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Abstract

In this thesis, we prove part of the Conley-Zehnder theorem, a specific case of the Arnold
conjecture, which states that every Hamiltonian symplectomorphism of the standard sym-
plectic torus T2n has at least 22n fixed points, provided that all these fixed points are non-
degenerate. Our proof follows that of [MS99, Theorem 11.6], using generating functions
and Conley index theory.
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1 Introduction

1.1 Motivation and main result

In physics, Hamiltonian mechanics was introduced by William Hamilton in 1834 as a refor-
mulation of earlier theories in classical mechanics by Newton and Lagrange, who published
their theories in 1687 and 1788, respectively. The basic idea of Hamiltonian mechanics is
to derive, given a Hamiltonian, or energy function, a set of differential equations in terms
of the generalized coordinates and momenta of a system, which, when solved, determine
the path the system will undergo in so-called phase space. Mathematically, this space is
the cotangent bundle of the configuration space, the space of the generalized coordinates.

From Hamiltonian mechanics originated symplectic geometry, a part of differential
topology and geometry that focuses on symplectic manifolds. A symplectic manifold is
a pair (M,ω), where M is a smooth manifold and ω is a nondegenerate, closed 2-form
on M . Symplectic geometry can be seen as a natural mathematical generalization of
Hamiltonian mechanics. Indeed; for every manifold X the cotangent bundle T ∗X can be
made into a symplectic manifold in a natural way (so that symplectic geometry “works”
on phase space), and one can formulate Hamilton’s equation for any symplectic manifold
M and smooth (Hamiltonian) function on M .

A symplectomorphism between two symplectic manifolds (M,ω) and (M ′, ω′) is a
diffeomorphism ϕ : M → M ′ that preserves the symplectic structure: ϕ∗ω′ = ω. A
Hamiltonian symplectomorphism is a symplectomorphism ϕH : M → M that is induced
by a time-dependent Hamiltonian function H : [0, 1]×M → R, in the sense that is is the
time-1 flow of the time-dependent vector field (Xt)t∈[0,1] defined by ω(Xt, ·) = dHt. The
study of fixed points of these Hamiltonian symplectomorphisms has important applica-
tions in physics, since for example these fixed points correspond to periodic solutions of
Hamilton’s equations. With this in mind, a natural question to ask is the following.

Question 1.1. How many fixed points can we expect a given Hamiltonian symplectomor-
phism to have?

The Russian mathematician Vladimir Arnold first formulated an answer to this ques-
tion in 1966 in the specific case of the 2-torus. He later expanded it to compact symplectic
manifolds, and formulated the following famous conjecture.

Conjecture 1.2 (Arnold conjecture). Let (M,ω) be a compact symplectic manifold. Then
the number of fixed points of any Hamiltonian symplectomorphism is greater than or equal
to the number of critical points any smooth function on M must at least have. When all
the fixed points are nondegenerate, this lower bound is increased to the number of critical
points any Morse function on M must at least have.

As of yet, the Arnold conjecture in its strongest form as given above has not yet
been proven. Yuli Rudyak and John Oprea proved the degenerate part under some extra
hypotheses in [Rud97] and [RO97], but this is the best progress that has been made
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on the strong form. A weaker, homological version of the conjecture also exists, with
milder lower bounds, which has been proven to greater extent. The nondegenerate case of
this version was even proven for all compact symplectic manifolds, using Floer homology.
Many mathematicians contributed to this result, and more information and references can
be found for example in [MS04]. A celebrated result was the solution of the strong Arnold
conjecture 1.2 for the even-dimensional tori. It was given in 1983 by Charles Conley and
Eduard Zehnder in [CZ83], and it is the nondegenerate part of this theorem we will be
proving in this thesis.

Theorem 1.3 (Conley-Zehnder). Every Hamiltonian symplectomorphism on the torus
T2n possesses at least 2n+ 1 fixed points. If in addition all the fixed points are nondegen-
erate, this number is increased to 22n.

Figure 1: From left to right: Vladimir Arnold, Charles Conley and Eduard Zehnder.

1.2 Organization of this thesis

In Section 2, we discuss the basics of symplectic geometry. In particular, we define
symplectic vector spaces, symplectic manifolds, (Hamiltonian) symplectomorphisms etc.
We will also supply several examples, and define the necessary terminology needed to
understand Theorem 1.3. Then in Section 3 and 4 we discuss the two main ingredients of
the proof; generating functions of symplectomorphisms and Conley index theory. Finally,
in Section 5 we use these ingredients to prove the nondegenerate part of Theorem 1.3.

1.3 Some remarks about terminology

Throughout this thesis we will work with the following terminology:

• By a vector space we mean a real, finite-dimensional vector space. Similarly, by a
manifold we mean a real, smooth, and finite-dimensional one.

• We will use the term “iff” as an abbreviation of “if and only if”.
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• We will use the notation W ⊂ V for two sets V,W to indicate that W is a subset
of V , and not necessarily that also V 6= W . If we want to specify this, we will use
the notation W ( V .

• We use the convention N = {1, 2, . . .}, and we will denote N0 = {0, 1, 2, . . .}.

• When we speak of a topological manifold X we assume that, in addition to being
locally Euclidean, it is also Hausdorff and 2nd countable.
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2 Basics of symplectic geometry

In this section we explain the basic notions of symplectic geometry. We start by discussing
symplectic vector spaces and some of their properties, after which we will do the same for
symplectic manifolds. Then, we will define Hamiltonian symplectomorphisms and state
the definition of (non-)degenerate fixed points. Finally, we will look into the symplectic
structure on T2n. After this, the reader should understand the statement of Theorem 1.3.

2.1 Symplectic vector spaces

Let us start with the definition of a symplectic vector space.

Definition 2.1 (Symplectic vector spaces). Let V be a vector space. A bilinear form
ω : V × V → R is called

• skew-symmetric iff ω(v, w) = −ω(w, v) for all v, w ∈ V ,

• nondegenerate iff ω(v, w) = 0 for all w ∈ V implies that v = 0.

If ω is skew-symmetric and nondegenerate, it is called a symplectic bilinear form. The
pair (V, ω) is then called a symplectic vector space. ♦

Example 2.2.

(i) We can equip R2n with the bilinear form ω̃0 defined by

ω̃0 :=
n∑
i=1

Qi ∧ Pi,

where Qi and Pi denote the canonical projections. In coordinates, denoting v =
(v1, . . . , v2n) with respect to the standard basis of R2n, this map is given by

ω̃0(v, w) =
n∑
i=1

v2i−1w2i − v2iw2i−1.

Bilinearity and skew-symmetry of ω̃0 are immediate and nondegeneracy follows by
considering w = ei, where {ei}1≤i≤2n denotes the standard basis of R2n. Hence
(R2n, ω̃0) is a symplectic vector space. The map ω̃0 is called the standard linear
symplectic form on R2n.

(ii) Consider a vector space V and its dual space V ∗. On V × V ∗, define the bilinear
form ωV by

ωV ((v, ϕ), (v′, ϕ′)) := ϕ′(v)− ϕ(v′).

A quick computation1 shows that ωV is symplectic, and it is often called the canonical
linear symplectic form on V × V ∗.

1For details, see Appendix Section A.
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(iii) For any two symplectic vector spaces (V, ω) and (V ′, ω′), (V × V ′, ω × ω′) is a
symplectic vector space as well. Here (ω×ω′)((v, v′), (w,w′)) := ω(v, w) +ω(v′, w′).
Indeed, bilinearity and skew-symmetry are immediate, while nondegeneracy follows
by considering the vectors (w, 0), (0, w′) ∈ V × V ′. 4

The next definition allows us to compare symplectic vector spaces in a sensible way.

Definition 2.3 (Symplectic isomorphisms). Let (V, ω) and (V ′, ω′) be symplectic vector
spaces. A linear map Φ : V → V ′ is called linear symplectic if it preserves the symplectic
structure; Φ∗ω′ = ω.2 If Φ is also a vector space isomorphism, we call it a symplectic
isomorphism, or simply an isomorphism. Similarly, if Φ is a vector space automorphism,
we call it a symplectic automorphism, or just automorphism, in short. If an isomorphism
between two symplectic vector spaces exists, we call them isomorphic. ♦

Proposition 2.4. Let (V1, ω)1, (V2, ω2) and (V3, ω3) be symplectic vector spaces and let
Φ1 : V1 → V2 and Φ2 : V2 → V3 be isomorphisms. Then the following hold:

(i) The map Φ−1
1 : V2 → V1 is an isomorphism,

(ii) The map Φ2 ◦ Φ1 : V1 → V3 is an isomorphism.

Proof. This follows immediately from the definitions.

Remark 2.5 (Symplectic group). From Proposition 2.4, together with the trivial fact that
the identity on any symplectic vector space is an automorphism, it follows that “being
isomorphic” as symplectic vector spaces is an equivalence relation, and in particular that
the set of all automorphisms on a symplectic vector space (V, ω) is a subgroup of GL(V ).
We will denote this subgroup by Aut(V, ω).

The main result in this section will be the classification of symplectic vector spaces.
We need the following.

Definition 2.6 (Symplectic complement). Let (V, ω) be a symplectic vector space and
W ⊂ V a linear subspace. We define the set W ω to be the linear subspace

W ω := {v ∈ V | ω(v, w) = 0 for all w ∈ W} ⊂ V.

We call this set the symplectic complement of W in V . We say the subspace W is

• symplectic iff W ∩W ω = {0},

• isotropic iff W ⊂ W ω,

• coisotropic iff W ω ⊂ W ,

• Lagrangian iff W = W ω. ♦
2Recall the definition of the pullback by a linear map: (Φ∗ω′)(v, w) := ω′(Φv,Φw) for v, w ∈ V .
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Remark 2.7. Note that a subspace W is symplectic iff (W,ω|W ) is a symplectic vector
space, which explains the name. Here we denote ω|W := ω|W×W . Note also that W is
isotropic iff ω|W ≡ 0, and that it is Langrangian iff it is both isotropic and coisotropic.

Example 2.8.

(i) Let (V, ω) be a symplectic vector space of dimension 2n. Then any one-dimensional
subspace is isotropic and any (2n− 1)-dimensional subspace is coisotropic.

(ii) Recall the definition of the symplectic vector space (V ×V ∗, ωV ) in Example 2.2(ii).
Then the subspaces V × {0} and {0} × V ∗ are Lagrangian.

For details, see Appendix Section A. 4

The following proposition will be of great use proving the classification theorem, and
states some nice properties of the symplectic complement.

Proposition 2.9. Let (V, ω) be a symplectic vector space, and W ⊂ V a linear subspace.
Then the following hold:

(i) dimW + dimW ω = dimV ,

(ii) W ωω := (W ω)ω = W .

Proof. (i): Define the map ιω : V → V ∗ by ιω(v) = ω(v, ·). By bilinearity of ω this
map is well-defined and linear. Since ω is nondegenerate, ιω is injective. Since also
dimV = dimV ∗, the rank-nullity theorem implies that ιω is a vector space isomorphism.3

Now consider the map ιWω : V → W ∗ defined by ιWω (v) = ιω(v)|W . This is still a linear
surjective map, and its kernel is given by all vectors v ∈ V such that ω(v, w) = 0 for all
w ∈ W , so ker ιWω = W ω. So we get, again by the rank-nullity theorem,

dimV = dim im ιWω + dim ker ιWω = dimW ∗ + dimW ω = dimW + dimW ω.

This proves Proposition 2.9(i).
(ii): With Proposition 2.9(i) we get that dimW = dimW ωω. Together with the obvious
inclusion W ⊂ W ωω this implies that W = W ωω. This proves 2.9(ii) and completes the
proof of Proposition 2.9.

Remark 2.10. The “nice properties” we talked about are immediately clear: from Propo-
sition 2.9(i) it follows that

(i) dimW ≤ 1
2

dimV if W is isotropic,

(ii) dimW ≥ 1
2

dimV if W is coisotropic,

(iii) dimW = 1
2

dimV if W is Langrangian.

3For a statement and proof of the rank-nullity theorem, see Appendix Section A.
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Furthermore, it follows that W ⊕W ω = V if W is symplectic. From Proposition 2.9(ii) it
follows in turn that W is symplectic iff W ω is symplectic, and that W is isotropic iff W ω

is coisotropic, and vice versa.

Proposition 2.9 has an immediate consequence, stating that every symplectic vector
space has even dimension.

Theorem 2.11 (Dimension of symplectic vector space). Every symplectic vector space
(V, ω) has even dimension.

The theorem is a consequence of the following lemmata.

Lemma 2.12. There is no symplectic vector space (V, ω) with dimV = 1.

Lemma 2.13. Every symplectic vector space (V, ω) with dimV ≥ 2 has a symplectic
subspace W ⊂ V with dimW = dimV − 2.

Proof of Theorem 2.11. In the case (V, ω) = ({0}, 0) there is nothing to prove, since the
dimension of this space is even. By Lemma 2.12, we only need to check the case where
dimV ≥ 2. Then, using Lemma 2.13 iteratively, we obtain a sequence of symplectic vector
spaces V0 := V ⊃ V1 ⊃ · · · , where dimVk = dimV − 2k ≥ 2. This sequence ends at a
symplectic vector space of dimension 0 or 1, and by Lemma 2.12 we see that it has to be
the former option. Hence we find that dimV = 2n for some n ∈ N0. This completes the
proof of Theorem 2.11.

Proof of Lemma 2.12. Let V be a one-dimensional vector space, and let ω be a skew-
symmetric bilinear form on V . We show that ω can’t be nondegenerate. Indeed, for any
v, w ∈ V we can write w = λv for some λ ∈ R. Hence it follows from bilinearity of
ω that ω(v, w) = λ · ω(v, v). Now, from skew-symmetry of ω it follows that ω(v, v) =
−ω(v, v) = 0, so that ω(v, w) = 0 for all v, w ∈ V . Hence ω ≡ 0 and thus ω is certainly
not nondegenerate.

Proof of Lemma 2.13. Since ω is nondegenerate and V 6= {0} we can find two vectors
v, w ∈ V such that ω(v, w) 6= 0. Note that just as in the proof of Lemma 2.12, it follows
that v and w are linearly independent. Hence the linear subspace W generated by v and
w is two-dimensional. It is easily verified that W is in fact a symplectic subspace of V :
let x = αv + βw ∈ W such that ω(x, y) = 0 for all y ∈ W . Choosing y = v yields β = 0
and choosing y = w yields α = 0. Now, by Proposition 2.9 and Remark 2.10 it follows
that W ω is a symplectic subspace of V of dimension dimV − 2.

Theorem 2.11 already puts a pretty severe limitation on the existence of symplectic
vector spaces. As we shall see now however, dimension is actually the only property
distinguishing symplectic vector spaces. This result is a direct consequence of the following
theorem.
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Theorem 2.14 (Symplectic basis). Let (V, ω) be a symplectic vector space and denote
dimV = 2n. Then there exists a basis {v1, . . . , vn, w1, . . . , wn} such that ω(vi, vj) =
ω(wi, wj) = 0 and ω(vi, wj) = δij for all 1 ≤ i, j ≤ n. This is called a symplectic basis of
(V, ω).

Proof. We prove the theorem by induction over n. In the case that n = 0, the statement
is certainly true. So now assume that n ≥ 1 and that the statement is true for all m < n.
Just as in the proof of Lemma 2.13, we can find a symplectic subspace W generated
by two linearly independent vectors v, w ∈ V such that ω(v, w). Again, (W ω, ω|Wω)
is a 2(n − 1)-dimensional symplectic subspace, and thus we can find a symplectic basis
{v1, . . . , vn−1, w1, . . . , wn−1} of this space. Defining vn := v and wn := w/ω(v, w), we
claim that {v1, . . . , vn, w1, . . . , wn} is a symplectic basis of (V, ω). It is clear that we only
need to check the conditions involving vn or wn. Now, since ω is bilinear we have that

ω(vn, wn) =
ω(v, w)

ω(v, w)
= 1.

Also, since vn, wn ∈ W and {v1, . . . , vn−1, w1, . . . , wn−1} ⊂ W ω, we have that ω(vn, vi) =
ω(wn, wi) = ω(vn, wi) = ω(wn, vi) = 0 for all i ∈ {1, . . . , n − 1}. Finally, since W is
symplectic we have that W ⊕W ω = V , and since {v1, . . . , vn−1, w1, . . . , wn−1} is a basis
of W ω and {vn, wn} one for W , the union is a basis of V . This completes the proof of
Theorem 2.14.

Example 2.15. On (R2n, ω0) the “reshuffled” bases {e1, e3, . . . , e2n−1, e2, e4, . . . , e2n} and
{−e2,−e4, . . . ,−e2n, e1, e3, . . . , e2n−1} are symplectic bases. 4

The promised classification of vector spaces now follows immediately.

Corollary 2.16 (Classification of symplectic vector spaces). Let (V, ω) and (V ′, ω′) be
symplectic vector spaces. Then (V, ω) is isomorphic to (V ′, ω′) iff dimV = dimV ′.

Proof. First, note that the condition that V and V ′ have the dimension is obviously
necessary: any symplectic isomorphism between (V, ω) and (V ′, ω′) is also a vector space
isomorphism, which requires that dimV = dimV ′.

Now, assume that dimV = dimV ′ = 2n. We choose symplectic bases {v1, . . . , wn}
and {v′1, . . . , w′n} of (V, ω) and (V ′, ω′), respectively. Now we define Φ : V → V ′ to be
the vector space isomorphism satisfying Φ(vi) = v′i and Φ(wi) = w′i. To see that Φ is
symplectic, note that

(Φ∗ω′)

(
n∑
i=1

αivi + βiwi,
n∑
j=1

α′jvj + β′jwj

)
= ω′

(
n∑
i=1

αiv
′
i + βiw

′
i,

n∑
j=1

α′jv
′
j + β′jw

′
j

)

=
n∑
i=1

αiβ
′
i − α′iβi

= ω

(
n∑
i=1

αivi + βiwi,
n∑
j=1

α′jvj + β′jwj

)
.
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We see that Φ∗ω′ = ω, and this completes the proof of Corollary 2.16.

Remark 2.17. In particular, it follows that every symplectic vector space is isomorphic
to (R2n, ω0) for some n ∈ N0. Also, for every symplectic vector space (V, ω) we have a
“standard form” of ω: if {v1, . . . , vn, w1, . . . , wn} is a symplectic basis, then, denoting by
{v1, . . . , vn, w1, . . . , wn} the basis dual to it,

ω =
n∑
i=1

vi ∧ wi.

The next result will be useful later, when we are discussing symplectic manifolds.

Proposition 2.18 (Canonical volume form). Let (V, ω) be a symplectic vector space and
denote dimV = 2n. Then Ω := 1

n!
ω∧n is a volume form.4 We call it the canonical volume

form on (V, ω). It is determined by Ω(v1, w1, . . . , vn, wn) = 1, where {v1, . . . , wn} is a
symplectic basis of (V, ω).

Remark 2.19. Recall that a volume form on a vector space of dimension n is a nonzero
n-form on V .

Proof of Proposition 2.18. We choose a symplectic basis {v1, . . . , wn} of (V, ω). We show
that ω∧n(v1, w1, . . . , vn, wn) = n!. Recall that for any set of vectors x1, . . . , x2n we have
that5

ω∧n(x1, . . . , x2n) =
1

2n

∑
σ∈S2n

(−1)σω(xσ(1), xσ(2)) · · ·ω(xσ(2n−1), xσ(2n)). (2.1)

Now in our case, the only terms of the sum on the right that will not vanish are the ones
where every vi is paired with the corresponding wi. In such a case, the value of the term
will always be 1; indeed, changing two pairs (vi, wi) and (vj, wj) is an even permutation,
so the sign of the permutation σ corresponding to the term will depend on switching a pair
(vi, wi) into (wi, vi). So (−1)σ in this case is (−1)k, where k is the number of “switched
pairs”. But of course, all these pairs will have value −1, and the rest will have value 1, so
the end value of the term is (−1)k(−1)k = 1. Now, the amount of these terms possible is
2nn!: indeed, all of the n pairs have 2 possible “internal orderings”, and we can arrange
the n pairs in n! possible ways. We conclude that indeed ω∧n(v1, w1, . . . , vn, wn) = n!,
which completes the proof of Proposition 2.18.

2.2 Symplectic manifolds

We are now well prepaired to tackle symplectic manifolds.

Definition 2.20 (Symplectic manifolds). Let M be a manifold. A differential 2-form ω on
M is called symplectic if it is closed and nondegenerate, i.e. dω = 0 and ωx : TxM×TxM →
R is nondegenerate for every x ∈M . The pair (M,ω) is called a symplectic manifold. ♦

4Here ω∧n denotes the wedge product of n times ω.
5This follows from a combinatorial argument, which will be worked out in Appendix Section A.
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Remark 2.21. From the above definition it is immediately clear that if (M,ω) is a
symplectic manifold, then (TxM,ωx) is a symplectic vector space for every x ∈M . So we
immediately get two properties of symplectic manifolds:

(i) Every symplectic manifold has even dimension. This is because the dimension of a
manifold is the same as the dimension of the tangent space at each point;

(ii) Every symplectic manifold is orientable. Denoting dimM = 2n, this follows from
the fact that ω∧n is a nonvanishing 2n-form on M (indeed, (ω∧n)(x) = (ωx)

∧n is
nonzero on TxM by Proposition 2.18), and every nonvanishing 2n-form induces an
orientation of M .6

Example 2.22.

(i) As we know, every vector space V of dimension n can be made into a manifold,
with the atlas induced by one global chart, the chart map being a vector space
isomorphism with Rn. Similarly, we can make any symplectic vector space (V, ω̃) into
a symplectic manifold. Indeed, denoting dimV = 2n, we can choose a symplectic
basis {v1, . . . , wn}, and by Remark 2.17 we have

ω̃ =
n∑
i=1

vi ∧ wi,

where {v1, . . . , wn} denotes the dual basis. Now, on the manifold V we can define
the differential 2-form

ω :=
n∑
i=1

dvi ∧ dwi.

This is obviously closed, and it is clear that ωx = ω̃, for every x ∈M .7 Hence (V, ω)
is a symplectic manifold. In particular, we have a symplectic manifold (R2n, ω0),
where

ω0 =
n∑
i=1

dqi ∧ dpi,

where qi and pi denote the standard projections. This is called the standard sym-
plectic form on R2n.

(ii) An interesting example on the sphere S2 is given by the form

ωx(v, w) := 〈x, (v × w)〉.

Here we view x ∈ S2 as a vector in R3, and we use that

TxS
2 = {v ∈ R3 | 〈x, v〉 = 0} ⊂ R3,

6See e.g. [Lee12, Proposition 15.5].
7Here we canonically identify TxV ' V .
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see Figure 2. It is clear from the properties of the cross product that ωx is skew-
symmetric and nondegenerate for every x. Since S2 has dimension 2 and dω is a
3-form, it immediately follows that dω = 0.

(iii) If (M,ω) and (M ′, ω′) are symplectic manifolds, then we can define a symplectic
2-form on M ×M ′ by

ω × ω′ := π∗1ω + π∗2ω
′,

where π1 is the projection onto M and π2 the projection onto M ′. Explicitly, this is
given by

(ω × ω′)(x,x′)((v, v
′), (w,w′)) := ωx(v, w) + ω′x′(v, w),

From these two formulas it immediately follows that ω× ω′ is a symplectic form on
M ×M ′.

(iv) As mentioned in the introduction, the cotangent bundle T ∗X of any manifold X
carries a natural symplectic structure. Since this will take a little more work to
establish, we have devoted Section 2.2.1 to it. Since it will not be relevant for any
of the results in the rest of this thesis, this section can safely be skipped.

(v) For every n, the torus T2n can be endowed with a symplectic structure. We will look
extensively into this structure in Section 2.4. 4

Figure 2: A symplectic form on S2; the vectors v and w are perpendicular to x.
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The following definition extends the notion of symplectic isomorphisms to symplectic
manifolds.

Definition 2.23 (Symplectomorphisms). Let (M,ω) and (M ′, ω′) be symplectic mani-
folds. A diffeomorphism ϕ : M →M ′ is called a symplectomorphism if

ϕ∗ω′ = ω.8 ♦

Remark 2.24. Exactly as in the linear case, inverses and compositions of symplecto-
morphisms are again symplectomorphisms. Again, this follows immediately from the
definitions. So “being symplectomorphic” is an equivalence relation, and the set of all
symplectomorphisms of a manifold (M,ω) to itself is a subgroup of Diff(M), the group
of diffeomorphisms of M to itself. We denote this subgroup by Symp(M,ω).

Example 2.25. As we might expect, just like symplectic vector spaces of equal dimension
are symplectically isomorphic, the same holds when we view them as manifolds. Indeed,
if (V, ω) and (V ′, ω′) are symplectic manifolds of dimension 2n induced by the symplec-
tic vector spaces (V, ω̃) and (V ′, ω̃′), then, choosing symplectic bases {v1, . . . , wn} and
{v′1, . . . , w′n}, we can define ϕ : V → V ′ by vi 7→ v′i and wi 7→ w′i. Of course, this map
is an isomorphism between (V, ω̃) and (V ′, ω̃′). It is also a diffeomorphism between the
manifolds V and V ′: (pre-)composing it (or its inverse) with the chart maps for V and
V ′, which are vector space isomorphisms with R2n, yields a vector space automorphism
on R2n, which is smooth, since it is linear. Also, when we identify TxV with V for every
x ∈ V , and do the same for V ′, the map dϕ(x) is just ϕ, so we also clearly have that
ϕ∗ω′ = ω. 4

Unlike symplectic vector spaces, there is more than dimension distinguishing sym-
plectic manifolds. Therefore, no global classification exists; there is just the following
theorem, known as Darboux’ Theorem, which states that locally all symplectic manifolds
look like (R2n, ω0).

Theorem 2.26 (Darboux). Let (M,ω) be a 2n-dimensional symplectic manifold and let
x ∈ M . Then there exists a Darboux chart around x: an open neighbourhood U ⊂ M of
x and a chart map ϕ : U → R2n such that

ϕ∗ω0 = ω.

Proving this theorem is somewhat involved and will not be relevant for the rest of
this thesis. Therefore we will not state it here. A nice proof using Moser isotopy can be
found in [MS99, Theorem 3.15].

8Recall that this means that for every x ∈M , ωx = dϕ(x)∗ω′ϕ(x) = ω′ϕ(x)(dϕ(x)·, dϕ(x)·).
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2.2.1 The cotangent bundle

In this section we will define the canonical symplectic structure on the cotangent bundle
of a manifold M . Before we give the definition, let us first discuss some notation; in this
section, X is a manifold, T ∗X is the cotangent bundle and we denote by π : T ∗X → X
the canonical projection. Also, we will write a point x ∈ T ∗X as x = (q, p), where q ∈ X
and p ∈ T ∗qX.

Definition 2.27 (Canonical forms on the cotangent bundle). For a manifold X, we define
the canonical 1-form λcan

X on T ∗X by

(λcan
X )x := p ◦ dπ(x) : Tx(T

∗X)→ R, x = (q, p) ∈ T ∗X.

We define the canonical 2-form ωcan
X by

ωcan
X := −dλcan

X . ♦

The goal here is of course to show that ωcan
X is a symplectic form for any manifold X.

Since closedness is obvious from the definition, we are left with showing nondegeneracy.
To do this, we will first consider the case that X = V , a vector space. In this case, there
are some dramatic simplifications; first of all, we can identify the cotangent bundle with
V × V ∗, a vector space. Hence for every x = (v, ϕ) ∈ V × V ∗ we can canonically identify
Tx(V × V ∗) and V × V ∗. Since also the projection π : V × V ∗ → V is linear, we get that
dπ(x) : Tx(V × V ∗) → TqV is just π1 : V × V ∗ → V , the standard projection onto V .
Denoting also by π2 : V × V ∗ → V ∗ the projection onto V ∗, we get that

(λcan
V )x = ϕ ◦ π1 = π2(x) ◦ π1.

To compute ωcan
V , recall the invariant formula for the exterior derivative: for any two

vector fields X1 and X2 on V × V ∗, we have that

dλcan
V (X1, X2) = X1(λcan

V (X2))−X2(λcan
V (X1))− λcan

V ([X1, X2]).

This means that for every x ∈ V × V ∗ we have that

(dλcan
V )x((X1)x, (X2)x) = (X1)x(λ

can
V (X2))− (X2)x(λ

can
V (X1))− (λcan

V )x([X1, X2]x),

where we view λcan
V (Xi) as a smooth function x 7→ (λcan

V )x((Xi)x). Now let x1, x2 ∈
Tx(V ×V ∗) = V ×V ∗, and let X1 and X2 be the constant vector fields mapping to x1 and
x2 respectively. Then [X1, X2] = 0, and using that Xx(f) = df(x)(Xx) for any smooth
function f and any vector field X, we get that

(ωcan
V )x(x1, x2) = (X2)x(λ

can
V (X1))− (X1)x(λ

can
V (X2))

= d(λcan
V (X1))(x)(x2)− d(λcan

V (X2))(x)(x1).

13



Now, writing x = (v, ϕ), we get that

(λcan
V (Xi))(x) = (λcan

V )x(xi) = ϕ(π1(xi)).

This map is linear, and hence its differential at any x ∈ V × V ∗ is just the map itself.
Hence we get that, writing xi = (vi, ϕi),

(ωcan
V )x(x1, x2) = ϕ2(π1(x1))− ϕ1(π1(x2)) = ϕ2(v1)− ϕ1(v2).

This is of course the symplectic bilinear form ωV on the vector space V × V ∗ defined in
Example 2.2(ii). Hence we get that for every x ∈ V × V ∗,

(ωcan
V )x = ωV .

In particular, ωcan
V is nondegenerate.

Now, to show that ωcan
X is nondegenerate for any manifold X, we want to somehow

reduce to the vector space case described above. To do this, we need the following
definition.

Definition 2.28 (Pushforward on cotangent bundles). Let X and X ′ be manifolds and
ϕ : X → X ′ a diffeomorphism. We define the pushforward of ϕ to be the map Φ : T ∗X →
T ∗X ′ defined by Φ(q, p) = (ϕ(q), p ◦ dϕ(q)−1). ♦

Remark 2.29. Note that Φ is a smooth bundle isomorphism covering ϕ.

The crucial property of the pushforward map is that it intertwines the canonical
forms on the cotangent bundles.

Lemma 2.30. Let X,X ′, ϕ and Φ be as in Definition 2.28. Then we have that

Φ∗λcan
X′ = λcan

X

and thus that
Φ∗ωcan

X′ = ωcan
X .

Proof. We simply compute, for x = (q, p) ∈ T ∗X:

(Φ∗λcan
X′ )x = (λcan

X′ )Φ(x) ◦ dΦ(x) = p ◦ dϕ(q)−1 ◦ dπ′(Φ(x)) ◦ dΦ(x)

= p ◦ d(ϕ−1 ◦ π′ ◦ Φ)(x) = p ◦ dπ(x) = (λcan
X )x.

Thus, Φ∗ωcan
X′ = Φ∗(−dλcan

X′ ) = −d(Φ∗λcan
X′ ) = −dλcan

X = ωcan
X , and this completes the proof

of Lemma 2.30.

We are now ready to wrap up this section.
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Proposition 2.31 (Symplectic cotangent bundle). For any manifold X, (T ∗X,ωcan
X ) is

a symplectic manifold.

Proof. As mentioned before, all that is left is to show that ωcan
X is nondegenerate. To

see this, let x = (q, p) ∈ T ∗X, and choose a chart (U,ϕ) (of X) around q. Denoting
n = dimX, this means that ϕ → Rn is a diffeomorphism, where we think of Rn as a
manifold. Defining Φ : T ∗U → T ∗Rn to be the pushforward of ϕ, we get by Lemma 2.30
that

ωcan
X |T ∗U = Φ∗ωcan

Rn .

Since Rn is a vector space, we get for every x′ = (q′, p′) ∈ T ∗U that

(ωcan
X )x′ = ωRn(dΦ(x)·, dΦ(x)·).

Now, since Φ is a diffeomorphism, dΦ(x) is a vector space isomorphism. Since also ωRn is
nondegenerate, it follows that (ωcan

X )x′ is as well.
Since the above construction works for every x ∈ T ∗M , it follows that ωcan

X is nonde-
generate. This completes the proof of Proposition 2.31

2.3 Hamiltonian symplectomorphisms

Now that we have established what symplectic manifolds are, we can look into what we
can actually do with them. We start with several definitions.

Definition 2.32 (Symplectic isotopies). Let (M,ω) be a symplectic manifold, and let I
be an interval. A smooth isotopy ϕ : I ×M →M is called a symplectic isotopy if ϕt is a
symplectomorphism for every t ∈ I. ♦

Remark 2.33. Recall that a smooth isotopy on a manifold X and an interval I is a
smooth map ϕ : I × X → X such that ϕt is a diffeomorphism for every t ∈ I. Hence
the notion of a symplectic isotopy is a natural extension of this concept to symplectic
manifolds.

Definition 2.34 (Symplectic vector fields). Let (M,ω) be a symplectic manifold. We
call a vector field X on M symplectic iff the 1-form

ιXω := ω(X, ·)

is closed. We denote by X (M,ω) the set of all symplectic vector fields on (M,ω). ♦

The next proposition shows that if a smooth isotopy is induced by a time-dependent
vector field, then the isotopy is symplectic iff the vector fields are, at any time. If the
reader is not familiar with time-dependent vector fields, a quick overview and some useful
facts are given in Appendix B.
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Proposition 2.35 (Characterization of symplectic isotopies). Let (M,ω) be a symplectic
manifold and ϕ : I ×M → M a smooth isotopy on M such that there exists t′ ∈ I such
that ϕt′ ∈ Symp(M,ω). Define a smooth, time-dependent vector field X : I ×M → TM
by

X(t, x) :=
d

ds

∣∣∣∣
s=t

ϕ(s, ϕ−1
t (x)).

Then ϕt ∈ Symp(M,ω) for every t ∈ I iff Xt ∈ X (M,ω) for every t ∈ I.

Proof. Note that we have

X(t, ϕt(x)) =
d

ds

∣∣∣∣
s=t

ϕ(s, x)

for every (t, x) ∈ I ×M , so that t 7→ ϕt(x) is a maximal integral curve for every x ∈ M .
Hence we get that the flow ψ of X is globally defined by

ψ(t, t0, x) = (ϕt ◦ ϕ−1
t0

)(x).

Indeed, we get ψ(t0, t0, x) = (ϕt0 ◦ ϕ−1
t0 )(x) = x and

d

ds

∣∣∣∣
s=t

ψ(s, t0, x) =
d

ds

∣∣∣∣
s=t

ϕ(s, ϕ−1
t0

(x)) = X(t, ϕt(ϕ
−1
t0

(x))) = X(t, ψ(t, t0, x)).

Now, denoting ψt,t0 = ψ(t, t0, ·) = ϕt ◦ ϕ−1
t0 , we get by Proposition B.4 that

d

ds

∣∣∣∣
s=t

(
ψ∗s,t0ω

)
x

=
(
ψ∗t,t0 (LXtω)

)
x
,

and from this we get

d

ds

∣∣∣∣
s=t

(ϕ∗sω)x =
d

ds

∣∣∣∣
s=t

((ψs,t0 ◦ ϕt0)∗ω)x = ϕ∗t0

(
d

ds

∣∣∣∣
s=t

(
ψ∗s,t0ω

))
x

= ϕ∗t0
((
ψ∗t,t0 (LXtω)

))
x

= ((ψt,t0 ◦ ϕt0)∗ (LXtω))x

= (ϕ∗t (LXtω))x . (2.2)

Using Eq. 2.2 and Cartan’s Magic Formula,

LXtω = ιXt(dω) + d (ιXtω) = d (ιXtω) , 9 (2.3)

we can now easily prove the proposition. First, assume that ϕ is a symplectic isotopy.
Then for every t ∈ I

0 =
d

ds

∣∣∣∣
s=t

ω =
d

ds

∣∣∣∣
s=t

ϕ∗sω = ϕ∗t (LXtω) .

9Here the second equality follows since ω is symplectic, and thus closed.
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Since ϕt is a diffeomorphism, it follows that LXtω = 0, and by Eq. 2.3 we get that Xt is
symplectic.

Conversely, assume that Xt is symplectic for every t ∈ I. Then by the exact same
computations as above we get that

d

ds

∣∣∣∣
s=t

ϕ∗sω = 0

for every t ∈ I. Fixing any x ∈ M and v, w ∈ TxM , this means that the map t 7→
(ϕ∗tω)x(v, w) is constant. Hence for every t ∈ I we have that ϕ∗tω = ϕ∗t′ω = ω, and that
ϕ is symplectic.

In order to define Hamiltonian symplectomorphisms, we need to define even more
specific isotopies and vector fields.

Definition 2.36 (Hamilonian vector fields). Let (M,ω) be a symplectic manifold, and
let H : M → R be a smooth function on M . We define the Hamiltonian vector field XH

generated by H by
ω(XH , ·) = dH,

i.e. for every x ∈M we define XH(x) by

ωx(XH(x), ·) = dH(x). ♦

Note that since H is smooth, and since ω is smooth and nondegenerate, this formula
indeed gives a well-defined, smooth vector field.

Remark 2.37. By definition, it follows immediately that every Hamiltonian vector field
is also symplectic.

Definition 2.38 (Hamiltonian isotopies). Let I be an interval, (M,ω) a symplectic man-
ifold, and H : I ×M → R a smooth, time-dependent function. Denote by XH : I ×M →
TM the smooth, time-dependent vector field defined by XH(t, x) := XHt(x), where XHt

is as in Definition 2.36. A smooth isotopy ϕ : I ×M → M that is generated by XH in
the sense that

d

ds

∣∣∣∣
s=t

ϕ(s, x) = XH(t, ϕ(t, x))

is called a Hamiltonian isotopy. ♦

Remark 2.39. Since the vector fields XHt are Hamiltonian, and thus also symplectic, it
follows by Proposition 2.35 that every Hamiltonian isotopy is also symplectic.

Definition 2.40 (Hamiltonian symplectomorphisms). Let (M,ω) be a symplectic man-
ifold. We call a diffeomorphism ψ : M → M a Hamiltonian symplectomorphism if there
is a Hamiltonian isotopy ϕ : [0, 1]×M →M from ϕ0 = Id to ϕ1 = ψ. ♦
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Remark 2.41. Since any Hamiltonian isotopy is symplectic, and since the identity is a
symplectomorphism, it follows from Proposition 2.35 that any Hamiltonian symplecto-
morphism is also a symplectomorphism.

Remark 2.42. Let us go a little bit deeper into what a Hamiltonian symplectomorphism
really is. By Definition 2.38, the Hamiltonian isotopy ϕ mentioned in Definition 2.40 is
generated by some smooth function H : [0, 1]×M → R. Denoting by XH : [0, 1]×M →
TM the Hamiltonian vector field induced by H, we know that XH has a global flow
Φ : I×I×M →M .10 Since this flow is unique, we have that ϕt = Φt,0 for all t ∈ I. Hence
we can see a Hamiltonian symplectomorphism as the time-1 flow of some Hamiltonian
function H : [0, 1]×M → R.

Note that not any time-dependent functionH : [0, 1]×M →M determines a Hamilto-
nian symplectomorphism, since the vector field XH induced by H might not have a global
flow. However, if H has compact support, then so does XH , and hence it has a global
flow. In particular, if the manifold M is closed, every smooth function [0, 1] ×M → M
determines a Hamiltonian symplectomorphism.

We have the following (very) weak result about fixed points of Hamiltonian symplec-
tomorphisms induced by time-independent Hamiltonians.

Corollary 2.43. Let (M,ω) be a symplectic manifold and ψ : M → M a Hamiltonian
symplectomorphism induced by a time-independent Hamiltonian H : M → R. Then every
critical point of H induces a fixed point of ψ. In particular, if M is compact, then ψ has
at least two fixed points.

Proof. Let x0 ∈M be a critical point of H. Then we have

ωx0(XH(x0), ·) = 0

and thus that XH(x0) = 0. Thus the constant map γ : [0, 1]→ M given by γ(t) := x0 is
a (maximal) integral curve of XH , and we clearly have ψ(x0) = x0.

To see the second part, note that if M is compact, then H has a minimum and
maximum on that set, at points x+, x− ∈ M . We show that these are critical points of
H. Indeed, let v ∈ Tx+M and choose a smooth curve γ : R → M such that γ(0) = x+

and γ̇(0) = v. Then H ◦ γ has a maximum at 0 and thus we have

dH(x+)(v) = dH(γ(0))(γ̇(0)) =
d

dt

∣∣∣∣
t=0

(H ◦ γ)(t) = 0.

A similar argument works for x−.

Similar to the groups of (linear) symplectomorphisms, we also have a group structure
on the set of Hamiltonian symplectomorphisms.

10Just as in the proof of Proposition 2.35, this is because the flow is given by Φt,t0 = ϕt ◦ ϕ−1t0 .
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Definition 2.44. For a symplectic manifold (M,ω), we denote by Ham(M,ω) the set of
all Hamiltonian symplectomorphisms on (M,ω). ♦

We will show that it is actually a normal subgroup of Symp(M,ω). Unlike before,
this will not simply follow from the definitions, and will require a little more work. In
particular, we will use the following lemma.

Lemma 2.45. Let (M,ω) be a symplectic manifold, H : M → R a smooth function and
ϕ ∈ Symp(M,ω). Then

XH◦ϕ = (dϕ)−1 ◦XH ◦ ϕ,
i.e. we have for every x ∈M that

XH◦ϕ(x) =
(
dϕ(x)−1 ◦XH ◦ ϕ

)
(x).

Proof. This follows from a straightforward computation. We need to show that, for every
x ∈M ,

ωx((dϕ(x)−1 ◦XH ◦ ϕ)(x), ·) = d(H ◦ ϕ)(x).

Now, note that

d(H ◦ ϕ)(x) = dH(ϕ(x)) ◦ dϕ(x) = ωϕ(x)((XH ◦ ϕ)(x), dϕ(x)·).

Since ϕ is a symplectomorphism it now follows that

d(H ◦ϕ)(x) = ωϕ(x)((dϕ(x)◦dϕ(x)−1 ◦XH ◦ϕ)(x), dϕ(x)·) = ωx((dϕ(x)−1 ◦XH ◦ϕ)(x), ·).

We are now ready to prove the next proposition.

Proposition 2.46 (Hamiltonian group). Let (M,ω) be a symplectic manifold. Then
Ham(M,ω) is a normal subgroup of Symp(M,ω).

Proof. We can divide this proposition into three claims.

Claim 1. For any ϕ, ψ ∈ Ham(M,ω), we have that ϕ ◦ ψ ∈ Ham(M,ω).

Claim 2. For any ϕ ∈ Ham(M,ω), we have that ϕ−1 ∈ Ham(M,ω).

Claim 3. For any ϕ ∈ Ham(M,ω) and ψ ∈ Symp(M,ω) we have that ψ−1 ◦ ϕ ◦ ψ ∈
Ham(M,ω).

Proof of Claim 1: By definition, there exist smooth functions G,H : [0, 1] ×M → R
and Hamiltonian isotopies Φ,Ψ : [0, 1] × M → M such that Φ0 = Ψ0 = Id, Φ1 = ϕ,
Ψ1 = ψ and

d

ds

∣∣∣∣
s=t

Φs(x) = XGt(Φt(x)),

d

ds

∣∣∣∣
s=t

Ψs(x) = XHt(Ψt(x)),
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for every (t, x) ∈ [0, 1]×M . Then we get

d

ds

∣∣∣∣
s=t

(Φs ◦Ψs)(x) =
d

ds

∣∣∣∣
s=t

(Φs ◦Ψt)(x) +
d

ds

∣∣∣∣
s=t

(Φt ◦Ψs)(x)

= XGt((Φt ◦Ψt)(x)) + dΦt(Ψt(x)) (XHt(Ψt(x)))

=
[
XGt + d(Φ−1

t )−1 ◦XHt ◦ Φ−1
t

]
((Φt ◦Ψt)(x))

= XGt+Ht◦Φ−1
t

((Φt ◦Ψt)(x)).

Here in the last equality we use Lemma 2.45, linearity of the exterior derivative and
bilinearity of ω.

Hence we have a Hamiltonian isotopy Φ′ : [0, 1] × M → M given by Φ′(t, x) =
(Φt ◦ Ψt)(x), generated by the smooth function (t, x) 7→ Gt(x) + (Ht ◦ Φ−1

t )(x), with
Φ′(0, x) = x and Φ′(1, x) = (Φ◦Ψ)(x). Hence Φ◦Ψ is a Hamiltonian symplectomorphism.
This proves Claim 1.
Proof of Claim 2: By definition, there exists a smooth function H : [0, 1] ×M → R
and a Hamiltonian isotopy Φ : [0, 1]×M →M such that Φ0 = Id, Φ1 = ϕ and

d

ds

∣∣∣∣
s=t

Φs(x) = XHt(Φt(x)),

for every (t, x) ∈ [0, 1]×M . In the same way as before, we have

0 =
d

ds

∣∣∣∣
s=t

(Φs ◦ Φ−1
s )(x)

= XHt(x) + dΦt(Φ
−1
t (x))

(
d

ds

∣∣∣∣
s=t

Φ−1
s (x)

)
,

and thus

d

ds

∣∣∣∣
s=t

Φ−1
s (x) = −dΦt(Φ

−1
t (x))−1(XHt(x))

= −XHt◦Φt(Φ
−1
t (x))

= X−Ht◦Φt(Φ
−1
t (x)).

Therefore, the smooth function (t, x) 7→ −(Ht ◦Φt)(x) generates the Hamiltonian isotopy
Φ′ : [0, 1]×M →M given by Φ′(t, x) = Φ−1

t (x). Since Φ′(0, x) = x and Φ′(1, x) = ϕ−1(x),
it follows that ϕ−1 is a Hamiltonian symplectomorphism. This proves Claim 2.
Proof of Claim 3: By definition, there exists a smooth function H : [0, 1] ×M → R
and a Hamiltonian isotopy Φ : [0, 1]×M →M such that Φ0 = Id, Φ1 = ϕ and

d

ds

∣∣∣∣
s=t

Φs(x) = XHt(Φt(x)),
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for every (t, x) ∈ [0, 1]×M . We get that

d

ds

∣∣∣∣
s=t

(ψ−1 ◦ Φs ◦ ψ)(x) = d(ψ−1)((Φt ◦ ψ)(x))(XHt((Φt ◦ ψ)(x)))

= dψ((ψ−1 ◦ Φt ◦ ψ)(x))−1(XHt((ψ ◦ ψ−1 ◦ Φt ◦ ψ)(x)))

= XHt◦ψ((ψ−1 ◦ Φs ◦ ψ)(x)).

We conclude that the smooth function (t, x) 7→ (Ht ◦ ψ)(x) generates the Hamiltonian
isotopy Φ′ : [0, 1]×M →M given by Φ′(t, x) = (ψ−1 ◦Φt ◦ ψ)(x). Since Φ′(0, x) = x and
Φ′(1, x) = (ψ−1◦ϕ◦ψ)(x), it follows that ψ−1◦ϕ◦ψ is a Hamiltonian symplectomorphism.
This proves Claim 3 and completes the proof of Proposition 2.46.

We will discuss one more useful lemma regarding Hamiltonian symplectomorphisms.

Lemma 2.47 (Reparametrizing Hamiltonian isotopies). Let (M,ω) be a symplectic man-
ifold, I an interval and ϕH : I ×M → M a Hamiltonian isotopy induced by a smooth
function H : I ×M → R. For any smooth map β : I → I, the map ϕ̃H : I ×M → M
given by ϕ̃tH(x) := ϕ

β(t)
H (x) is a Hamiltonian isotopy induced by the smooth function

H̃ : I ×M → R given by H̃t(x) := β′(t) ·Hβ(t)(x).

Proof. Denote by XH : I ×M → TM the time-dependent vector field induced by H.
Then we see that

dH̃t = β′(t) · dHβ(t) = β′(t) · ω(X
β(t)
H , ·) = ω(β′(t) ·Xβ(t)

H , ·).

Hence X t
H̃

= β′(t) ·Xβ(t)
H . Now, we get that

d

ds

∣∣∣∣
s=t

ϕ̃sH(x) = β′(t) · d
ds

∣∣∣∣
s=β(t)

ϕsH(x) = β′(t) ·Xβ(t)
H

(
ϕ
β(t)
H (x)

)
= X t

H̃

(
ϕ̃tH(x)

)
.

This proves the lemma.

This lemma has an immediate consequence.

Corollary 2.48. Let (M,ω) be a symplectic manifold and ϕ : [0, 1]×M → M a Hamil-
tonian isotopy starting at the identity. Then for every t ∈ [0, 1], ϕt = ϕ(t, ·) : M →M is
a Hamiltonian symplectomorphism.

Proof. This follows immediately by applying Lemma 2.47 to the smooth map βt : [0, 1]→
[0, 1] give by βt(s) := st for any t ∈ [0, 1].
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Remark 2.49. Recall from Remark 2.42 that we can view a Hamiltonian symplectomor-
phism as the “time-1 flow” of some Hamiltonian function. Specifically, let H : [0, 1]×M →
M be a smooth function and assume that its induced time-dependent vector field XH has
a global flow, which we denote by ϕH : [0, 1]× [0, 1]M →M . Now, from the above corol-
lary, it follows that not only ϕ1,0

H is a Hamiltonian symplectomorphism, but in fact ϕt1,t0H

for any (t1, t0) ∈ [0, 1]× [0, 1]. To see this, note that by the corrollary we have that ϕt1,0H

is a Hamiltonian symplectomorphism for any t1 ∈ [0, 1]. Now, using Proposition 2.46 and
that

ϕt1,t0H = ϕt1,0H ◦ ϕ0,t0
H = ϕt1,0H ◦

(
ϕt0,0H

)−1

the result follows.

2.3.1 Nondegenerate fixed points

As promised, we will quickly state the definition of (non-)degenerate fixed points.

Definition 2.50. Let X be a manifold and ϕ : X → X a diffeomorphism. A fixed point
of ϕ is a point x ∈ X such that ϕ(x) = x. A fixed point x of ϕ is called nondegenerate if
the differential of ϕ at x does not have 1 as an eigenvalue, i.e. if

det(dϕ(x)− Id) 6= 0.

Otherwise, the fixed point is called degenerate. ♦

Closely related to this is the notion of nondegeneracy of critical points of smooth
functions X → R. Recall the following definition.

Definition 2.51. Let X be a manifold and f : X → R a smooth function. A critical point
of f is a point x ∈ X such that df(x) = 0. A critical point x of f is called nondegenerate
if the Hessian D2f(x) is invertible. Otherwise it is called degenerate. ♦

Remark 2.52. There are may different ways to define the Hessian at a critical point,
e.g. as a linear map D2f(x) : TxX → T ∗xX or a symmetric bilinear form D2f(x) :
TxX × TxX → R. In the latter case we say a critical point is nondegenerate if this
bilinear form is nondegenerate. The important fact is that the notion of nondegeneracy
of a critical point is equivalent in the different definitions of the Hessian. The most useful
way of determining whether a critical point is nondegenerate is to look at the Hesse
matrix, i.e. the matrix of second partial derivatives, of a coordinate representation of f .
A critical point is nondegenerate iff this matrix is invertible.

2.4 The symplectic torus

In this section we will describe the torus T2n as a quotient of R2n under the action of Z2n

and define a symplectic form using this quotient structure. We will also show that the
quotient π : R2n → R2n/Z2n is a smooth covering of the torus. For a brief overview of Lie
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group actions and (smooth) covering spaces, see Appendices C and D, respectively.

A natural question one might ask is under which conditions the orbit space X/G of
a smooth manifold X under the smooth action of a Lie group G has a canonical smooth
structure. The answer is given by the following theorem, often referred to as the Quotient
Manifold Theorem.

Theorem 2.53 (Quotient Manifold Theorem). Let G be a Lie group acting smoothly,
freely and properly on a smooth manifold X. Then the orbit space X/G, endowed with the
quotient topology, has a unique smooth structure such that the quotient map π : X → X/G
is a smooth submersion. The dimension of this structure is dimX − dimG.

We will not give any proof of this theorem here, since it is rather involved and will
not be used elsewhere in this thesis. A proof can be found in e.g. [Lee12, Theorem 21.10].

This theorem only partly solves our problems, since we also want to prove that the
quotient π : R2n → R2n/Z2n is a smooth covering of the torus. For this, we will use the
fact that Z2n is actually a discrete Lie group. There is a special case of the Quotient
Manifold Theorem for discrete Lie groups, i.e. 0-dimensional Lie groups, that provides
an answer.

Theorem 2.54. Let G be a discrete Lie group acting smoothly, freely and properly on a
smooth manifold X. Then the orbit space X/G, endowed with the quotient topology, has
a unique smooth structure such that the quotient map π : X → X/G is a smooth covering
map.

For the proof of this theorem, we will paraphrase [Lee12, Theorem 21.13].
We need the following lemma, of which we postpone the proof.

Lemma 2.55. Let G be a discrete Lie group acting continuously and freely on a topological
manifold X. If in addition the action is proper, the following statement holds;

(∗) Every point x ∈ X has an open neighbourhood V with the property that for each g ∈ G
not equal e we have that (g · V ) ∩ V = ∅.

Proof of Theorem 2.54. The Quotient Manifold Theorem immediately yields that X/G
is a topological manifold of dimension dimX − dimG = dimX, and a unique smooth
structure such that the quotient π : X → X/G is a smooth submersion. Since dimX/G =
dimX, π then becomes a local diffeomorphism. Hence we just need to show that π
is a topological covering map. Then it is also a smooth covering map, and since any
smooth covering map is a smooth submersion, uniqueness of the structure follows from
the uniqueness part of the Quotient Manifold Theorem.

Now let x ∈ X, let Vx be a neighbourhood as in Proposition 2.55 and define Ux :=
π(Vx). Then Ux is open by Proposition C.11 and we also have that

π−1(Ux) =
⋃
g∈G

(g · Vx).
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Since g1 ·x = g2 ·x′ for x, x′ ∈ Vx implies that
(
(g−1

2 g1) ·Vx
)
∩Vx 6= ∅, it follows by Lemma

2.55 that then g1 = g2, and thus all sets of the form g · Vx are actually disjoint. Hence
we are left with showing that πg,x := π|g·Vx : g · Vx → Ux is a homeomorphism. Since it
is a restriction of π, it immediately follows that πg,x is open, continuous and surjective.
So suppose that π(y) = π(y′) for y, y′ ∈ g · vx. Then h · y = y′ for some h ∈ G, and
by the same reasoning as before, it follows that h = e, and thus that y = y′. So πg,x
is injective, and thus a homeomorphism, since we already knew it was open, continuous
and surjective. Now the cover {Ux}x∈X makes π : X → X/G into a topological covering
space. This completes the proof of Theorem 2.54.

Proof of Lemma 2.55. To show (∗), let x ∈ X. Since X is a manifold, we can choose an
open, precompact neighbourhood V of x. By Proposition C.8 the set

GV = {g ∈ G | (g · V ) ∩ V 6= ∅}

is compact, and hence finite, since G is discrete. Writing GV = {e, g1, . . . , gk}, we know
that g−1

i · x 6= x for all i, since the action is free. Since X is Hausdorff, we can choose an
open neighbourhood Vi of g−1

i · x such that x 6∈ Vi for all i. Defining

W := V \
k⋃
i=1

Vi,

this set is also an open precompact neighbourhood of x, with the extra property that
g−1
i · x 6∈ W for all i. This means that x 6∈ gi ·W for all i, and thus that the set

U := W \ (g1 ·W ∪ · · · ∪ gk ·W )

is as required. This proves Lemma 2.55.

Under suitable conditions, a differentiable k-form on X descends to the quotient X/G,
in the sense that there exists a unique differentiable k-form ω̄ on X/G such that π∗ω̄ = ω.
Since the general case requires knowledge of Lie algebras and exponential maps, we will
only mention and prove the conditions for discrete Lie groups, since then the situation
simplifies dramatically. We need the following definition.

Definition 2.56. Let G be a Lie group acting smoothly on a smooth manifold X and
let ω be a differential k-form on X. The we say that ω is G-invariant if ϕ∗gω = ω for all
g ∈ G, where ϕg : X → X is the smooth map

ϕg(x) := g · x. ♦

Now we have the following proposition.

Proposition 2.57. Let G be a discrete Lie group acting smoothly, freely and properly on
a smooth manifold X. We endow X/G with the smooth structure as in Theorem 2.54. Let
ω be a G-invariant differential k-form on X. Then there is a unique differential k-form
ω̄ on X/G such that π∗ω̄ = ω.
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Proof. Let x̄ ∈ X/G and v̄1, . . . , v̄k ∈ Tx̄(X/G). We choose some x ∈ π−1(x̄) and define

ω̄x̄(v̄1, . . . , v̄k) := ωx(dπ(x)−1v̄1, . . . , dπ(x)−1v̄k).

To show that this is well-defined, let x, x′ ∈ π−1(x̄). This means that ϕg(x) = x′ for some
g ∈ G. Then, since π ◦ ϕg = π, we get that dπ(x′)dϕg(x) = dπ(x), and thus that

ωx′(dπ(x′)−1v̄1, . . . , dπ(x′)−1v̄k) = ωϕg(x)(dϕg(x)dπ(x)−1v̄1, . . . , dϕg(x)dπ(x)−1v̄k)

= (ϕ∗gω)x(dπ(x)−1v̄1, . . . , dπ(x)−1v̄k)

= ωx(dπ(x)−1v̄1, . . . , dπ(x)−1v̄k).

Hence our definition does not depend on the choice of x ∈ π−1(x̄). Now, the fact that
π∗ω̄ = ω and uniqueness of the form follow immediately, and smoothness follows since π
is a local diffeomorphism.11 Thus we have proved the proposition.

Remark 2.58. One can immediately see why the case for discrete Lie groups is easier;
in that case, dπ(x) is an isomorphism, and we only have to worry about independence
of the choice of x ∈ π−1(x̄). In the general case, we only know that dπ(x) is surjective,
and thus we have to worry about independence of the choice of vi ∈ dπ(x)−1(v̄i). This is
where an extra condition comes in, which is void in the discrete case.

Finally, let us look at the torus. We consider the smooth manifold Rn, with its
standard smooth structure. The abelian group Zn acts on Rn by addition. Since Zn
is countable, we can endow it with the discrete topology and make it into a smooth 0-
manifold. Since every map between 0-manifolds is smooth, Zn then becomes a discrete
Lie group. Furthermore, the action is clearly smooth, and it is free because k+ x = x for
any x ∈ Rn of course implies k = 0. For properness, we use Proposition C.8(ii); if (xi)i∈N
is a sequence in Rn and (ki)i∈N a sequence in G such that xi → x and ki + xi → x′ for
some x, x′ ∈ Rn, then ki → x′ − x. Therefore the action is proper. Now, using Theorem
2.54 we define the n-dimensional torus Tn to be the quotient space Rn/Zn endowed with
the unique smooth structure that makes π : Rn → Tn a smooth covering map.

Remark 2.59. A different, and perhaps more common definition of the n-dimensional
torus is the Cartesian product of n copies of S1, endowed with the product smooth
structure. Here S1 is endowed with the standard smooth structure on spheres. It turns
out that these two different definition of the torus are actually the same; that is, there is
a diffeomorphism between the two spaces. One can show that if X,X1 and X2 are smooth
manifolds and π1 : X → X1, π2 : X → X2 smooth surjective submersions that make the
same identifications, then there exists a diffeomorphism f : X1 → X2. To apply this in
our current case, it is easy to show that the map π′ : Rn → S1 × · · · × S1 given by

π′(x1, . . . , xn) =
(

(cos(2πx1), sin(2πx1)), . . . , (cos(2πxn), sin(2πxn))
)

is a smooth, surjective submersion that identifies two points x, x′ ∈ Rn iff x − x′ ∈ Zn.
Hence there is a diffeomorphism Tn → S1 × · · · × S1.

11Indeed, locally our definition is just the push-forward of ω by π.
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Finally, we can define a smooth structure on T2n, using Proposition 2.57. Let ω̄0 be
the unique differential 2-form on T2n such that π∗ω̄0 = ω0.

Lemma 2.60. The differential 2-form ω̄0 on T2n is symplectic.

Proof. This follows practically immediately from how ω̄0 was constructed; for closedness,
note that

π∗dω̄0 = d(π∗ω̄0) = dω0 = 0.

In other words, for all x ∈ R2n and v1, v2, v3 ∈ TxR2n we have that

(dω̄0)π(x)(dπ(x)v1, dπ(x)v2, dπ(x)v3) = 0

Since π is surjective, and dπ(x) is surjective for every x ∈ R2n, it then follows that dω̄0 = 0,
hence ω̄0 is closed.

Nondegeneracy follows from the fact that, for any x̄ ∈ T2n and any v̄1, v̄2 ∈ Tx̄T2n,

(ω̄0)x̄(v̄1, v̄2) = ωx(dπ(x)−1v̄1, dπ(x)−1v̄2)

for any x ∈ π−1(x̄). If then
(ω̄0)x̄(v̄1, v̄2) = 0

for all v̄2 ∈ Tx̄T2n, then
(ω0)x(dπ(x)−1v̄1, v2)

for all v2 ∈ TxR2n, since dπ(x)−1 is surjective. Hence since ω0 is nondegenerate, it follows
that dπ(x)−1v̄1 = 0, and thus that v̄1 = 0. Hence ω̄0 is nondegenerate, and indeed
symplectic.

So now we have finally obtained a symplectic structure on the torus.

Definition 2.61 (Symplectic torus). On T2n, we define the standard symplectic form ω̄0 to
be the unique differential 2-form that satisfies π∗ω̄0 = ω0, where π : R2n → R2n/Z2n = T2n

is the quotient. The pair (T2n, ω̄0) is called the standard symplectic torus. ♦

From now on, when we refer to the torus T2n, we will mean the symplectic manifold
(T2n, ω̄0).

Remark 2.62. The above construction of the symplectic structure on the torus is elegant,
since the main results we used hold very generally for all quotients by Lie groups (provided
of course that the Lie groups act freely and properly). However, for the torus specifically,
we can also determine the smooth structure and differential form in a different way.

Denoting by π : Rn → Rn/Zn the quotient map (where we endow Rn/Zn with the
quotient topology, but without a smooth structure), we have for any x ∈ Rn that for

Ux := (x1, x1 + 1)× · · · × (xn, xn + 1),
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π|Ux : Ux → π(Ux) is a homeomorphism. The transition map for two of these charts
is simply translation in Rn by a constant, and hence {π(Ux)}x∈Rn determines a smooth
structure on Rn/Zn. In fact, it can be easily seen that this same cover makes π : Rn →
Rn/Zn into a smooth covering map. Hence this structure is the same as the one we
obtained from the above theorems.

For the symplectic structure on T2n, we use that R2n/Z2n ' (R/Z)2n, and we de-
fine the projections qi, pi onto the (2i − 1)-th and and (2i)-th component respectively.
Canonically identifying Tx(R/Z) ' R, we obtain a differential 2-form

n∑
i=1

dqi ∧ dpi.

It can be computed that this is the standard form ω̄0 defined above.
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3 Generating functions

In this section we will use the theory of generating functions to take our first step towards
proving Theorem 1.3. First, we will discuss the so-called generating functions of type
V , after which we will use these functions to define the discrete symplectic action. As
mentioned in Section 2.3.1, the first step of the proof will be relating the fixed points of
some Hamiltonian symplectomorphism on T2n to the critical points of this function.

3.1 Generating functions of type V

Consider the symplectic manifold (R2n, ω0) and let ϕ : R2n → R2n be a symplectomor-
phism. Throughout this section, we will write a point in R2n as (x, y), where x and y are
thus elements of Rn. Taking a point (x0, y0) ∈ R2n, we can write

ϕ(x0, y0) = (u(x0, y0), v(x0, y0)) = (x1, y1),

where u, v : R2n → Rn are the component functions of ϕ. Using this notation, let us move
on to the definition of a generating function.

Definition 3.1 (Generating functions). Let ϕ : R2n → R2n be a symplectomorphism.12

A generating function (of type V ) for ϕ is a smooth function V : R2n → R such that
(x1, y1) = ϕ(x0, y0) iff

x1 − x0 =
∂V

∂y
(x1, y0), y1 − y0 = −∂V

∂x
(x1, y0). (3.1)

Here ∂V
∂x

and ∂V
∂y

denote the standard partial derivatives of V . ♦

The above equations can be seen as a discrete-time version of Hamilton’s equations.
Our goal is to show that any symplectomorphism that is sufficiently close to the identity
admits a generating function as defined above. The next proposition accomplishes this.

Proposition 3.2 (Existence of generating function). Let ϕ : R2n → R2n be a symplecto-
morphism such that

‖dϕ(z)− Id‖ < 1

2

for all z ∈ R2n. Then ϕ admits a generating function of type V .

The proof uses the following lemma.

Lemma 3.3. Let ψ : Rn → Rn be a smooth map such that

‖dψ(x)− Id‖ < 1

2

for all x ∈ Rn. Then ψ is a diffeomorphism.

12Whenever we call a map R2n → R2n a symplectomorphism, we will mean this with respect to the
standard symplectic form ω0.
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We postpone the proof of this lemma.

Proof of Proposition 3.2. Define the map ψ : R2n → R2n by

ψ(x0, y0) = (u(x0, y0), y0) = (x1, y0).

For this map we have that

‖dψ(z)− Id‖ < 1

2
.

Indeed, if we write dϕ(z) − Id =

(
A B
C D

)
, then dψ(z) − Id =

(
A B
0 0

)
, and it is clear

that

‖dψ(z)− Id‖ ≤ ‖dϕ(z)− Id‖ < 1

2
.

So by Lemma 3.3 we get that ψ is a diffeomorphism, and this means we can use the
independent coordinates (x1, y0). Now define maps f, g : R2n → Rn by

f(x1, y0) = x0,

g(x1, y0) = y1.

Next, define the differential 1-form α by

α =
n∑
i=1

(
gi dx

i
1 + fi dy

i
0

)
.

Claim 1. The 1-form α is closed.

We postpone the proof of this claim.
Since α is defined on R2n, closedness implies exactness, and thus there exists a smooth
function W : R2n → R such that dW = α, i.e. such that

g(x1, y0) =
∂W

∂x
(x1, y0), f(x1, y0) =

∂W

∂y
(x1, y0).

Now define the (smooth) function V : R2n → R by V (x1, y0) = 〈x1, y0〉 −W (x1, y0).
Then we obtain

∂V

∂y
(x1, y0) = x1 −

∂W

∂y
(x1, y0) = x1 − x0,

−∂V
∂x

(x1, y0) =
∂W

∂x
(x1, y0)− y0 = y1 − y0.

Proof of Claim 1: First, we define β := ψ∗α. Since g ◦ ψ = v and f ◦ ψ = π1, where
π1 : (x0, y0) 7→ x0 is the projection on the first coordinate, we get

β =
n∑
i=1

(
vi dui + xi0 dy

i
0

)
.
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Therefore,

dβ =
n∑
i=1

(
dvi ∧ dui + dxi0 ∧ dyi0

)
= −ϕ∗ω0 + ω0 = 0,

since ϕ is a symplectomorphism. So β is closed, and since ψ is a diffeomorphism, it follows
that α is as well. This proves Claim 1 and completes the proof of Proposition 3.2.

Proof of Lemma 3.3. Fix some y ∈ Rn and consider the map Ψy : Rn → Rn defined by

Ψy(x) := y + x− ψ(x).

This map is obviously smooth and satisfies

‖dΨy(x)‖ = ‖Id− dψ(x)‖ < 1

2

for all x ∈ Rn. Hence it is 1
2
-Lipschitz continuous, and thus a contraction mapping. So

by Banach’s fixed-point theorem, there exists a unique fixed point x0 ∈ Rn, i.e. a unique
point x0 such that y = ψ(x0). Since this holds for every y ∈ Rn, it follows that ψ is a
bijection, and we obtain an inverse y 7→ x0. Also note that dψ(x) is invertible for every
x ∈ Rn; indeed, for every v ∈ Rn we get that∣∣‖dψ(x)v‖ − ‖v‖

∣∣ ≤ ‖(dψ(x)− Id)v‖ ≤ ‖dψ(x)− Id‖ · ‖v‖ < 1

2
‖v‖.

Thus dψ(x)v = 0 implies v = 0, and dψ(x) is invertible. Therefore, by the Inverse
Function Theorem, ψ is a diffeomorphism.

3.2 The discrete symplectic action

Now, suppose we are given symplectomorphisms ϕN−1, . . . , ϕ0 : R2n → R2n, such that
every ϕi satisfies the condition of Proposition 3.2, and define ϕ : R2n → R2n by

ϕ := ϕN−1 ◦ · · · ◦ ϕ0.

By Remark 2.24, ϕ is then also a symplectomorphism.

Example 3.4. The model example for this, and the way we will be using the theory laid
out below, is the case that ϕt1,t0 : R2n → R2n is a Hamiltonian flow. Defining then

ϕ := ϕ1,0, ϕi := ϕ(i+1)/N,i/N ,

we obtain ϕ = ϕN−1 ◦ · · · ◦ ϕ0. Furthermore, when N is sufficiently large, every ϕi will
be close to the identity, and by Proposition 3.2 will thus admit a generating function of
type V . 4
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Back to the general situation, we denote by Vi : R2n → R the generating function for
ϕi, and thus for every i we get that (xi+1, yi+1) = ϕi(xi, yi) iff

xi+1 − xi =
∂Vi
∂y

(xi+1, yi), yi+1 − yi = −∂Vi
∂x

(xi+1, yi). (3.2)

These equations are often called the Hamiltonian difference equations.
Next, we define

XN,n ' R2nN

to be the space of all N -periodic sequences in R2n, i.e. of sequences {zj}j∈Z = {(xj, yj)}j∈Z
such that zj = zj+N for all j ∈ Z. As an element of R2nN we write such a sequence as
(x0, y0, . . . , xN−1, yN−1). We are now ready to define the discrete symplectic action.

Definition 3.5 (Discrete symplectic action). Let ϕN−1, . . . , ϕ0 : R2n → R2n be symplec-
tomorphisms that all admit a generating function of type V . In the notation given above,
we define the discrete symplectic action Φ : XN,n → R by

Φ
(
x0, y0, . . . , xN−1, yN−1

)
:=

N−1∑
i=0

(
〈yi, xi+1 − xi〉 − Vi(xi+1, yi)

)
. (3.3)

Here we use the convention xN = x0. ♦

The following proposition establishes the correspondence between fixed points of ϕ
and critical points of Φ.

Proposition 3.6. Let ϕN−1, . . . , ϕ0 : R2n → R2n be symplectomorphisms that all satisfy
the condition of Proposition 3.2, and let Φ : XN,n → R be the discrete symplectic action
induced by their generating functions. Defining ϕ := ϕN−1 ◦ · · · ◦ ϕ0, there is a bijection
between the fixed points of ϕ and the critical points of Φ. The same holds when we just
consider nondegenerate fixed points and critical points.

Remark 3.7. In the proof of this proposition, we will abbreviate partial derivatives like
so

∂Φ

∂xi
= ∂xiΦ,

∂2Φ

∂xi∂yj
= ∂xiyjΦ, etc.

to simplify notation.

Proof. The proposition will follow from three claims.

Claim 1. Let (x0, y0, . . . , xN−1, yN−1) be a critical point of Φ. Then (x0, y0) is a fixed
point of ϕ.
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Claim 2. Let (x0, y0) be a fixed point of ϕ, and inductively define the periodic sequence
(x0, y0, . . . , xN−1, yN−1) by (xi+1, yi+1) = ϕi(xi, yi).

13 Then this sequence is a critical point
of Φ.

Claim 3. If (x0, y0) is a fixed point of ϕ and (x0, y0, . . . , xN−1, yN−1) the corresponding
critical point of Φ, then

(i) for any sequence (u0, v0, . . . , uN−1, vN−1) ∈ kerD2Φ(x0, y0, . . . , xN−1, yN−1) we have
that (u0, v0) ∈ ker(dϕ(x0, y0)− Id),

(ii) for (u0, v0) ∈ ker(dϕ(x0, y0)− Id), defining a sequence (u0, v0, . . . , uN−1, vN−1) induc-
tively by (ui+1, vi+1) = dϕi(xi, yi)(ui, vi), this sequence is in the kernel of
D2Φ(x0, y0, . . . , xN−1, yN−1).

Proof of Claim 1 and Claim 2: These claims follow from a simple calculation of the
partial derivatives of Φ. Indeed, for {zj} = (x0, y0, . . . , xN−1, yN−1) we get

∂xiΦ({zj}) = −yi + yi−1 − ∂xVi−1(xi, yi−1),

∂yiΦ({zj}) = xi+1 − xi − ∂yVi(xi+1, yi). (3.4)

Comparing these equations to Eq. 3.2 immediately yields what we want; for Claim 1, the
partial derivatives to xi+1 and yi being zero shows that (xi+1, yi+1) = ϕi(xi, yi), and thus
the definition of ϕ, together with the periodicity, shows that

ϕ(x0, y0) = (ϕN−1 ◦ · · · ◦ ϕ0)(x0, y0) = ϕN−1(xN−1, yN−1) = (xN , yN) = (x0, y0).

For Claim 2, the very definition of (xi+1, yi+1) shows that the partial derivatives to xi+1

and yi are zero, and hence the defined sequence is a critical point. This proves Claim 1
and Claim 2.
Proof of Claim 3: First, let us compute the Hessian D2Φ({zj}) of Φ. Differentiating
Eq. 3.4 yields first of all that

∂xixjΦ({zj}) = ∂yiyjΦ({zj}) = 0

for i 6= j and that

∂xixiΦ({zj}) = −∂xxVi−1(xi, yi−1), ∂yiyiΦ({zj}) = −∂yyVi(xi+1, yi).

Furthermore,
∂xiyjΦ({zj}) = 0

except when i = j or i− j = 1. In these cases,

∂xiyiΦ({zj}) = −Id, ∂xiyi−1
Φ({zj}) = Id− ∂xyVi−1(xi, yi−1).

13Note that since (x0, y0) = ϕ(x0, y0) = ϕN−1(xN−1, yN−1) = (xN , yN ), this does indeed define a
periodic sequence.
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So, writing

(u′0, v
′
0, . . . , u

′
N−1, v

′
N−1) = D2Φ({zj})(u0, v0, . . . , uN−1, vN−1),

we get

u′i = ∂xiyi−1
Φ({zj})vi−1 + ∂xixiΦ({zj})ui + ∂xiyiΦ({zj})vi

= [Id− ∂xyVi−1(xi, yi−1)]vi−1 − ∂xxVi−1(xi, yi−1)ui − vi,
v′i = ∂xiyiΦ({zj})ui + ∂yiyiΦ({zj})vi + ∂xi+1yiΦ({zj})ui+1

= −ui − ∂yyVi(xi+1, yi)vi + [Id− ∂xyVi(xi+1, yi)]ui+1.

Hence a sequence (u0, v0, . . . , uN−1, vN−1) is in the kernel of D2Φ({zj}) iff

ui+1 = [Id− ∂xyVi(xi+1, yi)]
−1(ui + ∂yyVi(xi+1, yi)vi),

vi+1 = −∂xxVi(xi+1, yi)ui+1 + [Id− ∂xyVi(xi+1, yi)]vi.

Here we are using the following claim, of which we postpone the proof.

Claim 4. The linear map Id− ∂xyVi(xi+1, yi) is invertible for every i.

Next, let us determine dϕi(xi, yi). Writing the components of ϕ as (fi, gi) = ϕ, we
denote

dϕi(xi, yi) =

(
∂fi
∂x

(xi, yi)
∂fi
∂y

(xi, yi)
∂gi
∂x

(xi, yi)
∂gi
∂y

(xi, yi)

)
=

(
∂xfi(xi, yi) ∂yfi(xi, yi)
∂xgi(xi, yi) ∂ygi(xi, yi)

)
.

Differentiating Eq. 3.2, we now obtain

∂xfi(xi, yi) = Id + ∂xyVi(xi+1, yi)∂xfi(xi, yi),

∂yfi(xi, yi) = ∂yyVi(xi+1, yi) + Id− ∂xyVi(xi+1, yi)∂yfi(xi, yi),

∂xgi(xi, yi) = −∂xxVi(xi+1, yi)∂xfi(xi, yi),

∂ygi(xi, yi) = Id− ∂xyVi(xi+1, yi)− ∂xxVi(xi+1, yi)∂yfi(xi, yi).

Hence we get

∂xfi(xi, yi) = [Id− ∂xyVi(xi+1, yi)]
−1,

∂yfi(xi, yi) = [Id− ∂xyVi(xi+1, yi)]
−1∂yyVi(xi+1, yi),

∂xgi(xi, yi) = −∂xxVi(xi+1, yi)[Id− ∂xyVi(xi+1, yi)]
−1,

∂ygi(xi, yi) = Id− ∂xyVi(xi+1, yi)− ∂xxVi(xi+1, yi)[Id− ∂xyVi(xi+1, yi)]
−1∂yyVi(xi+1, yi).

So we see that (ui+1, vi+1) = dϕi(xi, yi)(ui, vi) iff

ui+1 = ∂xfi(xi, yi)ui + ∂yfi(xi, yi)vi

= [Id− ∂xyVi(xi+1, yi)]
−1ui + [Id− ∂xyVi(xi+1, yi)]

−1∂yyVi(xi+1, yi)vi

vi+1 = ∂xgi(xi, yi)ui + ∂ygi(xi, yi)vi

= −∂xxVi(xi+1, yi)[Id− ∂xyVi(xi+1, yi)]
−1ui+

[Id− ∂xyVi(xi+1, yi)]vi − ∂xxVi(xi+1, yi)[Id− ∂xyVi(xi+1, yi)]
−1∂yyVi(xi+1, yi)vi

= −∂xxVi(xi+1, yi)ui+1 + [Id− ∂xyVi(xi+1, yi)]vi.
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So by the above computations, we see that a sequence (u0, v0, . . . , uN−1, vN−1) ∈
kerD2Φ(x0, y0, . . . , xN−1, yN−1) being in the kernel of D2Φ({zj}) is equivalent to that
(ui+1, vi+1) = dϕi(xi, yi)(ui, vi) for every i. Hence Claim 3 follows.
Proof of Claim 4: Recall that we have

∂xfi(xi, yi) = Id + ∂xyVi(xi+1, yi)∂xfi(xi, yi).

Also, since ‖dϕi(xi, yi)− Id‖ < 1
2
, we also have that ‖∂xfi(xi, yi)− Id‖ < 1

2
, and thus

∂xfi(xi, yi) is invertible. Then

‖∂xfi(xi, yi)−1‖ ≤ 1

1− ‖Id− ∂xfi(xi, yi)‖
< 2.

Thus we get

‖∂xyVi(xi+1, yi)‖ = ‖(∂xfi(xi, yi)−Id)∂xfi(xi, yi)
−1‖ ≤ ‖∂xfi(xi, yi)−Id‖·‖∂xfi(xi, yi)−1‖ < 1.

Hence, by the Neumann Series, Id−∂xyVi(xi+1, yi) is invertible. Since the above argument
works for every i, this proves Claim 4 and completes the proof of Proposition 3.6.

34



4 Conley index theory

In this section we will discuss so-called Conley index theory. In general, this theory works
for flows on locally compact metric spaces,14 but we will apply it to the pseudo-gradient
flow of the discrete symplectic action defined in the previous section. We will also discuss
the Morse inequalities; these are the crucial ingredient in the proof of the nondegenerate
Conley-Zehnder Theorem.

4.1 The Conley index

For the remainder of this section, let M be a locally compact metric space and ϕ :
R×M →M a flow on M , i.e. a continuous collection of maps ϕt : M →M such that

ϕ0 = Id, ϕt ◦ ϕs = ϕt+s.

Definition 4.1. An invariant set is a subset S ⊂M such that

S = ϕ(R× S).

Given any subset N ⊂M , the maximal invariant subset of N is given by

I(N) := {x ∈ N | ϕ(R× {x}) ⊂ N} =
⋂
t∈R

ϕt(N). ♦

Remark 4.2. To see that I(N) as defined above is in fact the largest invariant set
contained in N , note that for any set N , the set ϕ(R × N) is the set consisting of all
the orbits that go through N . Hence a set is invariant precisely if it is a union of orbits.
Since I(N) is defined to be the union of all orbits contained in N , it is clear that I(N) is
invariant. Similarly, any invariant set N ′ contained in N is then obviously contained in
I(N).

Definition 4.3 (Isolated invariant sets). A set S ⊂M is called an isolated invariant set
if it is a compact invariant set such that there exists an isolating neighbourhood N of S,
i.e. a compact neighbourhood N such that S = I(N). ♦

Our goal is to define the Conley index for these isolated invariant sets. To do this,
we need to define index pairs.

Definition 4.4 (Index pairs). Let S ⊂M be an isolated invariant set. An index pair for
S is pair (N,L) of compact sets L ⊂ N ⊂M such that

(i) S ⊂ int(N \ L) and S = I(cl(N \ L)),

14In fact, it works for locals flows on Hausdorff topological spaces, but since we will apply it to a locally
compact metric space, we will not consider this more general case.
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(ii) if x ∈ L, t ≥ 0 are such that ϕ([0, t]× {x}) ⊂ N , then ϕt(x) ∈ L,

(iii) if x ∈ N is such that ϕ([0,∞) × {x}) 6⊂ N , then there exists some t ≥ 0 such that
ϕ([0, t]× {x}) ⊂ N and ϕt(x) ∈ L. ♦

Remark 4.5. Since the conditions are a bit abstract let us look into what they actually
mean. Condition (i) simply says that N \L is a neighbourhood of S and that cl(N \L) is
an isolating neighbourhood of S. Condition (ii) is actually a more general concept: when
N is any compact set N ⊂ M and L any set L ⊂ N , L is said to be positively invariant
in N if (ii) holds. This can be interpreted as saying that any point in L that does not get
pushed out of N by the flow, also stays in L. Finally, condition (iii) says that any point
that leaves N by the flow, has to go through L in doing so. The set L is sometimes called
the exit set of N in this case.

Figure 3: Some examples of index pairs.

Now that we have defined index pairs, we can also define the Conley index.

Definition 4.6 (Conley index). Let S ⊂ M be an isolated invariant set. The Conley
index h(S) of S is the homotopy type of the pointed space N/L, where (N,L) is an index
pair for S. ♦

Obviously, this definition hardly makes sense in our current position. There are two
obvious problems:

(i) How do we know an index pair exists for an arbitrary isolated invariant set?

(ii) How dow we know the Conley index is well-defined, i.e. how do we know that N/L
and N ′/L′ are homotopy equivalent for any two index pairs (N,L), (N ′, L′) of the
same isolated invariant set?

Thankfully, both these problems can be solved, and this is the content of the following
proposition.
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Proposition 4.7 (Well-definedness of Conley index). Let S ⊂M be an isolated invariant
set. Then

(i) there exists an index pair (N,L) for S, and

(ii) for any two index pairs (N,L) and (N ′, L′) for S we have that (N,L) and (N ′, L′)
are homotopy equivalent.

We will not prove this proposition here, since the proof is rather lengthy and not
very insightful. A proof can be found in e.g. [Sal85, Chapter 4].

It is convenient to define the following special class of index pairs.

Definition 4.8 (Regular index pairs). Let S ⊂M be an isolated invariant set. An index
pair (N,L) of S is called regular if L is a neighbourhood deformation retract in N , that
is, if there is some neighbourhood of L in N that deformation retracts onto L. ♦

The reason regular index pairs are useful is that since L is closed in N , the homology
of N/L agrees with the homology of the pair (N,L).15 When the homology is finite-
dimensional, we can define the characteristic polynomial of an isolated invariant set.

Definition 4.9 (Characteristic polynomial). Let S ⊂M be an isolated invariant set and
(N,L) a regular index pair for S. If the homology of the pair (N,L) is finite-dimensional,
then the characteristic polynomial pS of S is defined as

pS(s) :=
∑
k∈N

dimHk(N,L) sk. ♦

It can be shown, see e.g. [RS88], that when M is a manifold, the homology of all
index pairs are finite-dimensional.

4.2 The Morse inequalities

In this section we will state and prove the Morse inequalities. These inequalities provide
a lower bound for the number of critical points of a Morse function in a given isolated
invariant set. They will be vital in the proof of the Conley-Zehnder theorem, as we will
use them to determine a lower bound for the number of critical points of the discrete
symplectic action. Before we state the inequalities, we need some preparation.

Definition 4.10 (Morse functions). Let X be a manifold and f : X → R a smooth
function. Then f is called a Morse function if all of its critical points are nondegenerate.

♦

The following theorem is known as the Morse lemma, and it gives a very explicit
image of what a smooth function looks like near a nondegenerate critical point.

15See e.g. [Hat10, Proposition 2.22].
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Theorem 4.11 (Morse lemma). Let X be an n-dimensional manifold, f : X → R a
smooth function and x0 ∈ X a nondegenerate critical point of f . Then there is an i ∈
{0, . . . , n} and a chart ϕ : U → V ⊂ Rn centered at x0 such that

(f ◦ ϕ−1)(x1, . . . , xn) = f(x0)−
i∑

j=1

x2
j +

n∑
j=i+1

x2
j .

A proof of this theorem can be found in e.g. [ADE14, Theorem 1.3.1]. A chart as
in Morse’s lemma is called a Morse chart. The integer i is called the index of x0, and is
often denoted as ind(x0). It can be shown that this number depends only on the critical
point, and not on the Morse chart used.

Corollary 4.12. Let X be an n-dimensional manifold and f : X → R a Morse function.
Then the critical points of f are isolated.

Proof. Let x0 ∈ X be a critical point of f . Then by Morse’s lemma, we find a Morse
chart ϕ : U → V ⊂ Rn around x0. Now, for any critical point x′ ∈ U , ϕ(x′) is a critical
point of f ◦ ϕ−1, since by the chain rule

d(f ◦ ϕ−1)(ϕ(x′)) = df(x′) ◦ d(ϕ−1)(ϕ(x′)) = 0.

However, the only critical point of f ◦ ϕ is 0, and hence the only critical point in U is
x0.

Before we move on to the Morse inequalities, we need one more definition.

Definition 4.13 (Pseudo-gradients). Let X be an n-dimensional manifold and f : X → R
a Morse function. Then a pseudo-gradient field adapted to f is a smooth vector field
V : X → TX with the following properties.

(i) For every x ∈ X we have that df(x)(V (x)) ≤ 0, where equality holds iff x is a critical
point of f .

(ii) For any Morse chart ϕ : U → V ⊂ Rn around a critical point x0, the pushforward
ϕ∗V is just the negative gradient on Rn. ♦

Remark 4.14. Recall that if X and Y are smooth manifolds, F : X → Y is a diffeomor-
phism and V : X → TX a smooth vector field on X, then the pushforward F∗V : Y → TY
is defined as

(F∗V )y := dF (F−1(y))(V (F−1(y))).

A pseudo-gradient vector field has the nice property that f decreases along its flow
lines, just like the standard negative gradient field. Furthermore, it has a “standard” form
under a Morse chart.
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We are now ready to state and prove the Morse inequalities. Let X be an n-
dimensional manifold and f : X → R a Morse function. Let V : X → TX be a
pseudo-gradient field adapted to f and assume that it has a global flow ϕ : R×X → X.
Let S ⊂ X be an isolated invariant set for ϕ and let (N,L) be a regular index pair for S.
We write

ck(S) := #{x ∈ S | df(x) = 0, ind(x) = k}
for the number of critical points of f in S with index k. We also define the Conley-Betti
numbers

bk(S) := dimHk(N,L).

Theorem 4.15 (Morse inequalities). For any k ∈ {0, . . . , n} we have that

bk(S)− bk−1(S) + · · · ± b0(S) ≤ ck(S)− ck−1(S) + · · · ± c0(S)

where equality holds for k = n. Also,

n∑
k=0

bk ≤
n∑
k=0

ck.

Proof. Let us first show that the second assertion follows from the first. Since for every
k ∈ {1, . . . , n} we have that both

bk(S)− bk−1(S) + · · · ± b0(S) ≤ ck(S)− ck−1(S) + · · · ± c0(S)

and
bk−1(S)− bk−2(S) + · · · ∓ b0(S) ≤ ck−1(S)− ck−2(S) + · · · ∓ c0(S),

it follows by adding these two inequalities that bk(S) ≤ ck(S). Together with the obvious
inequality b0(S) ≤ c0(S), the second inequality follows immediately.

Now we prove the first assertion. First, let us introduce some notation. For any
regular value a ∈ R of f |N we define

Na := {x ∈ N | f(x) ≤ a} ∪ L.

For any critical value c ∈ R of f |N we define

Sc := {x ∈ S | df(x) = 0, f(x) = c}.

Claim 1. For any critical value c ∈ R the set Sc is an isolated invariant set, and a regular
index pair is given by (Nb, Na), where a and b are regular values a < c < b such that c is
the only critical value of f |N in [a, b]. The characteristic polynomial of Sc is given by

pSc(s) =
n∑
k=0

dimHk(Nb, Na)s
k =

∑
df(x)=0,f(x)=c

sind(x).
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We postpone the proof of this claim. We introduce some more notation, namely we
define the numbers

bak(S) := dimHk(Na, L), cak(S) := #{x ∈ S ∩Na | df(x) = 0, ind(x) = k}

for a regular value a of f |N . With this new terminology, the result of Claim 1 can be
written as

dimHk(Nb, Na) = cbk(S)− cak(S).

Indeed; the claim says that dimHk(Nb, Na) is equal to the number of critical points
in N of index k with critical value c. Since c is the only critical value between a and b,
the above equality follows.

Now, recall the long exact sequence of a triple (X,A,B), where B ⊂ A ⊂ X;

· · · → Hk+1(X,A)→ Hk(A,B)→ Hk(X,B)→ Hk(X,A)→ Hk−1(A,B)→ · · ·

Applied to the triple (Nb, Na, L), this becomes

· · · → Hk+1(Nb, Na)→ Hk(Na, L)→ Hk(Nb, L)→ Hk(Nb, Na)→ Hk−1(Na, L)→ · · ·

Defining
dabk (S) := rank

(
Hk+1(Nb, Na)→ Hk(Na, L)

)
,

we get, iteratively,

rank
(
Hk(Na, L)→ Hk(Nb, L)

)
= bak(S)− dabk (S),

rank
(
Hk(Nb, L)→ Hk(Nb, Na)

)
= bbk(S)− bak(S) + dabk (S),

dabk−1(S) = rank
(
Hk(Nb, Na)→ Hk−1(Na, L)

)
= cbk(S)− cak(S)− bbk(S) + bak(S)− dabk (S).

Hence we obtain

dabk−1(S) + dabk (S) = cbk(S)− cak(S)− bbk(S) + bak(S).

Defining the polynomials

paS(s) :=
n∑
k=0

bak(S)sk, pacrit(s) :=
n∑
k=0

cak(S)sk, pab(s) :=
n∑
k=0

dabk (S)sk,

this can be rephrased as

pbcrit(s)− pbS(s) = pacrit(s)− paS(s) + (1 + s)pab(s).

Now note that since every dabk (S) is nonnegative by definition, the polynomial pab(s)
has nonnegative coefficients.
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Since N is compact, the number of critical points of f |N is finite, and thus so is
the number of critical values. Denote the set of critical values of f |N by {c1, . . . , cr} and
choose regular values of f |N

a1 < c1 < a2 < · · · < ar < cr < ar+1

such that

a1 < inf
N
f, sup

N
f < ar+1.

In this case, we have Na1 = L, and thus that ba1k (S) = cak(S) = 0 for all k (cak(S) is
zero since S ∩ L = ∅, by the definition of an index pair). Hence we get that

pa2crit(s)− p
a2
S (s) = pa1crit(s)− p

a1
S (s) + (1 + s)pa1a2(s) = (1 + s)pa1a2(s).

Repeating this argument by induction, we get, for every k ∈ {1, . . . , r + 1} that

p
aj
crit(s)− p

aj
S (s) = (1 + s)paj(s)

for some polynomial paj(s) with nonnegative coefficients. Indeed, the result holds for
j = 1, 2, and if it holds for aj, then

p
aj+1

crit (s)− paj+1

S (s) = p
aj
crit(s)− p

aj
S (s) + (1 + s)pajaj+1(s) = (1 + s)

(
paj(s) + pajaj+1(s)

)
.

In particular, it holds for ar+1. However, since we chose ar+1 larger than the supre-
mum of f on N , it actually follows that Nar+1 = N , and thus that b

ar+1

k (S) = bk(S) and
c
ar+1

k (S) = ck(S), since S ∩Nar+1 = S ∩N = S. So defining

pcrit(s) :=
n∑
k=0

ck(S)sk,

we get that
pcrit(s)− pS(s) = (1 + s)p(s)

for some polynomial p(s) with nonnegative coefficients. If we write

p(s) =
n∑
k=0

dks
k,

then we get by induction that

dk =
k∑
j=0

(−1)j(ck−j(S)− bk−j(S)). (4.1)
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Indeed, we get that
d0 = c0 − b0,

and for any k ∈ {0, n− 1} we have that

dk+1 + dk = ck+1(S)− bk+1(S).

Hence if the equality holds for k, then

dk+1 = ck+1(S)−bk+1(S)−
k∑
j=0

(−1)j(ck−j(S)−bk−j(S)) =
k+1∑
j=0

(−1)j(ck+1−j(S)−bk+1−j(S)).

Therefore, we indeed obtain Eq. 4.1. Now, for every k we have that dk ≥ 0, and
we have dn = 0, since pcrit(s) − pS(s) is of degree n. But these are exactly the Morse
inequalities.
Proof of Claim 1: First, let us show that Sc is an isolated invariant set with regular
index pair (Nb, Na). It is clear that Sc is invariant, since the pseudogradient V is zero
at critical points. Hence every critical point is an orbit of ϕ. To see that Sc is compact,
note that since N is compact and nondegenerate critical points are isolated, there are
only finitely many points in Sc. Hence it is a finite unions of singletons, all of which are
of course compact. Hence Sc is compact as well. To see that it is isolated, we show that

Sc = I(Nab) = I(cl(Nb \Na))

where we write
Nab := {x ∈ N | a ≤ f(x) ≤ b}.

We have to show that the only orbits contained in Nab are the critical points, Sc. To
see this, note that for any x ∈ Nab\Sc, the flow ϕ pushes x down along f . Hence any orbit
that passes through Nab (and is not a critical point) has to exit Nab through the level set
{x ∈ N | f(x) = a} and/or enter it through the level set {x ∈ N | f(x) = b}. Hence the
only orbits contained in Nab are the critical points, Sc. To show that (Nb, Na) is an index
pair for Sc we still need to show part (ii) and (iii) of Definition 4.4. So let x ∈ Na and t ≥ 0
be such that ϕ([0, t]×{x}) ⊂ Nb. If x ∈ L, then since ϕ([0, t]×{x}) ⊂ Nb ⊂ N , it follows
since (N,L) is an index pair that ϕt(x) ∈ L ⊂ Na. If x 6∈ L, then x ∈ {x ∈ N | f(x) ≤ a}.
The fact that ϕ([0, t] × {x}) ⊂ Nb then means, in particular, that ϕ([0, t] × {x}) ⊂ N .
This, combined with the fact that f decreases along ϕ, implies that ϕt(x) ∈ Na; it is in
N , and since f(x) ≤ a, it follows that f(ϕt(x)) ≤ f(x) ≤ a.

To show (iii), let x ∈ Nb be such that ϕ([0,∞) × {x}) 6⊂ Nb. The crucial point
here is that this also implies that ϕ([0,∞)× {x}) 6⊂ N ; indeed, if x flows out of Nb, but
not out of N , it has to flow into the region {x ∈ N | b < f(x)}. But again, this is not
possible, since f decreases along ϕ. Hence we actually get that ϕ([0,∞) × {x}) 6⊂ N ,
and since x ∈ Nb ⊂ N it follows since (N,L) is an index pair that there is some t ≥ 0
such that ϕ([0, t] × {x}) ⊂ N and ϕt(x) ∈ L. Since f(x) ≤ b, it follows that for every
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t′ ≥ 0 we have that f(ϕt
′
)(x) ≤ b, and thus the above implies that ϕ([0, t] × {x}) ⊂ Nb

and ϕt(x) ∈ L ⊂ Na. Hence (iii) holds, and thus (Nb, Na) is an index pair for Sc.
To see that (Nb, Na) is regular, note that we can use the flow of the pseudo-gradient

to deformation retract a neighbourhood of Na onto Na. Indeed, take some small neigh-
bourhood U of L in N , such that U does not contain a critical value. This is possible
since (N,L) is a regular pair. We now write Ub := U ∩Nb. Now choose some a < a′ < c.
Then Na′ ∪Ub is a neighbourhood of Na in Nb. Then since f decreases along the flow, and
since L is an exit set for the flow in Nb, the flow (after rescaling if necessary) deformation
retracts Na′ ∪ Ub onto Na.

Now all that is left to prove is that

n∑
k=0

dimHk(Nb, Na)s
k =

∑
df(x)=0,f(x)=c

sind(x).

We will achieve this by moving to a different index pair for Sc, of which we can easily
compute the relative homology groups, and applying Proposition 4.7 (ii).

For now, consider a single critical point x0 ∈ Sc. Since V is a pseudo-gradient, there
is a Morse chart Φ : U0 → V0 ⊂ Rn around x0, such that

(f ◦ Φ−1)(y) = c−
ind(x0)∑
j=1

y2
j +

n∑
j=ind(x0)+1

y2
j

and
dΦ(Φ−1(y))(V (Φ−1(y))) = −(grad(f ◦ Φ−1))(y).

We claim that the flow ψt of −(grad(f ◦ Φ−1)), where it is defined, is given by

ψt(y) = (Φ ◦ ϕt ◦ Φ−1)(y).

Indeed,
ψ0(y) = (Φ ◦ Id ◦ Φ−1)(y) = y

and

d

ds

∣∣∣∣
s=t

ψs(y) = dΦ((ϕt ◦ Φ−1)(y))

(
d

ds

∣∣∣∣
s=t

ϕs(Φ−1(y))

)
= dΦ((ϕt ◦ Φ−1)(y))

(
V ((ϕt ◦ Φ−1)(y))

)
= dΦ(Φ−1(ψt(y)))

(
V (Φ−1(ψt(y)))

)
= −(grad(f ◦ Φ−1))(ψt(y)).

43



Now, since the gradient is given by

−(grad(f ◦ Φ−1))(y) =



2y1
...

2yind(x0)

−2yind(x0)+1
...
−2yn


,

it is clear that an index pair for the isolated invariant set {0} ⊂ Rn is given by

N0 := [−ε, ε]n,
L0 := {−ε} × [−ε, ε]n−1 ∪ {ε} × [−ε, ε]n−1 ∪ · · · ∪ [−ε, ε]ind(x0)−1 × {ε} × [−ε, ε]n−ind(x0),

where ε > 0 is small enough such that N0 ⊂ V0. That (N0, L0) is in fact an index pair for
{0} is clear; the only bounded orbit (and thus the only orbit contained in N0) is {0}, and
since the first ind(x0) coordinates increase of the flow and the others decrease, it is clear
that L0 is invariant in N0 and that it is an exit set for N0. It is also clearly regular.

When ind(x0) > 1, L0 has the homotopy type of a sphere Sind(x0)−1. Hence the exact
sequence of a pair (X,A), where A ⊂ X,

· · · → Hk(X)→ Hk(X,A)→ Hk−1(A)→ Hk−1(X)→ · · ·

becomes in this case

· · · → 0→ Hind(x0)(N0, L0)→ Z→ 0→ · · ·

and
· · · → 0→ Hk(N0, L0)→ 0→ 0→ · · ·

for k > ind(x0) and 1 < k < ind(x0). Finally, we have the exact sequence

· · · → 0→ H1(N0, L0)→ Z→ Z→ 0→ · · ·

In the case ind(x0) = 1 we simply have

· · · → 0→ H1(N0, L0)→ Z2 → Z→ 0→ · · ·

From the above sequences it immediately follows that, for ind(x0) ≥ 1,

Hk(N0, L0) =

{
Z if k = ind(x0),
0 else.

Since the pair (N0, L0) is regular, it follows that, for ind(x0) ≥ 1,

Hk(N0/L0) =

{
Z if k = 0, ind(x0),
0 else.
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In the case that ind(x0) = 0, (N0, L0) is not regular, since then L0 = ∅. However,
now N0/L0 is the disjoint union of two contractible spaces, namely N0 and the isolated
point corresponding to the empty set L0. Hence

Hk(N0/L0) =

{
Z2 if k = 0,
0 else.

Now that we have established the above, we wish to show that (N ′0, L
′
0) := (Φ−1(N0),Φ−1(L0))

is an index pair for the isolated invariant set {x0}. First of all, {x0} is clearly compact
and invariant, since it is a critical point. Now,

I(cl(N ′0 \ L′0)) =
⋂
t∈R

ϕt(cl(Φ−1(N0) \ Φ−1(L0))) =
⋂
t∈R

ϕt(cl(Φ−1(N0 \ L0)))

=
⋂
t∈R

(Φ−1 ◦ Φ ◦ ϕt ◦ Φ−1)(cl(N0 \ L0))

= Φ−1

(⋂
t∈R

ψt(cl(N0 \ L0))

)
= Φ−1(0) = x0.

To see that L′0 is invariant inN ′0, let x ∈ L′0 and t ≥ 0 be such that ϕ([0, t]×{x}) ⊂ N ′0.
Then Φ(x) ∈ L0 and

ψ([0, t], {Φ(x)}) = Φ(ϕ([0, t]× {x})) ⊂ Φ(N ′) = N0.

Therefore, Φ(x) ∈ L0, since (N0, L0) is an index pair, and thus x ∈ L′0.
To see that L′0 is an exit set for N ′0, let x ∈ N ′0 be such that ϕ([0,∞) × {x}) 6⊂ N ′0.

Then Φ(x) ∈ N0 and

ψ([0,∞), {Φ(x)}) = Φ(ϕ([0,∞)× {x})) 6⊂ Φ(N ′) = N0.

Therefore, there exists some t ≥ 0 such that ψ([0, t]× {Φ(x)}) ⊂ N0 and ψt(Φ(x)) ∈
L0. But then we have that

ϕ([0, t]× {x}) = Φ−1 (ψ([0, t]× {Φ(x)})) ⊂ Φ−1(N0) = N ′0

and
ϕt(x) = Φ−1(ψt(Φ(x))) ∈ Φ−1(L0) = L′0.

So (N ′0, L
′
0) is in fact an index pair for x0. It is also regular, since (N0, L0) is. Since

Φ induces a homeomorphism N ′0/L
′
0 → N0/L0, we have that

Hk(N
′
0/L

′
0) =

{
Z if k = 0, ind(x0),
0 else.
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if ind(x0) ≥ 1 and

Hk(N
′
0/L

′
0) =

{
Z2 if k = 0,
0 else.

if ind(x0) = 0.

We can proceed as above for every element of Sc. Since N is compact, we know
that Sc is finite, and we can write Sc = {x0, . . . , xl} for some integer l ∈ Z. Then for
i ∈ {0, . . . , l} we obtain index pairs (N ′i , L

′
i) for xi with homology groups as described

above. Now comes the crucial point; we can choose these index pairs such that they are
actually disjoint; choosing small neighbourhoods of the xi such that these neighbourhoods
are all disjoint, we can choose the ε in the construction of the index pairs small enough
such that [−ε, ε]n is contained in the image of the small neighbourhood under the Morse
chart. Now, it is easy to see that

(N ′, L′) := (N ′0 ∪ · · · ∪N ′l , L′0 ∪ · · · ∪ L′l)

is an index pair of Sc. The very useful property of this index pair is that we know its
homology groups; indeed, we have that

N ′/L′ =
l∧

i=0

N ′i/L
′
i

and since all pairs (N ′i , L
′
i) are regular, it follows by e.g. [Hat10, Corollary 2.25] that the

(reduced) homology groups of N ′/L′ are the direct sum of the (reduced) homology groups
of all the N ′i/L

′
i; for k > 0 we have

Hk(N
′/L′) = Znk ,

where nk is the number of critical points in Sc with index k. For k = 0 we have

H0(N ′/L′) = Zn0+1.

Now, by Proposition 4.7 (ii) N ′/L′ and Nb/Na are homotopy equivalent. Then, since
(Nb, Na) is regular, we obtain

Hk(Nb, Na) = Znk

for all k (in the case for k = 0 the extra generator cancels since Hk(Nb, Na) is actually
isomorphic to the reduced homology group of Nb/Na), and thus we finally obtain that

n∑
k=0

dimHk(Nb, Na)s
k =

∑
df(x)=0,f(x)=c

sind(x).

This proves Claim 1 and completes the proof of Theorem 4.15.
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5 Proof of Theorem 1.3 (Conley-Zehnder, nondegen-

erate case)

Finally, with the preparations made in the preceding sections, we are ready to prove the
nondegenerate Conley-Zehnder Theorem. We will do this in two steps. First, we will tweak
the theory of Section 3 to fit Hamiltonian symplectomorphisms of the torus T2n instead of
R2n. This step will establish that there are at least as many fixed points of the Hamiltonian
symplectomorphism on R2n/Z2n as critical points of the discrete symplectic action Φ on
R2nN/Z2n. Then in step two, we will apply Conley index theory to Φ : R2nN/Z2n → R
and, in particular, use the Morse inequalities to complete the proof.

Step 1: a nicer discrete symplectic action

The general idea for this step is to look at lifts of symplectomorphisms of T2n to the
universal covering space R2n. The first thing we will do is refine Proposition 3.2 to obtain
a better suited generating function, namely one that is invariant under the action of Z2n

on R2n. First, we need some preparation.
Let H : [0, 1] × T2n → R be a smooth function, ϕH : [0, 1] × [0, 1] × T2n → T2n

the Hamiltonian flow induced by H and ψ := ϕ1,0
H the corresponding Hamiltonian sym-

plectomorphism. Our goal is to lift this flow to R2n. Define the smooth function H̃ :=
H ◦ (Id × π) : [0, 1] × R2n → R, where π : R2n → T2n = R2n/Z2n is the quotient map.
This function determines a Hamiltonian vector field XH̃ .

Lemma 5.1. The time-dependent vector field XH̃ has a global flow ϕH̃ : [0, 1] × [0, 1] ×
R2n → R2n such that ϕt,t0

H̃
is a lift of ϕt,t0H for every t, t0.16

Proof. First, recall that π∗ω̄0 = ω0, and that dπ(x) is invertible for every x ∈ R2n, since
it is a local diffeomorphism. Then, just as in the proof of Lemma 2.45,

dH̃t(x) = dHt(π(x)) ◦ dπ(x) = (ω̄0)π(x)((X
t
H ◦ π)(x), dπ(x)·)

= (ω̄0)π(x)((dπ(x) ◦ dπ(x)−1 ◦X t
H ◦ π)(x), dπ(x)·)

= (ω0)x((dπ(x)−1 ◦X t
H ◦ π)(x), ·).

Hence for every x ∈ R2n and t ∈ [0, 1], X t
H̃

(x) = (dπ(x)−1 ◦ X t
H ◦ π)(x). Next, we lift

ϕH : [0, 1] × [0, 1] × T2n → T2n to a smooth map ϕ̃H : [0, 1] × [0, 1] × R2n → R2n with
initial contition ϕ̃0,0

H = Id.

Claim 1. For every t ∈ [0, 1], we have that ϕ̃t,tH = Id.

16Recall from Appendix D that a lift f̃ : X̃ → X̃ of a map f : X → X to the universal covering space
X̃ of X satisfies p ◦ f̃ = f ◦ p, where p : X̃ → X is the covering map.
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We will prove this claim below.
Note also that

d

dt

∣∣∣∣
t=t1

(π ◦ ϕ̃t,t0H )(x) = dπ(ϕ̃t1,t0H (x))

(
d

dt

∣∣∣∣
t=t1

ϕ̃t,t0H (x)

)

=
d

dt

∣∣∣∣
t=t1

(ϕt,t0H ◦ π)(x) =
(
X t1
H ◦ ϕ

t1,t0
H ◦ π

)
(x).

Hence

d

dt

∣∣∣∣
t=t1

ϕ̃t,t0H (x) =
(
dπ(ϕ̃t1,t0H (x))−1 ◦X t1

H ◦ ϕ
t1,t0
H ◦ π

)
(x)

=
(
dπ(ϕ̃t1,t0H (x))−1 ◦X t1

H ◦ π
)

(ϕ̃t1,t0H (x))

= X t1
H̃

(ϕ̃t1,t0H (x)).

This means that ϕ̃H is the (global) flow of XH̃ .
Proof of Claim 1: First note that for every x ∈ R2n and t ∈ [0, 1] we have that

(π ◦ ϕ̃t,tH )(x) = (ϕt,tH ◦ π)(x) = π(x).

Hence ϕ̃t,tH (x) = x+k(t, x) for some k(t, x) ∈ Z2n. We want to show that k(t, x) = 0 for
all x ∈ R2n and t ∈ [0, 1]. To see this, let x ∈ R2n and consider the map Φx : [0, 1]→ R2n

given by Φx(t) = ϕ̃t,tH (x). Then Φx is smooth and Φx(0) = x. Now assume that Φx(t) 6= x
for some t ∈ [0, 1], and define

t0 := inf{t ∈ [0, 1] | Φx(t) 6= x}.

Now there are two cases: either Φx(t0) = x or not. In the first case, we easily reach a
contradiction; for every ε > 0 there is some tε such that |tε−t0| < ε and ‖Φx(tε)−Φx(t0)‖ ≥
1. This of course contradicts continuity of Φx.

The second case is not much different; in this case we know that t0 > 0 and that
Φx(t) = x for all t < t0. Then we can argue in the same way as in the first case, except
now approaching from below. So we reach a contradiction, and this proves Claim 1 and
completes the proof of Lemma 5.1.

Now, fixing some N ∈ N and denoting ψ̃ := ϕ1,0

H̃
, ψ̃i := ϕ

(i+1)/N,i/N

H̃
, we get that

ψ̃ = ψ̃N−1 ◦ · · · ◦ ψ̃0

and we wish to apply the theory of generating functions as in Example 3.4. However,
since the ψ̃i defined above are not just any symplectomorphisms, we can derive extra
properties of their generating functions, namely that they descend to the torus.

The next proposition shows that lifts of Hamiltonian symplectomorphisms have
“nicer” generating functions.
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Proposition 5.2. Let ϕ̃ : R2n → R2n be the lift of a Hamiltonian symplectomorphism
ϕ of T2n that is sufficiently close to the identity. Then ϕ̃ admits a generating function
Ṽ : R2n → R as in Definition 3.1 with the extra property that

Ṽ (z + k) = Ṽ (z)

for all z ∈ R2n and k ∈ Z2n.

Proof. Consider the space T2n ×T2n, and denote the projection map by π : R2n ×R2n →
T2n × T2n. Writing an element of this space as (x̄0, ȳ0, x̄1, ȳ1), we denote by x̄i0 : T2n ×
T2n → T1 the projection onto the i-th component, and use similar notation for the other
projections. As discussed in Remark 2.62, the differentials dx̄i0 and similar can be seen as
a differential 1-form on T2n × T2n by canonically identifying TxT1 ' R. Now, define an
open neighbourhood of the diagonal

U := (T2n×T2n)\{(x̄0, ȳ0, x̄1, ȳ1) | xi0 = xi1+k+
1

2
or yi0 = yi1+k+

1

2
for some i ∈ {1, . . . , n}},

i.e. the points (x̄0, ȳ0, x̄1, ȳ1) in T2n×T2n such that for any two points in the pre-image of
π of this point, all the coordinates do not differ by an integer plus one half. The reason
we define this neighbourhood is that we wish is that we wish to define functions “yi0− yi1”
and “xi1 − xi0” that measure the difference between coordinates. Of course, this is not
quite possible on the torus, but on U we can actually make these functions well defined,
by requiring that this difference lies in the interval (−1

2
, 1

2
). Specifically, we define the

function Yi : U → R by Yi(x̄0, ȳ0, x̄1, ȳ1) := t, where t is the number t ∈ (−1
2
, 1

2
) such that

yi0 = yi1 + t. This is clearly unique, since (x̄0, ȳ0, x̄1, ȳ1) ∈ U , so the difference between

the coordinates is not equal to an integer plus one half, and hence yi0 = yi1 + t′ for some

t′ ∈ R \ {k+ 1
2
| k ∈ Z}. Since yi1 + k = yi1 for any k ∈ Z, it follows that there is a unique

t ∈ (−1
2
, 1

2
) such that yi0 = yi1 + t. Now, to see that Yi is smooth, note that the map Yi ◦π

is locally just the map (x0, y0, x1, y1) 7→ yi0 − yi1 on R2n × R2n, which is clearly smooth.
Hence Yi is also locally smooth around every point in U , and thus Yi is smooth. We can
similarly define Xi : U → R by Xi(x̄0, ȳ0, x̄1, ȳ1) := t, where t is the number t ∈ (−1

2
, 1

2
)

such that xi1 = xi0 + t. Now we define a differential 1-from α on U by

α :=
n∑
i=1

Yi dx̄
i
1 +Xi dȳ

i
0.

It is clear from the definitions that we have dYi = dȳi0 − dȳi1 and dXi = dx̄i1 − dx̄i0.
Hence we get

dα =
n∑
i=1

[
dȳi0 ∧ dx̄i1 − dȳi1 ∧ dx̄i1 + dx̄i1 ∧ dȳi0 − dx̄i0 ∧ dȳi0

]
=

n∑
i=1

[
dx̄i1 ∧ dȳi1 − dx̄i0 ∧ dȳi0

]
= (−ω̄0)⊕ ω̄0.
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This means that when (v1, v2, v
′
1, v
′
2) ∈ (T(x̄0,ȳ0)T2n)×(T(x̄1,ȳ1)T2n) = T(x̄0,ȳ0,x̄1,ȳ1)(T2n×

T2n) we have that

dα(x̄0,ȳ0,x̄1,ȳ1)(v1, v2, v
′
1, v
′
2) = −(ω̄0)(x̄0,ȳ0)(v1, v2) + (ω̄0)(x̄1,ȳ1)(v

′
1, v
′
2).

Now, denote by H : [0, 1]× T2n → T2n the smooth function that induces ϕ. Denote
also by XH the induced Hamiltonian vector field and by ϕH the induced Hamiltonian
isotopy. When ϕ is sufficiently close to the identity, for every t ∈ [0, 1], the image of
gr ϕtH is contained in U , and we can pull by α by this map. We then define

βt := (gr ϕtH)∗α.

Now, note that

d

ds

∣∣∣∣
s=t

(gr ϕsH)(x̄0, ȳ0) = (0, XH(t, ϕtH(x̄0, ȳ0))) ∈ (T(x̄0,ȳ0)T2n)× (T(x̄1,ȳ1)T2n).

We will now use the following generalized Cartan formula, which we will not prove
here

Claim 1. Let X1, X2 be smooth manifolds, f : I × X1 → X2 a smooth isotopy and
ω a differential k-form (k ≥ 1) on X2. Defining the differential (k − 1)- and k-forms,
respectively,

(ω1
t )x(v1, . . . , vk−1) := ωft(x)

(
d

ds

∣∣∣∣
s=t

fs(x), dft(x)v1, . . . , dft(x)vk−1

)
,

(ω2
t )x(v1, . . . , vk) := (dω)ft(x)

(
d

ds

∣∣∣∣
s=t

fs(x), dft(x)v1, . . . , dft(x)vk

)
,

we have
d

ds

∣∣∣∣
s=t

f ∗t ω = ω2
t + dω1

t .

Applying this claim to what we have we get in this case

(ω2
t )(x̄0,ȳ0) = (ω̄0)ϕt

H(x̄0,ȳ0)

(
XH(t, ϕtH(x̄0, ȳ0)), dϕtH(x) ·

)
= ((ϕtH)∗ιXt

H
ω̄0)(x̄0,ȳ0)

= ((ϕtH)∗dHt)(x̄0,ȳ0).

Hence we get
d

ds

∣∣∣∣
s=t

βt = (ϕtH)∗d
(
Ht + ωt1

)
= d

[
(ϕtH)∗

(
Ht + ωt1

)]
.

So by the fundamental theorem of calculus we get

(grϕ)∗α =

∫ 1

0

d
[
(ϕtH)∗

(
Ht + ωt1

)]
dt = d

[∫ 1

0

(ϕtH)∗
(
Ht + ωt1

)
dt

]
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So we see that (grϕ)∗α is exact. To shorten notation, we write (grϕ)∗α = dV , where

V : T2n → R is a smooth function. Now, defining Ṽ = V ◦ π, we get

(grϕ ◦ π)∗α = π∗(grϕ)∗α = dṼ .

Now, writing a point in R2n as (x0, y0), we write, just as in Section 3.1,

ϕ̃(x0, y0) = (u(x0, y0), v(x0, y0)) = (x1, y1).

It is easy to see from the definitions that

(grϕ ◦ π)∗α =
n∑
i=1

(yi0 − vi)dui + (ui − xi0)dyi0.

Here we use that, by the assumption that ϕ̃ is sufficiently small, ϕ̃(z) − z ∈ (−1
2
, 1

2
) for

every z ∈ R2n. We also assume that ‖dϕ̃(z) − Id‖ < 1
2

for every z ∈ R2n, and thus,
as in the proof of Proposition 3.2, we can use the coordinates (x1, x0) on R2n. In these
coordinates we get that

(grϕ ◦ π)∗α =
n∑
i=1

(yi0 − yi1)dxi1 + (xi1 − xi0)dyi0 = dṼ .

This means exactly that Ṽ is a generating function for ϕ̃, since ϕ̃(x0, y0) = (x1, y1) iff

x1 − x0 =
∂V

∂y
(x1, y0), y0 − y1 = −∂V

∂x
(x1, y0).

Of coures, by construction Ṽ is a lift of a function on T2n, and thus clearly satisfies

Ṽ (z + k) = Ṽ (z)

for all z ∈ R2n and k ∈ Z2n.

Remark 5.3. The hypothesis that ϕ̃ is “sufficiently small” may seem quite strict, since,
as becomes clear in the proof, we require that ϕ̃(z) − z ∈ (−1

2
, 1

2
) for every z ∈ R2n.

However, this is not unreasonable; of course, the way we want to apply this proposition
to ϕ

(i+1)/N,i/N

H̃
, which is a lift of ϕ

(i+1)/N,i/N
H . Now, ϕ

(i+1)/N,i/N
H is Hamiltonian for every

i by Remark 2.49, and it can be shown using the flux homomorphism17 that for any lift
ϕ′ : R2n → R2n of ϕ

(i+1)/N,i/N
H we have that ϕ′(z + k) = ϕ′(z) + k for any z ∈ R2n and

k ∈ Z2n. In particular, ϕ′ − Id is periodic. Thus the condition ϕ̃(z) − z ∈ (−1
2
, 1

2
) only

needs to hold on the compact set [0, 1]2n, and this is clearly doable by letting N get big
enough, since ϕt,t

H̃
= Id for every t.

17See e.g. [MS99, Chapter 10].
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Figure 4: The action of Z2n on R2n(N−1) for n = 1 and N = 5; (1, 2) · {z0, . . . , z4} =
{z′0, . . . , z′4}.

As before, denote by Vi : R2n → R the generating function for ψ̃i as in Proposition
5.2 and define the discrete symplectic action Φ : XN,n → R by

Φ
(
x0, y0, . . . , xN−1, yN−1

)
:=

N−1∑
i=0

(
〈yi, xi+1 − xi〉 − Vi(xi+1, yi)

)
. (5.1)

Recall that XN,n ' R2nN is the space of N -periodic sequences in R2n. As before, due

to Proposition 3.6, (nondegenerate) fixed points ψ̃ correspond to (nondegenerate) critical
points of Φ. However, this is not quite enough for our purposes; two distinct fixed points
of ψ̃ might just come down to one fixed point of ψ if they are related by the action of
Z2n on R2n. So to overcome this problem, we have to use the additional properties of the
generating functions Vi. First, we define the action of Z2n on XN,n by

(k, l) · {(xi, yi)}i∈Z = {(xi + k, yi + l)}i∈Z

for (k, l) ∈ Z2n and {(xi, yi)}i∈Z ∈ XN,n. This can be seen as translating the whole
sequence {z0, . . . , zN−1} by (k, l), see Figure 4. This action is clearly smooth, free and
proper, and thus by Theorem 2.54, XN,n/Z2n has a unique smooth structure such that
the quotient map π′ : XN,n → XN,n/Z2n is a smooth covering map. Now note that

Φ
(

(k, l) · {(xi, yi)}i∈Z
)

=
N−1∑
i=0

(
〈yi + l, xi+1 + k − xi − k〉 − Vi(xi+1 + k, yi + l)

)
=

N−1∑
i=0

(
〈yi, xi+1 − xi〉 − Vi(xi+1, yi)

)
+

N−1∑
i=0

〈l, xi+1 − xi〉

= Φ
(
x0, y0, . . . , xN−1, yN−1

)
.
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Here we use that Vi is invariant under the action of Z2n for every i and that the
sequence {xi}i∈Z is periodic. Hence we get that Φ descends to the quotient R2nN/Z2n,
since it is invariant under the action of Z2n. Now we are ready to formulate the adapted
version of Proposition 3.6.

Proposition 5.4. Let ϕN−1, . . . , ϕ0 : R2n → R2n be symplectomorphisms that all satisfy
the condition of Proposition 5.2, and let Φ : XN,n → R be the discrete symplectic action
induced by their generating functions. Writing ϕ = ϕN−1 ◦ · · · ◦ϕ0, every critical point of
Φ on XN,n/Z2n induces exactly one fixed point of ϕ on R2n/Z2n. Furthermore, a critical
point of Φ on XN,n/Z2n is nondegenerate iff the corresponding fixed point is nondegenerate.

Before we start the proof, let us establish some notation. We denote by ϕ̄i :
R2n/Z2n → R2n/Z2n and Φ̄ : R2nN/Z2n → R the maps that satisfy π ◦ ϕi = ϕ̄i ◦ π and
Φ̄ ◦ π′ = Φ, where π : R2n → R2n/Z2n and π′ : R2nN → R2nN/Z2n are the quotient maps.
Furthermore, for (x0, y0) ∈ R2n we denote (x̄0, ȳ0) = π(x0, y0) and for {zj} = {(xi, yi)}i∈Z
we denote {zj} = π′({zj}).

Proof of Proposition 5.4. The crucial fact that we will use in this proof is that as in
Remark 2.62, there is a chart around any point {zj} ∈ R2nN/Z2n that is given by {zj} 7→
{zj}. This follows again from the fact that for sufficiently small neighbourhoods of a point
{zj} ∈ R2nN , π′ is injective in this neighbourhood, and we can use the (local) inverse of
π′ as a chart. A similar case of course holds for points (x̄0, ȳ0) ∈ R2n/Z2n.

Now let {zj} ∈ R2nN/Z2n be a critical point of Φ̄. Using a chart as described as
above, this implies that all the partial derivatives of Φ are zero, at any point in the pre-
image π′−1({zj}). Then by Proposition 3.6, every point in the pre-image induces a fixed
point of ϕ, namely writing a point in the pre-image as (x0, y0, . . . , xN−1, yN−1), (x0, y0) is
a fixed point of ϕ. Now, all the other points in the pre-image π′−1({zj}) can be written
as (x0 + k, y0 + l, . . . , xN−1 + k, yN−1 + l) for some (k, l) ∈ Z2n, and hence all the induced
fixed points are identified by the action of Z2n: indeed, the set of fixed points of ϕ induced
by the critical point of Φ̄ is given by

{(x0 + k, y0 + l) | (k, l) ∈ Z2n}.

Now every fixed point (x0, y0) of ϕ induces a fixed point of ϕ̄, since ϕ̄(x̄0, ȳ0) = π(ϕ(x0, y0)) =
(x̄0, ȳ0). Also, two fixed points of ϕ that are identified by the action of Z2n induce the
same fixed point of ϕ̄.

In the end, we have that every critical point of Φ̄ induces a set

{(x0 + k, y0 + l) | (k, l) ∈ Z2n}

of fixed points of ϕ, and since this whole set gets mapped to one fixed point of ϕ̄, we
indeed get that every critical point of Φ̄ induces exactly one fixed point of ϕ̄, and we have
proved the first part of the proposition.
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For the second part, note first that the Hessian of a critical point {zj} ∈ R2nN/Z2n in
a chart described at the beginning of the proof if just the Hessian matrix of Φ at any point
in π′−1({zj}). Hence a critical point {zj} ∈ R2nN/Z2n is nondegenerate iff the points in

π′−1({zj}) are nondegenerate as critical points of Φ.
Now let (x̄0, ȳ0) ∈ R2n/Z2n be a fixed point of ϕ̄ that is induced by a critical point

of Φ̄, that is, such that any (x0, y0) ∈ π−1(x̄0, ȳ0) is a fixed point of ϕ.18 Then in a chart
as described at the beginning of the proof, the differential dϕ̄(x̄0, ȳ0) is just the Jacobian
matrix of ϕ at any point in the pre-image π−1(x̄0, ȳ0). Hence the fixed point (x̄0, ȳ0) is
nondegenerate iff all corresponding fixed points of ϕ are nondegenerate.

Combining the above two results with the fact that by Proposition 3.6 the non-
degenerate critical points of Φ and nondegenerate fixed points of ϕ are in one-to-one
correspondence, we have indeed proven the second part of the proposition.

For the sake of clarity, let us quickly explain how the results in this section complete
step 1. Recall our definitions at the start of this step; let H : [0, 1] × T2n → R be a
smooth function, ϕH : [0, 1] × [0, 1] × T2n → T2n the Hamiltonian flow induced by H
and ψ := ϕ1,0

H the corresponding Hamiltonian symplectomorphism. Define the smooth

function H̃ := H ◦ (Id× π) : [0, 1]× R2n → R. Define the maps

ψ̃ := ϕ1,0

H̃
, ψ̃i := ϕ

(i+1)/N,i/N

H̃
,

where ϕH̃ is the flow of H̃. Then by Lemma 5.1 every ψ̃i is a lift of ϕ
(i+1)/N,i/N
H , and is

thus a lift of a Hamiltonian symplectomorphism of the torus. Also, since ϕt,t
H̃

= Id for

every t it follows that for sufficiently large N , every ψ̃i is sufficiently close to the identity,
and thus admits a generating function as in Proposition 5.2. Since ψ̃ is a lift of the
Hamiltonian symplectomorphism ψ, it follows then by Proposition 5.4 that ψ has at least
as many fixed points as the discrete symplectic action Φ : R2nN/Z2n → R associated with
it. Furthermore, when we assume that ψ has only nondegenerate fixed points, it follows
that Φ : R2nN/Z2n → R is in fact a Morse function, and thus we can use Conley index
theory and the Morse inequalities to establish a lower bound for the number of critical
points of Φ, and thus also for the number of fixed points of ψ. This completes step 1.

Step 2: Conley index theory for the discrete symplectic action

In this step, we will define a pseudo-gradient flow adapted to Φ on R2nN/Z2n, find a regular
index pair for it and compute its Conley-Betti numbers. The sum of these Conley-Betti
numbers will then be a lower bound for the number of critical points of Φ, by Theorem
4.15 (Morse inequalities). Combining this with step 1, the sum of these Conley-Betti

18Note that this not necessarily hold for any fixed point of ϕ̄; indeed, this is actually the reason that
this proposition does not establish a one-to-one correspondence as before. If (x̄0, ȳ0) ∈ R2n/Z2n is a fixed
point of ϕ̄, all we know is that ϕ(x0, y0) = (x0 + k, y0 + l)) for some (k, l) ∈ Z2n. Only when the fixed
point is induced by a critical point of Φ̄ do we know that a “lift” of (x̄0, ȳ0) is a fixed point of ϕ.
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numbers will then be a lower bound for the number of fixed points of ψ.

First, we will identify R2nN/Z2n with a slightly nicer space, namely T2n × R2n(N−1).
Indeed, the smooth19 map F : R2nN → T2n × R2n(N−1) defined by

F (z0, . . . , zN−1) := (z̄0, z1 − z0, . . . , zN−1 − zN−2)

is invariant under the action of Z2n on R2nN , and thus descends to a smooth map

F̄ : R2nN/Z2n → T2n × R2n(N−1), (z0, . . . , zN−1) 7→ (z̄0, z1 − z0, . . . , zN−1 − zN−2).

Similarly, the map F ′ : R2nN → R2nN/Z2n defined by

F ′(z0, . . . , zN−1) := (z0, z1 + z0, . . . , zN−1 + · · ·+ z0).

also descends to a smooth map

F̄ ′ : T2n × R2n(N−1) → R2nN/Z2n, (z̄0, . . . , zN−1) 7→ (z0, z1 + z0, . . . , zN−1 + · · ·+ z0).

Now, F̄ and F̄ ′ are clearly inverses of each other, and thus F̄ : R2nN/Z2n → T2n ×
R2n(N−1) is a diffeomorphism. Now, the discrete symplectic action Φ : T2n×R2n(N−1) → R
is given by20

Φ(z̄0, . . . , zN−1) =
N−1∑
i=0

(
〈yi + · · ·+ y0, xi+1〉 − 〈yN−1 + · · ·+ y0, xi+1〉

− Vi(xi+1 + · · ·+ x0, yi + · · ·+ y0)
)

=
N−1∑
i=0

(
− 〈yN−1 + · · ·+ yi+1, xi+1〉 − Vi(xi+1 + · · ·+ x0, yi + · · ·+ y0)

)
,

where we write zj = (xj, yj) as before.
Now, we define the function W : T2n × R2n(N−1) → R by

W (z̄0, . . . , zN−1) = −
N−1∑
i=0

Vi(xi+1 + · · ·+ x0, yi + · · ·+ y0).

19It is smooth since it is the composition of the clearly smooth map (z0, . . . , zN−1) 7→ (z0, z1 −
z0, . . . , zN−1 − zN−2) from R2nN to itself and the quotient map π × Id : R2nN → T2n × R2n(N−1).

20Technically, this is a different map Φ′ : T2n × R2n(N−1) → R defined by Φ′ := Φ ◦ F̄ ′, but since it is
still essentially the same map, we will refer to it by the same name. Since F̄ ′ is a diffeomorphism, this
“new” Φ is still a Morse function, with the same number of critical points as before.
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Then for any (k1, l1, . . . , kN−1, lN−1) ∈ Z2n(N−1) we have that

W (z̄0, . . . , xN−1 + kN−1, yN−1 + lN−1) = −
N−1∑
i=0

Vi(xi+1 + · · ·+ x0 + k′i+1, yi + · · ·+ y0 + l′i)

= −
N−1∑
i=0

Vi(xi+1 + · · ·+ x0, yi + · · ·+ y0)

= W (z̄0, . . . , xN−1, yN−1),

since k′i = k1 + · · · + ki ∈ Z, l′i = l1 + · · · + li ∈ Z and Vi is periodic for any i. Hence
W is completely determined by its values on T2n × [0, 1]2n(N−1), and in particular, W is
bounded.
Now, define the n(N − 1)× n(N − 1) matrix B by

B :=


Idn Idn · · · Idn

0
. . . . . .

...
...

. . . . . . Idn
0 · · · 0 Idn

 ,

where Idn denotes the n× n identity matrix. Now we define the 2n(N − 1)× 2n(N − 1)
matrix P by

P :=

(
0 −B
−BT 0

)
.

Now, writing

z = (x,y), x = (x1, . . . , xN−1), y = (y1, . . . , yN−1),

we get that

Pz = −
(
By
BTx

)
= −



yN−1 + · · ·+ y1

yN−1 + · · ·+ y2
...

yN−1

x1

x1 + x2
...

x1 + · · ·+ xN−1


.

This means that

〈z, Pz〉 = −2〈x1, yN−1 + · · ·+ y1〉 − · · · − 2〈xN−1, yN−1〉.

Thus we find that

Φ(z̄0, z) =
1

2
〈z, Pz〉+W (z̄0, z).
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We already know that W is bounded, so let us find out some more information about
P . First of all, note that B is invertible; if (x1, . . . , xN−1) ∈ kerB, then this means that

B

 x1
...

xN−1

 =


xN−1 + · · ·+ x1

xN−1 + · · ·+ x2

· · ·
xN−1

 = 0.

This then means that xN−1 = 0, xN−2 = −xN−1 = 0, etc. Hence the kernel of B is trivial,
and B is invertible. But then so is BT , and also P . Now let (v1, v2) ∈ R2n(N−1) be an
eigenvector of P , with eigenvalue λ. This means that

P

(
v1

v2

)
=

(
−Bv2

−BTv1

)
= λ

(
v1

v2

)
.

But then

P

(
v1

−v2

)
=

(
Bv2

−BTv1

)
= −λ

(
v1

−v2

)
.

This, combined with the fact that P only has nonzero eigenvalues, means that the
map T : R2n(N−1) → R2n(N−1) defined by

T (v1, v2) := (v1,−v2)

satisfies

T (E+
P ) ⊂ E−P , T (E−P ) ⊂ E+

P ,

where E+
P is the positive eigenspace and E−P the negative eigenspace of P . Since T is

invertible with inverse T , this implies that T is a linear bijection between E+
P and E−P ,

which then implies that

dimE+
P = dimE−P = n(N − 1) =: m.

So there is a splitting
R2n(N−1) = E+

P ⊕ E
−
P

into the positive and negative eigenspace of P .

Now, we will define a pseudo-gradient flow on T2n × R2n(N−1) adapted to Φ. The
most important property we will use is that W is bounded, and thus that far away from
the origin, Φ basically becomes the quadratic form

z 7→ 1

2
〈z, Pz〉

on R2n(N−1). First, note that this means that all critical points of Φ are contained in
some large compact set; for some sufficiently large R > 0 we have for all z ∈ R2n(N−1)
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with ‖z‖ > R that Pz becomes so big compared to W that the differential is never

zero anymore. Indeed, defining W̃ := W ◦ (π × Id), the differential becomes, in local
coordinates,

dΦ(z̄0, z) = (Pz)T + (grad W̃ )(z0, z)T ,

where we view it as an operator on R2nN , and where we view Pz and (grad W̃ )(z0, z) as
vectors in R2nN (z0 is the local coordinate for z̄0). Letting this act on the vector

v =

(
0
Pz

)
we get

dΦ(z̄0, z)v = ‖Pz‖2 + 〈∂zW̃ (z0, z), Pz〉

where

∂zW̃ (z0, z) =


∂W̃
∂z1,1

(z0, z)
...

∂W̃
∂zN−1,2n

(z0, z)


is just the gradient in the last z coordinates. Now since W is bounded, so is ∂zW̃ , and
we can choose R > 0 so that for all ‖z‖ > R we have that

‖Pz‖ > sup
(z0,z′)∈R2nN

‖∂zW̃ (z0, z
′)‖.

Returning to the above case for ‖z‖ > R we then get that

‖Pz‖2 > ‖∂zW̃ (z0, z)‖ · ‖Pz‖ ≥ |〈∂zW̃ (z0, z), Pz〉|

and thus
dΦ(z̄0, z)v 6= 0.

So we know that all critical points are contained in the compact set XR := T2n×{z ∈
R2n(N−1) | ‖z‖ ≤ R}. In particular, this means that there are only finitely many. Denote
the set of critical points by {x0, . . . , xr} and choose a Morse chart ϕi : Ui → Vi ⊂ R2nN

around every critical point xi. Adding extra open charts ϕj : Uj → Vj ⊂ R2nN we obtain
a finite open cover {U1, . . . , Ur, . . . , Uk} of XR. Without loss of generality, we can assume
that every critical point xj is only contained in the open Uj, not in any of the others.
Now on every Uj, define a vector field Xj by pulling pack the negative gradient on R2nN ;

Xj(z̄0, z) := −d(ϕ−1
j )(ϕj(z̄0, z))

(
(grad Φ ◦ ϕ−1

j )(ϕj(z̄0, z))
)

Note that we then have

dΦ(z̄0, z)
(
Xj(z̄0, z)

)
= −d(Φ ◦ ϕ−1

j )(ϕj(z̄0, z))
(

(grad Φ ◦ ϕ−1
j )(ϕj(z̄0, z))

)
< 0,
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when (z̄0, z) is not a critical point, since the differential on R2nN is essentially the transpose
of the gradient, and that thus

dΦ(z̄0, z)
(
Xj(z̄0, z)

)
= −‖(grad Φ ◦ ϕ−1

j )(ϕj(z̄0, z))‖2.

Now, we complete the cover by adding the set Uk+1 := T2n × {z ∈ R2n(N−1) | ‖z‖ >
R}. On Uk+1, we define the vector field

Xk+1(z̄0, z) :=

(
0
−Pz

)
,

where we view the tangent space at (z̄0, z) as

T(z̄0,z)

(
T2n × R2n(N−1)

)
= Tz̄0T2n ⊕ TzR2n(N−1) = Tz̄0T2n ⊕ R2n(N−1).

By the same computations we did to prove that there were no critical points in Uk+1

we get that

dΦ(z̄0, z)
(
Xk+1(z̄0, z)

)
= −‖Pz‖2 − 〈∂zW̃ (z0, z), Pz〉 < 0.

Now, we need to patch these vector fields together. Choose a smooth partition of
unity {ρ1, . . . , ρk+1} subordinate to {U1, . . . , Uk+1} and define the (global) smooth vector
fields

X̃j :=

{
ρj(z̄, z)Xj(z̄, z) if (z̄, z) ∈ Uj,
0 else.

Then, we define

X(z̄, z) :=
k+1∑
i=1

X̃i(z̄, z).

We claim that this is a pseudo-gradient field adapted to Φ. First, note that when
(z̄, z) is not a critical point, we get that

dΦ(z̄0, z)
(
X(z̄0, z)

)
=

k+1∑
i=1

dΦ(z̄0, z)
(
X̃i(z̄, z)

)
< 0,

since ρj ≥ 0 for every j and we have ρi(z̄0, z) 6= 0 for at least one i. To see the second
condition, remember that by construction a critical point xi is only contained in the open
Ui. Hence, we can take a very small open U ′i that is disjoint with all the other open sets in
the covering. Then we must have ρi|U ′i ≡ 1 and thus X under the Morse chart (U ′i , ϕi|U ′i )
is the negative the gradient on R2nN . Thus X is indeed a pseudo-gradient.

To see that X has a global flow, note that outside a large compact set the flow of
X is just the flow of Xk+1. Now, Xk+1 actually has a global flow, since the flow of this
vector field is just the flow of linear, autonomous differential equation, which is globally
defined. But this implies that X also has a global flow; if X does not have a global flow,
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an integral curve has to flow out of every compact subset of T2n×R2n(N−1) in finite time.
In particular, it needs to escape very large compact sets, where the flow is just given by
the flow of Xk+1. But since this does not flow out of every compact set in finite time,
the original integral curve does not either, so X indeed has a global flow, which we call
ϕ : R× (T2n × R2n(N−1))→ T2n × R2n(N−1).

Now all that is left is to find an isolated invariant set containing all the critical points
of Φ, and to find a regular index pair for this set. We define S ⊂ T2n × R2n(N−1) to
be the union of all bounded orbits of ϕ, i.e. the points x ∈ T2n × R2n(N−1) such that
ϕt(R × {x}) ⊂ T2n ×K, where K is some bounded subset of R2n(N−1). By definition, S
is invariant and contains all the critical points of Φ, since a critical point is a bounded
orbit of ϕ. Now note that S is contained in a compact set; by construction, there is some
R′ > 0 such that for every (z̄0, z) ∈ T2n × R2n(N−1) with ‖z‖ > R′ the vector field X is
given by

X(z̄0, z) =

(
0
−Pz

)
.

Then it follows that the flow here is (at least locally) given by (t, z̄0, z) 7→ (z̄0, e
−tPz),

where

e−tP :=
∞∑
k=0

(−t)k

k!
Ak

is the exponential of the matrix −tP . In particular, denoting by λ+
1 , . . . , λ

+
m the positive

and by λ−1 , . . . , λ
−
m the negative eigenvalues of P , and by {v+

1 , . . . , v
−
m} an orthonormal

basis of eigenvectors, this is given by(
t,

m∑
k=1

(a+
k v

+
k + a−k v

−
k )

)
7→

m∑
k=1

(a+
k e
−tλ+k v+

k + a−k e
−tλ−k v−k ).

In particular, we see that as t → ∞, the coefficients of the “negative” eigenvectors
will diverge to either infinity or minus infinity, depending on whether they were positive or
negative originally (or will stay zero if they were originally). A similar situation holds for
the “positive” eigenvectors for t → −∞. Since obviously at least one of the coefficients
has to be zero, it follows that an orbit through a point (z̄0, z) ∈ T2n × R2n(N−1) with
‖z‖ > R′ will escape every bounded set, for either negative or positive time (or both).

So now we know that S ⊂ T2n×{z ∈ R2n(N−1) | ‖z‖ ≤ R′} =: XR′ , a compact set. So
to prove that S is compact, we only need to show that it is closed. So let (xi)i∈N ⊂ S be a
sequence that converges to some x ∈ XR′ . Then for every t ∈ R, the sequence (ϕt(xi))i∈N
is contained in XR′ (since the orbit of every xi is contained in XR′) and converges ϕt(x).
Since XR′ is compact, it then follows that ϕt(x) ∈ XR′ . Since this holds for every t ∈ R,
it follows that the oribt of x is contained in XR′ , and thus that x ∈ S.

That S is isolated is easy; recall that S is isolated if there is some neighbourhood N
of S such that S is the set of all orbits contained in N . So then it immediately follows
that XR′ (and in fact, any set that contains XR′) is such a neighbourhood for S.
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Now, we need to find an index pair for S. We will once again exploit the explicit
structure the flow has outside XR′ . Indeed, for some sufficiently large R′′ > 0 we define

N := {(z̄0, z
+ + z−) ∈ T2n × R2n(N−1) | ‖z+‖, ‖z−‖ ≤ R′′},

L := {(z̄0, z
+ + z−) ∈ N | ‖z−‖ = R′′}.

This is clearly a regular index pair for S; Under the (positive time) flow, ‖z−‖ only
gets bigger, and thus L is clearly invariant in N . By similar reasoning, L is also an exit
set of N ; under the (positive time) flow ‖z+‖ can only become smaller., and thus if a
point in N flows out of N , it has to do this by having ‖z−‖ become bigger than R′′,
meaning that the orbit leaves N through L. The index pair is also regular; indeed, the
map F : [0, 1]× {(z̄0, z

+ + z−) ∈ N | ‖z−‖ 6= 0} → {(z̄0, z
+ + z−) ∈ N | ‖z−‖ 6= 0} given

by

(t, z̄0, z
+ + z−) 7→ (z̄0, z

+ +
tR′′ + (1− t)‖z−‖

‖z−‖
z−)

is a deformation retract onto L.
Now, by Theorem 4.15, the number of critical points of Φ is bounded below by the

sum of the Conley-Betti numbers bk(S) := dimHk(N,L). Now, note that the homology of
N is just the homology of the torus T2n, and that the homology of L is just the homology
of T2n×Sm−1 (recall that the negative eigenspace has dimension m). So all that is left to
do is to compute the homology groups of these spaces and then use the exact sequence of
a pair. We need the following lemma, which can be seen as a special case of a Künneth
formula.

Lemma 5.5. Let X be a topological space and n ∈ N. Then for all k,

Hk(X × Sn) ' Hk(X)⊕Hk−n(X).

Here we use the convention Hk = 0 for k < 0.

Proof. The proof follows from two claims.

Claim 1. For x0 ∈ Sn we have that

Hi(X × Sn) ' Hk(X)⊕Hk(X × Sn, X × {x0}).

Claim 2. We have that

Hk(X × Sn, X × {x0}) ' Hk−1(X × Sn−1, X × {x0}).

We postpone the proofs of these claims. Now, by applying Claim 1 and then Claim
2 n times, we get that

Hk(X × Sn) ' Hk(X)⊕Hk−n(X × S0, X × {x0})
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for x0 ∈ S0. However, since S0 is just two points, this last group is just Hk−n(X), and we
are done.
Proof of Claim 1: Note that for x0 ∈ Sn, we have a retract r : X × Sn → X × {x0}
given by

r(x, x′) = (x, x0).

Denoting by ι : X × {x0} → X × Sn the inclusion map, this means that r ◦ ι = Id,
and thus that the induced map ι∗ : Hk(X × {x0}) → Hk(X × Sn) is injective, since also
r∗ ◦ ι∗ = Id. But then the long exact sequence of the pair (X × Sn, X × {x0}) breaks up
into short exact sequences

0→ Hk(X × {x0})→ Hk(X × Sn)→ Hk(X × Sn, X × {x0})→ 0.

Then it follows from the Splitting Lemma (see e.g. [Hat10, p. 147]) that

Hk(X × Sn) ' Hk(X × {x0})⊕Hk(X × Sn, X × {x0}).

However, since clearly Hk(X × {x0}) ' Hk(X), this proves Claim 1.
Proof of Claim 2: Writing Sn as a subset of Rn+1

Sn = {(x1, . . . , xn+1) ∈ Rn+1 | x2
1 + · · ·+ x2

n+1 = 1},

we define the sets

U+ := {(x1, . . . , xn+1) ∈ Sn | x1 > −ε}, (5.2)

U− := {(x1, . . . , xn+1) ∈ Sn | x1 < ε}, (5.3)

for some small ε > 0. Choosing x0 ∈ Sn such that its first coordinate is zero, the interiors
of the sets X × U+ and X × U− cover X × Sn, and, choosing some small contractible
neighbourhood U0 ⊂ U+∩U+ of x0, the interior of X×U0 covers X×{x0}. Now, X×U±
is contractible and (X × U+) ∩ (X × U−) is homotopy equivalent to

X × {(x1, . . . , xn+1) ∈ Sn | x1 = 0} ' X × Sn−1.

Hence the relative Mayer-Vietoris sequence yields

0→ Hk(X × Sn, X × {x0})→ Hk−1(X × Sn−1, X × {x0})→ 0.

This proves Claim 2 and completes the proof of Lemma 5.5.

With this lemma, we can directly compute the homology groups of the torus Tn,
since we can view it as the product of n copies of S1. We claim that

Hk(Tn) =

{
Z(n

k) if 0 ≤ k ≤ n,
0 else.
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Indeed, for n = 1, we just have T1 = S1 and the above clearly holds. Now if the
above holds for n, then by Lemma 5.5 we get that

Hk(Tn+1) ' Hk(Tn × S1) ' Hk(Tn)⊕Hk−1(Tn).

Hence the dimension of Hk(Tn+1) is given by(
n

k

)
+

(
n

k − 1

)
=

n!

k!(n− k)!
+

n!

(k − 1)!(n− k + 1)!
=

(n+ 1− k) · n!

k!(n+ 1− k)!
+

k · n!

k!(n+ 1− k)!

=
(n+ 1)!

k!(n+ 1− k)!
=

(
n+ 1

k

)
.

So indeed, we get the result by induction. So now we get

Hk(N) =

{
Z(2n

k ) if 0 ≤ k ≤ 2n,
0 else.

and

Hk(L) =


Z(2n

k ) if 0 ≤ k ≤ 2n,

Z( 2n
k−m+1) if m− 1 ≤ k ≤ 2n+m− 1,

0 else.

Here we use that, without loss of generality, we can assume that m − 1 > 2n. Now
we can use the exact sequence of the pair (N,L),

· · · → Hk(L)→ Hk(N)→ Hk(N,L)→ Hk−1(L)→ Hk−1(N)→ · · ·

to compute the Conley-Betti numbers. Indeed, for k > 2n+m we get

· · · → 0→ Hk(N,L)→ 0→ 0→ · · ·

which implies Hk(N,L) = 0. Now, for m ≤ k ≤ 2n+m we have

· · · → 0→ Hk(N,L)→ Z( 2n
k−m) → 0→ · · ·

This implies that for these k,

dimHk(N,L) =

(
2n

k −m

)
.

Next, for 2n+ 1 < k < m we have

· · · → 0→ Hk(N,L)→ 0→ 0→ · · ·

which again implies Hk(N,L) = 0. Finally, we have the exact sequence

0→ H2n+1(N,L)→ H2n(L)→ H2n(N)→ · · · → H0(N,L)→ 0.
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Now, since all the maps Hi(L)→ Hi(N) in this sequence are isomorphisms, it follows also
here that Hi(N,L) = 0 for 0 ≤ i ≤ 2n+ 1.

In conclusion, we find that the sum of the Conley-Betti numbers is equal to

2n+m∑
k=m

(
2n

k −m

)
=

2n∑
k=0

(
2n

k

)
= 22n.

Thus by Theorem 4.15 and step 1 we find that the number of fixed points of a Hamil-
tonian symplectomorphism on the torus T2n, whose fixed points are all nondegenerate, is
bounded below by 22n. This completes the proof of the nondegenerate part of Theorem
1.3.
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A Some details omitted from Section 2

Theorem A.1 (Rank-nullity theorem, used in the proof of Proposition 2.9). Let V,W be
vector spaces and T : V → W a linear map. Then we have that

dim kerT + dim im T = dimV.

Proof. We denote n := dimV and m := dim kerT . We choose a basis {v1, . . . , vm}
of kerT , and extend it to a basis {v1, . . . , vm, w1, . . . , wn−m} of V . The theorem is a
consequence of the two following claims.

Claim 1. The set {Tw1, . . . , Twn−m} is linearly independent.

Claim 2. The set {Tw1, . . . , Twn−m} spans im T .

We postpone the proofs of these claims.
By Claim 1 and Claim 2, we get that {Tw1, . . . , Twn−m} is a basis of im T . Hence
dim im T = n−m = dimV − dim kerT , which is what we wanted.
Proof of Claim 1: To the contrary, assume there exists real numbers α1, . . . , αn−m
such that

n−m∑
i=1

αi · Twi = 0.

Linearity of T then implies that

T

(
n−m∑
i=1

αi · wi

)
= 0,

so that
∑n−m

i=1 αi · wi ∈ kerT . This is a contradiction, since we chose {w1, . . . , wn−m}
complementary to kerT . This proves Claim 1.
Proof of Claim 2: Let w ∈ im T . Choose v ∈ V such that Tv = w. Writing

v =
m∑
i=1

αivi +
n−m∑
j=1

βjwj,

we get that

w =
n−m∑
j=1

βj · Twj,

since
∑m

i=1 αivi ∈ kerT and T is linear. This proves Claim 2 and completes the proof of
Theorem A.1.

Proof of Example 2.2(ii). Since addition on V ∗ is defined pointwise and since every map
in V ∗ is linear by definition, it is clear that ωV is in fact bilinear. Skew-symmetry is also
obvious. To prove that ωV is nondegenerate, let (v, ϕ) ∈ V × V ∗ such that

ωV ((v, ϕ), (v′, ϕ′)) = ϕ′(v)− ϕ(v′) = 0
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for all (v′, ϕ′) ∈ V ×V ∗. Choosing in particular v′ = 0 shows that ϕ′(v) = 0 for all ϕ′ ∈ V ∗,
implying that v = 0 (indeed, taking ϕ′ to be the projection onto the i-th coordinate shows
that all coordinates of v are zero). Similarly, choosing ϕ′ ≡ 0 shows that ϕ(v′) = 0 for all
v′ ∈ V , which means that ϕ ≡ 0. Hence ωV is nondegenerate.

Proof of Example 2.8. (i): First, consider a one-dimensional subspace W , and let w ∈ W .
For any w′ ∈ W , write w′ = λw. Thus, we find that ω(w,w′) = λ·ω(w,w) = 0, so w ∈ W ω.
Hence W ⊂ W ω and W is isotropic.
Now, let U be a (2n− 1)-dimensional subspace. Then by Proposition 2.9(i) we have that
Uω is a one-dimensional subspace, which is isotropic by the above. Hence by Remark 2.10
we have that U is coisotropic.
(ii): First we consider the subspace V × {0}. Let (v, ϕ) ∈ (V × {0})ωV , so that

ωV ((v, ϕ), (v′, 0)) = −ϕ(v′) = 0

for all (v′, 0) ∈ V × {0}. It is clear that this is satisfied precisely if ϕ ≡ 0, with no
restrictions on v. Hence V × {0} = (V × {0})ωV .
Next, we consider {0} × V ∗. Let (v, ϕ) ∈ ({0} × V ∗)ωV , so that

ωV ((v, ϕ), (0, ϕ′)) = ϕ′(v) = 0

for all (0, ϕ′) ∈ {0} × V ∗. It is clear that this is satisfied precisely if v = 0, with no
restrictions on ϕ. Hence {0} × V ∗ = ({0} × V ∗)ωV .

Proof of Proposition 2.18, equation (2.1). The equation is only interesting when n ≥ 2,
so we will proceed by induction over n, starting at n = 2. In this case, we have directly
by the definition of wedge products that

(ω ∧ ω)(x1, x2, x3, x4) =
1

4!
· 4!

2! · 2!

∑
σ∈S4

ω(xσ(1), xσ(2)) · ω(xσ(3), xσ(4))

=
1

22

∑
σ∈S4

ω(xσ(1), xσ(2)) · ω(xσ(3), xσ(4)).

Now, assume that Equation (2.1) holds for n = k. We have again, by definition,

(ω∧k+1)(x1, . . . , x2k+2) = (ω∧k ∧ ω)(x1, . . . , x2k+2)

=
1

(2k + 2)!
· (2k + 2)!

(2k)! · 2!

∑
σ∈S2k+2

(−1)σω∧k(xσ(1), . . . , xσ(2k)) · ω(xσ(2k+1), xσ(2k+2))

=
1

2k+1 · (2k)!

∑
σ∈S2k+2

∑
τ∈S2k

(−1)σ(−1)τω(xτ(σ(1)), xτ(σ(2))) · · ·ω(xσ(2k+1), xσ(2k+2)).

Here, officially, for a fixed σ ∈ S2k+2 we consider S2k as the group of bijections of
{σ(1), . . . , σ(2k)}.
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Now, we want to switch the sums, i.e. let σ go through S2k+2 for some fixed τ .
However, this is not quite possible in the current definition, since every τ depends on a
certain choice of σ. So now, we will consider any τ ∈ S2k as a permutation of the first 2k
entries in the sequence {xσ(1), . . . , xσ(2k+2)}.21 While this not quite agree with the formal
definition of S2k (namely as the group of bijections of a fixed set of cardinality 2k) it is
clear that with this new interpretation of τ it is now possible to consider a fixed τ ∈ S2k,
and then letting σ move through S2k+2. Also, this new definition of τ clearly does not
change (−1)τ from the formal definition we used previously.

With this new definition, for any fixed τ ∈ S2k, it is clear that also for any σ ∈ S2k+2,
the “composition” τσ, obtained by first applying σ to the indices, and then swapping the
first 2k entries with τ , can be regarded as an element of S2k+2. In this case, we clearly
have (−1)τσ = (−1)σ(−1)τ , and letting σ go through S2k+2, this “composition” τσ goes
through S2k+2 as well. Since |S2k| = (2k)!, we obtain

1

2k+1 · (2k)!

∑
σ∈S2k+2

∑
τ∈S2k

(−1)σ(−1)τω(xτ(σ(1)), xτ(σ(2))) · · ·ω(xσ(2k+1), xσ(2k+2))

=
1

2k+1 · (2k)!
· (2k)!

∑
τσ∈S2k+2

(−1)τσω(xτσ(1), xτσ(2)) · · ·ω(xτσ(2k+1), xτσ(2k+2))

=
1

2k+1

∑
σ∈S2k+2

(−1)σω(xσ(1), xσ(2)) · · ·ω(xσ(2k+1), xσ(2k+2)).

This completes the proof of Proposition 2.18, Eq. (2.1).

B Time-dependent vector fields

Definition B.1 (Time-dependent vector fields). Let X be a manifold and I an interval.
A smooth time-dependent vector field on X is a smooth map V : I × X → TX such
that V (t, x) ∈ TxX for every (t, x) ∈ I × X. An integral curve of V is a smooth curve
γ : I ′ → X such that γ̇(t) = V (t, γ(t)) for all t ∈ I ′, where I ′ is an interval contained in
I. ♦

Remark B.2. It follows immediately that for any t ∈ I, the map Vt := V (t, ·) is a smooth
(time-independent) vector field. However, note that an integral curve for V is in general
not an integral curve for Vt, and vice versa.

Similarly to the time-independent case, there is a fundamental theorem on flows of
time-dependent vector fields. We will not prove this theorem here, but a proof can be
found in e.g. [Lee12, Theorem 9.48].

21This sequence is of course the order in which we put the xi’s in the product of ω’s.
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Theorem B.3 (Fundamental theorem on time-dependent flows). Let X be a manifold
and V : I ×X → TX a smooth, time-dependent vector field on X. Then there exists an
open set D ⊂ I × I ×X and a smooth map ϕ : D → X, called the time-dependent flow
of V , such that the following hold:

(i) For any t0 ∈ I and any x ∈ X, the set Dt0,x := {t ∈ I | (t, t0, x) ∈ D} is an interval,
open in I and containing t0, and the smooth curve ϕt0,x : Dt0,x → X, t 7→ ϕ(t, t0, x)
is the unique maximal integral curve of V such that ϕt0,x(t0) = x.

(ii) If t1 ∈ Dt0,x and x′ = ϕt0,x(t1), then Dt1,x′ = Dt0,x and ϕt1,x′ = ϕt0,x.

(iii) For any (t1, t0) ∈ I × I, the set Xt1,t0 := {x ∈ X | (t1, t0, x) ∈ D} is open in X and
the map ϕt1,t0 : Xt1,t0 → X, x 7→ ϕ(t1, t0, x) is a diffeomorphism between Xt1,t0 and
Xt0,t1 with inverse given by ϕt0,t1.

(iv) If x ∈ Xt1,t0 and ϕt1,t0(x) ∈ Xt2,t0, then x ∈ Xt2,t0 and (ϕt2,t1 ◦ ϕt1,t0)(p) = ϕt2,t0(p).

Just as in the time-independent case, when the manifold X is compact, we have that
D = I × I × X, and hence Theorem B.3 implies that for any (t1, t0) ∈ I × I, the map
ϕt1,t0 is a diffeomorphism of X, and that ϕt2,t1 ◦ ϕt1,t0 = ϕt2,t0 on the whole of X, for any
t2 ∈ I.

The next proposition is used in the proof of Proposition 2.35.

Proposition B.4. Let X be a manifold, V : I × X → X a time-dependent vector field
on X and ϕ : D → X its flow. Then for any differential form ω and any (t1, t0, x) ∈ D
we have that

d

dt

∣∣∣∣
t=t1

(
ϕ∗t,t0ω

)
x

=
(
ϕ∗t1,t0

(
LVt1ω

))
x
.

Proof. This proposition is a consequence of the following claim, of which we postpone the
proof.

Claim 1. We have that
d

dt

∣∣∣∣
t=t0

(
ϕ∗t,t0ω

)
x

=
(
LVt0ω

)
x
.

Now, using Claim 1 it simply follows that

d

dt

∣∣∣∣
t=t1

(
ϕ∗t,t0ω

)
x

=
d

dt

∣∣∣∣
t=t1

((ϕt,t1 ◦ ϕt1,t0)∗ω)x =
d

dt

∣∣∣∣
t=t1

(
ϕ∗t1,t0ϕ

∗
t,t1
ω
)
x

=

(
ϕ∗t1,t0

(
d

dt

∣∣∣∣
t=t1

(
ϕ∗t,t1ω

)))
x

=
(
ϕ∗t1,t0

(
LVt1ω

))
x
.

Proof of Claim 1: First, consider a 0-form f , which is of course just a smooth function.
In this case, we simply have ϕ∗t,t0f = f ◦ ϕt,t0 , and thus it follows that
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d

dt

∣∣∣∣
t=t0

(
ϕ∗t,t0f

)
x

=
d

dt

∣∣∣∣
t=t0

(f ◦ ϕt,t0)x = df(ϕt0,t0(x))(ϕ̇t0,x(t0))

= df(ϕt0,t0(x))(V (t0, ϕt0,t0(x))) = df(x)(V (t0, x)) = (Vt0f)x .

Now, denote by ψ : D′ → X the (time-independent) flow of Vt0 . Then we get that

(
LVt0f

)
x

=
d

dt

∣∣∣∣
t=0

(ψ∗t f)x =
d

dt

∣∣∣∣
t=0

(f ◦ ψt)x = df(ψ0(x))(ψ̇x(0))

= df(ψ0(x))(Vt0(ψ0(x))) = df(x)(Vt0(x)) = (Vt0f)x .

Hence the equation holds for any 0-form on X. Next, consider an exact 1-from df .
Since the exterior derivative commutes with pullbacks, the Lie derivative and with d

dt
, we

get that

d

dt

∣∣∣∣
t=t0

(
ϕ∗t,t0df

)
x

=
d

dt

∣∣∣∣
t=t0

d
(
ϕ∗t,t0f

)
x

= d

(
d

dt

∣∣∣∣
t=t0

(
ϕ∗t,t0f

))
x

= d
(
LVt0f

)
x

=
(
LVt0df

)
x

Next, suppose the claim holds for two differential forms ω1 and ω2. We show that it
also holds for ω1 ∧ ω2. This follows easily from the fact that both the left and right hand
side of the equation satisfy the same product rule; on the one hand we have(

LVt0 (ω1 ∧ ω2)
)
x

=
(
LVt0ω1

)
x
∧ (ω2)x + (ω1)x ∧

(
LVt0ω2

)
x
.

Similarly,

d

dt

∣∣∣∣
t=t0

(
ϕ∗t,t0(ω1 ∧ ω2)

)
x

=
d

dt

∣∣∣∣
t=t0

(
(ϕ∗t,t0ω1) ∧ (ϕ∗t,t0ω2)

)
x

=
d

dt

∣∣∣∣
t=t0

(
ϕ∗t,t0ω1

)
x
∧ (ϕ∗t0,t0ω2)x + (ϕ∗t0,t0ω1)x ∧

d

dt

∣∣∣∣
t=t0

(
ϕ∗t,t0ω2

)
x

=
d

dt

∣∣∣∣
t=t0

(
ϕ∗t,t0ω1

)
x
∧ (ω2)x + (ω1)x ∧

d

dt

∣∣∣∣
t=t0

(
ϕ∗t,t0ω2

)
x
.

Since the equation holds for ω1 and ω2, it also holds for ω1 ∧ ω2. Now, consider an
arbitrary differential k-form ω. In local coordinates (xi), it can be written as

ω =
∑
I

ωI dxI ,
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where ωI are smooth functions and dxI = dxi1 ∧ · · · ∧ dxik for I = {i1, . . . , ik}. Hence ω
can locally be written as a wedge product of smooth functions and exact 1-forms. By the
three “steps” we proved above, it follows that

d

dt

∣∣∣∣
t=t0

(
ϕ∗t,t0ω

)
x

=
(
LVt0ω

)
x
.

This proves Claim 1 and completes the proof of Proposition B.4.

C Lie group actions

Let us start with several definitions.

Definition C.1 (Topological and Lie groups). A topological group is a pair (G,m) of a
topological space G and an operation m : G × G → G such that (G,m) is a group and
such that the multiplication map m and the inversion map g 7→ g−1 are both continuous
with respect to the topology of G and the induced product topology of G × G. A Lie
group is a topological group (G,m) such that G is in fact a smooth manifold, and the
multiplication and inversion map are smooth with respect to this smooth structure. ♦

Remark C.2. We will often denote multiplication operator by m(g, h) = gh, to signifi-
cantly shorten notation. Sometimes, when G is a vector space structure, we also denote
m(g, h) = g + h. We will also often refer to a group by just specifying the set G, with it
being understood that there is an underlying operation.

Definition C.3 (Group actions). Let G be a group and X a set. Then a (left) group
action of G on X is a map G×X → X, written as (g, x) 7→ g · x, such that

(i) g · (h · x) = (gh) · x for all g, h ∈ G and x ∈ X,

(ii) e · x = x for all x ∈ X, where e denotes the identity element of G.

When G is in fact a topological group, X a topological space and the action continuous,
we call it a continuous action. We also say that the topological group G acts continuously
on X. We use similar terminology when G is a Lie group, X a smooth manifold and the
action smooth. ♦

We will use the following terminology regarding group actions.

Definition C.4. Let G be a group, X a set and (g, x) 7→ g · x a left group action of G
on X. For x ∈ X, the orbit of x is the set

G · x := {g · x | g ∈ G}.

We denote the space of all orbits by X/G. We say that the action is free if the identity e
is the only element of G that fixes any x ∈ X. ♦
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Remark C.5 (Orbit space). When X is a topological space, we can endow the orbit
space X/G with the quotient topology, i.e. the largest topology such that the quotient
map π : X → X/G is continuous. In the remainder of this section, when we mention the
orbit space X/G of a topological space X, this space is always assumed to be endowed
with the quotient topology.

Definition C.6 (Proper group actions). Let G be a topological group, X a topological
space and (g, x) 7→ g · x a continuous group action of G on X. Then we say that the
action is proper if the map G × X → X × X defined by (g, x) 7→ (g · x, x) is a proper
map. ♦

Remark C.7. Recall that a map f : X → Y between topological spaces is called proper
if f−1(K) is compact in X for every compact set K ⊂ Y .

The definition of an proper action is somewhat abstract, and the following proposition
is very useful for determining whether a given action is proper. We paraphrase the proof
given in [Lee12, Proposition 21.5].

Proposition C.8 (Characterization of proper group actions). Let G be a Lie group, X
a topological manifold and (g, x) 7→ g · x a continuous group action of G on X. Then the
following statements are equivalent.

(i) The action is proper;

(ii) For any two sequences (xi)i∈N in X and (gi)i∈N in G such that (xi)i∈N and (gi ·xi)i∈N
both converge, (gi)i∈N has a convergent subsequence;

(iii) For any compact set K ⊂ M , the set GK := {g ∈ G | (g · K) ∩ K 6= ∅} ⊂ G is
compact.

Proof. We will denote by Θ : G×X → X ×X the map Θ(g, x) = (g · x, x). In the proof,
we will use that for subsets of G, X or G × X, compactness is equivalent to sequential
compactness, since all these spaces are topological manifolds, and hence metrizable.
(i) =⇒ (ii): Let (xi)i∈N and (gi)i∈N be two sequences in X and G respectively such that
both (xi)i∈N and (gi · xi)i∈N converge in X. Denote

x := lim
i→∞

xi x′ := lim
i→∞

gi · xi.

Since X is a manifold, we can choose compact neighbourhoods K of x and K ′ of x′. Then,
since xi → x and gi · xi → x′, we know that there is some N ∈ N such that for all i ≥ N ,
(gi · xi, xi) ∈ K ×K ′. This also means that for all i ≥ N , (gi, xi) ∈ Θ−1(K ×K ′). Since
K×K ′ is compact and Θ is proper, this means that (gi, xi)i≥N is a sequence in a compact
set. Hence a subsequence of (gi, xi)i≥N converges, and thus also a subsequence of (gi)i∈N
converges.
(ii) =⇒ (iii): Let K ⊂ X be compact. We will show that GK is sequentially compact,
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and thus compact. So let (gi)i∈N be a sequence in GK . Then for every i ∈ N there exists
some xi ∈ (gi ·K) ∩K. Hence the sequence (xi)i∈N lies in K, and since K is compact, it
has a convergent subsequence (xij)j∈N. Now, the sequence (g−1

ij
·xij)j∈N also lies in K, and

thus has a convergent subsequence (g−1
ijk
· xijk )k∈N. Since clearly (xijk )k∈N also converges,

we get that (g−1
ijk

)k∈N has a convergent subsequence (g−1
ijkl

)l∈N. Then, since the inversion

map is continuous, it also follows that (gijkl
)l∈N converges. Hence (gi)i∈N has a convergent

subsequence.
(iii) =⇒ (i): Let K ⊂ X ×X be compact and define K ′ := π1(K) ∪ π2(K), where πi is
the projection onto the i-th factor of X × X. Since these projections are continuous, it
follows that K ′ is a finite union of compact sets, and hence compact. Now, we get

Θ−1(K) ⊂ {(g, x) | g · x ∈ K ′ and x ∈ K ′} ⊂ GK′ ×K ′.

Now, since X is Hausdorff, K is closed, and thus Θ−1(K) is as well. Then since GK′ ×K ′
is compact, it follows that Θ−1(K) is compact as well. Hence Θ is a proper map.

We will prove one more useful proposition, regarding Hausdorffness of the orbit space.
Again, we paraphrase the proof given in [Lee12, Proposition 21.4].

Proposition C.9. Let G be a Lie group, X a topological manifold and G × X → X a
continuous, proper action. Then the orbit space X/G is Hausdorff.

We need the following three lemmata, of which we postpone the proofs.

Lemma C.10. Let X be a topological space, Y a locally compact, Hausdorff space and
f : X → Y a continuous, proper map. Then f is closed.

Lemma C.11. Let G be a topological group, X a topological space and G × X → X a
continuous action. Then the quotient map π : X → X/G is open.

Lemma C.12. Let X and Y be topological spaces and π : X → Y an open quotient map.
Then Y is Hausdorff iff

R := {(x1, x2) ∈ X ×X | π(x1) = π(x2)}

is closed in X ×X.

Proof of Proposition C.9. Denote again by Θ : G×X → X×X the proper map Θ(g, x) =
(g · x, x) and by π : X → X/G the quotient map. Define

R := {(x1, x2) ∈ X ×X | π(x1) = π(x2)}.

Now, since two points in X are identified by π exactly when they are related by some
g ∈ G (in the sense that g ·x1 = x2 for some g ∈ G), it follows that R = Θ(G×X). Since
X × X is a topological manifold and Θ is continuous and proper, it follows by Lemma
C.10 that R is closed in X ×X. Now by Lemmata C.11 and C.12 it follows that X/G is
Hausdorff.
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Proof of Lemma C.10. Let K ⊂ X be closed, and let y be a limit point of f(K), i.e. a
point such that all of its neighbourhoods have nonempty intersection with f(K). We need
to show that y ∈ f(K). Choose a compact neighbourhood V of y. Then y is also a limit
point of f(K) ∩ V . By properness of f , f−1(V ) is compact, and hence K ∩ f−1(V ) is as
well. Since f is continuous, f(K ∩ f−1(V )) = f(K)∩ V is compact as well, and therefore
closed, since Y is Hausdorff. Therefore, f(K) ∩ V contains all its limit points, and in
particular y. But this means that y ∈ f(K), and thus f(K) is closed.

Proof of Lemma C.11. First, note that for any g ∈ G the map Lg : X → X defined by

Lg(x) = g · x

is a homeomorphism; indeed, continuity follows since the action is continuous, and an
inverse of Lg is given by Lg−1 . Now let U ⊂ X be an open set. Then we have

π−1(π(U)) =
⋃
g∈G

Lg(U),

and since every Lg(U) is open, it follows that π−1(π(U)) is open. Now, since X/G is
endowed with the quotient topology, it follows that π(U) is open.

Proof of Lemma C.12. First, suppose that R is closed. Let y1, y2 ∈ Y be distinct and
choose x1 ∈ π−1(y1), x2 ∈ π−1(y2). Then (x1, x2) ∈ (X×X)\R, and thus there exist open
neighbourhoods U1 and U2 of x1 and x2 respectively, such that U1 × U2 ⊂ (X ×X) \ R.
Now, π(U1) and π(U2) are open neighbourhoods of y1 and y2 respectively, and since
(U1 × U2) ∩R = ∅ we also have that they are distinct.22 Hence Y is Hausdorff.

Now assume that Y is Hausdorff. Then for any y1 6= y2 ∈ Y we can choose distinct
open neighbourhoods Uy1 , Uy2 . Now, we have that

(X ×X) \R =
⋃

y1 6=y2∈Y

π−1(Uy1)× π−1(Uy2),

and hence R is closed in X ×X.

D (Smooth) covering spaces

Let us start with topological covering spaces.

Definition D.1 (Covering spaces). Let X be topological space. Then a covering space

of X is a topological space X̃ and a map p : X̃ → X such that there exists an open cover
{Uα}α∈A of X with the property that for each α ∈ A, p−1(Uα) is a disjoint union of open

sets in X̃, each of which is mapped homeomorphically to Uα by p. ♦
22Since R contains the diagonal, it follows that U1 and U2 are distinct. So the only way that π(U1)

and π(U2) are not distinct is if the action of G identifies a point in U1 with one in U2. But again, this is
not possible, since (U1 × U2) ∩R = ∅.
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Remark D.2. Sometimes it is conventient to require the space X to be path-connected
and locally path-connected, the covering space X̃ to be path-connected and the covering
map p : X̃ → X to be surjective. However, we will use a more general definition.

We can easily derive some properties of covering maps; in particular, they are always
open maps and local homeomorphisms. When a covering map is surjective, it is also a
quotient map.

One of the most important applications of covering spaces is the lifting of maps.

Definition D.3 (Lifts to a covering space). Let X and Y be a topological spaces, p : X̃ →
X a covering space and f : Y → X a continuous map. Then a lift of f is a continuous
map f̃ : Y → X̃ such that p ◦ f̃ = f . ♦

We have the following propositions about uniqueness and existence of lifts of maps.
Proofs of these propositions can be found in e.g. [Hat10, Chapter 1.3].

Remark D.4. In the following proposition we use the notion of maps between pointed
spaces: for topological spaces X and Y and specified points x0 ∈ X and y0 ∈ Y , a map
f : (Y, y0) → (X, x0) is a map Y → X with the property that f(y0) = x0. For a map
such as this, we write f∗ : π1(Y, y0)→ π1(X, x0) for the induced map on the fundamental
group.

Proposition D.5 (Lifting criterion). Let X be a topological space, p : (X̃, x̃0)→ (X, x0)
a covering space, Y a path-connected and locally path-connected space and f : (Y, y0) →
(X, x0) a continuous map. Then a lift f̃ : (Y, y0)→ (X̃, x̃0) of f exists iff

f∗(π1(Y, y0)) ⊂ p∗(π1(X̃, x̃0)).

Proposition D.6 (Unique lifting property). Let X and Y be topological spaces, p : X̃ →
X a covering space and f : Y → X a continuous map. Then if Y is connected, any two
lifts f̃1, f̃2 : Y → X̃ that are the same at one point in Y , are the same on all of Y .

Finally, we have the well known homotopy lifting property.

Proposition D.7 (Homotopy lifting property). Let X and Y be topological spaces, p :

X̃ → X a covering space and a homotopy f : [0, 1]× Y → X. Given a lift f̃0 : Y → X̃ of

f0, there exists a unique homotopy f̃ : [0, 1]× Y → X̃ starting at f̃0 that lifts f .

Before moving to smooth covering spaces, we will mention a specific type of covering
space; for a topological space X, a simply connected covering space p : X̃ → X is called a
universal covering space of X. An interesting property of the universal covering space is
that we can always lift a continuous map f : X → X to a map f̃ : X̃ → X̃, in the sense
that p ◦ f̃ = f ◦ p. Indeed, the map f ◦ p : X̃ → X satisfies the conditions of Proposition
D.5, since X̃ is simply connected.

Now, let us move on to smooth covering spaces. The definitions themselves are almost
identical to the ones before, except that we move to smoothness instead of continuity.
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Definition D.8 (Smooth covering spaces). Let X be a smooth manifold. Then a smooth

covering space of X is a smooth manifold X̃ together with a smooth map p : X̃ → X
such that there is an open cover {Uα}α∈A of X with the property that for each α ∈ A,

p−1(Uα) is a disjoint union of open sets in X̃, each of which is mapped diffeomorphically
to Uα by p. ♦

Remark D.9. Just as before, it is often convenient to require the smooth manifolds X̃
and X to be connected23 and the map p : X̃ → X to be surjective.

Since every smooth covering is in particular a topological one, the properties we
mentioned before also hold for smooth covering maps. Of course, every smooth covering
map is in fact a local diffeomorphism. One useful, easily verified fact is that a topological
covering map between smooth manifolds is a smooth covering map iff it is a local diffeo-
morphism.

All the definitions and propositions we mentioned for topological covering spaces
transfer over to smooth covering spaces; indeed, a lift of a smooth map is a smooth map
satisfying the same conditions as in the topological case, and the propositions regarding
existence and uniqueness of lifts are the same, except the need to change continuous maps
to their smooth counterparts.

23Note that since they are manifolds, this is equivalent to the extra requirements one might put on
topological covering spaces.
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