non-residues
will make the second part of equation (1) zero.
We conclude that if a is not a quadratic residue modulo p,
a

p�1
2

+ 1 ⌘ 0 mod p and thus a

p�1
2 ⌘ �1 mod p.

We have completed the proof.

Eventually Euler discovered the law of quadratic reciprocity (figure 1), which
was published in 17839 by the academy of St. Petersburg, afters Euler’s
death.

9L. Euler, Observationes circa divisionem quadratorum per numeros primes, 1783
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Figure 1: The law of quadratic reciprocity by Euler10

Because Euler did not have the modern notation we have today, including
the Legendre symbol, he distinguished four different cases, which together
give the full law of quadratic reciprocity. Euler’s four statements boil down
to the following, where we assume that s is an odd prime:

1. If p ⌘ 1 mod 4 is prime and p ⌘ x

2

mod s for some prime s,
then there exists a y 2 Z such that s ⌘ y

2

mod p and there exists a z 2 Z
such that �s ⌘ z

2

mod p

2. If p ⌘ 3 mod 4 is prime and �p ⌘ x

2

mod s for some prime s,
then there exists a y 2 Z such that s ⌘ y

2

mod p, but there is no z 2 Z
such that �s ⌘ z

2

mod p.

3. If p ⌘ 1 mod 4 is prime and p 6⌘ x

2

mod s for some prime s,
then there is no y 2 Z such that s ⌘ y

2

mod p and there is no z 2 Z
such that s ⌘ z

2

mod p

4. If p ⌘ 3 mod 4 is prime and �p 6⌘ x

2

mod s for some prime s,
then there exists a y 2 Z such that �s ⌘ y

2

mod p but there is no z 2 Z
such that s ⌘ z

2

mod p.
10[6] E. 552
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To discuss the relationship of these four statements with the general law of
quadratic reciprocity we first write them by means of Legendre symbols:

1. If p ⌘ 1 mod 4 the
�
p

s

�
= +1 =)

h⇣
s

p

⌘
= +1 and

⇣
�s

p

⌘
= +1

i

2. If p ⌘ 3 mod 4 then
��p

s

�
= +1 =)

h⇣
s

p

⌘
= +1 and

⇣
�s

p

⌘
= �1

i

3. If p ⌘ 1 mod 4 then
�
p

s

�
= �1 =)

h⇣
s

p

⌘
= �1 and

⇣
�s

p

⌘
= �1

i

4. If p ⌘ 3 mod 4 then
��p

s

�
= �1 =)

h⇣
s

p

⌘
= �1 and

⇣
�s

p

⌘
= +1

i

The following two facts were also known to Euler, and discussed in the same
paper:

⇣
�1

p

⌘
= (�1)

p�1
2 and

⇣
ab

p

⌘
=

⇣
a

p

⌘⇣
b

p

⌘
. From these two facts and

Euler’s four statements we can now immediately conclude the general
reciprocity law

⇣
p

q

⌘⇣
q

p

⌘
= (�1)

p�1
2

q�1
2 .
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4 Adrien-Marie Legendre

Legendre11 (1752-1833) was a French number theorist who studied a lot of
discoveries made by Fermat and Euler. Legendre attempted to prove quadratic
reciprocity, and in order to do that, he stated in his paper Recherches
d’analyse indéterminée from 1785, the law of quadratic reciprocity in a very
comprehensive way, in which he distinguished eight different cases12.
Legendre tried to prove all these cases, but did not succeed. In particular
because his proofs where based on a theorem, which we now know as
Dirichlet’s theorem:

Theorem 4.1 (Dirichtlet’s theorem) Let a and b be positive integers
with gcd(a, b) = 1, then there are infinitely many primes p such that
p ⌘ a mod b

This theorem has the name of Dirichlet because he was the first man to
give a proof in 1837.
A couple of years after Legendre successfully stated
the complete law of quadratic reciprocity, he wrote a book, named Essai
sur la theorie des nombres13 in which he introduced a new notation
(Figure 2) to simplify discussions about quadratic reciprocity; the Legendre
symbol.

Figure 2: The introduction of the Legendre symbol.

Legendre introduced his symbol
�
N

c

�
as N

c�1
2 after dividing by c, of which

he already showed that it is equal to +1 or �1.

11[2] Article: A. M. Legendre, p. 135-143
12A. Legendre, Recherches d’analyse indéterminée, Histoire de l’Académie, Paris, 1785
13A. Legendre, Essai sur la theorie des nombres, Paris, 1798
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Today we define the Legendre symbol as follows:

Definition 4.1 (Legendre symbol) Let p be a prime number and a an
integer not divisible by p. Then

✓
a

p

◆
=

(
+1 if a is a quadratic residue modulo p

�1 if a is a quadratic non� residue modulo p

The Legendre symbol is defined as zero if p divides a.

Legendre stated the law of quadratic reciprocity for the first time in history
in its modern form (Figure 3).

Figure 3: Legendre’s quadratic reciprocity law

14



If we have two primes m and n, and at least one of them is of the form
4x+ 1, for x an integer, then we have

⇣
n

m

⌘
=

⇣
m

n

⌘

If both m and n are of the form 4x� 1 then we have
⇣
n

m

⌘
= �

⇣
m

n

⌘

These two general cases are included in the formula
⇣
n

m

⌘
=

⇣
m

n

⌘
(�1)

n�1
2

m�1
2

The notation that Legendre introduced was very important, it is the same
notation we use today. Legendre was again trying to prove this theorem,
but he did not succeed. His proof was not complete.
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5 Carl Friedrich Gauss

Gauss14 (1777-1855) was a German mathematician and by many people seen
as the greatest mathematician who ever lived. He studied in Göttingen from
1795 until 1798 and it was in this time period that Gauss did some
remarkable discoveries. In 1796, at the age of 19, Gauss figured out how to
construct a regular heptadecagon (17-gon) using only a compass and a
straightedge. In the same year, Gauss gave the complete proof of the law
of quadratic reciprocity, which was published in his most famous work
Disquisitiones arithmeticae15 in 1801. This book, written in Latin, was a
complete overview of the results in number theory discovered in the 17th
and 18th century. Gauss also added some of his own important results,
including his first proof of the law of quadratic reciprocity, and a second one.
Gauss called the law of quadratic reciprocity a ’Fundamental Theorem’ and
by the time he wrote his Disquisitiones arithmeticae, he had already
discovered two more proofs. These proofs where not published until 1863
after his death. During his lifetime, Gauss gave a total of eight different
proofs.
His first proof is similar to what Legendre was trying to do, by separating
eight different cases (Figure 4).

Figure 4: Eight different cases by Gauss16.
14Article: C.F. Gauss, in G. Gillispie, ed. Dictionary of Scientific Biography vol. 5, New

York, 1972, p. 298-315
15C.-F. Gauss, Disquisitiones Arithmeticae, Leipzig, 1801
16In latin ’Si’ means ’if’ and ’erit’ means ’will be’
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In figure 4, a and a

0 denote primes of the form 4n+ 1 and b and b

0 denote
primes of the form 4n+ 3. xRy denotes that x is a quadratic residue of y
and xNy denotes that x is not a quadratic residue of y.

For his third and fifth proof Gauss made use of a lemma which he introduced
in his work Theorematis arithmetici demonstratio nova17 to prove the law
of quadratic reciprocity. We have used an English translation that can be
found in A Source book in mathematics18 by David Eugene Smith, for the
proof of Gauss’ lemma and Gauss’ third proof of the quadratic reciprocity
law.
We will first look at the lemma Gauss introduced and prove it.
Afterwards we will use this lemma to prove quadratic reciprocity.

Gauss’ lemma looks at the remainders modulo p. We can list all these
remainders as

1, 2, ...,

p� 1

2

,

p+ 1

2

, ..., p� 1 mod p

where we will call all the remainders smaller then p

2

small residues and all
the remainders bigger then p

2

big residues.

Lemma 5.1 (Gauss’ lemma) Let p be an odd prime and a an integer
coprime to p. Let u be the number of big residues in 1a, 2a, 3a, ...,

p�1

2

a,
then

✓
a

p

◆
= (�1)

u

Let us first give an example before we prove this Lemma.
We want to know whether 5 is a quadratic residue modulo 7. We calculate
the residues:

5 · 1 ⌘ 5 ⌘ 5 mod 7

5 · 2 ⌘ 10 ⌘ 3 mod 7

5 · 3 ⌘ 15 ⌘ 1 mod 7

We can count the residues that are bigger then 7

2

= 3.5, namely one.
So we know that u = 1 and

✓
5

7

◆
= (�1)

1

= �1

17C.F. Gauss, Theorematis arithmetici demonstratio nova, Comment. Soc. regiae sci.
Göttingen XVI (1808)
18D.E. Smith, A source book in mathematics, page 112-118, New York, 1929

17



We conclude that 5 is not a quadratic residue modulo 7.

We will give Gauss’ proof but our notation will be adapted to that of
Shoup.19.

Proof of Gauss’ lemma We have two types of residues; the small ones
{1, 2, ..., p�1

2

} and the big ones {p+1

2

, ..., p� 1}. Note that we can write the
big residues as {�1,�2, ...,�p�1

2

}.Thus we can write all the residues as
{±1,±2, ...,±p�1

2

}. All these residues are different and if we multiply them
by a they are still different. In fact, all the residues {±1a,±2a, ...,±p�1

2

a}
are a rearrangement of {1, 2, ..., p� 1}. This means that for all the values
±1,±2, ...,±p�1

2

mod p exactly half of them are a rearrangement of
1a, 2a, ...,

p�1

2

a mod p and if +s 2 {1a, 2a, ..., p�1

2

a}, then �s /2 {1a, 2a, ..., p�1

2

a}20.
Now look at the product

A = a · 2a · · · p� 1

2

a = a

p�1
2

✓
1 · 2 · · · p� 1

2

◆
= a

p�1
2

✓
p� 1

2

◆
!

By our rearrangement we have found that

a

p�1
2

✓
p� 1

2

◆
! ⌘ (�1)

u

✓
p� 1

2

◆
! mod p

where u counts the big residues, because the number of big residues {�1,�2, ...,�p�1

2

}
decides whether the sign will be positive or negative. We can now divide
both sides by

�
p�1

2

�
! to get

a

p�1
2

= (�1)

u

Euler’s criterion completes the proof.

19V.Shoup, A Computational Introduction to Number Theory and Algebra, New York, 2008,
p.344

20This follows from �s ⌘ (p� s) mod p
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5.1 Gauss’ Third Proof

Gauss gave a total of eight proofs during his life. We will give Gauss’ third
proof that first appeared in his article21, because it is considered by Gauss
himself and many others to be the most elegant proof of all eight.
We have tried to make Gauss third proof better understandable then
earlier published versions.

Gauss’ third proof is based on Gauss’ lemma which we just proved. Let us
take a closer look at u, the number of big residues.
Take a prime number p and an integer a. Let r

i

be the remainder such that
r

i

⌘ ia mod p for i = 1, 2, ...,

p�1

2

. Gauss introduced a new notation for u,
which we would write in modern notation as:

u = (a, p) = #

⇢
i | r

i

>

p� 1

2

�

In Gauss’ third proof, he made use of the floor function. The floor bx

y

c is
defined as the smallest integer  x

y

. For example, the floor of 7

3

is 2.
Gauss used [x] to refer to the floor function, but we will use the modern
notation bxc instead to avoid confusion.

We are starting with some properties of the floor function, where x 2 Q but
not an integer.

i. bxc+ b�xc = �1. Note that this equals 0 if x is an integer.

ii. bxc+ h = bx+ hc. for h an integer

iii. bxc+ bh� xc = h� 1.

iv. If x� bxc < 1

2

then b2xc � 2bxc = 0

and if x� bxc � 1

2

then b2xc � 2bxc = 1.

v. Let z 2 Z and 0 < r < p such that z ⌘ r mod p. If r <

p

2

then
b 2z

p

c � 2b z

p

c = 0 and if r � p

2

then b 2z

p

c � 2b z

p

c = 1.

vi. By v. and the definition of (a, p) we can write (a, p) as

(a, p) =

⇣
b 2a

p

c � 2ba

p

c
⌘
+

⇣
b 4a

p

c � 2b 2a

p

c
⌘
+...+

✓
b 2

(

p�1
2 )

a

p

c � 2b (
p�1
2 )

a

p

c
◆

so
(a, p) = b 2a

p

c+b 4a

p

c+ ...+b 2

(

p�1
2 )

a

p

c�2

✓
ba

p

c+ b 2a

p

c+ ...+ b (
p�1
2 )

a

p

c
◆

vii. Since (a, p) counts the big residues in 1a, 2a, 3a, ...,

p�1

2

a and (�a, p)

counts the big residues in �1a,�2a,�3a, ...,�p�1

2

a, which modulo p is equal
to (p� 1)a, (p� 2)a, ...,

p+1

2

a, we know that all the big residues are included
21[16] p. 71-74
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in (a, p) and (�a, p) . Thus

(a, p) + (�a, p) =

p� 1

2

Which we expected because of theorem 3.1.

Let us distinguish two different cases:

If p ⌘ 1 mod 4 then (a, p) + (�a, p) =

(4n+1)�1

2

= 2n. Which means that
(a, p) and (�a, p) are both even or both odd. In Legendre symbols this is
translated to

⇣
�a

p

⌘
=

⇣
a

p

⌘
.

If p ⌘ 3 mod 4 then (a, p) + (�a, p) =

(4n+3)�1

2

= 2n+ 1. Which means
that either (a, p) or (�a, p) is even and the other is odd. In Legendre symbols
this is translated to

⇣
�a

p

⌘
= �

⇣
a

p

⌘
.

If we take a = 1, then (1, p) = 0, because all 1· 1, 1· 2, ..., 1· p�1

2

are smaller
then p

2

, and because
⇣

1

p

⌘
= 1 it follows that

✓
�1

p

◆
=

(
+1 if p = 1 mod 4

�1 if p = 3 mod 4

which is the the first supplementary law of quadratic reciprocity.

viii. By iii we have

b ik
p

c+ bk � ik

p

c = k � 1

and

b (p� i)k

p

c = bk � ik

p

c = k � 1� b ik
p

c

Look at the first part of (a, p), which is A = b 2a

p

c+ b 4a

p

c+ ...+ b 2

(

p�1
2 )

a

p

c
and assume that p ⌘ 1 mod 4. Because p�1 is divisible by 4, we can replace
the last p�1

4

terms of A to get

A = b 2a

p

c+ b 4a

p

c+ ...+ b (
p�1
2 )

a

p

c+
✓
(a� 1)� b (

p�3
2 )

a

p

c
◆
+

✓
(a� 1)� b (

p�7
2 )

a

p

c
◆
+ ...+

⇣
(a� 1)� b 3a

p

c
⌘
+

⇣
(a� 1)� ba

p

c
⌘

or

A =

0

@
p�1
4X

i=1

b2ia
p

c

1

A
+

p� 1

4

(a� 1)�

0

@
p�1
4X

i=1

b (2i� 1)a

p

c

1

A

The second part of (a, p) is equal to �2

✓
ba

p

c+ b 2a

p

c+ ...+ b (
p�1
2 )

a

p

c
◆

,
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which together with A gives us the following expression.

(a, p) =

0

@
p�1
4X

i=1

b2ia
p

c

1

A
+

p� 1

4

(a� 1)�

0

@
p�1
4X

i=1

b (2i� 1)a

p

c

1

A� 2

0

@
p�1
2X

j=1

ja

p

1

A

We assumed that p ⌘ 1 mod 4. But what if p ⌘ 3 mod 4? This is
similar but we will replace the last p+1

2

terms of A to get the expression

(a, p) =

0

@
p+1
4X

i=1

b2ia
p

c

1

A
+

p+ 1

4

(a� 1)�

0

@
p+1
4X

i=1

b (2i� 1)a

p

c

1

A� 2

0

@
p�1
2X

j=1

ja

p

1

A

The case where a = 2 gives us the second supplementary law of quadratic
reciprocity.

We are now almost ready to prove the law of quadratic reciprocity. We just
need one more theorem.

Theorem 5.1.1 Let k and s be coprime positive odd numbers. Then:

bk
s

c+ b2k
s

c+ ...+ b
s�1

2

k

s

c+ b s
k

c+ b2s
k

c+ ...+ b
k�1

2

s

k

c = (k � 1)(s� 1)

4

We will not give Gauss’ algebraic proof of this theorem because we think
that this proof is not very illuminating. An insightful geometric proof of the
theorem can be found in An introduction to the theory of numbers by G.H.Hardy
and E.M.Wright.22

Remember that we want to prove that for p and q two different primes
✓
p

q

◆
=

✓
q

p

◆
(�1)

p�1
2

q�1
2

Take two numbers M and N defined as follows

M = (q, p) + b q

p

c+ b 2q

p

c+ ...+ b
p�1
2 q

p

c

N = (p, q) + bp

q

c+ b 2p

q

c+ ...+ b
q�1
2 p

q

c

From viii. we know that M and N are both even numbers, because (a, b)

and ba

b

c+ b 2a

b

c+ ...+ b
b�1
2 a

b

c will always have the same sign for a = p, q and
b = q, p. That means M +N will be even as well.

22G.H.Hardy and E.M.Wright, An introduction to the theory of numbers,
fifth edition, Oxford, p 76
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From theorem 5.1.1 we see that

M +N = (q, p) + (p, q) +

(p� 1)(q � 1)

4

if (p�1)(q�1)

4

is even, (q, p) and (p, q) both need to be even or both need to
be odd. Which gives us

⇣
q

p

⌘
=

⇣
p

q

⌘
.

However, if (p�1)(q�1)

4

is odd, then one of (q, p) and (p, q) need to be even
and the other odd. Which gives us

⇣
q

p

⌘
= �

⇣
p

q

⌘
. This gives us the following

formula
✓
q

p

◆
= (�1)

(p�1)(q�1)
4

✓
p

q

◆

This is exactly the quadratic reciprocity law and we completed the proof.
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5.2 Jacobi and Gauss

Carl Gustav Jacob Jacobi introduced a new notation in his Über die
Kreisteilung und ihre Anwendung auf Zahlentheorie23 from1837, which is
known as the Jacobi symbol. The Jacobi symbol is a generalization of the
Legendre symbol and is defined as follows:

Definition (Jacobi symbol) Let n be an odd integer with prime
factorization p

a1
1

p

a2
2

· · · par
r

and m 2 Z, such that gcd(m,n) = 1, then the
Jacobi symbol

�
m

n

�
is defined as

⇣
m

n

⌘
=

✓
m

p

1

◆
a1
✓
m

p

2

◆
a2

· · ·
✓
m

p

r

◆
ar

=

rY

i=1

✓
m

p

i

◆
ai

Where
⇣

m

pi

⌘
are Legendre symbols.

The important difference between the Legendre and Jacobi symbol is that
in the Legendre symbol, the bottom number has to be prime, and in the
Jacobi symbol it can be any odd number. If in the Jacobi symbol the
bottom number is prime, then the Legendre and Jacobi symbols are equal.

Another difference between the two symbols can be found by looking at
Euler’s criterion.We have seen that we can write the Legendre symbol as⇣

a

p

⌘
= a

p�1
2

mod p, but what happens if we try to do this with the Jacobi
symbol? Let us take a look at the following examples, where

�
m

n

�
is the

Jacobi symbol24:

i.
�
19

45

�
= 1 and 19

45�1
2 ⌘ 1 mod 45

ii.
�

8

21

�
= �1 but 8

21�1
2 ⌘ 1 mod 21

iii.
�

7

15

�
= 1 but 7

15�1
2 ⌘ 13 mod 15

We see that in some cases the Jacobi symbol is equal to what we would
expect from Euler’s criterion. But we also see that in other cases Euler’s
criterion does not even give us an answer equal to ±1.

In Gauss’ first proof, published in his Disquisitiones Arithmeticae, Gauss
supposed that the quadratic reciprocity law is true until a certain prime
number, and proved that it is still true for the next prime. But during his
work, he figured out that if the law of quadratic reciprocity is true until a
certain prime, then it is also true for all pairs of odd integers less then the
next prime. Gauss ended up with a more general proof for odd prime
numbers, where he used the Jacobi symbol.

23C.G.J. Jacobi, Über die Kreisteilung und ihre Anwendung auf Zahlentheorie, Berlin, 1837
24A tool to easy calculate the Jacobi symbol: http://math.fau.edu/richman/jacobi.htm
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Theorem 5.2.1 (Quadratic reciprocity law for the Jacobi symbol)

Let n and m be positive odd integers, with gcd(m,n) = 1, then
✓
�1

n

◆
= (�1)

n�1
2

✓
2

n

◆
= (�1)

n2�1
8

⇣
m

n

⌘
=

⇣
n

m

⌘
(�1)

m�1
2

n�1
2

We will not prove this theorem because it is not necessary for our purpose.
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5.3 A proof based on Gauss sums

The fourth and sixth proof that Gauss gave are based on what is now called
Gauss sums. In his study to the equation x

p � 1 = 0 , he invented these
sums. In his article Summatio quarumdam serierum singularium, Gauss
studied the sums:

G(k, p) =

X

a

(cos(ak!) + isin(ak!))−
X

b

(cos(bk!) + isin(bk!))

Where p is an odd prime, k is an integer coprime to p, a denote the quadratic
residues and b denote the and quadratic nonresidues in the set 1, 2, ..., p� 1,
and ! =

2⇡

p

. The goal of this article was not to prove the law of quadratic
reciprocity, but to compute the sum. After the study of these
sums, Gauss noticed that a new proof of the quadratic reciprocity law could
be made. The sums are now called Gauss sums, and in modern notation we
can write them as

G =

p�1X

j=1

✓
j

p

◆
⇣

j

Where
⇣

j

p

⌘
is the Legendre symbol and ⇣ = e

2⇡i
p is the p-th root of unity25,

for which we know that ⇣p = e

2⇡i

= 1. Remember that eix = cos(x)+i sin(x)

and ⇣

j

= ⇣

k if j ⌘ k mod p.

The proof that we will give is inspired by Gauss’ fourth and sixth proof of
the quadratic reciprocity laws. However, we have changed the arguments
where Gauss uses equations into arguments by means of p-th roots, following
Legendre (in the third version of his Theorie des Nombres26) and Eisenstein,
as explained in the translation by E. Netto27. As a result, our presentation
resembles that in Proofs from the Book28, but we have avoided all references
to finite fields in order to make the proof better intelligible to readers who
do not know field theory.

We see in the Gauss sum G, that for a quadratic residue a modulo p, the
sign of ⇣ will be positive, and for a quadratic non-residue b the sign will be
negative. So we can write G as follows:

G =

X

x

2⌘a mod p

⇣

a �
X

x

2 6⌘b mod p

⇣

b

= X

a

�X

b

25A n-th root of unity, where n is an integer, is a number z 2 C that satisfies the equation
zn = 1.

26Third version of [14], Paris, 1830, p. 391
27E. Netto, Sechs beweise des fundamentaltheorems über quadratische reste von Carl

Friedrich Gauss, Leipzig, 1901
28M. Aigner, G.M. Ziegler, Proofs from the Book, Berlin, 1998, p. 25-31
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Let us call the first sum X

a

and the second sum X

b

.
In order to prove the law of quadratic reciprocity with these sums, we want
to find expressions for G

2 and G

q�1 for a prime number q. We will first
find these expressions and afterwards show how to use these expressions to
proof quadratic reciprocity.

Let us start with G

2.
We can write this as G

2

= (X

a

�X

b

)

2

= (X

a

+X

b

)

2 � 4X

a

X

b

. In order to
calculate G

2, we want to know how to calculate X

a

+X

b

and X

a

X

b

. We
will start with X

a

+X

b

. Since

X

a

+X

b

=

X

x

2⌘a mod p

⇣

a

+

X

x

2 6⌘b mod p

⇣

b

=

X

n mod p 6=0

⇣

n

We want an expression for
P

⇣

n.
We have already mentioned that Gauss studied the equation x

p � 1, and we
will do the same. We know that all the roots of this equation are x = 1 and
x = ⇣

k

= e

2⇡i
p k for k = 1, 2, ..., p�1. This means that we can factorize x

p�1

as

x

p � 1 = (x� 1)(x� ⇣)(x� ⇣

2

)· · · (x� ⇣

p�1

)

and if we eliminate the brackets we find

x

p � 1 = x

p

+ x

p�1

�
�1� ⇣ � ⇣

2 � ...� ⇣

p�1

�
+ ...+ (�1)

(The last term is equal to (�1) because

(�1)· ⇣· ⇣2· · · ⇣p�1

= (�1)⇣

p�1
2 p

= (�1) (⇣

p

)

p�1
2

= (�1)(1)

p�1
2

= �1)

From this equality it follows that, �1� ⇣� ⇣

2� ...� ⇣

p�1

= 0. Which means
that X

n mod p 6=0

⇣

n

= �1

And we conclude that X

a

+X

b

= �1

We will now look at X
a

X

b

. In order to do this we will introduce a theorem.

Theorem 5.3.1 if p is an odd prime, then there are numbers g such that
1, g, g

2

..., g

p�2 are incongruent modulo p.

We will not prove this theorem here, it was of course known to Gauss, but
refer to a beautiful proof that can be found in the book An introduction
to the theory of numbers.[21]

Let say that we have a gas in theorem 5.3.1. We know that the quadratic
residues modulo p are

�
g

0

, g

2

, g

4

, ..., g

p�3

 
and the quadratic non-residues
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are
�
g

1

, g

3

, ..., g

p�2

 
. Note that these two sets both have p�1

2

elements. We
can now write X

a

and X

b

in the following way

X

a

=

X

x

2⌘a mod p

⇣

a

= ⇣

g

0

+ ⇣

g

2

+ ⇣

g

4

+ ...+ ⇣

g

p�3

X

b

=

X

x

2 6⌘b mod p

⇣

b

= ⇣

g

1

+ ⇣

g

3

+ ⇣

g

5

+ ...+ ⇣

g

p�2

We want an expression for X

a

X

b

, and to get one, we will just multiply the
sums of X

a

and X

b

in a smart way:

X

a

X

b

=

⇣
⇣

g

0

+ ⇣

g

2

+ ⇣

g

4

+ ...+ ⇣

g

p�3
⌘⇣

⇣

g

1

+ ⇣

g

3

+ ⇣

g

5

+ ...+ ⇣

g

p�2
⌘

= ⇣

g

0
+g

1

+ ⇣

g

2
+g

3

+ ⇣

g

4
+g

5

+ ...+ ⇣

g

p�3
+g

p�2

+⇣

g

0
+g

3

+ ⇣

g

2
+g

5

+ ⇣

g

4
+g

7

+ ...+ ⇣

g

p�3
+g

1

+⇣

g

0
+g

5

+ ⇣

g

2
+g

7

+ ⇣

g

4
+g

9

+ ...+ ⇣

g

p�3
+g

3

.

.

.
+⇣

g

0
+g

p�2

+ ⇣

g

2
+g

1

+ ⇣

g

4
+g

3

+ ...+ ⇣

g

p�3
+g

p�4

We can also write these expressions as

X

a

X

b

= ⇣

1+g

1

+ ⇣

g

2
(1+g)

+ ⇣

g

4
(1+g)

+ ...+ ⇣

g

p�3
(1+g)

+⇣

1+g

3

+ ⇣

g

2
(1+g

3
)

+ ⇣

g

4
(1+g

3
)

+ ...+ ⇣

g

p�3
(1+g

3
)

+⇣

1+g

5

+ ⇣

g

2
(1+g

5
)

+ ⇣

g

4
(1+g

5
)

+ ...+ ⇣

g

p�3
(1+g

5
)

.

.

.
+⇣

1+g

p�2

+ ⇣

g

2
(1+g

p�2
)

+ ⇣

g

4
(1+g

p�2
)

+ ...+ ⇣

g

p�3
(1+g

p�2
)

Let us first assume that 1+g is a quadratic residue modulo p. Then the first
row consists of all quadratic residues and is equal to
⇣ + ⇣

g

2

+ ⇣

g

4

+ ...+ ⇣

g

p�3

= X

a

. And because 1 + g is a quadratic residue,
if we look at the last row, 1 + g

p�2

= g

�1

�
g + g

p�1

�
= g

�1

(g + 1)

29 is not
a quadratic residue. The last row consists of all quadratic non-residues and
is equal to ⇣

g

1

+ ⇣

g

3

+ ⇣

g

5

+ ...+ ⇣

g

p�2

= X

b

.

However, if 1 + g is not a quadratic residue modulo p, in the same way we
can show that the first row is equal to X

b

and the last row equal to X

a

.
The same holds for the second and second last rows, third and third
last row etc. We have already seen that X

a

+X

b

= �1, so all pairs of rows
will add up to �1. Now there are two different cases, there is an even number

29By Fermat’s little theorem gp�1 ⌘ 1 mod p
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of rows or an odd number of rows. There is a total of p�1

2

rows; there is an
even number of rows if p ⌘ 1 mod 4 and there is an odd number of rows if
p ⌘ 3 mod 4.

Case 1:

If there is an even number of rows, we are quickly done because
X

a

X

b

=

1

2

p�1

2

(�1) = �p�1

4

. Remember that X

a

+X

b

= �1. If we go back
to our equation G

2

= (X

a

+X

b

)

2 � 4X

a

X

b

we find

G

2

= (�1)

2 � 4

✓
�p� 1

4

◆
= 1 + p� 1 = p

We conclude that if p ⌘ 1 mod 4, then G

2

= p.

Case 2

If there is an odd number of rows, we know that there will be p�3

4

pairs
formed. We have to look at the middle row that does not form a pair. Let
us call the middle row x

m

. Then we know that X

a

X

b

= �p�3

4

+ x

m

We know that x

m

is equal to

x

m

= ⇣

1+g

p�1
2

+ ⇣

g

2
(1+g

p�1
2

)

+ ⇣

g

4
(1+g

p�1
2

)

+ ...+ ⇣

g

p�3
(1+g

p�1
2

)

Because 1 + g

p�1
2 ⌘ 0 mod p, we can write all powers of x

m

as a multiple
of p, for example sp. Thus x

m

= ⇣

sp

+ ⇣

sp

+ ...+ ⇣

sp

=

p�1

2

⇣

sp. We also
know that

⇣

sp

=

⇣
e

2⇡i
p

⌘
sp

=

�
e

2⇡i

�
s

= 1

s

= 1

Thus x

m

=

p�1

2

and X

a

X

b

= �p�3

4

+

p�1

2

= �p�3

4

+

2p�2

4

=

p+1

4

. We can
again look at G

2

= (X

a

+X

b

)

2 � 4X

a

X

b

and we find

G

2

= (�1)

2 � 4

✓
p+ 1

4

◆
= 1� p� 1 = �p

We conclude that if p ⌘ 3 mod p, then G

2

= �p.

If we take the cases 1 and 2 together we find G

2

= (�1)

p�1
2
p.

In order to complete the proof, we also need an expression for G

q�1 where
q is an odd prime number and not equal to p.

Let us first look at (a+ b)

q, where a and b are integers and q is a prime
number. We know that this is equal to
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(a+ b)

q

= a

q

+ b

q

+

✓
q

1

◆
a

q�1

b+

✓
q

2

◆
a

q�2

b

2

+ ...+

✓
q

q � 1

◆
ab

q�1

Where
�
n

m

�
=

n!

m!(n�m)!

is the binomial coefficient for 0  m  n. Since q is
prime, it will divide all

�
q

i

�
for i = 1, 2, ..., q � 1 and we will denote (a+ b)

q

as

(a+ b)

q

= a

q

+ b

q

+ q

X

i

a

i

ab

i

Where a

i

are all integers coming from dividing the the binomial coefficients
by q.

We can do the same with our Gauss sum

G

q

=

0

@
p�1X

j=1

✓
j

p

◆
⇣

j

1

A
q

=

p�1X

j=1

✓
j

p

◆
q

⇣

jq

+ q

X

j

a

j

⇣

j

Let us first concentrate on the first sum in this equation. Since q is a prime
number, the sign of the Legendre symbol

⇣
j

p

⌘
will not change. Therefore

p�1X

j=1

✓
j

p

◆
q

⇣

jq

=

p�1X

j=1

✓
j

p

◆
⇣

jq

By a little trick, the Legendre symbol is equivalent to⇣
j

p

⌘
=

⇣
q

2

p

⌘⇣
j

p

⌘
=

⇣
q

p

⌘⇣
jq

p

⌘
, which gives us

p�1X

j=1

✓
j

p

◆
⇣

jq

=

✓
q

p

◆
p�1X

j=1

✓
jq

p

◆
⇣

jq

Now we realize that jq runs with j through all nonzero residues mod p.
Thus

P
p�1

j=1

⇣
jq

p

⌘
⇣

jq

= G and we find an expression for G

q, namely

G

q

=

✓
q

p

◆
G+ q

X

j

a

j

⇣

j

If we divide both sides by G, we have found our expression for G

q�1

G

q�1

=

✓
q

p

◆
+

q

G

X

j

a

j

⇣

j

The proof of the law of quadratic reciprocity follows from an other very easy
to find expression of Gq�1 with the help of G2.
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G

q�1

=

�
G

2

� q�1
2

=

⇣
(�1)

p�1
2

p

⌘ q�1
2

= (�1)

p�1
2

q�1
2

p

q�1
2

The last expression follows from Euler’s criterion.

We have found two expressions for G

p�1 and if we set them equal we find
✓
q

p

◆
+

q

G

X

j

a

j

⇣

j

= p

q�1
2
(�1)

p�1
2

q�1
2

If we put T =

P
j

a

j

⇣

j it follows from the identity which we have just proved

that T

G

is a rational number. Now put k = p

q�1
2
(�1)

p�1
2

q�1
2 �

⇣
q

p

⌘
, then k

is an integer and q

T

G

= k, so q

2

T

2

G

2 = k

2. Since G

2

= ±p, as we proved
above, it follows that T

2 is a rational number. Because T

2

=

P
j

b

j

⇣

j for
integers b, and because T

2 is a rational number, we can easily show that T 2

is an integer.

[The argument depends on the irreducibility of the polynomial
1 + x+ x

2

+ ..+ x

p

= 0 of which all the ⇣

j are the roots; we will not give
the details here.]

So T

2

G

2 =

m

p

for an integer number m. Then q

2

m

p

= k

2 so q

2

m = k

2

p. Since
p does not divide q, p must divide m. Therefore T

2

G

2 is an integer, and since
T

G

is rational, it must be an integer as well, say T

G

= n.

We conclude qn = p

q�1
2
(�1)

p�1
2

q�1
2 �

⇣
q

p

⌘
and by taking the remainders

modulo q, we conclude 0 ⌘
⇣

p

q

⌘
(�1)

p�1
2

q�1
2 �

⇣
q

p

⌘
mod q. Because both

terms can only be +1 and �1, the law of quadratic reciprocity follows
✓
q

p

◆
=

✓
p

q

◆
(�1)

p�1
2

q�1
2
.

We have completed the proof.
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6 After Gauss

After the time Gauss gave his first six proofs of the quadratic reciprocity
law, a lot of other mathematicians came up with different proofs. By the
time Gauss’ seventh and eight proof where published in 1863, the number of
different proofs was already raised to 31. Five of were them done by
Eisenstein, but also Dirichlet, Cauchy and Dedekind gave different proofs.
During the years, mathematics has developed and new techniques were born,
this leads to more different proofs of the quadratic reciprocity law and
nowadays there are as many as 246 different proofs. The German
mathematician Franz Lemmermeyer keeps a list of all different proofs.30
Of course the question is whether all these proofs are really different, because
some proofs are very lookalike.

The importance of Gauss’ work can be seen by looking at the different proofs
that were found after Gauss. Not only did he give eight different proofs
himself, he has also led other mathematicians to find different proofs based
on his work. A lot of proofs are based on Gauss’ lemma and other proofs
made use of Gauss sums.

The last proof of the quadratic reciprocity law was given in 2013, but since
the beginning of the new century, already 30 new proofs appeared. We
probably will not have to wait long for a new proof to appear, and maybe
the discovery of new proofs will never stop.

30http://www.rzuser.uni-heidelberg.de/~hb3/fchrono.html
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