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Abstract

During this thesis, we develop three methods to assess the error of a climate model by comparing it to observations. The
first consists of averaging over a chosen spatial region, and comparing the resulting time series. The second method uses
Empirical Orthogonal Function decomposition to obtain a time-dependent (Principal Component) and space-dependent (EOF)
component of the model output and observations. We then fix the spatial component by projecting one dataset onto the
EOF of the other. This yields two Principal Components which we can compare. The third method uses Kalman filter data
assimilation to obtain an estimate for the variance of the model output. We also implement a rudimentary form of performing
data assimilation directly on an EOF.

1 Motivation of the thesis

We live in a world where technological advancements,
globalization, geopolitical decisions and many other
factors continuously influence our ways of life. Be-
cause of this, temperatures are changing, water levels
are rising and extreme weather events occur more
frequently than in the pre-industrial era, as described
in the IPCC report (Cubasch et al., 2013). In order
to be better prepared for these climate changes, it is
important to know how the climate will change. These
climate predictions form the basis for policy makers
all around the world.

To be able to predict the future climate, we also
need a good knowledge of the past climate. This gives
an insight in the long term climate variations and the
possible natural and human sources of these changes.
Global temperature changes from a long time ago can
have a big impact on future climate, through various
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periodic and feedback processes. Another reason to
consider past climate is that it can be assessed using
measurements, whereas the future climate is always
a prediction.

The need for accurate representations of past cli-
mate has triggered the development of climate models
that range in time scales from days, to years all the
way to millions of years in the past. All of these have
different uses and applications. These models use
the power of modern computers and knowledge from
physics, chemistry, life sciences, geosciences and more
to produce representations of various quantities, like
temperature and humidity of the past. However, these
models are not perfect. The spatial area and time com-
ponent they use have to be discretized, which could
discard small scale effects. Typically, these models use
approximations of the true physical systems, since for
example, the full Navier-Stokes equations, describing
the way continuous fluids behave, cannot be solved
exactly. Another source of error is the initial condi-
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tions: these often have to be estimated using either
available measurements or a certain physical balance
state. All these approximations add to the error of
the model. In order to properly interpret the results
of such models, it is important to know these errors.
They are, however, generally very difficult to deduce
from the model itself. Other methods of assessing the
errors need to be used.

Once the errors of a model are estimated, we try to
reduce the errors with respect to the true state (true
temperature, true humidity, etc.) by combining the
model with some available observations. This process
is called data assimilation.

In this thesis, we will discuss various methods to
assess the errors of a climate model, the LOVECLIM
model, by comparing the output of the model to a set
of temperature measurements of the last 150 years,
the HadCRUT dataset. Moreover, we will reduce
these errors by combining the model to various sets
of observations.

2 Used model and measurements

2.1 LOVECLIM model

The model we use for this thesis, is the LOVECLIM
model used to reconstruct climate of the past. LOVE-
CLIM incorporates changes in the atmosphere, ocean
and sea ice, land surface and vegetation, ice sheets,
icebergs and the carbon cycle, as described by Goosse
et al. (2010). The model evolves physical quantities
like atmosphere temperature, ocean temperature,
atmospheric CO2 concentration, vegetation coverage
and more. Temperature, however, is sensitive to
most of these quantities (e.g., CO2 concentration:
Knutti & Hegerl (2008), vegetation coverage: Lloyd &
Taylor (1994)). This thesis focuses therefore solely on
the temperature reconstruction of the model. Since
LOVECLIM is a coupled model, meaning that all
variables influence one another, we don’t have to
consider the temperature of the whole atmosphere
and ocean: it is enough to use the temperature of the
bottom layer of the atmosphere only.

As shown in table 1, the model computes temper-
atures on a 64× 32 spatial grid of the whole world
(resolution of 5.625◦). In climate research, two sets
of temperatures are usually compared by either look-

ing at their mean, or by looking at their anomalies:
these are relative temperatures compared to a specific
time average. The model uses regular temperatures,
whereas the measurements are given in anomalies.
This is discussed in more detail in section 3.2.

Grid size: 5.625◦, 64× 32 grid
Times: monthly, 01-1849 to 12-1998
Unit: temperatures, in ◦C

Table 1: LOVECLIM model: the output is temperature on a
64× 32 grid.

2.2 HadCRUT Measurements

In order to test the quality of the temperature re-
construction of the model, it has to be compared to
measurements. These are available in the HadCRUT
dataset, as described by Brohan et al. (2006). This
is a combination of temperature measurements from
land stations and marine data, presented as anomalies
calculated with respect to 1961 to 1990.

The HadCRUT4 dataset features the anomalies on a
72× 36 world wide grid, with measurements starting
from January 1850, as seen in table 2. However, the
dataset is incomplete due to missing measurements,
with 85% missing values in 1850 to about 30% missing
values in 2000. The spatial coverage, defined as the
percentage of time moments with existing values (not
nan) per grid point, is plotted in Fig. 1a and 1b for
the North and South pole respectively. We project
these using the Breusing Harmonic Mean Projection
(Lambers, 2016). The time coverage (percentage of
grid points with existing values per time moment), is
plotted in Fig. 2.

Grid size: 5◦, 72× 36 grid
Times: monthly, 01-1850 to 09-2015
Unit: anomalies, with respect to 1961-1990,

in ◦C

Table 2: HadCRUT4 measurements: the measurements are
fitted on a 72× 36 grid, with anomalies calculated from
the monthly average of 1961 to 1990.
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(a) Northern hemisphere (b) Southern hemisphere

Figure 1: Coverage of the HadCRUT dataset. The coverage is calculated for every grid point as the number of existing monthly
measurements divided by the total number of months between 1850 and 1998. The Northern Hemisphere has much more
measurements in Europe and North America, while the Southern Hemisphere has more in South America, Australia and
parts of the Pacific Ocean. A coverage of 0 means no measurements at all during all these years, up to 1 where every month
has an existing measurement.
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Figure 2: Global coverage of HadCRUT dataset for every month
from 1850 to 1998.

3 Preparation of data

As it can be seen in tables 1 and 2, some steps have
to be taken to properly compare the temperature of
the model with the measurements. First, the measure-
ments on the 72× 36 grid should be fitted to match
the model grid (64× 32) using interpolation. Finally
the temperatures in the model should be converted
to anomalies with respect to 1961 to 1990.

3.1 Interpolation

The temperatures from the LOVECLIM model were
computed on a 64× 32 grid, corresponding to a grid
distance of 5.625◦. The HadCRUT4 measurements,
however, used a 72 × 36 grid, which has a grid

NaN NaN NaN NaN

NaN

NaN

Figure 3: Hybrid interpolation. The value at the new grid point
is a weighted average of either all four, three, two or
one existing neighbouring values.

distance of 5◦.

First we have to extend the computational domain
by ghost grid points to account for the fact that tem-
peratures at longitude 0◦ correspond to temperatures
at longitude 360◦. Since we only use (bi)linear in-
terpolation, one ghost grid point at every end of the
longitude is enough: one at −5.625◦, one at 366.625◦,
for every latitude.
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3.1.1 Nearest neighbour interpolation

The easiest interpolation method is nearest neighbour
interpolation. Every value on the new grid gets the
value of the nearest original grid point. This method
is very rough: it is essentially a zeroth-order Taylor
approximation in 2D.

3.1.2 Hybrid bilinear interpolation

A widely used interpolation method in climate science
is bilinear interpolation, as described by Accadia et al.
(2003). Every interpolated value is equal to a weighted
average of the four nearest original grid points. This
method, however, only works if all neighbouring grid
points exist (a missing value is shown by a NaN-value,
not-a-number).

We have therefore chosen for a hybrid bilinear inter-
polation method where the value of every new grid
point is a weighted average of all the existing neigh-
bouring old grid points. The closer an existing old
point is to the new point, the bigger its weight in the
average. There are four cases, visualized in Fig. 3.

3.1.3 Comparison of interpolation methods

When calculating the average difference between the
two kinds of interpolation, we come very close to zero
(the average difference over 148 years is 0.0035◦C).
However, locally, differences can grow up to 2◦C to
3◦C. This is shown for one month (January 1975)
in Fig. 4. These are significant differences, which
show how important it is to use a more subtle, re-
fined interpolation method, like the hybrid (bi)linear
interpolation explained above.

3.2 Calculating anomalies of the tempera-
ture of the model

As mentioned previously, two sets of temperatures
can be compared by either looking at their averages,
or at their anomalies. Anomalies are relative tempera-
tures, compared to the average over a given period. In
this thesis, we have chosen to only work with anoma-
lies. Since the model outputs absolute temperatures,
we have to transform them. For this, we use the
same time period as the anomalies of the HadCRUT
measurement, namely 1961 to 1990.

0 0.5 1 1.5

Figure 4: Difference in ◦C between (bi)linear interpolation and
nearest neighbour interpolation, in January 1975. The
average is very close to 0, with maximum differences
of about 2◦C.

The anomalies are obtained by first calculating the
average per month over this time period. This gives
a set of 12 average temperatures, which are removed
from all the corresponding months in the temperature
of the model, giving the anomalies with respect to
1961 to 1990. In Fig. 5, we show the reference temper-
atures for the temperature of the model (solid lines),
and the HadCRUT measurements (dashed lines), aver-
aged over Europe, the Northern Hemisphere and the
Southern Hemisphere. The monthly averages of the
Northern and Southern hemispheres for the model
and data anomalies are close to each other, but there
is an almost constant 5◦C difference for Europe. This
shows that it would also be interesting to compare
the means of the two temperature sets, instead of only
the anomalies.

4 Space averaged comparison

A first indicator on the quality of the temperature
reconstruction of the model is obtained by comparing
the average of various regions with the average of the
measurements over the same regions. Our analysis
consists of looking at 5 year and 20 year averages
for Europe, the whole Northern hemisphere and the
whole Southern hemisphere separately. A measure of
skill is given by the respective correlation coefficients.

We also use a second measure of skill, the RMS

4



1 2 3 4 5 6 7 8 9 10 11 12

Month

0

10

20

30

T
e

m
p

e
ra

tu
re

 (
°

C
)

Europe

North. Hemisph.

South. Hemisph.

Figure 5: Reference temperatures used to calculate the anoma-
lies. These have been averaged over Europe, the whole
Northern hemisphere and the Southern hemisphere.
Month 1 is January. The solid lines correspond to tem-
peratures of the model, dashed lines of the HadCRUT
dataset.

error. This is defined by:

RMSE := RMS(wmodel −wobs)

=

√
1
n

n

∑
t=1

(wmodel
t − wobs

t )2,
(1)

where wmodel and wobs are the time series of the
model output and observations respectively, obtained
after averaging over a given spatial area. n is the
number of time steps.

4.1 Europe

We have chosen to consider the temperatures over
Europe on a rectangular box from 60◦N to 35◦N and
15◦W to 30◦E.

As shown in Fig. 6a and 6b, the temperature of the
model shows rather good accordance with the mea-
surements for the last 50 years. This is even better
visible in the 20 year average. The trend is still ac-
curate for the years between 1850 and 1930, yielding
a correlation coefficient of ρ = 0.86 for the 20 year
average, and an RMS error of 0.11◦C.

However, on the 5 year time scale, we see many
differences. For example, the period of 1940-1945
was much colder than shown by the model. This is
because the model apparently doesn’t account for the
extreme harsh winter of 1940 (Rijkswaterstaat, 1942).

4.2 Northern Hemisphere

Averaging over the whole Northern Hemisphere
(positive latitudes) yields interesting results (see
Fig. 6c and 6d). The last 50 years have actually a
higher error than the 50 years before 1900. When
calculated over the 20 year average, the correlation co-
efficient is ρ = 0.70, which is significantly lower than
for Europe alone (ρ = 0.85). Since the areas around
the poles are relatively difficult to model, we have
tried excluding the polar region in the comparison.
This didn’t change the results significantly. The same
holds when excluding the tropics.

With RMSE = 0.10◦C, the error is slightly higher
than compared to Europe alone.

4.3 Southern Hemisphere

The same observations can be made for the South-
ern hemisphere (negative latitudes): the RMS error
is roughly equal to the RMS error of the Northern
hemisphere (Fig. 6e and 6f). The big difference here,
is that there is a large error between 1900 and 1930,
instead of the last 50 years for the Northern hemi-
sphere.

4.4 Conclusion of space averaged compar-
ison

In general, we can conclude that the model output is
in better accordance with the data when looking at
longer time scales. However, the error between the
two strongly depends on the time period we consider,
and the area we use. Anomalies for Europe seem to
agree well for the last 50 years, whereas there are big
differences for this period when looking at the whole
Northern Hemisphere. The Southern Hemisphere
shows good accordance for the last 50 years, whereas
for the years from 1900 to 1950, the model seems to re-
produce the anomalies less accurately. However, these
conclusions are based upon a rather crude analysis:
by simply averaging certain areas and time periods,
we loose some of the finer structure and information
contained in the datasets. To address this issue, we
now develop a method to look at dominant spatial
and temporal patterns of the data, using a decompo-
sition into Empirical Orthogonal Functions.
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Figure 6: Temperature anomalies over Europe (6a, 6b), the Northern (6c, 6d) and the Southern hemisphere (6e, 6f). The left column
corresponds to 5 year averages, the right to 20 year averages.
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5 Empirical Orthogonal Functions
decomposition

In the previous section, we concluded that agreement
between the temperature components of the model
and the measurements strongly depends on the area
covered, and on the time period we consider. Simply
taking averages over a full hemisphere discards infor-
mation that is actually needed to properly compare
the temperature of the model to the dataset.

A better method to analyze variations in space
and time is by using Empirical Orthogonal Functions
(EOFs). EOF decomposition is used to calculate pat-
terns of highest variability. This allows us to reduce
the dimensionality of the system by approximating
the dataset by the leading patterns of highest variabil-
ity.

EOFs have been used in climate science for over
50 years, since their introduction by Obukhov (1947),
Lorenz (1956) and Kutzbach (1967). For such an anal-
ysis, the dataset is decomposed into a purely time-
dependent part, and a purely space-dependent part.
Although there is some ambiguity in their respective
names, we use the same terminology as Hannachi
et al. (2007): we call the time-dependent part Prin-
cipal Component (PC), and the space-dependent part
Empirical Orthogonal Function (EOF).

We now discuss in section 5.1 how we have to re-
shape the temperature anomalies, followed by a short
overview of how these are decomposed into spatial
and temporal components. We then discuss the two
most common techniques to perform the EOF decom-
position: eigenvalue decomposition in section 5.3 and
singular value decomposition in section 5.4. Finally,
we apply these techniques in section 5.5.

5.1 Reformatting the data

During this thesis, the data we analyse using EOF
decomposition consists of the previously mentioned
temperature anomalies on a 64× 32 spatial grid, for
every month from January 1850 to December 1998 (in
total, 1788 months). This has to be put into matrix
form first, which is denoted by X. We are using the
notation from Björnsson (1997). Every row i of X
contains the temperature anomalies at time ti (i =
1, . . . , n): the 64× 32 spatial grid is transformed into a
vector s = (s1, . . . , sp) with p = 64 · 32 = 2048 elements.

X =


x11

x21
...

xn1︸ ︷︷ ︸
Time series for location j=1

x12 · · · x1p

x22 · · · x2p
...

. . .
...

xn2 · · · xnp


}

Anomalies for
time i=1

Once the data has been shaped into the correct
form, it still has to be centered. This means that we
have to remove the time average from every point.
More specifically, this can be split into two steps.

First, for every point in space sj, we can calculate
the average of the time series for the grid point. We
write this average xj as:

xj =
1
n

n

∑
i=1

xij. (2)

By doing this for every j = 1, . . . , p, Eq. (2) can be
written using vector notation:

x =
1
n

1n X =
1
n

(1, . . . , 1) X,

where 1n is the row vector with n ones.
Second, the row vector x has to be substracted from

every row of X. In other words, the matrix with n
copies of the row vector x has to be substracted from
X. This can be achieved by multiplying x with the
column vector 1T

n , consisting of n ones. The final,
centered matrix X′, is then equal to:

X′ = X− 1T
n x = X− 1

n
1T

n 1n X

=

In −
1
n

1 · · · 1
...

. . .
...

1 · · · 1


 X,

(3)

where In is the n× n identity matrix.
From now on, we only use X′. Hence, to simplify

notation, we drop the prime, and only use X.

5.2 Spatial and temporal decomposition

During an EOF decomposition, we decompose the
matrix X into space-dependent modes uk(s), called
EOFs, and time-dependent modes ck(t), called Princi-
pal Components (PC’s):

X(t, s) =
M

∑
k=1

uk(s) ck(t), (4)
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where M is the number of modes of the system, which
is equal to the rank of X. In the next section, we show
how to calculate these EOFs and PCs.

5.3 Patterns of highest variability

The interesting part of EOF decomposition comes
from the fact that the variables uk(s) and ck(t) contain
the patterns where variations are largest. This vari-
ability is measured using the covariance matrix S, and
the patterns are then the eigenvectors of S.

For every two locations i and j, the covariance sij is
defined as:

sij =
1
n

n

∑
t=1

xtixtj,

since the mean of x is equal to zero. In matrix form,
this can be written as:

S =
1
n

XTX, (5)

where XT is the transpose of X.
Since we try to find a unit-length vector u =

(u1, . . . , up)T where the variability of Xu is maximum,
we are actually trying to solve the following equation:

max(uTSu), s.t. uTu = 1.

By the min-max theorem, u is obtained by finding the
eigenvectors of S, so solving this equation:

Su = λ2u. (6)

Since a covariance matrix is positive semidefinite, the
eigenvalues of S are positive (Higham, 1988). This is
stressed by the notation λ2.

The k-th eigenvector uk is now the k-th EOF (space-
dependent pattern). The corresponding k-th PC (time-
dependent pattern) can be found by projecting the
EOF onto X: ck = Xuk.

So far, we have calculated patterns of variability,
but we don’t know yet which one has the highest
variability. Let us remind that we have been trying
to find a vector u that maximizes Xu. Since uk is the
k-th eigenvector, corresponding to the k-th eigenvalue
λ2

k , we have:

Suk =λ2
kuk

⇔ uT
k Suk = λ2

kuT
k uk

= λ2
k .

(7)

The last step is true since u is a unit-length vector:
uTu = 1. Moreover, by plugging in the definition of
the covariance matrix from Eq. (5), we find succes-
sively:

λ2
k = uT

k Suk

= uT
k

1
n

XTXuk

=
1
n

uT
k XT Xuk

=
1
n
‖uT

k XT‖ ‖Xuk‖

=
1
n
‖Xuk‖2.

This means that the eigenvalue λ2
k actually gives us a

measure of the variability. This allows us to sort the
eigenvalues and corresponding eigenvectors such that
λ2

1 ≥ λ2
2 ≥ . . . ≥ λ2

p. Now, the first eigenvector u1
and corresponding PC c1 have the highest variability.

Usually, the measure of variability of an EOF/PC
pattern is given as a percentage of the total variability.
We denote the variability corresponding to the k-th
eigenvector by pk:

pk =
100 λ2

k

∑M
i=1 λ2

i
%

5.4 Calculating EOFs using Singular
Value Decomposition

Up until now, to find the patterns of highest vari-
ability, we have calculated the eigenvectors of the
covariance matrix. While this works perfectly fine,
another method to achieve this is by applying Singu-
lar Value Decomposition on the anomaly field. This
method is computationally much more efficient than
solving the set of linear equations of Eq. (6).

In general, Singular Value Decomposition (which
we write as SVD from now on), factorizes an n× p
matrix X into three matrices:

• an n× n orthonormal matrix V (VTV = I, with I
the identity matrix),

• a n× p diagonal matrix Γ, containing the singular
values on its diagonal

• and a p× p orthonormal matrix UT .
Putting these together, we obtain a factorized version
of X:

X = V Γ UT (8)
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These three matrices can be computed using numeri-
cal algorithms described in Golub & Reinsch (1970).
We now show that V and U are actually the matrices
containing the Principal Component vectors (in V)
and EOF vectors (in U), which we calculated before
using eigenvalue decomposition.

In Eq. (5), we defined the covariance matrix as be-
ing S = 1

n XTX. By plugging in the SVD of X from
Eq. (8), we obtain:

S =
1
n

XTX

=
1
n

(VΓUT)T(VΓUT)

=
1
n

UΓTVTVΓUT

=
1
n

UΓTΓUT

The last step was possible since V is orthonormal. By
rewriting this, we see that this yields the standard
form of an eigenvalue decomposition of S:

S = U (
1
n

ΓTΓ) UT . (9)

Note that the eigenvalue decomposition, Suk = λ2
kuk =

ukλ2
k , can also be written in matrix form. Let U be

the matrix where the k-th column is the k-th eigen-
vector uk, and let Λ be the diagonal matrix with the
eigenvalues λ2

k on its diagonal. Then we have:

S U = U Λ (10)

⇔ S = U Λ U−1 (11)

⇔ S = U Λ UT . (12)

The last step is possible since U is orthonormal.
By comparing Eq. (9) and (12), we see that Singular

Value Decomposition of X is equivalent to eigenvalue
decomposition of the covariance matrix, with Λ =
1
n ΓTΓ.

Just like with eigenvalue decomposition, we can de-
fine a measure of variability using the singular values.
Let γk be the k-th singular value (k-th element on the
diagonal of Γ). The amount of variability correspond-
ing to the k-th EOF/PC, pk, is equal to:

pk =
100 1

n γ2
k

∑M
i=1

1
n γ2

i
% =

100 γ2
k

∑M
i=1 γ2

i
%.

Figure 8: Distribution of grid points on the Northern Hemi-
sphere. Notice that the distance between the points
near the poles is much smaller than near the equator.

5.5 EOF decomposition of the model state

We apply the above methodology for EOF decompo-
sition on the temperature component of the model.
Before we can get started, we have to take into ac-
count the fact that there are many more data points
near the poles than near the equator. This is because
of the projection we use, with constant latitude and
longitude differences. The grid points are shown in
Fig. 8. To account for the surplus of grid points per
unit area near the poles, we have to multiply every
point of the temperature component of the model by
a weighting factor. This weighting factor should be
applied to X2, which is what we are interested in
(because S = 1

n XTX). The area of a spherical cap is
proportional to the cosine of the latitude. Therefore,
the weighting factor of X2 is then the cosine of the
latitude, which is equivalent to applying a weighting
factor of the square root of the cosine of the latitude
to the original matrix X. This is discussed in more
detail in Baldwin et al. (2009).

Once the weighting is performed, we can proceed
to the actual EOF decomposition. First, we reshaped
the 1788× 64× 32 matrix from section 4 (1788 time
moments on a 64× 32 grid), into a n× p matrix, with
n = 1788 and p = 64 ∗ 32 = 2048. Then we centered
it by using Eq. (3), to obtain the anomaly field X.
Moreover, we calculated the covariance matrix S as in
Eq. (5).

We obtained the EOFs by calculating the eigenvec-
tors of S by solving Eq. (6). Finally, the corresponding
PCs were calculated as ck = Xuk. The first EOF of the

9



(a) First EOF of the model, calculated over the Northern
hemisphere (15.9% of the variability)

(b) First EOF of the model, calculated over the Southern
hemisphere (15.6% of the variability)

Figure 7: First EOFs of the model. When calculating the EOFs over the whole Earth, the variabilities of the Northern hemisphere are
much bigger than the Southern hemisphere. For this reason, it makes more sense to split the calculations over the Northern
and Southern hemisphere.

Northern and of the Southern hemisphere are shown
in Fig. 7.

6 EOF decomposition with miss-
ing values

We have seen that EOF decomposition is a powerful
tool to determine the patterns of highest variability,
both in time (PC) and in space (EOF). If we want to
apply this to the data (the measurements from the
HadCRUT dataset), we are faced with a big problem:
a lot of datapoints are missing. This means that we
cannot calculate a covariance matrix, or perform SVD
decomposition.

There are various methods to overcome this prob-
lem. We have chosen for the Data Interpolating Em-
pirical Orthogonal Functions (DINEOF) method, devel-
oped by Beckers & Rixen (2003). It starts with an
initial guess for the missing values of all zeros, and
performs the EOF decomposition. The field is then
reconstructed using a truncated set of EOFs, and the
missing values are replaced by the values in this re-
constructed field. This is repeated until convergence.

DINEOF is found to perform better at reconstruct-
ing datasets than the two other most commonly
used methods: Least-squares estimation of coefficients
(LSEOF) and Recursively-Substracted EOFs (RSEOF), as

discussed in Taylor et al. (2013). It is, however, much
more computationally expensive.

In section 6.1, we discuss in more detail the mathe-
matics of DINEOF, followed by a method to deter-
mine the stopping criteria. Since DINEOF recon-
structs the field using a truncated set of EOFs, we
need a way to determine the optimal number of EOFs
for this truncation. This is described in section 6.2.
Finally, we apply DINEOF to the data in section 6.3.

6.1 Data Interpolating EOF

The most trivial way to handle missing values is by
replacing them by their unbiased estimator, which is
0 for a set of anomalies. This is not very accurate,
though.

The spatial and temporal patterns found with EOF
decomposition represent the large scale structures of
the data. These patterns take into account the whole
dataset. It is therefore logical to use these patterns to
improve the initial guess.

Since only the patterns of highest variability can
really say something about the value of the missing
datapoints, it is important to reconstruct the field
using a truncated set of EOFs/PCs. We will see in
section 6.2 how to determine this optimal number N∗

of EOFs.
Let X0 be the n× p matrix with measurements, as
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defined in section 5.1, where every missing element
is replaced by 0. We gradually change the missing
values with better estimates, until we reach the re-
constructed field Xr. Let iV iΓ (iU)T be the singular
value decomposition of the matrix Xi, as discussed in
section 5.4. The DINEOF algorithm now consists of
these steps:

1. Start with the initial guess X0.
2. Perform the SVD decomposition of X0 to obtain

V Γ UT SVD= X0.

3. Let XR,i be the reconstructed field at step i using
only the N first EOFs/PCs:

XR,0 = VN∗ ΓN∗ (UN∗ )T ,

where VN∗ is the matrix consisting of only the
first N∗ columns (similarly for UN∗ ).

4. For every missing datapoint, replace the initial
guess by the value of the reconstructed field XR,0:

X1 = X0 + δ(XR,0).

Here, δ(·) is a function which leaves any element
of a matrix untouched if it was a missing value, or
replaces the element by 0 if it was not a missing
value.

5. Repeat step 2, 3 and 4 until convergence:
V Γ UT SVD= Xi

XR,i = VN∗ ΓN∗ (UN∗ )T

Xi+1 = X0 + δ(XR,i+1)

The stopping criteria is then reached when the rela-
tive difference between two consecutive steps is below
a certain threshold τ, in other words, when:

‖Xi+1 − Xi‖1

‖Xi+1‖1
≤ τ.

Here, ‖X‖1 is the matrix 1-norm of an n× p matrix X,
defined by:

‖X‖1=
n

∑
i=1

p

∑
j=1

∣∣Xij
∣∣ .

Typically, τ = 0.02, but any small value could be
taken.

We now show a method to determine the optimal
number N∗ of EOFs to be used in the truncation.

6.2 Optimal number of EOFs for trunca-
tion

As discussed in section 6.1, the DINEOF method de-
pends on truncation of the number of EOFs. In order
to assess the quality of an EOF interpolation using a
finite number of modes, we need to define a reference,
and an error to compare the reference to the results
of DINEOF interpolation.

Therefore, we apply the DINEOF algorithm to two
datasets: first, the original set of measurements X,
and second, the same set X, where we treat a number
q of existing values as missing. This second set is
called Xtest. Let J = {j1, .., jq} be the set of the indices
of the q values treated as missing in Xtest, taken at
random. Typically, q is a small fraction of the number
of elements of X. During this thesis, we use q =
0.1%(n · p) ≈ 3500.

After applying the EOF interpolation, we have to
compare the resulting matrices X and Xtest. To do
this, we define the error as the root mean square error
(RMSE) between the two sets of values of X and Xtest
with indices in J. The RMSE is defined by:

RMSE :=

√
1
q ∑

j∈J

(
Xtest,j − Xj

)2

We now perform the DINEOF algorithm repeatedly
with different truncation for the number of EOFs, and
calculate the RMSE. The number of EOFs correspond-
ing to the lowest RMSE is then the optimal number
N∗.

6.3 DINEOF decomposition applied to
the data

The goal of the DINEOF method in this thesis is to ob-
tain an EOF decomposition of the HadCRUT dataset.
As mentioned before, this dataset doesn’t provide
temperature measurements for every grid point over
the full period 1850-1998. The coverage, defined as
the percentage of grid points with existing values (not
nan) per time moment, is plotted in Fig. 2.

DINEOF decomposition provides a method to cal-
culate EOFs even with this partial coverage. We first
have to reformat the HadCRUT dataset to a n × p
matrix (n = 1788 time steps, p = 64 ∗ 32 = 2048 grid
points), as described in section 5.1. Once this is done,
we still need to determine N∗, the optimal number of
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(a) First EOF of the HadCRUT dataset, calculated over the
Northern hemisphere (11.1% of the variability)

(b) First EOF of the HadCRUT dataset, calculated over the
Southern hemisphere (9.5% of the variability)

Figure 9: First EOFs of the HadCRUT dataset, calculated using the DINEOF algorithm. When calculating the EOFs over the whole
Earth, the variabilities of the Northern hemisphere are much bigger than the Southern hemisphere. For this reason, it makes
more sense to split the calculations over the Northern and Southern hemisphere.
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Figure 10: Root mean square error between the set of values
treated as missing and the reference set, as a function
of the number of EOFs for DINEOF truncation. For
the HadCRUT dataset, this yields a minimum at
N = 125.

EOFs for the truncation steps. To do this, we start by
selecting a small number of existing measurements.
We used a random sample of 0.1% of the existing
values, which is approximately q = 3500 data points.
We then start the DINEOF algorithm with 1 mode,
and measure the RMS error with the reference Xtest.
This is repeated for every number of EOFs until 1788,
which is equal to taking all EOFs. The root mean
square error as a function of the number of EOFs for
truncation is plotted in Fig. 10. For the HadCRUT
dataset, N∗ = 125.

With the newly calculated optimal number of EOFs
N, we can perform the DINEOF algorithm on the

HadCRUT dataset. Just like with the EOFs of the
temperature component of the model, the Northern
hemisphere has much more variability than the South-
ern hemisphere. It makes therefore more sense to look
at the two hemispheres seperately. The first EOF for
both the North and South pole are shown in Fig. 9.

The next step is now to look at how good this
DINEOF decomposition actually is.

6.4 DINEOF validation

Since the HadCRUT only has a partial coverage, we
have no way to easily determine the accuracy of the
reconstructed EOFs. We do, however, have a full cov-
erage with the model, with corresponding exact EOFs
(section 5.5). To test the DINEOF method applied to
the HadCRUT data, we use the model temperature
component, and treat a number of values as non ex-
isting. These values are exactly the missing values
in the HadCRUT dataset. This gives an incomplete
dataset similar in coverage to the HadCRUT dataset,
but now we know what these missing values should
be.

From this dataset, we calculate the EOFs using the
DINEOF method. These are then compared to the
actual EOFs. The first reconstructed EOF of the North-
ern hemisphere, along with the absolute difference
between the reconstructed and original EOF, defined
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(a) First reconstructed EOF of the model temperature compo-
nent, with a number of missing values. These correspond
to the missing values of the HadCRUT dataset. Note the
resemblence to the original EOF, Fig. 7a.

(b) Absolute difference, in ◦C, between the original first
EOF (Fig. 7a) of the model, and the reconstructed EOF
(Fig. 11a).

Figure 11: Validation of the DINEOF method using a subset of the values of the output of the model. Everywhere except around the
pole, the reconstruction is good: the same large scale patterns as in the original EOF are visible. The lack of data points
around the poles make the reconstruction very difficult in these areas.

as:
abs.diff. =

∣∣EOFreconstr − EOForig
∣∣ ,

is shown in Fig. 11. From this figure, we can see
that the reconstruction is good for most of the North-
ern Hemisphere. Around the poles, however, the
reconstruction is seriously influenced by the lack of
measurements.

More quantitatively, the correlation coefficient be-
tween the original EOF and the reconstructed EOF is
ρ = 0.65, which indicates the reconstruction is good on
average. From this, we can conclude that thanks to the
DINEOF reconstruction, we have a working method
to calculate EOF/PCs of the HadCRUT dataset with
partial coverage.

7 EOF based comparison of the
model to the data

When calculating EOF/PCs of a dataset, it is decom-
posed into spatial patterns (EOFs) and corresponding
time-dependent parts (principal components, PCs).
In section 5 and 6, we discussed a method to obtain
an EOF/PC decomposition of the model tempera-

ture component and of the HadCRUT dataset. Since
we want to know how the model compares to the
measurements, we are interested in comparing their
EOF/PCs. However, we can’t simply compare the
first EOF of the model with the first EOF of the mea-
surements, since they are calculated with respect to
a different time-dependent part, a different principal
component.

In this section, we discuss a method to still be able
to compare the respective EOF/PCs. First we shortly
develop the theoretical background in section 7.1, and
continue with the results when applied to the model
and measurements in section 7.2. In that section,
we also look at what happens when the datasets are
averaged over 1, 2, 5, 10 and 20 years respectively.

7.1 Projections

We have already seen in Eq. (4) that a dataset X can
be decomposed in a spatial component uk(s) and a
time component ck(t):

X(t, s) =
M

∑
k=1

uk(s) ck(t),
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where M is the total number of EOF/PCs. This can
be calculated using Singular Value Decomposition:

X(t, s) = A Γ UT

:= C UT ,

with C := A Γ. Now, the matrix C contains the princi-
pal components as its column vectors, and U contains
the EOFs, also as its column vectors. This way, we
obtain a PC and EOF matrix for the model, and for
the HadCRUT dataset:{

Xmodel = Cmodel UT
model

Xdata = Cdata UT
data.

Both Xmodel and Xdata depend upon a spatial com-
ponent and a time component. This makes it difficult
to compare, for example, the first EOF of the model
with the first EOF of the data, since they correspond
to different time components. The trick to still be able
to compare the two, is to use either a common spatial
pattern, or a common PC, between the model and the
data. We are keeping the spatial pattern fixed, and
use the model’s EOFs as common spatial component.
We now have to find a new PC Ĉdata for the HadCRUT
dataset, such that{

Xmodel = Cmodel UT
model

Xdata = Ĉdata UT
model.

Since the EOF matrix U is orthonormal (from the
definition of Singular Value Decomposition), we know
that UT U = I, with I the identity matrix. With this,
we find successively:

Ĉdata UT
model = Xdata

⇔ Ĉdata UT
model Umodel = Xdata Umodel

⇔ Ĉdata = Xdata Umodel.

This also explains the name of this method: projection
analysis, since we are projecting one dataset onto the
spatial patterns of the other dataset (the model).

It now becomes possible to properly compare the
model and the dataset by comparing Cmodel and Ĉdata.

Similarly, we can project the model dataset
onto the HadCRUT EOFs. We then obtain
Ĉmodel := Xmodel Udata, which can be compared to
Cdata. We do this by looking at the correlation co-
efficient between Ĉmodel and Cdata, defined as:

ρ(C1, C2) =
1

n− 1

n

∑
i=1

(
C1i − µC1

σC1

)(
C2i − µC2

σC2

)
,

with µC the mean of the principal component C, and

σC its standard deviation: σC =
√

1
n−1 ∑n

i=1(Ci − µC)2.

7.2 Results

As explained in the previous section, by projecting the
model temperature component onto the EOFs of the
data (which we’ll call model on data), or the HadCRUT
data onto the EOFs of the model (data on model), we
obtain a new principal component, which we can com-
pare to the PC of the data or the model, respectively.
Just like with the spatial averaging (without EOFs) of
the beginning, we use two measures of skill: one is
given by the correlation coefficient between the two
PCs, the other by the root mean square error between
the two. Moreover, we consider the Northern and the
Southern hemisphere separately.

When using the monthly data, we find very low
correlation coefficients: for the Northern Hemisphere,
0.026 for the model on data, and -0.019 for the data on
model projection. There is practically no correlation
between the two PCs. Moreover, the RMS errors are
large as well. This is because the LOVECLIM model
is designed for long term climate trends. The model
is clearly not accurate on the small time scales.

It is therefore only natural to perform the projection
analysis after averaging over the time. When we
average the temperature component of the model and
the HadCRUT dataset over a period of 1, 2, 5, 10
and 20 years respectively, the correlation coefficients
become much larger, and the RMS errors decrease.
This is shown in Fig. 12. We also include the full
principal components for the Northern Hemisphere
averaged over 5 years (Fig. 13a for the data on model,
Fig. 13c for the model on data) and 20 years (Fig. 13b
for the data on model, Fig. 13d for the model on data).

7.2.1 Northern Hemisphere

The correlation coefficients and RMS errors of the
Northern Hemisphere (Fig. 12a) show two main re-
sults. First of all, the smaller the time scale we look at,
the lower the correlation and the higher the RMS error.
This confirms that the model is in better accordance
with the data on longer time scales. Secondly, the
model on data projection has, in general, a higher cor-
relation and lower RMS error than the data on model
projection. This can be explained by the fact that the
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Figure 12: Correlation coefficients. First the data is averaged over 0 (monthly), 1, 2, 5, 10 and 20 years respectively. Then, the
correlation between a principal component and the other projected principal component are calculated. In green, between the
first PC of the HadCRUT data (Cdata) and the projected PC of the model onto the EOFs of the data (Ĉmodel = Xmodel Udata).
In orange, between the first PC of the model (Cmodel) and the projected PC of the data onto the EOFs of the model
(Ĉdata = Xdata Umodel). Fig. (c) and (d) represent the root mean square error between the two PCs.

data on model projection keeps the spatial patterns of
the model fixed, and finds a corresponding princi-
pal component of the data. The first spatial pattern
(EOF) of the model shows strong variability around
Northern Canada and Alaska (see Fig. 7a). These are
regions where the HadCRUT dataset has less observa-
tions than farther away from the poles, as can be seen
in Fig. 1a. The data is therefore less accurate in these
regions, which leads to lower correlation coefficients.
However, when considering longer time scales, (≥ 5
year averages), the data on model and model on data pro-
jection yield correlations of approximately the same
magnitude.

7.2.2 Southern Hemisphere

The correlation coefficients of the Southern Hemi-
sphere (Fig. 12b) show similar features to the North-
ern Hemisphere. Small time scales still have lower
correlation coefficients than longer time scales, and

model on data yields higher correlation than the data
on model. The difference between the two projection
modes is much more striking for the Southern Hemi-
sphere than for the Northern Hemisphere, especially
for time scales between monthly and 2 years. This
would suggest that the model performs well at these
time scales. However, when looking at the RMS errors,
these are high as well, especially for monthly aver-
ages. Moreover, the Southern Hemisphere contains
lots of oceans, with a lower coverage in the HadCRUT
dataset. By projecting the model anomalies on the
EOF of the data, we are projecting onto an EOF that
was created using lots of missing values. We therefore
cannot draw striking conclusions on the quality of the
model using these correlation coefficients. We would
need more complete data for this.
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Figure 13: First principal component of the model and the HadCRUT dataset. For figure (a) and (b), the HadCRUT dataset is
projected onto the model, for figures (c), (d), (e) and (f), the model is projected onto the data. This is shown on the left for 5
year average, on the right for 20 year average.
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Figure 14: Correlation coefficients between the second projected
PC of the model (Ĉmodel,2) and the second PC of the
data (Cdata,2). The solid and dashed gray lines are
the reference corr.coeff. of the first PCs (correlation
between Ĉmodel,1 and Cdata,1) for the Northern and
Southern Hemisphere, respectively.

7.2.3 Second Principal Component

Up until now, we have only considered the projec-
tion of the first PC onto the first EOF. These are the
most important EOF/PCs, since they represent the
dominant patterns of variability. We can also look
at the projection using the second PC/EOFs. These
however lead to very low correlation coefficients. In
Fig. 14, the correlation coefficients of the model on data
projections using the second EOF/PCs can be seen.
For time scales up to 5 years, the correlations are
smaller than 0.25. For the Southern Hemisphere, the
correlation even becomes negative.

The explanation for this is not straightforward.
These second EOF/PCs represent patterns of lesser
variability than the first EOF/PCs. Moreover, correla-
tion alone doesn’t tell everything about the analysis.
The projected second PC of the model on the data is
much smaller in absolute value than the second PC
of the data (see Fig. 15, where the projected PC is 3
times smaller on average than the data PC).

This means that the model hardly has any variation
along the spatial pattern of the second EOF of the data,
which makes the model more difficult to compare to
the data. For this reason, we only consider the first
EOF/PC.

1850 1900 1950 2000

Year

-5

0

5

P
C

PC 2 projected model PC 2 HadCRUT data

Figure 15: Projection analysis with the second principal compo-
nents for the Southern Hemisphere, 5 year averages.
The values of the projected PC are very close to zero.

7.3 Conclusion of EOF projection analy-
sis

The projection analysis gives a quantitative measure
of how good the model anomalies compare to the
HadCRUT dataset, by considering the patterns of
highest variability. This method confirms the idea
that the LOVECLIM model performs poorly on small
time scales, like monthly, and much better for longer
time scales.

For the Northern Hemisphere, correlations between
the first principal component of the data and model
are almost zero, and the RMS errors very big. More-
over, model on data correlations are generally higher
and RMS errors lower than for the data on model pro-
jections. This is can be explained by the fact that
the first EOF of the model is centered around polar
regions, where the HadCRUT misses a lot of measure-
ments. For longer time scales (≥ 5 year averages), the
model anomalies are in rather good accordance with
the HadCRUT dataset, with correlation coefficients
larger than 0.5, and small RMS errors.

The Southern Hemisphere is slightly more compli-
cated. When projecting the data on the EOF of the
model reconstruction, the correlation coefficients fol-
low a similar trend as for the Northern Hemisphere:
almost 0 for monthly averages, very low for time
scales of 2 years or smaller, and quite high for 5 years
or more. Projecting the model anomalies on the data
EOF yields very high correlations, even for monthly
averages. However, the RMS error are still very large.
The high correlations can be explained by the fact that
the Southern Hemisphere is made of mostly oceans,
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where historical accurate measurements are scarce.
Projecting the model anomalies on the EOF pattern
of the data actually discards much information of the
model, since large parts of the data EOF are zero or
very small because of the missing values. We are then
actually comparing the model to the data on a very
limited region. For this reason, we cannot draw con-
clusions on the quality of the model on the Southern
Hemisphere using this analysis.

We have shown an extensive method to compare
the LOVECLIM model to the HadCRUT dataset. In-
stead of simply comparing, the next section gives a
method to improve the model output using another set
of measurements. With this method, called data assim-
ilation, the goal is to obtain better accordance with a
reference dataset (in our case, the HadCRUT dataset).
A second goal is to give an estimate of the variance
of the model, which we assume to be unknown. This
is treated in section 8.8.

8 Data assimilation

Until now, we have provided a methodology to com-
pare a model output to a dataset of measurements.
This can be done in the most rudimentary form by
simply averaging over certain regions in space and in
time for both the model and the data, then comparing
the two (section 4). A more refined method, which
takes into account the regions with greatest variability
and incomplete datasets, is obtained by decomposing
the datasets into spatial and temporal components
using EOF decomposition, and comparing two prin-
cipal components by projecting one dataset onto the
EOFs of the other dataset.

Once we know how well a model compares to the
measurements, we can try to improve the model by in-
corporating certain measurements in the model. This
is called data assimilation.

8.1 A brief history of data assimilation

Early implementations of data assimilation date back
to the 1950’s, when the first numerical computer
aided models appeared. It was called objective analysis,
aimed at modernising a time where only subjective
analysis was used: weather scientists used graphical
tools, drawings and their own interpretation to use
the available measurements to predict the weather.

Objective analysis was already applied by Gilchrist
& Cressman in 1954 and Bergthórsson & Döös in
1955. This relied on polynomial interpolation of the
available measurements, which were considered as
exact.

Gradually, weather and climate scientists began to
use two facts about models and measurements. First,
a model is but an approximation of reality: it uses sim-
plified (geo)physical laws of motion and has a finite
numerical precision. However, a model is in principle
available for every point in space and in time. On
the other hand, measurements are typically sparse,
incomplete and also contain errors. This lead to the
advancement of statistical methods for data assimi-
lation. These used a covariance for the model, and
for the measurements. This method is called optimal
interpolation, and first used by Norwegian meteorolo-
gist Eliassen (1954) and Soviet mathematician Gandin
(1963). The basic idea of this method is to obtain a
new analyzed field, which combines both the model
(called “background field”) and the measurements
(“observation field”). The weights of these two fields
are chosen such that the error in the analyzed field
(difference between analyzed field and true field) is
minimum.

The next idea in data assimilation was, instead of
combining the model output values with the mea-
surements, now the measurements would be used to
obtain a better initial condition of the model. For ex-
ample, today’s temperature measurements would be
used to calculate an initial condition for the model for
yesterday. These methods are called variational data
assimilation. Some methods include only the current
measurements. These methods are called 3D-Var, ex-
plained in more detail in Courtier et al. (1998). Other
methods include the current and past measurements.
Because of the added time dimension, these meth-
ods are called 4D-Var, like described by Thepaut &
Courtier (1991).

There exist many other methods of data assimila-
tion, like ensemble data assimilation, which performs
data assimilation for a whole set, called ensemble, of
initial conditions. Here, we focus on the so called
Kalman filter.
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8.2 Offline data assimilation

Let’s go back to the content of this thesis. We have
been comparing some output of a climate model with
a certain dataset of measurements. The next step is
now to obtain an improved set of temperature data
by combining the model and the measurement. Since
we only use the output of the model, all the newer
types of data assimilation become unusable: we can-
not change the model’s initial conditions, and we
cannot rerun the model with different parameters.
For weather models, this is not a viable assumption,
since we need updated weather conditions every day.
However, the LOVECLIM model is a long term paleo-
climate model (simulating the model in the past), and
a new run takes up very much computing power.

A cheap and fast alternative to improve the output
of the model is to use offline data assimilation. This
only alters the output itself, in contrast to online data
assimilation, which requires new runs and changes
to the model. At every timestep t, we combine the
background field (model output of the whole Earth
at time t) with the observation field (measurements
available of time t). This is comparable to performing,
at every timestep, a weighted average of the model
and the measurements.

In the next section, we discuss the theory behind
the Optimal Interpolation data assimilation method
we use, which we call Kalman filter data assimila-
tion, named after the Hungarian American engineer
Rudolph Kalman who first developed this methodol-
ogy (Kalman, 1960).

8.3 Kalman filter data assimilation

The data assimilation method we use in this thesis
is discussed in extensive detail in Ghil (1989). We
elaborate on the most important results.

8.3.1 Kalman filter for a scalar

Combining a background field with an observation
field requires a lot of matrix manipulation, which
makes the discussion about this method more compli-
cated. To better understand the method, we start with
a simplified version, where our background field is
a single variable y, and the observation field a single
variable z. These are both estimates of the true field,

the variable x. The goal is to find the best estimate x̂
of x.

We state that our estimate x̂ is some linear combi-
nation of y and z:

x̂ = αy + βz, (13)

where α and β are the respective weights of y and z.
The first assumption we make is that y and z are un-
biased estimates of x, meaning that their expectation
values are equal: E[y] = E[z] = E[x̂] = E[x]. From this,
we can show that α + β = 1:

E[x] = E[x̂]

= E[αy + βz]

= α E[y] + β E[z]

= α E[x] + β E[x]

= (α + β) E[x].

Since E[x] = (α + β) E[x], we can indeed conclude that
α + β = 1. We can now rewrite Eq. (13) to:

x̂ = y + β(z− y).

The second assumption concerns the errors of y
and z. We assume that y has (known) variance
σ2

1 := E[y − x]2, just like z has (known) variance
σ2

2 := E[z − x]2. Moreover, we assume that those
errors are uncorrelated:

E[(y− x)(z− x)] = 0. (14)

The goal is to find the weights α and β that will
minimize the variance of the estimate x̂. We call this
variance σ2. Following these steps successively, we
find that:

σ2 := E[x̂− x]2

= E[x̂− (α + β)x]2

(because α + β = 1)

= E[αy + βz− αx− βx]2

= E[α(y− x) + β(z− x)]2

= α2 E[y− x]2 + β2 E[z− x]2

+ 2αβ E[(y− x)(z− x)].

We can further simplify this formula by plugging in
the variance of y and z, and by using the fact that the
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errors in y and z are uncorrelated (Eq. (14)). We then
obtain:

σ2 = α2σ2
1 + β2σ2

2

= (1− β)2σ2
1 + β2σ2

2 .

By taking the derivative, and setting it to zero, we
obtain the equation for the optimal weight β∗:

−2(1− β∗)σ2
1 + 2β∗σ2

2 = 0

⇔ β∗ =
σ2

1
σ2

1 + σ2
2

.

We now have an optimal expression for our original
problem x̂ = y + β(z− y), with β = β∗ the optimal
weight of the difference (z− y). The factor β∗ is also
called the gain factor.

The next step is to generalize this for the full back-
ground field and observation field.

8.3.2 Kalman filter for space and time-dependent
fields

Just like in the simplified case, we want to find an
estimate of a true value, using two sources: the back-
ground field, and the observation field. The quality of
this estimated field is quantified by looking at the ana-
lyzed error covariance matrix. This time, we consider
a vector background field wb

k and a vector observation
field wo

k at time k. These fields can contain several
physical quantities: temperature, pressure, humidity,
etc. We use these fields to produce an analyzed field,
wa

k. Similarly to the simplified case, where we had
x̂ = y + β(z− y), we now have:

wa
k = wb

k + Kk(wo
k −wb

k), (15)

where Kk, called the Kalman gain, takes the role of the
weight β.

The problem with this formulation, is that the num-
ber of elements of wo

k should be equal to the number
of elements of wb

k, and that those elements should
represent the same quantity at the same locations.
Typically this is not the case: the number of obser-
vations is usually much lower than the number of
elements in the background field (the model output).
Moreover, observations can be measurements of a
different physical quantity: satellites can often only
measure radiance in the atmosphere, and not temper-
ature or humidity which are used in a model (Eyre,

1989). Mathematically, wb
k and wo

k reside in different
vector spaces, with usually dim(wo

k)� dim(wb
k).

We account for this by introducing a so called ob-
servation operator Hk, which can be different at every
timestep. This operator maps the background field
to the phase space of the observation field. Practi-
cally speaking, if both wb

k and wo
k measure the same

physical quantity, Hk maps wb
k to the locations of the

observations. In our case, wb
k is an element of Rp and

wo
k an element of Rdim(wo

k). Eq. (15) becomes:

wa
k = wb

k + Kk(wo
k −Hkwb

k). (16)

The next step is to take into account the statistics
of the system. Let’s introduce the true field, wt

k. This
is similar to x in the simplified example. We first
consider the observations. We assume that the obser-
vations come from the true field, with some additional
noise term bo

k. Mathematically, we can represent this
assumption as:

wo
k = Hkwt

k + bo
k . (17)

The noise term bo
k is considered to be white noise:

E[bo
k] = 0 and E[bo

k(bo
k)T] = Rk. This last term Rk is

called the observation error covariance matrix.
Likewise, the background term (corresponding to

the model) also has an error covariance matrix, de-
fined by:

Pb
k := E[(wb

k −wt
k)(wb

k −wt
k)T], (18)

and the analyzed term has an error covariance matrix:

Pa
k := E[(wa

k −wt
k)(wa

k −wt
k)T]. (19)

We now have all the ingredients to calculate the
quantity we are really interested in: the Kalman gain
Kk. In the simplified case, β should minimize the
variance of the error of the analyzed variable x̂, E[x̂−
x]2. Similarly, Kk should minimize the variance of the
error of the analyzed field, called J:

J := E[(wa
k −wt

k)T(wa
k −wt

k)]. (20)

Note the difference with the error covariance matrix of
the analyzed field, Eq. (19): the transpose-operator is
now at the first factor. We now multiply a row vector
by a column vector, which gives a scalar, instead of
giving a (covariance) matrix. Note also that J is equal
to the trace of Pa

k.
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It can be shown that Eq. (19) can be rewritten as:

Pa
k = (I−KkHk)Pb

k(I−KkHk)T + KkRkKk . (21)

A proof for this is given in appendix A. Our prob-
lem is now transformed to finding Kk that minimizes
J = tr(Pa

k). It can also be shown, by using the follow-
ing matrix calculus identity:

∂

∂A
tr(ABAT) = 2AB (22)

when B is symmetric, that the Kk that minimizes J is
equal to:

K∗k = Pb
kHT

k (HkPb
kHT

k + Rk)−1. (23)

The proof of this is given in appendix B. This K∗k
is the Kalman gain, for a given variance in the
background field Pb

k and variance in the observation
field Rk.

As a quick summary, the original goal of this sec-
tion was to combine the background field (model)
with the observation field into a new analyzed field.
This analyzed field is given by:

wa
k = wb

k + Kk(wo
k −Hkwb

k),

with Kk = K∗k = Pb
kHT

k (HkPb
kHT

k + Rk)−1

We are now going to apply this method of data as-
similation. This is discussed in detail in the following
subsections.

8.4 Extra dataset of observations

The previously explained data assimilation scheme
requires two types of information: a background field,
and an observation field. For the background field, we
use the temperature component of the output of the
LOVECLIM model, the same as we have been using
throughout this whole thesis. For the observation
field, we could use the HadCRUT dataset. However,
if we combine the model with the HadCRUT dataset,
we wouldn’t have any reference dataset to compare it
to, and we wouldn’t have any way to check the quality
of the data assimilation. For this reason, we chose to
use a different set of measurements as observation
field. In fact, we combined two datasets: the ECA
dataset with measurements primarily in Europe and

Russia, and the USHCN dataset focused purely on
the United States of America.

In section 8.4.1 and 8.4.2 we discuss for each extra
dataset which measurement stations are used, and
how we can prepare the data to be used for data
assimilation. This is similar to the preparation of the
HadCRUT dataset, discussed in section 3.

8.4.1 ECA

The first extra dataset we use for the data assimilation
is the European Climate Assessment dataset (ECA).
This project is coordinated by the Dutch KNMI, and
features daily measurements of 12 climate variables,
like temperature, sea level pressure and precipitation
(Klein Tank et al., 2002). These measurements come
from a total of 10388 stations in Europe, Russia and
the Middle East, although only 3671 are freely avail-
able. These stations are shown in Fig. 16a. During
this thesis, we only use the temperature variable.

The daily measurements for every station cover dif-
ferent time spans: some stations started their record-
ings in 1950, some in 1900 and a few all the way
back to the 18th century. All stations cover measure-
ments up to at least the year 2000. The respective time
spans of the measurements per station are plotted in
Fig. 16b.

From the beginning of this thesis, we have only
been using the years 1850 to 1998. Fig. 16b shows
that the ECA dataset is suitable for this purpose, since
many stations have measurements ranging from 1875
to 2000, covering most of the time span of interest.

To be able to use the dataset, we need to transform
the daily measurements into monthly averages for
every month between 1850 and 1998 (that is, 1788
months in total), and interpolate the station locations
to the 64× 32 grid with 5.625◦ grid distance. To do
this, we need two empty matrices T and N, both
64× 32× 1788: that is, for every month, a 64× 32
matrix with an element for every grid point. The first
matrix, T, contains the accumulated temperatures;
the second, N, the number of measurements per grid
point and month. Elements of this matrix are called
bins. Now, we perform the following steps:

1. For every measurement station, we calculate the
grid point with smallest distance to the location
of the station.

2. For every daily measurement of that station, we
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calculate by which month it belongs (for example,
measurements from 1 Jan. 1850 to 31 Jan. 1850
go in month 1, or measurements from 1 Feb. 1851
to 28 Feb. 1851 go in month 13, etc.). All invalid
measurements (denoted by -9999 in the dataset)
are skipped.

3. The value of the first matrix, T, in the bin corre-
sponding to the station grid point and measure-
ment month, is then increased with the measured
temperature. Note that we are not yet calculating
averages, we are just summing temperatures.

4. The value of the second matrix, N, also in the
correct bin, is increased by 1, because there is one
more measurement in this specific month / grid
point.

5. Once this is done, the monthly averages for every
grid point T, is obtained as Tijk = Tijk/Nijk, so
dividing element wise T by N.

The result is two matrices T and N: one contain-
ing the monthly averages per grid point of the ECA
dataset, the second containing the total number of
measurements used to calculate this average, per grid
point.

The last step is to create anomalies: these are rela-
tive temperatures, compared to an average over some
given period. Just like for the HadCRUT dataset, we
use the average over the years 1961 to 1990.

8.4.2 USHCN

Since the ECA dataset only features measurements
over Europe and the Middle East, we combine it with
yet another dataset: the United States Historical Cli-
matology Network dataset. This dataset consists of
temperature and precipation measurements at 1218
different stations accross the USA (Fig. 16a). The
measurements have been processed and checked for
duplication, gaps, climatological outliers and tempo-
ral and spatial inconsistencies. More information can
be found in Menne et al. (2009).

The measurements span a time period from the
end of the 19th century up to today. About 95%
of the stations have their first measurement in 1893
(Fig. 16b).

Contrary to the ECA dataset, monthly averages
were already available and readily calculated, together
with the number of measurements used to calculate
such monthly averages, per station. We only had to

find by which grid point every station belonged, and
calculate the anomalies.

8.4.3 Combined extra datasets

Since there is no overlap between the grid points used
for the ECA dataset, and those used by the USHCN
dataset, we can easily combine the two. We then
obtain a new dataset of measurements from 4889
independent stations, spread over Europe, the Middle
East and the USA, shown in Fig. 17. This new dataset
is used as observation field in our data assimilation
scheme.

The observations used in Kalman Filter data assim-
ilation are given by an observation field, wo

k. This is
a vector containing all the observations at one time
step. However, for every month between 1850 and
1998, the observations are stored in a 64× 32 matrix
(the longitude is divided in 64 grid points, and the
latitude in 32 grid points). This has to be reformatted
into a vector with p = 64 ∗ 32 = 2048 elements. Now,
for every month k, we have an observation field wo

k
with 2048 elements.

We only need two more ingredient before we can
start assimilating the model with the measurements.
First, the error covariance matrices Pb

k of the back-
ground field (model) and Rk of the observation field
(measurements). These are discussed in the next sec-
tion. Second, we need the observation operator Hk,
which is discussed in section 8.6.

8.5 Error covariance matrices

In the derivation of the Kalman filter, we needed the
error covariance matrices Pb

k and Rk. A covariance
matrix P of a vector w is a matrix with on it’s i, j-th
element, the covariance between wi and wj.

Pij = cov(wi , wj) (24)

An element Pii on the diagonal of P contains the vari-
ance of the element wi, which we call σ2

i .
The concrete generation of the error covariance ma-

trix Pb
k of the background field (the model) is done in

a different way than for Rk for the observation field.
We start with the first one, Pb

k.
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ECA dataset. The bigger and darker the dot, the more measurements
are available.

USHCN dataset.

(a) Locations of the measurement stations per dataset.

1800 1850 1900 1950 2000

ECA dataset. The stations are sorted by distance from De Bilt,
Netherlands (the top lines are closest to De Bilt).

1800 1850 1900 1950 2000

USHCN dataset.

(b) Time span of measurements per station. Every horizontal line corresponds to one of the available measurement stations. The
beginning of the line is the date of the first measurement at this station, the end is the date of the last measurement.

Figure 16: Extra datasets. On the left, the ECA dataset, on the right, the USHCN dataset.

8.5.1 Background field covariance matrix

We assume that every element of the background field
wb

k, that is, every grid point in the model output, has
a constant variance, σ2.

The correlation between two grid points is more
complicated. We assume that the farther two grid
points are apart, the less correlation there is between
the two. This can be modelled by exponential decay
of the variance, or by more advanced covariance ma-
trices, like described by Gaspari et al. (2006). We have
chosen for a simpler model, called AR(3)-model. We
start with the simplified case that our background
field is a 1-dimensional field, then we extend this to
the 2-dimensional grid afterwards.

Consider the background field as in Fig. 18, with i
the index of a given grid point. We label the two near-
est grid points by 1, the second nearest grid points by
2 and the third nearest grid points by 3.

The AR(3)-model, where AR stands for autoregres-
sion, states that the covariance of the value of i with a
grid point j is given by:

j cov(i, j) =

j = i σ2

j = "1" labeled grid points ρσ2

j = "2" labeled grid points ρ2σ2

j = "3" labeled grid points ρ3σ2

other grid points 0
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Figure 17: Locations of measurement stations of the combined
dataset of ECA and USHCN.

3 2 1 i 1 2 3

Figure 18: 1-dimensional grid. For a given grid point x, the
nearest grid points are labeled by 1, the second nearest
by 2 and the third nearest by 3.

where ρ is a constant between 0 and 1. We used
ρ = 0.5.

The covariance on the grid can thus be represented
schematically by Fig. 19.

0 ρ3σ2 ρ2σ2 ρσ2 σ2 ρσ2 ρ2σ2 ρ3σ2 0

Figure 19: Covariance on 1-dimensional grid.

This can be put into a covariance matrix. This is
a matrix Pb

k (Eq. (25)) with on its diagonal the vari-
ance of each grid point with itself, σ2. The first upper
and lower diagonal is the correlation with the near-
est grid points (ρσ2), the second diagonals with the
second nearest grid points (ρ2σ2) and the third diago-
nals with the third nearest grid points (ρ3σ). All the
other elements are 0. If there are p elements in the
background field, then Pb

k is a p× p matrix.

Pb
k =




(25)

This is the final form of the covariance matrix for a
1-dimensional background field. We now extend this
to the 2-dimensional grid we are using.

Consider the 2-dimensional background field as in
Fig. 20, with (k, l) the index of a given grid point. Just
like in the 1-dimensional case, we label the nearest
grid points by 1, the second nearest grid points by 2
and the third nearest grid points by 3.

3a

2a 1a 2b

3d 1d (k, l) 1b 3b

2d 1c 2c

3c

Figure 20: 2-dimensional grid. For easier reference, we label the
nearest grid points.

The covariance on the grid now looks like Fig. 21.
To put this into a covariance matrix form, we first
need to reformat the 2-dimensional 64× 32 grid to
a 1-dimensional field w. This means that the grid
point (1, 1) becomes element 1 of w, grid point (2, 1)
becomes element 2 of w, grid point (64, 1) becomes
element 64, grid point (1, 2) becomes element 65 and
so on, up to grid point (64, 32) which becomes element
2048 of w. This is visualized in Fig. 22. We define the
index of the grid point (k, l) in the 1-dimensional field
as index i.

Now that the background field is reformatted into
a vector wb

k , we have to find the corresponding covari-
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0 0 ρ3σ2 0 0

0 ρ2σ2 ρσ2 ρ2σ2 0

ρ3σ2 ρσ2 σ2 ρσ2 ρ3σ2

0 ρ2σ2 ρσ2 ρ2σ2 0

0 0 ρ3σ2 0 0

Figure 21: Covariance on 2-dimensional grid.

1

64

65

128 2048

Figure 22: The globe is divided into 64 parts along the longi-
tude, and 32 parts along the latitude. The 64× 32
grid is reformatted to a vector, along the longitudinal
direction (column-wise).

ance matrix. For this, we have to take into account
the fact that longitudes are periodic. Longitude 0◦ is
the same as longitude 360◦ (latitudes are not: they go
from the South Pole to the North Pole). But first, we
consider the grid points outside the boundary layers,
that is, any value outside the first two rows and the
two last rows shown in figure 22.

We have to find the positions of the "1", "2" and "3"
grid points in the reformatted 1-dimensional vector. A
careful examination of Fig. 20 and 22 tells us that the
indices of the nearest grid points with their respective
covariance are given in table 3. This is only true if the
index exists (i.e., it is between 1 and 2048).

The second step is to look at the boundary condi-
tions. For example, i = 128, like any other grid point,
has a non-zero covariance with all grid points around
it. However, for i = 128, the grid point "below" it (grid
point 1c in Fig. 20) is not grid point 129, but instead
grid point 65, because of the periodicity of the longi-

Value of cov.
matrix entry:

ρσ2 ρ2σ2 ρ3σ2

Index of cov.
matrix entry:

i− 1 (1a)
i + 64 (1b)
i + 1 (1c)
i− 64 (1d)

i− 65 (2a)
i + 63 (2b)
i + 65 (2c)
i− 63 (2d)

i− 2 (3a)
i + 128 (3b)
i + 2 (3c)
i− 128 (3d)

Table 3: Indices and corresponding values of covariance matrix
entries for a 2-dimensional grid, excluding grid points
where boundary conditions apply. The position of the
grid point in Fig. 20 is shown in brackets.

tude. We can generalize these boundary conditions
for the following set of grid points:

• any i such that i mod 64 = 1 (the top row of the
2D grid: 1, 65, 129, etc.)

• any i such that i mod 64 = 2 (the second row of
the grid: 2, 66, 130, etc.)

• any i such that i mod 64 = 63 (the second to last
raw of the grid: 63, 127, 191, etc.)

• any i such that i mod 64 = 0 (the bottom row of
the grid: 64, 128, 192, etc.)

The entries and corresponding values of the covari-
ance matrix for these sets of grid points are listed in
table 4. The differences with table 3 are highlighted.

The final error covariance matrix can be constructed
row by row. The elements of the i-th row (for i going
from 1 to 2048) with their respective covariance are
given in table 3 and 4. The first 150 rows and columns
of this matrix are shown in Fig. 23, along with a zoom
on some more interesting regions, where the effects
of the boundary conditions can be seen.

We now have to define the error covariance matrix
Rk of the observation field.

8.5.2 Observation field covariance matrix

Every grid point of the observation field was obtained
by averaging multiple measurement stations of the
ECA and USHCN datasets. Since the grid has a length
scale of approximately 600km (becoming smaller near
the poles), we assume that these grid points are so
large, that there is no correlation between neighbour-
ing grid points. Neighbouring measurement stations
may be correlated, but on the length scale of the grid,
we assume this correlation to be negligable.

That means that the error covariance matrix Rk
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Value of cov.
matrix entry:

ρσ2 ρ2σ2 ρ3σ2

Index of cov.
matrix entry:

i + 64
i + 64
i + 1
i− 64

i− 1
i + 127
i + 65
i− 63

i + 62
i + 128
i + 2
i− 128

(a) First row: i mod 64 = 1

Value of cov.
matrix entry:

ρσ2 ρ2σ2 ρ3σ2

Index of cov.
matrix entry:

i− 1
i + 64
i + 1
i− 64

i− 65
i + 63
i + 65
i− 63

i + 62
i + 128
i + 2
i− 128

(b) Second row: i mod 64 = 2

Value of cov.
matrix entry:

ρσ2 ρ2σ2 ρ3σ2

Index of cov.
matrix entry:

i− 1
i + 64
i + 1
i− 64

i− 65
i + 63
i + 65
i− 63

i− 2
i + 128
i− 62
i− 128

(c) Second to last row: i mod 64 = 63

Value of cov.
matrix entry:

ρσ2 ρ2σ2 ρ3σ2

Index of cov.
matrix entry:

i− 1
i + 64
i− 63
i− 64

i− 65
i + 63
i + 1
i− 127

i− 2
i + 128
i− 62
i− 128

(d) Last row: i mod 64 = 64

Table 4: Indices and corresponding values of the covariance matrix for grid points affected by the boundary condition. The values
changing from table 3 are highlighted in yellow.

of the observation field is a simple diagonal matrix,
with any off-diagonal elements equal to zero. Like
explained before, the diagonal of the matrix contains
the variance of every grid point, which depends on
the number of measurements per grid station.

This matrix Rk is different at every time step: there
are different number of measurements at every month
from Jan. 1850 to Dec. 1998. We first assume that
every daily measurement has a constant standard
error σdm. This error could come from human reading
errors, interpolation errors and various other sources.
A detailed discussion of this can be found in Brohan
et al. (2006). We assume that every measurement is
a realisation of a random variable with as mean the
true temperature, and which is normally distributed
with variance σ2

dm. More precisely, we assume that
99% of our measurements lie within 2◦C of the true
value. By writing this as an equation, we obtain:

∫ 2

−2

1
σdm
√

2π
e
− x2

2σ2
dm dx = 0.99.

The solution to this is σdm = 0.78, which we now
use to calculate the error covariance matrix of the
observation field.

For every month k, the standard error of every
available grid point i is the standard error of one mea-

surement, divided by the square root of the number
of measurements Nk used to calculate the value of
that grid point: σi,k = σdm/

√
Nk.

Let Mk be the number of grid points with data
available at timestep k. Then for every i from 1 to
Mk, the variance per grid point is the standard error
squared: σ2

i,k = σ2
dm/Nk.

With this, we can find the final form of Rk:

Rk =


σ2

1,k 0 · · · 0

0 σ2
2,k

. . .
...

...
. . . . . . 0

0 · · · 0 σ2
M,k

 .

Note that this matrix is an Mk ×Mk matrix, while
the covariance matrix of the background field is an
p × p matrix. Typically, Mk � p (which is equiv-
alent to the remark we made in section 8.3.2, that
dim(wo

k)� dim(wb
k)). This is shown in Fig. 24.

We now have almost all the tools needed to per-
form Kalman filter data assimilation. The only thing
needed is the observation operator Hk.

26



0 50 100 150

0

50

100

1500

;
3  <2

;
2  <2

; <2

<
2

126 130 134

1
5

10

60 65 70

60

65

70

60 65 70

125

130

135

Figure 23: Covariance matrix Pb
k . For clarity reasons, we only plotted the first 150 rows and columns. Instead of being purely made of

constant diagonals, there are irregularities, coming from the boundary conditions. To better view these effects, we added a
detailed view of three areas of the matrix.

1850 1900 1950 2000
0

1000

2000

p = dim(wb
k)

M = dim(wo
k)

Figure 24: Dimension of background field compared to the di-
mension of observation field. Clearly, dim(wo

k) �
dim(wb

k).

8.6 Observation operator

Let us, as a reminder, state the final equations used
for the data assimilation scheme (Eq. (16) and (23)).

wa
k = wb

k + Kk(wo
k −Hkwb

k),

with Kk = K∗k = Pb
kHT

k (HkPb
kHT

k + Rk)−1

The observation operator Hk maps the background
field to the observation space.

In our case, both the background field wb
k and the

observation field wo
k are vectors where each element

corresponds to a grid point. The only difference is
that all p grid points are present in the background
field, whereas the observation field only contains a
limited set of Mk grid points, corresponding to the
grid points where there are existing measurements.

To map the background field to the observation

field, we simply remove all the elements correspond-
ing to grid points with no existing measurements in
wo

k. Let {io
1, io

2, ..., io
Mk
} be the set of indices of the grid

points of the observations wo
k. This is the set of in-

dices of the background field we want to keep. In
matrix form, the observation operator is an Mk × p
matrix Hk, where the j-th row is made up of zeros,
except at the index io

j , which is 1, with j ranging from
1 to Mk.

This is best illustrated by an example. Let wb
k be

a background field with 5 elements: (a, b, c, d, e)T at
grid points {1, 2, 3, 4, 5}, and let wo

k be an observation
field with 3 elements: (κ, λ, µ)T at grid points {2, 4, 5}.
Then Hk is the 3× 5 matrix given by:

Hk =

0 1 0 0 0
0 0 0 1 0
0 0 0 0 1

 .

This gives us the background field mapped to the
observation space:

wo
k −Hkwb

k =

κ
λ
µ

−
0 1 0 0 0

0 0 0 1 0
0 0 0 0 1




a
b
c
d
e


=

κ − b
λ− d
µ− e

 .

It should be noted that the observation operator
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formally maps the background field to the raw ob-
servations, in our case, the daily measurement from
the stations. Therefore, the observation operator ac-
tually also encompasses the monthly averaging and
the interpolation to nearest grid points. We call the
averaging operator Ak, and the interpolation to grid
operator Gk. The total observation operator now be-
comes:

Hk,eff = AkGkHk := G̃kHk ,

where G̃k is the operator combining averaging and
interpolation.

Let w̃o
k be the field of raw observations, where each

element corresponds to the observation of a different
measurement station at time k. When we consider
these raw observations, the Kalman filter equations
also change. The observation operator is now G̃kHk,
and the observation error covariance matrix now gives
the covariance per measurement station. We call this
matrix R̃k. The Kalman filter becomes:

wa
k = wb

k + K̃k(w̃o
k − G̃kHkwb

k), with (26)

K̃k = Pb
k(G̃kHk)T

(
(G̃kHk)Pb

k(G̃kHk)T + R̃k

)−1
. (27)

Let us now assume that G̃k is orthonormal (G̃kG̃T
k =

I). We will come back to this assumption later on.
With this, we can rewrite Eq. (26) to:

wa
k = wb

k + K̃k(G̃kG̃T
k w̃o

k − G̃kHkwb
k)

= wb
k + K̃kG̃k(G̃T

k w̃o
k −Hkwb

k).
(28)

The next step is to calculate K̃kG̃k:

K̃kG̃k = Pb
k(G̃kHk)T

(
(G̃kHk)Pb

k(G̃kHk)T + R̃k

)−1
G̃k

= Pb
kHT

k G̃T
k

(
(G̃kHk)Pb

kHT
k G̃T

k + R̃k

)−1
G̃k

= Pb
kHT

k (G̃k)−1
(

(G̃kHk)Pb
kHT

k G̃T
k + R̃k

)−1
(G̃T

k )−1.

In the last step, we use the fact that G̃T
k = G̃−1

k , and
that G̃k = (G̃−1

k )−1 = (G̃T
k )−1. Now, since we as-

sumed that G̃k was orthonormal, it is also square
and invertible. This means we can use the identity
A−1B−1 = (BA)−1 for A and B square and invertible
matrices. This allows us to further rewrite K̃kG̃k to:

K̃kG̃k = Pb
kHT

k (G̃T
k G̃kHkPb

kHT
k G̃T

k G̃k + G̃T
k R̃kG̃k)−1

= Pb
kHT

k (HkPb
kHT

k + G̃T
k R̃kG̃k)−1.

By renaming K̃kG̃k to Kk and G̃T
k R̃kG̃k to Rk, we ob-

tain the original formula for the Kalman gain, without
considering the interpolation. The matrix G̃T

k R̃kG̃k
is then the error covariance matrix of the raw obser-
vations averaged and interpolated to the grid points.
However, for this to work, we have to assume that
G̃k is orthonormal, and therefore square. This is not
the case, since there are already many more measure-
ment stations (4889) than there are grid points (2048).
This means that we should use Eq. (26) and (27) in-
stead of Eq. (16) and (23). However, we neglect the
errors induced by averaging and interpolation, and
use Eq. (16) and (23).

It is now finally time to perform the actual Kalman
filter data assimilation. The results are discussed in
the next section.

8.7 Results of offline data assimilation

In the theoretical description of the data assimi-
lation scheme we are using, we showed that the
assimilation process comes back to two equations
(Eq. (16) and (23)):

wa
k = wb

k + Kk(wo
k −Hkwb

k),

with Kk = K∗k = Pb
kHT

k (HkPb
kHT

k + Rk)−1

In section 8.4.1 and 8.4.2, we discussed how we ob-
tain the observation field wo

k, by combining the ECA
and USHCN datasets. In section 8.5, we discussed
in detail how to calculate the error covariance ma-
trices Pb

k (which still depends on the parameter σ)
and Rk. Finally, in section 8.6, we showed a method
to obtain the observation operator Hk. With these
sections combined, we are ready to perform the data
assimilation.

As mentioned before, this data assimilation consid-
ers every time moment k separately. Observations at
time k only influence the temperatures of the back-
ground field of time k. In Fig. 25, we show the result-
ing assimilated field wa

k for one of these moments (the
year 1975) with σ = 0.1, along with the background
and observation fields wb

k and wo
k. For this year, the

biggest differences between wb
k and wa

k are around
Scandinavia and the centre of the USA. We see in
Fig. 25 that roughly speaking, the analyzed field is
equal to the observations where the observations ex-
ist, and to the background field where there are no
observations available.
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Figure 25: Example of offline data assimilation, using the background and observation anomaly fields of 1975 and with σ = 0.1. The
data show warmer temperatures around Scandinavia and the centre of the USA than the model has reproduced.

Now that we have new assimilated anomaly fields,
we can compare them to the original HadCRUT
dataset, and check if they agree better than without
data assimilation. This is done in the next section.

8.8 Error estimation using data assimila-
tion

Data assimilation allows us to create an anomaly field
which better represents the true anomalies between
1850 and 1998. This is done by combining the ob-
servation field, derived from the ECA and USHCN
datasets, with the background field, which is the tem-
perature representation of the LOVECLIM model.

In the data assimilation method described in the
previous section, we didn’t explicitly give the value
of the standard deviation of the model anomalies, σ.
It is a measure of the uncertainty of the model. Since
we don’t know the value of σ, we perform the data
assimilation process for different values: σ = 0.01,
0.05, 0.1, 0.25, 0.5, 1 and 2. The method we use to
choose which σ corresponds best to the model is,
just like we have done in section 7, by using the PC
projection method.

For this method, we use the assimilated matrix
Xassim and the data matrix Xdata. Note that the k-th
row of Xassim is equal to wa

k. In section 7, we used
Xmodel instead of Xassim. We can split Xassim and

Xdata into their respective PC and EOF components:{
Xassim = CassimUT

assim

Xdata = CdataUT
data.

Just like in section 7, the assimilated field is pro-
jected onto the EOFs of the HadCRUT data (previ-
ously model on data, now assim. on data). Since we have
seen that model on data gives higher correlations than
data on model, we do not consider the data on assim.
case. Mathematically, this gives us new descriptions
of Xassim and Xdata:{

Xassim = ĈassimUT
data

Xdata = CdataUT
data

We can now compare the original PC of one matrix
with the projected PC of the other:{

Ĉassim = XassimUdata

Cdata
. (29)

We use two measures of fit for the comparison of
these PCs: first the correlation coefficient ρ(C1, C2),
and second the RMS error between the PCs.

To obtain these results, we first average the anoma-
lies over a period of 1, 2, 5, 10 and 20 years, and
perform data assimilation with different values of
the model standard deviation: σ = 0.01, 0.05, 0.1,
0.25, 0.5, 1 and 2. Then the PCs are calculated as
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Figure 26: Correlation coefficients and RMS errors. First, the anomalies are averaged over 1, 2, 5, 10 and 20 years. Then we
perform data assimilation for multiple value of σ. On the left, the correlation between between the projected first Principal
Component Ĉassim and Cdata is calculated, on the right their RMS errors. The values of σ with maximum correlation or
lowest RMS error are highlighted.

in Eq. (29). Some of these PCs are shown in Fig. 27.
Next, the correlation between them are calculated, vis-
ible in Fig. 26a. From these coefficients, we see that
the assimilated fields which have highest correlations
with the HadCRUT PC, are the ones corresponding
to σ = 0.1 for the 5 year average and to σ = 0.25
for the 1, 2, 10 and 20 year averages. Since for this
thesis, we consider the HadCRUT dataset as the true
anomalies, it would seem that the standard deviation
of the temperature of the model is between σ = 0.1
and σ = 0.25.

The next measure of skill is the RMS error be-
tween the two PCs Ĉassim and Cdata, with RMS(x) :=√

1
n ∑n

i=1 x2
i the root mean square value of a vector x.

This error also tells us for which σ the assimilated
field PC is closest to the HadCRUT PC. For this, we
only have to know the value of σ for which the error is
minimum. Therefore, we show these values without
unit nor scale, in Fig. 26b. This measure of skill gives
the same results: the optimal σ is between 0.1 and
0.25.

It should be noted that these results strongly de-
pend on the assumptions previously made (shape of
Pb

k, value of σdm, accuracy of HadCRUT dataset...).
However, this method shows that it is possible to esti-
mate the variance σ2 of the temperature of the model

using data assimilation and EOF decomposition.

When using data assimilation in this section 8,
we have only considered one month (or year, or 10
years...) at a time. Observations at moment k did
not influence observations at moment k′ (k 6= k′). In
the next section, we develop a methodology to per-
form data assimilation, while using information about
every moment.

9 Data assimilation on EOFs

We have shown in section 8 that Kalman filter data as-
similation is a suitable way to combine model output
with observations, without having to run the model
again. The downside, however, is that the assimilation
process at moment k only considers observations at
moment k. It would be interesting to be able to use
all the information available, instead of just time k. In
section 5 and 6, we have discussed how to decompose
a dataset into patterns of highest variability, using
EOF and DINEOF decomposition. In this section, we
aim to combine the two principles: we perform data
assimilation directly on EOFs.
For this, we use the same method as in section 8: the
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Figure 27: First principal component of the projected assimilated field and the HadCRUT dataset. Fig. (a) and (b) use yearly averages,
(c) and (d) use 5 year average and (e) and (f) use 20 year average. The left column was calculated using σ = 0.1, the right
using σ = 1. The dashed gray line is the reference, unassimilated model output projected onto the HadCRUT EOFs.
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Kalman filter, given by Eq. (16) and (23):

wa
k = wb

k + Kk(wo
k −Hkwb

k),

with Kk = K∗k = Pb
kHT

k (HkPb
kHT

k + Rk)−1

Since we are assimilating two EOFs instead of regular
observation and background fields, this will need
some adjustments. These will be discussed in the
following steps:

• We limit the spatial domain to the part of the
Earth where we have most measurements (sec-
tion 9.1);

• The model output and data are decomposed us-
ing EOF/DINEOF, and the data is projected onto
the PC of the model anomalies (section 9.2);

• We calculate error covariance matrices for the
model and the observations (section 9.3);

• Data assimilation is performed using the Kalman
filter (section 9.4);

• The analyzed field is reconstructed by projecting
the assimilated EOF onto the original PC (section
9.5);

• Finally, the quality of this analyzed field is in-
vestigated using the PC projection analysis first
discussed in section 7 (section 9.6).

When describing this methodology, we make many
assumptions. Although we try to give them a physical
or mathematical underpinning as much as possible,
many of these assumptions would require more thor-
ough research. The goal of this section, however, is to
show the possibility to perform data assimilation on
EOFs.

9.1 Data used

Just like in the “regular” data assimilation of section
8, we combine the model anomalies with the data
of the ECA and USHCN datasets (see sections 8.4.1
to 8.4.3). Their measurement stations are centered
around the USA, Europe and Russia. We therefore
restrict our spatial domain to all the grid points with
latitudes between 30◦N and 70◦N. Note that if we
chose the whole Northern Hemisphere, it would be
more difficult to calculate the EOFs of the observation
field, since their would be many more missing values.
This was not necessary in section 8, where we simply
restricted the domain to the Northern Hemisphere.

The spatial domain we use for this section is plotted
in Fig. 28. With this new domain, we have 64× 8 grid

Figure 28: Spatial domain used for data assimilation on EOFs,
highlighted in orange. This covers all grid points with
latitude between 30◦N and 70◦N, and all longitudes.

points for the model anomalies and for the observa-
tions. Before we can perform the EOF decomposition,
we first have to multiply every anomaly by the square
root of the cosine of its latitude, to account for the
surplus of grid points at higher latitudes (see section
5.5).

The last preparation step is to average the anoma-
lies over time periods of 1 year, 2, 5, 10 and 20 years.

We now have two datasets ready to be used for
EOF decomposition and data assimilation: Xmodel and
Xdata. We also apply this domain limitation, weight-
ing and averaging to the HadCRUT dataset: we will
use this data as reference in section 9.6. The next step
is to decompose these datasets into EOF/PCs.

9.2 EOF / DINEOF decomposition

The anomaly fields Xmodel and Xdata can be decom-
posed into spatially dependent parts, the EOFs, and
time-dependent parts, the PCs. In section 5.4, we have
seen that these can be calculated using Singular Value
Decomposition:

X = A Γ UT

:= C UT ,

where we defined the principal component as C := A Γ,
and the EOF as UT . In section 7, we kept the spatial
component fixed. We projected one set of anomalies
onto the EOF of the other dataset, this way obtaining
two time-dependent PCs Cmodel and Ĉdata projected
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Figure 29: EOFs computed over the limited domain, using the new definition of the EOF. The left figure shows the first EOF of the
model field. The middle figure is the first EOF obtained using the DINEOF decomposition, which also gives a reconstructed
field. This field is projected onto the PC of the model anomalies, and is shown in the right figure.

onto the same EOF:{
Xmodel = Cmodel UT

model
Xdata = Ĉdata UT

model
,

with Ĉdata := XdataUmodel.
We now want to do the opposite: since we are

assimilating the space-dependent EOF, we have to
keep the time dependency fixed. Instead of projecting
onto an EOF, we now project onto a PC. A naïve, and
wrong, implementation of this would be by simply
multiplying Xdata by the PC of the model anomalies,
Cmodel, instead of its EOF Umodel:{

Xmodel = Cmodel UT
model

Xdata = Cmodel ÛT
data

, (30)

with Ûdata := XT
dataCmodel. The reason this is wrong

becomes clear when filling Ûdata into Eq. (30), and
using the definition of Cmodel:

Cmodel ÛT
data = Cmodel (XT

dataCmodel)
T

= Cmodel CT
model Xdata

= (Amodel Γmodel) (Amodel Γmodel)
T Xdata

= Amodel (Γmodel ΓT
model) AT

model Xdata.

While it is true that (Amodel AT
model) = I, since A is

orthonormal, this is not true for Γ. Γ is a diagonal

matrix with the singular values of X on its diagonal.
The last equation cannot be further simplified. Hence,
Xdata 6= CmodelÛT

data. We need another way to keep
the time-dependent component fixed.

9.2.1 New definition of PC/EOFs

In order to still be able to keep the time-dependent
component fixed, we have to redefine the principal
component and EOFs. From SVD, we can write X as
X = A Γ UT . Since Γ is diagonal, it simply multiplies
the columns of A or the rows of UT by a constant. In-
stead of defining the principal component as C := A Γ
and the EOF as UT , we now define a new principal
component and EOF:

PC : A,
EOF : ET := Γ UT .

With this definition, X can be written as X = A ET .
Since the new principal component, E, is now or-
thonormal, we can project Xdata onto the EOFs of
Xmodel: {

Xmodel = Amodel ET
model

Xdata = Amodel ÊT
data

, (31)
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with Êdata := XT
data Amodel. In fact, since Amodel is

orthonormal by definition, we find:

Amodel ÊT
data = Amodel (XT

data Amodel)
T

= (Amodel AT
model) Xdata

= Xdata.

By applying this with the model anomalies and
observations from ECA/USHCN, we can calculate
the EOFs. When calculating the projected EOF Êdata =
XT

data Amodel, we first reconstruct the observation field
Xdata using the DINEOF reconstruction. The results
of this are plotted in Fig. 29.

9.3 Error covariance matrices

Just like in section 8, we need to define an error covari-
ance matrix for the “background” and “observation”
field. Now, these matrices describe the spatial co-
variance of an EOF. We split the discussion in two
parts: first, the background EOF covariance matrix
is defined in section 9.3.1, than the observation EOF
covariance matrix in section 9.3.2.

9.3.1 Background EOF covariance matrix

An EOF is a spatial pattern, in our case, of anomalies.
We assume that the covariances behave like a normal
anomaly field: the closest grid points have highest
covariance, grid points farther away have less. For
this reason, we use the same AR(3)-model as defined
in section 8.5.1. If a grid point of the EOF with index
i has variance σ2

i , then the nearest grid points have
covariance ρσ2

i , the second nearest grid points ρ2σ2
i ,

the third nearest ρ3σ2
i , and any other grid point zero

covariance with i. We now need an estimate for the
variance of the anomalies per grid point. We define
the uncertainty, also called standard deviation, as the
square root of the variance.

In section 8, we assumed this variance to be con-
stant for any grid point. This variance comes from
the model itself, and is still present when considering
EOFs. We call this σ2

i,model. There is, however, another
source of variance: the EOF decomposition also intro-
duces an uncertainty for every grid point: we call this
variance σ2

i,EOF.
There are various ways to estimate σi,EOF. Björnsson

(1997) describes a method using Monte Carlo simu-
lations by first randomizing the time component of

the anomaly field, then perform EOF decomposition
on it. By repeating this many times, spatial correla-
tions can be calculated. We use another method, often
referred to as the rule of thumb described by North
et al. (1982). This method gives an estimate of the
uncertainty in the eigenvalues and eigenvectors of the
covariance matrix of the anomalies (i.e., the EOFs).
Let λ2

m be the m-th eigenvalue, corresponding to the
m-th EOF um. Then, the rule of thumb states that the
uncertainty in the eigenvalue, ∆λ2

m, is given by:

∆λ2
m ≈ λ2

m

√
2

n∗
, (32)

where n∗ is the number of independent measurements
or observations used to calculate the EOF at grid point
i. Here, we assume n∗ for the model to be simply
equal to n, which is the number of timesteps used (for
example, n = 1788 for monthly averages and n = 15
for 10 year averages). The uncertainty in the EOF,
∆um, is then given by:

∆um ≈
∆λ2

m
λ2

m − λ2
q

uq. (33)

In this definition, λ2
q is the closest eigenvalue to λ2

m,
in absolute difference, and uq its corresponding EOF.
Since we only consider the first EOF, the closest eigen-
value is always the second eigenvalue.

The method described in North et al. (1982) states
that the uncertainty in the first EOF is proportional
to the values of the second EOF. Note that we used
u for the EOF: this refers to the original definition
of an EOF, described in section 5. In this section, we
defined the EOFs to be equal to the rows of ΓUT . In
other words, the original m-th EOF is multiplied by
γm, the m-th value of the diagonal of Γ. As we have
shown in section 5.4, this is equal to:

γm = λm
√

n.

The uncertainty of the new EOF is therefore equal to
the uncertainty of the original EOF, multiplied by γm:

σi,EOF := ∆em = λm
√

n∆um.

We assume that the same argument holds for the
uncertainty coming from the model. If the model
has a standard deviation σ, then the value of σi,model
becomes:

σi,model := λm
√

nσ.

34



In section 8.8, we found that the best estimate for
the standard deviation of the model is approximately
σ = 0.2. We will use this value during the rest of this
section.

The total variance of the i-th grid point is equal
to σ2

i = σ2
i,model + σ2

i,EOF. For simplicity, we assume
that the model error and the error of EOF decompo-
sition are independent and can therefore be added
together. The values of σi,model and σi,EOF are shown
in Fig. 30a and 30c. The error covariance matrix can
now be constructed in the same way as described in
section 8.5.1. The difference here is that the diago-
nal is not constant. This kind of covariance matrix
is called heteroskedastic. Care has to be taken to con-
struct a matrix that is still symmetric. Instead of
constructing the matrix row by row, we construct the
i-th row and directly use the transpose of the newly
constructed row as the i-th column of the matrix. We
call the newly constructed error covariance matrix
of the model EOF P′bm, where the prime notation is
used to distinguish it from the error covariance matrix
defined in section 9.3.1.

9.3.2 Observation EOF covariance matrix

A similar method as described in the previous section
can be applied to create the error covariance matrix
of the observation EOF. Since we consider the EOFs
of the observations, we cannot assume that the grid
points are uncorrelated, like we have done in section
8.5.2. Here, we also use the AR(3)-model for the error
covariance matrix.

Like in the previous section, the variance of the
observation EOF is made of a component coming
from the uncertainties in the measurements, and a
component coming from the uncertainties of the EOF.
Let σ̃2

i be the total variance of the observation EOF at
grid point i, and let σ̃2

i,meas and σ̃2
i,EOF be the variance

coming respectively from the measurements and the
EOF decomposition.

We first discuss σ̃i,meas. This uncertainty is equal to
the uncertainty of a single measurement, σdm = 0.78,
divided by the square root of Ni. In section 8.5.2,
Ni = Nk,i was simply the number of measurements at
a certain grid point i during the k-th period (either the
k-th month, the k-th year, 10 years, etc.). Here, we are
still averaging over these periods. It is however not
possible to know which period we should use to count

the number of measurements. It is also not physical
to simply count the number of measurements of the
whole period from 1850 to 1998: this is independent
of the averaging period. For this reason, we define Ni
to be the average of all values of Nk,i:

Ni :=
1
n

n

∑
k=1

Nk,i ,

where we sum over the n periods (for 1 yearly aver-
ages, there are n = 149 periods). Using this, we find
an expression for σ̃i,meas:

σ̃i,meas :=
σdm√

Ni
.

There are, however, many grid points without any
observation during the whole period from 1850 to
1998. We assume that the variance at these points is
infinite. Since computationally this is not possible, we
restrict the observation space to the set of grid points
with at least one observation. We will come back to
this in section 9.4.

The second component of the uncertainty in the
observation EOF comes from the EOF decomposition
itself. We also use the rule of thumb proposed by
North et al. (1982):

∆λ̃2
m ≈ λ̃2

m

√
2

ñ∗
,

∆ũm ≈
∆λ̃2

m

λ̃2
m − λ̃2

q
ũq.

Here, λ̃2 and ũ are the eigenvalues and EOFs of the
observation field, and ñ∗ is the effective sample size,
usually a certain fraction of the number of time steps,
n. For the model, we used n∗ = n. Here, we use
the number of timesteps with existing measurements,
averaged over every grid point. A more elaborate
method is discussed in Thiébaux & Zwiers (1984).
This yields the values of ñ∗ shown in table 5. These
values are rounded to the nearest integer, since we
only consider full years.

This rule of thumb doesn’t explicitly take into ac-
count the fact that we use DINEOF reconstruction for
the observations, because of the missing data. How-
ever, grid points without any measurements have
infinite variance in σ̃i,meas. Grid points with some
missing values also have a lower ñ∗. This way, while
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(a) σ for the model EOF, where σmodel = 0.2 · λ1 = 4.9 (red) and
σEOF (blue) are shown separately. The peak on the right comes
from the fact that the second model EOF has high values near
Greenland.
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(b) σ̃ for the observation EOF, where σ̃meas (red) and σ̃EOF (blue)
are shown separately. Missing values of the red line are actually
infinite, since there are no measurements for those positions.

(c) σ for the model EOF (d) σ̃ for the observation EOF.

Figure 30: Values of the standard deviation (square root of variance) for the model EOF (left) and the observation EOF (right). These
values are in ◦C, multiplied by λ1 = 24.53, the first eigenvalue.

num. years avg. 1 2 5 10 20

n 149 74 29 14 7
ñ∗ 41 21 8 4 2

Table 5: Estimate of effective sample size ñ∗ for observations,
along with the number of time periods n, for different
averaging periods. ñ∗ is averaged to the nearest integer.

we don’t take into account the DINEOF algorithm, we
do account for the partial coverage of the ECA and
USHCN datasets.

Just like in the previous section, we assume the two
sources of error to be independent. This allows us to
calculate the total variance σ̃i

2 by adding the variance
from the measurements with the variance from the
EOFs:

σ̃2
i = σ̃2

i,meas + σ̃2
i,EOF.

This is plotted in Fig. 30b and 30d.
The error covariance matrix of the observations

EOF, R′m, is now constructed in the same way as in
section 9.3.1, using the variances just defined.

9.4 Kalman filter data assimilation

Now that we have defined the error covariance matri-
ces for the EOFs, we can look at the data assimilation
process. We rewrite the Kalman filter equations to
obtain:

ea = eb + K′(eo −H′eb),

with K′ = P′b(H′)T
(

H′P′bH′T + R′
)−1 (34)

Here, ea is the assimilated EOF, eo the EOF of the
observations and eb the background EOF, which is
the EOF of the model anomalies. We also use the
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Figure 31: Results of data assimilation for 5 year average. The background EOF (left) is combined with the observation EOF (middle),
to obtain the assimilated EOF (right). With this standard deviation, the Kalman gain uses values of the observation EOF
when they are available (Europe, USA, etc.), and uses the model EOF for the rest (Pacific Ocean, Canada, etc.).

prime notation for the Kalman gain for EOFs, K′ and
the observation operator H′.

For the same reason we only used the first EOF/PC
in section 7, we only perform data assimilation using
the first EOF of the model output and of the observa-
tions.

Before we can perform data assimilation, we need
to define the observation operator on EOFs, H′. This
operator maps the background field to the observa-
tion space. In this case, the observation operator maps
the model anomalies EOF to the raw observations
from the ECA/USHCN measurement stations. It is
therefore an “inverse EOF decomposition”. This is
impossible to achieve exactly, since one EOF doesn’t
contain enough information to obtain the original
anomalies from it, which can be interpolated to the
measurement stations. For this reason, we consider
the observation field to be the EOF of the interpo-
lated, averaged measurement anomalies, and we keep
in mind that the Kalman gain is just an approxima-
tion.

Since some grid points don’t have any measure-
ment at all for the whole period 1850 to 1998, the
value of the EOF at these points should be ignored.
For this reason, we limit the observation space to
all the grid points having at least one measurement.
Instead of having 64× 8 = 512 grid points, the obser-
vation space now has 241 grid points. We define the
observation operator H′ exactly as in section 8.6. Let
{io

1, io
2, ..., io

241} be the set of indices of the grid points

with at least one measurement. The observation op-
erator H′ is a 241× 512 matrix, where the j-th row is
made of all zeros, except for the io

j -th column, which
is 1. An example of this is also given in section 8.6.

When applying the data assimilation process using
this observation operator, for 5 year averages and
using a standard deviation of the model of σ = 0.2,
we obtain the EOF shown in Fig. 31. The right figure
shows the assimilated EOF. It is indeed a combination
of the background EOF and the observation EOF.

9.5 Reconstruction of assimilated field

Since the data assimilation process is calculated di-
rectly on the EOFs, we still have to reconstruct the
anomalies from the first assimilated EOF and the origi-
nal EOFs. By definition, we know that the background
field can be reconstructed using:

Xmodel =
nEOF

∑
m=1

Amodel,m(eb
m)T . (35)

In this equation, Amodel,m is the m-th principal com-
ponent of the model anomalies, and nEOF is the total
number of EOFs. This is equal to nEOF = min(p, n)
with p the number of grid points and n the number
of time periods. We can transform Eq. (35) to obtain
the reconstructed field, where we use as first EOF the
assimilated EOF. The other EOFs are left untouched:
we use the model EOFs for them. The reconstructed
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field Xreconstr. is equal to:

Xreconstr. = Amodel,1(ea)T +
nEOF

∑
m=2

Amodel,m(eb
m)T ,

where ea is the assimilated EOF.
The last step is to compare the reconstructed field

to the HadCRUT measurements. This is discussed in
the next section.

9.6 Quality assessment with HadCRUT

In section 8.8, we argue that the highest correlations
are obtained when projecting the model anomalies
onto the EOF of the HadCRUT dataset. We do exactly
the same here: we project the reconstructed assimi-
lated field onto the EOFs of the HadCRUT dataset,
and we compare the resulting first PC to the first
HadCRUT PC.

The comparison is performed using the same two
measures of skill we have already used before: the
correlation coefficient between the first PCs, and the
RMS difference between the two. We do the same
for the non-assimilated background field (the original
model EOF), and compare the correlation and RMS
difference to the assimilated ones.

The first principal components of the projected field
using the assimilated EOFs (blue) compared to the
first PC of the HadCRUT dataset (red) are shown in
Fig. 32a to 32d. As a reference, we also include the
non-assimilated background PC in gray. While the
changes enduced by the data assimilation are small,
the first PC is indeed affected by it. The fact that the
changes are small can be explained by the fact that
we only assimilate the first EOF. A more quantitative
method of describing the changes obtained through
the data assimilation, is by looking at the correlation
coefficients and RMS differences between the assim-
ilated PC and the HadCRUT PC. These are shown
in Fig. 32e and 32f. Indeed, the changes between as-
similated and original model are small, but for the
1 year and 20 year averages, there is an increase in
correlation. The RMS errors are smaller for the assim-
ilated EOF for smaller time scales (1 and 2 years), and
larger than the non-assimilated EOF for time scales
of 5 years or longer.

This shows us that, even though we have made
many assumptions, there is still some improvement
in the assimilated field, albeit very small. For time

scales of 2, 5 and 10 years, the assimilated field is
actually less similar to the HadCRUT data.

10 Summary and conclusions

The goal of this thesis was twofold: to implement var-
ious methods to assess the errors of a climate model,
and to reduce these errors using observations.

A first measure of the errors of the LOVECLIM
model we considered was to average the model out-
put and the HadCRUT dataset over a specific area,
and compare the obtained time series. We used the
correlation coefficient and RMS errors between the
time series to quantify their differences. In general,
the model performs better for longer time scales. This
can be expected, since LOVECLIM is a climate model
for the past on relatively long time scales. By aver-
aging over Europe, the model is in agreement with
the data for the last 50 years, but has bigger discrep-
ancies for the years before 1930. The average over
the full Northern Hemisphere gives exactly the oppo-
site results: there are large differences for the last 50
years. This already shows that the area considered
when averaging has a large influence on the results.
This method was therefore not enough to properly
assess the quality of the temperature component of
the model.

A more advanced method is to look at the patterns
of highest variability, instead of averaging over arbi-
trary spatial areas. This was done by decomposing
the anomaly sets into temporary patterns (principal
components) and spatial patterns (EOFs). We then
projected one set onto the first EOF of the other, giv-
ing two principal components. For monthly averages,
the correlation between these PCs is practically zero.
The longer the time scale, the higher the correlation.
The Southern Hemisphere yields very big differences
in correlation coefficients when projecting the data on
the model compared to when projecting the model on
the data. These results, however, are unreliable, since
the Southern Hemisphere lacks many observations.
Moreover, we showed that only the first PC/EOF
could be used for this analysis: the model anomalies
have hardly any variation along the second EOF of
the data.

The third method consists of employing Kalman
filter data assimilation to estimate the model error.
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(a) First principal components, yearly average
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(b) First principal components, 2 year average
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(c) First principal components, 5 year average
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(d) First principal components, 20 year average
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(e) Correlation coefficients as function of averaging period

1 2 5 10 20
Number of years average

0

2

4

6

8

R
M

S
 d

iff
.

Assimilated EOF
Original model

(f) RMS differences as function of averaging period

Figure 32: First principal component of the projected assimilated field and the HadCRUT dataset for different averaging periods. The
blue line is the PC of the assimilated field using data assimilation on EOFs, the gray line is the PC of the model output
without data assimilation. The correlation coefficients and RMS differences between the projected assimilated PC and the
HadCRUT PC are shown in (e) and (f).
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We performed data assimilation between the model
anomalies, having unknown variance, and the observa-
tions from the ECA/USHCN dataset, having a given
variance, by chosing different values of the model
variance. The assimilated field was then compared to
the HadCRUT dataset, which we considered to be the
reference dataset, by using the same EOF/PC decom-
position as the second method. It appears that for a
standard deviation of 0.2◦C, the correlation coefficient
is the highest and the RMS error is the lowest between
the first principal component of the assimilated field
and of the HadCRUT dataset.

Moreover, the Kalman filter provides with an es-
timation of the anomalies that better resembles the
HadCRUT observations than the anomalies from the
LOVECLIM model alone, which indicates a reduction
in the model error.

The last part of this thesis introduces the possibility
to perform data assimilation directly on EOFs. This
is a new method, which, as to the day of writing, has
never been applied before. We have shown that, while
this method brings a number of difficulties, it is in-
deed possible. First, the variance of every grid point is
changed because of an additional error term coming
from the EOF decomposition itself. We used the rule
of thumb by North et al. to estimate this term. The
second difficulty arises when using a spatial domain
containing grid points without any measurements.
This can be dealt with by limiting the observation
space to the grid points having at least one measure-
ment, and using an approriate observation operator.
If we want to perform more effective and accurate
data assimilation on the EOFs, we will have to elab-
orate the method, by looking more carefully at the
many assumptions we had to make (like the form
of the covariance matrix, of the observation operator,
the number of EOFs considered and the Kalman fil-
ter itself). It could also be possible to extend this to
different data assimilation schemes, such as ensemble
data assimilation. This is left for further research.

It should be underlined that the methods developed
and applied during this thesis to the LOVECLIM
model and the HadCRUT dataset are not limited to
these, and therefore can be applied to any model or
dataset that is time and space-dependent.
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Appendices

A Data assimilation: derivation of
analyzed error covariance ma-
trix

Theorem 1. In section 8.3.2, we used the fact that the error
covariance matrix of the analyzed, Pa

k, can be rewritten as:

Pa
k = (I−KkHk)Pb

k(I−KkHk)T + KkRkKk .

Proof. Starting with the definition of the error covari-
ance matrix, we have:

Pa
k = E[(wa

k −wt
k)(wa

k −wt
k)T].

For clarity reasons, we rewrite this as:

Pa
k = E[wa

k −wt
k]2,

keeping in mind that we are working with vectors,
not scalars.

Using the definition of the analyzed field (Eq. (16)),
and rewriting the expression, we obtain successively:

Pa
k = E[wb

k + Kk(wo
k −Hkwb

k)−wt
k]2

= E[(I−KkHk)wb
k + Kkwo

k −wt
k]2

= E[(I−KkHk)wb
k + Kkwo

k −wt
k

+ KkHkwt
k −KkHkwt

k]2

= E[(I−KkHk)(wb
k −wt

k) + Kkwo
k −KkHkwt

k]2.

Since we know the formulation of the observation
field (Eq. (17), wo

k = Hkwt
k + bo

k), we find:

⇔ Pa
k = E[(I−KkHk)(wb

k −wt
k)

+ KkHkwt
k + Kkbo

k −KkHkwt
k]2

= E[(I−KkHk)(wb
k −wt

k) + Kkbo
k]2

By remembering the notation E[..]2 := E[(..)(..)T], we
obtain the long form:

⇔ Pa
k = E[((I−KkHk)(wb

k −wt
k) + Kkbo

k)

((I−KkHk)(wb
k −wt

k) + Kkbo
k)T]

= E[((I−KkHk)(wb
k −wt

k) + Kkbo
k)

((wb
k −wt

k)T(I−KkHk)T + (bo
k)TKT

k )]

= (I−KkHk) E[(wb
k −wt

k)(wb
k −wt

k)T](I−KkHk)T

+ Kk E[bo
k(bo

k)T]KT
k

+ cross terms in E[bo
k]

Since the expectation value of bo
k is zero, the cross

terms in E[bo
k] become zero. Therefore, we are left

with the two first terms only. We recognize the defini-
tion of Pb

k (Eq. (18)) and Rk:

Pb
k := E[(wb

k −wt
k)(wb

k −wt
k)T],

Rk := E[bo
k(bo

k)T].

Substituting in these definitions, we obtain the final
answer:

⇔ Pa
k = (I−KkHk)Pb

k(I−KkHk)T + KkRkKk ,

which concludes our proof.

B Data assimilation: derivation of
Kalman filter

Theorem 2. When performing Kalman filter data assim-
ilation, we need an expression for the Kalman filter, or
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gain factor. For a linear model and linear observation op-
erator Hk, the Kalman filter Kk = K∗k that minimizes the
analyzed error variance is given by:

K∗k = Pb
kHT

k (HkPb
kHT

k + Rk)−1.

Proof. The goal is to find a Kalman weight that mini-
mizes the analyzed error variance:

J = tr(Pa
k).

From Eq. (21), this is equal to:

⇔ J = tr
(

(I−KkHk)Pb
k(I−KkHk)T + KkRkKk

)
.

Minimizing this with respect to Kk means solving the
equation

∂

∂Kk
(tr(Pa

k)) = 0

⇔ ∂

∂Kk
(tr((I−KkHk)Pb

k(I−KkHk)T

+KkRkKk)) = 0.

We solve this using the following matrix calculus iden-
tity. If A and B are two matrices, with B symmetric,
the derivative of ABAT with respect to A is equal to:

∂

∂A
tr(ABAT) = 2AB.

Since Pb
k and Rk are covariance matrices, they are

symmetric. Hence, this identity can be applied here:

∂

∂Kk
(tr((I−KkHk)Pb

k(I−KkHk)T + KkRkKk))

=
∂

∂Kk
(tr((I−KkHk)Pb

k(I−KkHk)T))

+
∂

∂Kk
(tr(KkRkKk))

=
∂

∂Kk
(tr((I−KkHk)Pb

k(I−KkHk)T)) + 2KkRk .

The second step can be done because of the linearity
of the derivative and the trace operator. Now we still
have a problem with the first term:

∂

∂Kk
(tr((I−KkHk)Pb

k(I−KkHk)T)),

since we are deriving to Kk, but we have a term
(I − KkHk)Pb

k(I − KkHk)T), and not KkPb
kKT

k . We
use the chain rule, and differentiate with respect to
(I−KkHk). In matrix calculus, this leads to:

∂

∂Kk
(tr((I−KkHk)Pb

k(I−KkHk)T))

=
∂

∂(I−KkHk)
(tr((I−KkHk)Pb

k(I−KkHk)T))(−HT
k )

= −2(I−KkHk)Pb
kHT

k .

Bringing all the terms together, gives us:

∂

∂Kk
(tr(Pa

k)) = 0

⇔ −2(I−KkHk)Pb
kHT

k + 2KkRk = 0

⇔ −Pb
kHT

k + KkHkPb
kHT

k + KkRk = 0

⇔ Kk(HkPb
kHT

k + Rk) = Pb
kHT

k

⇔ Kk = Pb
kHT

k (HkPb
kHT

k + Rk)−1,

which is the final form of the Kalman filter.
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