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Abstract

In this thesis three problems from enumerative geometry will be solved. The first prob-
lem, Apollonius circles, which states how many circles are tangent to three given circles
will be solved just using some polynomials and some algebra. It turns out that there
are, with reasonable assumptions, eight of those. The second problem deals with how
many lines intersect with four given lines in P3

C. In general, there are two of those. The
last problem, how many conics are tangent to five given conics, is solved using blowups,
the dual space, Buchberger’s algorithm and the Chow group. It turns out that there are
3264 conics which satisfy this solution. Furthermore, it is easy to extend this solution to
find how many conics are tangent to c conics, l lines and pass through p points where
p+ l + c = 5 and these points, lines and conics satisfy reasonable assumptions.
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Chapter 0

Introduction

In this thesis, we will consider some problems which have to do with enumerative ge-
ometry. Enumerative geometry is a branch of mathematics which was mostly developed
during the end of the 19th century. In this branch of algebraic geometry all the problems
have to do with counting how many objects there are that satisfy certain conditions.
Take for example the problem of Apollonius, which was known long before the 19th cen-
tury, and therefore it is one of the first problems from enumerative geometry known. The
problem states that given three circles in R2 whose centres aren’t colinear, how many cir-
cles are there that are tangent to these circles. In chapter 2, this problem will be solved.
Chapter 1 consists of some definitions and propositions that are needed throughout this
thesis.
Chapter 3 will solve the problem: given 4 general lines, how many lines can you find that
intersect all these four lines.

The last three chapters will deal with conics. In chapter 4 we will look at what conics
exactly are and how many conics pass through p points and l lines where p + l = 5. In
chapter 6 we will look at how many conics are tangent to 5 given conics, but the theory
that is needed for this will be explained in chapter 5. With these solving methods any
problem that states how many conics pass through p points and are tangent to l lines
and c conics where p+ l + c = 5 can be solved.
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Chapter 1

Some basic definitions

In this chapter, some definitions and propositions are stated that are used throughout
this thesis.

In enumerative geometry, many of the problems are stated in the complex projective
space. The complex numbers are to make sure that every equation has at least one
solution and the projective space is to make sure that any two lines intersect. Recall:

Definition 1.1. The projective space of dimension n over a field K is the set

{[k0, . . . , kn]|ki ∈ K}/ ∼,

where ∼ is the equivalence relation [k0, . . . , kn] ∼ [λk0, . . . , λkn] for λ 6= 0. This set is
denoted by PnK . Most of the time, it will be over C, then it can also be denoted by Pn.

Any element x ∈ Pn, we will denote by [X0, . . . , Xn]. These coordinates are called
homogeneous coordinates.

Definition 1.2. A homogeneous polynomial of degree d is any polynomial F : Kn → K
such that F (λk1, . . . , λkn) = λdF (k1, . . . , kn).

Definition 1.3. The common zero locus or zero locus of a collection of polynomials
{f1, . . . , fr}, where fi ∈ K[X0, . . . , Xn] for a field K for every i, is the set

{p ∈ Kn|f1(p) = · · · = fr(p) = 0}.

Remark 1.4. A polynomial F ∈ K[Z0, . . . , Zn] does not define a function on PnK . How-
ever, it does make sense to talk about the zero locus of homogeneous polynomials, since
for X in the zero locus of F , we have F [λX0, . . . , λXn] = λdF [X0, . . . , Xn] = λd · 0 = 0,
hence the zero locus is well-defined.

Definition 1.5. A projective variety X ⊂ PnK is the zero locus of a collection of homo-
geneous polynomials.

When you have a projective variety, it can be usefull to be able to do some operations
on it. It is easier to project it first onto Cn, and then do the operations you want.
For doing this, we must define charts, atlasses and transition maps as in the course
Differential Manifolds [3].

Definition 1.6. Let X be a topological space. A chart (U, φ) for X is an open subset
U ⊂ X, together with a map φ : U → Rn, such that for Ũ = Imφ, Ũ ⊂ Rn is open and
φ is a homeomorphism between U and Ũ . The dimension of the chart is n.

Definition 1.7. Let (U, φ) and (V, ψ) be two charts for a topological space X such that
U ∩ V 6= ∅. Then we define the transition map as ψ ◦ φ−1 : φ(U ∩ V )→ Rn. Two charts
are compatible if either U ∩ V = ∅ or the transition map is smooth, i.e. C∞.

Note that the transition map goes from Rn to Rn but the domain is resticted such
that it is well-defined.
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Definition 1.8. An atlas of a manifold M is a collection of charts {(Ui, φi)} such that
{Ui} forms an open cover and each of the charts are smoothly compatible with each
other.

Definition 1.9. A differential manifold is a topological space that is locally Euclidean,
Hausdoff and second countable, together with an atlas.

Besides all these definitions, we would like to know when a variety is smooth.

Definition 1.10. Let X ⊂ Pn be a projective variety, and let F1, . . . , Fr ∈ P[X0, . . . , Xn]
be its homogeneous defining functions. X is called singular in a point p if ∂Fi

∂Xj
|p = 0 for

all 1 ≤ i ≤ r and 0 ≤ j ≤ n. X is called smooth at p if it is not singular.

Remark 1.11. Note that we can identify C with R2. When we replace smooth (i.e.
C∞) by holomorphic, we can use the same theory using Cn.

Now it is time for the first example:

Example 1.12. Let X ⊂ P3 be the variety defined by X3
0 = X2

1X2. Then X is the zero
locus of the function F : P3 → C F [X0, X1, X2] = X3

0 −X2
1X2 (notice that this function

is homogeneous, hence we can talk about the zero locus).
Now we look at the partial derivatives of F in [0, 0, 1]. We see

∂F

∂X0
|[0,0,1] = 3X3

0 |[0,0,1] = 0

∂F

∂X1
|[0,0,1] = 2X1X2|[0,0,1] = 0

∂F

∂X2
|[0,0,1] = X2

1 |[0,0,1] = 0

It follows that X has a singular point at the point p = [0, 0, 1].
Note that we can also use charts to draw this curve in C2 (where we only draw the

real part of this space to make it sit in R2) as follows.
Define charts U0 = {[X0, X1, X2]|X0 6= 0} and φ0 : U0 → C2 where φ0([X0, X1, X2]) =

(X1

X0
, X2

X0
) with inverse (x, y) 7→ [1, x, y] and define analogously (U1, φ1) and (U2, φ2).

The transition map φ0 ◦ φ−11 : C2 → C2 defined on the intersection {(x, y) ∈ C2|x 6= 0}

is (x, y)
φ−1
17−−→ [x, 1, y]

φ07−→ ( 1
x ,

y
x ). Clearly, this function is continious for x 6= 0. Similar

equations hold for the other transistionmaps, hence we’ve found an atlass.
Now we have the function F ◦ φ−12 : C2 → C, (x, y) 7→ x3 − y2.

0.0 0.5 1.0 1.5 2.0

-2

-1

0

1

2

x

y

Graph of x̂ 3=y^2

In this picture, you can see the singularity at the point (0, 0), which came from the point
[0, 0, 1].

A few more definitions are usefull. These definitions will be about dimensions of
subspaces.

Definition 1.13. A affine subspace of Cn of dimension m is a space {a+v|v ∈ V } where
V is a linear subspace of Cn of dimension m and a ∈ Cn.
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Definition 1.14. The dimension of a linear subspace in Pn is defined to be the dimension
of the corresponding affine subspace in Cn.

Definition 1.15. The codimension of a subspace X ⊂ Pn equals n − dim(X). It is
denoted by codim(X).

Note that if two subspaces of codimension k and l are intersected, the intersection
will generically have codimension k + l.

Definition 1.16. Define a hypersurface of the space Pn a subspace of codimension 1.

Furthermore, we’d like to use Bézout’s theorem, which is as follows ( [7] page 227):

Theorem 1.17. Let there be n homogeneous polynomials in n + 1 variables of degrees
d1, . . . , dn that define n hypersurfaces in Pn. If the number of intersectionpoints is finite,
then this number is d1 · d2 · · · · dn where the points are counted with multiplicity. If the
hypersurfaces are irreducible and in general position, then every point in the intersection
has multiplicity 1 and hence there are exactly d1 · d2 · · · · dn points in the intersection.

If the hypersurfaces satisfy the second condition, i.e. they are irreducible and in
general position, they are said to intersect transverse.
This theorem won’t be proved in this thesis.
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Chapter 2

Problem of Apollonius

In this chapter, we will prove the problem of Apollonius.

Theorem 2.1. Let 3 circles Ci ⊂ R2 in general position be given. Then there are at
most 8 circles tangent to the given circles.

Remark 2.2. I will not go into details about what general in this context means. It
contains for example that the centers of the circles are not colinear, but it also makes
sure that no circle is contained in another circle. To find out which conditions the circles
exactly should satisfy, you can check all equations in the proof and put conditions on the
circles such that all the terms in xi, yi and ri do not cancel.

Proof. A circle in R2 is uniquely defined by its centre and radius. Hence we can denote
the space of circles by

C = {(x, y, r) ∈ R2 × R>0}

Now for a given circle Ci = (xi, yi, ri), the set

V in
i = {(x, y, r) ∈ C|(x− xi)2 + (y − yi)2 = (r − ri)2}

is exactly the set of circles which are tangent to Ci from the inside. This can be seen by
first fixing r. Then all the circles that are tangent form a circle of radius ri − r if r < ri
and r − ri if r > ri. This yields exactly this expression.

Similarly, the set

V out
i = {(x, y, r ∈ C|(x− xi)2 + (y − yi)2 = (r + ri)

2}

is the set of circles who are tangent to Ci from the outside.
Now we can see that C in fact the set R2 × R>0 is, where we have a bijection between
the circles and this space.
We observe that V in

i and V out
i now define a cone in C.
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To show that there are exactly 8 circles, we have to show that there is exactly one point
in the intersection V α1 ∩ V

β
2 ∩ V

γ
3 for every choice of α, β, γ ∈ {in, out}.

This I will not do by looking at the cones, because Bézout tells us that for every choice
of α, β and γ there will be 8 possibilities, but that’s with multiplicity. Note that Bézout
is a theorem over C, but we can identify R2 with C and then apply Bézout. Therefore,
we will just look at the equations we have.
Let s1, s2, s3 = ±1, depending on the choice of α, β and γ. Then we get:

(x− x1)2 + (y − y1)2 = (r − s1r1)2

(x− x2)2 + (y − y2)2 = (r − s2r2)2

(x− x3)2 + (y − y3)2 = (r − s3r3)2 (2.1)

Writing this differently yields:

x2 − 2x1x+ x21 + y2 − 2y1y + y21 − r2 + 2s1r1r − r21 = 0 (2.2)

x2 − 2x2x+ x22 + y2 − 2y2y + y22 − r2 + 2s2r2r − r22 = 0 (2.3)

x2 − 2x3x+ x23 + y2 − 2y3y + y23 − r2 + 2s3r3r − r23 = 0 (2.4)

Now subtracting (2.3) from (2.2) yields a linear equation in x and y:

2(x2 − x1)x+ x21 − x22 + 2(y2 − y1)y + y21 − y22 + 2(s1r1 − s2r2)r − r21 + r22 = 0

Using (2.4) as well, we can get seperate equations for x and y:

x = f1 + f2r

y = f3 + f4r

where f1, f2, f3 and f4 are known functions in terms of x1, x2, x3, y1, y2, y3, r1, r2, r3, s1, s2
and s3.
Now we can substitute these functions back in (2.1) and solve this for r. Since these are
quadratic equations, we expect to get 16 solutions in total, for every choice 2.
Suppose that (x, y, r) is a solution for some choice of α, β, γ. Then (x, y,−r) is a solution
for the α′, β′, γ′ where α′ is exactly the different element in {in, out} than α (i.e. α′ ∈
{in, out}−{α} and similarly for β′ and γ′. We see that every solution is counted at least
twice, hence we can discard all the circles with radius < 0 (which isn’t a circle). We have
at most 8 circles left, which are the solutions to the problem.
If furthermore r > 0, we get exactly 8 solutions (note that this is a condition which is
taken care of by the general position).

In the picture you can see that we can find at least 8 circles tangent to the given (red)
circles.

�
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Chapter 3

Lines through given lines

In this chapter another quite intuitive problem is stated. When three lines in R3 are
given, no two of which lie in a plane, it is quite easy to see that there are many lines
that intersect all these lines. Take for example an arbitrary point on the first line. Then
you can make a plane with this point and the second line. By assumption the third line
doesn’t lie in this plane, so it follows that, unless the line is parallel to this plane, we
always have a point of intersection. However, we now give a fourth line, and the question
remains whether there are lines left that intersect all these 4 given lines. To make sure
that any two lines in a plane intersect (and parallel doesn’t exist) we will work in P3

C.

Theorem 3.1. Let 4 lines L1, L2, L3, L4 ⊂ P3
C in general position be given. Then there

are exactly two lines through L1, L2, L3 and L4.

Remark 3.2. In this case in general position means that no two lines are in a plane,
i.e. no two lines intersect.

Proof. Claim: We can do a basis transformation such that L1 is of the form [0, 0, p, q],
L2 is of the form [p, q, 0, 0] and L3 is of the form [p, q, p, q], where p, q ∈ C are variables.

Proof of the claim: Notice that we can identify Li ⊂ P3 with a plane Vi ⊂ C4 for
i = 1, 2, 3, 4. Since the lines are in general position, it follows that Vi and Vj together
span C4, i.e. Vi ⊕ Vj = C4 for i 6= j.

Now we can choose the basis for C4 such that (1, 0, 0, 0)T and (0, 1, 0, 0)T are in V1
and (0, 0, 1, 0)T and (0, 0, 0, 1)T are in V2.

When we translate this basis back to P3, we see that we have met the conditions for
L1 and L2.

Now V3 is spanned by some vectors v = (v1, v2, v3, v4)T and w = (w1, w2, w3, w4)T .
Now I claim that the matrix

M1 =

(
v1 w1

v2 w2

)
is invertible.

But we know that V3 and V2 together span C4, hence the vectors v, w, (0, 0, 1, 0)T , (0, 0, 0, 1)T

are a basis. Therefore it follows that M1 is invertible, with inverse A1.
Similarly, the matrix

M2 =

(
v3 w3

v4 w4

)
is invertible with inverse A2. Now we define the matrix

A =


a111 a121 0 0
a211 a221 0 0
0 0 a112 a122
0 0 a212 a222


7



where aij1 is the element of matrix A1 at postition (i, j) and similarly for aij2 .
Now it follows that

A


v1 w1

v2 w2

v3 w3

v4 w4

 =


1 0
0 1
1 0
0 1


hence A gives a basis transformation for v and w to the vectors we asked for in the
beginning (when we translate this back to P3).

Note that when we do this basis transformation, we can keep the vectors (1, 0, 0, 0)T

and (0, 1, 0, 0)T or (0, 0, 1, 0)T and (0, 0, 0, 1)T fixed since we only use the basisvectors v
and w.

Using this basis transformation, we will construct a line through all of these lines.
Therefore, choose a point p ∈ L1. We know that p is of the form p = [0, 0, p2, p3].

Furthermore, L2 is of the form [x0, x1, 0, 0] = λ[1, 0, 0, 0] + µ[0, 1, 0, 0], since x0 and x1
are variables. Now the plane through p and L2 is of the form V = αp+ β[x0, x1, 0, 0] =
[λ, µ, αp2, αp3], where α, λ, µ are variables.
Now we will find the point where L3 and V cross. Therefore we see, writing L3 =
[γ, δ, γ, δ], where γ, δ are variables:

[γ, δ, γ, δ] = [λ, µ, αp2, αp3]

Now we first assume p2 6= 0. Then for some l ∈ C∗, we have λ = lγ and δ = lµ and
α = l γp2 . From this it follows that µ = lδ = αp3 = lγ p3p2 .

Hence the point of intersection q looks like q = [lγ, lγ p3p2 , lγ, lγ
p3
p2

] = [γ, γ p3p2 , γ, γ
p3
p2

]. Since

γ 6= 0, it follows that the point of intersection looks like q = [1, p3p2 , 1,
p3
p2

] = [p2, p3, p2, p3].
Notice that this looks the same if we chose p3 6= 0, and this last expression therefore
holds for every point p ∈ L1 we choose.
Now we can define a line through p and q:

L = λ′p+ µ′q = [µ′p2, µ
′p3, (λ

′ + µ′)p2, (λ
′ + µ′)p3] (3.1)

Now we let the point p vary. This gives us a quadric Q which obeys the relation X0X3−
X1X2 = 0.
Now we check whether Q is smooth. Therefore we define charts Ui ⊂ P3, where Ui =
{x ∈ P3|xi 6= 0} for i = 0, 1, 2, 3. Also, we define a map πi : Ui → C3, by (if i = 0)
[X0, X1, X2, X3] 7→ (X1

X0
, X2

X0
, X3

X0
) and similarly if i = 1, 2, 3. The inverse we define by

π−10 : C3 → Ui

(x0, x1, x2) 7→ [1, x0, x1, x2]

and similarly for i = 1, 2, 3.
For one transitionmap, we check that this is a smooth chart, the other transitionmaps
are analogous. We check it for π1 ◦ π−10 . Let U ⊂ C3 be such that π−10 (U) ⊂ U1 (i.e.
U = {(x1, x2, x3) ∈ C3|x1 6= 0}).

π1 ◦ π−10 : U → C(x1, x2, x3) 7→ [1, x1, x2, x3] 7→ (
1

x1
,
x2
x1
,
x3
x1

)

Clearly, this is a smooth map in U , hence we’ve defined a smooth chart.
Now we can check whether Q is smooth. We see for the subset V0 = Q ∩ U0, that

π0(V0) = {(x1
x0
,
x2
x0
,
x3
x0
|x0x3 − x1x2 = 0} = {(x1

x0
,
x2
x0
,
x3
x0
|x3
x0
− x1
x0

x2
x0

= 0}

Hence in C3 this gives the subspace x3 = x1x2, which is a smooth subspace. Similarly
for V1, V2 and V3. Hence Q is smooth.

Now we check that all the lines of the form (3.1) in Q are disjoint, and that we have
all possible lines intersecting L1, L2 and L3.

8



Suppose there is a line l intersecting all these lines, but is not in Q. Then l ∩ L1 gives a
point p, which again gives a plane Vp when we look at the span of L2 and p. When we
do the whole construction again, we get again a line, which is in Q. Hence we have all
possible lines.
Now suppose that we have 2 lines of the form (3.1) l,m ∈ Q that intersect. Notice that
every point p ∈ L1 gave rise to a unique line of the form (3.1) in Q. When two lines
therefore intersect, this can not be in the point p (otherwise the lines would be the same).
It follows that L1 is in the plane spanned by l and m. Similarly, L3 lies also in this plane
(start with a point p′ ∈ L3, do the same calculation. Then you get the same lines of the
form (3.1) and hence the problem is completely symmetric). It follows that L1 and L3

both lie in the plane spanned by l and m and this is a contradition with the assumption.
Now we can intersect the surface Q with the line L4. We see that Q is a two-

dimensional surface and L4 a one-dimensional line. Using Bézout, we will in general
have 2 points of intersections (the product of the degrees). When we choose the line of
the form (3.1) in Q where this point of intersection lies. Then this line intersects all the
given lines. �

Remark 3.3. I expect that the condition of the lines being in general position already
makes sure that the fourth line does not intersect Q with multiplicity 2. However, I have
not checked this, but we can put this condition in the conditions of the theorem.
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Chapter 4

Conics

In this chapter, there will be dealt with conics. We will mainly solve some problems where
much background information is not needed yet. Also, [1] is followed in this chapter.

Definition 4.1. A plane conic curve or conic is the set of points [X,Y, Z] ∈ P2
C that

satisfy a degree two polynomial

aX2 + bXY + cY 2 + dXZ + eY Z + fZ2 = 0, (4.1)

where not all the coefficients are 0.
Note that a conic includes circles, hyperbola’s, parabola’s, any pair of lines and every

other shape that you can define using quadratic formulas. For any pair of lines, we see
that the formula splits into 2 factors, each factor representing one of the lines. Also,
when the formula splits in two factors, we know it to be two lines (which can be the same
though).

Definition 4.2. A conic is called nondegenerate if the polynomial is irreducible, other-
wise the conic is called degenerate. If the conic is nondegenerate or degenerate and it
consists of two different lines, the conic is called reduced, if the two lines are the same,
the conic is called a double line.

Now we can ask ourselves, how many reduced conics pass through p points, are tan-
gent to l lines and are tangent to c conics, where p+ l+ c = 5 (note that we want to look
at reduced conics to remove all the double lines, which will sometimes give an infinite
amount of conics).
For simplicity, we first set c = 0.

But before we’re going to count these number of conics, we observe that a conic is
uniquely identified by the coefficients a, b, c, d, e, f . There is only one problem, the same
conic is defined by the coefficients λa, λb, . . . , λf for λ 6= 0. The solution is that we can
use homogeneous coordinates. Therefore we get a bijection between the conics and the
coordinates [a, b, . . . , f ] ∈ P5.
If we impose a condition on a conic, like saying the conic should go through a point p,
we get a hyperplane in P5.

4.1 Five points

Proposition 4.3. Given 5 points p1, . . . , p5 ∈ P2 in general position. Then there is a
unique nondegenerate conic passing through these points.

Proof. For every point pi we get a condition on the conic, which leads to a hyperplane in
P5 of codimension 1. Intersecting these hyperplanes, yields the conics that pass through
all of these points. When the points yield linearly independent conditions, the codimen-
sion of the intersection will rise with 1 every time we intersect. Hence we remain with
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a linear subspace of codimension 5, hence dimension 0, which is exactly a point. So the
main point to check will be whether they impose linear conditions.

Since no three points are on a line, and the question does not depend on the choice
of coordinates, we can choose coordinates in P2 such that p1 = [0, 0, 1], p2 = [0, 1, 0] and
p3 = [1, 0, 0]. Then we get p4 = [r, s, t] and p5 = [u, v, w].

Now we see that the conic through these points should obey the following equations:

f = 0 (4.2)

c = 0 (4.3)

a = 0 (4.4)

ar2 + brs+ cs2 + drt+ est+ ft2 = 0 (4.5)

au2 + buv + cv2 + duw + evw + fw2 = 0 (4.6)

This can also be expressed as a matrixM , where we haveM ·[a, b, c, d, e, f ]T = [0, 0, 0, 0, 0]:

M =


0 0 0 0 0 1
0 0 1 0 0 0
1 0 0 0 0 0
r2 rs s2 rt st t2

u2 uv v2 uw vw w2

 (4.7)

Notice that this matrix has rank < 5 if every 5x5 submatrix has determinant 0. Re-
member that the rank of a matrix is defined to be the number of independent rows or
columns. If the rank is less than 5, there is a relation between the different rows, and
hence also when you take a 5× 5 submatrix. If the rank of M is actually 5, at least one
5× 5 submatrix will have determinant different from 0.
Using this, we can calculate which conditions the conics through these points should
obey, and also the points itself.
When we delete the 1st, 3rd or 6th colomn, we always get determinant 0. When we
remove the 2nd, 4th or 5th colom, and set the determinant to be 0, we get the following
conditions:

tw(rv − su) = 0 (4.8)

su(rw − tv) = 0 (4.9)

ru(sw − tv) = 0 (4.10)

We study case by case what happens when these conditions are obeyed:

• t = s = 0: p4 = [r, s, t] = [r, 0, 0] = [1, 0, 0], hence p4 and p3 coincide.

• t = u = 0: The points p2, p3 and p4 will be colinear, since the line through p2 and
p3 will look like λ[1, 0, 0] + µ[0, 1, 0] = [λ, µ, 0], and by choosing λ = r and µ = s,
we see that p4 = [r, s, 0] lies on this line. We assumed the points to be in general
position, so it is not allowed that they are colinear.

• t = r = 0: p2 and p4 will coincide.

• t = w = 0: the points p2, p3 and p5 will be colinear, analogous to t = u = 0
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• w = u = 0: p2 and p5 will coincide

• w = v = 0: p3 and p5 will coincide

• w = s = r = 0: p4 and p1 will coincide

If rv = su, we have the following cases:

• s = 0, then either r = 0 or v = 0. If r = 0, then p4 and p1 will coincide

• s = 0 and v = 0, then we have p4 = [1, 0, 1], hence p1, p3 and p4 will be colinear

• u = 0: analogous to s = 0

• r = 0, (notice that equation 2 is also satiesfied, since sutv = rv2t = 0), then we
have p4 = [0, 1, 1] and the points p2, p3 and p4 will be colinear.

• rw = tv and sw = tv. It follows that either w = 0 (p2, p3 and p5 are colinear) or
s = t, from which follows that s = 0 or v = w, from which again follows that v = 0
or r = t, and then we get u = v, hence p4 and p5 coincide

In all the cases when the matrix M failed to have maximal rank, we saw that the con-
ditions were not satisfied. Hence the hyperplanes are linearly independent, and their
intersection will be 0-dimensional. Since all the hyperplanes are linear, it follows that
there is exactly 1 conic through the given 5 points.

To prove that the conic is nondegenerate, suppose it is not. Then the conic will
consist of two lines. But the points are in general position, hence no three points will be
on a line. Therefore we will need at least three lines to pass through all the points, but
that is a contradiction. Hence the conic is nondegenerate. �

4.2 Four points and a line

Now we will show that there are exactly 2 conics that are tangent to one line and intersect
4 given points in general position. We will use Bézout’s theorem.
The first claim is that the space of conics as a subspace of P5 tangent to a given line is
a four-dimensional hypersurface of degree 2. Take for example the line y = 0. Then all
the conics that intersect this line are given by (by substituting y = 0)

aX2 + dXZ + fZ2 = 0

for some X,Z.
Since this is a quadratic equation in X, we will in general have 2 solutions. Only

when the discriminant d2 − 4af = 0, the conic is tangent to the line y = 0. Hence all
the conics that are tangent to y = 0 form the hypersurface {[a, b, c, d, e, f ]|d2 − af = 0},
which is indeed of degree 2 and 4 dimensional. The same calculation can be done for a
general line. Let L = {[X,Y, Z]|AX + BY + CZ = 0}. Assume A 6= 0. Then we have
AX = −(BY + CZ) for points on the line. When we intersect it with a conic we get:

a(BY + CZ)2 − b(BY + CZ)AY + cA2Y 2 − d(BY + CZ)AZ + eA2Y Z + fA2Z2 = 0

(aB2 − bAB + cA2)Y 2 + (2aBC − bAC − dAB + eA2)Y Z + (aC2 − dAC + fA2)Z2 = 0
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The discriminant of this equation looks like

(2aBC − bAC − dAB + eA2)2 − 4(aB2 − bAB + cA2)(aC2 − dAC + fA2)

= 4a2B2C2 + b2A2C2 + d2A2B2 + e2A4 − 4abABC2 − 4adAB2C + 4aeA2BC

− 2beA3C + 2bdA2BC − 2deA3B − 4a2B2C2 + 4adAB2C

− 4afA2B2 + 4abABC2 − 4bdA2BC + 4bfA3B − 4acA2C2 + 4cdA3C − 4cfA4

= b2A2C2 + d2A2B2 + e2A4 + 4aeA2BC − 2beA3C − 2bdA2BC − 2deA3B

− 4afA2B2 + 4bfA3B − 4acA2C2 + 4cdA3C − 4cfA4

=A2
(
(e2 − 4cf)A2 + (d2 − 4af)B2

+(b2 − 4ac)C2 + (4ae− 2bd)BC + (4bf − 2de)AB + (4cd− 2be)AC
)

For a line to be tangent to the conic, the discriminant should be 0. Since we assumed
A 6= 0, it follows that we have the following relation for A,B and C:

(e2 − 4cf)A2 + (d2 − 4af)B2 + (b2 − 4ac)C2 + (4ae− 2bd)BC+

(4bf − 2de)AB + (4cd− 2be)AC = 0 (4.11)

The same result follows if B 6= 0 or C 6= 0.
Hence all the conics that are tangent to a given line form a degree 2 hypersurface and is
fourdimensional.

Now applying Bézout, we see that there are exactly 2 conics that satisfy the condi-
tions.

Actually, we do have to check that when the points and lines are in general position
the multiplicity is 1 (and the intersection is transverse). This I will not do in this thesis.

4.3 Three points and two lines

Again using Bézout we get 4 conics that are tangent to two given lines and pass through
3 given points. Again we should check whether the intersection is transverse, but this
will not happen in this thesis.

4.4 Two points and 3 lines

For the number of conics through two points and tangent to three lines, we can’t use
Bézout directly anymore. This is because the double line through the two points is
tangent to the 3 lines as well, hence the hyperplanes will not intersect transversally
anymore. To solve this problem, we will go to the dual space of P2.

Consider a point p ∈ P2. In coordinates, p = [p0, p1, p2]. Note that we can uniquely
identify this point with the line L = {[X,Y, Z]|p0X + p1Y + p2Z = 0}. Define the dual
of a point to be this line.

Similarly, consider a line L = {[X,Y, Z]|aX + bY + cZ = 0}. Clearly, we can denote
this line by the point [a, b, c], since the line does not change if we multiply with a scalar.
Hence we define the dual of a line to be this corresponding point.

The dual space, we denote by P̌, whereas we denote the dual of the line L by Ľ and
the dual of a point p by p̌.

It would be nice if taking the dual of something respects inclusing. Take therefore
a point p ∈ L for a line L. Denote the line L by {[X,Y, Z]|aX + bY + cZ = 0}. Since
p ∈ L, we know that ap0 + bp1 + cp2 = 0. Then p̌ = {[X,Y, Z]|p0X + p1Y + p2Z = 0}
and Ľ = [a, b, c]. It follows that Ľ ∈ p̌ and duality indeed respects inclusion.

An interesting point is what happens to conics when looking at them in the dual
projective space. We define the dual of a conic Q to be the set

Q̌ = {Ľ|L is tangent to Q}.
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It follows that if Q̌ contains a point Ľ, then L ∈ P2 is tangent to Q.
Let AX +BY + CZ = 0 be a line and Q : aX2 + bXY + cY 2 + dXZ + eY Z + fZ2 = 0
represent a conic. In (4.11) we found the following relation when L is tangent to Q:

(e2 − 4cf)A2 + (d2 − 4af)B2 + (b2 − 4ac)C2 + (4ae− 2bd)BC (4.12)

+(4bf − 2de)AB + (4cd− 2be)AC = 0 (4.13)

This is again a conic. Hence the dual of a conic is a conic.

Proposition 4.4. The dual of a nondegenerate conic is again nondegenerate, the dual
of a pair of disjoint lines is a double line and the dual of a double line is the whole space
P̌5

Proof. For the first part, suppose that the dual of a nondegenerate conic is degenerate.
Then it has the form

(AX +BY + CZ)(DX + EY + FZ) = 0

ADX2 + (BD +AE)XY +BEY 2 + (AF + CD)XZ + (BF + CE)Y Z + CFZ2 = 0

for some A,B,C,D,E, F ∈ C.
The original conic had the form aX2+bXY +cY 2+dXZ+eY Z+fZ2 = 0. Combining

this with (4.13), we get the following relations:

AD = l(e2 − 4cf) (4.14)

BD +AE = l(d2 − 4af) (4.15)

BE = l(b2 − 4ac) (4.16)

AF + CD = l(4ae− 2bd) (4.17)

BF + CE = l(4b− 2de) (4.18)

CF = l(4cd− 2be) (4.19)

for some l ∈ C∗. Note that this l is neccecary because the coefficients are an element of
P5 and then you have this equivalence relation which states that the points can differ a
scalar.

Now (4.14), (4.16) and (4.19) reduce to

A = l
e2 − 4cf

D
(4.20)

B = l
b2 − 4ac

E
(4.21)

C = l
4cd− 2be

F
. (4.22)

Now we can fill (4.20),(4.21) and (4.22) in the equations (4.15),(4.17) and (4.18) to
get the following relations:

(b2 − 4ac)
D

E
+ (e2 − 4cf)

E

D
= d2 − 4af

(e2 − 4cf)
F

D
+ (4cd− 2be)

D

F
= 4ae− 2be

(b2 − 4ac)
F

E
+ (4cd− 2be)

E

F
= 4bf − 2de,

or similarly

(b2 − 4ac)D2 + (e2 − 4cf)E2 − (d2 − 4af)ED = 0 (4.23)

(e2 − 4cf)
F

D
+ (4cd− 2be)

D

F
= 4ae− 2be (4.24)

(b2 − 4ac)F 2 + (4cd− 2be)E2 − (4bf − 2de)EF. (4.25)
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The equations (4.23) and (4.24) give the following relations for D and F :

D = E ·
(d2 − 4af)±

√
(d2 − 4af)2 − 4(b2 − 4ac)(e2 − 4cf)

2(b2 − 4ac)
(4.26)

F = E ·
(4bf − 2de)±′

√
(4bf − 2de)2 − 4(b2 − 4ac)(4cd− 2be)

2(4bf − 2de)
(4.27)

From this we can get an expression for F
D and D

F in terms of a, b, c, d, e and f . When we
fill this in in (4.24), we get quite a nasty expression, but it turns out that this leads to a
contradiction for every choice of ± and ±′. Hence the dual of a nondegenerate conic is
nondegenerate

The second part, let the conic be given by (aX+ bY + cZ)(dX+eY +fZ) = 0. Then
the dual conic looks like (first expanding this equation, then filling it in in the expression
for the dual conic):

(b2f2 + c2e2 − 2bcef)A2

+ (2bcdf + 2acef − 2abf2 − 2c2de)AB

+ (a2f2 + c2d2 − 2acdf)B2

+ (2abef + 2bcde− 2b2df − 2ace2)AC

+ (2abdf + 2acde− 2bcd2 − 2a2ef)BC

+ (b2d2 + a2e2 − 2abde)C2

= (bf − ce)2A2 + 2(bf − ce)(cd− af)AB + (cd− af)2B2

+ 2(bf − ce)(ae− bd)AC + 2(cd− af)(ae− bd)BC + (bd− ae)2C2

= ((bf − ce)A+ (cd− af)B + (ae− bd)C)2 = 0

This is exactly the form of a double line, hence the dual of a pair of disjoint lines is a
double conic.

Lastly we look at the dual of a double line. The line looks like A2X2 + 2ABXY +
B2Y 2 +2ACXZ+2BCY Z+C2Z2. When we now fill these values in in equation (4.11),
we see:

e2 − 4cf = (2CB)2 − 4B2C2 = 0

4bf − 2de = 8ABC2 − 2ACBC = 0

d2 − 4af = 4A2C2 − 4A2C2 = 0

4cd− 2be = 8B2AC − 8AB2C = 0

4ae− 2bd = 8A2BC − 8A2BC = 0

b2 − 4ac = 4A2B2 − 4A2B2 = 0

Hence all lines possible obey (4.11), and hence every line is tangent to the double line.
It follows that for a double line Q, we have Q̌ = P̌5. �

Now we know that if a line L is tangent to a nondegenerate conic Q, then by definition
Ľ ∈ Q̌. We would like to know whether it is the other way around as well, hence for a
point p ∈ Q, does it hold that p̌ is tangent to Q̌?
To show that this holds, let L1 be a line tangent to Q in p. Then Ľ1 ∈ Q̌ and the point
Ľ1 lies on the line p̌. When we want to check whether p̌ is tangent to Q̌, it is sufficient to
find a different intersectionpoint and show that these points coincide (since that’s how
tangency is defined, a line is tangent in a point, exactly if it intersects the conic with
double multiplicity). Since a conic is quadratic, we will have 2 points of intersection, call
them Ľ1 and Ľ2, both of which are a point in p̌. Now we observe that both lines L1 and
L2 are tangent to Q in the point p. When the conic is nondegenerate, it follows that
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these lines coincide, hence Ľ1 = Ľ2 and hence p̌ is tangent to Q̌ in the point Ľ1.
So tangency is conserved when taking the dual.

Now we can again look at the problem how many conics are tangent to three given
lines and pass through two given points. When we look at the dual of these points and
lines, we see that there are exactly 4 (dual) conics tangent to the dual points and dual
lines. Since we now have reduced conics, we know that their was originally only one that
gave this conic, hence there are exactly 4 conics tangent to three given lines that pass
through two given points.

4.5 Remaining point line problems

For the two remaining problems, namely the number of conics tangent to four given lines
and that pass through a given point and the number of conics tangent to 5 given lines,
we look at the dual of these problems, and we see that there are respectively 2 and 1
conics that satisfy these conditions.
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Chapter 5

Background

5.1 Blow ups

In 6 we will solve the problem how many conics are tangent to five given conics. In this
chapter, we will develop some tools to be able to solve this. The first tool will be a blow
up.
Let X ⊂ Pn be a variety and Y ⊂ X a closed subvariety. Let I = (f1, . . . , fr) be the
ideal that locally describes Y in X (i.e. all the functions by which Y is defined, such
that fi(y) = 0 for y ∈ Y ). Clearly, this is an ideal, because when you multiply fi by an
arbitrary function g, the product will still be zero for points in X.
Now define φ : Pn 99K Pr

p 7→ [f1(p), . . . , fr(p)]

Notice that is map isn’t defined on Y , hence the dashed arrow. Now define Γ = graphφ ⊂
X × Pr.

Definition 5.1. Define the blow up of a closed subvariety Y ⊂ X to be Γ. It is denoted
by BlY (X).

We have two natural projections from BlY (X) to X and Pr, namely:

π : Γ→ X (p, q) 7→ p

pr : Γ→ Pr (p, q) 7→ q

where p ∈ X and q ∈ Pr. Outside Y , π gives an isomorphism between X−Y and BlY (X)
(since we can uniquely identify p with (p, q)).

Definition 5.2. π−1(X) is called the exeptional divisor, where X and π are as before.

Here is an example of a blow ups.

Example 5.3. Let X = C2 and Y = (0, 0). Then the ideal is generated by I = (x, y).
The map φ is given by

φ : C2 99K P1

(x, y) 7→ [x, y]

The graph of φ is given by graphφ = {(x, y, [x, y])|(x, y) 6= (0, 0)} ⊂ C2 × P1

Now we find some polynomials in which graphφ is contained. We choose coordinates
(x, y,X0, X1) ∈ C2 × P1. These polynomials should be homogeneous in the coordinates
X0 and X1. We therefore see that xX1 = yX0 is one polynomial. Furthermore, graphφ
is completely contained in it, and since this polynomial is irreducible, this is the only
polynomial. Hence Γ = {(x, y,X0, X1) ∈ C2 × P1|xX1 = yX0} is the blowup of Y .

Intuitively, what happens when you find the blow up of a point or an ideal is that you
replace the point by a copy of Pn for some n. Outside the point nothing really happens,
since there, you have an isomorphism between the blow up and the original points.
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5.2 Syzygies and Buchbergers Algorithm

Let K[x1, . . . , xn] be a ring. To be able to understand syzyzies and this algorithm, we
need first some more definitions about an ordening on monomials as it is done in [4].

Definition 5.4. A monomial is a polynomial of the form k · xm1
1 · · · · · xmnn where

m1, . . . ,mn ≥ 0 and k ∈ K.

In other words, a monomial is just a polynomial which just contains one term.

Definition 5.5. A monomial ordening over a ring K[x1, . . . , xn] is an ordening > over
the monomials, which obeys if p > q, then p · r > q · r for r ∈ K[x1, . . . , xn] a monomial
and p > 1 for all monomials p 6= 1.

As an example, take the lexicographic ordening, which first orders the monomials to
the degree of the first variable, if they are the same, it orders it to the degree of the
second variable and so on, i.e. x51x2 > x41x

9
2 > x41.

For this ordening the given condition holds, i.e. x21 > x1x2 and multiplying with x1x2
yields x31x2 > x21x

2
2, which is true.

Now it is possible to define the leading term of a polynomial:

Definition 5.6. Let K[x1, . . . , xn] be a ring with a monomial ordening. Let p ∈
K[x1, . . . , xn] be a polynomial and let p1, . . . , pq be monomials such that p = p1+· · ·+pq,
where p1 > p2 > · · · > pq. Then define the leading term of p to be p1, denoted by in(p)
(initial term).

Now let I ⊂ K[x1, . . . , xn] be an ideal and let

{g1, . . . , gt|gi ∈ I ∀1 ≤ i ≤ t, in(g1) > · · · > in(gt)}

be a subset that generates this ideal I.

Definition 5.7. The elements g1, . . . , gt form a Gröbner basis if {in(g1), . . . , in(gn)}
generate the ideal I as well.

For example, let I = (xy2 − y3, xy) ⊂ R[x, y] (i.e. the ideal generated by these
polynomials) with respect to lexografic ordening. Then the leading terms are xy2 and
xy, and together they generate the ideal (xy). Notice that y3 /∈ (xy), but since xy2 −
y3 − x(xy) = y3 ∈ I, it follows that this is not a Gröbner basis. We need to find some
more polynomials that will eventually form a Gröbner basis. However, this is quite hard
work, because it’s hard to be sure that you’ve checked all possible polynomials. For
this, we have an algorithm, called Buchberger’s Algorithm, which will give some special
relations between the generators (called syzygies), which will lead to a subset that is a
Gröbnerbasis

Definition 5.8. Let K[x1, . . . , xn] again be a ring with a monomial ordening <, and let
I be an ideal. Let f1, f2 ∈ I. Then the S-polynomial of (f1, f2) on < is

S(f1, f2) =
in(f2)

GCD(in(f1), in(f2))
f1 −

in(f1)

GCD(in(f1), in(f2))
f2,

whereGCD of two monomials is defined to beGDC(xa11 . . . xann , xb11 . . . xbnn ) = x
min(a1,b1)
1 . . . x

min(an,bn)
n .

The following two theorems are stated from [4], page 332.

Theorem 5.9. (Buchberger’s criterion) Let I ⊂ K[x1, . . . , xn] be an ideal and let

{g1, . . . , gt|gi ∈ I ∀1 ≤ i ≤ t, in(g1) > · · · > in(gt)}

be a subset that generates this ideal I. Then g1, . . . , gt form a Gröbner basis if and only
if S(gi, gj) = 0 for all pairs 1 ≤ i, j ≤ t.

18



Theorem 5.10. (Buchberger’s Algorithm) Let I, g1, . . . , gt be as in the previous theorem.
Compute S(gi, gj) for every i, j. If S(gi, gj) = 0 for every i, j, then we have a Gröbner
basis. If for a pair (i, j) hij = S(gi, gj) 6= 0, repeat the proces with g1, . . . , gt, hij. Since
the ideal generated by the leading terms of this latter set, is strictly bigger than the
previous ideal generated by the leading terms, this process must terminate, and hence we
can find a Gröbner basis for every ideal.

Note that when we have a Gröbner basis, the relations S(gi, gj) are called syzygies.

Proof. Read in [4].
Note that, although this algorithm gives a way of calculating the Gröbner basis, by

hand it stays quite difficult. The length of the algorithm grows exponentially with the
number of equations and the number of variables, so most of the time, you will need to
make use of a computer program.

19



5.3 Chow group

The Chow group of a variety is defined analogous to homology for topological spaces.
The elements from this group are defined as formal combinations of cycles (where, in
the case of a algebraic variety, a cycle is a closed irreducible subvariety of codimension
k). However, some cycles are equivalent to eachother, hence we will get an equivalence
relation as well. The definition is:

Definition 5.11. Let X be a smooth variety over C of dimension n. Define the Chow
group of X to be

Ak(X) = Z [closed irreducible subvarieties of codimension k] / ∼,

with ∼ some equivalence relation.

For k = 1, we will investigate this relation, called rational equivalence more clearly.
However, to define the equivalence relation, we first need the notion of a scheme. I will
not define it very rigorously, but just give some intuition for it.

A scheme is an algebraic variety which keeps track of multiplicity. As an example,
x = 0 and x2 = 0 define the same variety (namely x = 0), but as a scheme they differ by
their multiplicity in x = 0, which is 2 for the variety x2 = 0.

Now we can have define when two varieties are equivalent ( [6]).

Definition 5.12. Let Γ1,Γ2 be two closed irreducible subvarieties of X of codimension
1. Then Γ1 ∼rat Γ2 if and only if there exists a scheme D ⊂ P1 × X and a surjective
funtion (which is the projectionfunction on the first coordinate) f : D → P1 such that
D|[0,1] = Γ1 and D|[1,0] = Γ2.

Remark 5.13. Note that it is equivalent to say that Γ1 ∼rat Γ2 or Γ1 − Γ2 ∼rat 0.

With this notion, we can define when when a cycle is equivalent to 0 (from which
follows when two cycles are equivalent).

Definition 5.14. An arbitrary cycles α =
∑k
i=1 niΓi is equivalent to 0 if and only if

there exists schemes D1, . . . ,Dt such that α =
∑t
i=1Di|[0,1] −Di|[1,0]

Remark 5.15. This is indeed an equivalence relation.

Proof. Let Γ1,Γ2 and Γ3 be closed irreducible subvarieties of codimension 1 of X. Then
define D = {([s, t], x) ∈ P1 × X|x ∈ Γ1} and f : D → P1 ([s, t], x) 7→ [s, t]. Then
D|[0,1] = Γ1 = D|[1,0]. Hence Γ1 ∼rat Γ1.
Now suppose Γ1 ∼rat Γ2. Then there exists a D ⊂ P × X with a surjective function
f : D → P1. Now define g : D → P1 × X, where ([s, t], x) 7→ ([t, s], x). Call the image
D′ (notice that it is still a scheme). Using the same projectionfunction f , it follows that
Γ2 ∼rat Γ1.
Let Γ1 ∼rat Γ2 and Γ2 ∼rat Γ3. Then let D1 and D2 be the corresponding schemes and
define

D = {([s, t], x) ∈ P1 ×X|([s, t], x) = D1|[| st |,1−| st |] if t 6= 0 and
∣∣∣s
t

∣∣∣ ≤ 1

([s, t], x) = D2|[1−| ts |,| ts |] if s 6= 0 and

∣∣∣∣ ts
∣∣∣∣ ≤ 1}

Note that this is well defined, since for |s| 6= |t|, they are defined differently and if |s| = |t|
we have ([s, t], x) = D1|[1,0] = Γ2 = D2|[0,1].
Furthermore D|[1,0] = Γ3 and D|[0,1] = Γ1, and hence it follows that Γ1 ∼rat Γ3 and ∼rat
is indeed an equivalence relation. �

Proposition 5.16. All lines as a subset of P2 are rational equivalent.
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Proof. Let L1 = {[X,Y, Z]|AX+BY +CZ = 0} and L2 = {[X,Y, Z]|DX+EY +FZ = 0}
be two arbitrary lines. Define

D = {([s, t], [X,Y, Z])|(sA+ tD)X + (sB + tE)Y + (sC + tF )Z = 0}

Note that the function that defines D is homogeneous in both s, t and in X,Y, Z, and
hence it is welldefined.
Furthermore D|[0,1] = L2 and D|[1,0] = L1 and hence L1 ∼rat L2. �

In the Chow group we have by definition the operation addition. It is also possible to

define a product on A(X)×A(X)→ A(X), where A(X) = ⊕dim(X)
k=0 Ak(X). This product

satisfies some conditions, like when you restict the direct sum to single groups we get
Ak(X)× Al(X)→ Ak+l(X). Furthermore, on varieties that intersect transversally, this
product corresponds to taking the intersection of the varieties. The product is welldefined
modulo rational equivalence. These facts about the product, I will just assume.

Example 5.17. Let C = {x ∈ P2|f(x) = 0} be a variety where f is a polynomial of
degree n. Then C ∼rat nL, where L is a line.

Proof. Write f(x) =
∑
i,j,i+j≤n aijX

iY jZn−i−j . Define D = {([s, t], [X,Y, Z] ∈ P1 ×
P2|
∑
i,j,i+j≤n saijX

iY jZn−i−j+tXn}. Then this is a scheme (since it is an algebraic va-
riety and it remembers the multiplicity) and D[1,0] = C and D|[0,1] = {[X,Y, Z]|Xn} = 0,
which is just a line with multiplicity n, hence D|[0,1] = nL. Hence C ∼rat nL. �

Remark 5.18. Using this, we can give a short proof of Bézout’s theorem. Let C,D be
two varieties of degree m and n. Then their intersection can be written as C · D ∼rat
nLmL ∼rat mnLL′, with L and L′ two different lines. The intersection of those lines is
just a point, and hence the intersection of C and D contains exactly mn points (where
points with multiplicity p > 1 are counted p times).

Similar, we can prove the same results with hypersurfaces in Pn.

Proposition 5.19. All hyperplanes as a subset of Pn are rational equivalent.

Proof. Let H1 = {[X0, . . . , Xn]|A0X0 + · · ·+AnXn = 0} and H2 = {[X0, ·, Xn]|B0X0 +
· · ·+BnXn = 0} be two arbitrary hypersurfaces. Define

D = {([s, t], [X0, . . . , Xn])|(sA0 + tB0)X0 + · · ·+ (sAn + tBn)Xn = 0}

Note that the function that defines D is homogeneous in both s, t and in X0, . . . , Xn, and
hence it is welldefined. Furthermore D|[0,1] = H2 and D|[1,0] = H1 and hence H1 ∼rat H2.
�

The same result also holds with hypersurfaces of degree d (i.e. a hypersurface Z(f)
with f a polynomial of degree d is equivalent to dH, with H a hyperplane), where the
prove goes analogous, only you work in n + 1 coordinates and you have hyperplanes
instead of lines.
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Chapter 6

Conics continued

6.1 Veronese surface

With the theory presented in the previous chapter, we are now ready to look at the
problem of how many reduced conics are tangent to 5 given conics. We have the following
theorem.

Theorem 6.1. Let 5 conics in general position be given. Then there are exactly 3264
reduced conics tangent to the given conics.

In this chapter the proof of this theorem will be presented.
Since there are many double lines that intersect all the given conics with multiplicity

2, we can’t just use Bézout to calculate the number of conics. Therefore, we will make
the blowup for the set of double lines in P5 and then intersect the hypersurfaces of conics
tangent to a given conic. In this chapter [1] is followed.

Remark 6.2. I will not discuss the condition about the conics being in general position
in detail, but in the end, there will be a short remark about it.

Every double line is of the form

(AX +BY + CZ)2 = 0

AX2 + 2ABXY +B2Y 2 + 2ACXZ + 2BCY Z + C2Z2 = 0

The double lines form a surface, and this surface, seen as a subset of P5 is called the
Veronese surface. Since we want to find the blow up for this set, we first will find the
ideal that generates this surface. Notice that points in the Veronese surface all obey the
following relations (when you choose coordinates [a, b, c, d, e, f ] ∈ P5):

b2 − 4ac = 0

d2 − 4af = 0

e2 − 4bf = 0

bd− 2ae = 0

de− 2bf = 0

be− 2cd = 0 (6.1)

We can show that (6.1) defines an irreducible variety of dimension 2. We show this by
showing that this variety is irreducible of dimension 2 in every chart.
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Choose a 6= 0. Then the equations from (6.1) reduce to (by dividing through a, using
the chart Ua, and defining b′ = b

a , . . . , f
′ = f

a ):

b′2 − 4f ′ = 0

d′2 − 4f ′ = 0

2e′ − b′d′ = 0

e′2 − 4b′f ′ = 0

d′e′ − 2b′f ′ = 0

b′e′ − 2c′d′ = 0

Notice that from the first three equations we can derive the other three. Hence in this
chart, the Veronese surface is an irreducible variety of dimension 2 (a surface). Similar
equations arise when we choose a different coordinate to be nonzero (but then we need
different equations to start with from which we can derive the other equations). However,
we see that in every case, we have defined the surface with these equations, and hence
the Veronese surface is a irreducible variety of dimension 2. Note that in (6.1) we do
need all these 6 equations, since they are linearly independent.

6.2 Blowing up the Veronese surface

Define the map

φ : P5 99K P5

[a, b, c, d, e, f ] 7→ [b2 − 4ac, d2 − 4af, e2 − 4bf, bd− 2ae, de− 2bf, be− 2cd]

This map isn’t defined exactly in the Veronese surface, containing all the double lines.
Hence we can find the blowup of this surface.

Γ = graphφ = {([a, b, c, d, e, f ], [r, s, t, u, v, w])|r = e2 − 4cf, s = 4bf − 2de, t = d2 − 4af,

u = 4cd− 2be, v = 4ae− 2bd, w = b2 − 4ac, [a, b, c, d, e, f ] not on the Veronese}

Now the closure of this graph obeys all the relations xiyj = yixj for all pairs
(xi, yi), (xj , yj) ∈ {(a, r), (b, s), (c, t), (d, u), (e, v), (f, w)}. However, this are not all the
relations we can find.

We can use Buchberger’s algorithm (5.2) to find a Gröbner basis of the Veronese
surface. For every syzygy we add to the set of generating functions ((6.1)), we can find
a relation which points in the blowup satisfy. We therefore find the following relations
(note that I will not do it by hand, since it becomes a very large calculation):

bu+ 2ew + 2cv = 0

eu+ 2br + 2cs = 0

ds+ et+ 2fv = 0

es+ 2dr + 2fu = 0

bv + 2dw + 2au = 0

dv + 2bt+ 2as = 0

4ar − 4ct+ du− ev = 0

4ct− 4fw + bs− du = 0

For a quick check, we can check whether points from the Veronese do obey these relation.
In every equation, we can replace r, s, t, u, v and w with their corresponding equations,
and check whether the relations are satisfied. Take for example the first equation:

bu+ 2ew + 2cv = b(4cd− 2be) + 2e(b2 − 4ac) + 2c(4ae− 2bd)

= 4bcd− 2b2 + 2b2e− 8ace+ 8ace− 4bcd = 0
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Since it equals 0, the relation is satiesfied.
For all the other equation it holds as well.
Even with these relations, outside the Veronese surface, we still have an isomorphism
(the first 15 equations completely define r, s, t, u, v and w). For points in the Veronese,
we can see that we’ve replaced every point with a copy of P2. Take for example the
point which came from the line (X + Y + Z)2 = 0 (i.e. A = B = C = 1). Then the
point is given by [1, 2, 1, 2, 2, 1] in the Veronese surface. The first 15 equations all reduce
to 0 = 0, since we know that we’re on the Veronese, hence xi = 0 for all i. The other
8 equations reduce to the following equations (every equation is gotten twice and some
equations were just a linear combination of these equations)

u+ v + 2w = 0

u+ s+ 2r = 0

s+ t+ v = 0

Now we’ve got 3 equations and 6 unknown, hence in the end, we can choose three of
these free and the other will follow. Hence we’ve replaced every point with a copy of P2.
We call the exceptional divisor E (the preimage of the Veronese surface).
To solve the problem of how many conics are tangent to the given conics, we will intersect
the following sets:

Definition 6.3. For a hypersurface Y ⊂ P5, the proper transform is π−1(Y − V ), where
π the projection function from P5×P5 on the first P5 and V the Veronese surface. Denote
the proper transform by Ỹ .

Notice that if Y doesn’t contain the Veronese, it is still an isomorphism. If Y did
contain (part of) the Veronese, it will in the blow up intersect E, but it will not entirely
contain it. This will make it possible to make use of the theory of the Chow group, which
we will calculate of the blowup.
Notice that in P5, any two hyperplanes are rationally equivalent, as proved in section
5.3. Call the class of hyperplanes [H], and any hypersurface of degree d is rationally
equivalent to d[H].
Now take a hypersurface Y of degree d. If it doesn’t contain (part of) the Veronese, we
know by the isomorphism that Ỹ ∼rat d[H].

The exeptional divisor behaves totally different, since it is not part of P5 and therefore
it doesn’t behave like any hypersurface. Hence the exeptional divisor gives rise to a new
element in the Chow group. Call this new element of the group [E]. We know that
we have all the generators now, because outside the exceptional divisor we have the
isomorphism.
We get for a hypersurface Y that d[H̃] = [Y ] = π−1(Y ) = m[Ỹ ] + n[E] and hence
[Ỹ ] = d[H̃]− n[E].

If n = 0, m denotes the degree of the surface in H. Similar, n denotes the degree of
the hypersurface in E (by definition of sums in the Chow ring). Since it is quite hard to
check the degree, you can also check to which order the formal derivatives on the set on
which we made the blowup don’t dissapear anymore.

The following definitions come from [4], page 105.

Definition 6.4. A function F vanishes to order n along a variety X if F and all its
partial derivatives to order n dissapear on X.

Now let k[x1, . . . , xn] be a polynomial ring over an algebraically closed field k of
characteristic 0. Let P ⊂ k[x1, . . . , xn] be a prime ideal, so that P is the set of all
polynomials vanishing on X (i.e. P is the ideal that defines X). Let for n ≥ 1

P 〈n〉 = {f ∈ S|f vanishes to order ≥ n at every point of X}.

Furthermore, we need the following definitions as well:
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Definition 6.5. In a ring R, an ideal Q is called primary if for every xy ∈ Q either
x ∈ Q or yn ∈ Q.
The radical of Q (that is, {r ∈ R|rn ∈ Q for some n ∈ N}) is a prime-ideal P , and Q is
called P−primary.

Definition 6.6. Let P be a maximal ideal defining a variety X. The n-th symbolic power
of P is the smallest ideal Q such that Pn is contained in it, where

Pn = {p1 · p2 · · · · · pn|pi ∈ P∀1 ≤ i ≤ n, not nececarily different}

Denote it by P (n).

Now we have the following theorem, which I will not prove (see [4], page 106).

Theorem 6.7. Suppose that k is an algebraically closed field and S is a polynomial ring
over k. If P is a prime ideal of S defining X, then P 〈n〉 = P (n)

Now denote the ideal of functions that dissapear on the Veronese surface by I(V )
(notice that this set is generated by (6.1)).

Now we can give a precise definition for this n. Let PY be a polynomial that describes
a hypersurface H ⊂ P5 (i.e. PY (x) = 0 exactly when x ∈ H. Then the inverse image
π−1(H) is defined by the set on which the equation PY ◦π = 0 holds. Now n is the order
to which PY ◦ π vanishes on E.
By theorem 6.2 this is the same as the order of PY which vanishes on V (the prime ideal
associated with E is exactly V ). Hence when we’d like to calculate the corresponding
element of the chowgroup, all we need to do is calculate the degree (for m) and the order
to which it vanishes on the Veronese surface V .

6.3 Elements in the Chow group for points, lines and
conics

Now we will calculate the elements for the hyperplanes that are formed by all the conics
through a point, all the conics tangent to a line and all the conics tangent to a given conic.

For a point, all the conics that go through this point form a linear hyperplane. There-
fore, the degree of the hypersurface is 1. Furthermore, the hypersurface does not contain
the full Veronese surface. Hence the polynomial that defines the hypersurface doesn’t
vanish on the whole Veronese surface and n = 0. Denote the hyperplane by Hp. Then

we have [H̃p] = [H̃].

For a line, we’ve seen in (4.11) that the degree of the hypersurface is 2.
Also, the hypersurface for the line {[X,Y, Z]|AX + BY + CZ = 0} is defined by the
following equation (4.11).

(e2 − 4cf)A2 + (d2 − 4af)B2 + (b2 − 4ac)C2 + (4ae− 2bd)BC + (4bf − 2de)AB + (4cd− 2be)AC = 0

Clearly, the polynomial on the left vanishes on V . Now, the first partial derivative (where
we derive to a) looks like:

−4fB2 + 4eBC − 4cC2

The point [0, 0, 0, 0, 0, 1] lies on the Veronese, but the polyomial doesn’t dissapear in this
point. Hence n = 1 for the hyperplane of conics tangent by a given line. Denote this
hyperplane by Hl. Then we have [H̃l] = 2[H̃]− [E].

Now we look at the hypersurface HQ of conics tangent to the conic Q. First we
calculate H for a specific conic, given by XZ = Y 2. Then we get (for Z 6= 0):

aX2 + bXY + cY 2 + dXZ + eY Z + fZ2 = 0
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Now using Z 6= 0, we can use X = Y 2/Z and multiply the whole equation with Z2 to
get

aY 4 + bY 3Z + (c+ d)Y 2Z2 + eY Z3 + fZ4 = 0

This is a degree 4 polynomial, and the discriminant then looks like:

e2(c+ d)2b2 − 4e3b3 − 4e2(c+ d)3b+ 18e3(c+ d)ba− 27e4a2 + 256f3a4

+f(−4(c+ d)3b2 + 18e(c+ d)b3 + 16(c+ d)4a− 80e(c+ d)2ba− 6e2b2a+ 144e2(c+ d)a2)

+f2(−27b4 + 144(c+ d)b2a− 128(c+ d)2a2 − 192eba2

Setting this to 0 yields tangency, and this is a degree 6 polynomial. Hence m = 6.
Notice that all the hyperplanes of conics tangent to a given conic are now degree 6, since
when you first start with a circle, you can get by a coordinate transform an ellips. From
this you can get a parabola and hyperbola, and taking again a limit (getting the right
coordinate 0), you can get two lines. From these you can again make a double line, and
it follows that all the hyperplanes can be gotten by some coordinate transform. These
transforms are all linear, hence the degree of the hypersurface stays the same.
For the number n, it can be checked that this polynomial is 0 on the Veronese (which
you would expect, since every double line is tangent to every conic) and all the partial
derivatives vanish as well. However, the second partial derivatives don’t vanish all any-
more, hence n = 2. Again, only using linear transforms, the fact whether the polynomial
vanishes on the Veronese stays the same, hence for every conic Q it follows that n = 2.
For the hyperplane Hq we therefore get [H̃q] = 6[H̃]− 2[E].

6.4 Getting to 3264

Now we have the following equations:

[H̃p] = [H̃]

[H̃l] = 2[H̃]− [E]

[H̃q] = 6[H̃]− 2[E]

from which follows that [H̃q] = 2[H̃l] + 2[H̃p].
Furthermore, in section 4, we’ve seen that

[H̃p]
5 = [H̃l]

5 = 1

[H̃p][H̃l]
4 = [H̃p]

4[H̃l] = 2

[H̃p]
2[H̃l]

3 = [H̃p]
3[H̃l]

2 = 4

Now to calculate how many conics are tangent to 5 given conics we see that we need to
calculate [HQ]5. We therefore get

[H̃q]
5 = (2[H̃l] + 2[H̃p])

5 = 25
(

[H̃l]
5 + 5[H̃l]

4[H̃p]
1 + 10[H̃l]

3[H̃p]
2 + 10[H̃l]

2[H̃p]
3 + 5[H̃l]

1[H̃p]
4 + [H̃p]

5
)

= 25(1 + 5 · 2 + 10 · 4 + 10 · 4 + 5 · 2 + 1 = 25 · 102 = 3264

With this we have proved that there are at most 3264 reduced conics tangent to 5
given conics.
Similar, we can get numbers for how many degenerate conics are tangent to p given
points, l given lines and 5 − p − l given conics, for example for 2 lines, 1 point and 2
conics we get

[H̃q]
2[H̃l]

2[H̃p] = 4([H̃p] + [H̃l])
2[H̃l]

2[H̃p] = 4[H̃l]
2[H̃p]

3 + 8[H̃l]
3[H̃p]

2 + 4[H̃l]
4[H̃p] = 56
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6.5 Proof that this is the correct answer

In this section, we will prove that the way of calculating the number of reduced conics
tangent to 5 given conics is correct. To prove this, we will use the Zariski topology:

Definition 6.8. Let A ⊂ Pn for some n. Then A is closed in the Zariski topology if it
is the set of common solutions to a collection of polynomial equations. A is open if its
complement is closed.

Proposition 6.9. The Zariski topology is indeed a topology

Proof. Let A,B ⊂ Pn be closed in the Zariski topology. Then we can write A = {x ∈
Pn|f1(x) = · · · = fm(x) = 0} and B = {x ∈ Pn|g1(x) = · · · = gk(x) = 0}. Then the
union is given by

A ∪B = {x ∈ Pn|fi(x)gj(x) = 0 for all 1 ≤ i ≤ m and 1 ≤ j ≤ k}

This set is indeed closed, hence A ∪B is closed.
Now let {Bα}α∈A where A is some indexset, be a set of closed sets. Then we write
Bα = {x ∈ Pn|fα,1(x) = · · · = fα,mα(x) = 0} for every set. Then the intersection is
given by ⋂

α∈A
Bα = {x ∈ Pn|fα,i(x) = 0 for all α ∈ A and 1 ≤ i ≤ mα}

This set is again closed.
Furthermore we have for the function h1(x) = 0 for all x ∈ Pn that A = {x ∈ Pn|h1(x) =
0} = Pn and for the function h2(x) = 1 for all x ∈ Pn that B = {x ∈ Pn|h2(x) = 0} = ∅.
Hence the Zariski topology is indeed a topology. �

To get some feeling for the Zariski topology, we check some property of the Zarisky
topology:

Proposition 6.10. The Zariski topology on P1 is not Hausdorff.

Proof. Suppose that the Zariski topology is Hausdorff. Then we have for x, y some opens
U, V such that x ∈ U , y ∈ V and U ∩ V = ∅. However, by definition of the open sets,
it follows that UC and V C are some solutions of polynomial equations, and hence finite.
Hence UC ∪ V C = (U ∩ V )C is finite. Since we have infinite many points, it follows that
U ∩ V is nonempty and hence we have a contradiction. �

Now we can prove that we’ve got the right answer with the following theorem:

Theorem 6.11. For conics Qi ∈ P5, the set of conics(Q1, . . . , Q5) ∈ (P5)5 such that
the H̃Qi intersect transversally in points corresponding to reduced conics is open in the
Zariski topology.

Proof. We will prove that its complement is closed.
Let for a conic Qi its defining equation be given by

aiX
2 + biXY + ciY

2 + diXZ + eiY Z + fiZ
2 = 0.

Choose p ∈ H̃Q1 ∩ H̃Q2 ∩ H̃Q3 ∩ H̃Q4 ∩ H̃Q5 .
Now we will look at the tangent space of each of the hypersurfaces.
Note that BlV (P5) ⊂ P5 × P5, hence we can look at the tangent space at p of BlV (P5)
as a subspace of P5 × P5. This is a linear subspace (where the point p lies in the origin
of this linear subspace). Denote the tangent space by TBlV (P5).

The tangent space of p of H̃Qi is now a linear hyperplane in TBlV (P5) ⊂ P5 × P5.

Now we can choose charts on P5 × P5 such that we have a map to C10 (in total
we will need 36 charts). When we restrict those charts to BlV , we get polynomials
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gi(ai, . . . , fi, x0, . . . , x9) which define the image of the hyperplanes of the tangent spaces
of H̃Qi at p, where x0, . . . , x9 denote the point p.

These hypersurfaces intersect transversally, exactly when the jacobian J =
(
∂gi
∂xj

)
has

full rank. Note that this is a 5 × 10 matrix. It fails to have full rank exactly when all
the 5× 5 submatrices vanish. Since that become just polynomials, we have that the sets
H̃Q1

, . . . , H̃Q5
don’t intersect transversally exactly when some polynomials all become 0.

Hence the set

S = {(Q1, . . . , Q5, p)|p ∈ H̃Q1
∩ · · · ∩ H̃Q5

and the intersection is not transverse} ⊂ (P5)5 ×BlV (P5)

is closed in the Zariski topology.
Note that also the Veronese surface is closed in P5 (it is the set of common zeros of some
polynomials) and since π is continous, we have E = π−1(V ) is closed.

Now we will look at some sets in (P5)5 ×BlV (P5). Note that (P5)5 ×E is closed and
S is closed as well. Hence S′ =

(
(P5)5 × E

)
∪ S is closed in the Zariski topology. Now

we can take the projectionfunction to (P5)5, which is a continious function that maps S′

to some set in (P5)5 and it follows that the set conics (Q1, Q2, Q3, Q4, Q5) whose proper
transforms fail to intersect transversally is closed in the Zariski topology. �

When this set is non-empty, we have shown that for most configurations (we have
excluded a very small set) the proper transforms intersect transversally, and this shows
that we were able to use the theory we’ve seen before. Once we have one example for
which we can find 3264 unique conics that are tangent, we’re done. This example can
be found in [1]. Hence for most configurations there are exactly 3264 conics that are
tangent to the 5 given conics.

Remark 6.12. The condition of the conics being in general position is satisfied if the
given conics are such that the corresponding hyperplanes HQi intersect transversally. All
the 5-tuples of conics for which this is not the case, we exclude using the general position.

A similar prove can be given for the other problems which involve p points, l lines
and c conics where p+ l + c = 5.
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