BACHELOR THESIS

UTRECHT UNIVERSITY

FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS

Algorithms for Determining the
Clustering Coefficient in

Large Graphs

Author: Supervisor:
Coen Boot Prof. Dr. R.H. BISSELING

January 25, 2016

1 Introduction

Networks are everywhere around us. Obvious examples are road-maps or social
networks, such as Facebook and Twitter. However, there are large numbers of
less visible networks, like neural networks or food chains. Because of the growing
interest in understanding these networks, much analysis is done on networks,
using different quantitative measures for specific properties, called metrics.

There exist many metrics, which do provide together much information
about a network. Very basic metrics are the number of vertices or edges,
which give an indication of the size of the graph. When a network has a high
edges/vertices ratio, the network is more interconnected than a network with
a lower ratio. The metric of connectivity shows whether there exists a path
between every pair of vertices in the graph. Other metrics that can be thought
of are the length of the shortest cycle and the diameter (length of the longest
shortest path between all pairs of vertices) of graph.

One particular metric where this thesis will be about, is the clustering coef-
ficient, defined by Watts and Strogatz in 1998 [1]. The clustering coefficient of
a vertex v is defined by the number of unordered pairs of neighbours of v which
are directly connected to each other, divided by the total number of unordered
pairs of neighbours of v. The clustering coefficient of a graph is defined by the
average clustering coefficient of its vertices.

When a specific vertex has a high clustering coefficient, it is located inside a
clique (small completely interconnected group within the graph), in contrast to
vertices with a low clustering coefficient. When a graph has a high clustering
coeflicient, it will contain many clusters or cliques, whereas graphs with a low
clustering coefficient will not. When this is translated to concrete examples,
more specific conclusion can be extracted from the clustering coefficient. When
a graph represents a Facebook-network, the clustering coefficient indicates to
which extent people have mutual friends. Considering a brain network, a signif-
icant low clustering coefficient could be a sign of spinal cord injuries or diseases
like schizophrenia, autism and Alzheimers disease [8] [9].

Although computers are becoming faster, the networks that are interesting
for analysis become larger at a high rate, causing a growing demand for fast
algorithms. An algorithm with quadratic running time will suffice for networks
with less than a million vertices, but for larger networks, algorithms need to
be at least faster than O(n?), linear or even sub-linear. Therefore, the main
question of this thesis is if such algorithms exist and how they work.

In this thesis, a short overview of the existing literature will be given in
Chapter 2, followed by some basic definitions and properties in Chapter 3. The
description and examination of the most significant existing algorithms for de-
termining or estimating the clustering coefficient is given in Chapter 4. The
process of implementing the selected algorithms and looking for further opti-
mization will be described in Chapter 5. In Chapter 6, some tests and their
results are described, after which some conclusions will follow in Chapter 7.

2 Existing Literature

The problem of calculating the clustering coefficient in an efficient way has been
studied before, from both theoretical and practical viewpoints. This chapter
gives a concise summary of the work done before.

2.1 Foundation of the Clustering Coefficient

The first literature about the clustering coefficient dates back from 1998 and
is written by Watts and Strogatz. In this paper, the clustering coefficient is
defined in order to “quantify the structural properties” of networks. The big
advantage of this newly introduced metric is the fact that it is able to express for
all networks to which extent it contains clusters, in contrast to already existing
metrics [1].

Four years later, Watts and Strogatz published together with Newman an-
other paper, in which they define a ‘global’ clustering coefficient, which will be
referred to as ‘transitivity’ in this thesis. Furthermore, an attempt in estimat-
ing the values of metrics, such as transitivity, is made and the use of them is
explained by giving several examples [2].

2.2 Conceptual Approaches for calculating the Clustering
Coefficient

Before the definition of the Clustering Coefficient in 1998, Alon, Yuster and
Zwick wrote a paper in 1997, in which they came up with methods for finding
and counting cycles with a given length in directed and undirected graphs. One
of the methods which gets described, is a method for counting cycles of length 3,
which are actually closed triangles in a graph. This method splits all vertices into
two groups by looking at their degree and makes use of fast matrix multiplication
to count triangles of high degree vertices. The running time of this algorithm
depends on the algorithm that is used for matrix multiplication [3]. Because this
algorithm counts closed triangles, it can be used for determining the clustering
coefficient of a graph.

In 2008, Latapy published a paper in which he proposes several algorithms
for listing all triangles in a graph, or all triangles containing a specified vertex
or edge [4]. Although this is a different problem than counting triangles or
calculating the clustering coefficient, many techniques can easily be used for
calculating the clustering coefficient.

Whereas all papers mentioned above do not tend to focus on paralleliza-
tion, a recent paper by Azad, Bulug and Gilbert does. Their paper, which has
been published in 2015, describes an algorithm, in both sequential and parallel
form, which counts and enumerate wedges and closed triangles in graphs, based

on previous work by Cohen. Both algorithms make use of matrix algebra [5].
However, the algorithms are not directly suitable for calculating the clustering
coefficient, because the number of wedges or the number of triangles (i, j, k) gets
calculated for a pair of vertices (7, k), instead of a given individual vertex j.

2.3 Practical Experiments about calculating the Cluster-
ing Coefficient

Schank and Wagner have written two papers, which have both been published in
2005, containing reports of several experiments. The first paper [6] compares an
approximating algorithm for determining the clustering coefficient, which runs
in O(1), with an implementation of the algorithm proposed by Alon, Yuster
and Zwick. Moreover, the paper gives an algorithm for generating graphs with
adjustable clustering coefficients.

The other paper [7] lists several algorithms for counting triangles as well as
listing them, followed by the results of several experiments. One of the main
conclusions of this paper is that the algorithm proposed by Alon, Yuster and
Zwick, together with a matrix multiplication algorithm gives the best result in
terms of running time compared to a simple node-iterator program.

3 Definitions and Properties

3.1 Basic Definitions

Graphs are often used to display networks, in order to retrieve a higher level of
understanding. Every object or entity in a network is displayed as a point, called
vertex, and the relations between them are displayed as a line, which is called
an edge. This forms a pair G = (V, E), where V is the collection of vertices and
E the collection of edges of the graph. Furthermore, we define m = |E| and
n = |V|. Whenever a network is represented as a graph, the basic structures
become quickly visible.

All graphs can be divided into two types: directed and undirected graphs. In
directed graphs, (a,b) € E does not imply that (b,a) € E. So all vertices have
a notion of direction. In undirected graphs however, (a,b) € E = (b,a) € E,
and so (a,b) and (b, a) are considered identical. Examples of undirected graphs
are a graph of a Facebook-like network (when you are a friend of X, X is a
friend of you) or a molecule-graph (when one atom A is connected to another
atom B, atom B must be connected to atom A. Examples of directed graphs
are road-maps (some roads are one way-roads, so when there is a road from A
to B, it does not imply that the same road goes from B to A) or a graph of a
Twitter-like network (when a user follows you, it does not mean that you follow
that user). In this thesis, all graphs are considered to be undirected.

The neighbourhood of a vertex v is written as N(v), and exists of all vertices
which are connected to v, so N(v) := {x € V | (v,z) € E}. The degree of a
vertex v is defined as d(v) = |N(v)|. A triangle is defined as a subgraph of 3
vertices, which are all connected to each other. So the number of triangles in
the neighbourhood of a vertex v can be defined as 6(v) := |{(u,w) € E : u #
w, (u,v) € E and (v,w) € E}|. The number of triangles in a graph G can be
calculated as 1

3G) =5 > b(),

veV

since every triangle is counted three times (because the triangle (u,v,w) gets
counted in 6(u), 6(v) and §(w)).

A wedge at vertex v is a subgraph of 3 vertices u, v and w, for which
(u,v) € E and (w,v) € E. The number of wedges as v can be calculated by
T(v) = (d(;)). The total number of wedges in a graph can be determined by

3.2 Clustering Coefficient & Transitivity

The clustering coefficient is defined by Watts and Strogatz [1] as follows: given
three vertices u, v and w, where (u,v) € E and (v,w) € E, the clustering
coefficient gives the likeliness that (u,w) € E. When the notation introduced
above is used, the clustering coefficient at a vertex v with d(v) > 2 is given by

c(v) == 2 Whenever d(v) < 2, ¢(v) = 0. The clustering coefficient of a graph
g g

= 205
1
c(G) = v Z c(v).

G is defined as

This metric must not be mistaken with transitivity, which is also called
triangle density. This measure is defined by Newmann, Watts and Strogatz in
[2] as
30(@G)

7(G)

The inventors of this measure thought it was equal to the clustering coefficient,
but this is not the case [6]. Consider a complete graph consisting of 4 vertices
and remove one edge. Then ¢(G) = (14+1+ 2+ 2) = 0.833, where T(G) =
= 0.75.

T(G) =

6
14+1+43+3

Figure 1: Counterexample showing that ¢(G) # T(G).

3.3 Storing Graphs

Graphs can be stored in two ways: using an adjacency matriz or an adjacency
list. An adjacency matrix A is a n X n-matrix, where
. 1 if an edge exists between i and j
A, j) = :
0 otherwise
An adjacency list however, is a list L of length n, where L[i] contains the list of

neighbours of the ith vertex. Both ways of storing the edges have advantages
as well as disadvantages.

4 Algorithms

There are many ways to calculate the clustering coefficient. In this chapter,
different algorithms will be described and examined on several criteria, especially
on time and space complexity. For all algorithms in this chapter, the assumption
is made that the degree of all vertices is known.

4.1 Calculating Algorithms

In order to calculate the clustering coefficient of large graphs, two approaches
are possible. The first approach is to go over the graph and calculate the actual
clustering coefficient, while the other approach is to estimate the clustering
coeficient in a smart way. Both approaches will be discussed in this chapter.
First the focus will be on the calculating algorithms, because these give a good
insight in how the clustering coefficient is calculated.

4.1.1 Brute Force - Vertices

One of the most basic algorithms is based on brute force. This algorithm per-
forms iterations over all possible triples of vertices. For every possible triple
of vertices, the existence of edges between them is checked. Whenever there
are two edges between the three vertices, this triple forms a wedge, and when
there are three edges, this triple forms a triangle. This algorithm has a time
complexity of O (n3) when an adjacency matrix is used, which causes an space
complexity of O(n?).

The brute force algorithm can be optimized so that pairs of edges (u, v, w)
and (w,v,u) are only checked once. This can easily be done by restricting the
boundaries of the loop, as follows:

for(int u = 0; u < n; u++)
for(int v =u + 1; v < n; v++)
for(int w = v + 1; w < n; w++)
checkEdges(u, v, w);

With this optimization, the running time can be reduced by a factor of 6.

4.1.2 Brute Force - Edges

Instead of looping over all triples of vertices, the algorithm can also be per-
formed by looping over all possible triples of edges. This algorithm looks like
the previous one and has a running time of O (m3), which is even worse in

nearly all cases. However, this algorithm works with an adjacency list and has
therefore a space complexity of O(m), which is better in case of sparse networks.

4.1.3 Loop over adjacency of vertices

The two brute force-algorithms do not use the information whether a triple of
vertices is connected or not. When the clustering coefficient of a vertex is being
evaluated, it can be useful to check which other vertices are connected to the
current vertex and only consider these vertices. The following algorithm uses
this technique.

for(int u = 0; u < n; u++)
for(int i = 0; i < d(a); i++)
for(int j =1i + 1; j < d(a); j++)
checkEdges (u, N(a)[i], N(a)[jl1);

The time needed to run this algorithm is determined by O(n - d'?), where d’
is the average number of edges connected to a vertex. Note that this is a first-
order approximation, as high-degree vertices should have more influence. When

this is simplified, the running time can be written as O (n . (%)2) =0 (%)
However, in order to evaluate checkEdges in constant time, an adjacency matrix
is needed, which leads to a space complexity of O(n?).

In order to reduce the space complexity, the neighbourhoods of all vertices
can be sorted and the algorithm beneath can be used together with the sorted
adjacency list. Note that sorting of the neighbourhoods costs O(n - d'logd’) =

O(mlogd) < O (%2), so the total time complexity stays O (%), whereas the
space complexity is reduced to O(m).

for (int v = 0; v < n; v++)
for (int i = 0; i < d(v); i++) {
u = N&)[il; // Get a u connected to v
int iu = 0, iv = i;
while ((du < d(u)) && (iv < d(w))) {
if (N(u) [iu] < N(v) [iv])
iut+;
else if (N(u)[iu]l > N(v) [iv])
iv++;
else { // Neighbour in common
Triangles++;
iut+;
iv++;

4.1.4 Using Matrix Multiplication

Instead of simply constructing a loop over edges or vertices, the clustering co-
efficient can also be determined using matrix multiplication. The matrix A3
(where A is the adjacency matrix) gives the number of paths of length 3 from
1 to j in the (¢, 7)-entry. Therefore, the diagonal entry (k, k) gives the number
of closed paths of length 3 at point k. However, those paths are considered
directed, so the cycle k — a — b — k gets counted, as well as k — b — a — k.
Therefore, the (k, k)-entry gives twice the number of closed cycles at point k.

The time complexity of this algorithm is the same as the complexity of matrix
multiplication, namely O(n?), and the space complexity is O(n?). The time
complexity could be optimized by using a fast matrix multiplication algorithm,
like the Strassen algorithm, or by using sparse matrix multiplication instead of
dense matrix multiplication.

4.1.5 Using the AYZ-algorithm

Besides simply multiplying the adjacency matrix, there are also more advanced
techniques for finding cycles in graphs. One of the best techniques for counting
triangles is proposed by Alon, Yuster and Zwick [3], whose algorithm has a
theoretical running time of O(m!41).

The basic idea behind this algorithm is that all vertices are divided into
two groups: vertices with a high degree and vertices with a low degree. Let
A = m“F be the separating degree between high degree and low degree ver-
tices, where w is the multiplication coefficient of the chosen (fast) matrix mul-
tiplication algorithm. When all vertices are pre-sorted by degree, the first step
is to handle all vertices with a low degree.

For each vertex v with a low degree, the algorithm checks if two adjacent
vertices u and w are connected, which costs O(1) using an adjacency matrix or a
sorted adjacency list. The total complexity of this step is O(A-d’) per low-degree
vertex v, because v has at most A neighbours, which all have approximately d’
adjacent vertices. Note again that this is a first-order approximation. Therefore,
all vertices with low degree are handled within O(n-d' - A) = O(m - A).

The only triangles that are not counted, are the triangles that consist of
three high degree vertices. When a new adjacency matrix A’ is build, consisting
only of all vertices with a high degree, the fact if such triangles do occur can
be checked using fast matrix multiplication. When A’ gets calculated, one
can easily read the number of cycles of length three by simply looking at the
diagonal of the resulting matrix. The number of vertices with a high degree is
at most QTm, so the matrix multiplication requires O ((%)w) time.

Therefore, the complexity of the total algorithm is O (m A+ (%)w) =
O(m*4). However, the theoretically fastest matrix multiplication algorithm

known is only fast when the matrices are enormous, because of the huge con-
stant in the complexity bound, and is because of that reason not practical [10].
Therefore, this algorithm has a running time of O(m!4®) and a space complexity

of O ((%”)2> = O(m!'%5%) when the Strassen algorithm is applied [3].

4.2 Estimating Algorithms

There exist several algorithms which will give an approximation of the clustering
coefficient in relatively short times. This is mostly done by taking a sample
from the complete graph and calculate the local clustering coefficient of the
vertices in this graph. The average of these local clustering coefficients gives an
approximation of the clustering coefficient. Although these algorithms are only
approximating the clustering coefficient, they do have significantly lower running
times (linear, sub-linear or constant) and often produce accurate results.

4.2.1 Estimating in Constant Time

The algorithm for estimating the clustering coefficient by Schank and Wagner
is described in [6] as follows:

for(int =1; i < k; i++) {
j = GetRandom(k);
u = GetRandomVertex(N(j));
v = GetRandomVertex(N(j));
while (u == v)
v = GetRandomVertex(N(j));
if (checkEdge (u, v))
1++;

’

int 1 = 0;
i

¥
return 1/k;

This algorithm runs in constant time, given the fact that all methods inside the
loop can be evaluated in constant time. While the loop is restricted by a given
number k, the total algorithm has a complexity of O(k), but because k can be
chosen by the user, the algorithm has strictly speaking a complexity of O(1).
However, an adjacency matrix is needed for evaluating checkEdge in constant
time, which leads to a space complexity of O(n?).

The accomplished precision of this algorithm is that a result differs less than
e from the true value of the clustering coefficient with chance of (p — 1)/p by
choosing k = [(In(2v)/(2€%))], where p € (1,00) [6].

4.3 Generating Graphs

In order to get data for testing the algorithms in an efficient way, Schank and
Wagner wrote an algorithm for generating graphs, which is quite simple, runs
in linear time with respect to m + n and has the property that the clustering
coefficient of the output is adjustable [6]. This generator is used for testing the
implemented algorithms and is defined in the following way:

AddVertex(0);
AddVertex(1);
AddEdge (0, 1);

for(int i = 3; i < n; i++) {
v = AddVertex(i);

for(int j = 0; j < min(i - 1, d); j++) {
u = GetRandomVertex();
while (u == v)
u = GetRandomVertex();
AddEdge (u, v);
}

for(int j = 0; j < o; j++) {
u = GetRandomVertex(N(v));
w = GetRandomVertex(N(v));
while (u == v)
w = GetRandomVertex(N(v));
if (NotExistsEdge(u, w))
AddEdge(u, w);

Note that the number of vertices of the generated graph can be determined
by the parameter n. The clustering coefficient can be adjusted by varying the
parameters d and o.

10

5 Implementation

Not only a chosen algorithm determines the running time or memory usage of
a program, but also the way the algorithm is implemented. Therefore, not only
the selection of some algorithms, but also some details about the implementation
will be discussed in this chapter, together with some optimizations.

5.1 Algorithms

The final implementation consists of the algorithm described in Section 4.1.3.,
which will be from now referred to as the ‘Basic’-algorithm, together with the
AYZ-algorithm as described in Section 4.1.5. Furthermore, the estimating algo-
rithm as described in Section 4.2.1 is implemented.

The choice for these algorithms is based on the fact that they are not hard to
understand and implement. Moreover, the time and space complexity is consid-
erably low compared to other algorithms and they provide some possibilities for
further optimizations. When both the Basic-algorithm and the AYZ-algorithm
are combined into one program which chooses the most suitable algorithm based
on the vertices/edges-ratio, good results can be achieved for both dense and
sparse networks.

The code of Latapy [12], which belongs to his paper [4], was used as an
example for the implementation.

5.2 Data-Structures

In order to calculate the clustering coefficient, at least all the edges need to
be stored. However, the edges can be stored using an adjacency matrix or an
adjacency list. Because an adjacency matrix needs one byte per entry, it will
cost n? bytes of memory [11], assuming that the adjacency matrix consists of
booleans. An adjacency list however, suffices with 2m - 4 bytes of memory [11],
assuming there are less than 4.2 billion vertices and all edges are stored twice
(the edge (a,b) is stored under vertex a as a link to b and under vertex b as a
link to a), to keep checking the neighbours of a given vertex fast. Therefore, it
is more space efficient to store all edges using an adjacency list, because in most
practice-based networks, 8m < n2.

To make iterating over edges easy, it is also helpful to store m, n and a list

of degrees of the vertices. Storing this next to the edges only cost 8n + 2 -4
bytes of memory [11], and makes the algorithms less complicated.

11

5.3 Considerations and Further Optimizations

Although the time complexity of the chosen algorithm influences the running
time the most, some optimizations can be done to improve the running time.
Some optimizations will bring down the total running time with a constant
factor, whereas other optimizations reduce the number of steps needed.

5.3.1 Multi-Threading

Instead of letting one CPU-core do all the calculations, the work can be divided
over multiple cores. However, when all vertices are sorted and then divided into
four equal parts, the threads will not always work simultaneously, because the
work of calculating the clustering coefficient is determined by O(d - d'), where
d is the degree of the given vertex. Therefore, an optimal division needs to be
found to retrieve the most advantage from multi-threading.

5.3.2 Skipping Vertices with d(v) < 2

In most algorithms, all vertices are taken into consideration while calculating
the (local) clustering coefficient. However, the clustering coefficient of vertices
with d(v) < 2 is 0 by definition. Because the vertices are sorted by degree, it
is easy to save some steps by simply skipping the vertices with a degree smaller
than 2.

5.3.3 Sparse Matrix Multiplication

Instead of using dense matrix multiplication, it could in some cases be better
to use sparse matrix multiplication. When the majority of the matrix-entries is
equal to 0, many entries are unnecessary used in dense matrix multiplication.
Implementing sparse matrix multiplication in those cases should be faster and
more space-efficient, leading to better results.

5.3.4 Best of Both Algorithms

Looking at the time complexity of the Basic-algorithm and the AYZ-algorithm,
none of the two algorithms is faster in all cases. The Basic-algorithm has a time
complexity of O (%2) and the AYZ has one of O(m!*®) when the Strassen-
algorithm is used for fast matrix multiplication. Because m and n are known
before calculating the clustering coefficient, the most optimal algorithm can be
chosen beforehand.

12

6 Results

6.1 Used Graphs

To test the running time of the implemented algorithms, the clustering coeffi-
cient of the following graphs is calculated:

Name m n (@) # of triangles m?2/n
Facebook [13] 88,234 4,039 | 0.6055 1,612,010 1,927,516
600K (Generated) 630,018 10,000 | 0.2454 5,122,401 39,692, 268
4M (Generated) 630,018 100,000 | 0.1431 8,731,651 191,981,118
Skitter [13] 11,095, 298 1,696,415 | 0.2581 28,769, 868 72,568,114
LiveJournal [13] 34,681,189 3,997,962 | 0.2843 177,820,130 300, 849, 500
37M (Generated) 37,015,441 2,000,000 | 0.0562 15,748,878 685,071,436
60M-1I (Generated) 59,973,402 5,000,000 | 0.0277 13,427,600 719,361,789
60M-II (Generated) 59,999, 277 5,000,000 | 0.0120 5,023,429 719,982, 648
63M (Generated) 63,282,257 | 4,000,000 | 0.0423 19,592,680 | 1,001,161,013
84M (Generated) 89,999,289 | 7,000,000 | 0.0120 7,024,089 | 1,007,982, 936
Orkut [13] 117,185,083 | 3,072,441 | 0.1666 627,584,181 | 4,469, 522, 337
383M (Generated) | 383,036,651 | 25,000,000 | 0.2694 | 48,646,462,257 | 5,868, 683,040

Table 1: Used graphs

All graphs are connected graphs, except for LiveJournal and Orkut, which
contain 287,512 and 6, 288, 363 communities respectively [13].

6.2 Used Algorithms

The following variants of the algorithms are tested:

e Basic: Using the Basic-algorithm as described in Section 4.1.3.

e Basic-Skip: Using Basic and skipping the vertices where d(v) < 2 as
described in Section 5.3.2.

e Basic-MT-Skip: Using Basic-Skip and applying multi-threading as de-
scribed in Section 5.3.1.

o A3:

multiplication.

e AYZ: Using the AYZ-algorithm as described in Section 4.1.5.

Calculating A% as described in Section 4.1.4, using sparse matrix

e AYZ-MT-Skip: Using AYZ with multi-threading applied as described in
Section 5.3.1 on the low degree vertices and skipping the vertices where
d(v) < 2 as described in Section 5.3.2.

13

e Estimation: Using the estimation algorithm as described in Section 4.2.1
with v = 100 and € = 0.005.

These algorithms were implemented in C++11 and the calculations were
done on a set-up with 6GB RAM and an Intel Core 15-2450M 2.50GHz CPU
with 4 cores.

6.3 Test Results

The results of the estimation algorithm are as follows:

Name ¢(G) | Estimated ¢(G) | Difference
Facebook [13] 0.6055 0.6028 0.00278
600K (Generated) 0.2454 0.2463 0.00092
4M (Generated) 0.1431 0.1400 0.00303
Skitter [13] 0.2581 0.2576 0.00059
LiveJournal [13] 0.2843 0.2873 0.00307
37M (Generated) 0.0562 0.0562 0.00004
60M-I (Generated) | 0.0277 0.0280 0.00039
60M-II (Generated) | 0.0120 0.0120 0.00000
63M (Generated) 0.0423 0.0428 0.00050
84M (Generated) 0.0120 0.0123 0.00031
Orkut [13] 0.1666 0.1654 0.00123
383M (Generated) | 0.2694 0.2690 0.00047

Table 2: Estimation Results

The running time of the algorithms on the given graphs are:

Name Basic | Basic-Skip Basic-MT A3 | AYZ-Skip AYZ-MT Estimation
-Skip -Skip
Facebook [13] 0.076 0.075 0.033 1.18 0.088 0.098 0.015
600K (Generated) 1.701 1.574 0.659 44.983 1.737 1.309 0.018
4M (Generated) 10.862 11.114 4.542 | > 2,000 12.589 8.276 0.026
Skitter [13] 70.160 70.165 40.339 | > 5,400 78.230 68.130 0.026
LiveJournal [13] 45.417 45.510 25.158 - 61.124 53.738 0.062
37M (Generated) 45.723 46.707 17.673 - 50.828 31.893 0.047
60M-I (Generated) 377.432 369.484 175.694 - 480.218 315.942 0.032
60M-1I (Generated) | 50.595 54.955 18.343 - 58.213 32.491 0.034
63M (Generated) 66.410 67.693 25.612 - 75.168 46.690 0.031
84M (Generated) 81.523 81.622 27.283 - 87.216 46.586 0.037
Orkut [13] 438.787 432.990 241.411 - 470.216 385.660 0.034
383M (Generated) 22,709 22,624.8 9,828.12 - | >43,000 > 43,000 0.580

Table 3: Running times of the algorithms over several graphs

14

6.4 Analysis of the Results
6.4.1 Overall Results

Considering the running times in Table 3, it becomes clear that the Basic-
Skip-MT algorithm is the fastest algorithms in all tested cases. Moreover, the
Basic algorithm is the only algorithm which is able to calculate the clustering
coefficient of a graph with 383 million edges in less than 7 hours.

Clearly, the A3-algorithm performs the worst. Up to a million edges, the
algorithm is capable of calculating the clustering coefficient within a reasonable
timespan, but for larger graphs, the time needed becomes huge.

6.4.2 Precision of the Estimation Algorithm

The estimation algorithm with parameters v = 100 and € = 0.005 should give
results that differ less than 0.005 from the real clustering coefficient with 99%
chance. When the given results in Table 2 are analysed with a Single Sample
One-Sided T-Test, the results satisfy this claim.

6.4.3 Running Time of the Basic Algorithm with respect to m?/n

The time complexity of the Basic algorithm was approximated to be O (mT?)

When the running times in Table 3 are compared to m?/n, it becomes clear
that the times are roughly proportional to the approximated time complexity.

Basic time versus m2/n

500
400 —*
= eoM- / R?=0.5955
$ 300
o / R?= 0,9581 without 60M-|
E 200
-
100
*
te o
0 " T T T T 1
0 1 2 3 4 5 x10E®
m2/n

Figure 2: Graph showing the Basic times compared to m?/n.

15

However, the 60M-I graph does not fit the model, while the Basic-algorithm
has a substantially higher running time when calculating the clustering coeffi-
cient of this graph, as is clearly visible in Figure 2. This shows that the time
complexity of the Basic-algorithm is a first-order approximation, which is not
right in all cases.

6.4.4 Running Time of Basic respect to other algorithms

When the running times of the fastest algorithms (Basic-Skip, Basic-MT-Skip,
AYZ-Skip and AYZ-MT-Skip) are compared to those of Basic, the times of the
algorithms relate linear to the running time of Basic, as shown in Figure 3.

Times compared to Basic
600 y=1.1541x + 0.3402

R%=0.9889

3 500 ® " u |y=0.9806x+1.4796
R?=0.9999

? 400 / / /.

2 // y =0.8664x- 3.5535

£ 300 R*=0.9933

2 / *

S 200 ~

e = y=0,5215x-3,9204

= R?*=0,9863

0
0 100 200 300 400
Time Basic [sec]
+ Basic-MT-Skip W AYZ-Skip AYZ-MT-Skip B Basic-Skip

Figure 3: Graph showing times of other algorithms compared to Basic.

From the equations of the trend-lines can be extracted that the Basic-Skip

algorithm is approximately equally as fast as Basic. Furthermore, the AYZ-
skip algorithm is slower in all tested cases, which is also visible in Figure 3. The
multi-threaded versions of both algorithms run twice as fast compared to single-
threaded versions, although this should theoretically be reduced by a factor of
circa 4.

Surprisingly enough, there is no direct correlation between m!#® and the
running time of the AYZ-algorithm, although this should be the case. The
reason for this could be that the Eigen-library, which is used for matrix multi-
plication, uses another algorithm than expected.

16

7 Conclusions

The clustering coefficient is a metric describing to which extent a network con-
tains cliques or clusters, having several diverse and useful applications. Because
of the growing interest in analysing networks, there is a need for fast algorithms
calculating the clustering coefficient. Several techniques, like fast matrix multi-
plication can help calculating the clustering coefficient, but are not necessarily
required.

There are different algorithms for calculating the clustering coefficient, with
various time and space complexities. One of the fastest algorithms is the Basic-
algorithm as described in Section 4.1.3, but in some specific cases, the AYZ-
algorithm as described in Section 4.1.5 should theoretically be faster.

There exists an algorithm for estimating the clustering coefficient, which runs
in constant time, and an algorithm for generating graphs with an adjustable
clustering coefficient.

Several optimizations can be made to achieve faster algorithms. Though
skipping vertices with d(v) < 2 beforehand seems a good idea, it leads in some
cases to higher running times. This could be due to the fact that skipping
vertices is more time intensive than simply evaluating the clustering coefficient
in those vertices.

Multi-threading decreases the time needed with at least a factor of 2, but
could be optimized by dividing the work over the threads as equally as possible.
Algorithms involving matrix multiplication could be made more efficient by
implementing sparse matrix multiplication, which saves time as well as memory
in most cases.

Another way to get a fast program is by implementing multiple algorithms
and deciding which algorithm should be used based on known information, like
the number of edges and vertices.

The Basic-algorithm has proven to be able to calculate the clustering coef-
ficient of graphs with over 383 million edges, but it should be able to handle
even larger graphs, while only 3.1 GB of the available 6 GB RAM is used when
calculating the clustering coefficient of the graph 383M.

Several test prove that in general, the running times of the Basic algorithm
are proportional to m?/n. However, when the degrees of the vertices are not
uniformly distributed, the running times differ from the expected values.

Ideas for future research include finding out why the AYZ-algorithm does

not correlate directly with its expected time complexity and finding techniques
to optimize the multi-threading of the Basic-algorithm, to make it even faster.

17

References

[1]

D. J. Watts and S. H. Strogatz. Collective dynamics of “small-world” net-
works.
Nature, 393:440-442, 1998.

M. E. J. Newman, D. J. Watts, and S. H. Strogatz. Random graph models
of social networks.
Proc. Natl. Acad. Sci. U.S.A.; 99(Suppl 1):25662572, 2002.

N. Alon, R. Yuster and U. Zwick. Finding and Counting Given Length
Cycles.
Algorithms, 17:209-223, 1997.

M. Latapy. Main-memory triangle computations for very large (sparse
(power-law)) graphs.
Theor. Comput. Sci., 407:458-473, 2008.

A. Azad, A. Bulug and J. Gilbert. Parallel Triangle Counting and Enumer-
ation using Matriz Algebra.

Proceedings of the IPDPSW, Workshop on Graph Algorithm Building
Blocks (GABB):804-811, 2015.

T. Schank and D. Wagner. Approximating Clustering Coefficient and Tran-
sutivity.

J. Graph Algorithms Appl. vol. 9, no. 2:265275, 2005.

T. Schank and D. Wagner. Finding, Counting and Listing all Triangles in

Large Graphs, An Experimental Study.
Technical report, Universitdt Karlsruhe, Fakultéat fiir Informatik, 2005.

F. D. V. Fallani, J. Richiardi, M. Chavez and S. Achard. Graph analysis of
Sfunctional brain networks: practical issues in translational neuroscience.
Phil. Trans. R. Soc. B, 369:20130521, 2014.

M. E. Lynall, D.S. Bassett, R. Kerwin, P. J. McKenna, M. Kitzbichler, U.
Muller and E. Bullmore. Functional Connectivity and Brain Networks in
Schizophrenia.

J. Neurosci., 30(28): 9477-9487, 2010.

C. S. Hiopoulos Worst-Case Complexity Bounds on Algorithms for Com-
puting the Canonical Structure of Finite Abelian Groups and the Hermite
and Smith Normal Forms of an Integer Matrix.

STIAM J. Comput., 18(4):658-669, 1989.

Microsoft Developer Network. Data Type Ranges.
https://msdn.microsoft.com/en-us/library /s3f49ktz.aspx

M. Latapy. Triangle Computations.
https://www-complexnetworks.lip6.fr/ latapy/Triangles/

J. Leskovec and A. Krev. SNAP Datasets: Stanford Large Network Dataset
Collection.
http://snap.stanford.edu/data, 2014.

18

