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Abstract

Markov decision processes provide us with a mathematical framework for decision making. These models
are now widely used in many fields, such as robotics, economics and ecology. In this thesis we will be
looking at the finite-horizon case in discrete time as well as continuous time. In both cases we will
start by formulating the problem, and proving that this formulation is valid. Afterwards we will provide
algorithms to solve these processes, such as the dynamic programming algorithm. At the end we will solve
a Continuous-time Markov decision problem in multiple ways, in order to analyze the different solutions.
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Chapter 1

Introduction

Decisions are an important part of life, every day we make many of them. These decisions do not only
result in a reward, but also have impact on decisions you can make in the future. By ignoring the influ-
ence today’s decisions have on the decisions of the future, and present and future rewards, we may not
achieve a good overall performance. For example, when you have to run ten miles, it is not a good idea
to run as fast as you can from the start. Markov decision processes provide a mathematical framework
that takes these aspects of decision making into account.

Markov decision processes have been studied since the 1950s and are now used in many areas, including
robotics, economics, communications engineering and ecology. In 1957, Richard Bellman introduced what
is now known as the Bellman-equation. This layed the groundwork for the solutions to the MDP’s known
as dynamic programming and reinforcement learning.

In this thesis we will describe the discrete-time and continuous-time Markov decision processes and
provide ways of solving them both. The main focus lies on the continuous-time MDP, but we will start
with the discrete case. The discrete case is solved with the dynamic programming algorithm. After
having solved the discrete case, we will formulate the continuous-time case. The formulation of this case
and justification of this formulation is of considerable difficulty and will take up most of chapter 4. In
chapter 5 is concerned with the proof that the optimal policy for the continuous-time MDP is piecewise
constant. After this proof is completed we describe the algorithm that solves the problem, but that
algorithm comes with a problem. We therefore also intorduce the discrete approximation that uses the
Discrete-time MDP solution to solve the Continuous-time MDP. To finish up, in chapter 6 we will look
at an example where both solutions are used.
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Chapter 2

Discrete Time Markov Decision
Process

The model for decision making goes as follows: At a specified point in time, a decision maker observes
the system state. Based on this information the decision maker chooses an action. This action has two
results. Firstly the decision maker receives an immediate reward and the system evolves to a new state
at the next point in time according to a probability distribution determined by the action chosen. At
this point in time the decision maker faces the same situation. However, this time the decision maker
might be in a new system state that presents him with new actions.

The key ingredients of this model are the following five elements:

1. A set of decision epochs

2. A set of system states

3. A set of possible actions

4. A set of immediate rewards/costs, depending on the current state and chosen action

5. A set of transition probabilities, also depending on state and action

We will discuss these elements in more detail below

2.1 The Decision Epochs

We call the points of time where decisions are made the decision epochs. The set of decision epochs will
be referred to as T. In the discrete markov decision processes, decisions are made at all discrete time
units. In general, the set of decision epochs can either be finite or infinite, but in this thesis we will only
concern ourselves with the finite case. In this case, which is called a finite horizon problem, we define T
≡ {1, 2, . . . ,N}.

2.2 The System States and Action Sets

At every decision epoch we assume the decision maker is in some kind of state. We denote the set of pos-
sible system states by S = {1, . . . ,M}. At some decision epoch, the decision maker observes he is in state
s ∈ S, and he chooses an action a, that he is allowed to make in state s. We denote the set of allowable
decisions in state s by As and the set of total decisions by A, where A = ∪s∈S As. The sets S and As we
will look at, are arbitrary finite sets. In general however, S and As can get far more complicated than this.
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CHAPTER 2. DISCRETE TIME MARKOV DECISION PROCESS 7

2.3 The Rewards and Transition Probabilities

When the decision maker is in state s and chooses an action a ∈ As at time t, there are two consequences,

1. the decision maker receives a reward rt(s, a)
2. the system state at the next epoch is determined by the probability distribution pt(·|s, a)

rt(s, a) may be regarded as income in which case it is positive, or regarded as cost in which case it is
negative. The reward can take multiple forms, we only require its (expected) value to be known before
choosing an action, and that it is not affected by future actions. In finite horizon Markov decision pro-
cesses there is no decision made at decision epoch N . Therefore we denote the reward at time N as rN (s)
which we will call the scrap value

We have now gone through all the ingredients that make up a Markov decision process. From now
on, when we talk about a Markov decision process, we refer to the collection of the objects

{T, S,As, pt(·|s, a), rt(s, a)}

We use the “Markov ”qualifier to indicate that the transition probabilities and the rewards are not influ-
enced by the past. What is left for us is a strategy to deal with these MDP’s: the policy.

2.4 The Policy

We now know what a discrete Markov decision process looks like: You select an action at each point
in time based on the state you are in, and then you receive a reward and transit into a new state until
we arrive at the end. Let D = A1 × A2 × · · · × AM . The action you choose is described by the policy
π(t) : T → D. This is a function which tells you what action you must take for each state at time t. We
will use the notation πs(t) for the action prescribed by the policy, for state s at time t and we denote the
set of all possible policies as Π. We will also require the policy to be Markovian. That is, the policy may
only depend on the current system state and the current action taken.

The evolution of the Markov decision process from state to state depends on the policy. The return
of the process is the sum of rewards which also depends on the implemented policy. Our goal throughout
this thesis will be to determine the policy which maximizes the expected return of the entire process.



Chapter 3

Solving discrete-time Markov
decision processes

3.1 The expected total reward

We said we will be maximizing the expected total reward, so it is time to define what that means. We
denote the expected total reward of a Markov decision process starting in state s, using a policy π as
follows:

vπ(s) ≡ Eπ[

N−1∑
t=1

rt(st, πst(t)) + rN (sN )]

We quickly note that this expression is just the sum of all the acquired rewards of time 1 up to time
N − 1, and lastly the scrap value. As we mentioned earlier, the goal is to find a policy that maximizes
this total reward. That is, we are looking for a policy π∗ such that

vπ
∗
(s) ≥ vπ(s), s ∈ S (3.1)

for all π ∈ Π. The maximal total reward is often referred to as v∗(s) ≡ maxπ∈Π vπ(s).

3.2 The utility functions

To calculate the total expected reward we will be using utility functions uπt : S → R. If we are in state
st at time t we define uπt as follows:

uπt (st) ≡ Eπ[

N−1∑
i=t

ri(si, πsi) + rN (sN )] (3.2)

where we let uπN ≡ rN (sN ). The difference between vπ(s) and uπt (st) is of course that uπt (st) denotes the
expected reward from epoch t and onwards whereas vπ(s) includes all the rewards received throughout
the entire process.
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CHAPTER 3. SOLVING DISCRETE-TIME MARKOV DECISION PROCESSES 9

We will now show how we calculate vπ(s) by calculating uπ1 (s). This is called the finite-horizon policy
evaluation algorithm. For this algorithm, we assume a policy π ∈ Π to be given.

The finite-horizon policy evaluation algorithm

1. Set t = N and uπN (sN ) = rN (sN ) for all sN ∈ S.

2. If t = 1 stop, otherwise go to step 3.

3. Substitute t− 1 for t and compute uπt (st) for each st ∈ S by

uπt (st) = rt(st, πst(t)) +
∑
j∈S

pt(j|st, πst(t))uπt+1(j) (3.3)

4. Return to 2

Some motivation for calculating these utility functions backwards will follow. The expected reward of
policy π over epochs t through N is equal to the immediate reward at epoch t by selecting πs(t) plus the
expected total reward over periods t+ 1 through N . These are all known when we start calculating uπt ,
so summing over all possible states j ∈ S for st+1 gives the desired expectation in terms of uπt+1. This
idea is what stands at the basis of dynamic programming, since it reduces the problem of computing
expected total rewards to N − 1 one-period calculations. What is left for us to do, is to show that this
algorithm does indeed give us the uπt as they were defined. The proof is by induction on t.

Theorem 1. Let π ∈ Π be given and suppose uπt has been generated by the finite-horizon policy evaluation
algorithm. Then, for all t ≤ N , (3.2) holds and vπ(s) = uπ1 (s) for all s ∈ S.

Proof. By the way we defined uπN (s), the theorem holds for t = N . Suppose now that the (3.2) holds
for t+ 1, t+ 2, . . . , N . Then by using (3.3) and the induction hypothesis:

uπt (st) = rt(st, πst(t)) +
∑
j∈S

pt(j|st, πst(t))ut+1(j)

= rt(st, πst(t)) +
∑
j∈S

pt(j|st, πst(t))Eπ{
N−1∑
i=t+1

ri(si, πsi) + rN (sN )|st+1 = j}

= rt(st, πst(t)) + Eπ[Eπ{
N−1∑
i=t+1

ri(si, πsi) + rN (sN )|st+1 = j}|st]

= rt(st, πst(t)) + Eπ[

N−1∑
i=t+1

ri(si, πsi) + rN (sN )|st]

Since st and πst are both known at time t we can include the first term in the expectation giving us
the desired result.
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So this algorithm works, but we have not yet discussed why we are using it. The way vπ(s) is defined,
it can be calculated rigorously by computing the expectation. This will require us to calculate the chance
of every possible combinations of states and actions. Assuming there are M states, this requires us to do
MN multiplications. Using the algorithm, we are required to do M calculations for the expectation in
step 3, we have to do that for M states at each point, and there are N − 1 points where we have to do
this calculation. This gives us only (N−1)∗M2 calculations. So the algorithm turns a calculation that is
exponential in time, into a calculation that is linear in time. That is what makes dynamic programming
such a powerful tool.

3.3 Optimality equations

Now we know how to evaluate a policy, it is time to see how we can find the optimal policy. In this
section we will introduce the optimality equations and show that these equations are sufficient to achieve
optimality. This will be done by optimizig the utility functions, and we define the optimal utility functions
as:

u∗t (st) ≡ max
π∈Π

uπt (st)

This denotes the maximum over all policies of the expected reward from decision epoch t onward,
given that the state at time t is st. We will prove that we can find these optimal utility functions by
using the optimality equations which are as follows:

ut(st) = max
a∈Ast

rt(st, a) +
∑
j∈S

pt(j|st, a)ut+1(j)

for t = 1, . . . , N − 1 and st ∈ S. For t = N we add the boundary condition

uN (sN ) = rN (sN )

for sN ∈ S. These optimality equations are fundamental in Markov decision theory and will show up
again in the continuous case. Two of the most important properties of these optimality equations are as
follows:

• Solutions to the optimality equations are optimal returns from decision epoch t onward for all t.

• The optimality equations provides a method for determining whether a policy is optimal. If the
expected total reward from period t onward satisfies this system of equations for t = 1, . . . , N it is
optimal.

The first property is simply an interesting property of the optimal policy. It does not only optimize
the MDP from period 1 to N , but also from every decision point t onwards, no matter what state occurs
at time t. The latter one speaks for itself, this gives us a way to determine whether a policy is optimal,
which is much better than calculating the total expected reward over all π ∈ Π.

We will now state and prove the theorem which shows that utility functions satisfying the optimality
equations are the optimal utility functions.
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Theorem 2. Suppose ut is a solution to the optimality equations for t = 1, . . . , N . Then

1. ut(st) = u∗t (st) for all st ∈ S, t = 1, . . . , N and

2. u1(s1) = v∗(s1) for all s1 ∈ S.

Proof. The proof is in two parts. We will first prove that ut(st) ≥ u∗t (st) for all st ∈ S and t = 1, . . . , N .
For period N we have uN (sN ) = rN (sN ) = uπN (sN ) for all sN ∈ S and π ∈ Π. Therefore uN (sN ) =
u∗N (sN ) for all sN ∈ S. Now assume that ut(st) ≥ u∗t (st) for all st ∈ S for t = n + 1, . . . , N . Let π′ be
an arbitrary policy in Π. For t = n, the optimality equation becomes

un(sn) = max
a∈Asn

{rn(sn, a) +
∑
j∈S

pn(j|sn, a)un+1(j)}

By the induction hypothesis we have:

un(sn) = max
a∈Asn

{rn(sn, a) +
∑
j∈S

pn(j|sn, a)u∗n+1(j)}

≥ max
a∈Asn

{rn(sn, a) +
∑
j∈S

pn(j|sn, a)uπ
′

n+1(j)}

≥ rn(sn, π
′
sn(n)) +

∑
j∈S

pn(j|sn, π′sn(n))uπ
′

n+1(j)

= uπ
′

n (sn)

Since π′ is arbitrary,

un(sn) ≥ uπn(sn) for all π ∈ Π

Thus un(sn ≥ u∗n(sn)) and the induction hypothesis holds.
Now we establish that for any ε > 0, there exists a π′ ∈ Π for which

uπ
′

n (sn) + (N − n)ε ≥ un(sn)

for all sn ∈ S and n = 1, . . . , N . To do this, construct a policy π′ by choosing π′n(sn) to satisfy

rn(sn, π
′
sn(n)) +

∑
j∈S

pn(j|sn, π′sn(n))u∗n+1(j) + ε ≥ un(sn)

which is possible by the way un(sn) is defined. Once again we establish the result by induction. Since
uπ
′

N (sn) = uN (sN ), the induction hypothesis holds for t = N . Assume that uπ
′

t (st) + (N − t)ε ≥ ut(st)
for t = n+ 1, . . . , N . It then follows that

uπ
′

n (sn) = rn(sn, π
′
sn(n)) +

∑
j∈S

pn(j|sn, π′sn(n))uπ
′

n+1(j)

≥ rn(sn, π
′
sn(n)) +

∑
j∈S

pn(j|sn, π′sn(n))un+1(j)− (N − n− 1)ε

≥ un(sn)− (N − n)ε.
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Thus the induction hypothesis is satisfied for n = 1, . . . , N . Therefore for any ε > 0, there exists a
π′ ∈ Π for which

u∗n(sn) + (N − n)ε ≥ uπ
′

n (sn) + (N − n)ε ≥ un(sn) ≥ u∗n(sn)

and from this part 1 follows. Part 2 follows by definitions of u∗1(s) and v∗(s)

Part 1 of this theorem shows that solutions of the optimality equation are the optimal utility functions
from period t onward, and result 2 means that the solution to the equation with n = 1 is the optimal
expected return from decision epoch 1 onward.

We will now state the theorem that shows how to use the optimality equations to find optimal
policies, and to verify that a policy is optimal.

Theorem 3. Suppose u∗t , t = 1, . . . , N are solutions of the optimality equations, and that policy π∗ ∈ Π
satisfies

π∗st(t) = argmax
a∈Ast

[rt(st, a) +
∑
j∈S

pt(j|st, a)u∗t+1(j)] (3.4)

for t = 1, . . . , N − 1. Then

a. For each t = 1, . . . , N ,

uπ
∗

t (st) = u∗t (st), st ∈ S.

b. π∗ is an optimal policy, and

vπ
∗
(s) = v∗(s), s ∈ S

Proof. We once again establish part (a), part (b) follows from part (a), Theorem 1 and Theorem 2. We
proof part (a) by induction. For t = N we clearly have

uπ
∗

N (sN ) = uN ∗ (sN ), sN ∈ SN
.

Assume the result holds for t = n+ 1, . . . , N . Then, for sn ∈ S by the optimality equations we have

u∗n(sn) = max
a∈Sn

[rn(sn, a) +
∑
j∈S

pn(j|sn, a)u∗n+1(j)]

= rn(sn, πsn(n)) +
∑
j∈S

pn(j|sn, πsn(n))uπ
∗

n+1(j)

= uπ
∗

n

Here the second equality follows from how we defined π∗ and thus the induction hypothesis holds and
the theorem follows.

This theorem tells us that an optimal policy can be found by first solving the optimality equations,
and then choosing a decision rule which selects any action which attains the maximum the right hand
side of (3.4) for t = 1, . . . , N . With this theorem we have laid the groundwork for the main result of this
section.
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3.4 The Backward Induction Algorithm

Backward induction provides us the method for solving finite-horizon discrete-time MPD’s. The terms
”backward induction”and ”dynamic programming” are synonymous. This subsection presents the back-
ward induction algorithm and shows how to use it to find optimal policies and utility functions.

The Backward Induction Algorithm

1. Set t = N and

u∗N (sN ) = rN (sN )for allsN ∈ S,

2. Substitute t− 1 for t and compute u∗t (st) for each st ∈ S by

u∗t (st) = max
a∈Ast

[rt(st, a) +
∑
j∈S

pt(j|st, a)u∗t+1(j)]

Set

π∗st(t) = argmax
a∈Ast

[rt(st, a) +
∑
j∈S

pt(j|st, a)u∗t+1(j)]

3. If t = 1, stop. Otherwise return to step 2.

Note that we compute the utility functions by using the optimality equations. Using this algorithm
and theorem 2.3.2, we achieve the following result

Corollary 4. Suppose u∗t , t = 1, . . . , N and π∗st(t)t = 1, . . . , N − 1 are generated by the Backward Induc-
tion Algorithm, then

a. for t = 1, . . . , N and st ∈ S

u∗t (st) = max
π∈Π

uπt (st), st ∈ S

b. π∗ ∈ Π is optimal and satisfies

vπ
∗
(s) = supπ∈Πv

π(s), s ∈ S

and

uπ
∗

t (st) = u∗t (st), st ∈ S

for t = 1, . . . , N .
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This corrolary looks slightly complicated, but it is simply a formal statement of the following properties
of the backward induction algorithm.

• For t = 1, . . . , N − 1 it finds sets π∗st(t) which maximize the utility functions.

• It evaluates any policy which selects an action πst(t) at time t for each st ∈ S for all t = 1, . . . , N−1.

• It computes the expected total reward for the entire decision-making horizon, and from each period
to the end of the horizon for any optimal policy.

Which are key properties when it comes to optimization: we need the best solutions at every point of
time for every state we can be in. Now we have proved that we achieve these goals in the Discrete case
of the Markov decision process, we can start looking at the Continuous-time case.



Chapter 4

continuous time Markov decision
processes

The Continuous-time Markov Decision process is formulated in a way analogous to the Discrete-Time
case. However, the formulation of the continuous case and justification of this formulation is a lot more
difficult this time and will take up the biggest part of this chapter. We will try to build up the theory
analogous to chapter 2.

4.1 problem formulation

This time we there are no discrete decision epochs. Instead, the system operates from time zero to time
T where T < ∞ and decision are made at every point in time. Once again we consider a system that
may be in one of M states labeled 1, . . . ,M at any point in time. This time when the system is in state
s, an action a is chosen from the finite set As and we receive a return rate r(s, a), this time continuous,
depending only on the current state and action taken.

In the discrete case choosing an action also came along with a probability law that determined
the state in the next decision epoch. This is the part that changes the most in the continuous case.
The evolution of the system state is described by a probability law which depends on a matrix Q(π(t))
with components q(j|i, a) that can be thought of as the rate of going from state i to state j choosing
action a. These components satisfy the property that 0 ≤ q(j|i, a) < ∞, j 6= i, 0 ≤ −q(i|i, a) ≤ ∞ and∑
j∈S q(j|i, a) = 0 for all i ∈ S. We will later go into details about the Q-matrix and its properties.

For the policy, let again D = A1×A2×· · ·×AM , then a policy π is now a function π : [0, T ]→ D.
So using a policy π means that if the system is in state s at time t, the action chosen is πs(t), the
projection of π(t) on the s-component. We require that π is a measurable function, meaning that for any
d ∈ D, the set {t : π(t) = d, 0 ≤ t ≤ T} is Lebesque measurable. Furthermore, for any d ∈ D we define
r(d) as the n× 1 column vector whose ith element is r(i, di) and define Q(d) as the n× n matrix whose
elements qij are q(j|i, di). Lastly, we say a function g(x) is of order x, written symbolicly as o(x), when

limx→0
g(x)
x = 0.

15
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4.2 The Transition Probabilities

As mentioned earlier, the evolution of the system state depends on the matrix Q(π(t)) whose components
satisfied the following properties:

1. 0 ≤ −qii <∞ for all i.

2. 0 ≤ qij ≤ ∞ for all i 6= j

3.
∑
j∈S qij = 0 for all i.

Now let xt(ω), 0 ≤ t ≤ T , be a sample path of a process which may be in one of M states labeled
1, 2, . . .M . If Prob(xs(ω) = i) > 0 define pij(s, t) by pij(s, t) = Prob(xt(ω) = j|xs(ω) = i) and let P (s, t)
be the matrix (pij(s, t)). We want our probability matrix P to be a Markov transition matrix function,
which is defined as follows:

Definition 5. (Doob [3, p. 236]): A Markov transition matrix function is a matrix function P (·, ·)
satisfying

1. P (·, ·) ≥ 0

2. P (·, ·)1 = 1

3. P (s, u) = P (s, t)P (t, u) where 0 ≤ s < t < u ≤ T

It is convenient here to define P (s, s) = I so that (3) holds for 0 ≤ s ≤ t ≤ u ≤ T and we will include it
in our definition.

As mentioned before it, the elements qij denote the exponential transition rates of going to state j
from state i. This means that for very small t we want to have that approximately pij = δij + qijt which
in matrix form becomes P (t, t+ h) = I +Q(π(t))h. We will state this more formally, but before we can
do that we need to define what it means for a function to be absolutly continuous

Definition 6. Let (X, d) be a metric space and let I be an interval in R. A function f : I → X is
absolutely continuous on I if for every positive number ε, there is a positive number δ such that whenever
a finite sequence of pairwise disjoint sub-intervalt [xk, yk] of I satisfies∑

k

|yk − xk| < δ

then ∑
k

d(f(yk), f(xk)) < ε

We can now state our problem formally: Given a Lebesque measurable policy π defined on [0, T ]
and hence a Lebesque measurable matrix function Q(π(·)) we want to know if there is an absolutely
continuous Markov transition matrix function P (·, ·) such that for t > s

P (s, t) = I +Q(π(s))(t− s) + o(t− s) (4.1)

is satisfied for almost all s ∈ (0, T ) where o(t− s) is a matrix whose components are of order (t− s)
and if this matrix function is unique.
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In order to do this, consider the matrix function P (s, ·), 0 ≤ s ≤ T , defined for any measurable policy
π by the solution to the differential equations

d

dt
P (s, t) = P (s, t)Q(π(t)) (4.2)

for s ≤ t ≤ T and the initial condition P (s, s) = I. Any absolutely continuous function that satisfies
the initial condition and the differential equation almost everywhere is to be seen as a solution. We
will prove that the matrix function P (·, ·) is the unique absolutely continuous Markov transition matrix
function satisfying (5) almost everywhere.

The uniqueness of (4.2) is given to us by Coddington and Levinson [4, p. 74]:

Theorem 7. The unique solution to (4.2) is given by the fundamental matrix Φ(·) of the differential
equations

dx

dt
= xQ(π(t))

satisfying Φ(s) = I where x is a row vector.

Royden [5, p.84, problem 5.3] gives us the following result from analysis:

Lemma 8. If f(x) is a continuous function on [a, b] and any derivative, say

D+f(x) = lim sup
h→0+

f(x+ h)− f(x)

h

is nonnegative for x ∈ (a, b) then f(b) ≥ f(a)

Lemma 9. If f is contiuous on [a, b] and D+f(t) is nonnegative whenever f(t) < 0 for t ∈ (a, b), then
f(a) ≥ 0 implies f(t) ≥ 0 for t ∈ [a, b]

Proof. The proof is by contradiction. Let t1 be a point in (a, b) such that f(t1) < 0. Define t′ by
t′ = max{t : f(t) = 0 and t < t1}. This maximum exists by continuity of f and the initial condition
f(a) ≥ 0. Then on the interval (t′, t1), f(t) < 0 and hence D+f(t) ≥ 0 by hypothesis. Using lemma 2 we
must have f(t1) ≥ f(t′) = 0, a contradiction.

Lemma 10. The unique solution P (s, ·) to (4.2) has the property that P (s, t) ≥ 0.

Proof. For t ∈ [s, T ] let M(t) =
∑n
m=1[pim(s, t)]−, where [pim(s, t)]− = pim(s, t) when pim(s, t) is neg-

ative and [pim(s, t)]− = 0 otherwise. We will show that the function M(·) satisfies the hypothesis of
lemma 9 and is therefore nonegative. This will prove the functions pim(s, t) are nonnegative for arbitrary
i, thus proving the theorem.

From the initial condition we have M(s) = 0. The function M(·) is continuous since each func-
tion pim(s, t) is continuous, implying the function [pim(s, t)]− is continuous, and the sum of continuous
functions is continuous. The final requirement for M(·) to satisfy the hypothesis of lemma 9, is that if

M(t′) < 0 for some t′ ∈ (s, T ), then lim supε→0+
M(t′+ε)−M(t′)

ε ≥ 0.
Let M(·) < 0 and let

J− = {j : pim(s, t′) < 0}

J0 = {j : pim(s, t′) = 0}

J+ = {j : pim(s, t′) > 0}
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By continuity of the functions pij(s, ·) we can pick a δ > 0 such that if j ∈ J− then pij(s, t) < 0 for all
t ∈ (t′, t′ + δ) and if j ∈ J+ then

pij(s, t) > 0

for all t ∈ (t′, t′ + δ). Hence for 0 ≤ ε ≤ δ

M(t′ + ε) =

n∑
m=1

[pij(s, t
′ + ε)]−

=
∑
j∈J−

pij(s, t
′ + ε) +

∑
j∈J0 and pij(s,t′+ε)<0

pij(s, t
′ + ε)

For convenience, let J−ε = {j : j ∈ J−orj ∈ J0andpij(s, t
′ + ε) < 0}. Then we can write

M(t′ + ε)−M(t′) =
∑
j∈J−ε

[pij(s, t
′ + ε)− pij(s, t′)]

=
∑
j∈J−ε

∫ t′+ε

t′

n∑
m=1

pim(s, t)q(j|m,πm(t))dt

=

∫ t′+ε

t′
{
∑
m∈J+

∑
j∈J−ε

pim(s, t)q(j|m,πm(t))

+
∑
m∈J0

∑
j∈J−ε

pim(s, t)q(j|m,πm(t))

+
∑
m∈J−

∑
j∈J−ε

pim(s, t)q(j|m,πm(t))}dt

The first double summation is positive for all t ∈ (t′, t′+ε) since m /∈ J−ε implies
∑
j∈J−ε q(j|m,πm(t)) ≥ 0

and m ∈ J+ implies pim(s, t) ≥ 0. The third double summation is positive for all t ∈ (t′, t′ + ε) since
m ∈ J−ε implies

∑
j∈J−ε q(j|m,πm(t)) ≤ 0 and m ∈ J− implies pim(s, t) ≤ 0. Hence

M(t′ + ε)−M(t′) ≥
∫ t′+ε

t′

∑
m∈J0

∑
j∈J−ε

pim(s, t)q(j|m,πm(t))dt

The limε→0+pim(s, t′ + ε) = 0 if m ∈ J0, and the q(·|·, ·) are bounded. Hence the righthand side is an
order of ε and M(t′ + ε)−M(t′) ≥ o(ε).

Dividing both sides by epsilon and taking the lim sup of both sides as ε goes to 0 this gives us

lim sup
ε→0+

M(t′ + ε)−M(t′)

ε
≥ 0

which proves the lemma.

At this point it is convenient to establish the following result:

Lemma 11. The diagonal elements pii(t) are strictly positive for any finite t.

Proof. The function pii(t) is defined as the solution to the differential equations d
dtpii(t) = q(i|i, πi(t))pii(t)+∑

j 6=i q(i|j, πj(t))pij(t) and the initial condition pii(0) = 1. If we let qi be a lower bound on q(i|i, a) for

a ∈ Ai, and define p
′

ii(t) by d
dtp
′

ii = qip
′

ii(t), p
′

ii(0) = 1, then the function (pii(t)− p
′

ii(t)) satisfies the hy-

pothesis of lemma 9 since p
′

ii(t) ≥ 0 and by lemma 10 pij(t) ≥ 0. Therefore pii(t) ≥ p
′

ii(t) = eqit > 0.
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Lemma 12. The unique solution P (s, ·) to (4.2) has the property that P (s, t)1 = 1

Proof. P (s, t)1 = P (s, s)1 +
∫ t
s
P (s, u)Q(π(u))1du = P (s, s)1 = 1 since Q(π(u))1 = 0

Lemma 13. The unique solution to (4.2) satisfies P (s, u) = P (s, t)P (t, u) where 0 ≤ s < t < u ≤ T .

Proof. The result follows from the fact that both Ψ(s, ·) and Ψ(s, t)Ψ(t, ·) are solutions to dx
dt = xQ(π(·))

which equal Ψ(s, t) at time t and are identical by of the solution to this differential equation.

Theorem 14. The unique matrix function P (·, ·) obtained by solving (4.2) is a Markov transition func-
tion.

Proof. The result follows from lemma 10, 12 and 13.

What is left for us to prove, is that the unique solution to (4.2) satisfies (4.1) almost everywhere with
the following definition from Natanson [6, p. 255]:

Definition 15. If limh→0
1
h

∫ x+h

x
|f(t) − f(x)|dt = 0, the point x is said to be a Lebesque point of the

function f(t).

Lemma 16. If s is a Lebesque point of each of n2 functions q(j|i, πi(·)) defined on [0, T ] where π is an
arbitrary measurable policy, then the unique solution to (4.2) satisfies

P (s, t) = I +Q(π(s))(t− s) + o(t− s)

Proof. From (4.2):

P (s, t) = P (s, s) +

∫ t

s

P (s, u)Q(π(u))du

I +

∫ t

s

P (s, u)[Q(π(u))

−Q(π(s))]du

+

∫ t

s

P (s, u)Q(π(s))du

Since s is a Lebesque point of the matrix function Q(π(·)) and P (s, ·) is bounded, the first integral is of
order (t−s). The matrix function P (s, ·) is continuous so that P (s, u) = I+K(u) where limu→s+K(u) =
0. Therefore the second integral equals Q(π(s))(t− s) + o(t− s) which proves the lemma.

From Natanson [6, p.255, theorem 5] we have the following result:

Lemma 17. If f is integrable on [a, b] then almost every point of [a, b] is a Lebesque is a Lebesque point
of f.

We now combine lemma 16 and 17.

Theorem 18. Let π be any Lebesque measurable policy defined on [0, T ]. Then for almost all s

P (s, t) = I +Q(π(s))(t− s) + o(t− s)

where P (s, ·) is the unique solution to (4.2).
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We now come to the final theorem of this section:

Theorem 19. The solution to the differential equations (4.2) is the unique absolutely continuous matrix
function whish satisfies (4.1) almost everywhere.

Proof. Theorems 14 and 18 and the initial condition of (4.2) prove that the solution to (4.2) is an
absolutely continuous Markov transition matrix function which satisfies (4.1) almost everywhere. We
will show uniqueness by showing that any absolutely continuous Markov transition matrix function,
P
′
(·, ·), which satisfies (4.1) almost everywhere is the unique solution to (4.2). Since P

′
(·, ·) is a Markov

transition matrix function we have

P
′
(s, t+ ∆t) = P

′
(s, t)P

′
(t, t+ ∆t)

.
By hypothesis P

′
(·, ·) satisfies (4.1) almost everywhere so that

P
′
(s, t+ ∆t) = P ′(s, t)(I +Q(π(t))(∆t) + o(∆t))

for almost all t. Hence

lim∆t→0+
P
′
(s, t+ ∆t)− P ′(s, t)

∆t
= P

′
(s, t)Q(π(t))

For almost all t. The initial condition of (4.2) is satisfied because P
′
(·, ·) must satisfy P ′(s, s) = I

which completes the proof.

This result assures us that the state of the system we consider when a measurable policy π is chosen,
is described by a Markov process whose transition probabilities are given by the unique absolutely con-
tinuous matrix function that satisfies (4.1) almost everywhere. There is more to be said on this subject
before we can truly make this conclusion, but for this I refer you to Miller’s paper [2, chapter 2.3, p. 12]

4.3 Piecewise constant policy

We now know that our system is well-defined, we will briefly consider what problems we may run into
when examining the optimal solution. In the discrete case we had a finite amount of decision epochs in
which we had to select an action. This time however, we are dealing with an interval, which means our
policy needs to select an action for uncountable infinite points in time. It is therefore not unthinkable that
the optimal solution selects different actions at infinite or even uncountable infinite points in time. This
is, at the least, unprefferable and we will now introduce a class of policies besides the one of measurable
policies: The piecewise constant policies.

Definition 20. A policy π(t), 0 ≤ t ≤ T , is piecewise constant if for any finite t′, t′ ≤ T , the interval [0, t′]
can be divided into a finite number of intervals (0, t1), (t1, t2), . . . , (tm−1, t

′) such that π(t) is constant on
(tj , tj+1), 0 ≤ j ≤ m− 1.

The ambiguity at the endpoints, called switching points, is resolved by saying that π(t) is continuous
on the left, thus π(tj) takes the value of π on (tj−1, tj for j = 1, . . . ,m, and π(0) is arbitrary.

A special case of the piecewise constant policy is the stationary policy where π(t) = d for all t.
This policy (d, T ) will be abbreviated to d.



Chapter 5

Solving continuous-time Markov
decision processes

We now arrive at the main part of this thesis, the solution to the continuous-time Markov decision
process. This section consists of three parts. Firstly, we will look under which conditions we achieve
optimality. In the second part we will prove that there is a piecewise constant policy that satisfies these
conditions and thus is optimal. Lastly we will look at a few problems that arrise when computing the
optimal policy. This gives reason to compute a solution that is not optimal, but easily computable and
can get indefinetly close to the actual optimal solution. This is called the discrete approximation and
this is among the mostly used algorithms for solving the CTMDP.

5.1 conditions for optimality

A quick recap: In the finite-horizon problem we seek to maximize the vector

v(T, π) =

∫ T

0

P (t)r(π(t))dt (5.1)

where the matrix function P (·) is the unique solution to

d

dt
P (t) = P (t)Q(π(t)) for 0 ≤ t ≤ T, P (0) = I (5.2)

Here we have supressed the s in the notation for the transition matrix. As we saw in the discrete-time
case, we will use utility functions to show that we achieve optimality, this time labeled ψ(t), 0 ≤ t ≤ T .
It is not obvious from the start that these functions play the same role as the utility functions of the
discrete-time case, but we will go more into that later. For now, we will simply use them in our condition
for π to be optimal.

Theorem 21. A necessary and sifficient condition for a measurable policy π(·) to be optimal is that for
almost all t ∈ [0, T ],

r(d) +Q(d)ψ(d) (5.3)

is maximized over the set D by π(t) where the column vector ψ(t) is the unique absolutely continuous
solution to

− d

dt
ψ(t) = r(π(t)) +Q(π(t))ψ(t) where ψ(T ) = 0, 0 ≤ t ≤ T. (5.4)

21
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Proof. Let π′ be any measurable policy. In the following we distinguish between P,Q, and r for π and π′

by writing P, Q, r, and P’, Q’, and r’ respectively. We will now establish the equation

v(T, π)− v(T, π′) =

∫ T

0

P ′[r +Qψ − r′ −Q′ψ]dt. (5.5)

To see this we note first that since P (0) = P ′(0) = I and ψ(T ) = 0 we have

[P (T )− P ′(T )]ψ(T )− [P (0)− P ′(0)]ψ(0) = 0

.
Since P ′(·),P (·) and ψ(·) are absolutely continuous the function [(P (·)−P ′(·))ψ(·)] is absolutely continuous
[7, p. 203, theorem 25] and therefore this function equals the integral of its derivative. Hence

0 =

∫ T

0

d

dt
[(P − P ′)ψ]dt =

∫ T

0

[
d

dt
(P − P ′)ψ + (P − P ′) d

dt
ψ]dt

.
By substituting (5.2) and (5.4) into this formula we get∫ t

0

[(PQ− P ′Q′)ψ]dt+ (P − P ′)(−(r +Qψ))]dt

=

∫ T

0

[(P ′ − P )r + P ′(Q−Q′)ψ]dt.

Using this fact it follows that

v(π, T )− v(π′, T ) =

∫ T

0

[Pr − P ′r′]dt =

∫ T

0

P ′[r +Qψ − r′ −Q′ψ]

which proves (5.5). Now if π maximizes (5.3) almost everywhere the integrand of (5.5) is nonnegative
a.e. so that π is optimal. The necessity also follows from (5.5). Let π′ be a policy which maximizes (5.3)
everywhere and assume that π does not. Then π′ isn’t necessarily measurable since for example if two
elements of D both maximize (5.3) over the same set of positive measure then each element might be
chosen on a nonmeasurable subset.
In order to exhibit a measurable policy π′ maximizing (5.3) everywhere it is convenient to enumerate
the elements of D as d(1), . . . , d(N). For a fixed d ∈ D, (r(d) + Q(d)ψ(t)) is a continuous and hence
measurable function of time so that the sets T ′i = {t : d(i) maximizes (r(d) +Q(d)ψ(t)) over d ∈ D} are
measurable. If we define the mutually exclusive sets Ti by Ti = T ′i ∪

i−1
j=1 T

′
i then the policy π′ defined

by π′(t) = {f(i) : t ∈ Ti} is both measurable and maximizes (5.3) everywhere. For this policy π′ the
integrand of (5.5) is nonpositive and strictly negative on a set of positive measure since P ′ ≥ 0 and
by lemma 9 the diagonal elements are strictly positive. It is a well known result of analysis that if a
nonpositive function on a set is negative on a subset of positive measure the the integral over the set
is negative. Therefore the return using π′ is higher than the return from using π which establishes the
necessity and completes the proof.

The condition (5.3) be maximized a.e. is equivalent to

− d

dt
ψ = max

d∈D
(r(d) +Q(d)ψ(t)), where ψ(T ) = 0. (5.6)

This equation is called the Bellman equation.
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We mentioned before that we will show that the utility functions ψ(t) play the same role as our old
utility functions ut that denoted the expected total reward from decision epoch t and onwards. Using
some results in Coddington and Levinson [4] we will now show that ψ(t) is the expected reward from
time t onwards as well.

Theorem 22. For any measurable policy π,

ψ(t) =

∫ T

t

P (t, s)r(π(s))ds. (5.7)

Proof. From Coddington and Levington, of [4, theorem 3.1] the solution to (5.4) is

ψ(t) = Φ(T, t)Φ−1(T, s)(−r(π(s)))ds (5.8)

where Φ(T, ·) is the fundamental matrix Φ(·) of the differential equations dx
dt = −Q(π(·))x with

Φ(T ) = I. This is the adjoint system of the differential equations dx
dt = Q(π(·))∗x whose solution [4, p.70]

is Φ∗−1.
From theorem (7) we have the result that the fundamental matrix solution to dx∗

dt = x∗Q(π(t)) is P (·, ·)
so that Φ−1(t, ·) = Φ∗∗−1(T, ·) = P (T, ·). Substituting this result and changing the limits of integration
gives us

ψ(t) = P (t, T )

∫ T

t

P (T, s)r(π(s))ds

=

∫ T

t

P (t, s)r(π(s))ds

.

From this theorem we have the interpretation of ψi(t) as the expected return that will be obtained on
the interval [t, T ] when policy π is used and the system is in state i at time t.
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5.2 Piecewise constant optimal policy

We now arrive at the most mathematically interesting part, the proof that a piecewise constant policy
is optimal. The proof is constructive, which will be of help later when we introduce the algorithm for
solving the CTMDP. The proof requires quite a lot of buildup, seen in lemma 23 which we will use for
lemma 24 and 25 before we come to our conclusion in theorem 26. Before we get to that part, we will
start with some results from Coddington and Levinson [4] for linear differential equations with constant
coefficients. Define a vector function v(t) by the following differential equations:

v(T ) = c (5.9)

d

dt
v(t) = r +Qv(t)

where

v is an n× 1 vector,

Q is an n× n matrix,

r is an n× 1 vector,

and t ∈ [0, T ].

Then

v(t) = ceQ(T−t) + rf(Q,T − t) for 0 ≤ t ≤ T (5.10)

where

f(Q, t) = t+
t2

2!
Q+

t3

3!
Q2 + . . .

satisfies (5.9) everywhere. Equation (5.10) can be confirmed by direct differentiation.
We observe that v(t) is infinitely differentiable on (0, T ). The notation v(j)(t) will be used to

represent the jth derivative of the vector v(t). If the left and right hand derivatives are unequal we say
v(j)(t) equals the left hand derivative. It will sometimes be convenient to let v0(t) = v(t). The derivatives
of v(j)(t) are

−v(1)(t) = r +Qv(t) and (5.11)

v(j)(t) = −Qv(j−1)(t) for j = 2, 3, . . . .

we can write v(t) in terms of the derivatives at t = T by direct substitution of (5.11) in to (5.10). We
have

v(t) = v(T ) +

∞∑
m=1

v(m)(T )
(t− T )m

m!
. (5.12)
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Lemma 23. Let v(t) and v′(t) be two n ∗ 1 vectors defined by the following differential equations and
terminal conditions

v(T ) = c v′(T ) = c

− d

dt
v(t) = r +Qv(t),− d

dt
v′(t) = r′ +Q′v(t)

where

c is an n× 1 vector

Q and Q′ are n× n matrices

r and r′ are n× 1 vectors

t ∈ [0, T ].

Then if v(m)(T ) = v′(m)(T ) for m = 1, 2, . . . , n + 1, v(i)(T ) = v′(i)(T ) for all positive integers i and
v(t) = v′(t) for t ∈ [0, T ].

Proof. The n-dimensional vectors, v(i), i = 1, 2, . . . , n+ 1, must be linearly dependent. This implies that
for some integer j, 2 ≤ j ≤ n+ 1,

v(j)(T ) =

j−1∑
k=1

dkv
(k)(T ) = v′(j)(T ) =

j−1∑
k=1

dkv
′(k).

We show by induction that for all i ≤ j

v(i)(T ) =

i−1∑
k=i−j+1

dk+j−1v
′(k)(T ).

= v′(i)(T ) =

i−1∑
k=i−j+1

dk+j−iv
′(k)(T ).

Our equations hold for i = j from the above equations. Now we assume they hold for i = j, j+1, . . . ,m−1,
and show they hold for i = m.

v(m)(T ) = −Qv(m−1)(T )

= −
m−2∑
k=m−j

dk+j−m+1Qv
(k)(T )

=

m−1∑
k=m−j+1

dk+j−mv(k)(T ).

In the same way v′(m)(T ) =
∑m−1
k=m−j+1 dk+j−mv

′(k)(T ). Since v(i)(T ) = v′(i)(T ) for i = 1, 2, . . . , j − 1,

by the hyposthesis of the lemma, and for i = j, j + 1, . . .m− 1, by the induction hypothesis, v(m)(T ) =
v′(m)(T ). From representation (5.12) this result inplies v′(t) = v(t) for all t ∈ [0, T ].
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A method for choosing a policy will now be described. It will be shown in theorem 26 that there is
an optimal piecewise constant policy for the finite-horizon problem based on this method of choosing a
policy.

The intuitive idea of this choice rule is that for each point in time we pick the set of actions which
maximizes the first derivative of the function ψ . If there is a tie we break the tie by considering the
second derivative etc. Lemma 23 is important because it says we need only consider the first n + 1
derivatives.

Given a measurable policy π defined on [0, T ] and the corresponding function ψ(·) defined by (5.4)
we can define the n+ 1 sets,

D1(t) = {d : d ∈ D0(t) = D, d maximizes ψ(1)(t, d)},
D2(t) = {d : d ∈ D1(t), d maximizes − ψ(2)(t, d)},

...

Dn+1(t) = {d : d ∈ Dn(t), d maximizes (−1)nψ(n+1)(t, d)},

where

ψ(1)(t, d) = r(d) +Q(d)ψ(t)

ψ(j)(t, d) = Q(d)ψ(j−1)(t) for 2 ≤ j ≤ n+ 1,

and ψ(j−1)(t, d) = ψ(j−1)(t, d) for any d ∈ Dj−1(t).

In order to insure uniqueness for our selection procedure it is necessary to enumerate the finite set D as

d(1), d(2), . . . , d(N). (5.13)

we say that d satisfies the selection procedure based on the measurable policy π at time t if d is the
element in Dn+1(t) with the lowest index according to the enumeration (5.13).

Lemma 24. Consider the arbitrary measurable policy π defined on the interval (t′, T ]. The vector function
ψ is defined on [t′, T ] (the interval is closed because ψ is continuous). Let d∗ be the vector of actions
picked by the selection procedure based on the policy π at time t′ and set π(t) equal to d∗ on some interval
[t′′, t′], t′′ < t′. The vector function ψ is also now defined on [t′′, t′). The π(t) satisfies the selective
procedure on the entire interval [t′ − ε, t′] for some ε where 0 < ε < t′ − t′′.

Proof. The first half of the proof consists of showing that if d′ ∈ D \Dn+1(t′), then

d′ /∈ D1(t) for any t ∈ (t′ − ε(d′), t′), 0 < ε(d′) < t′ − t′′

and hence is not chosen by the selective procedure on that interval.
Since a constant policy is used for t′′ < t < t′ the vector function ψ(·)is of the form (5.10) where

T = t′, c = ψ(t′), Q = Q(d∗) and r = r(d∗) and therefore is infinitely defferentiable.
For any d ∈ D, t′′ ≤ t ≤ t′, we can write for any l the Taylor’s expansion of (r(d) +Q(d)ψ(t))

r(d) +Q(d)ψ(t) = r(d) +Q(d)ψ(t′) +

l∑
k=1

Q(d)ψ(k)(t′)
(t− t′)k

k!
+Q(d)ψ(l+1)(td)

(t− t′)l+1

(l + 1)!
(5.14)

where t ≤ td ≤ t′. Let l be the largest integer such that d′ ∈ Dl(t
′)(0 ≤ l ≤ n, since d′ ∈ D \Dn+1(t)).
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The value of

{
l−1∑
k=1

Q(d)ψ(k)(t′)
(t− t′)k

k!
+ r(d) +Q(d)ψ(t′)( if l < 0)}

is equal for d′ and d∗ since both are element of the sets D0(t′), D1(t′), . . . , Dl(t
′). Since d′ ∈ Dl+1(t′) and

d∗ ∈ Dl+1(t′), the value of

r(d) +Q(d)ψ(t′) l = 0

(−1)lQ(d)ψ(l)(t′) l > 0

is strictly greater in some coordinates for d = d∗ than d = d′ and we let this vector difference be δd′.
The vector function ψ(l)(·) is uniformly bounded in t, t′′ ≤ t ≤ t′, for fixed l so that there is an ε(d′) > 0

such that δd′

(−1)l
(t−t′)l
l! is strictly greater for all t, t′ − ε(d′) ≤ t ≤ t′ , in some coordinate than

{Q(d′)ψ(l+1)(td′)−Q(d∗)ψ(l+1)(td∗)}
(t− t′)l+1

(l + 1)!

where t ≤ td′ , td∗ ≤ t′.
This implies using the representation (5.14) that r(d∗) + Q(d∗)ψ(t) is greater in some coordinate than
r(d′) + Q(d′)ψ(t) for all t ∈ (t′ − ε(d′), t′) which proves d′ /∈ D1(t) for t ∈ (t′ − ε(d′), t′). The ε of our
lemma is mind′∈D Dn+1(t′){ε(d′)} which is strictly positive since D is finite.

We now consider d′ ∈ Dn+1(t′), d′ 6= d∗, and the differential equations

d

dt
ψ(t) = −Q(d∗)ψ(t)− r(d∗) for t′′ ≤ t ≤ t′ and

ψ′(t′) = ψ(t′)

d

dt
ψ′(t′) = −Q(d′)ψ′(t)− r(d′), for t′′ ≤ t ≤ t′.

Since both d′ and d∗ ∈ Dn+1(t′), the first n + 1 derivatives of ψ′ and ψ are equal at t′ and lemma 23
applies so that ψ′(t) = ψ(t) for t′′ ≤ t ≤ t′.

This implies that for all t ∈ (t′′, t′), Q(d∗)ψ(t) + r(d∗) = ψ(1)(t) = ψ′(1)(t) = Q(d′)ψ′(t) + r(d′),
and for 1 ≤ k ≤ n,−Q(d∗)ψ(k)(t) = ψ(k+1)(t) = −Q(d′)ψ′(k)(t) = −Q(d′)ψ(k)(t). But this means the set
dn+1(t) is constant for t ∈ (t′ − ε, t′). Therefore d∗ satisfies the selective procedure based on π over the
interval (t′ − ε, t′) which proves the lemma.

We now introduce a revised selective procedure in order to establish lemma 25. This revised selective
procedure is used only in the proof this lemma and the original procedure will be continued to be called
the selective procedure.
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Given a measurable policy π defined on [0, T ] and the corresponding functions ψ(·) defined by (5.4) we
can define the n+ 1 sets

D̂1(t) = {d : d ∈ D, d maximizes ψ̂(1)(t, d)},

D̂2(t) = {d : d ∈ D̂1(t), d maximizes − ψ̂(2)(t, d)},
...

D̂n+1(t) = {d : d ∈ D̂n(t), d maximizes (−1)nψ̂(n+1)(t, d)},

where ψ̂(1)(t, d) = r(d) +Q(d)ψ(t), ψ̂(j)(t, f) = Q(f)ψ(j−1)(t), 2 ≤ j ≤ n+ 1, and ψ̂(j−1)(t) = ψ̂(j−1)(t, d)
for any d ∈ D̂j−1(t). We enumerate the set D as before by (5.13). We say that d satisfies the revised

selective procedure based on the measurable policy π at time t is d is the element in D̂n+1(t) with the
lowest index according to enumeration (5.13).

Lemma 25. If the policy π satisfies the selective procedure corresponding to the policy π everywhere on
(t′, T ], t′ < T, then π must be constant on the interval (t′, t′ + ε) for some ε > 0.

Proof. We will establish lemma 25 by exhibiting the d ∈ D such that π(t) = d on the interval (t′, t′ + ε)
for some ε > 0. Since ψ(·) is continuous it is defined also at t′, and we let d∗ be the unique element of D
chosen by the revised selection procedure at time t′. Now consider the vector function ψ′(·) defined by
the differential equations

ψ′(t′) = ψ(t′)

− d

dt
ψ′(t) = r(d∗) +Q(d∗)ψ′(t)

for t′ ≤ t ≤ T .
We now show d∗ satisfies both the revised and original selective procedure based on the vector

function ψ′(·) on the open interval (t′, t′ + ε) for some ε > 0 (even though d* does not necessarily satisfy
the selective procedure (original) at time t′). Using the same argument as in lemma 24, if d /∈ D̂n+1(t′)
then d /∈ D̂1(t) for t ∈ (t′, t′+ ε) and some ε > 0. Also if d ∈ D̂n+1(t′) then d ∈ D̂n+1(t) for t ∈ (t′, t′+ ε)
so that d∗ satisfies the revised selective procedure on this interval. Also for t ∈ (t′, t′+ ε) either f /∈ D̂1(t)
or d ∈ D̂n+1(t) so that D̂1(t) = D̂2(t) = · · · = D̂n+1(t).

We now prove by induction on i that D̂i(t) = Di(t) for 1 ≤ i ≤ n + 1 and t ∈ (t′, t′ + ε).
D̂1(t) = D1(t) since both sets are defined identically. Now we assume D̂i(t) = Di(t) for i = 1, 2, . . . , l− 1

and show it holds for i = l. The relation ψ(1)(·) = ψ̂(1)(·) on (t′, t′ + ε) implies ψ(l−1)(·) = ψ̂(l−1)(·)
on (t′, t′ + ε). Since D̂l(t)D̂l−1(t), the value of {Q(d)ψ̂(l−1)(t)} must be the same for all d ∈ D̂l−1(t)

which implies the value of {(−1)l−1Q(d)ψ̂(l−1)(t)} must be the same for all d ∈ D̂l−1(t). However

sine Dl−1(t) = D̂l−1(t) and ψ(l−1)(t) = ψ̂(l−1)(t) which means Dl(t) = Dl−1(t) = D̂l−1(t) = D̂l(t).
Therefore we can conclude that Dn+1(t) = D̂n+1(t) for t ∈ (t′, t′ + ε) and since d∗ satisfies the revised
selective procedure, it satisfies the selective procedure (original) on that interval. We will have shown
that π(t) = d∗ on (t′, t′ + ε) if we can prove that ψ′(·) = ψ(·) on this interval because the selective
procedure is unique.
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Since d∗ ∈ D̂1(t) for t ∈ (t′, t′ + ε), the differential equations defining ψ′(·) can be written

ψ′(t′) = ψ(t′)

d

dt
ψ′(t) = max

d∈D
(r(d) +Q(d)ψ′(t))

for t ∈ (t′, t′+ε). But by hopothesis π satisfies the original selective procedure on (t′T ) so that π(t) ∈ F1(t)
(F1(t) being based on ψ(·) ), and ψ(·) also satisfies the above differential equations. The uniqueness of
the solution of these differential equations [8, p.321, theorem 1] implies ψ = ψ′on (t′, t′+ε) and completes
the proof.

Theorem 26. There is a piecewise constant (from the left) policy π defined on [0, T ] which maximizes
equation (5.3) everywhere. This policy is optimal.

Proof. The proof is by construction. Consider the following algorithm which goes through steps (1-5)
consecutively.

(1) Initialization; set t′ = T and ψ(T ) = 0.

(2) Use the selective procedure based on ψ(t′) to determine π(t′).

(3) Obtain ψ(t) for 0 ≤ t ≤ t′ by solving the differential equations

− d

dt
ψ(t) = r(π(t′)) +Q(π(t′))ψ(t)

using the previous value of ψ(t′) as te terminal condition.

(4) Set t′′ = inf{t : π(t′) satisfies the selective procedure on the interval (t, t′) based on the

vector function ψ(t)}
(5) If t′′ ≤ 0 terminate; if t′′ > 0 go to step (2) with t′ = t′′

Because of condition (24) the policy π satisfies the selective procedure corresponding to π everywhere
and hence always lies in the set D1(t) for all t. This condition is equivalent to maximizing equation (5.3)
for all t so that π is optimal where it is defined. It remains to be shown that there are a finite number
of switches when this algorithm is used, so that the algorithm goes through equations (21-25) a finite
number of times. From equation (24) and lemma 24 we note that the points t′i, corresponding to the
value of t′ in the algorithm at the ith iteration, are strictly decreasing. Suppose the algorithm is not
finite. Let t∗ = inf{ti}. Then the policy π(·) defined by the algorithm on the half open interval (t∗, T ]
satisfies the hypotheses of lemma 25. Thus there is an ε > 0 such that π(·) is constant on (t∗, t ∗ +ε),
which contradicts the fact that infinitely many ti lie in (t∗, t ∗ +ε). Thus the algorithm must terminate
in finitely many steps which completes the proof.

5.3 the discrete approximation

To summarize, we have now shown there exists a piecewise constant optimal policy and have constructed
an algorithm in order to find it. You could say that we are done at this point, but there is still one
problem for us to solve and that comes with step (24) from the algorithm

Set t′′ = inf{t : π(t′) satisfies the selective procedure

on the interval (t, t′) based on the vector function ψ(t)}
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Finding the infimum of the right hand side of (24) is equivalent to the problem of finding the first zero
crossing of a function which is a linear combination of the utility functions of the optimal policies. These
utility functions are the solution of linear differential equations and are the sums of exponentials and
linear terms. Therefore, in general, it is possible to only converge to t′ in equation (24) and we suspect
we must be content with infinite algorithms which converge to an optimal policy or finite algorithms
which are ε−optimal.

Definition 27. A measurable policy π is ε-optimal if v(T, π) + ε1 ≥ v(T, π∗) where 1 is a vector and π∗
is an optimal policy.

An approach suggested by Howard [9, p.124] for solving continuous-time finite-horizon Markov decision
problems is to approximate the continuous problem by the discrete-time variant and solve that problem
using dynamic programming.

We implement this suggestion by setting a grid ∆ = T
m over the time horizon as in the continuou-

time algorithm approach. For each d ∈ D we have a return vector r(d)∆ and a transition matrix
I + Q(d)∆. For this approach to be meaningful ∆ must be small enough that I + Q(d)∆ has only
positive elements. The periods are numbered 1, 2, . . . ,m, where period j occurs during the time interval
((j − 1)∆, j∆). Our problem is to find a policy {d(1), d(2), . . . , d(m)} which maximizes the vector

v(m) =

m∑
i=1

P (i)r(f(i)) (5.15)

where

P (i) =

i−1∏
j=1

[I +Q(d(j))∆] for i > 1 (5.16)

P (1) = I

To solve this problem using dynamic programming we let vj(k,m) be defined as the maximum expected
return that can be attained over the periods k, k + 1, . . . ,m, when the system is in state j at period k.
From the priciple of optimality

v(m,m) = max
d∈D

r(d)∆ and (5.17)

v(k,m) = max
d∈D

(r(d)∆ + [I +Q(d)∆]v(k + 1,m)) for 1 ≤ k < m.

The m vectors {d(1), d(2), . . . , d(m)} which maximize v(1,m), v(2,m), . . . , v(m,m), repectively are the
solution to our problem. A continuous policy is obtained from solving the discrete problem by setting
π(t,m) equal to d(k) if (k − 1)∆ ≤ t < k∆.

The equations (5.17) can be rewritten as

v(m+ 1,m) = 0

v(k,m) = v(1)(k + 1,m)∆ + v(k + 1,m) where (5.18)

v(1)(k + 1,m) = max
d∈D

[r(d) +Q(d)v(k + 1,m)] and 1 ≤ k ≤ m.
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When the system is actually continuous v(1,m) does not represent the return that will be achieved using
policy π′(·,m) but only an approximation to it. From equation (5.12) the true value of expected return
using policy π′(·,m), v′(1,m), is given by

v′(m+ 1,m) = 0

v′(k,m) =

∞∑
i=1

v′(i)(k + 1)
∆i

i!
+ v′(k + 1,m) (5.19)

where v′(1)(k + 1) = max
d∈D

[r(d) +Q(d)v′(k + 1,m)]

and v′(j)(k + 1) = Q(d)v′(j−1)(k + 1) j > 1.

In equation (5.12) the minus sign before Q cancels with the sign of (t− T ).
We will now show that the discrete approximation does indeed approach the optimal policy as the

grid size goes to zero. We will obtain this result in theorem (reftheorem 6 of chapter IV). The plan is to
prove that v(j,m)→ v′(j,m) uniformly in j as m tends to infinity and then use this result to obtain the
final result. Now we first establish the following results.

Theorem 28. Let π be a measurable policy for the finite-horizon problem and δ(·) be an integrable
function defined on [0, T ] such that

r(π(t)) +Q(π(t))ψ(t) + δ(t)1 ≥ maxd∈D{r(d) +Q(d)ψ(t)} a.e.

on [0, T ] where the vector function ψ(·) is based on the policy π and is the solution of the differential

equations (5.4) and 1 is a vector. The v(T, π) +
∫ T

0
δ(t)1dt ≥ v(T, π∗) where π∗ is an optimal policy.

Proof. The proof is based on (5.5)

v(T, π)− v′(T, π′) =

∫ T

0

P ′[r +Qψ − r′ −Q′ψ]dt

If we let π∗ = π′ and substitute the inequailty of the hypothesis we obtain

v(T, π)− v(T, π∗) ≤
∫ T

0

P ∗ [δ(t)1]dt =

∫ T

0

δ(t)1dt

which proves the theorem.

Lemma 29. Suppose for 1 ≤ j ≤ m that

h(j)− h′(j) = M(j)(h(j + 1)− h′(j + 1)) +

∞∑
i=2

N(j)i−1(Q(j)h′(j + 1) + g(j))ci (5.20)

where h(·), h′(·) and g(·) are n× 1 vectors, M(·), N(·), and Q(·) are n× n matrices and c is a scalar.
Then if h(m+ 1) = h′(m+ 1),

h(j)− h′(j) =

m∑
k=j

(

k−1∏
l=j

M(l))T (k)

where T (k) =
∑∞
i=2N(j)i−1(Q(j)h′(j + 1) + g(j))ciand

∏j−1
l=j M(l) = I.
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Proof. The roof is by induction. The lemma holds for j = m by direct substitution. We now assume it
holds for j = s+ 1, s+ 2, . . . ,m, and shows it holds for j = s. Using the induction hypothesis equations
(5.20) becomes

h(s)− h′(s) = M(s)[

m∑
k=s+1

(

k−1∏
l=s+1

M(l))T (k)] + T (s)

=

m∑
k=s+1

(

k−1∏
l=s

M(l))T (k) + (

s−1∏
l=s

M(l))T (s)

=

m∑
k=s

(

k−1∏
l=s

M(l))T (k)

which proves the lemma.

Lemma 30. For any n× n matrix A the matrices Am =
∑m
i=0

(
m
i

)
( 1
mA)i, m = 1, 2, . . . are bounded.

Proof. Let a∗ be the largest element of the matrix A. Then it is a simple matter to prove by induction
that any element of the matrix Ak is bounded by (na∗)k which implies that each element of the matrix
Am is not greater than

∑m
i=0

(
m
i

)
(na∗m )i. From the binomial expansion law, for m > na∗ we have

m∑
i=o

(
m

i

)
(
na∗
m

)i(1− na∗
m

)m−1 = na∗

which implies

m∑
i=o

(
m

i

)
(
na∗
m

)i ≤ na ∗ (1 +
na∗

m− na∗
)m

which proves the lemma since limm→∞(1 + na∗
m )m = ena∗.

Lemma 31. The vectors v(j,m), j = 1, 2, . . . ,m defined by equations (5.18) converge uniformly in j to
the vectors v′(j,m), j = 1, 2, . . . ,m, defined by equations (5.19) as m tends to infinity.

Proof. From equations (5.18) and (5.19)

v(j,m)− v′(j,m) = v(j + 1,m) + [r(d(j)) +Q(d(j))v(j + 1,m)]
T

m
− v′(j + 1,m)

−
∞∑
i=1

[Q(d(j))]i−1[r(d(j)) +Q(d(j))v′(j + 1,m)][
T

m
]i, for j = 1, 2, . . . ,m,

where v′(m+ 1,m) = v(m+ 1,m) = 0 and d(1), d(2), . . . , d(m), is the policy obtained using the discrete
algorithm for periods 1, 2, . . . ,m.

By letting M(j) = I + Q(d(j)) Tm , Q(j), N(j) = Q(d(j)), h(j) = v(j), h′(j) = v′(j), g(j) = r(d(j))

and c = T
m we satisfy the hypothesis of lemma 29 and

v(j,m)− v′(j,m) =

m∑
l=j

(

k−1∏
l=j

(I +Q(d(l))
T

m
)(

∞∑
i=2

[Q(d(k))]i−1

[Q(d(k))v′(k + 1,m) + r(d(k))][
T

m
]i))
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We let Q∗ be a matrix such that qij∗ is an upper bound on |qij(d)| for d ∈ D and r∗ be a vector such that
ri∗ is an upper bound on |ri(d)| for d ∈ D and let r be the upper bound on the absolute value of elements

ri(d) for all i and d ∈ D. From the binomial expansion
∏k−1
l=j (I + Q(d(j)) tm ) ≤

∑k−j
i=0

(
k−j
i

)
(Q∗Tm )i and

theorem 22 implies v′(k + 1,m) is bounded by rT1 where 1 is a vector. Therefor

||v(j,m)− v′(j,m)|| ≤ (m+ 1− j) T
2

m2
||(

m∑
i=0

(
m

i

)
(
Q ∗ T
m

)i)(Q ∗
∞∑
i=2

(
Q ∗ T
m

)i−2)(Q ∗ rT1 + r∗)||

where || · || is the absolute value now defined by ||x|| =
∑n
j=1 |xj |. The expression

∑m
i=0

(
m
i

)
(Q∗Tm )i

converges from lemma 30 and it is well known that
∑∞
i=2(Q∗Tm )i−2 converges for m sufficiently large

which proves the lemma.

Theorem 32. Let εm = inf{ε : π′(·,m) is ε − optimal} where π′(·) is obtained using the discrete-
approximation aproach. Then limεm = 0.

Proof. The proof consists of showing that for each policy π′(·,m) there is a function δ′m(·) which satisfies
the hypothesis of theorem 28 which is bounded by K ′m, and that K ′m → 0 which proves the theorem since
T is fixed. The policy π′(·,m) obtained from the discrete approximation satisfies

r(π′(
kT

m
,m)) +Q(π′(

kT

m
,m))v(

kT

m
,m) = maxd∈D{r(d) +Q(d)v(

kT

m
,m)} for k = 1, 2, . . . ,m.

This equality implies that for t ∈ (0, 1
m ), k = 1, 2, . . . ,m,

r(π′(
kT

m
,m)) +Q(π′(

kT

m
,m))v′(

kT

m
− t,m)

+{Q(π′(
kT

m
,m))[v′(

kT

m
,m)− v′(kT

m
− t,m)]

+Q(d′)[v′(
kT

m
,m)− v′(kT

m
,m)]}

+{Q(π′(
kT

m
,m))[v(

kT

m
)− v′(kT

m
,m)]

+Q(d′)[v′(
kT

m
,m)− v(

kT

m
,m)]} ≥ r(d′) +Q(d′)v′(

kT

m
− t,m)

d′ maximizes r(d) +Q(d)v′(kTm − t,m) over d ∈ D. We shall now prove that the first expression in braces

is bounded. Define Q∗, r∗ and r as in lemma 31. Then d
dtψ(·) is bounded by (r ∗ +Q ∗ rT1) so the

expression in braces is bounded by 2Q ∗ (r ∗ +Q ∗ rT1)t. This proves the expression is bounded since t
is bounded by T

m . The second expression in braces goes to zero as m gets large from lemma 31 which
proves the theorem.
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Worked out example

At the end we will look at one example so we can see all the theorems come together. We will solve the
problem in two ways, with the exact method and the approximate method, so we can see the power and
weaknesses of the approximation as well.
We consider a Continuous-Time MDP with T = 0 and two system states. In the first state we have two
actions:

Action a1,1 Action a1,2

ra1,1 = 3 ra1,2 = 10
q(1|1, a1,1) = −2, q(2|1, a1,1) = 2 q(1|1, a1,1) = −10, q(2|1, a1,1) = 10

and in the second state we only have one action:

Action a2,1

ra2,1 = 0
q(1|1, a2,1) = 1, q(2|1, a2,1) = −1

We will now analyse this problem for a bit before continuing with the actual algorithm to solve this
problem. We can see that there is only one action in state 2. That means that whenever we are in state
2, we know we have a return rate of 0 and a transition rate of 1.
State 2 has two actions, so we must analyze the difference between the two. Action a1,1 has a return rate
of 3, and the transition rate of going to state two is 2. When selecting this action we stay 1

2 units of time
in state 1 before going to state 2. There we stay 1 unit of time with a payoff of 0. Approximately this
gives us a payoff 1

2 ∗ 3 + 0 ∗ 1 = 1.5 in 1.5 units of time.
Action a2,1 has a return rate of 10, and the transition rate of going to state two is 10. When selecting
this action we stay 1

10 units of time in state 1 before going to state 2. There we stay 1 unit of time with
a payoff of 0. Approximately this gives us a payoff 1

10 ∗ 10 + 0 ∗ 1 = 1 in 1.1 units of time.
This tells us that we expect action a1,1 is preferable over action a2,1 when we have more than 1.5 units
of time left. However, at then end of the process the higher payoff of action a2,1 must become more
relevant. We can now use the algorithm to find out when this transition occurs. We first look at the
exact algorithm.

34
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At time 10 the selective procedure tells us to maximize r(d), which is done by choosing d = (2, 1). ψ(t)
is then obtained by solving

− d

dt
ψ(t) =

(
10
0

)
+

(
−10 10

1 −1

)
ψ(t)

which gives us (
ψ1(t)
ψ2(t)

)
=

(
− 10

121e110 (−120e110 + 10e11t + 11e110t)
10

121e110 (109e110 + e11t − 11e110t)

)
Now we have to find the place where the best decision is no longer d = (2, 1) but d = (1, 1) by solving

3− 2ψ1(t) + 2ψ2(t) = 10− 10ψ1(t) + 10ψ2(t)

Which gives us that action a1,1 becomes better at t = 9.70151. Continuing with the algorithm at this
point gives already too complicated results to write out in this section. The reader is encouraged to do
this himself, with the help of a computer of course. When doing so, the algorithm will indeed give us that

for the next step d = (1, 1) is the best decision for t ∈ (−∞, 9.70151) and gives us that v =

(
10.852
9.852

)
.

Now consider the discrete approximations with m = 200, m = 1000 and m = 100000 (see appendix A for
the code we use to calculate the outcome of the algorithm). For the first approximation the grid size is
0.05 and this gives us that for t ∈ (0, 9.75) decision π(t) = (1, 1) and that π(t) = (2, 1) for t ∈ (9.75, 10).

Giving us a final payoff of v =

(
10.910
9.910

)
The second approximation has a grid size of 0.01 and this gives us π(t) = (1, 1) for t ∈ (0, 9.71), with a

final payoff of v =

(
10.863
9.863

)
The last approximation has a grid size of 0.0001 and this gives us π(t) = (1, 1) for t ∈ (0, 9.7016), with a

final payoff of v =

(
10.852
9.852

)
We can see that even for large grid sizes ”true” value of t = 9.70151 lies within the exact last grid the
algorithm finds. However, only the last algorithm found final payoffs that were within a range 0.001 of
the true final payoffs. It becomes clear that we indeed need a small grid size for good end results, however
even with this large grid size the algorithm works very, very fast. Even faster already then the continuous
time algorithm, that took considerable time on the second step. It goes to show that the approximation
we are using is indeed a very strong one.



Chapter 7

Conclusion

With the conclusion of our example, we arrive at the end of this thesis. In the first part we studied the
discrete-time MDP and found that the algorithm not only solved the problem, but did so with very little
computations. Afterwards we formulated the continuous-time MDP. We proved that the continuous-time
case is optimized by a piecewise constant policy, a proof that was necessary in order to establish an al-
gorithm that solves the problem exactly in finite time. However, the algorithm that calculates the exact
optimal policy for the problem is still quite slow. In order to find a faster algorithm we approximated
the continuous-time MDP with the discrete-time case. This allowed us to use the very fast dynamic
programming algorithm to find solutions for the continuous-time case as well. In the end we showed that
this approximation finds answers very close to the optimal answer very, very quickly. Showing once again
that the dynamic programming algorithm is an incredibly useful tool.

I hope the reader has enjoyed reading this thesis. The mathematics that is involved in solving these
seemingly simple models for decision making, quickly becomes considerably difficult. In my opinion, that
is where mathematics becomes the most elegant: when it is used to solve problems that, at a first glance,
look easy, but turn out to be very complicated. I therefore enjoyed writing this thesis very much. If the
reader enjoyed this subject I encourage him to look furhter into it. There is still a lot to be said on the
subject. There are still many more interesting applications of MDP’s, such as queueing theory, and there
are more, also very interesting algorithms that have been developed to solve them, such as the Q-learning
algorithm. There are even cases of the MDP that are still being solved, hopefully providing us with even
more ingenious algorithms in the future.
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Appendix A

The code of the solver

using System;
using System.Collections.Generic;
using System.Text.RegularExpressions;

namespace MDPSolver
{

class Program
{

static void Main(string[] args)
{

Solver solver = new Solver();
solver.inlezen();
solver.solve();
solver.output();

}
}

class Solver
{

public double T;
public int m;
public int nstates;
public List¡State> states = new List¡State>();
public double[,] v;
public double[,] d;

public void inlezen()
{

Console.WriteLine(”Wat is de tijd T?”);
T = LeesDoubleIn();

Console.WriteLine(”Wat is het aantal partities m?”);
m = LeesIntIn();
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Console.WriteLine(”Hoeveel system states zijn er?”);
nstates = LeesIntIn();

for (int i = 1; i <= nstates; i++)
{

states.Add(Maakstate(i));
} }

public State Maakstate(int i)
{

State state = new State();

Console.WriteLine(”Hoeveel actions heeft state {0}”, i);
int actions = LeesIntIn();

for (int j = 1; j <= actions; j++)
{

Console.WriteLine(”Wat zijn de return rate en state transistions van
action {0}?”, j);

Action a = MaakAction();
state.actions.Add(a);

}
return state;

}

public Action MaakAction()
{

double d;
double Qcheck = 0;
string s = Console.ReadLine();
string[] ss = Regex.Replace(s, @”[.]”, ”,”).Split(’,’);
Action a;

try
{
d = double.Parse(ss[0]);
}

catch
{

Console.WriteLine(”De return rate is geen reel getal, probeer opnieuw”);
a = MaakAction();
return a;
}

try
{

for(int i = 1; i < ss.Length; i++)
{

d = double.Parse(ss[i]);
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}
}
catch
{

Console.WriteLine(”Niet alle transition rates zijn rele getallen, probeer
opnieuw”);
a = MaakAction();
return a; }

for (int i = 1; i < ss.Length ; i++)
{

Qcheck += double.Parse(ss[i]);
}

if(Qcheck != 0)
{

Console.WriteLine(”Deze transition rates zijn niet toegestaan, probeer
opnieuw.”);

a = MaakAction();
return a;
}
else

{
a = new Action(ss, nstates);
return a;

}

}

public double LeesDoubleIn()
{

double d;

try
{

d = double.Parse(Console.ReadLine());
}
catch
{

Console.WriteLine(”Voer een reel getal in”);
d = this.LeesDoubleIn();

}

return d;
}

public int LeesIntIn()
{

int i;
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try
{

i = int.Parse(Console.ReadLine());
}
catch
{

Console.WriteLine(”Voer een geheel getal in”);
i = this.LeesIntIn();

}

return i;
}

public void solve()
{

v = new double[nstates, m+1];
d = new double[nstates, m+1];

for(int i = 0; i < nstates; i++)
{

v[i, m] = -100;
for(int j = 0; j < states[i].actions.Count; j++)
{

if(states[i].actions[j].r * T / m > v[i,m])
{

v[i, m] = states[i].actions[j].r * T / m;
d[i, m] = j;

}
}

}

double tussenwaarde;
double[] transvector = new double[nstates];

for(int i = 1; i <= m; i++)
{

for (int a = 0; a < nstates; a++)
{

v[a, m-i] = -100;
for (int b = 0; b < states[a].actions.Count; b++)
{

for (int j = 0; j < nstates; j++)
{
if (states[a].actions[b].transrates[j] >= 0)
{
transvector[j] = states[a].actions[b].transrates[j] * T / m; }
else
{
transvector[j] = 1 + states[a].actions[b].transrates[j] * T / m; }
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}
tussenwaarde = 0;

for (int j = 0; j < nstates; j++)
{

tussenwaarde += transvector[j] * v[j, m - i + 1];
}

tussenwaarde += states[a].actions[b].r * T / m;

if (tussenwaarde > v[a, m-i])
{

v[a, m-i] = tussenwaarde;
d[a, m-i] = b;

}
}

}
}

}

public void output()
{

bool changed = false;
bool end = false;
int changedcount = m;
List<String> outputs = new List<String>();
for(int i = 1; i <= m; i++)
{

for(int j = 0; j < nstates; j++ )
{

if (d[j, m - i] != d[j, m - i + 1])
{

changed = true;
}
if(i == m)
{

end = true;
}

}

if(changed)
{

int a = m - i + 1;

string s = ”for ” + a.ToString() + ” through ” +
changedcount.ToString() + ” use ” ;

for(int k = 0; k < nstates; k++)
{
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s += d[k,m-i + 1];
if(k+1 != nstates)
{

s+= ”,”;
}

}
outputs.Add(s);
changedcount = m - i;
changed = false;

}

if(end)
{

int a = 0;
string s = ”for ” + a.ToString() + ” through ” +

changedcount.ToString() + ” use ”;
for (int k = 0; k < nstates; k++)
{

s += d[k, m - i];
if (k + 1 != nstates)
{

s += ”,”;
}

}
outputs.Add(s);

}
}

Console.WriteLine();
for(int i = 1; i <= outputs.Count;i++)
{

Console.WriteLine(outputs[outputs.Count - i]);
}

for (int i = 0; i < nstates ; i++)
{

Console.WriteLine(v[i, 0].ToString());
}
Console.ReadLine();

}
}

class State
{

public List<Action> actions = new List<Action>();
}

class Action
{
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public double r;
public List<double> transrates = new List<double>();

public Action(string[] ss, int nstates)
{

r = double.Parse(ss[0]);
for(int i = 1; i <= nstates; i++ )
{

transrates.Add(double.Parse(ss[i]));
}

}
}

}
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