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Abstract

In conventional (fluorescent) microscopy, the wave-like properties of light set a limit on
the maximum achievable image resolution . This limit is known as the Abbe diffraction
limit. The last few decades, techniques have been developed to overcome this limit and
thereby improve the resolution.

One such a super-resolution technique is called Stimulated Emission Depletion mi-
croscopy (STED). The key feature of STED is the use of an excitation beam in combi-
nation with an overlapping ring shaped depletion beam with a central minimum. The
excitation spot is used to push the fluorophores in an excited state. The depletion beam
will in turn deplete (switch off) a part of the outer region of the diffraction limited exci-
tation spot. Therefore, focus spot is reduced to a size which is smaller than stated by the
diffraction limit. This way, the resolution can be improved beyond the diffraction limit.

In this bachelor research project, a simplified STED setup is used to optimize the
rotational symmetry of the depletion beam. An essential part used in doing so is the
Spatial Light Modulator (SLM). The SLM can be used to shape foci in an almost arbitrary
way by locally changing the phase of light. The depletion beam was generated by applying
a vortex phase pattern on the SLM. Furthermore, it was possible to characterize and
correct for aberrations due to imperfections of the optical system. Also, the alignment of
the setup and the polarization direction of the beam were systematically adjusted in order
to obtain a rotational symmetric doughnut. Finally, the shape and size of the imaged
fluorescent beads were analyzed taken into account the polarization, misalignment and
aberrations of the optical system.
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Chapter 1

Introduction

Ever since the invention of the microscope around 300 years ago, people have tried to
reveal the world far below the millimetre scale, impossible to observe with the naked
eye. Anthony van Leeuwenhoek already observed bacteria back in 1676 Win. However,
as microscopes became more advanced, the resolution increased close to the resolution
limit which depends on the light’s wavelength. Increasing the resolution by lowering
the wavelength could result in the destruction of the sample under investigation, as the
corresponding photon energies will be higher.

In order to circumvent the so called diffraction limit, numerous super-resolution mi-
croscopy techniques were developed the last few decades. In this thesis I have focussed
on one such a technique which is named Stimulated Emission Depletion (STED) mi-
croscopy. A key role in this technique is played by a doughnut shaped focus, which
crucially determines the maximum obtainable resolution. I tried to optimize the quality
of this doughnut shape via the use of a Spatial Light Modulator (SLM). Via the use of
a Spatial Light Modulator (SLM) I tried to optimize the quality of this doughnut shape
and quantify the wavefront distortions caused by the optical components in the setup.
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Chapter 2

Theory

2.1 Theory

In this section the concept of fluorescence microscopy, it’s resolution limit and a tech-
nique to circumvent this limit (STED Microscopy) are discussed. Afterwards, theoretical
intensity profiles of an ideal focus spot and an doughnut shaped focus spot are derived.
Finally, it will be discussed how such a doughnut shape can be realized in practice and
how deviations from ideal behaviour can be described.

2.1.1 Fluorescence Microscopy

In fluorescence microscopy, the observed light originates not just from the reflection of the
illumination light on the sample. The (in)organic molecules themselves spontaneously
emit photons after illumination by a light source.

A crucial part in this microscopy technique, the phenomenon of spontaneous emission,
works as follows: An electron of the fluorescent particle is excited to a vibrational energy
state Svib

1 by absorbing a photon. This photon corresponds to the energy difference of
the electron’s ground state and the vibrational energy state. After excitation, the state
Svib

1 relaxates to the lowest energy level of S1. Now, the electron will fall back to the
ground state via either spontaneous emission of a photon or non-radiative decay.

Figure 2.1 – Jablonski diagram showing the process of spontaneous emission together
with a graph of an emission and excitation spectrum. The image merely illustrates the
process, the wavelengths do not correspond to the one used in the experiments. Picture
taken from Dijkstra [2012].

Due to the energy loss in the relaxation of Svib
1 to S1, the photon energy of the

spontaneous emission is lower in comparison with the excitation energy. This leads to a
red shifted emission profile as shown in 2.1.

If the light from spontaneous emission is separated from the excitation light using an
emission filter, the position of the fluorescent particles can be determined.
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(a) Resolved (b) Rayleigh Criterion (c) Unresolved

Figure 2.2 – PSF of two particles at spatial separation R of (a) R = 2d, clearly resolved;
(b) the Rayleigh Criterion, R = d, barely resolved; (c) R < d, unresolved.

2.1.2 Diffraction Limit

Due to the wave-like nature of light, the maximum obtainable image resolution of a
microscope is limited by the diffraction limit. This limit was first stated by Ernst Abbe
in 1873 Abbe [1874]. It implies that focused light will converge into a spot of radius d
which depends on the used wavelength λ, the refractive index of the medium n and the
angle of the focused light θ. In section 2.1.5 it is shown that for a plane wave incident
on a circular aperture, the diffraction limit takes on the form:

d = 1.22
λ

2n sin θ
= 1.22

λ

2NA
(2.1.1)

In which the denominator is rewritten in terms of the numerical aperture NA = n sin θ,
often used to describe the properties of a microscope.

The spot size d is intimately related to the resolution. To explain this, another
frequently encountered concept in microscopy is needed. The Point Spread Function
(PSF) describes the diffraction limited intensity distribution one would get when imaging
a single point object. In an ideal optical system this PSF is an Airy Disk pattern (further
explained in section 2.1.5) with radius d.

In a more mathematical sense the imaging of an object is described by a convolution
of the object with the PSF. This means that if one tries to image two point objects,
they will show up as two bright spots with a radius of at least d. Now, if two objects
are separated by a distance smaller than 2d, the image will show two overlapping PSFs.
Though, up to a separation of distance d, two particles can still be resolved. At even
smaller distances the particles are unresolvable since the convolutions will merge as shown
in figure 2.2c. The spatial resolution of an optical system thus depends on the focus spot
size, equal to the minimum distance at which two particles are resolvable.

This has implications for fluorescence microscopy as well. If a sample of point particles
is illuminated by a finite size excitation spot, all the particles within this spot will exhibit
spontaneous emission. Those close enough to eachother would be unresolvable due to
the diffraction limit, thereby losing detailed information about the fluorophore positions.
In the experimental setup an objective with a NA of 1.2 was used in combination with a
642 nm laser. The maximum obtainable resolution is thus 330 nm.

2.1.3 Stimulated Emission Depletion Microscopy

In order to overcome the diffraction limit and obtain images of even greater detail, a
range of so called super-resolution techniques have been developed. One such a super-
resolution technique is Stimulated Emission Depletion microscopy (STED) and was first
proposed by Stefan W. Hell in 1994 Hell and Wichmann [1994].

The key feature of STED is a doughnut shaped depletion beam in combination with
an excitation spot. The depletion beam is used to switch off the fluorophores on the
outer ring of the area illuminated by the excitation beam. This process is shown in the
Jablonski diagram in 2.3. An electron in state S1 is de-excited to a state Svib

0 by the
depletion beam after it will relaxate to state S0. This process of stimulated emission
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is represented by the yellow arrow in the Jablonski diagram. An important remark is
that the dark centre of the doughnut spot will not cause stimulated emission. Therefore,
spontaneous emission is confined to the area excluded by this depletion beam. Moreover,
the different wavelengths at which spontaneous and stimulated emission are most efficient
can be exploited to only detect the fluorescence signal using appropiate filters.

Figure 2.3 – Jablonski diagram showing the process of STED. The colors are no represen-
tation of the corresponding wavelengths of wavenumbers kexc, kSTED and kfl. Picture
from Dijkstra [2012]

Depletion Beam Quality

The size, quality and intensity of the depletion beam crucially determine the size of the
remaining fluorescence spot and thus the resolution.

The center minimum of the depletion beam has to be as close to zero as possible.
Otherwise, the remaining fluorescence signal will be reduced without enhancing the res-
olution.

The radius of the center minimum determines the area from which fluorescence signal
can be collected. Therefore, a smaller radius makes a higher obtainable resolution.

The relative intensities of the depletion and excitation beams determine the size of
the remaining spot. Sufficient de-excitation is needed to achieve a high resolution.

Also, the depletion beam has to be rotational symmetric. Otherwise, the fluorescence
signal may no longer solely originate from the center spot and the center intensity may
no longer be close to zero.

The focus of this bachelor research project lies within the characterization and op-
timization of the depletion beam’s shape. The center intensity minimum and the ring
shape are analyzed and optimized as to acquire a rotational symmetric depletion pattern.

(a) Excitation beam (b) Depletion beam (c) Spontaneous Emission

Figure 2.4 – Images illustrating the STED process: (a) The excitation beam, (b) the
depletion beam forcing the fluorophores in the outer region of the excitation beam to
de-excite, (c) the area in which spontaneous emission can still occur is decreased.
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2.1.4 Diffraction From a Circular Aperture

Before investigating the intensity distribution of a beam diffracted by a circular aperture,
a short theoretical background of the aperture diffraction based on Born and Wolf [2000]
and de Boer [2015] is given in this section of which the result is stated by equation 2.1.8.
After switching polar coordinates, the intensity distributions of an ordinary focus spot
and a doughnut shaped focus are derived.
Kirchhoff derived an approximate scalar solution to the homogeneous wave equation for
the case of a wave diffracted by an arbitrarily shaped aperture. The solution at an
arbitrary point P is given in terms of values of the wave equation solution and the first
derivatives on a surface enclosing P . In the case of a monochromatic wave source this
solution is:

U(P ) = − iU0

2λ

∫∫
S

eik(r+s)

rs
[cos(n, r)− cos(n, s)]dS (2.1.2)

In which S is the area of integration corresponding to Σ, U0 is the initial disturbance
at point P0, r is the distance from point P0 to aperture point P1, s is the distance between
P1 and image point P and (n, r) and (n, s) are the angles between the aperture plane
normal and unit vectors r̂ and ŝ respectively (see figure 2.5

Huygens-Fresnel equation

If it is assumed that a plane wave is incident on a circular aperture, the Kirchhoff integral
reduces to the more familiar Huygens-Fresnel equation:

U(P ) = − i

2λ

U0e
ikr

r

∮
A1

eiks

s
(1 + cos(r, s))dS (2.1.3)

The advantage of the Kirchhoff integral is that the factor i/λ and the cosine term are
mathematically derived and follow as a consequence of the wave-nature of light. Fresnel
had to assign these terms as corrections in order to obtain agreement with his measure-
ments.

Fraunhofer Diffraction

Fraunhofer diffraction is valid when the diffracted wave is observed in the far field or
when a lens is used to focus the light.

To obtain a solution at point P in the image plane, a few approximations are made.
The first one simplifies the factor 1 + cos(r, s). If the source and image points P0 and P
are situated at a distance larger than the aperture size, the angles made with the aperture
will not vary too much. Under the assumption of a plane incident wave, the cosine factor
is replaced with 2 cos θ in which θ is the angle between P1, P and the aperture normal.
Before applying a second approximation we switch to a Cartesian reference system as
shown in figure 2.5. The aperture is situated in the (ξ, η)- plane around the origin and
point P in the (x, y)-plane, a normal distance z separated from the aperture screen.
From geometric considerations it follows that the distance between P1(ξ, η) and P (x, y)
equals:

s = z

√
1 +

(
ξ − x
z

)2

+

(
η − y
z

)2

(2.1.4)

Reconsidering the first assumption, it follows that z � ξ − x and z � η − y. A first
order expansion of the expression for s can therefore be made:

s ≈ z

[
1 +

1

2

(
ξ − x
z

)2

+
1

2

(
η − y
z

)2
]

(2.1.5)

The full expression of the integral becomes:

U(x, y) =
ieikz

λz
e
ik
2z (x2+y2)

∫ ∫
Σ

U(ξ, η)e
ik
2z (ξ2+η2)e−

ik
λz (ξx+ηy))dξdη (2.1.6)
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Figure 2.5 – Geometry of the cartesian reference system [REF]

This integral can be greatly simplified since the far field approximation

z � k(ξ2 + η2)max
2

(2.1.7)

holds. As a consequence, the factor exp[ ik2z (ξ2 + η2)] is approximately unity over the
aperture area Σ. Now, 2.1.6 takes the form:

U(x, y) ∝
∫∫
Σ

U(ξ, η)e−
ik
λz (ξx+ηy))dξdη (2.1.8)

With constant C containing all the prefactors, U(ξ, η) the complex amplitude of the
disturbance in the aperture and (x,y) .

2.1.5 Airy Disk

In this section the Fraunhofer diffraction pattern resulting from a monochromatic, uni-
form plane wave incident on a circular aperture is calculated based on the derivations
given by Born and Wolf [2000] and de Boer [2015]. The resulting intensity distribution
in the plane of focus goes by the name of an ’Airy Disk’ pattern. The starting point for
this derivation is equation 2.1.8.

The aperture’s rotational symmetry suggests using polar coordinates. Let (ρ, φ) be
the coordinates of the aperture and (q,Φ) the coordinates of the image plane.

ρ cosφ = ξ ρ sinφ = η (2.1.9)

q cos Φ = x q sin Φ = y (2.1.10)

Rewriting the differential area element gives:

dS = ρdρdφ (2.1.11)

The radius of the circular aperture is taken to be a. Equation 2.1.8 expressed in the
cylindrical coordinates as specified above now becomes:

U(q,Φ) ∝
∫ 2π

φ=0

∫ a

ρ=0

U(ρ, φ)e−
ikρq
z cos(φ−Φ)ρdρdφ (2.1.12)

Since the incident wave is assumed to be a plane, the intensity at the aperture is inde-
pendent of ρ and φ. Therefore, U(ρ, φ) = 1.0. In addition assume that the aperture’s
symmetry causes the far field to possess rotational symmetry as well. The solution of the
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integral must then be independent of Φ. Therefore, Φ = 0 is assigned to further simplify
the integral:

U(q) ∝
∫ 2π

φ=0

∫ a

ρ=0

e−
ikρq
z cos(φ)ρdρdφ (2.1.13)

Now, the φ dependent part is similar to a zeroth order Bessel function which is defined
as:

J0(u) =
1

2π

∫ 2π

0

eiu cos νdν (2.1.14)

Setting u = kρq/z and ν = φ. and using the identity:∫ u

0

u′J0(u′)du′ = uJ1(u), (2.1.15)

The integral (eq. 2.1.13) can now be rewritten in terms of a first order Bessel function:

U(q) ∝ 2πa2

z

J1(kaq/z)

kaq/z
(2.1.16)

Now, a lens with focal distance f is placed in the aperture. The intensity distribution
is therefore situated at the focus point of the lens while the validity of the far field
approximation is maintained. Therefore, the intensity distribution I(q) at the focus f is
given by:

I(q) = |U(q)|2 = I0

[
2
J1(kaq/f)

kaq/f

]2

(2.1.17)

In which I0, the center intensity, contains all constant prefactors.
The calculated intensity distribution is called an Airy Disc. It has a central maximum

surrounded by rings of decreasing intensity as shown in FIGURE X. Substitution of
kaq/f with more usually encountered experimental constants numerical aperture NA
and wavelength λ leads to the final expression of the Airy Disk:

I(q) = I0

[
2
J1( 2πqNA

λ )

( 2πqNA
λ )

]2

(2.1.18)

It is readily seen that the focal spot size is critically dependent on the NA of the
objective and the wavelength of the laser light.

The first minimum of the Airy pattern, i.e. the radius of the first dark ring occurs
when J1(2πNAq/λ) = 0. This is the case when 2πNAq/λ = 1.220π. Solving for q gives
the earlier encountered Abbe limit for diffraction from a circular aperture, stated in
equation 2.1.1.

2.1.6 Doughnut Profile

In order to create a doughnut pattern instead of an Airy Disk, the incident uniform beam
has to be shaped such that the light will show a minimum intensity in the center of the
focus. This can be done by modulating the phase distribution in such a way as to cause
the light in beam’s center to interfere destructively. A phase distribution which meets
this requirements is called a vortex phase pattern and, as mentioned in the introduction,
a Spatial Light Modulator (SLM) is used for this purpose. This section is focussed on
the derivation of a dougnut shaped intensity profile as given by Neupane, Chen, Sun,
Chiu, and Wang [2013] and de Boer [2015].

Optical Vortex

When light is twisted like a screw around the direction of propagation, one speaks of
an optical vortex. An optical vortex is characterized by it’s vorticity, the total phase
difference after travelling one wavelength. Vorticity is defined as V = 2π|n| with n the
topological charge, an integer number. An example of a vortex with a topological charge
n = 1 is shown in 2.6.



2.1. THEORY 9

Figure 2.6 – Vortex with topological charge n = 1. Picture from Leach et al. [2005].

If an optical vortex falls on a screen perpendicular to the axis of propagation, the
wavefront will appear as a ring shaped pattern with a central intensity minimum will
appear. This concept will now be used to derive a doughnut profile after a plane wave is
diffracted by a circular aperture.

Doughnut Profile from Circular Aperture Diffraction

Starting with equation 2.1.12, the incident bundle U(ρ,Φ) will now have a phase which
changes linearly with the angle Φ. Assuming a vorticity of 2π, the expression for U(ρ,Φ)
can be rewritten, instead of unity it becomes:

U(Φ) = eiΦ (2.1.19)

Equation 2.1.12 can now be rewritten:

U(q, φ) ∝
∫ a

0

∫ 2π

0

ei(Φ+ kρq
z )cos(φ)dφρdρ (2.1.20)

Somewhat similar as in the previous section, a Bessel function can be recognized:

J1(u) =
1

i2π

∫ 2π

0

ei(ν+u cos(ν))dν (2.1.21)

This integral can in turn be approximated using a Struve function Hn(u).∫ u

0

J1(u′)u′du′ =
π

2
u[J1(u)H0(u)− J0(u)H1(u)] (2.1.22)

Figure 2.7 – Calculated intensity distributions for the Airy Disk (solid line) and the
2π-doughnut (dashed line) using a wavelength of 642 nm and a NA of 1.2.
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Now, the intensity distribution is rewritten in the experimentally useful terms NA
and λ:

I(q) = I0

[
π
J1( 2πqNA

λ )H0( 2πqNA
λ )− J0( 2πqNA

λ )H1( 2πqNA
λ )

2πqNA
λ

]2

(2.1.23)

This intensity distribution is shown together with the Airy Disk in figure X. As
expected, the doughnut profile shows a zero intensity in the center. In comparison with
the Airy Disk, the doughnut distribution is spread out over a greater area and since a
phase modulation does not affect the total intensity, the maxima are lower. Doughnut
patterns of topological charge n > 1 will not only increase the focus size which is in
conflict with the goal of increasing the resolution. Therefore, only the doughnut profile
resulting from topological charge n = 1 will be used.

2.1.7 Spatial Light Modulator and Zernike Polynomials

There are several ways of applying a vortex phase pattern to a beam of light. Frequently
used optical components for this purpose are a vortex phase plate and a Spatial Light
Modulator (SLM). For the experiments done a SLM was used to create the depletion
pattern. An major advantage of a SLM over a phase plate is that it can shape foci in
an almost arbitrary way. Since an experimental setup is not an ideal optical system,
aberrations and misalignments will cause the depletion pattern to be deviated form its
ideal shape. The SLM can be used to correct for these deviations as well.

Kinoforms

The SLM has a liquid crystal display which can modulate the phase of light. Each pixel
can be controlled by applying a voltage to it, thereby modifying the liquid crystals in such
a way as to cause the desired phase pattern. These phase patterns are called Kinoforms
and can be applied to SLM. The SLM will in turn convert the desired phase delay to
pixel values specific for the used wavelength.

The central kinoform used in obtaining a doughnut profile is shown 2.6, corresponding
to a vorticity of 2π. The gray levels represent a phase delay in which black and white
correspond to a phase delay of 0 and 2π, respectively. Obviously, a phase shift of (a
multiple of) 2π is the same as a phase shift of 0. As already mentioned, the SLM can

Figure 2.8 – Example of a kinoform as applied on the SLM in which a wavelength depen-
dent calibration pattern, tilt, astigmatism and a vortex phase mask are superimposed.

be used to correct for misalignments and aberrations caused by the optical components
in the setup. The additional correction kinoforms can be superimposed on the vortex
kinoform as shown in 2.8.

Zernike Polynomials

A common way to characterize wavefronts in optics is via the use of Zernike Polynomials.
Zernike Polynomials are a complete set of orthogonal polynomials on the unit disk.
Although there are many orthogonal sets, the polynomials first described by Frits Zernike
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Table 2.1 – Mathematical form of the Zernike Polynomials as applied on the SLM

Form of the Polynomial (n,m) Name
ρ cos φ (1, 1) Tilt-X
ρ sin φ (1,-1) Tilt-Y
ρ2 cos 2φ (2, 2) Astigmatism-Y
ρ2 sin 2φ (2,-2) Astigmatism-X

(3ρ2 − 2ρ)ρ cos φ (3, 1) Coma-X
(3ρ2 − 2ρ)ρ sin φ (3,-1) Coma-Y

are of great practical use since each polynomial corrresponds to an often encountered
wavefront aberration Wyant and Creath [1992]. In general, each polynomial consists of
a nth order radial polynomial Rmn (ρ) and an angular, φ-dependent part. The sign of the
integer m indicates whether a cos or sin function is used while it’s value indicates the
frequency of peaks and valleys encountered going round the unit disk zer [a].

Zmn (ρ, φ) = Rmn (ρ) cos(mφ) (2.1.24)

Z−mn (ρ, φ) = Rmn (ρ) sin(mφ) (2.1.25)

An in-depth description of the Zernike Polynomials can be found in Born and Wolf
[2000]. The relevant polynomials used in the experiments as described in chapter 3 are
tip, tilt, astigmatism and coma. These aberrations correspond to the polynomials Z1

1 ,
Z−1

1 for tip (Tilt-X) and tilt (Tilt-Y), Z2
2 , Z−2

2 for vertical astigmatism (Astigmatism-Y)
and oblique astigmatism (Astigmatism-X) and Z1

3 , Z−1
3 for vertical coma (Coma-X) and

horizontal coma (Coma-Y) as listed in table 2.1. A tip or tilt will cause the focus to shift
in the lateral x,y-direction, respectively. When two perpendicular planes of light incident
on a lens with a certain amount of astigmatism, the planes are focussed at different
distances from the lens. This type of aberration is caused by rotational asymmetry of
optical components. When coma aberration is present, off-axis points incident on a lens
are imaged as a spread out Airy Disk.

Figure 2.9 – Images of the first 21 Zernike Polynomials zer [b].

With the use of these polynomials, deviations of the wavefront from ideal behaviour
will be characterized.
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Chapter 3

Experiments and Setup

In this chapter the used setup will be described along with a general description of
the conducted experiments. An important part of the setup is the SLM. This will be
discussed in a separate section 3.1.1.

3.1 Instrumentation

The simplified STED-setup as used in the experiments is shown in 3.1. It was already
build as a part of a previous bachelor research project by B. Brouwer. All the components
the emitted laser light meets in its travel from emission by the laser to the detection of
the signal will be described.

Figure 3.1 – Schematic representation of the used setup. Explanation of the used abbre-
viations: Neutral Density filter (ND), Pinhole (PH), Spatial Light Modulator (SLM),
Photo Multiplier Tube (PMT). Picture from B. Brouwer.

An Omnicron LuxX R laser emitting 642 nm laser light was used as a source. In the
configuration used it emitted light of vertical polarization with respect to the table. The
beam’s diameter was shrunk to 7.2 ± 0.2 mm by an iris to meet the spatial dimensions
of the SLM display. The beam passes through a beam expander made of two lenses with
focal distances of 50 and 200 mm respectively, and a 30 µm pinhole in between to clean
up the beam. Via two mirrors and a λ/2 wave plate (ThorLabs AHWP05M-600), the
beam is converted to horizontally light and reflected to fall under an angle of 5 deg with
the SLM (Hamamatsu LCOS-SLM 620-1100nm). The λ/2 plate ensures the horizontal
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polarization of the beam, this is required for optimal modulation of the SLM. The iris in
the middle of the two lenses is used to block the reflected, zeroth order light and thereby
keeping only the modulated part of the beam. A more detailed discussion concerning
the SLM is given in 3.1.1. After the second lens a λ/2 wave plate is placed to change
the polarization to vertical again. This is needed since the dichroic mirror favors vertical
polarized light. Before arriving at the back aperture of the objective, a λ/4 wave plate
(ThorLabs AQWP05M-600)is placed to convert the polarization of the beam from linear
to circular. The used objective was a Nikon 60x 1.2 NA Water Immersion objective with
a 1.0 cm back aperture. The objective focusses the light on a sample of red beads 0.2
µm. Via the use of a piezo stage, the sample could be moved in three dimensions over the
fixed objective. The fluorescence of the red beads was collected by the objective and send
back through the λ/4 plate and the dichroic mirror. Then, a 660-700 nm bandpassfilter
blocked the remaining parts of the depletion beam. The fluorescence signal (transmitted
by the bandpassfilter) was focused by a 150 mm lens into a 75 µm pinhole with a fiber just
behind it. The fiber was connected to a Photo Multiplier Tube (PMT) which converted
the signal to an electric one. Finally, the electric signal was read out by a computer.
And displayed via a custom made LabVIEW program.

3.1.1 The Spatial Light Modulator

For the experiments done, a Hamamatsu LCOS-SLM 620-1100nm was used. The Liquid
Crystal Display (LCD) of the SLM has an area of 10 x 7.5 mm and consists out of 792 x
600 pixels. Using a wavelength of 642nm, the SLM can modulate the phase delay of light
from 0 to 2π in 127 values. Futhermore, the polarization direction of the incident light
has to be aligned with the direction in which the liquid crystal molecules are orientated.
Therefore, the polarization of the incident light is horizontal. After the phase modulation,
the beam will continue its path as if it is merely reflected by the LCD. However, the SLM
will not modulate all the incident light. Part of it is only reflected and will propagate
along the same path as the modulated beam. Since only the doughnut shaped beam
will be used in the experiments, the reflected (zeroth order) beam and modulated (first
order) beam had to be separated. From geometric considerations it can be shown that
the relation between the applied tilt n and the spatial separation of the beams is given
by:

δx = 2n
fλ

d
(3.1.1)

In which the applied tilt, n, represents the number of 2π phase shift cycles applied over
the kinoform. This linear relation of δx and n is shown in figure 3.2. A phase mask

Figure 3.2 – Measured and calculated relation of applied tilt n and beam separation δx
at the focus point of the first 200 mm lens, using wavelength λ = 642 nm and beam
diameter d =7.2(2) mm

corresponding to a tilt of n = 12 , that is, 12 cycles of 2π phase shift, was applied on the
SLM to separate the beams by 0.42(2) mm.
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3.2 Description of the Experiments

The focus of the experiments lies in obtaining a rotational symmetric doughnut and
analysing the aberrations of the system. The SLM is used to correct for the aberrations.
I tried to quantifiy the phase modulations needed to minimize the deviations from the
symmetric doughnut pattern. Furthermore, the effect of different polarizations on the
shape of the beam were investigated. Simulations Yang, Zhang, Xiao, Gao, Chang, Wei,
and Jiang [2016] suggest that the polarization of the beam influences on the beam’s
shape. Apart from the measurements on polarization itself, circular polarization was
used in all experiments.

The experiments involving the optimization of the doughnut shape were conducted in
the following order. First, the spatial separation of the reflected and modulated beams
as a function of the tilt was measured. The reflected beam was then blocked by an
iris. Afterwards, the SLM was used to vary the amount of astigmatism-X of which the
results were captured with a camera. After determining the SLM settings for which
the doughnut shape was optimized, the corresponding value for the SLM parameter was
saved and the amount of astigmatism-Y was varied. In these measurements a mirror
instead of a sample will be placed on the objective. Since there will probably be some
sample induced aberrations present, this procedure will be repeated with scans of a single
bead. If there are no other aberrations in the optical system present and the setup is
aligned, I should have obtained a rotational symmetric doughnut. If not, I have to search
for possible misalignments or additional aberrations like coma. By making radial and
angular intensity profiles of the doughnuts, the SLM settings and aberrations involved
will be analysed. By a combination of mechanical alignment, kinoform alignment, phase
modulations by the SLM and angular and radial profiles I will characterize and optimize
the doughnut shape.

3.2.1 Experimental Details

In this section the experimental details involved in obtaining the results are discussed.
During measurements the laser was operated at 1.0mW with a Neutral Density filter of
2.0. A first point of concern was the beam diameter after the beam expander. It did
not match the dimensions of the SLM display. The effective area of the SLM display is
10x7.5 mm. The maximum diameter of a beam which can be modulated by the SLM
is thus 7.5 mm. However, the beam expander enlarged the beam diameter to around
10 mm. Fortunately, the iris after the beam expander was already set as to reduce the
diameter to 7.2(2) mm.

Measurement settings

During the measurements a Tilt-X of 12 was applied on the SLM as to separate and block
the zeroth from the first order beam. In order to quickly observe the beam modulations
produced by the SLM, a 1600x1200 pixel camera (Nikon DS-2MBWc) was used in place
of the last pinhole (the fiber was removed for this purpose). The first astigmatism
corrections and kinoform alignment were both observed using this camera, imaging the
reflected beam by a mirror on the objective instead of scans of beads. The actual sample
scans were conducted using a pixel dwell time of 1 ms and a pixel lag of 3.5 ms. The
images consisted out of 200x200 pixels and an area of 2x2 µm, leading to a pixel to pixel
distance of 10 nm. The images involving coma corrections were scanned using the same
settings and area except 100x100 pixels were used.

Polarization

The SLM modulates only horizontally polarized light. In order to filter out any vertical
(and unmodulated) polarized light, a linear polarizer was set behind the HWP near the
dichroic mirror. The dichroic mirror favours vertically polarized light. Therefore, the
HWP was used to switch the polarization back to vertical. Ideally, the HWP should
therefore be placed at 315 deg or 45 deg. However, the actual retardances of the half-
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(a) Camera image of a dough-
nut distribution

(b) Radial intensity profile
with the radius in pixels

(c) Angular and mean in-
tensity profile

Figure 3.3 – Figures illustrating the doughnut pattern analysis written in MATLAB.
Aberrations as applied on the SLM: Astigmatism X = 0.1 and Astigmatism Y = 0.3.
(A) Camera image of a doughnut intensity pattern. The star marks the center minimum.
(B): Radial profile with the radius increasing from the center minimum. (C): The angles
are defined anti-clockwise from the negative y-axis with respect to the central marker.
The mean intensity of the bins is shown as the straight line and the RMSD can be
calculated from the angular profile data.

and quarter-wave plates as specified by the manufacturer slightly differ from λ/2 and
λ/4. The retardances at a wavelenght of 642 nm are 0.511λ and 0.269λ. Therefore, the
half-wave plate was shifted as to obtain the maximum possible signal. This turned out
to be at 314(1) deg which is consistent with the HWP specifications. The quarter-wave
plate (QWP) situated right before the objective could only be set within an estimated
error of about 5 deg. Therefore, the exact retardance of this wave plate did not play a
role in acquiring circular polarization. By iteratively changing the angle of the QWP, a
circular polarization of 80% was obtained.

Image analysis

The images as well as the theoretical models were processed using custom written MAT-
LAB code. Angular and radial intensity profiles were made to analyse the aberrations
observed in the doughnut profile. After determining the location of the center minimum
by a parabolic fit, the intensity profile was split up in bins of equal angular separation.
The angular profiles were used to determine the aberrations present in the system and to
calculate the deviation from a rotational symmetric doughnut. The root-mean-squared
deviation (RMSD) from the mean bin intensity was used as a measure for the mentioned
deviation from symmetry. A non-ideal doughnut pattern has a corresponding varying
angular intensity distribution and thus a high RMSD while an ideal dougnut is char-
acterized by an equally distributed angular intensity. The radial profiles were obtained
in a similar way, this time averaging the intensity over increasing radii from the center
minimum.

Astigmatism-X (aX), Astigmatism-Y (aY), Coma-X (cX) and Coma-Y (cY) were in
turn systematically varied as to minimize the RMSD of the mean angular intensity. This
way, the SLM aberration parameters corresponding to the RMSD minima were used to
optimize the rotational symmetry of the depletion beam.



17

Chapter 4

Results

In this section the results are shown and discussed. After aligning the setup and acquiring
a circular polarization of 80%, the camera was used to capture images of doughut patterns
with varying astigmatisms applied on the SLM. Thereby confirming the SLM’s ability
to shape foci and to get an insight in how doughnut shapes suffering from astigmatism
look like. Assuming the setup was properly aligned, the phase mask on the SLM display
was displaced as to align the beam’s center minimum with the axis of propagation.
Afterwards, beads were scanned to correct for astigmatism and coma. The theoretical
model was compared to the measured radial profile of a scanned bead in order to confirm
the reduced effective NA of the objective. The final results show doughnut profiles
involving different polarizations.

4.1 Astigmatism Corrections

In 4.1b, the result of the calculated RMSDs with different values for astigmatism-X
(aX) is shown. The minimum lies around aX= 0.1 and this value is set constant while
varying aY (shown in figure 4.2b). Camera images of the extreme astigmatism values
are also shown as to get an idea how astigmatism looks like on a doughnut shape. When
astigmatism is present, the intensity is mainly situated on both sides of one axis through
the center minimum. The SLM settings aX= 0.1 and aY= 0.0 will be used as a starting
point when imaging and analysing beads.

(a) aX = −1.0, aY =
0.0

(b) RMSD of the angular dependent in-
tensity. (c) aX = 1.0, aY = 0.0

Figure 4.1 – Camera captured doughnut patterns in which (a),(c) show clear oblique
astigmatism (b) shows the RMSD as a function of the varying aX of which the minimum
lies around aX = 0.1.
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(a) aX = 0.1, aY =
−1.0

(b) RMSD of the angular dependent in-
tensity. (c) aX = 0.1, aY = 1.0

Figure 4.2 – Camera captured doughnut patterns in which (a),(c) show clear vertical
astigmatism (b) shows the RMSD as a function of the varying aY with aX = 0.1 of
which the minimum lies around aY = 0.
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(a) Misalign, before focus (b) Realign, before focus (c) Misalign, bead scan

(d) Misalign, after focus (e) Realign, after focus (f) Realigned kinoform

Figure 4.3 – Images of doughnut patterns with the beam focus before (a),(b) and af-
ter (d),(e) the camera image plane. Kinoform placement parameters when misaligned
(a),(d) dx = 0.1, dy = 0.1 and realigned (b),(e) dx = 0.165, dy = 0.09. In (c) and (f) a
scanned bead over an area of 2x2 µm is shown with and without realignment. The red
crosses mark the lateral focus point.

4.2 Kinoform Alignment

After aligning the setup, it was possible to finetune the kinoform placement. A kinoform
misalignment will cause the minimum of the doughnut to be out of center [REF]. When
the beam hits the vortex phase mask on the SLM off-center, the center minimum will be
off-axis. While propagating to the focus point of a lens, the center minimum will show
a shift from its off-axis position to the focus point. After the focus, the center minimum
will shift in opposite direction away from the axis. This effect could be easily observed by
shifting in and out of focus at the PMT pinhole. Moreover, the off-center minimum was
also observed at the iris right after the SLM. Therefore, other possible misalignments in
the setup could not be the cause of this shift.

It was found that the kinoform suffered from a small misalignment. The alignment
procedure was captured with the camera and is shown in figure 4.3.

Unfortunately, I did not find a way to properly quantify the actual distance corre-
sponding to a kinoform replacement of dx= 0.01 and dy= 0.065 as applied on the SLM.
I estimate the replacement to be in the order of millimeter or smaller.

Imaged beads before and after this alignment procedure are shown in figures 4.3c and
4.3f respectively. Before further aberration corrections are made, it can already be seen
that the intensity distribution is less confined to one side of the doughnut.

4.3 Aberration Corrections by Scanning Beads

Beads were scanned with different values for aX and aY in order to minimize the RMSD.
The results of these measurements are shown in figure 4.4. Graph 4.4a was obtained
scanning a 2x2µm area using 200x200 pixels. Graph 4.4b and all following bead images
were obtained scanning the same area size using 100x100 pixels. Although inconsistent,
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(a) RMSD for various aY values with aX=
0.1

(b) RMSD for various aX values with aY=
0.2.

Figure 4.4 – Minimization of the RMSDs leading to aX = 0.1 and aY= 0.2.

(a) Doughnut pattern (b) Angular profile

Figure 4.5 – (A) doughnut pattern with aX= 0.1 and aY= 0.2 and (b) it’s angular profile.

the measurments took a lot of time and therefore I decided to reduce the number of
pixels per scan. This also shows up in the larger errorbars in the graphs.

The analysis of the scanned beads results in an slightly different vertical astigmatism
than obtained with the camera. This is probably due to sample induced aberrations.
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(a) Coma-X varied with aX= 0.1, aY= 0.2
and cY= 0.0

(b) Coma-Y varied with aX= 0.1, aY= 0.2
and cX= 0.2

Figure 4.6 – Coma

(a) test (b) test

Figure 4.7 – Imaged bead (a) and angular profile (b) with aX= 0.1, aY= 0.2 and cX= 0.0

4.3.1 Coma Corrections

After attempting to obtain a symmetric doughnut by making astigmatism corrections
on the SLM, there was still an obvious asymmetry in the intensity distribution. Now,
Zernike Polynomials of both astigmatisms show a two-fold symmetry in perpendicular
axis as was also observed in 4.2. However, the asymmetry still present was mainly a
one-sided intensity peak i.e. a single axis symmetry. Coma, which shows this single
axis symmetry as well, was used to correct for the asymmetry unable to resolve with
astigmatism corrections.

The result of the RMSD minimization after coma corrections is shown in figure 4.6.
The new SLM settings for which aberrations are minimized are now aX= 0.1, aY= 0.2,
cX= 0.2 and cY= 0.0.

Though, if we look at the angular profile it is clear that some astigmatism is still
disturbing the doughnut shape. It looks like as if I overcorrecting the doughnut shape
by applying too much astigmatism. Looking at figure 4.7, the bead and angular profile
show some oblique astigmatism as earlier encountered in the camera pictures.

Also, from table 2.1 in the theory section, the angular term in the Zernike polynomial
corresponding to oblique astigmatism Z−2

2 ∝ sin 2φ is present in the angular profile.
Unfortunately, I did not quantify the relation between the SLM parameters for aberration
corrections and the observed angular intensity distributions. Therefore, a final correction
should be an adjustment of the Astigmatism-X parameter.

The imaged bead at aX= 0.0 is shown in between an imaged bead with a slightly
lower and higher aX value which show opposite oblique astigmatism. Therefore, the SLM
corrections are now set to aX= 0.0, aY= 0.2, cX== 0.2 and cY= 0.0.
Further minimization could be done by analyzing the angular profile to see if there are
more periodic patterns present. Since astigmatism and coma show up as a double and
single periodicity in the intensity distribution I could also have tried to retrieve the
SLM correction settings from fitting the angular terms of the corresponding Zernike
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(a) aX= −0.1 (b) aX = 0.0 (c) aX = 0.1

Figure 4.8 – Imaged beads with SLM settings aY= 0.2, cX== 0.2, cY= 0.0 and varying
aX.

(a) (b)

Figure 4.9 – The effective NA is assumed to be 0.86. (A) a plot of the theoretical model
and the experimental data and (b) an ideal depletion beam.

Polynomials. As already mentioned, in future experiments, a quantified relation between
the SLM settings and the angular intensity distribution could be found in order retrieve
the correct SLM settings within only a few scans of beads.

4.3.2 Effective NA and Model Limitations

The theoretical model is used to see how the angular profile behaves in case of an incorrect
center minimum determination. In the experimental data, the pixelized nature of the
scanned bead images, small vibrations and a non-zero center minimum all contribute to
an estimated uncertainty of ±1 pixel in the determination of the center minima.

To compare the experimental data with the theoretical model, the radial profiles are
plotted together in figure 4.9. Since the scanned beads have a finite size of 200µm, the
convolution of the theoretical model with the bead is taken into account. Moreover,
the objective was underfilled by a factor of 0.72(2). Following the reasoning of de Boer
[2015], I assume that the effective NA scales linearly with the beam radius. The effective
NA used in the model is therefore 0.86(2).

The radial profiles of the theoretical and experimental data show a difference of the
peak radii of less than 3%. This differs from earlier done measurements by B. Brouwer
using this same setup and sample. He estimated the effective NA to be around 0.97(3).
A possible explanation for this difference is that in both cases only a single bead was
used. Multiple beads have to be scanned in order to get an idea of the variation of their
radii.

Angular profiles were made for an ideal depletion beam with a NA of 0.86 together
with an angular profile of the corrected doughnut pattern of figure 4.8c. The minimum
bin value for the corrected doughnut lies around 0.7 times the maximum value. However,
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(a) Angular profile scanned bead (b) Angular profiles ideal doughnut

Figure 4.10 – Angular profile (a) with aX= 0.1, aY= 0.2 and cX= 0.0 and angular profiles
of an ideal depletion beam (b) with the center minimum shifted 1 pixel (20 nm) and 2
pixels (40 nm).

(a) Linear (b) Left Circular (c) Right Circular

Figure 4.11 – Imaged beads with left- and right-handed circular and linear polarizations.
SLM settings aX= 0.15, aY= 0.2, cX= 0.0 and CY= 0.0

the ideal doughnut profiles in figure 4.10b show a minimum bin value around 0.85 and
0.7 times the maximum intensity. Therefore, if the intensity variation of the scanned
beads lies within 15%, the method of aberration analysis I used is insufficient. This also
suggests that the final doughnut pattern (figure 4.8c and 4.10b) still suffers from some
small aberrations or misalignments since the intensity variation is greater than 15% of
the maximum.

Polarization

Since simulations Hao, Kuang, Wang, and Liu [2010] and previously done experiments
Yang et al. [2016] show that circular polarization will give the best doughnut shape, I
tried to obtain circular polarization and observe the shape of differently polarized beams.

The linear polarized doughnut is stretched out with a high intensity region in the
upper left area of the doughnut. This is probably due to the wrong aberration corrections
as these experiments were done before the coma corrections were obtained. The left-
handed circular polarized doughnut is distorted in a way that it would be useless as
a depletion beam. There is no center minimum present. The right-handed circularly
polarized doughnut does show a center minimum and a ring shaped intensity surrounding
it. Therefore, I used circularly polarized light in all other measurements.

4.4 Conclusion and Discussion

First of all, it can be concluded that the SLM could be used to shape foci in an almost
arbitrary way by modulating the phase of light. Phase masks for a doughnut shaped
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depletion beam as well as aberration corrections could all easily be generated by the
SLM. It was found that the depletion beam deviated form it’s rotational symmetry
due to a combination of aberrations and misalignments in the setup. After mechanical
alignment, the kinoform’s positioning appeared to cause an increased intensity on one
side of the ring. Realigning the kinoform reduced this one sided intensity increase. Via
the analysis of the angular profiles of scanned beads I found that small amounts of
astigmatism and coma were present in the setup and the SLM could be used to correct
for these aberrations. Also, the angular terms of the Zernike Polynomials for coma and
astigmatism were used to distinguish the two from eachother. In turn, the SLM was
used to systematically correct for these aberrations. In the end, the depletion beam still
showed some asymmetry which I was unable to resolve since time runned out. However,
due to the uncertainty in the center minimum determination, the method used to analyse
the depletion beam may be insufficient when the difference between the angular bins
of maximum and minimum intensity is less than 15%. Several factors may affect the
rotational symmetry optimization of the depletion beam: The way in which angular
profiles were calculated, the pixel nature of the images and small misalingments limited
the aberration analysis. In future experiments, a quantified relation between the SLM
parameters for the aberration phase masks and the angular intensity distribution could
be found in order to correct for the aberrations present within only a few scans of beads.
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