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In this research we look if we can recreate Hoag’s Object from standard galaxy models
without other interactions. We run our simulations with 16 million particles for 97.7
Gyr, more than six times the Hubble time. Our initial model has three parts, a Sérsic
bulge, an exponential disk and a NFW halo. We used the Bonsai code, a tree code
that uses the Graphics Processing Unit (GPU). We conclude that we did not succeed
in recreating Hoag’s Object. A ring forms, but there is also a strong bar present. The
bar strength initially grows and stays equal after 50 Gyr. The bar speed slows down
exponentially. The galaxy reaches an equilibrium after 50 Gyr. We propose some initial
parameters that could help destroy the bar, with the mention of a Central Mass Density.

I. INTRODUCTION

Hoag’s Object is a remarkable object, first observed by Arthur Hoag (1950). It is quite a peculiar
object, around the central bulge of stars it has an almost perfect circular ring with stars. There have
been several studies (Brosch (1985), Schweizer et al. (1987), Freeman, Howard, and Byrd (2010),
Finkelman et al. (2011), Brosch et al. (2013)) about the origin of this object and we will explore
one hypothesis of it in this article.

Our interest in Hoag’s Object origins from a simulation of the Milky Way in 2014 by Bédorf
et al. (2014). The simulations ran longer than intended and after a week there seemed to emerge a
Hoag type galaxy. The simulation time was more than the Hubble time, but this still piqued our
curiosity. This study tries to reproduce these results and look if there are initial conditions such
that a ring like structure could come into existence in less than the Hubble time. Fig. 1 shows a
picture of Hoag’s Object, taken by the Hubble Space Telescope.

The following section contains a theoretical background we need to analyze and understand our
results. The third section contains the properties of Hoag’s Object obtained from observations of
previous studies. In the fourth section we will point out the different hypothesis about the origin
and end with hypotheses we research in this article. In the fifth section we describe the details of
our simulations. In the sixth section we present our result and in the last two section we discuss
the results and give our conclusions.

II. THEORY

In this section we will discuss the theoretical background needed to understand the rest of this
thesis. We discuss some basic terms and the Lindblad Resonance.

A. Basic Terms

Here I introduce most terms that are used in this work. We divide spiral galaxies in three parts:
the bulge, the disk and the halo. The bulge is the inner part of a galaxy, here the density of stars
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FIG. 1 Hoag’s Object as seen by the Hubble Space Telescope. (Image credit: R. Lucas (STScI/AURA),
Hubble Heritage Team, NASA)

is higher. It is found in most spiral galaxies. The disk is the other visible part of the galaxy, here
the stars orbit the center of a galaxy in a thin disk. Lastly we have the halo, this consist mostly of
dark matter. This is matter that we, as of yet, cannot see or observe except for their gravitational
force on the stars. Spiral galaxies are called this way, because you can see spirals in them if we look
at them from above. A special case of a spiral is a bar, as is best described by a picture, see Fig.
2. Here you also see the spiral arms starting at the tips of the bar.

Astronomy uses a different set of units for some physical quantities. We will explain them here.
Parsec (pc) is a unit of length, one unit equals 3.086× 1016 metres. Arcsec (′′) is a unit of angular
measurement, it is equal to 1

3600 of a degree. or π
648000 radians. The solar mass (M�) is a mass

unit, one unit equals 1.989× 1030 kg. It is also equal to the mass of the sun. Solar luminosity (L�)
is a unit of luminosity, one unit equals 3.846 × 1026W . It is also equal to the luminosity of the
sun. Luminosity (L) is the total amount of energy emitted by an object per unit time. Flux (F )
is the luminosity per area. The relation between flux and luminosity is L = 4πd2F , where d is the
distance between the observer and the object. Apparent magnitude (m) is a measure of brightness
as seen by an observer on Earth. The relation between apparent magnitude in spectral band x and
flux is defined by mx = −2.5 log10( Fx

Fx,0
) Where Fx is the observed flux with spectral filter x and

Fx,0 is a reverence flux. Spectral filters are used to measure flux at certain wavelengths. Commonly
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FIG. 2 Barred Spiral Galaxy NGC 1300 as seen by the Hubble Space Telescope. (Image credit: NASA,
ESA, and The Hubble Heritage Team STScI/AURA)

used are U (ultraviolet) at an effective wavelength of 365 nm, B (blue) at 445 nm, V (visual) at
551 nm, R (red) for 658 nm and I (infrared) at 806 nm.

B. Lindblad resonances

The following section is based on section 3.3 from Binney and Tremaine (2008). Linblad resonance
occurs in galaxies with a non-axisymmetric potential. In other words galaxies with spirals or bars.
We assume a galaxy with a weak bar. The bar rotates with a pattern speed which we will call
Ωb. We look at the orbit of a star in this galaxy. We only look at it from the top, so we discard
the z-coordinate which makes it a 2D system. We use polar coordinates (R,ϕ) for the frame that
rotates with the same pattern speed as the bar. We let ϕ = 0 be in the direction of the bar. This
gives us the following Lagrangian per unit mass

L =
1

2
Ṙ+

1

2
[R(ϕ̇+ Ωb)]

2 − Φ(R,ϕ). (2.1)

Where Φ(R,ϕ) is the potential. The resulting equations of motion are

R̈ = R(ϕ̇+ Ωb)
2 − ∂Φ

∂R
, (2.2a)

d

dt
[R2(ϕ̇+ Ωb)] = −∂Φ

∂ϕ
. (2.2b)

We assume a weak bar, therefore we divide the potential in a part that is axisymmetric and in a
part that is not.

Φ(R,ϕ) = Φ0(R) + Φ1(R,ϕ) (2.3)

where |Φ1(R,ϕ)
Φ0(R) | � 1. Next we divide R and ϕ in zeroth- and first-order parts

R(t) = R0 +R1(t),

ϕ(t) = ϕ0(t) + ϕ1(t).
(2.4)
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We fill in these above expressions in equation 2.2 and require that the zeroth-order terms sum to
zero.

R0(ϕ̇+ Ωb)
2 =

(
dΦ0

dR

)
R0

,

ϕ̇0 = constant.

(2.5)

Essentially it says that the force on a particle is the same as the centrifugal force. So the motion
induced by the zero-order terms is a perfect circle with radius R0. We define Ω(R) as the circular
frequency in potential Φ0, defined by

Ω(R) ≡ ±
√

1

R

dΦ0

dR
. (2.6)

Further more we define Ω0 ≡ Ω(R0). With this equation 2.5 becomes

ϕ̇0 = Ω0 − Ωb. (2.7)

Where Ω0 > 0 for orbits that move in the same direction as the bar and Ω0 < 0 moves in the other
direction. Thus setting ϕ0(0) = 0 gives us

ϕ0(t) = (Ω0 − Ωb)t. (2.8)

The first order terms of equation 2.2 then become

R̈1 + (
d2Φ0

dR2
− Ω2)R0R1 − 2R0Ω0ϕ̇1 = −(

∂Φ1

∂R
)R0 , (2.9a)

ϕ̈1 + 2Ω0
Ṙ1

R0
= − 1

R2
0

(
∂Φ1

∂ϕ
)R0 . (2.9b)

To go any further, we must specify the form of φ1 some more. We use

Φ1(R,ϕ) = Φb(R) cos(mϕ) (2.10)

Here m is a positive integer. It means that our potential has a spiral symmetry. In case of a bar
we set m = 2. Since we require that the bar is aligned along ϕ = 0, the potential over there is at
it’s lowest, since most of it’s mass is there. Therefor we require that Φb < 0. We assume that the
angular velocity ϕ̇1 is small and that ϕ1 is small, thus the perturbation in ϕ is small. With this
ϕ1 � 1, so ϕ(t) stays close to (Ω0 −Ωb)t. Now we can replace ϕ by ϕ0 in our first-order equations
2.9

R̈1 + (
d2Φ0

dR2
− Ω2)R0

R1 − 2R0Ω0ϕ̇1 = −(
dΦb
dR

)R0
cos[m(Ω0 − Ωb)t], (2.11a)

ϕ̈1 + 2Ω0
Ṙ1

R0
= −mΦb(R0)

R2
0

sin[m(Ω0 − Ωb)t]. (2.11b)

We integrate the latter of these equations to obtain
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ϕ̇1 = −2Ω0
R1

R0
− Φb(R0)

R2
0(Ω0 − Ωb)

cos[m(Ω0 − Ωb)t] + constant. (2.12)

We use this in equation 2.11a and we get

R̈1 + κ2
0R1 = −[

dΦb
dR

+
2ΩΦb

R(Ω− Ωb)
]R0

cos[m(Ω0 − Ωb)t] + constant, (2.13a)

where

κ2
0 ≡ (

d2Φ0

dR2
+ 3Ω2)R0

= (R
dΩ2

dR
+ 4Ω2)R0

. (2.13b)

Here κ0 is what we call the epicycle frequency. The constant in the above equation isn’t really
important, since we can shift it with R1 → R1 + constant. If we look at equation 2.13a we see that
this is a differential equation for the driven harmonic oscillator. It has natural frequency κ0 and a
driven frequency of m(Ω0 + Ωb). The general solution to this equation is

R1(t) = C1 cos(κot+ α)− [
dΦb
dR

+
2ΩΦb

R(Ω− Ωb)
]R0

cos[m(Ω0 − Ωb)t]

∆
(2.14a)

where C1 and α are constants and

∆ ≡ κ2
0 −m2(Ω0 − Ωb)

2. (2.14b)

We can now use equation 2.8 to get out the time. We get

R1(ϕ0) = C1 cos(
κ0ϕ0

Ω0 − Ωb
+ α) + C2 cos(mϕ0) (2.15a)

where

C2 ≡ −
1

∆
[
dΦb
dR

+
2ΩΦb

R(Ω− Ωb)
]R0

. (2.15b)

If we set C1 = 0 we only get the second cos which has period 2π
m . This is a closed loop orbit, an

orbit that closes on itself again after a number of rotations and thus repeats itself. The orbits with
C1 6= 0 are non-closed loop orbits.

There are a few values for which equation 2.15a becomes singular. These are the resonances. The
corotation resonance happens when

Ω0 = Ωb. (2.16)

This implies that ϕ̇0 = 0. In this case the ϕ0 co-rotates with the same speed as the potential. For
m = 2 this is the same speed as the bar.
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The Linblad resonances happens at

m(Ω0 − Ωb) = ±κ0. (2.17)

In this case the star comes across the crests of the potential at the same frequency of its epicycle
frequency κ0.

Near these Linblad resonances, ∆ becomes small, so C2 becomes large. Therefor particles there
have a large radial force acting on them, this could lead to shocks and thus to rapid star formation.
These regions might then become visible as rings (Buta, 1995).

III. PROPERTIES OF HOAG’S OBJECT

In this section we present the properties of Hoag’s Object that are obtained from observational
data generated by previous studies. This will be important for making an initial model and to
compare our simulation results against. Unless stated otherwise the data is obtained from Finkelman
et al. (2011).

Hoag’s Object is found at a right ascension of 15h17m14.405s and a declination of +21◦35′07.88′′

in the J2000 coordinate system (obtained from NED, NASA/IPAC Extragalactic Database). The
receding velocity is Vsys = 12767± 3km s−1 for the core and Vsys = 12761± 4km s−1 for the ring.

We assume the Hubble constant H0 = 73km s−1, Ωm = 0.27 and ΩΛ = 0.73. Ωm and ΩΛ are
mass and energy density parameters respectively of the whole Universe. With this the calculated
distance of Hoag’s Object is 175.5 Mpc and the scale is 851pc arcsec−1.

A. Luminosity

The observational data of the core was fitted to an exponential disk and Sérsic Bulge1. It gives
a Sérsic index of n = 3.9 ± 0.2, an effective radius of re = 2.8 ± 0.1 arcsec = 2.5 ± 0.1 kpc and an
effective surface magnitude of µB ∼ 22.6 ± 0.5 mag arcsec−2. The total luminosity of the core is
µB = 16.98± 0.01 mag in blue light and µI = 14.47± 0.01 mag in infrared light.

Fig. 3 shows the azimuthally averaged luminosity profile of Hoag’s Object at each radius. The
profile follows a power-law up to ∼ 11 arcsec = 9 kpc, it has a sharp transition at ∼ 13 arcsec = 11
kpc, which corresponds with the inner edge of the ring. The outer edge is lies at ∼ 27 arcsec = 23
kpc. It has a flat luminosity profile between 17 and 22 arcsec (14-19 kpc).

B. Kinematics

Within r < re the calculated effective velocity dispersion is σ = 151±5km s−1, which is consistent
with Schweizer et al. (1987). The ring and core are slightly inclined to the sky with an angle of
19◦ ± 5◦ for the core and 18◦ ± 4◦ for the ring. This can be seen in Fig. 2 of Finkelman et al.
(2011). The primary axis of this inclination has a position angle2 (PA) of 41◦± 5◦ for the core and

1 A Sérsic profile is function that describes how the intensity I of galaxy relates to the distance R from its center.

It has the form I(R) ∝ e−kR1/n
and n is the Sérsic index.

2 The position angle is defined as the angle measured counterclockwise relative to the north celestial pole
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FIG. 3 Azimuthally averaged luminosity profile of Hoag’s Object. The dashed horizontal line represents
the background noise. The other dashed line represent the power-law fit up to 11 arcsec. This figure is
obtained from Finkelman et al. (2011).

43◦ ± 3◦ for the ring. The maximum rotational velocity that is measured for the core is 70km s−1

at 4 arcsec = 3.4 kpc. This is lower than the real value, since it isn’t seen straight on. A fitted
model to the data gave a maximum rotational velocity of 180km s−1 at 6 arcsec = 5.1 kpc for the
core.

With a model for the ring a rotational speed of about 260 km s−1 across the whole ring is
obtained, see the tilted ring method in fig. 11 in Finkelman et al. (2011).

C. Star population

There are two analyses made of Hoag’s Object central core. One shows that the core formed
more then 9 Gyr’s ago, but a small fraction is ∼ 0.5 Gyr stars. The other shows that the central
core population is well matched by a single & 10 Gyr old stellar population.

The fit for the ring is in agreement with a ∼ 2 Gyr stellar population, although there are signs
for ongoing star formation.
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Object/Parameter HO O1 O2 G1

α J2000 15h17m14s 15h17m40s 15h16m09s 15h16m01s

δ J2000 +21◦35′08′′ +21◦36′19′′ +21◦36′10′′ +21◦32′27′′

cz· (km s−1) 12736 12700 12629 12676
M(HI) (109M·) 6.2 0.39 1.2

TABLE I Objects near Hoag’s Object. First two rows are the position in the J2000 coordinate system.
The next row is the receding velocity measured by the redshift. The last row is the mass of the HI content,
if present. This table is the obtained from Brosch et al. (2013)

D. Environment

Brosch et al. (2013) has done a study of the H1 content in Hoag’s Object and other objects near
this galaxy. The mass of the HI cloud is M(HI) = 6.2× 109M· with an uncertainty of 10 percent.
The HI ring is best fitted by two separate rings. The first having a radius between 14 and 28 arcsec
(16 and 33 kpc) and inclined to the sky with an angle of ∼ 18◦. The second one has a radius
between 28 and 42 arcsec (33 and 49 kpc) and is inclined to the sky with an angle of ∼ 25◦. There
are three objects found near Hoag’s Object, two H1 clouds and one galaxy. They are summarized
in table I.

E. Lindblad Resonance

In case the morphology of Hoag’s Object was created by a bar (see section IV.E), we would
expect the outer ring to coincide with the outer Lindblad resonance. We will follow the work of
Byrd, Freeman, and Buta (2006) and Freeman, Howard, and Byrd (2010). First we need a model
to calculate the radii for the resonance. We use a simple axisymteric potential for the zero-order
term of the potential

Φ0 =
1

2
v2

0 ln(Rc +R), (3.1)

where Rc is the core radius, defining the potential for small R, vc is a constant that determines the
rotational speed. With equation 2.6 we get the circular frequency

Ω(R) =
v0√

R2
c +R2

→ v0

R
for R� Rc. (3.2)

With this we can calculate the epicycle frequency κ (see equation 2.13b)

κ2 = 2
v2

0

R2
. (3.3)

The Lindblad resonance we have derived in equation 2.17 must hold for m = 2. In this case we get

2(
v0

R
− Ωb) = ±

√
2
v0

R
, (3.4)
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where Ωb was the bar (pattern) speed. For the co-rotation radius (RCR) Ωb = v0
RCR

must hold.
With this we solve the above equation and get

RILR = (1− 1

2

√
2)RCR, (3.5a)

ROLR = (1 +
1

2

√
2)RCR, (3.5b)

where RILR and ROLR are the radius for the inner and outer Lindblad resonance. With a
rotational speed of 260km s−1 observed in the ring, we choose this as constant across our model.
With this and expecting to see the ring at the outer Lindblad resonance, we can scale the other
radii. The ring begins at 15.5 arcsec = 13.2 kpc, thus ROLR = 13.2 kpc, RCR = 7.7 kpc and
RILR = 2.3 kpc. Note that the inner Lindblad resonance comes quite close to re = 2.5 ± 0.1 kpc
for the core of Hoag’s Object. The bar speed is then Ωb = 260

7.7 = 33.6 km s−1 kpc−1.
It must be noted that this is a very crude approximation of Hoag’s Object. For one, we have

seen that the observed rotational speed is not constant across the whole galaxy. It gives an idea of
the order of the bar speed.

IV. HYPOTHESES OF THE ORIGIN OF THE HOAG’S OBJECT

A. Gravitational lens

For this hypothesis we need a massive object between us and a source of light. This massive
object bends the light of the source with its gravity in such a way that we see the source as the ring
of Hoags Object. The massive object itself acts as the core. This hypothesis was put forward by
Hoag (1950) himself, but stated that it was a not so likely explanation. If it is true, the core should
be extremely massive. However observations from Schweizer et al. (1987) show us that the ring and
bulge have the same redshift, hence are at the same distance and physically belong to the same
system. This is not the case for gravitational lenses, therefore this hypothesis can be discarded.

B. Collision between galaxies

An other possible explanation is a head-on collision with two galaxies. This mechanism is similar
to the famous Cartwheel Galaxy (Amram et al., 1998). A smaller galaxy collides with a bigger,
where the smaller one acts like a bullet. It sweeps out the stars in the center and the ring is the
only thing that remains of the bigger galaxy. If Hoag’s Object is formed like this, the collision must
be seen head-on. Schweizer et al. (1987) argued that the radial velocity difference between the ring
and core should be of the order of 102 km s−1 for a collision. But we observe a velocity difference
of only 6± 5 km s−1.

We mentioned in section III.D that there are three objects near Hoag’s Object. Two H1 clouds
at ∼ 300 kpc and ∼ 1 Mpc. The closest one has no visible optical counterpart. If we suppose there
once was an optical counterpart, it could have disappeared by an interaction with Hoag’s Object.
This interaction must have occurred more then 1 ∼ 2 Gyr ago if we assume a relative velocity of
200 km s−1. But if it acted like a bullet, we would expect to see it somewhere else on the sky. So
we see no other galaxy that could have acted like a bullet.

These two arguments make this hypothesis unlikely.
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C. Major Accretion event

A major accretion event is a collision (not head-on) or close encounter of two galaxies. Schweizer
et al. (1987) put this hypothesis forward. One galaxy transfers some or all of it’s mass to the other
one. For the Hoag’s Object we suppose that the central core was one galaxy and the ring is the
mass transfer of the other galaxy.

We will now follow the discussion of Finkelman et al. (2011). Schweizer et al. (1987) argues that
the event must have taken place 2 ∼ 3 Gyr ago. If it was more recent, we would see evidence in
form of a tidal tail or ripple signatures. As we mentioned, the ring has a stellar population of ∼ 2
Gyr and the gas needs at least ∼ 1 Gyr to settle in a circular orbit. This is consistent with the
hypothesis.

But with the total measured blue light coming from the ring, the mass of the ring must be at
least 3 × 109M�. An estimation of the star formation rate is ∼ 0.7M�yr−1. This star formation
rate would have formed the ring in more than 4 Gyr.

Furthermore the initial mass of the HI gas in the disk should be over 1010M�, if we look at the
mass of the HI cloud and the ring now. This is twice that of the Milky Way and at least an order
of magnitude larger than dwarf irregular galaxies contain. This implies that the mass couldn’t be
transferred in just one accretion event from a dwarf galaxy. A merger of two equal-mass galaxies
could be possible. In that case some of the initial gas should fall into the core and cause star
formation. From section III.C we have two analyses of the star population of Hoag’s Object core.
One shows that the core formed more then 9 Gyr’s ago, but a small fraction is ∼ 0.5 Gyr stars.
The other matches it with a & 10 Gyr stellar population. The first one is in agreement with this
hypothesis.

The kinematics don’t support this hypothesis. Most numerical simulations of mergers produce
galaxies that are more elliptic and also produce bars.

D. Cold Accretion

This hypothesis was put forward by Finkelman et al. (2011). The idea is that the core is formed
from a collapse of the HI cloud. After this collapse there is continuous accretion of gas from
the Inter Galactic Medium (IGM). Due to the low gas density outside the core, there is no star
formation. In section III.B we mention that Hoag’s Object is inclined to the sky, meaning that
it has a elongated triaxial core. This produces a non-axisymmetric potential which gives rise to
resonances, also discussed in section II.B. These resonances compress the gas, which would bring
it just above a density such that star formation takes place. This would give the gap between the
ring and core of Hoag’s Object.

E. Bar Instability

The original idea of a bar instability was brought forward by Brosch (1985). For Hoag’s Object
we assume a typical disk, in which a bar has formed. Due to this bar, there are several resonances
where more mass will accumulate. One such resonance is then responsible for the ring of Hoag’s
Object. Because of the fact that we don’t see a bar, there must have been a bar instability such
that the bar disappeared. Schweizer et al. (1987) observed a far larger HI cloud than Brosch (1985).
A large HI cloud would stabilize the galaxy against a bar instability. Furthermore, the shape and
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Halo Bulge
ah σh 1 − εh αh ab σb 1 − εb
(kpc) (km s−1) (kpc) (km s−1)

9.0 290 0.95 0.5 0.64 300 0.85
Disk
Md Rd zd σR0 Rout δRout

(1010M� (kpc) (kpc) (km s−1) (kpc) (kpc)

4.9 4.2 0.36 74.2 45 0.8

TABLE II The parameters we use in our simulation model. For the Halo we have the scale radius (ah),
the characteristic velocity dispersion (σh), the truncation parameter (εh) and the rotation parameter (αh).
For the Bulge we have the scale length (ab), the characteristic velocity (σb) and the truncation parameter
(εb). The last being the the disk, here we have the disk Mass (Md), the disk scale length (Rd), the disk
scale height (zd), the radial velocity dispersion at the center (σR0), the cut-off radius Rout and the radial
range for disk truncation δRout.

dynamics of the core give evidence for an elliptic shaped galaxy, where we do not expect bars. Also
the age between the stars in the ring and core would be more alike, since it came from the same
population. Thus both Schweizer et al. (1987) and Finkelman et al. (2011) deem this an unlikely
scenario.

Freeman, Howard, and Byrd (2010) showed that a structure like Hoag’s Object can be formed
in simulations by assuming a strong bar that gradually weakens. The strong bar makes sure that
no other resonances survive except the Outer Lindblad Resonance. In their article they added an
artificial potential for the bar to show that this hypothesis was possible.

In this study we will try to do something similar, but with a bar that forms itself from an initial
model. Furthermore, our model will have a live dark matter halo and ∼ 107 particles and is in
three dimensions.

V. N-BODY SIMULATIONS

For our simulations we use a modified version of GalactICS (Widrow and Dubinski, 2005) to
generate galaxy models. We use the Bonsai tree-code (Bédorf, Gaburov, and Portegies Zwart,
2012) for our simulation. In this section we explain our models, discuss our choice of parameters
and finally discuss the N-Body code.

A. Model

We use a modified version of GalactICS, named galactics.parallel. It has been modified by Bédorf
and Gaburov so it can be used by the Bonsai code. The parameters of our model can be found in
Table II. We use an exponential disk, a Sérsic bulge, and a NFW dark halo. In Table III the mass,
the outer radius and number of particles is given for each part of our model. In Fig. 4 we present
the rotation curve of our model.

Our model is based on a model (md1mb1d1.5) described in Fujii, Bédorf, and Portegies Zwart
(2016). The paper discusses the dynamics of stellar disks in live dark-matter halo’s. We choose this
model, because it developed the clearest ring structure after 10 Gyrs of simulation.
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Md Mb Mh Rd,t Rb,t Rh,t Nd Nb Nh

(1010M·) (1010M·) (1010M·) (kpc) (kpc) (kpc)
4.99 0.458 46.4 46.6 2.61 620 1.5M 0.14M 14.3M

TABLE III The mass, the outer radius and number of particles for the disk (d), bulge (b) and halo (h)
from our model.

1. Halo

The NFW dark matter halo is based on the article from Navarro, Frenk, and White (1996). We
will follow Widrow and Dubinski (2005) in describing the density profile and potential. The density
profile is

ρNFW (r) =
ρh

(r/ah)(1 + r/ah)2
, (5.1)

where ah is the scale radius, ρh ≡ σ2
h

4πa2h
is the characteristic density and σh is a characteristic velocity

dispersion of the halo. The gravitational constant G is set equal to 1. We get the gravitational
potential by solving the poison equation

~∇2Φ = 4πρ (5.2)

and require that the potential is equal to zero in infinity. We get

ΦNFW (r) = −σ2
h

log(1 + r/ah)

r/ah
. (5.3)

If we leave it like this, the halo would be infinitely long and massive, which would be less than
optimal for simulations. So there is a cutoff energy introduced Eh− ≡ εhσ2

h, where εh is the cutoff
parameter. For εh = 0 it gives a full NFW profile. For 0 < εh < 1 it gives a truncated profile.

The model is further modified to give an option for rotation. This is the α parameter, which
gives the fraction of particles that have positive angular momentum in the z-direction (Jz). And
1− α gives the fraction of particles with negative Jz. Setting α = 0.5 gives zero net rotation.

2. Disk

We assume an exponential disk, following Fujii, Bédorf, and Portegies Zwart (2016) we have a
surface density distribution of

Σ(R) = Σ0 exp−R/Rd . (5.4)

The Σ0 is the central surface density and Rd is the Disk scale length. Furthermore, the disk is
truncated at radius Rout, with a sharpness defined by δRout. Note that Σ0 is not a parameter of the
model, instead we use Md which is the total disk mass. The structure of the disk in the z-direction
is given by sech2(z/zd), where zd is the disk scale height. The radial velocity dispersion is assumed
to be σ2

R(R) = σ2
R0 exp−R/Rσ , where σR0 is the radial velocity dispersion in the center of the disk

and Rσ is the scale length for it. We assume that Rσ = Rd. For our disk we have Toomre’s stability
parameter Q (Binney and Tremaine, 2008) that is controlled by σR0. Our model is set up such that
Q = 1.2 at a reference radius of 2.5Rd.
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FIG. 4 This is the rotation curve of our model, obtained after generating the model.

3. Bulge

The Sérsic bulge is modeled after a Hernquist model (Hernquist, 1990). The density profile is
given by

ρH =
ρb

(r/ab)(1 + r/ab)3
(5.5)

and the potential is

ΦH =
σ2
b

1 + r/ab
, (5.6)

where we have the scale length ab, the characteristic density ρb = σ2
b/(2πa

2
b) and the characteristic

velocity σb. The model we use, is a truncated version of this Hernquist model. Just like the halo it
has a truncation parameter εb. We assume no rotation of the bulge.

B. Code

As simulation code we use Bonsai developed by Bédorf, Gaburov, and Portegies Zwart (2012).
This code is based on the tree method algorithm introduced by Barnes & Hut (Barnes and Hut,
1986). It scales as O(n log n), which makes it quicker than direct gravitational N-body algorithms
that scale as O(n2). The special thing about this code is that it runs solely on the Graphics
Processing Unit (GPU). The code is optimized for parallel clusters. This makes it possible to use
over 10 million particles with even a modest computer like the Little Green Machine in Leiden.

For our simulations we use 16 million particles. Since we use a live halo, most of the particles are
in this halo. The timestep we use is dt = 0.305 Myr. The softening is ε = 0.01 kpc and the opening
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(a) Energy deviation (b) Center of Mass deviation

FIG. 5 (a) Presented here is the fraction of the energy deviation with respect to the energy at the begin
of the simulation. Energy is not conserved and is gained over the whole run. (b) Here is the radius of the
center of mass plotted for the disk and bulge stars with respect to the center of mass at time zero.

angle for the tree-walk is θ = 0.4. We rebuild the tree every timestep. We run our simulations for
97.7 Gyr, which is more then six times the Hubble Time. In other words we run the simulation
for more than six times the age of Universe. The reason is that the initial conditions are artificial
anyway. If we come across a result that looks like Hoag’s Object even after Hubble Time, we could
look back a few Gyr’s and see if the conditions of the galaxy at that time are reasonable.

VI. RESULTS

In this section we present the results of our simulation. First we describe the procedure to get
our results.

All our data is moved in such a way, that the center of mass of the bulge and disk stars is always
at the origin. This is necessary as you can see in Fig. 5b, the center of mass doesn’t stay in one
place. It is a known problem that momenta is badly preserved in the tree-code (Hernquist, 1987).

In our simulations there appears a bar, thus we need a method to analyze the bar. We follow Fujii,
Bédorf, and Portegies Zwart (2016) in our analyses of the bar. We use a Fourier decomposition of
the surface density, we get

Σ(R,ϕ)

Σ0(R)
=

∞∑
m=0

Am(R) cosm[ϕ− ϕm(R)], (6.1)

here (R,ϕ) are polar coordinates, Σ(R,ϕ) is the surface density at (R,ϕ), Σ0(R) is the surface
density averaged over ϕ, and Am(R) and ϕm are the amplitude and phase angle of Fourier mode m.
The m is what periodicity the density has, for a bar we have m = 2, since a bar makes two peaks
in the surface density profile. Higher m is equivalent to spiral structure. How we got our Fourier
constants from a Discrete Fourier Transform, can be found in Appendix A. A high Am means that
the m mode is strong. For our data we take radial bins of ∆r = 1 kpc and angle bins of ∆ϕ = π

180
radians. We define the bar strength as the maximum value of A2(R) for R < 30 kpc, we call the
corresponding R, Rmax. We define the angle of the bar as ϕ2(Rmax). We look from Rmax forward



16

(a) Bar strength (b) Bar length

(c) Bar speed (d) Bar speed

FIG. 6 Here we present the properties of the bar from our simulation. In the upper left we have the
maximal A2 component for each time step, which is equivalent to the bar strength. In the upper right we
plot the bar length. Lower left presents the bar speed up to 9.7 Gyr. In the lower right we have the bar
speed from 9.5 Gyr and onward.

at ϕ2(R), the first R for which |ϕ2(R) − ϕ2(Rmax)| > 0.05π radians is true we define as the end
of the bar. This radius we take as the bar length. We do this every 1 time steps (≈ 0.02 Gyr) for
the first 10 Gyr and every 20 time steps after that. From the angle of the bar, we can compute the
pattern speed of the bar.

The data from the bar can be found in Fig. 6. If we look more closely at the plot of the bar
strength (Fig. 6a), we see that A2 grows from 0.1 to 1.3 in the first 12 Gyr, where it reaches
it’s maximum at 12 Gyr. It stays nearly flat (1.2 ± 0.1) from 12-30 Gyr, where it reaches a local
maximum of 1.3 at 30 Gyr. After this it decreases steadily to a value of 1.0 at 55 Gyr. From this
time onward it appears to be in a steady state, since the bar strength doesn’t decrease more then
0.05 in a time frame of 42 Gyr. For this reason we wanted to have a snapshot from every stage of
the bar. So we will compare snapshots from 0.00, 2.54, 11.7, 29.9, 54.3 and 97.7 Gyr.

In Fig. 7 you can see the density plots of the previous mentioned 6 snapshots. For the snapshots
every bin has a size of 0.2 by 0.2 kpc. We look at our simulations from three sides, the top (xy-
plane), the front (xz-plane) and the side (yz-plane). The density is displayed on a log scale, since
this is similar as we would see in an observed galaxy.



17

(a) 0.00 Myr (b) 2.54 Myr

(c) 11.7 Gyr (d) 29.9 Gyr

(e) 54.3 Gyr (f) 97.7 Gyr

FIG. 7 The surface density as seen from the top (xy-plane), front (xz-plane) and side (yz-plane) from our
simulation. The positions of the stars have been modified such that the origin (0,0,0) coincides with the
center of mass of the bulge and disk stars at that time. (a) is at the begin of our simulation and (f) is after
the final time step.
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FIG. 8 The the average surface densities for each radius. We included the same data from Hoag’s Object
(see Fig. 3), where we scaled the central luminosity such that we could compare it with our simulation
results.

The former mentioned plots are 2 dimensional, it’s easier to compare the observations with a 1
dimensional plot. Thus we have Fig. 8. Here we look at the galaxy from the top, so we see the
xy-plane. We averaged over the angle ϕ to get the surface density at a certain radius. We’ve also
included the data from Fig. 3. We scaled the data from Hoag’s Object such that the surface density
of Hoag’s Object is the same in R = 0.085 kpc as in the snapshot of 29.9 Gyr. Furthermore since
magnitude and brightness are related through a −2.5 log10 relation, we’ve also applied this relation.

Lastly we have our Fig. 5 that tells us about the quality of our simulations. We measure the
deviation of the total energy with respect to the initial energy. The fraction of this is what we
plotted in Fig. 5a. In Fig 5b we present the deviation of the center of mass of the disk and bulge
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stars.

VII. DISCUSSION

We discuss the quality of our simulation first. In Fig. 5a we see the error of the energy as fraction
of the initial energy. The maximum energy error in one iteration is 1.34493×10−5 also as a fraction
of the initial energy. This is comparable to the numerical precision. The energy error each time
step is small en we see no sudden spikes. Hence nothing strange is happening during our simulation
with respect to the energy. In Fig. 5b we see how the center of mass of the stars behaves. At first
the center of mass moves away from the initial position, with a local maximum of 2.3 kpc at 9.3
Gyr. After that it nearly goes back to zero (0.2 kpc) at 20 Gyr, thereafter it grows linear up to
a value of 29.1. Looking closer at the coordinates, it appears that z-coordinate is the main cause
of this. First the z-coordinate becomes positive, until we see the peak at 9.3 Gyr. After that the
z-coordinate decreases steadily up to a value of -29.0 kpc. The x,y coordinates are 0.14 kpc and
2.16 kpc at the last iteration. As the size of the galaxy is in the order of 30 kpc, we conclude
that momentum is poorly preserved. Considering the density Fig.’s 7a - 7f, the figures still look
like a normal galaxy. We don’t see any strange patterns, so we suspect that this artifact doesn’t
influence the morphology of the galaxy. We therefore argue that this shifting of the galaxy don’t
influences our results and the simulation is satisfactory. If we would want to make our momentum
conservation better, we would have to decrease our opening angle θ (Hernquist, 1987).

The main object of this research was to find out if we could form Hoag’s Object from standard
models of galaxies without other interactions. If we look at Fig.’s 7a - 7f we don’t see a visual
match. There is a ring visible in the last 4 snapshots, but this ring is not as broad as in Hoag’s
Object. The ring at 29.9 Gyr is the most similar. The main difference is that there is a bar present
in these snapshots, but we see none in Hoag’s Object. If we look at Fig. 8 we don’t see a radial
density profile that matches with Hoag’s Object. For the snapshots from time 11.7 Gyr and onward
we observe peaks in the density surface, just like the peak in Hoag’s Object. The crests are at the
same radius as the rings of Fig. 7, hence they represent the rings. These peaks are not as high as
in Hoag’s Object, except the one of 11.7 Gyr. In the ring the density is higher and its probably at
the outer Lindblad resonance. These two factors should cause more star formation, thus younger
stars. It has been shown that younger stars have a lower mass-to-light ratio (Charlot, Worthey, and
Bressan, 1996), thus more light per unit mass. For example a 2 Gyr old stellar has a Mass-to-light
ratio of ∼ 1.5M·/L·, while a 10 Gyr old star has a ratio of ∼ 5.4M·/L·. Therefore we argue that
the crest of Hoag’s Object luminosity profile should be lower. As we mentioned in section III.C the
star population of the ring of Hoag’s Object is 2 Gyr, while that of the core is 10 Gyr. Thus the
ring appears 3.4 as massive in Fig. 8.

As mentioned before Freeman, Howard, and Byrd (2010) argued that the shape of Hoag’s Object
could be created by assuming a strong bar that disappears over a time. With our results we get
a bar and a ring, but the bar doesn’t seem to disappear. On the contrary the bar strength only
seems to grow over time as we can see in Fig. 6a. Thus we haven’t found something that resembles
Hoag’s Object.

Although we didn’t find our desired result, let us analyze the results a bit more. We first look at
the bar. The A2 component reaches a value of 0.5 at 3.6 Gyr. From this time on we can say that
there is a clear bar. This is also made clear in Fig.’s 6b and 6c, we see a well defined bar speed
and bar length from time 3 Gyr and onward. Before this time, the values vary a lot and are not
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continues. The bar reaches it’s peak at 12 Gyr. The bar speed slows down exponentially, as seen
in Fig. 6c and 6d. The bar length also grows in this period and becomes about twice as big.

The next interesting episode is from 12 Gyr to 30 Gyr. The strength profile is almost flat with
values of A2 between 1.1 and 1.3. The length keeps increasing from 10 kpc up to 18 kpc at 30 Gyr.
The bar speed decreases exponentially, just like before. The peak in surface density as seen in Fig.
8 moves from 8.5 kpc to 17.7 kpc, this is the position of the ring. The ring is near the same position
as the end of the bar, which is the bar length.

From 30 Gyr to 55 Gyr the bar strength decreases steadily to a value of A2 = 1.0, but this value
still correspond with a strong bar. The bar speed keeps decreasing exponentially. The bar length
increases to 23 kpc. The peak in the radial surface density of Fig. 8 is at 20 ∼ 24 kpc. Thus the
ring moves outward.

From 52 Gyr and onward the system seems to be at equilibrium. The A2 value of the bar drops
from 1.0 to 0.95, so it doesn’t vary much. The bar length averages to a length of 25 kpc. The
speeds keeps decreasing exponentially and the density profile from the snapshots at 54.3 and 97.7
Gyr are nearly indistinguishable in Fig. 8.

In the last 4 snapshots, Fig.’s 7c - 7f, we also see the boxy and peanut shape from the bar, if we
look at it from the side. This is expected from a bar.

Athanassoula, Lambert, and Dehnen (2005) have shown that bars can be destroyed by a Central
Mass Concentration (CMC). This Central Mass Concentration can be a combination of up to three
things, a super massive black hole (that is observed in most disk galaxies), a molecular gas disk
and/or a star bulge. This CMC has to be very large though, a fraction of MCMC

Mdisk
≈ 0.1 is needed

to completely destroy a bar and MCMC

Mdisk
≈ 0.01 ∼ 0.05 to weaken the bar. Here MCMC is the

mass of the CMC and Mdisk is the mass of the disk. The extend of this CMC must also be small
enough, rcmc

rdisk
= 0.01 ∼ 0.1. It must be noted that this CMC is slowly introduced in the former

mentioned paper, but not initially assumed. And we already have a bulge in our model, with a
mass fraction that is

Mbulge

Mdisk
= 0.09, and the typical range from the bulge divided by that of the disk

is
abulge
Rdisk

= 0.64
4.2 = 0.15 (see table II). Our halo mass on the other hand is quite large Mhalo

Mdisk
= 9.4,

but this fraction was equal to 5 in the paper of Athanassoula, Lambert, and Dehnen (2005). So to
get a similar CMC we could increase the range of the disk, or decrease the range of the bulge. And
we want to decrease the mass of the halo.

VIII. CONCLUSIONS

With our results we can conclude the following. Our results are not enough to disprove or prove
that Hoag’s Object was created by a weak-bar. With our initial conditions we didn’t find a galaxy
like Hoag’s Object. The simulation does develop a clear ring, but also a bar. After a bar develops
the bar strength increases and the bar doesn’t disappear. The bar speed decreases exponentially
and the position of the ring radius with time. For further study we would require a model with a
less strong bar or a model where the bar disappears, but still creates a ring structure. To create
such a galaxy within a Hubble time, the size of the disk should probably be increased. Now the
ring was at 8.5 kpc at 11.7 Gyr, but in Hoag’s Object the ring begins at 13.2 kpc. So a disk size
that is 1.5 times bigger seems reasonable. If we keep the bulge the same size, we have a a bulge
that could act as CMC that would weaken the bar, but for this to work we want to decrease the
Halo mass by a factor of 2.

Furthermore simulations lasting more than 50 Gyrs might not give new results. For our model it
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was at equilibrium after 50 Gyrs. It must be noted that this is only one simulation, further research
could give a better answer to this.
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Appendix A: Discrete Fourier Transform

Following Fujii, Bédorf, and Portegies Zwart (2016), we want to do the following Fourier trans-
formation

Σ(R,φ)

Σ0(R)
=

∞∑
m=0

Am(R) cosm[φ− φm(R)], (A1)

But from our data we can only make a Discrete Fourier Transform. We look at the case that n is
even, for n is odd the result is the same, except for n+1

2 , but we are not interested in n+1
2 for now.

At a certain R, this gives

Σ(φ)

Σ0
=

n/2∑
m=−n/2

Bme
φim, (A2)

where Bm is a complex number, Bm = |Bm|eiArg(Bm) and B−m = B∗m is the complex conjugate of
Bm since our input is real. We look at the case that n is even, for n is odd the result is the same,
except for n+1

2 , but we are not interested in n+1
2 right now. Thus we get

n/2∑
m=−n/2

Bme
φim =

n/2∑
m=0

(Bme
φim +B−me

−φim) (A3a)

=

n/2∑
m=0

(|Bm|eiArg(Bm)eφim + |B−m|eiArg(B−m)e−φim) (A3b)

=

n/2∑
m=0

(|Bm|eiArg(Bm)eφim + |Bm|e−iArg(Bm)e−φim). (A3c)

Because |B−m| = |Bm| and Arg(B−m) = −Arg(Bm).

(A3d)

=

n/2∑
m=0

(|Bm|ei(Arg(Bm)+φm) + |Bm|e−i(Arg(Bm)+φm)). (A3e)

Here we see the sum of two numbers that are conjugated to each other, then this relation holds
z + z∗ = a+ bi+ a− bi = 2a. So

=

n/2∑
m=0

2 Re(|Bm|ei(Arg(Bm)+φm)) (A3f)

=

n/2∑
m=0

2|Bm| cos(φm+ Arg(Bm)). (A3g)

And we can conclude that Am = 2|Bm| and φm = −Arg(Bm)
m
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