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1 Introduction

In this thesis we describe multiple algorithms for counting self-avoiding walks
on the square lattice. We begin by informally introducing this problem and its
background. For a quick read only sections 1.2 and 1.4 of this introduction are
relevant.
After having described a few known algorithms, one of which, the so-called Finite
Lattice Method, forming a major part of this thesis, we present our own newly
developed algorithm together with some promising results.

1.1 The Unexpected Difficulty of Seemingly Easy Questions

Let us start with a short anecdote, inspired by [1]. We go back to about a hundred
years ago, when mathematicians Srinivasa Ramanujan and Godfrey Harold Hardy
considered the following question: How many different ways are there to write a
number as a sum of positive integers?
Now this doesn’t seem to be such a hard question. It might take more than a little
while to find the answer, but there must obviously be some simple and elegant
solution to such a compact question, right? Didn’t some Greek mathematicians
examine such problems over 2000 years earlier? Let us first clarify this little puzzle
some more, and look for example at the number 4. We find five distinct ways to
divide it in smaller integers:

4

3 + 1

2 + 2

2 + 1 + 1

1 + 1 + 1 + 1

As can be seen above 1 + 3 and 3 + 1 are considered as identical options. We
refer to p(n), or the partition of n, as the number of distinct ways of writing n as
a sum of integers. Using this notation, we found p(4) = 5. The first few terms of
the series p(n) are: 1, 2, 3, 5, 7, 11, 15 ...
Though the problem seems simple, finding an actual formula for p(n) turned out to
be quite hard. In fact at the beginning of the 20th century, most mathematicians
had given up on the search. But not Ramanujan, the young clerk from India.
Being completely auto-didactic led to his unique optimism that a solution had to
be found. In collaboration with the more critical English mathematician Hardy,
always checking his wild enthusiasm, Ramanujan succeeded in finally finding the
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formula for p(n). For all those loving the elegance of mathematics, how difficult
questions can be solved by a simple trick or a short cunning proof, don’t get too
excited. This is what the formula looked like:
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Where N may be taken to be of order
√
n, and (h, k) refers to the greatest common

divisor of h and k. The value of ωh,k is given by eπis(h,k) with s(h, k) the Dedekind
sum D(1, h, k).
What’s more, instead of giving the exact number, Hardy and Ramanujan’s com-
plicated formula produces an answer that is correct when rounded to the nearest
whole number. So, for instance, when the formula is fed with the number 200 it
outputs a value to which the nearest whole number is 3, 972, 999, 029, 388. 1

The subject in the coming chapters is a different one. We will not count the
number of distinct partitions of n, but count something totally different: the num-
ber of distinct self-avoiding walks of length n on the square lattice. The approach
does not involve number theory, or other types of mathematics used by Ramanu-
jan and Hardy (although a solution to this currently unsolved problem might of
course be found in these areas of mathematics). The problem that is considered
however, is both ominously and excitingly similar in one respect: a seemingly easy
question reveals a much more complicated problem under closer inspection.

So how complicated is the problem that we are talking about? Well to get an
idea, not only is there no known formula that gives the number of distinct self-
avoiding walks, mathematicians and computer scientists are even having a hard
time finding an efficient algorithm to do the counting. The current record is set at a
length of only 79! Comparing this to the problem of partitioning integers, where a
simple algorithm is easily applicable2 one might believe we are dealing with an even
more unpredictable problem here. Fortunately, in a time where mathematicians
are increasingly aided by computers, new methods of dealing with these problems
arise. In what follows we focus mainly on algorithms, although some theoretical
results are still involved.

1Later on, a variation of their formula would be discovered by Hans Rademacher, giving the
answer on the nose. It doesn’t get much prettier, mainly involving taking the first sum to infinity.

2Let p(n,m) be the number of partitions of n using only positive integers ≤ m. By splitting
on what part we partition out of m first we get the following relation: p(n,m) =

∑m
k=1 p(n−k, k).

Combined with p(n) = p(n, n) = p(n,m) for m > n we can find the answer.
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1.2 The Self-Avoiding Walk

Before going any further, let us first give a formal definition. An n-step self-
avoiding walk (SAW) is a sequence of n moves on a lattice that does not visit
the same point more than once. The lattice we consider is the 2D infinite square
lattice, L2, or more formally, the graph with vertex set Z2 ⊂ R2 and edge set
formed by all unit length segments between vertices in Z2. A self-avoiding walk of
length n on such a lattice is a sequence of n + 1 distinct vertices (v0, ..., vn), such
that vi ∈ Z2 and {vi−1, vi} is an edge in L2 for i = 1, . . . , n. We let cn denote the
total number of distinct n-step self-avoiding walks on this lattice. We usually let
v0 be the origin, and view translations of v0 as identical SAWs. It follows from the
definition that rotations and reflections of SAWs are considered different.
In this setting, the number of ‘non-returning’ walks of length n ≥ 1, not moving
back but allowed to intersect themselves later on, is 41 · 3n−1. (At the start 4
directions can be chosen, after which due to the non-returning constraint at each
point 3 directions in which to continue are possible.) Walks of lengths up to n = 3
that do not move back cannot intersect themselves yet, so the first few terms can
safely be given: c1 = 4, c2 = 12, c3 = 36. To get a feel of how things change when
the self-avoiding constraint kicks in, consider c4 = 4 · 34−1 − 8 = 100, where we
have had to remove the 8 cases in which a walk of length 4 can intersect itself.
The approach is obviously not suited for larger n, but does reveal a simple upper
bound for cn. A lower bound can be given by noticing that a walk that solely
moves in positive directions (up and right) never intersects itself. We deduce that,
for n > 3:

2n < cn < 4 · 3n−1. (1.1)

This is a pretty rough estimate, and much better estimates are available. It is con-
jectured that cn ∼ Aµnnγ−1 for large n, with A, γ and µ positive constants. Most
important for our purposes is the exponential behavior cn ∼ µn, where µ, also
called the connective constant, has been approximated µ ≈ 2.638 [2]. Knowing
the asymptotic behavior of cn shall in this work mainly be useful for estimating
the running times of different algorithms. However, the other way around, algo-
rithms that compute cn exactly have contributed to better approximations of the
asymptotic behavior of cn, most recently in [17].
In two dimensions it is conjectured that γ = 43/32, independent of what lattice
we’re in [7]. Naturally, the problem is not unique to the square lattice. Although
it has only been approximated for the square lattice, the value of µ has successfully
been derived for the hexagonal (honeycomb) lattice [14].
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Not only the number of self-avoiding walks of length n is sought after. More general
metric properties are also studied, consider for example the mean (squared) end-
to-end distance of self-avoiding walks. Although the algorithms for finding cn
discussed in this work can be (and have been) extended to also give the values
of such metric properties, we only consider them in this work as targeting one
question: what is cn?

1.3 Why Self-Avoiding Walks? Some Context

We first note that attempts to solve problems like the SAW problem can lead to
advances elsewhere in mathematics and computer sciences. While we consider this
as a sufficient reason to continue puzzling on such matters, the self-avoiding walk
problem is actually of fundamental interest in statistical mechanics and polymer
chemistry, where the problem was first stated [4].
That the self-avoiding walk problem originated in polymer chemistry can be un-
derstood by considering linking monomers to form polymer chains. Given the
restriction that two monomers cannot find themselves on the same point in space
or on a surface, we arrive at the notion of a ‘self-avoiding’ chain of monomers.

Initially, the best mathematical model for encoding the unique properties of such
polymers was a random walk. The Swiss chemist Werner Kuhn was the first to
propose this model, in 1934, using this so called ‘ideal chain’ approximation to
apply Boltzmann’s entropy formula3 to the modeling of rubber molecules [3].
One of the assumptions made by Kuhn was that the mean squared end to end
distance R2 grew as the number of monomers N in the polymer, or R ∼

√
N .4

However, years after this assumption was made, it was found to be incorrect,
as R turns out to grow faster than

√
N . In 1953, the American chemist Paul

Flory suggested that while random walks tend to occasionally ‘trap’ themselves,
the monomers tend to bounce away from each other. Applying this so called
excluded-volume constraint to polymer molecules, he was the first to create the
notion of a self-avoiding walk [4].

3Boltzmann’s equation gives the relationship between the physical concept called entropy,
and the number of ways in which the atoms or molecules of a thermodynamic system can be
arranged. A better understanding of the entropy of a certain system leads to more knowledge of
other macroscopic properties of the system. In this way, through entropy, combinatorial problems
as the one we are currently studying are more often found to have important links with physical
systems.

4Note that this is in accordance with the theory of Brownian motion, where the mean squared
displacement x2 of a particle is proportional to the elapsed time: x2 ∼ t.
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Although the origin of the problem lies in polymer chemistry, later on connections
between the self-avoiding walk model and models in statistical physics were found,
further confirming the relevance of this problem for the world beyond mathematics.
Most notably French physicist Pierre-Gilles de Gennes discovered a connection be-
tween the self-avoiding walk and spin systems of classical statistical mechanics [5],
see also [6], considering the self-avoiding walk as a ‘zero-component’ ferromagnet.
(More formally the limit is taken of n goes to zero for the so-called n-vector or
O(n) model from statistical mechanics.) This connection has also been used to
conjecture the value of the constant γ, partially describing the asymptotic behav-
ior of cn, mentioned earlier [7].
Inspired by the connections with statistical mechanics, soon multiple new ap-
proaches were presented considering the self-avoiding walk as a critical phenomenon5

on its own, without appealing to specific already known models in physics [8] [9].
This has increased the possibility of the SAW-problem becoming relevant in other
(perhaps currently still unknown) critical systems in physics or other fields.

1.4 Algorithm Complexity

Although there are numerous methods for approximating cn, there currently is no
known formula for determining the actual number. With the rise of computers, and
without Ramanujan to help us out, another question arises: is there an efficient
algorithm to find the number of self-avoiding walks?
Say the minimal number of basic computing operations required by an algorithm
to give the answer cn is given by f(n). We say the algorithm is ‘running in
polynomial time’ if f(n) is a polynomial function (rather than exponential for
example), however fast it grows in the ‘input’ n. We can talk about ‘computing
time’ instead of ‘number of operations’, because we assume that the time (in
seconds, hours etc) is a linear function of the number of operations, thus not
changing the (e.g. polynomial) nature of f .
Currently all the algorithms that are used for this problem have an exponential
running time. In the rest of this work we shall describe the complexity of the
discussed algorithms by the ‘running time function’:

T (n) ∼ λn (1.2)

There is no known algorithm giving the answer in polynomial time, and the chal-
lenge has mainly been to minimize the base λ of the exponential function describing
the algorithm’s running time.
In some cases reasonably good upper bounds for λ can be derived. However, al-
gorithms can also be so complicated that understanding their behavior exactly is

5Meaning that it can be considered as a system in a certain (scaling) limit.
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nearly impossible, perhaps more difficult than the original problem of counting
self-avoiding walks. In those cases numerical results are used to give estimates for
λ.
The current best algorithm for counting self-avoiding walks in the square lattice,
i.e. with the lowest λ (≈ 1.3), is an extension of the so-called finite lattice method.
We describe this method, as well as the improvements made to it, in chapter 4.

1.5 Proof of Existence of µ

The actual behavior of cn might be very complex, even more so than cn ∼ Aµnnγ−1

due to many correction terms [10], it is however mainly dominated by the expo-
nential behavior µn. In this thesis we do not require a very precise estimate of
cn, because we are mainly interested in determining running times of algorithms,
where much rougher estimates are made. It is for this reason that our focus lies
only on µ.
In this section we give a proof (taken from [11]) of the existence of µ, defined6 as

µ = limn→∞ c
1/n
n . This proof does not contribute to a better understanding of the

algorithms in the remainder of this thesis and might be skipped if the reader is
not interested in it. We have included it, because the proof is required to justify
many of the arguments concerning algorithm running times that follow in the next
sections, which are all based on the exponential behavior of cn.

Theorem 1.1. The limit limn→∞ c
1/n
n , converges to µ <∞.

Proof. To prove this we go back to the intuition of a self-avoiding walk. We realize
two things. Firstly, every self-avoiding walk of length n + m can be decomposed
into two smaller SAWs of length n and m. Secondly consider combining two self-
avoiding walks, one of length n and the other of length m, having them both start
in the origin. In the case of no intersections, we end up with a self-avoiding walk
of length n+m. However there must also be at least one case of intersecting SAWs
(consider for example the case where the smaller SAW is entirely overlapped by
the larger SAW). We can therefore say that cn+m ≤ cn · cm. Taking the log of both
sides gives log cn+m ≤ log cn + log cm. We shall now use a lemma, also known as
Fekete’s lemma.

Definition. A sequence (an) of nonnegative terms is sub-additive if an+m ≤ an +
am for all n,m ∈ N

6 This might seem like a strange way to define µ, but note that limn→∞
cn
µn = 1 would suggest

an absence of polynomial or other smaller than exponential corrections in the large-n limit of
cn. We are not actually proving that cn goes like µn for large n. For this it is obviously required

that limn→∞ c
1/n
n converges, but this is not a sufficient condition. In short, we cannot rule out

the possibility that, for example, a polynomial term also influences cn.
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Lemma 1.2. Let (an) be a sub-additive sequence of nonnegative terms an. Then
an
n

is bounded below and limn→∞
an
n

= inf
{
an
n

: n ∈ N
}
.

Applying the lemma to an = log cn we find that log cn
n

= log (c
1/n
n ) converges for

large n. We define limn→∞ log (c
1/n
n ) = log µ. Since y = ex is continuous in x =

log µ, we can use the composition law for limits to conclude that limn→∞ c
1/n
n = µ,

completing the proof.

As mentioned in footnote 6, we did not actually prove that cn goes like µn for
large n. More precisely, what we have proved is that µ describes the exponential
contribution to the asymptotic behavior. In the large-n limit c

1/n
n is stripped of all

polynomial (and other smaller than exponential) contributions, leaving only the
exponential term. And because it converges, we also know that there are no larger
terms (like αn

2
(α > 1) or n!) involved in the large n limit.

We can go a little bit further, looking at one aspect of the lemma we have not
explicitly used. Fekete’s lemma also gives us:

inf
{ log cn

n
: n ∈ N

}
= log µ, so

log cn
n

≥ log µ

cn ≥ µn.
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2 The Simple Recursive Algorithm

In this chapter we describe an algorithm for counting self-avoiding walks. As it is
the simplest algorithm that one can think of, and it is a recursive algorithm, we
call it the ‘Simple Recursive Algorithm’ for later reference.

2.1 Introduction

The first counting method that might come to mind, is recursively moving through
the lattice, at each vertex checking all directions to determine in what ways to con-
tinue ‘walking’. When a completed SAW has been formed, we go back a step and
check for other directions that have not been chosen previously. More formally,
this method can be considered a Depth-First-Search algorithm, and we are actu-
ally explicitly searching (and thereby generating) all the SAWs before counting
them.
Although this method is very inefficient, it does give a first impression of the main
difficulties that we’re dealing with. Namely, how it is the sheer number of self-
avoiding walks that significantly limits us in our possibilities. More significantly,
this algorithm will be a reference point to determine what the worst-case running
time is that we have to beat, and how well other algorithms are doing.

We begin by describing the algorithm itself, working towards the main method by
first describing the different variables and another method used. Next we discuss
the complexity of the algorithm (the value of λ), which can in this case be derived
exactly.

2.2 The Algorithm

To know which vertices have not yet been visited, we maintain a two-dimensional
(O(n2)) array representing the entire lattice (all vertices) a walk of length n can
reach. We give a location (vertex) the output value 1 if it has already been visited
by the walk, and output 0 otherwise. Because the array can’t contain negative
coordinates, we translate the origin from (0, 0) to (n, n). For the actual counting we
track the number of walks of length n already successfully reached (and counted)
with the value Total.
We will now define the recursive method that forms the most important part of
the algorithm (but does by itself not return any answers). When called upon, this
method can be seen as being ‘unleashed’ at a certain lattice point with a number
of steps allowed to be taken, expanding sequentially (forming one walk at a time)
in all directions. Each time it has successfully placed all its steps, or when it has
trapped itself, it will go back, continuing in other, not yet attempted, directions.
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Consider x and y as describing the coordinates of the starting point of this method,
and j the number of steps it has left. When j = 0 we will consider this as having
successfully found an entire self-avoiding walk. In that case we shall add the walk
to the running total Total. Note that the fact that the method refers to itself (in
the four if-loops, one for each possible walking direction), makes this algorithm
recursive.

function RecursiveWalk(x, y, j)
if j = 0 then

Total = Total + 1
. Successfully reached a self-avoiding walk of the desired length

else . Check what directions are possible to continue walking
if Lattice[x+ 1, y] = 0 then

Lattice[x+ 1, y] = 1
RecursiveWalk(x+ 1, y, j − 1)

if Lattice[x− 1, y] = 0 then
Lattice[x− 1, y] = 1
RecursiveWalk(x− 1, y, j − 1)

if Lattice[x, y + 1] = 0 then
Lattice[x, y + 1] = 1
RecursiveWalk(x, y + 1, j − 1)

if Lattice[x, y − 1] = 0 then
Lattice[x, y − 1] = 1
RecursiveWalk(x, y − 1, j − 1)

Lattice[x, y] = 0 . Erase footprint upon returning

Although we already have a nearly working algorithm purely based on this function
(just start the method in the origin with n steps left to find cn), we can first easily
make use of some symmetry. Every walk, except for the four walks that go straight
in one direction, can be rotated and reflected to give a total of 8 similar walks.
We can incorporate this by letting the first move go up, and letting the first move
not going up to be one to the right. The full algorithm will therefore be (keeping
in mind the translation of the origin to (n, n)):
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function SelfAvoidingWalksOfLength(n)
Total = 0
Create new array Lattice
Lattice[n, n] = 1 . start at origin
for h = 1 to n− 1 do . h = number of steps up to begin with

Lattice[n, n+ h] = 1 . walking up one extra step
Lattice[n+ 1, n+ h] = 1 . first step to the right
RecursiveWalk(n+ 1, n+ h, n− h− 1)

return 8× Total + 4 . add the 4 straight line segments

This algorithm gives the first 20 terms of cn without a problem. But it takes about
a minute to calculate c22, 2.5 minutes to calculate c23, 7 minutes to calculate c24
and 18 minutes to calculate c25. It is obvious that the record of c79 will not be
broken by this algorithm, but to give an impression of how terribly this gets out
of hand, we did a basic exponential fit on the running times. We concluded that
it would require more years than the age of the universe to find c57 with this
algorithm.

2.3 Complexity of the Algorithm

A large running time was to be expected for a simple reason: every single SAW
gets counted, and there are many SAWs. Even if we were to write an algorithm
that was amazingly efficient in avoiding collisions, and miraculously only counted
successful already completed self-avoiding walks, the running times still explode.
This is all due to the fact that those running times grow (at least) as self-avoiding
walks themselves, exponentially depending on the connective constant µ ≈ 2.638.
We could at this moment already say that the algorithm runs in O(µn) time. Be-
cause T (n) was defined as λn, we now have λ ≈ µ.
One might initially believe that much more work is done than just what is required
for counting O(µn) finished walks, but we can easily show that this is nonetheless
a reasonable approximation of the running time. The remainder of this subsection
can be skipped if the reader is comfortable with the notion that λ ≈ µ ≈ 2.638 for
this algorithm.

For the actual analysis we first introduce tn, the number of walks of length n that
intersect with themselves on their last move. (The t stands for tadpole, resembling
the shape of such a walk, as it is a combination of a self-avoiding polygon7(the

7a self-avoiding polygon is a self-avoiding walk that begins and ends at neighboring lattice
points, allowing us to make a full cycle
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body) and a self-avoiding walk (the tail) connected to it.)
Imagine standing at the end of a walk that successfully avoided itself for n − 1
moves, about to make the nth move. Since there are four possible directions to
go in, the total number of outcomes due to the nth move is 4 · cn−1. All those
outcomes can either be tadpoles of length n, or self-avoiding walks of length n. It
follows that, for n > 1:

4 · cn−1 = tn + cn. (2.1)

Now what do we run into when the recursive method is called upon? We can
either hit ourselves, so form a tadpole of length ≤ n or we can continue walking,
and form a self-avoiding walk of length ≤ n. We therefore perform in total O(1)
operations for every tadpole and self-avoiding walk of length ≤ n. The running
time, with the use of symmetry not yet taken into account, will approximately be:∑n

j=2(cj + tj)

= 4
∑n

j=2 cj−1

= 4
∑n−1

j=1 cj

≈ 4
∑n−1

j=1 µ
j

= 4(µn − µ)/(µ− 1)

= O(µn).

We approximated cj by its exponential contribution µj, assuming large j, and in
the last step we neglected the 4/(µ − 1) term to give a running time of O(µn).
Note that this last term 4/(µ− 1) ≈ 2.38 can actually be considered as the factor
representing the ‘extra work’ that needs to be done due to all the steps that are
not directly counting self-avoiding walks. Clearly the intuitive first guess was not
far off. Note further that if we would take symmetry into account, this will just
contribute by a factor of 1/8. Approximating this as 1/µ2 this can actually be
seen to only increase our reachable length n by 2.
Obviously the main approximation error comes from ignoring the polynomial con-
tribution of cj. For now the most practical conclusion is that we need to beat
O(µn) running times.
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3 The Length-Doubling Method

In this chapter we describe another method for counting self-avoiding walks, this
time focusing more on the mathematics and less on the precise implementation of
the algorithm.

3.1 Introduction

One of the methods successfully beating the O(µn) running time of the simple re-
cursive algorithm, is the Length-Doubling method developed by Raoul D. Schram,
Gerard T. Barkema, and Rob H. Bisseling [12]. None of the following ideas are
used for our own method, neither is the material discussed here a prerequisite
for understanding it. However, as the length-doubling method reaches a decent
λ = 2.32 in the square lattice, and, more importantly, it is the record-holder for
lattices with dimensions > 2, we do believe it is worth shortly describing the math-
ematical derivation of this method. Details of the exact implementation can be
found in [13].

3.2 Mathematical Derivation

As the name of the method might have already suggested, we will try to find the
number of walks c2n, assuming that we already know, and are able to reproduce,
the walks of length n.
The first observation is that any two SAWs of length n can either combine to form
a SAW of length 2n, or intersect each other. Let Ai be the set of pairs of SAWs of
length n that both pass through a certain lattice point i. Since any pair of walks
that intersect each other must have (at least) one lattice point in common, such
a pair belongs to the set

⋃
iAi. (Here i is understood as defining any point in the

finite lattice reachable by walks of length n). Also, any pair of walks belonging
to
⋃
iAi belongs to at least one of the Ai and has at least one lattice point in

common, therefore representing two intersecting walks. It follows that the number
of intersecting pairs of walks is precisely |

⋃
iAi|. Since the total number of pairs of

walks of length n is given by c2n (we do not remove the possibility of walks ‘pairing
up with themselves’) we find the following formula:

c2n = c2n − |
⋃
i

Ai|. (3.1)

As we assumed that cn is known, we are now interested in the term −|
⋃
iAi|.

An important note is that |Ai| gives the number of pairs of walks that intersect
each other in lattice point i, but does not say anything about them possibly also
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intersecting in another point j. Removing |Ai| for all i (from the total c2n) will
therefore be too much, since pairs of walks that intersect in precisely two points
(for example) will have been removed twice, instead of once. We can correct for
this by adding |Ai ∩Aj| for all i < j, representing the pairs of walks that intersect
each other in two (or more) points. With the same reasoning applied to other
terms (i.e. now correcting for pairs of walks intersecting in 3 points by adding a
term, etc.) the so-called inclusion-exclusion principle is found. More generally the
inclusion-exclusion principle states that for n sets A1, A2, · · · , An:

|
n⋃
i=1

Ai| =
∑
i

|Ai| −
∑
i<j

|Ai ∩ Aj|+
∑
i<j<k

|Ai ∩ Aj ∩ Ak|+ · · · (3.2)

+ (−1)n+1|A1 ∩ A2 · · · ∩ An|.

We are interested in terms of the form |Ai1 ∩Ai2 · · · ∩Air |, where {i1, · · · , ir} is a
non-empty subset of all the lattice points. We define cn(S) as the number of SAWs
of length n that pass through all the sites of some subset S = {i1, · · · , ir}. Any
combination of two such walks is an element of Ai1 ∩ Ai2 · · · ∩ Air , whereas every
element of Ai1 ∩Ai2 · · ·∩Air is a combination of two such walks. We conclude that
c2n(S) = |Ai1 ∩ Ai2 · · · ∩ Air |. Note also that the sign of such a term in equation
3.2 depends only on r = |S|.
Closer inspection of equation 3.2 reveals that every relevant (reachable by at least
one walk of length n) non-empty subset S of the lattice appears exactly one time in
the sums on the right-hand side. (And again, every single term on the right-hand
side can be uniquely linked to a specific subset S.) It follows that we might as
well sum over the subsets S. Using the fact that c2n(S) is the size of each term,
and that the sign of each term depends only on the size of the set |S|, we achieve
the following formula for c2n:

c2n = c2n +
∑
S 6=∅

(−1)|S|c2n(S). (3.3)

3.3 Complexity of the Algorithm

To find cn(S) we generate each SAW of length n. Each SAW of length n con-
tributes to 2n different subsets S. Assuming O(1) time to increment the counter
of a specific subset, we will know all cn(S) in O(2ncn) time, or O(2nµn), approx-
imating cn by its exponential behavior for large n. Defining the running time as
T (n) = O(λn) we find that λn = 2n/2µn/2 = (

√
2µ)n, so that λ =

√
2µ ≈ 2.32 for

this algorithm.
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4 The Finite Lattice Method

In this chapter we describe the method that forms the basis of what is currently
the best known method for counting self-avoiding walks on the square lattice.

4.1 Introduction

The name ‘Finite Lattice Method’ (FLM) is based on the notion that SAWs are
now considered embedded in finite rectangular graphs, rather than free to span
in all directions. The essence of the Finite Lattice Method lies in the so called
transfer matrix (TM) method8, used for counting the number of SAWs in those
rectangular graphs. It shall be described in great detail in section 4.3. The TM
method has also inspired the development of our own new recursive method, which
will be described in chapter 5. A slightly more complex variant of the TM method
is actually incorporated in our algorithm.

The Finite Lattice Method was first used in 1980 by Ian Enting [20] to enumerate
polygons up to length 38. His pioneering work, extended to enumerating SAWs
by Conway, Enting and Guttman [19] in 1993, forms the basis of the so-called
‘Pruning Method’ with which the record of calculating c79 has been reached by
Iwan Jensen in 2013 [17].
For completeness, as it still holds the record, we summarize how this pruning
method works in section 4.4. However, because our own method does not use any
features of the pruning method, the focus of this chapter lies on the more general
transfer matrix method.
In the remaining chapters of this thesis generating functions play an important
role. If the reader is unfamiliar with those functions, we recommend first reading
appendix A.

8The name ‘transfer matrix method’ referring to the way self-avoiding walks (or polygons) are
counted, is inspired by the more widely known transfer-matrix method in statistical mechanics.
The latter is used when a physical system can be broken into a sequence of subsystems that
interact only with adjacent subsystems. Although the use of this name shall therefore shortly be
understood, we prefer to consider the two methods as totally different. For instance, the transfer
matrix method used for counting self-avoiding walks has nothing to do with the mathematical
concept of a matrix.
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4.2 Walks in an L×H Rectangle

We will set aside cn for a moment, and consider first the question of how many
SAWs there are in an L × H rectangle. By this we mean a rectangular graph,
of L edges long and H edges high, or equivalently L + 1 vertices long and H + 1
vertices high. Consider for example Figure 4.1, where a SAW is shown, part of it
as a dashed line, in a 8× 6 rectangle. We don’t specify an origin: SAWs can begin
(and end) everywhere as long as they remain within the rectangle. We do assume,
however, that each path visits both the left-most side and the right-most side of
the rectangle, so that it spans at least L edges. Due to symmetry we only have to
consider rectangles with H ≤ L, and if we are only interested in paths of length
n, we can add the restriction that L ≤ n.
Let RL,H(n) be the number of SAW’s of length n in a rectangle of size L × H
touching both the left and the right side of the rectangle. Let R∗L,H(n) specify that
we consider paths that fully span the rectangles, i.e. they also touch the bottom
and top of the rectangle. Then:

R∗L,H(n) = RL,H(n)− 2RL,H−1 +RL,H−2(n). (4.1)

We remove RL,H−1 twice because of the two ways that such a rectangle fits in the
bigger L×H rectangle. We need to add RL,H−2 to correct for the ‘middle’ part of
the L×H rectangle, which is removed twice but should have only been removed
once. If we define RL,H = 0 for negative H, the above formula works for H ≥ 0.
After having added the restriction that SAW’s fully span the rectangle, so when
working with R∗ instead of R, the shortest possible SAW fitting in the rectangle
will be of length L + H, so we only have to consider rectangles with L + H ≤ n.
Because every SAW can be placed in one unique ‘smallest’ rectangle (meaning that
it fully spans this rectangle), the following formula can be derived for cn:

cn = 2
∑

H+L≤n
L>H

R∗L,H(n) +
∑
2H≤n

R∗H,H(n) (4.2)

The first term on the right-hand side includes a factor 2, due to the fact that
rotating these rectangles by 90 degrees will result in another rectangle. (Rotating
even further or flipping the rectangle does not lead to different walks, because these
symmetries are already accounted for within the rectangle itself.) For squares this
is obviously not the case, hence the second term is taken out of the sum. Based
on equations 4.1 and 4.2 we conclude that it is sufficient to know all RL,H(n) for
H ≤ L ≤ n and L+H ≤ n.
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4.3 The Transfer Matrix Method

The transfer matrix method is a way of computing the number of SAWs spanning
a given rectangle. A vertical ‘cut-line’ is created, intersecting the rectangle (and
possible SAWs within it). This cut-line is gradually moved from left to right, until
the full L × H rectangle has been crossed. By carefully deriving the number of
different ways in which such a cut-line intersects self-avoiding walks, a form of
dynamic programming becomes applicable, where old configurations of the prob-
lem contribute to newer configurations (in which the cut-line has moved). In this
process all the values Rl,H for 1 ≤ l ≤ L will be counted.

4.3.1 Moving through the Rectangle - The Cut-line

What the cut-line of a transfer matrix calculation looks like, and what information
it contains, can be best explained with a picture. Below we consider, as an example,
a SAW embedded in a 8× 6 rectangle. We have intersected this rectangle at two
places. The cut-line, moving from left to right, does not go through vertices of
the lattice, but can rather be seen as a set of H + 1 (horizontal) edges that are
intersected.

Figure 4.1: A self-avoiding walk embedded in a 8× 6 rectangle, intersected in two
ways by a red cut-line.

We first look at the picture on the left. Imagining the SAW literally ‘cut’ by the
cut-line, it is now broken into several pieces, SAW segments if you will, to the left
and right of this red cut-line. We will only focus on what the segments on the left
of the cut-line look like. We can classify these segments in two ways:

• If a segment of the SAW has two of its edges intersecting the cut-line, such a
segment is called an ‘arc’. Consider again Figure 4.1 where an arc is shown
in the top left of the first picture.

• If a segment of the SAW has only one edge intersecting the cut-line, it must
necessarily still be connected to one of the endpoints of the SAW (making
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no difference between ending and origin of the SAW at this moment). We
will call such a segment a ‘free end’. Naturally there can be at most two free
ends given any cut-line.

We will now describe the entire cut-line, according to the edges that it intersects.
These edges can be part of the SAW, or they can be ‘empty’ edges, meaning that
the SAW does not pass through those edges. For the edges that are part of the
SAW, we make a further distinction based on whether they are part of an arc or a
free end. We give the edges connected to the free ends the label ‘3’, calling them
‘free edges’, and the edges connected to an arc label ‘1’ or ‘2’, depending on which
one is higher, ‘1’ being the lower edge. Labeling empty edges intersected by the
cut-line ‘0’, we can now describe the entire red cut-line (from bottom to top) as:
(0301020), looking at the left picture of Figure 4.1.
More formally, any configuration along the cut-line is represented by a set of edge
states, a signature if you will, S = {σi} (with i = 1 representing the bottom edge
and i = H + 1 representing the top edge), where:

σi =


0 empty edge

1 lower edge (of an arc)

2 upper edge (of an arc)

3 free edge

(4.3)

As an extra example, consider the picture on the right, after the cut-line has moved
to the right twice. This time the cut-line has signature S = (0311220). 9

We can now with reasonably short notation describe any intersection of the L×H
rectangle for every possible SAW in it. How many possible signatures are there?
A first guess might be 4H+1, but this is not entirely true. With the notation just
explained, many constraints are added to what a signature can look like.10 We
come back to the number of signatures, when discussing the complexity of this
method. For now let us first explain how these signatures are going to be used.

Let us go back to the example in Figure 4.1. The left figure can be seen as
depicting a possible way to ‘complete’ the left-hand side according to signature

9In the case of more (pairs of) ‘1’s and ‘2’s in one signature there are no ambiguities as to
which lower arc ends and upper arc ends belong together to form one arc. Since crossings are
not permitted, the labeling uniquely describes how the edges that are part of an arc (labels ‘1’
or ‘2’) are connected.

10An alternative notation, setting ‘(’ as lower part of an arc and ‘)’ as the top part of an arc,
might be more illuminating, especially for those familiar with the ‘bracket subsequence’ problem
in dynamic programming. With this notation the signatures of Figure 4.1 become 030(0)0 and
03(())0. Most importantly, it must be understood that a signature is only valid if it has at most
two ‘3’s, and if its brackets form a regular bracket sequence.
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S = (0301020), by occupying a total of 14 edges, excluding edges intersected by
the cut-line.
Define an(S) as the number of distinct possible ways of completing the left-hand
side of (the cut-line belonging to) signature S occupying n edges. Now define GS,
the generating function for signature S, as GS(x) =

∑
n=0 an(S)xn. This gen-

erating function contains all the required information about a certain signature.
It tells us for each n how many ways there are to complete the signature on the
left-hand side of the cut-line by occupying exactly n edges. Setting x = 1 would
therefore result in summing all contributions, and thus gives the total number of
ways of ‘completing’ the signature by explicitly constructing the corresponding
walk segments of the left-hand side. Obviously it is more useful to separate these
ways of completion based on the accumulated length of the segments, hence the
generating functions have been introduced.

Clearly, moving the cut-line to the right alters all the generating functions, since
longer segments are now possible to the left of the cut-line. However, and here
comes the most important part of this method, we can still use the information
of the previous collection of generating functions {GSi} in building the new one
{G′Sj}. (When using indices i or j (≥ 1), we will implicitly assume that the
signatures are neatly numbered in some way.) For every ‘source’ signature Si
we want to alter all generating functions of the ‘target’ signatures {Sj} that it
‘contributes’ to.
The generating function of Si, GSi , can be understood as ‘contributing’ to G′Sj ,
if there are SAWs intersected by the cut-line according to signature Si, which
are intersected later on (after having moved the cut-line) according to signature
Sj. Figure 4.2 shows that a source signature can contribute to (the generating
functions of) many different target signatures:

Figure 4.2: Segments of a possible SAW, intersected by the cut-line according
to the ‘source’ signature (0301020), changing into different target signatures upon
moving the cut-line. In the first case we end up with the same signature (0301020).
The other possible ‘target’ signatures depicted are (0000300) and (0030030), but
many more are possible.
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Deriving for each source signature all possible target signatures is a costly (time-
consuming) task. In view of the many signatures, the contributions of which must
all be considered every time we move the cut-line, we would prefer to require O(1)
time finding the target signatures of each source signature. In order to make the
switch from source to target signature more manageable, a different approach is
considered than the one depicted in Figure 4.2. We do not make the step in one
go, but alter the cut-line slightly. Consider the following picture.

Figure 4.3: The process of moving down the kink in the cut-line in a so-called
transfer matrix calculation. Each step can be seen as adding one vertex to the
graph already treated on the left of the cut-line. This picture is taken from [17].

By considering the ‘kinked’ signatures in between, we can gradually move from
one ‘straight’ signature to the next. Moving the kink down one step can be seen as
adding one vertex to the part of the rectangular graph that we have so far already
crossed. It follows that we only need to focus on the edges connected to this newly
added vertex, and therefore only on two edge-labels in the signature. We just need
to develop certain rules determining in what ways these two edge-labels of S can
be changed into two new edge-labels of the next signature S ′ (where the kink is
one step lower). All the logic mentioned earlier still applies, concerning the labels
∈ {0, 1, 2, 3} and the generating functions. The only difference is that some sig-
natures are now one edge-label longer since the cut-line is now intersecting H + 2
edges.11

We end this section with a few important remarks. Firstly, when moving the kink
down one step, we compute all the generating functions belonging to the target
signatures, doing so by adding the contributions of all relevant source signatures.
Throwing away the old generating functions, and continuing with the new ones, we

11The signatures forming straight lines, i.e. when the kink has been moved through an entire
column, completing an entire shift to the right, technically only contain H + 1 labels, but can
also be viewed as having H + 2 labels of which the first (at the start of going through a column)
or the last (at the end of going through a column) must be a ‘0’.
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can view this operation as ‘updating’ the generating function of every signature.
Secondly, although we refer to source signatures as ‘contributing’ to target sig-
natures, it is of course the source generating functions that contribute to target
generating functions. A detail concerning the implementation of the algorithm
is that actually for every signature two generating functions are stored: an old
(source) and a new (target) generating function (the latter written as G′). How-
ever, we usually refer to (source and target) signatures rather then generating
functions, implicitly considering them connected.
Finally, note that the same signature can describe differently shaped cut-lines,
since not only the labels in it matter, but also where the kink is located. A differ-
ent notation, used in Figure 4.4, is therefore to over-line the labels of a signature
corresponding to those two edges of the cut-line that are part of the ‘kink’ and
will be altered the next time the kink moves down.

Figure 4.4: The signature on the left can be described as (10203000). The labels
corresponding to edges in the square formed by the kink and the dashed line
(representing where the kink is headed towards) are over-lined. The signature can
contribute to the two signatures on the right, which are (10203000) and (10230000).

Note that the two options depicted in Figure 4.4 to which the signature (10203000)
might contribute, are actually the only two valid options. Comparing this with
Figure 4.2, we see how effective this kink-moving method is in making the moving
of the cut-line through the rectangle more manageable.
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4.3.2 Moving the Kink - The Updating Rules

During the action of moving the kink down one step, we take care of the following:

1. At every move we look for self-avoiding walks that could now be seen as
completed (by adding no more edges). Consider for example the signature
(00030000), which contributes to (00000000). The generating function for
the latter signature will in this case be no longer updated later on. We
rather see it as containing newly found finished SAWs (of different lengths).
Considering only the desired length, and say we are working through the
(l+ 1)th column of vertices, we add these self-avoiding walks to the running
total for Rl,H .

2. A weight x is attributed to each occupied edge. This is essential for the way
we are handling the generating functions. Whenever we say that a source
signature contributes to a target signature, it actually does so by adding
potentially a few edges to the walk segments on the left of the cut-line. Only
those edges no longer intersected by the cut-line are counted. Figure 4.4
shows that the total number of SAW-edges to the left of the cut-line in-
creases from 5 to 6 after moving the kink.
For each source signature Si, we find what target signatures {Sj} it con-
tributes to and the number ki (= 0, 1 or 2) of edges being added by moving
the kink. We then add xki ·GSi to G′Sj .

3. Each SAW must span the rectangle from left to right. Due to the way we
add SAWs to the running total, it only remains to make sure that the SAW
actually begins at the left of the rectangle. We cannot have a purely empty
source signature (000000) contributing to target signatures when we start
looking at the second column of vertices.

4. After going through all source signatures, updating the target signature gen-
erating functions for each of those source signatures, we now name the cor-
rectly computed target signatures as the new source signatures, throwing
away the old ones. The kink can now be moved down, and a new updating
operation can begin.

Given a source signature it all comes down to deriving what target signatures it
contributes to. As mentioned, changing the straight cut-line to a kinked cut-line
ensures that we only have to focus on a few edges, as illustrated in Figure 4.5.
Considering each step of the kink as adding one vertex to the graph on the left of
the cut-line, we will be concerned with the edges connected to that newly added
vertex. The edges a and b, still part of the old signature, will be referred to as
‘input’ edges, while c and d will be referred to as ‘output’ edges.
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Figure 4.5: The updating process of moving the kink down one step. The edges
a and b, of which the labels are part of the source signatures, are referred to as
input edges. The output edges c and d contribute to the target signature. Its
corresponding part of the cut-line is shown as a dotted red line.

We now have to look for all different outputs (cd) given a certain input (ab). When
looking for possible outputs we keep in mind the following constraints:

1. We must make sure we keep dealing with self-avoiding segments. We do so
by never letting a vertex that has just been added (by a move of the kink) be
part of more than two occupied edges. In Figure 4.5 this means that if edge
a or b is occupied by a SAW segment, there can be at most one occupied
edge exiting it on the other side: either c or d has to remain empty (or both).

2. We must end up with a single connected component. This will be done by
never letting a segment ‘disconnect’ itself from the cutting-line with other
segments still around. As illustrated by Figure 4.4 the signature (10203000)
cannot be allowed to contribute to (10200000).

3. There can be at most two end points of the SAW already in place. This will
be realized by carefully monitoring the amount of ‘3’s in our signatures. As a
quick example, consider a signature (0030303), which can never be connected
so as to form a single SAW, since already three endpoints are given.

There are many different situations we have to consider, depending on what the
incoming edge labels are. For completeness we shortly describe how each input is
dealt with. Readers that are not interested in further implementation details of
the TM method, can safely skip the rest of this section.

We have split the updating rules according to the labels of input edges a and b,
using the notation ’ab’:

• 00: There are four possible outputs. We can leave c and d empty (00), start
a new arc (12), or start a new free segment (03), (30). A new free segment
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can only be added if the source signature has at most one free end (edge
labeled ‘3’).

• 01,10,02,20: We are dealing with one end (one edge on the cut-line) of an
arc. We can either continue this arc, that starts or ends with a or b, or we
can leave both output edges empty. Note that if we choose to leave both
output edges empty, we are no longer dealing with an arc, but we rather
have created a free segment. The edge on the cut-line that was previously
the other (lower or higher) part of this arc, must now be given the label ‘3’.
This latter option of leaving both output edges empty, because it creates a
new free segment, is only possible if the source signature has at most one
free end.

• 03,30: We can either continue the free end (through c or through d) or
we can leave both output edges empty. The latter option will create an
entirely separate component and is therefore only allowed if the resulting
graph contains one single valid SAW. In this case, the partial generating
function is added to the running total. Note that we can choose to only do
this in the last column, so that walks that do not fully span the rectangle
from left to right are not added.

• 11,22: The output must be empty, otherwise an intersection is caused because
three edges are touching the same lattice point. Also the matching upper
(lower) edge of the inner-most arc is relabeled as the new lower (upper) edge
of the combined arc.

• 12: The lower and upper edge of a single arc are joined, forming a closed
loop. This is not allowed.

• 21: Upper and lower edges of two different arcs are joined and the output
must be empty. The combined arc created by joining these edges does not
need further alterations: The upper edge of the combined arc was previ-
ously an upper edge (label ‘2’), and the lower edge of the combined arc was
previously a lower edge (label ‘1’).

• 13,31,23,32: A free end is connected to an arc, through the lower (or upper)
arc edge on the cut-line. The upper (or lower) arc edge on the cut-line
becomes a free edge, and must therefore be relabeled. The output edges
must be empty.

• 33: Two free ends are joined. If the result is a single valid SAW, we add this
generating function to the running total. Otherwise an invalid combination
of multiple segments is created, and we can ignore it.
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4.3.3 Complexity - The Number of Signatures

We are mainly interested in the exponential behavior of the running time, for
which only the number of signatures is relevant. Every time we move the kink
down one step, we go through all (source) signatures.
Assume that the number of signatures describing m edges (containing m labels) is
given by S(m). When introducing the signatures, we explained that the number of
signatures must certainly be less than 4m, because of some constraints. We shall
now go into this in more detail.

Let A(1)i be the accumulated number of ‘1’s in a signature up to and including the
ith label (where i = 1 at the bottom and i = H + 2 at the top of the cut-line)and
A(2)i similarly defined for the number of ‘2’s. We can now state that a signature
is valid only if it satisfies the following constraints:

1. There can be at most 2 free edges (‘3’s) in a signature

2. For every 0 < i < H + 2 we must have A(1)i ≤ A(2)i. This is because
otherwise there is at least one label ‘2’ edge that cannot be linked to a label
‘1’ under it.

3. The total number of 1’s and 2’s must be equal: A(1)H+2 = A(2)H+2.

For a signature belonging to a straight cut-line we can exactly calculate the total
number of possible combinations following the above constraints, let’s call this
S∗(m), the star denoting that we are dealing with a straight line, considering a
signature containing m edge-labels. We can first choose either 0, 1 or 2 free ends
(label ‘3’) to be placed on the signature, leaving us with a signature of length
m, m − 1 or m − 2 respectively, that does not contain edges with label ‘3’. Let
f(m) denote the number of possible signatures with length m, only consisting of
arc segments or empty places (so only containing labels ‘0’, ‘1’ or ‘2’). The total
number of signatures S∗(m), corresponding to straight cut-lines, is given by:

S∗(m) = f(m) +m · f(m− 1) +
1

2
m · (m− 1)f(m− 2). (4.4)

Now what is f(m)?12 To derive this we first define the following generating func-
tion, assuming f(0) = 1:

F (t) =
∞∑
m=0

f(m)tm. (4.5)

12Some readers might recognize f(m) as the number of Motzkin paths of length m. Map ‘0’
to a horizontal step, ‘1’ to a north-east step, and ‘2’ to a south-east step. For instance, Motzkin
paths are not allowed to dip below the y = 0 axis, which can be recognized as the second
constraint above, A(1)i ≤ A(2)i. For those that are not familiar with Motzkin paths we will do
the derivation here in terms of the problem of signatures we are currently dealing with.
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Now every signature begins either with a ‘0’ or with a ‘1’. If we begin with a ‘0’
we can follow up with a complete signature to formulate a valid signature. If we
begin with a ‘1’ we can follow up with a complete signature after which at some
time we need a ‘2’, and we can add another signature to the end. This can also
be the ‘empty’ signature, with f(0) = 1. It follows that:

F (t) = 1 + tF (t) + tF (t)tF (t),

which can be solved to give:

F (t) =
1− t± (1− 2t− 3t2)1/2

2t2
. (4.6)

The number of possible signatures (with no labels ‘3’ and corresponding to a
straight cut-line) of length m, f(m), can be derived from this generating function,
and in reference [21] it is found that f(m) goes like O(3m). This in turn would
imply, considering equation 4.4, that S∗(m) goes like O(m23m). Neglecting the
polynomial contribution O(3m) remains.
Returning to S(m), the number of signatures with a kinked cut-line, we know that
it is smaller than S∗(m), since there are fewer possibilities in the neighborhood of
the kink. However, S(m) is larger than S∗(m − 1), because every signature with
a kinked cut-line and the vertical edge (intersected by the horizontal part of the
cut-line) having label 0 is also a valid signature of a straight cut-line, when this
label 0 edge is taken out. We therefore find that S(m) is bounded in the following
way:

S∗(m− 1) ≤ S(m) ≤ S∗(m), (4.7)

so that we can conclude that S(m) also grows asymptotically like O(3m).
Calculating all rectangles with heights ≤ H gives the SAWs up to n = 2H. If
we only consider the highest (most time-consuming) rectangle, and note that its
height is O(n/2) we arrive at a running time for this algorithm of order O(3n/2).
It follows that the running time T (n) goes like T (n) = λn = 3n/2, resulting in
λ =
√

3 ≈ 1.73.

This is even better than the running time for the length-doubling method, where
λ ≈
√

2µ ≈ 2.32. However, the transfer matrix method does not do a good job in
higher dimensional lattices, like the cubic lattice. We would have to go through
‘sheets’ of cuboids, and in each of those sheets through a single column of vertices.
Most importantly, the number of signatures will be enormous.
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4.4 The Pruning Method

The pruning method is an improvement of the transfer matrix method. The im-
provement (in running time as well as memory) comes from the smaller number of
signatures used. Not all theoretically possible signatures of the TM method are be-
ing updated, because those signatures requiring too many edges upon completing
them are ‘pruned away’.

4.4.1 Introduction

As discussed, it is mainly the great number of signatures that slows down the
transfer matrix method, since every signature holds a generating function that
must be updated each time the kink moves. What’s more, the higher the rectangle
we are working with, the greater the number of signatures, increasing as 3H .
Consider now looking for R∗L,H(n), the number of walks of length n that fully span
a rectangle of length L and height H, thus also touching the bottom and top row of
vertices. Now here comes the crux: the higher the rectangles, the fewer signatures
actually contribute to valid (fully spanning the rectangle) SAWs of length n, since
completing these signatures might result in walks exceeding the length n we are
interested in.
This can be most easily understood by considering rectangles with H close to the
maximum height ≈ n/2. A valid SAW in such a rectangle has to be an almost
staircase like line in order to touch all sides and still not exceed length n, going
from one corner of the rectangle to the opposite corner. Therefore, already at
the left-most column of vertices of the rectangle, many signatures are actually
irrelevant, as they are certainly going to exceed the length n after the shortest
possible completion of them to form a valid SAW. Note that not only do the SAW
segments have to touch the bottom and top of the rectangle, also all loose ends
have to be connected to form one component.
If we could somehow find a way to timely throw away the irrelevant signatures
(or to not even have to consider them at the start of the TM method13), thus not
having to update them constantly only to find out that they become too large at
the end, it would result in a major improvement to the running times.

4.4.2 Different Signatures and Updating Rules

The pruning method was first developed by Iwan Jensen and Anthony Guttmann [15]
in 1999, used for enumerating polygons up to length 90, and extended to count-
ing SAWs in 2004, reaching length 71 [18]. Although those first methods generally

13The pruning of signatures is not efficient if at the start of this method all 3H signatures are
saved nonetheless. Instead a signature is only added to the set of signatures to be updated, when
it is first encountered during the TM method as a possible target signature.
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used the same signatures and updating rules as the original TM method, the latest
improvement, reaching the record length of 79, is different in one major respect:
the labels on the signatures now refer to the right side instead of the left side of
the cut-line. Knowing how SAW segments are connected (i.e. forming arcs or free
ends) on the right-hand side makes it easier to calculate what the shortest way is
to create a valid finished SAW out of a given signature. This way we can more
quickly decide whether a signature should be pruned away or not.

Having signatures now describing the future development of the SAW, rather than
the past development, the updating rules at moves of the kink are drastically
altered. We only mention a few striking differences. Again these implementation
details can be skipped if the reader is only interested in the bigger picture of the
pruning method. We will once more consider the relevant edges as input and exit
edges as introduced in Figure 4.3, section 4.3.2.

• If the input edges are both occupied, they immediately meet each other after
passing the cut-line. Since we are describing the future behavior of the SAW
at the right-hand side of the cut-line, the only possible way for both input
edges to be occupied is by having labels (12), as they form an arc right-away.

• If one of the input edges has label ‘1’ or ‘2’, we can no longer decide to
discontinue this SAW segment. Because the label refers to how this segment
will later be connected, it must be continued along one of the output edges.

• If both input edges are empty, labeled ‘0’, and the output edges are not left
empty, we must be careful: by occupying one or both of the output edges,
we are creating a new SAW segment that must be linked to the rest of the
signature so as not to form an unconnected component. Upon creating such
new occupied edges we must immediately describe how they become part of
the already defined SAW segments, and relabeling might be needed.

4.4.3 The Actual Pruning of Signatures

Now that the edge-labels refer to the right-hand side of the cut-line, we can easily
see how the edges are supposed to be connected on the right. With this infor-
mation we can calculate the minimum number of steps required at the right of
the cut-line to complete a given signature and produce a valid walk. We shall
define this as NR, and define NL as the minimum number of edges that succeed in
building SAW segments at the left of the cut-line to result in a certain signature.
We consider the edges currently intersected by the cut-line as belonging to NR.
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We already know the minimum number of occupied edges NL that is needed at
the left of the cut-line in order to build SAW segments resulting in a certain sig-
nature, since that is just the lowest nonzero order in the generating function.14

Considering n as the length of the SAWs we’re after, the pruning method now
comes down to one essential action: checking if NR + NL > n for each signature.
The signatures (or rather generating functions, see footnote 14) for which this is
the case can be discarded.

To determine NR we need to focus on three contributions: the number of steps re-
quired to connect all occupied edges into a single component, the number of steps
(if any) needed to ensure that the top and bottom of the rectangle are visited,
and the number of steps needed to ensure that the walk spans at least H edges in
length-wise direction. 15

We shall not treat the way in which NR is calculated in detail, as it quite tedious
and mainly involves dealing with many small exceptions. To give an impression
of how NR is calculated we first note it involves the “nesting level” of arcs in the
signature. The nesting level is a way of describing how many arcs or free edges
are within a certain arc, that this outer arc has to loop around.
Having found the nesting levels of arcs in a given signature, we first find the
shortest way to complete those arcs to form one component. What remains is an
optimization problem where the shortest path is searched for multiple candidate
SAW segments to satisfy the other constraints (e.g. touching top and bottom of
the rectangle). The optimization problem does not have to be very hard: in most
cases it is clear what candidate SAW segments are chosen and the only work lies
in calculating how short the shortest path actually is.

14Actually four different generating functions are now maintained for each signature, having
made a distinction between four cases: the segments on the left of the cut-line have already
touched the bottom of the rectangle, or the top, or both, or neither. This distinction clarifies
what constraints still need to be satisfied at the right of the cut-line in order to make a valid
SAW. Having four generating functions slightly alters the updating rules, but these alterations
include nothing complicated that we found worth mentioning.

15Remember that we are actually computing RH,l for all l ≤ L in one go. Hence it is not
required for a SAW to reach the right-hand side of a rectangle, since we are interested in the
‘shorter’ rectangles as well. However due to symmetry, as explained in section 4.3.1, we only
have to consider rectangles with lengths l ≥ H. We therefore alter the restriction that the walk
must fully span the rectangle, and rather use the restriction that the walk must at least span H
edges in length.
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4.4.4 Complexity

The updating rules for the pruning method are slightly more complicated than
those for the original TM approach. On average, however, these contributions are
negligible, not just because we are dealing with polynomial contributions to the
running time, but also because the signatures requiring a lot of time to be updated
are precisely the ones more quickly pruned away. These are usually signatures with
occupied (nonzero) labels at great distances from each-other.
We now confine ourselves to the exponential behavior of the running time, still
only determined by the number of signatures. The growth rate of the number of
signatures (or rather their different generating functions, see footnote 14) is too
difficult to derive exactly. A different approach is chosen: While running the al-
gorithm the maximal number of signatures generated for different values of n is
measured. By inspecting this number the growth rate can be estimated.

The first pruning method (developed for SAWs in [18]), which had signatures de-
scribing the left-side of the cut-line, was found to have a running time T (n) = λn

with λ ≈ 1.334. In this approach pruning was very complicated, since finding the
(shortest) connection pattern to the right of the cut-line meant having to search
through all possible ways of connecting occupied edges.

In [17] the old approach is compared with the new approach, where labels describe
the right-hand side of the cut-line. The required number of signatures goes down
very slightly, because the pruning is more precise in the new algorithm.
A new estimate for λ has not been given, maybe because the decrease in the num-
ber of signatures was not considered sufficiently high to have a major influence
on the exponential behavior of the running time. However, due to much more
faster pruning the polynomial contribution to the running time has substantially
decreased. The total CPU time16 decreases by about 70% for n = 61 compared to
the old pruning method.

For those interested in the result of this method: using up to 400 processors, and
up to 1TB of memory, it took a total of about 16500 CPU hours to enumerate
SAWs up to length 79.
The self-avoiding walk depicted on the title-page has length 79. With the pruning
method it was found that there are a total of:
10, 194, 710, 293, 557, 466, 193, 787, 900, 071, 923, 676 of such SAWs.

16Since a parallel algorithm is used, the work is divided over many processors. The notion of
‘total CPU time’ is used to describe the sum of CPU time consumed by all of the CPUs utilized.
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5 The Tile Hopping Method - A New Recursive Algorithm

In this chapter we describe our own method for counting self-avoiding walks. Al-
though we begin with the mathematical concepts forming the bigger picture, the
focus of this chapter lies more on the actual implementation of the algorithm.

5.1 Introduction

The method is inspired by the Finite Lattice Method, but is more similar to the
recursive algorithm described in chapter 2. Having the entire lattice divided into
M ×M squares, this method is actually a generalization of the simple recursive
algorithm, where M would be equal to 1.
The important feature learned from treating the FLM, is that for a given square
sublattice a unique signature can be determined describing how such a square is
entered and exited by SAW segments, and that a generating function can be linked
to such a signature.

We give a global outline of this method in section 5.2. In the sections thereafter we
describe in more detail the algorithm, i.e. the different objects and methods used,
working towards the main recursive method. After a discussion of the complexity
of the algorithm, we end with some words on possible future improvements.

5.2 Mathematical Derivation

We begin in the origin of the lattice, but now we intersect this entire lattice with
multiple cut-lines. These cut-lines form a pattern of ‘tiles’ on the lattice, the size
of the tiles depending on the distance between the cut-lines.

Figure 5.1: Tiling the lattice with square tiles of width 3 or 4. Any SAW can be
represented in only one way, depending on how it intersects these tiles.
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The tiles are placed such that their borders intersect edges. Their size is given by
M ×M internal vertices, with a circumference of 4M mid-edges being intersected.
The old recursive algorithm worked by choosing one direction from {up, down,
left, right} at each recursive step. In the new algorithm, at each step (after enter-
ing a tile), we choose one of the 4M − 1 possible ‘exit’-edges crossing the border,
entering the next tile. We are thus constantly hopping between entry(/exit) points
of the tiles, and we are never explicitly setting steps in the inner part of the tiles.

Figure 5.2: Upon entering an empty M ×M tile, one of the (4M − 1) exit options
can be chosen to continue ‘walking’.

Every tile is considered unique due to its location on the lattice. Furthermore, a
tile T has a signature ST that summarizes how (and if) the tile is being entered
and exited through its 4M border-edges. To make sure that the signature at all
times describes the previous crossings of that tile, it has to be changed whenever
the same tile is crossed again. The signatures are discussed in the next section,
section 5.3.

Each signature S has a generating function GS that contains the number of ways
in which a tile can receive signature S by being crossed (possibly multiple times)
by a SAW. We also refer to this as the number of ways in which the tile is ‘com-
pleted’.
More precisely GS(x) =

∑
n=0 an(S)xn, with an(S) the number of ways to com-

plete a tile with signature S having placed n edges inside it. The border-edges
(edges crossing into another tile) are not counted.

The main idea is now to ‘walk’ through the ‘tiled’ lattice hopping recursively from
tile to tile, labeling each tile with a signature S as we pass it. Using again a recur-
sion based on Depth-First Search techniques as in chapter 2, we now maintain a
Grand Generating Function G that describes all possible SAWs of different lengths
that correspond precisely to our trajectory of tile entries and exits. When a tile is
crossed, we multiply this Grand Generating Function with the generating function
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of the signature of that tile. Possibly the old generating function of a tile-signature
has to be removed by division.
At each recursive step, before entering another tile, we check whether the lowest
orders in the Grand Generating function are able to form valid SAWs after the
next entry. If this is the case we deal with those first, before exiting to another
tile. If the lowest orders have all become greater than n, we can stop.

More formally our trajectory is a specific configuration of (all) lattice-tiles with
their respective signatures. It forms a ‘Grand Signature’ S that describes how the
entire lattice (the set of all cut-lines forming the tiles) has been crossed, hopping
from tile to tile. Every SAW is mapped to one and only one Grand Signature.
The goal here is to find all possible Grand Signatures, and extract the number of
SAWs of length n from them by looking at their Grand Generating functions GS .
Note that the bigger the tiles are, the fewer distinct Grand Signatures exist, and
the more SAWs are grouped under a single Grand Signature.
We define a set of tiles and their respective signatures as ‘valid’ if there exists
(at least) a SAW that would result in that specific combination of tiles and tile-
signatures.
Let T be a valid set of all tiles on the lattice, and let ST be the Grand Signature
of the lattice corresponding to that set. We define C(S) as the total number of
occupied border-edges of a certain Grand Signature S (C stands for ‘Crossings’).
Remember that border-edges are not included in the generating functions of tiles.
Then:

GST (x) = xC(ST )
∏

St : t∈T

GSt(x) (5.1)

This function shows that we have in a way succeeded in a ‘divide and conquer’
approach of this problem. Having given a tile a signature, what happens inside it
is completely independent of the rest of the lattice, the other tiles. We can thus
focus on the tile-signatures rather than the Grand Signature S, which we shall
never need to formulate exactly. From now on we will refer to those tile-signatures
just as ‘signatures’.
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5.3 The Signatures

The signature of a tile describes firstly which edges on the border of that tile are
empty. Secondly, as regards the occupied edges, it must describe how these are
mutually connected inside the tile. We label the edges clockwise, starting at the
bottom left.
Having chosen this orientation of our tile, we now again use the labels {0,1,2,3},
describing an empty edge, the first part of an arc, the second part of an arc and
a free end, respectively. In the case of an arc, we make sure that the label ‘1’
always comes first in the signature, and that the label ‘2’ is found by searching in
clockwise direction.

Figure 5.3: A tile being crossed multiple times. Its signature is given by
(010010200203).

Signatures of a M ×M tile have a length 4M . Mapping the circumference of a
tile onto a straight line of the same length, these signatures can be considered very
similar to those used in the transfer matrix method for describing the cut-line. The
number of signatures might be estimated by S∗(4M) (see equation 4.4 in section
4.3.3). However, there are a few important differences:

1. Firstly, the corners take out some of the possibilities. If two corner edges (of
the same corner) are occupied, they can only be (clockwise) labeled (12), or
(21) if we are considering the corner at the bottom left.

2. Another difference is that, unlike in the case of a straight line, a tile can
have so many arcs crossing it, that some border-edges must remain empty,
labeled ‘0’. Consider for example Figure 5.4.
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Figure 5.4: A tile with signature (111000000222). There can be no other way
to connect the arcs in this tile than the way depicted. Hence any non-empty
border-edge on the top or right side of the tile would result in an invalid signature.

3. Since a SAW has two ends, every tile can technically have a signature with
up to two label ‘3’ edges. However, it is actually only the tile with the origin
in it that might have two ‘free ends’ in its signature.
Now comes an important trick: We lay the tiles in such a way that the origin
lies in the bottom left of a specific ‘centre’-tile, and furthermore we let the
first step be a step down, directly into the tile under it. This way we know
that if a signature has two label ‘3’s in it, one of those must be the last edge
(bottom border, left-most edge). Figure 5.3 shows an example of a tile with
the origin in it.
Note also that we are using symmetry, since by deciding the direction of the
first step we are counting only the SAWs corresponding to one of the four
possible rotations of the lattice.

Elaborating some more on this last point, we note that there are in fact two types
of signatures. There are those representing a tile without the origin in it, and
those representing the ‘centre’ tile, with the origin in its bottom-left corner. It is
important to make this distinction, because the free end at the bottom left of the
tile is either (in the case of not being connected to the origin) free to become a
SAW segment of any length within the tile, or it must be of length 0, immediately
stopping at the origin. These two situations lead to very different generating
functions, hence it is important to be able to tell them apart.

5.4 Creating the Generating Functions for the Signatures

As with the TM method, we have a cut-line moving through the square tile. How-
ever this time, instead of having a signature describing only that cut-line, it is
actually the entire circumference (of border-edges) of the tile that is described.
Every time a new column of edges is being worked through, by moving the kink
from top to bottom, the circumference of the region we have already crossed,
grows. At the start of such a new column we deal with a special updating step,
having only one input edge and three output edges. At this updating step smaller
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signatures (describing the previous circumference) contribute to larger signatures
(Figure 5.5).

No SAWs are counted, no pruning is done, and it is no problem if some columns re-
main empty or if we end up with disconnected segments (as long as those segments
are connected to the graph outside the tile). After completing the last column we
are done, because having all the possible signatures, linked to their respective gen-
erating functions, is the only thing we were after. They are saved in a tree that is
accessible throughout the method.

Figure 5.5: Working our way through a 3 × 3 tile. The signature
(101000203020) can contribute to (10100020003020), as well as (10100002003020)
and (10100000203020). Note that we do not choose to create another free end (by
leaving the output edges empty), as we already have a label ‘3’ in this signature.
We only need signatures with two free ends, if one of them is the last label (at the
bottom left).

5.5 The Algorithm

The remaining details of this method are described according to how they were
implemented in the actual algorithm.

5.5.1 The Objects

In this algorithm four objects are used: Tiles, Signatures, Generating Functions
and Exit Options. We shall use capital letters when referring to those objects.

• Tiles: Each Tile has a pointer referring to its current Signature. When a tile
is crossed, its pointer will be changed accordingly.
The Tiles are saved in a two-dimensional array.

• Signatures: Firstly a Signature contains an array with all its labels stored
in it. Also it contains another array, with the same size, containing Exit
Options, which will be explained below. Finally each Signature is pointing
to a certain Generating Function.
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The Signatures are stored in a tree with ‘branches’ determined by the labels
of the Signature-array.

• Generating Functions: Since a Generating Function is actually just a polyno-
mial in x, this object contains an array which separates the different orders
of x in different slots. In the following subsection this (dense) array will be
referred to as ‘contents’ in pseudo-code. The maximum and minimum orders
are also maintained, so that they can be given at any moment in O(1) time.

• Exit Options: When entering a tile, we want to quickly know all border-
edges through which the SAW can exit again, that is, without having to
cross arcs that are already in place. For this purpose each signature contains
an array of Exit Options, with the location of the Exit Option in that array
corresponding to the location of its label in the signature label-array. At first
these Exit Options can be seen as a set describing all empty border-edges.
However, this set is divided into one or more subsets, based on which Exit
Options (border-edges) can be linked together by an arc. The structure used
for these subsets is that of a circular linked list17. While entering a given tile,
we can now consider sequentially all possible Exit Options, by first going to
the Exit Option through which we are currently entering (which is thus no
longer an actual ‘exit option’). This Exit Option serves as a handle to the
linked list. From here we can find the next and previous exit options, until
the full subset of possibilities has been considered.
Finally every Exit Option contains sufficient information to give the next
Tile that is entered by choosing that specific Exit Option.

5.5.2 The Methods

The actual program consists of more than 20 different methods. We only describe
those considered most important, two of them with the use of pseudo-code. In
the pseudo-code N refers to the length of walks that we are after, while M refers
to the width of the tiles. For the sake of clarity we do not give comments in the
pseudo-code itself but shortly explain the code separately. The actual program
has been written in C].

• The End-Walk Method. When we enter a tile, this is the method that creates
a new free end in the signature, rather than an arc, thus finishing the SAW
at this tile. It has as input the signature of the tile in question, the entry

17A doubly linked list is a series of objects that is connected through pointers ‘next’ and
‘previous’. If an object has no next or previous element then these pointers return ‘null’. In a
circular linked list, as opposed to a linear linked list, a pointer to any node of the list serves as
a handle to the whole list.
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location (an integer between 1 and 4M − 1), the number of crossings of our
previous path and the grand generating function of our previous path. This
method is where the actual SAWs are found and counted, accumulated into
a variable TotalSAWs that is accessible in the entire algorithm.

1: function End-Walk(SignatureOld, EntryLocation, Crossings, GrandGF )
2: Create an array Temparray, which is a copy of the label-array in SignatureOld
3: temparray[EntryLocation] = 3
4: Search for the signature belonging to Temparray, call this SignatureNew
5: if SignatureNew is found to be a valid signature then
6: Multiply GrandGF with the generating function of SignatureNew
7: Divide the result by the generating function of SignatureOld
8: Call this GrandGFNew.
9: if N ≥ Crossings and GrandGFNew.MaxOrder+Crossings ≥ N then

10: TotalSAWs = TotalSAWs + GrandGFNew.contents[N-Crossings]

The if-loop in line 5 is necessary, because even though the entry point is
certainly an empty-edge, placing a free end at this edge might not be possible.
This is due to situations like those in Figure 5.4, where the insides of the tile
are already too full.
In line 6-8 we make sure that the old contribution (due to the old tile-
signature) to the Grand Generating Function is replaced by the new one.
In line 9 we perform final checks to make sure that there are actually SAWs of
length N to be found, or more precisely, that there is a nonzero contribution
of order xN−Crossings in the generating function. Remember that the crossings
are not accounted for in the generating function, and that their contribution
is by separate multiplication, see also equation 5.1.

• The Recursive-Walk Method. This method has the same input as the End-
Walk method, except we are now giving it the Tile that is entered directly
as input, instead of its Signature. We need the Tile explicitly, because we
need to change what Signature it points to, after we have crossed it. In the
pseudo-code, CurrentTile refers to this Tile, however, in the actual program
the Tile is represented by two coordinates that specify its location (in the
array of all Tiles, and the lattice).
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1: function Recursive-Walk(CurrentTile, EntryLoc, Crossings, GrandGF )
2: CurrentSignature = the signature of CurrentTile
3: if Crossings + GrandGF.MaxOrder +M2 − 1 ≥ N then
4: EndWalk(CurrentSignature, EntryLocation, Crossings, GrandGF )

5: if Crossings+GrandGF.MinOrder ≤ N then
6: Find the ExitOption belonging to EntryLoc of CurrentSignature
7: Call this Option
8: Option = Option.next
9: while Option 6= null And Option.Location 6= EntryLoc do

10: Find the next Tile based on CurrentTile and Option.Location
11: Call this NextTile
12: Find the next Entry Location on that Tile, call this NextEntry
13: if NextEntry on NextTile is no dead end,
14: Or there might be a possible SAW found here then
15: if Changing the labels of EntryLoc and Option in
16: CurrentSignature leads to a new valid signature then
17: Change the Signature of CurrentTile, forming NewSignature
18: Divide GrandGF by the gen. function of CurrentSignature
19: Multiply the result by the gen. function of NewSignature
20: Call this GrandGFNew
21: Recursive-Walk(NextTile, NextEntry, Crossings+1,
22: GrandGFNew)

23: Change Signature of CurrentTile back to CurrentSignature
24: Option = Option.next

In line 3 and 4 we are checking for SAWs that might be long enough to be
counted. Because there are M2 vertices in a given tile, there can at most
be M2− 1 edges added to the SAW. Adding this to the number of crossings
and the maximal order in GrandGenFunc we find an upper bound for the
maximal length after ending in the current Tile.
In line 5 we check if there are SAWs short enough to make it worth contin-
uing our recursion.
In line 6-8 we access the linked list of Exit Options. The access point of the
relevant subset of possibilities is found at EntryLoc. This point is not an
actual option itself, so we immediately move to the next option.
In the while-loop from line 9-23, we go through all exit options sequentially,
until there are none left in ‘next’ direction, or until we have come full circle.
If we have not made a full circle, actually a second while loop starts after
this one, going in the ‘prev’ direction. We have left this second loop out of
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the pseudo-code, since it is similar to the first one.
In line 13, to prevent doing futile work that involves changing the tile-
signature and the Grand Generating Function, we first check for each Exit
Option if it does not result in a dead end in the next tile that will be entered.
Checking for a dead-end comes down to checking if ‘next’ and ‘prev’ of the
Exit Option in the linked list of the next tile are equal to ‘null’.
After this check, there might still be situations like those in Figure 5.4 where
there is no entry possible because the Tile is too full. Hence another check
is done at line 15.
After changing the signature of the current tile, and changing the generating
function accordingly, we continue our recursion by going into the next tile
at line 21, having made one extra crossing.
Line 23 can be seen as ‘erasing the footprint’, and line 24 completes the
while-loop.

• The main method, besides initiating the creation of relevant arrays, Signa-
tures, Generating Functions, Tiles, etc, has the important function of be-
ginning the recursion. It does so by giving the centre-Tile an appropriate
(special) signature, and immediately stepping down into the Tile under it.
The recursion ends by itself, when all directions have been treated until for
each case the smallest order in the Grand Generating Function has reached
length n.

5.6 Complexity

The running time of this algorithm is based on two stages. First we have to
prepare our database of signatures and generating functions, by using the FLM
for our tiles. Next, we can start the recursion, forming the second stage of the
algorithm.

5.6.1 The number of Signatures

We have to prepare all signatures and their corresponding generating functions.
As the FLM is used for this, the running time depends exponentially on the length
of the signatures, which is 4M in our case. Hence we deal with an upper bound
of O(34M). However, as explained in section 5.3, we expect that there are actually
significantly fewer signatures than 34M = 81M . The precise growth rate is probably
too difficult to find. However, the number of signatures for small tiles are counted
in our algorithm. The results are given in Table 1.
The growth factor is significantly smaller than 81, but it increases for larger tiles.
When going from 3 × 3 to 4 × 4 tiles, we can approximate the growth factor by
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7.142 = 50.95. This also shows an increase compared to the previous growth fac-
tor. We believe that this increase is due to the fact that some of the restrictions
discussed in chapter 5.3 become less significant in larger tiles. Although we do
not know how close the growth factor might come to 81 for large tiles, we are
optimistic about the low factor that we have found.

The time required to prepare all signatures (i.e. along with their generating func-
tions, exit options, etc) is not yet relevant for small tiles. However, the required
memory becomes a big problem. It is for this reason that we generalized our al-
gorithm, so that L × H tiles can be used, with L not necessarily equal to H. A
Laptop with 4GB of RAM can handle tiles with size up to 3 × 4. The number
of signatures looks small, so one might wonder why so much memory is required.
However, for each signature we also save a generating function, exit options, an
array with labels, etc.

Table 1: The number of signatures for different sizes of small tiles. The growth
factor is given by dividing the number in the current row by the number in the
previous row. Note that going from 3× 3 to 3× 4 tiles means adding only 2 labels
to the signature, rather than 4.

Tile Number of Signatures Growth Factor
1× 1 12
2× 2 468 39.00
3× 3 21978 46.96
3× 4 156870 7.14

5.6.2 Running time of the recursion

The complexity of this recursion is probably too difficult to analyze exactly. How-
ever, placing counters at specific points in the algorithm, we can monitor closely
how it behaves. The exponential behavior is only determined by the number of
encounters of the methods described in the previous section. Other smaller meth-
ods as well as the operations inside the Recursive-Walk and End-Walk method,
only add a polynomial contribution to the running times.

While one might first think that the Recursive-Walk Method is encountered far
more often than the End-Walk method, this may not be the case. The branching
factor of this recursion is so high that the number of ‘last steps’ in the algorithm
becomes quite significant compared to the sum of all earlier steps.
To make this idea more plausible, remember our derivation of the complexity of
the simple recursive algorithm. It sufficed to consider only the walks of length n
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at the end of the recursion. This way we found a running time of O(µn).
Note that arriving at the End-Walk Method, thereby successfully counting a bunch
of SAWs, can be considered as finding a Grand Signature. The main question is
therefore how many Grand Signatures there are, for a given M and n.

Let us shortly summarize what we discovered by explicitly counting Grand Signa-
tures in our algorithm. The complete results can be found in Appendix B.

Table 2: The running time of the recursion, expressed by the value of λ, for
different sizes of small tiles. The estimate for λ is based on the growth factor for
the number of Grand Signatures between n = 19 and n = 20.

Tile Estimate for λ
1× 1 2.68
2× 2 2.46
3× 3 2.25
3× 4 2.19

The number of Grand Signatures might be approximated by the number of SAWs
(on average) included in one Grand Generating Function. This mainly depends
on how many different SAW segments are possible within a tile. This idea might
offer a starting point for further analysis.

5.6.3 Comparing to the pruning method

Currently, this algorithm does not reach high n at all, due to a big polynomial
contribution to the running time of the recursion. Using 3× 3 tiles, we can com-
pute c18 in 55 seconds and c19 in 127 seconds. However, we are more interested in
the exponential growth of the running times. If λ is low enough, other algorithms
that perform better for low n are eventually beaten for higher n.
Combining the contributions of both stages discussed in the two previous subsec-
tions we find that the running time can be given by:

TM(n) = λnM + 34M , (5.2)

with λM describing the exponential behavior of the running time of the recursion
when M ×M tiles are used.
In comparison, the pruning method (which is currently the best method) has a
running time of T (n) ≈ 1.3n.
With sufficient memory, and assuming λM falls below 1.3 in the large-M limit,
there must be an M for which an N can be found such that for all n > N we beat
the running time of the pruning method.
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Refraining from giving a formal proof of this statement, we shortly explain it in
words. Firstly, M has to be chosen large enough so that λM < 1.3. Secondly,
having chosen such an M , we must choose an N such that 1.3N > 34M . We end
up with two terms in equation 5.2 that both grow slower than 1.3n, if n > N .
In theory this could work, but the required memory becomes a problem. Also N
can be much larger than the number 80 we are currently looking for to beat the
record.18 However, if we have reached a higher record than 79 at some times in
the future, our method might become more relevant.

5.7 Possible Improvements

We finish by mentioning a few ideas for further improvements of this method.
Some ideas can be easily implemented and only require some extra code, other
ideas are more complicated to implement but deserve some further study. A better
understanding of the complexity of this algorithm might also lead to new ideas.

• Firstly, there is still a factor 2 to be gained by using symmetry. A possible
way in which this idea can be realized, is by “manually” (before the recursion
is initiated) going through all different ways to start the SAW by moving
down and later on to the right. This approach has been used in the simple
recursive algorithm, but it can be a little treacherous here.

• When entering a tile, and having minimal order slightly below n in our
Grand Generating Function, we are still checking all exit options of that
tile, even though some of them might be “out of reach”. The extra workload
might be larger than expected. As discussed in the previous section, the high
branching factor of the recursion can result in a significant number of “last
steps” in the recursion.

• Not all tiles need to be of the same size. It is no problem to use smaller tiles
as well as large tiles, since the memory requirement for smaller signatures is
only a fraction of the memory for the largest signatures used. As an example
of how using smaller tiles might be effective, consider placing them at the
periphery of the lattice. When the recursion arrives at those smaller tiles,
a smaller number of exit options has to be considered. More generally, we
might even incorporate the periphery of the lattice in the tiles that are placed
over it.

18Consider N = 80. We would then require 34M < 1.380, implyingM ≤ 4. However, we assume
that due to neglected polynomial contributions (especially in the pruning method’s running
time) this restriction is too tight. What’s more, based on the first results, we believe that the
exponential growth in the number of signatures is much lower than 34M (Table 1). On top of
that it took only a few seconds to compute the signatures for 3 × 4 tiles. For these reasons we
believe M = 5 or even M = 6 do not pose difficulties concerning computing time.
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Appendix A Working with Generating Functions

What generating functions are, or more precisely, how they are used in this thesis,
can be best described by a quick example. Consider the following problem.
We have 5 red marbles, 3 blue marbles and 4 green marbles. In how many different
ways can we choose 6 marbles from this collection?
One can use binomial coefficients in such a problem, but let us take a different
approach. It might seem strange at first, but we can reformulate this problem in
the following way:
What is the order of x6 in the following polynomial?

(x0 + x1 + x2 + x3 + x4 + x5)(x0 + x1 + x2 + x3)(x0 + x1 + x2 + x3 + x4) (A.1)

Now the first term can be seen to represent (the different options for taking) the
red marbles, the second term represents the blue marbles, and the third term
represents the green marbles.
Computing the order of x6 of this polynomial actually comes down to going through
all possible ways of combining different elements from each term in A.1 such that
the total order is 6. But this is the same as choosing different numbers of marbles
from each set such that a total of 6 marbles is chosen.
To elaborate some more on this idea, let us add a few restrictions. Let us assume
we cannot choose only a single red marble; either all or none of the blue marbles
must be chosen; and finally an even number of green marbles must be chosen. Now
the polynomial becomes:

(x0 + x2 + x3 + x4 + x5)(x0 + x3)(x0 + x2 + x4) (A.2)

Note that this way of solving the problem is not faster or more efficient than other
possible tricks. It is mainly a way of reformulating the problem: the work of
counting all possibilities still has to be done explicitly.
However, one can already appreciate the elegance of this approach by realizing
how easy it is, after having worked out the above expressions, to add the option
of choosing between 3 and 7 yellow marbles as well. We just need to multiply the
polynomial we found with (x3 + · · ·+ x7).

So what is a Generating Function? In our thesis, a Generating Function is a
polynomial that summarizes a problem in combinatorics, like the polynomials just
presented above. It does so by having the coefficient of xn correspond to the
number of possible ways to solve the problem, having a total of n of a certain
object. This n can represent a number of marbles that needs to be chosen, but
also the number of edges of a self-avoiding walk.
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Appendix B Further Results of the Tile Hopping Method

For different types of tiles we have counted the number of times the End-Walk and
Recursive-Walk method are encountered while running the algorithm for different
lengths n. The growth factor is obtained by dividing the current value by the
previous value of the corresponding column.
Note that the number of times the End-Walk method is encountered corresponds
to the number of Grand Signatures after multiplication by four, since we have used
rotational symmetry in our algorithm.
The slight decrease in the growth factors is caused by the decreasing impact of
polynomial growth of cn.

Table 3: Using 2× 2 tiles

n End-Walk Growth factor Recursive-Walk Growth factor
16 2627187 2.468 2834368 2.469
17 6466004 2.461 6985151 2.464
18 15915570 2.461 17198450 2.462
19 39100903 2.457 42297104 2.459
20 96046491 2.456 103927025 2.457

Table 4: Using 3× 3 tiles

n End-Walk Growth factor Recursive-Walk Growth factor
16 1039810 2.264 1090668 2.265
17 2347504 2.258 2463833 2.259
18 5291391 2.254 5558088 2.256
19 11929937 2.255 12537097 2.256
20 26882340 2.253 28267943 2.255

Table 5: Using 3× 4 tiles

n End-Walk Growth factor Recursive-Walk Growth factor
16 808616 2.200 840877 2.202
17 1772511 2.192 1844914 2.194
18 3891730 2.196 4052718 2.197
19 8531221 2.192 8889729 2.194
20 18683472 2.190 19475934 2.191
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