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Abstract

Free-Surface Synthetic Schlieren (FS-SS) is a non-intrusive method for measuring the three-dimensional
space-time structure of fluids, that functions using the laws of optics. A method that is capable
of observing water surface wave topography, like this, is a useful lab-tool to NIOZ, a research
organization that specializes in the multidisciplinary study of ocean processes. We sought to pro-
vide them with this instrument, by building it. In this paper we describe the theory behind the
method, as presented in literature, its strengths, its limits, and its optimal use and operation. We
perform some tests with the instrument to calibrate it. Using these tests we conclude our efforts
were successful, having built an FS-SS setup that functions within acceptable range of error.
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Chapter 1

Introduction

At NIOZ, or the Royal Netherlands Institute for Sea Research (The acronym is quite
lost in translation), they study the ocean. As the ocean is a big place, there are many
departments within the organization that concern themselves with marine biology, mi-
crobiology, ecology, and the like. These studies can take many forms and quickly branch
out into specialized groups researching a very specific narrow field. All of these fields,
however benefit from a greater understanding of the most basic element in the ocean,
the water itself.

Hydrodynamics has been a greatly studied topic since the conception of modern
science, and yet very real problems still exist that complicate the successful execution
of its research. One is the chaotic nature of fluids and similar large ensembles, which
can take the simple mechanics of movement and turn it into a confusing mess of trends,
estimates and probability. This is unavoidable. Another major problem is the practical
difficulty of observing these mechanics. Classical mechanics discusses discrete objects
and their movements, preferably perfect spheres in a perfect vacuum. Not so in Fluid
Dynamics, where the environment and the object of our interest differ only in where
they are at a precise instant and at what speed they may have been moving in that same
instant. Even observation of macroscopic properties is not an easy thing to do, as for
example the flow of water can generally not be seen from the water itself, but must be
deduced from foreign objects being carried by it. Surface waves, while at least a clear
indicator something is happening, are difficult to accurately observe as well, as while their
movement may be two dimensional, their structure is inherently three dimensional, and
has no vantage point from which the full three dimensions can be accurately described
in a traditional visual manner. That is to say, if you were to take a photo, you could
glean only very little information from it by just looking

To fill this gap in NIOZ‘s arsenal, it was decided to use a non-traditional optical way
to visualize the topography of waves, by building a set up that uses the Free Surface
Synthetic Schlieren method to accurately measure the 3D structure of waves through
purely 2D images. There are other methods too, but this is the most elegant solution,
as it requires no extra-ordinary laboratory set up or very expensive equipment. In this
paper, we will discuss this technique, its strengths and limitations, and our application
of it to make a functional instrument of observation. We will also discuss what this
apparatus may do for NIOZ, and how it might be used for further research.
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Chapter 2

FS-SS Theory

2.1 The Basics

Free Surface Synthetic Schlieren, for the sake of brevity from here on referred to as FS-
SS, comes from a long line of techniques using optical methods to glean information from
otherwise hard to observe phenomena in transparent media.
One of the earliest texts on the use of light to detect differences in air density was from
Robert Hooke[3]. He observed that differing densities in the air caused the sun to cast
shadows out of, well, thin air. Schlieren photography operates in this same manner, as
it uses these shadows to study the aerodynamics around objects, like airplane designs
in a wind tunnel. Synthetic Schlieren, and FS-SS are crucially different to these in that
they do not rely on direct observation of shadows or light as its Schlieren Photography
ancestors did. Instead of following the general trend of the light being focused into some
places and away from others, it uses the very specific change in the light‘s direction to
determine what refractive process caused that, and from that it reconstructs the situation
that it’s trying to visualise.
Synthetic Schlieren is used to observe the flow of solution that has a different density than
its solvent. It uses the refraction of light between the solution and solvent as an optical
trick. The mixture of differing density is positioned between a camera and a known
image. Because the specimen doesnt universally have the same refractive index, some
parts of the image may appear warped to a camera that is focused on the image through
the sample. This warping of the image is then analyzed by a Digital Image Correlation
(DIC) software, and used to calculate the precise location of this disturbance. FS-SS
is based on the same physical principles, but instead it takes a homogenous fluid with
an equally homogeneous refraction index, rather than a solution, and uses the refraction
of light to determine the shape of this fluid, rather than its composition. Here we will
discuss, prove and review the theory that we later apply to our experiment, as described
in [1]. We would like to stress that unless specifically mentioned, this next section of
theoretical exposition is paraphrased from that paper. The refraction of light by an

interface of two materials is determined by the material’s, in this case, the water’s and
air’s, refractive index, and the angle of incidence of the lightbeam that is refracted. This
refractive index is a constant, so in a body of water the only variable is this angle of
incidence. As the surface is disturbed and a wave passes over it, the surface at a single
point A will change from its equilibrium state of horizontal stillnessl to a sinoidal wave.
A ray of light that would have made a straight vertical lign up through the still surface
might now make an angle with the disturbed interface and as such, refract. If one were
to look at the bottom of a swimming pool the tiles on the bottom would appear as
constantly warping due to the refraction occuring at the surface. This visual warping we
call displacement, and it is this visual effect that we use to reconstruct an image of the
surface. This is one of the two main pillars of the FS-SS method, which depends on the
following two main pillars:
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1. The relation between the surface gradient of the liquid and the displacement of the
underlying image, as explained above

2. Using this surface gradient ∇h to reconstruct the surface height, by least square
integrating it to h(x, y)

We will explain the former in the following section. As the latter ties directly into the
computational programs we used for this, it will be discussed in the appropriate section
??.

2.2 Theoretical setup

In this scenario, we have a camera suspended directly above the body of water we wish
to observe. Underneath the water is the pattern we reference for distortion. The pattern
consists of a series of dots “randomly” distributed to make sure that none of the patterns
repeats itself. This situation is shown schematically in Figure 2.1, on the next page. The
pattern itself we discuss in the section 4.3. The rub of the technique is to determine
the optical displacement field δr(x, y) induced by the refraction of the light scattered
from a pattern located at z = 0 through the interface z = h(x, y). While the surface is
still, some refraction will still occur for each point M of the pattern that isn‘t perfectly
beneath the camera. This default “false” image we denote with the virtual points M ′

corresponding to true point M . The refraction of light that occurs on the interface of the
water depends on the angle of incidence the lightray encounters the interface with. This
angle of incidence changes with the angle between the waters surface and the horizontal,
which is analogous with ∇h. When we generate a surface disturbance, like a sinusoidal
wave, the surface elevation topography changes with the wave, and new virtual objects
will be generated. The precise detail of what happens to the resulting image we will
explain in 2.4. They will be referred to as M ′′. The displacement δr then simply comes
down to relating δr = M′M′′, with the surface gradient ∇h at the same point.
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Figure 2.1 – Figure 1: A schematic representation of a typical setup with an undisturbed
surface, showing the COM plane with all its accompanying angles, vectors, and values.
The lines that streak the edge of the Diaphragm D do not serve a purpose for our
calculations, but are there to show how a focused image m is projected onto the CCD
through lens C. This image was originally published by Moisy et al. in [1]

We know that water has a refractive index n′ that is greater than the refractive index
of air n. This means that wave crests and troughs will respectively act as concave and
convex lenses. We define our Cartesian frame with its origin directly underneath the
camera, so that the vertical axis Z crosses both the origin and the camera.The x and y
axes where z = 0 correspond to the pattern plane. In this schematic view we consider a
surface, where the pattern surface distance hp is equal to the liquid depth h0. This need
not be the case as there may be layers between the actual pattern and the body of water
which have a different refractive index from water, like the transparent plastic bottom
of the water vessel used. Corrections are easily made for this, and we will demonstrate
them later, in section 2.3. For now, we focus on this case to aid clarity of comprehension.

2.3 Approximations

There are three approximations we must make to get this theory to work. They are
based on assuming the following three parameters are small: The paraxial angle β, the
surface slope γ and the relative surface deformation. The resulting approximations are:

1. The Paraxial approximation: The pattern-camera distance H is far larger than the
field size L. This yields a maximum paraxial angle βmax ' L/(

√
2H) << 1

2. The Weak Slope Approximation: The angle γ between the unit vector normal to
the interface n̂ and the vertical vector ẑ is small. This means that the surface slope
θ measured in the incidence plane is also small. γ and θ are the same in the case
of the still surface.

3. The Weak amplitude approximation: If we formulate a formula for the surface
height h(x, y) = hp + η(x, y), where η(x, y) is the amplitude of the surface waves
as measured from the equilibrium state of hp we assume that the amplitude|η| is
small compared to the mean surface height hp.
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We use these assumptions to linearize the relation between the surface gradient ∇h
and the virtual horizontal displacement δr of a feature in the plane z = 0. First we
consider the refracted image of the pattern at z = 0 as observed through a flat interface
z = hp, as seen in Figure 2.1. For each point M , located in (xm, ym, 0) one can define
a vertical incidence plane with camera C, origin O and imagepoint M as COM. This
plane crosses the pattern plane z = 0 along the radial unit vector r̂ = OM/|OM|. This
plane can be seen as it stands in the threedimensional situation in Figure 4.3a. If I could
briefly redirect your attention to figure 2.1 again, you can see that the image of M on
the camera sensor plate (or CCD) is referred to as m. The corresponding virtual object
B′ is located above, not on the pattern plane in the position (xM , yM , αhp). This α is a
coefficient that depends on the refraction indices of the materials above and below the
interface. The relation is deduced from Figure 2.1. For the sake of clarity however we
focus on the relevant bit of the installation as shown in Figure 2.2.

Figure 2.2 – A close up of the light’s be-
haviour beneath and relating to the sur-
face at rest

One could see two triangles in this im-
age, 4IMK, and the triangle that would
form from IB′, and the horizontal pro-
jection from B′ onto IK, and from that
point to I again. We call that point A
for now. We wish to know the length
of KA. To find this we write it as:
KA = hp − IA. To find it we must
first define IA = KM/tan(i). KM
can be defined through the greater tri-
angle 4IKM , which gives us KM =
hptan(i′). Combining these two grants
us

IA = hp
tan(i′)

tan(i)
= hp

sin(i′)cos(i)

cos(i′)sin(i)
(2.3.1)

Snell‘s law dictates that
nsin(i) = n′sin(i′), so sin(i′) = n

n′ sin(i) Com-

bining this and 2.3.1, we get

IA = hp
nsin(i)cos(i)
n′cos(i′)sin(i)

The two sines cancel one another out, and since

we are talking about very small angles i, and i′, we can approximate that cos(i)
cos(i′) ' 1.

This leaves us with IA = hpn/n
′. We set out to calculate α, which we do here:

KA = MB′ = IK− IA = hp − hp
n

n′
= (1− n

n′
)hp = αhp (2.3.2)

This vertically shifted plane of z = αhp, where all B′ are situated is where we will
focus the camera. This is a small concession to practicality, as our calculations still use
the horizontal displacement of the pattern. To this end we extrapolate the line that runs
from the camera to B′ and where it would cross the pattern plane we call M ′. For a still,
undisturbed surface, this displacement is always in the radial direction, and can be read
from figure 2.2 as:

MM′ = hp(tan(i)− tan(i′))r̂ (2.3.3)

i is equal to the paraxial angle β in this situation, so using equation 2.3.2 and the paraxial
approximation simplifies 2.3.3, using cos(i) ' cos(i′) ' 1, and Snells law still reigns, so
2.3.3 becomes

hp(sin(i)/1− n

n′
sin(i))r̂ = hpsin(i)αr̂ ' hpiαr̂ (2.3.4)

This is the equation with which we can determine the position of any point M from the
image Mprime, given we know hp, H and the Origin.
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2.4 The Refracted image from a deformed surface

In the previous section we discussed some of the basic theory, and established a back-
drop against which we can paint the bigger and more important problem: the refraction
through a water surface that is not still, but disturbed, and in motion. In this scenario,
we want to determine a new virtual object M′′, which is analogous to M′ in the previous
problem. One immediate difference is that the incidence plane is not (necessarily) verti-
cal. Save for some lucky instances, the plane will not include optical axis z. Consider the
contrast in figure 4.3a and 4.3b, where the two are shown schematically. The topography

(a) the setup for a still surface, shown in
three dimensions.

(b) The setup for a disturbed surface,
shown in three dimensions.

of the water‘s surface has no regard for the vantage point of our camera. Because of this,
a wave might go in the x̂ direction and in doing so traverse the length of the field of
view. This causes a surface gradient that is not always oriented radially from the Origin,
and as such will bend a light beam to have a non radial component, which complicates
things a bit. The incident plane that results from this, CAM, is defined by the camera C,
M, and the unit vector n̂, which is the normal of the surface where it is hit by the light
ray that goes from M to C. The virtual point M ′′ where the ray seems to originate from
and actual point M make for the line MM ′′. A is the projection of origin O onto the
extrapolation line MM ′′.When one considers the two dimensional view of plane CAM,
as shown in Figure 2.4, it becomes similar to figure 2.1.

Figure 2.4 – The components of the CAM
plane

n̂ can be defined as follows:

n̂ =
ẑ −∇h√

1 + |(∇h)|2
(2.4.1)

Earlier, we already assumed that the gradient
of the slopes would be quite small. So since
|(∇h)| << 1, we can say

√
1 + |(∇h)|2 ' 1.

Ergo:

∇h = ẑ − n̂ (2.4.2)

The displacement of M to M ′′ occurs along a
new vector ŝ, which is defined as the intersec-
tion of the incident CAM plane and the pattern
plane, where z=0. This yields:
s = OM/H −∇h
As n̂, CM ′′ and ŝ are all in the incident plane
CAM, we could define

n̂ = aŝ+ b
CM′′

|CM′′|
(2.4.3)
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It will become clear as to why this is useful later. For now, we can determine coefficients
a and b through the geometrical relations as gleaned from figure 2.4:

n̂ · ŝ = −sin(θ) (2.4.4)

n̂ · CM′′

|CM′′|
= −cos(i) (2.4.5)

ŝ · CM′′

|CM′′|
= sin(i+ θ) (2.4.6)

Where θ is the angle between the horizontal and the surface at point I in the inclined
plane. This is important, as this θ is not the same as the absolute angle β between n̂
and ẑ. the paraxial angle between C and I then logically becomes the sum of the angle
between n̂ and line CI and the angle between n̂ and the vertical in CAM, θ. These
relations yield the following equation:

n̂ =
sin(i+ θ)cos(i)− sin(θ)

cos2(i+ θ)
ŝ+

sin(i+ θ)sin(θ)− cos(i)
cos2(i+ θ)

CM′′

|CM′′|
(2.4.7)

Our earlier assumptions and approximations still hold true. This means that using the
weak slope approximation (θ is very small) and the paraxial approximation (And so is β,
or in this formula, i+ θ, which also implies that i, too, is small enough to approximate)
we can reduce all the sin(x) in equation 2.4.7 to x and all the cos(x) to 1. This yields

n̂ = iŝ− CM′′

|CM′′|
(2.4.8)

Now that we have redefined n̂, we can also redefine ∇h. First, because of the quite large
pattern-camera distance, and very small maximum paraxial angle it is approximately
true that |CM′′| ' H, so we can rewrite 2.4.8 as

n̂ = iŝ− CM′′

H
(2.4.9)

Considering CM′′ = CO + OM′′ by definition, we can further rewrite 2.4.8 to

n̂ = iŝ− CO + OM′′

H
(2.4.10)

Remembering 2.4.2 we get

∇h = ẑ − n̂ = ẑ − iŝ+
CO

H
+

OM′′

H
(2.4.11)

CO is simply a vertical line of length H, pointing down. This makes CO/H the equal
opposite of ẑ, so they cancel one another out. ŝ is the unit vector in the direction of
the line MM ′′, so it could be written as ŝ = MM′′/|MM′′|.This culminates in the final
rewrite:

∇h =
OM′′

H
− i MM′′

|MM′′|
(2.4.12)

Analogous to 2.3.3 with Figure 2.1, Figure 2.4 shows us that the displacement distance
MM′′ is given as

MM′′ = KM′′ −KM = IK(tan(θ + i)− tan(θ + i′)) (2.4.13)

K is the projection of I onto the line MM′′. Note that this is not necessarily a vertical
line. The vertical projection of I on the pattern plane we call J. J and K can be, but
arent necessarily, the same. As you can see from figure 2.4, we have IK = II0cos(θ),
with II0 as the line between I and MM′′ in the n̂ direction, and II0 = h(I)/cos(γ) with



2.4. THE REFRACTED IMAGE FROM A DEFORMED SURFACE 9

γ the angle between n̂ and the vertical ẑ. Note again, that this γ 6= θ. Finally, IJ is
simply the height of point I, or h(I). This lets us rewrite 2.4.13 to:

MM′′ = h(I)
cos(θ)

cos(γ)
(tan(θ + i)− tan(θ + i′))ŝ (2.4.14)

Again with our approximations, but they hold water yet. Since we are dealing with small
angles and weak deformations, we can say that h(I) ' hp, 2.4.14 analogous with 2.3.4
becomes

MM′′ = αhpiŝ (2.4.15)

A notable, indeed the notable difference between Eq. 2.3.3 and Eq. 2.4.15 is that in
the former, the image is displaced along r̂, while the latter displaces the image along ŝ.
In Figure 2.4 one can see that here too, a virtual object B′′ is generated much like in
the still surface situation. A difference however, is that this height B′′ is not universal,
and is dependent on the slope of the surface. This means that B′′ cannot be exactly
focused. For weak deformations however, and that approximation still stands, the focal
surface still remains at the old z = αhp we determined for B′. The dots in the pattern
however are larger than one single pixel so that this small out of focus effect does not
affect our measurements, and can be neglected. From equation 2.4.15 one can write
iŝ = MM′′/(αhp). ŝ is still MM′′

|MM′′| , so we can take Equation 2.4.12 and rewrite it as

∇h =
OM′′

H
− MM′′

αhp
(2.4.16)

Here we introduce the relation OM′′ = OM′ + M′M′′ and MM′′ = MM′ + δr. From
this follows δr = M′MM′′, and this is what we were going for from the start. This
displacement of the image from the already warped image presented by a still surface to
the image we see through a distorted surface is what will allow us to reconstruct a three
dimensional model of the surface. Feeding these new definitions into 2.4.16 yields

∇h = −δr
(

1

αhp
− 1

H

)
+

OM′

H
− MM′

αhp
(2.4.17)

These last two terms cancel one another out, and leave us with a linear relation between
∇h and δr, namely

∇h =
δr

h∗
, where

1

h∗
=

1

αhp
− 1

H
> 0 (2.4.18)

This shows that for our three first order approximations the displacement δr is propor-
tional to the surface gradient ∇h. As in practice the camera is placed far above the
waters surface (H << αhp), the 1/αhp is dominant in 1/h∗, and one can simplify it to
h∗ ' αhp. At the beginning of this section, we remarked on the added difficulty that is

the bottom of the container adding another layer of refraction to our image. Consider
the very realistic case of several layers, with water at the top, a glass plate beneath it,
and between the glass plate and the pattern, a layer of air. Until now we have used the
surface-pattern distance HP and the water depth h0 interchangeably, but as this new
scenario implies, we cannot assume this any longer. If we place the camera far above the
surface, we can consider only vertical light rays, so that the displacement of an image
element in the direction δx is linearly dependent on the slope of the surface in that same
direction δh/δx, and on the refractive indices of the respective materials. In the scenario
we described above we would have the refractive indices of the air, water, and glass com-
ponents, called n, n‘, and ng respectively. The corresponding layers would, from pattern
to surface be called ha, hg, and h0. This would yield the total displacement:

δx = −h0 +
n

n‘
h0 +

n

ng
hg +

n

n
ha (2.4.19)
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The resulting displacement components can be written in the form of 2.4.18, where the
effective pattern-surface distance would be the sum of the layer thicknesses, weighted by
the refraction index ratios, as shown here:

hp = h0 +
n‘

ng
hg +

n‘

na
ha (2.4.20)

These elements are not variables, but we must take note of this effect to ensure that we
dont accidentally convince Digiflow the camera is further away from the pattern than it
actually is.

2.4.1 FS-SS Limits

An important limiting factor of this technique is the so called invertibility condition. We
have so far assumed that δr could simply be determined by the refracted image of our
pattern. In practice, however, crossings of light could occur.
The waters surface acts like a lens. This is of course what our method is built upon, but
if this lens is strong enough, it might focus two disparate rays from the same image point
into the camera,giving two images to one point. This would severly confuse the image
recognition program. Or two points might converge onto the same pixel on the CCD. This
is what causes caustics, the bright spots on the surface of for example, the water of a swim-
ming pool as shown in 2.5. Caustics would severely impact the usefulness of any of our
measurements.

Figure 2.5 – A visual example of caus-
tics. In this case, the surface of a swim-
ming pool, disturbed by the swimming
of many holidaymakers. Image from [2]

Their prevention necessitates the aforemen-
tioned invertibility condition. To ensure the
proper function of our method, we need to
know for certain that any given image m on
the camera CCD originates from a single point
M on the pattern. This condition is satisfied
if the focal length of the lens that is the sur-
face curvature is larger than the surface dis-
tance pattern of the field. If this is the case,
for H >> hp, which has always been part of
our assumptions, no two rays from the same
point can ever be sufficiently focused to both
reach the camera. As found in [4] the relation
between the curvature of a simple thin lens and
and its focusing power Plens, and therefore fo-
cus distance f is

Plens =
1

f
=
nlens − n0

n0

(
1

R1
− 1

R2

)
(2.4.21)

Here R1 and R2 are the curvatures of the two sides of a lens. In our case though, R2 =∞,
as this lens only has one curve. That simplifies 2.4.21 to

1

f
=
nlens − n0

n0R1
, orf =

n0R1

nlens − n0
=
R1

α
(2.4.22)

According to [5], the curvature of a curved surface κ relates to the radius of its osculating
circle R1 through the simple formula R = 1/κ. This allows us to rewrite 2.4.22 once

again, this time to f = 1
ακ . the curvature of the surface is approximately κ ' ∂2h

∂x2

The invertibiliy condition mandates that the pattern surface distance must be smaller
than the focal length of the surface, meaning that the surface obeys hp < hc, with
hc = f = 1

α ∂2h
∂x2

For a typical measurement it will be easy for hp to remain below the critical hc. Since we
are not able to know the nature of the surface deformation before we actually measure
it we demonstrate a typical case to establish a guideline. When we do our tests we

can always calculate the ∂2h
∂x2 and determine if it needs to be redone at a lower surface
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height. In this example, if we were to measure a sinuisoidal plane wave of amplitude η
and wavelength λ we would have h(x, y) = hp + ηcos(2πx/λ), and

hc =
1

α∂
2h
∂x2

=
λ2

4π2ηα
(2.4.23)

Lets say that the amplitude of this wave is 1mm, and its wavelength 3cm. The critical
pattern surface distance would be 9 cm. If we steer well clear of this and stick to a hc
of, say, 3 cm, any test we do can be checked for its hc afterwards, as we don’t know for
sure the characteristics of a wave before measuring it, although we are confident that if
anything, this estimate errs on the safe side of caution and any actual measurements we
perform will probably have greater critical pattern-surface distances.
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Chapter 3

The Reconstruction of the
Surface

3.1 Digiflow

Digiflow is a Digital Image Correlation program, built specifically to facilitate flow imag-
ing, being designed to rapidly analyze a stream of images with the same ease as a single
pair [8]. This program is able to track picture elements from image to image. It takes
this difference, and as it knows the time that has passed in between frames (this depends
on the camera used), it reports the movement in the image as a velocity vector field
v(x,y).

An important part of the function of this program, one we have as of yet not dis-
cussed, is its use of PIV analysis, and the differences and advantages this has over PTV.
With PTV, or Particle Tracking Velocimetry, the aim is to identify individual points,
or particles, and track those from frame to frame. Particle Image Velocimetry, or PIV,
divides the incoming image into smaller so called Interrogation Windows of several pixels
each, usually 16x16 or a multiple thereof. For each interrogation window, it searches for
the pattern it contained in the original image in the new image. Of course there may
be minute differences in movement between different elements in the window, be they
because of actual difference of movement or because noise entered the measurement.
The program takes all the data of these individual image elements, and using statistical
methods it determines the most appropriate general velocity for that group of picture
elements. It can also use this to deduce more complicated aspects of the fluid, like con-
vergence, divergence, and vorticity, but they do not serve our purposes. It is a good thing
to remember, as it may become relevant for other experiments. One could say that PTV
matches and follows particles in a Lagrangian sense, while PIV is a Eulerian approach
to this problem.

The strengths of PIV are its resistance to noise, and its higher velocity resolution than
PTV. These benefits come from its generalizing of groups of particles, as the accuracy of
the displacement depends on the cell size and the distribution of the features within it,
rather than the pixel resolution of the camera. Where a single velocity vector assigned
to a particle in PTV would have a systematic error of ε, the error of the velocity vector
in PIV would have a systematic error more akin to ε/

√
N , where N is the amount of

disparate particles in the image. Note that when speaking of elements, we do not mean
pixels, but rather the individual recognizable and trackable points that make up the
image. From hereon we will simply refer to them as particles, but remember that those
particles are but coloured dots on a piece of paper for our purposes, not actual particles.

The spatial resolution of PIV is naturally inversely proportional to window size, as
it is directly proportional to the amount of locations it can describe, and the bigger
the interrogation window, the fewer you can populate the image with. The is to find
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a sufficiently accurate reading of velocity, without giving up too much of the spatial
resolution. For reasons explained in the section on noise and measurement insecurity, we
choose interrogation windows of 32x32 pixels.

The downsides of PIV are the time and computation power needed to determine the
optimal correlation per window. Particle tracking, as it only tracks single particles, takes
far less time for the computer to process. However, time is not of the essence, so we may
disregard that downside. As for the vertical movement, we remind the reader that we
are not actually visually tracking a three dimensional flow, so the particles only move in
the two dimensional sense.

One final argument in favor of PIV is the lack of structure in the PTV vector place-
ment. The positions of the vectors depend entirely on the placements of the particles,
which, to make them recognizable from one another, are not spread evenly over the im-
age. This means that the field of displacement is less well known than we would like,
and that any faulty match ups between frames are harder to recognize and correct.

Considering all these factors, we decided on using PIV to analyse the images.

One final remark on Digiflow: as its output is velocity vectors, and we are looking
for displacement δr, we need to multiply the speed it comes out with (pixels/second)
with the time this velocity has to displace the image element. This time is simply the
time that passes between frames. In our case, but this could vary from experiment to
experiment and camera to camera, it‘s 1/24 seconds.

3.2 Interrogation Windows, Particles, and Measure-
ment Error

Figure 3.1 – Diagram from [11], showing the relation between the displacement of the
image and the size of the interrogation window

We said in the previous subsection that we would defend our decision to use inter-
rogation windows of 322 pixels. In general the greater the interrogation window, the
greater the accuracy of its velocity vector. However, we still need to describe the space
with enough spatial resolution. The camera we used has a resolution of 1380∗1030 pixels.
Further details of the camera are described in ??. If we were to use 642 windows, we
would have a velocity field of 21*16 vectors, as opposed to the 42*32 that 322 windows
allow us. As we said, we need to balance the spatial resolution and the velocity accuracy
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to get the optimal results from our height reconstruction. We think that this proverbial
sweet spot occurs in the 322 windows.

In“Particle Image Velocimetry: A Practical Guide”[9], the authors discuss the relation
between Interrogation window size, particle size, and measurement uncertainty. They
describe the total error associated with an observation as a sum of the error caused by
an unknown bias in the system, and the random measurement uncertainty or noise. The
bias error, as explained in the aforementioned book [10], can be ignored. This leaves
only the random noise, which in following Raffel et al, we will call εrms. This is the error
in the displacement vector that Digiflow turns out, and because Digiflow only has the
information of the pixels in its CCD, the vector and its error are expressed in pixels.

Raffel has worked out the lowest possible random noise for different approaches to
PIV, but before we name them we must remark that these uncertainties do not mandate
our equipment to be equally accurate. Indeed, as they used Monte Carlo simulations to
test the optimal accuracy of this method for each parameter, we can expect ours to be
less accurate. On top of that, as we are observing a process in motion with a camera
that takes only finite frames per second and has a non-zero shutter time, the program
will have to interpret blurred images. We do not have the luxury of assuming the error
of our measurements will be as low as Raffel‘s. Despite this we follow their standards in
an effort of reaching the best measurements we can.

For a 322 window, the lowest εrms goes with a particle diameter of 2.5 pixels. This
refers to the size of the dots on the camera CCD, not the actual composition of the dots in
reality. The manner of the dots production will be handled in the section Set-up. Raffel
expresses this error in pixel/pixel, meann Raffel expresses this error in pixels/pixels,
meaning that for a displacement of 1 pixel, there’s an uncertainty of εrms pixels. In the
lowest case scenario from the above sentence, that εrms = 0.02pixel/pixel

The image density is another problem that needs discussion. Moisy recommends a
density of particles N of at least 5 per interrogation window [6]. “PIV: A Practical Guide”
Further explains this as they say that the chance of probability of a valid velocity vector
detection exceeds 95% for our method of single exposure double frame PIV if the density
of particles is greater than 5. However, they point out that in practice 3 or 4 recognized
particles is sufficient to accurately perform an analysis.

The random noise of the measurements is also influenced by the particle density too,
and as mentioned before, the two are roughly inversely related. While N=5 may be
sufficient to be certain the velocity vectors actually happen, those vectors will have a far
larger εrms than I would like. The error for each density Raffel tested also changes per
displacement as they demonstrate in their diagram in Figure 3.1:

Over the entire diagram, the lowest εrms is associated with the highest density. How-
ever, as they used slightly smaller particles than us and we still need to fit these particles
into the paper, and the difference in error is minimal, we shall strive to have 20 particles
in each interrogation window.
This puts our εrms for particle density at 0.04 pixels. Although in this diagram it can
be seen that this εrms varies with displacement, as long as we consider the worst case
scenario, this is not a problem.
We previously found that when completely dependent of particle size, the εrms is 0.02
pixels. We can assume our measurement has the greater random noise of 0.04, to err on
the side of caution.

3.3 Surface Reconstruction Software

We had mentioned earlier that the surface would be reconstructed using the least squares
method of integration. So far we have established our methods of gaining the ∂h

∂x for each
element of the surface. The chance that an error occurs during measurement is non zero,
so at a single point the gradient could be incorrect. If we were to integrate linearly, along
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a set path this error would prpagate along and throw off the entirety of the results. For
this reason we use this least squares method, that is too detailed to go into here, but
is expanded upon in [1], [6], and[7]. The files Digiflow produces after its displacement
analysation have to be interpreted for use in Matlab. For this we use a suite of Matlab
programs developed by Moisy [?]. They were originally made for use with the Digital
Image Correlation programme DaVis, but we tailored them to work with Digiflow. These
programs mainly busy themselves with the proper translation of Digiflow .dfi files to
vector fields we can perform mathematics with, but they are indispensable.

3.4 Surface Reconstruction Error

We have discussed the error inherent to measuring the displacement δr. This error is
propagated through the reconstruction of the water surface linearly, due to the linear
nature of integration used to solve equation 2.4.18. For greater surface deformations the
strain in the generated image grows, and with it the possible error in our measurements.
The error is not, however, variable locally with each increasing or decreasing surface
gradient. Rather, it is an expression of the difficulty of accurately ascertaining the ∂h

∂x as
the waves grow higher and the accompanying images grow blurrier. Therefore, we can
more easily express this component of the error in the shape of the wave. Say that the
average amplitude of the sinusoidal wave ηav = η0/

√
2, where the maximum amplitude

η0 is constant. The surface gradient would grow greater with a smaller wavelength λ,
which tells us they are inversely correlated. Likewise, if the wave‘s wavelength remains
constant, the surface gradient correlates linearly with the waves maximum amplitude.
Using both they offset each other, so we can say that the error correlates linearly with
ηav/λ.

Furthermore, the error scales linearly with the size of the field L observed. We are
still dealing with the computer though, and thus this error is also inversely correlated
to the amount of collocation points N the computer discretizes this field L to. This N
is not the same as resolution as we have used the word so far, but rather is the amount
of interrogation windows applied to the surface. All these factors come together in the
equation

∆η = cε LN
ηav

λ ,

Where c is a unitless constant that Moisy et al. empirically found to be 5± 0, 2. In
typical cases this will yield a total measurement uncertainty εsurf of roughly 1/1000 of
the surface distortion ηav.
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Chapter 4

Setup

4.1 General

We have built a basic setup, the practical version of what we discussed in the theory. A
digital camera is suspended directly above an open water container. The vessel itself is
transparent, and below it is the dot pattern, backlit evenly with a matte lamp. We will
discuss the fabrication of the pattern at a later point in this section. The camera itself is
a Jai CV-M4+CL, which is capable of taking 24 frames per second. For further testing
and measurements it would be wise to invest in a camera with a higher FPS, but it allows
sufficient precision for our purposes. The CCD of the camera has a resolution of 1380
by 1030 pixels, with each pixel sized 6.45 by 6.45 micrometers. As we have no need for
fancy maneuvers with camera zoom or similar things, we simply mounted a fixed focal
point prime lens on the camera.

4.2 Optic Considerations

At this point we have only expressed the measurements in the pixels the CCD uses to
see and Digiflow uses to interpret the displacements. What we are actually measuring,
of course, is an actual surface that is measured vertically and horizontally in millimeters,
or other similar distance units. To know the appropriate size of real surface a pixel
represents we cannot just measure the size of the basin with a ruler or something similar.
It is too impractical to position and or zoom the camera in such a way that the basin
100% overlaps with the image on the CCD, and placing a ruler or something similar in
the image to judge by eye is just as impractical as it is inaccurate. So, we use optics to
devise a measuring method for which we do not actually need to do that. I do need to
preface this by saying that this method only functions if we keep the camera perfectly
horizontal, and directly above the surface we are observing. We were already enforcing
these two practices, so this does not actually complicate our measurements any further.

Any camera, simply put, is a combination of 1: a lens through which incoming light
rays are focused onto 2: An image plane where those images are recorded through for
example photosensitive chemicals or a CCD. A schematic image is shown on the next
page in figure 4.1. Here you see how the Field Of View or Angle of View of a camera
can be deduced from its physical properties. As long as the camera is pointed perfectly
perpendicular at the surface, we can use this field of view and its distance to the pattern
to determine the size of the field its measuring. These calculations do not require any
additional measurements from the ones we already made.

In figure 4.1 one can see that the size of the CCD plate is called d. This size can
of course vary from camera to camera. Since the resolution i.e. the amount of pixels of
the camera and the pixel’s physical size are known, we know how large d is. With it, we

can determine the angle β by taking tan(β) = d/2
b . We do not have b, but we do know

the true and tried simple lens equation 1
f = 1

v + 1 1
b , where f is the focal length of the

lens, v is the distance to the object from whence the light reaches the lens, and b is the
distance to the place where a focused image is projected by the lens.The lens equation
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Figure 4.1 – A schematic representation of the camera, its lens, CCD, and the plane it is
viewing

can be rewritten to b = vf
v−f . Note that this equation determines at what distance from

the lens a focused image is formed. An image can also form on another distance but it
will be blurry. We will of course make sure this does not happen. We can combine this
definition for b with our equation for β to get:

β = arctan

(
d/2

b

)
= arctan

(
d

2vf/(v − f)

)
= arctan

(
d(v − f)

2vf

)
(4.2.1)

This v is defined in our experiment simply as camera-pattern distance H, which results
in

β = arctan

(
d(H − f)

2Hf

)
(4.2.2)

The size of the field our camera observes, L, depends on the camera’s angle of view and
the distance H. Since β is the same on both sides of the lens, we know that the field
of view of the camera L/2 is simply L/2 = Htan(β), so the field the camera can see is
exactly

L = 2Htan(β) = 2Htan(arctan

(
d

2Hf/(H − f)

)
= 2Htan(arctan

(
d(H − f)

2Hf

)
) = d(H/f − 1)

(4.2.3)

The resolution of the camera remains unchanged, so to get the amount of real space that
a pixel measures and represents we simply take this L and the resolution of the camera in
pixels Lx,y/resolutionx,y. Note that for a CCD that is rectangular but not square, this
calculation will start out with different values for the x and y axis but will ultimately
result in the same pixelsize.

4.3 The Dotted Pattern

The picture of random dots we use and have so far called a pattern, is of course anything
but that. To ensure that no two elements of the image are confused for one another, the
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pattern is generated numerically, ensuring no groups of dots are the same. This is done
with a program of Moisy‘s devising [6], “Makebospattern.m”, which allows for customiza-
tion of the size of the pixels and their density. We spend a lot of time staring at these
patterns, so we used white dots on a black background, which we find to be easier on
the eye than black dots on a white background. This has no effect on performance. This
program prints the generated pattern on A4, the composition of the pattern depending
on one‘s preferred amount of dots/A4 and their diameter in mm.
We have previously established several conditions the pattern has to fulfill for our mea-
surements:

1. The density of the pattern must be at least 20 particles per interrogation window
(322)

2. The dots must have a diameter of roughly 2.5 pixels

The program we are using to generate our pattern has as input the diameter of the dots
in millimeters as will appear on the printed page. The size of how they will appear on the
CCD of our camera does not concern the program, so we must link the two. The same
goes for the image density. The variable the program uses is how many dots one wants
to appear on the page, so we must translate the density of particles per interrogation
window to the particles per area unit of A4. Reusing the method we used to determine
the relation between a pixel and real space, we can determine how large the dots have
to be in mm, to become a 2.5 pixel on the CCD. and we can use the same method to
determine how many 322 interrogation windows fit into an A4 and multiply it by 20 to
get the amount of dots we need.

xpixel = d(
H

f
− 1)/Npixels (4.3.1)

So for an optimal result, the diameter of the dots must be 2.5 ∗ xpixel This also means
that the size of the interrogation windows is (32 ∗ xpixelmm)2. A4 paper is 297 by 210
mm2, which means that to get the necessary density, the printed a4 must have at least
297 ∗ 210/(32 ∗ xpixelmm)2 ∗ 20 dots.
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4.4 Test

Until this point we have remained in the realm of theory, as we decided on the best course
of action for the practice of FS-SS. It is here that we wished to put this plan into practice
by showing our Platonic Ideal of a FS-SS analysis, perfectly obeying our own conditions
and in general show precisely what this method is capable of.

Figure 4.2 – the second frame after the
drop hit the surface, before any analy-
sis was done. The streaking of the dots
is an effect the software is equipped to
handle, and as such presents no prob-
lem.

Thanks to what can only be described as a
colossal hardware failure however, this test
never came to pass. Instead, we describe
an older diagnostic test we had done ear-
lier, in those hopeful days of functional equip-
ment.

In this test, we use the setup we have de-
tailed before, but with a pattern-camera dis-
tance of H = 0.75m, and water depth of
h0 = 4.5cm.The container that held the water
was made of 2mm thick transparent PVC plas-
tic that had a refractive index of 1.53. The pat-
tern was affixed to its bottom in such a manner
that there was no air between the watervessel
and the pattern. This results in an effective
pattern-surface distance of hp = 45 + n‘

ng
hg =

45 + 1.33
1.532 = 46.7mm.

We use this to observe the surface distor-
tion from letting a single droplet of water fall
into the water, and measure the surface waves
it generates. In a free surface such a droplet
would result in perfectly circular waves radi-
ating from the original point where the drop
met the surface. In our case, we dropped the
droplet near the corner of the water basin,
which simply means only a quarter circle is visible. A frame of the camera‘s record-
ing is shown in Figure 4.2. It is this frame that Digiflow will compare with the reference
image and calculate the displacement. Here one can also see the necessity for the equa-
tion we detailed in subsection 4.2, as the original image the camera recorded included
the edges of the container. We cut that part of the image to not render uninteresting
image elements, and conserve memory, but if we had measured the size of the image with
a tape-measure or similar instrument we would not have had that freedom nor this level
of accuracy.
The Dotpattern we used for this was the kind that Moisy recommends for general use,
which is to say, it was an A4 with 50000 dots with a 1mm diameter.

The data we collected was used to reconstruct the surface. The reconstruction results
in a scalarfield with the numerical values of the surface height in each point. There are
of course several ways of visualising those results, and here we show the most useful.
From top to bottom we show the chronological order of recording frames of the surface
disruption. The left side shows a threedimensional reconstruction, while the right shows
the corresponding image in 2D, showing the surface elevation as colours from a top view
rather than a 3d image from an arbitrary vantagepoint. Both have their pros and cons.
While the 3d visualization shows very evocatively what shape the surface has, the fact
that it shows the surface as an opaque layer means information may be lost from certain
perspectives. For example, it is difficult to see the form of a wave trough if the wave
crest is quite literally in front of it. The 2D colour coded version gives a universal view
of the surface field at the cost of immediate clarity. Of course if we want very precise
information from the surface height of a specific location, we would quite simply take the
scalarfield and check what value it has on whatever coordinate we wish to know about.
The left half shows only the amplitude of the disruption η(x, y), while the ones on the
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right show the elevation as total surface height h(x, y). This is done purely to show the
options that one has.
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(a) The threedimensional representation of
the first frame: The moment the drop
hits the water’s surface. Note that the
horizontal axes are due to some quality
in Matlab denoted as 10−1mm, and the
verticals as simply mm.

(b) The two dimensional visualisation of
the first frame

(a) The second frame after impact in
three dimensions.Note that the horizon-
tal axes are due to some quality in Mat-
lab denoted as 10−1mm, and the verti-
cals as simply mm. (b) Second frame after impact
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(a) the fourth frame after impact, chosen
to show how difficult it is to make out
the structure of the trough in three di-
mensions Note that the horizontal axes
are due to some quality in Matlab de-
noted as 10−1mm, and the verticals as
simply mm.

(b) the fourth frame after impact in two
dimensions. In this visualisation, no in-
formation is lost.

4.5 Test Error and Critical Pattern-Surface Distance

4.5.1 Test Error

In secton 3.4 we established the equation that determines the uncertainty of our recon-
struction, eq. 3.4. c is still ' 5, and the PIV error ε is still as small as it always was,
4/100. But since we used a small drop instead of generating a sinusoidal wave, the rest
of the values are far smaller than the typical case that we imagined in 3.4. ηav ' 1mm,
as seen in the measurements, L = 80mm, N ' 9002/322 ' 600. λ is a bit trickier to
read, as we’re dealing with a single pulse. We can guess that at its shortest, that is
to say, at the point it will generate the greatest uncertainty, λ ' 3cm. This gives us
∆η = cε LN

ηav

λ = 5 ∗ 0.04 80
600

1
30 ' 0.001. This is still roughly equivalent with the typical

error, which means that there’s a lot of give in that estimate, and the method is a stable
one.

4.5.2 Critical Pattern-Surface Distance hc

We can assume that this wave we generated with the droplet is sinusoidal enough to have
a similar critical distance equation as the fictional example we used before. So if we have

the equationhc = λ2

4π2ηα , did we actually steer clear of the hc? In this case where α is

simply (1-1/1.33), λ is 30mm, and η is 1mm, we get

hc = 900mm2

4π21mm(1−1/1.33) ' 9.2cm. It seems that our measurement obeys our conditions,

albeit perfectly by accident.
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Chapter 5

Conclusions and Futures

5.1 Conclusion

We have considered the theoretical foundations of this method, noting at each step the
necessary assumptions and approximations necessary to have it function. In doing so we
decided upon the optimal way of using this technique, and the various decisions necessary
to minimize measurement error. We discussed the practice of building a FS-SS set up,
and closed off with a test set up of our own, showing that even when we cannot obey
our own conditions for maximal accuracy, this method still allows for a near maximal
performance. It is very stable, and will hopefully prove useful to NIOZ in the future.

5.2 Discussion and examples of future plans

For the immediate future, we would like to perform the test that eluded us, to ensure the
calibration of this instrument meets every condition we have set out to fulfill. Suppose
however that we will succeed with this test. Having constructed a functional instrument
of measurement, what could NIOZ, and its affiliates use this technique for? We have
prepared some examples

Leo R. Maas, in his paper “Wave Attractors: Linear yet Non-Linear explores linear
wave attractors which are a phenomenon that occurs in water that is linearly stratified
in density. An example of such fluids could be salt water, like in our oceans. Gravity,
over time, ensures that its density is greater at the bottom than at the surface, with
gradually less dense layers of water making up the distance. The Linear wave attractors
occur because of these layers. In a homogenous fluid, surface waves remain just that:
surface waves. In these stratified fluids however, the interfaces between the different
layers are linked, which means that a surface wave gains a vertical component. If this
occurs in a container that has broken symmetry, a three dimensional interference pattern
will occur, and can be observed visually. As described in the paper these effects have
only been visualized from the side however, making a three-dimensional image of this
effect impossible. We suggest that the FS-SS method could be used to show this three-
dimensional image that had so far eluded science. Of course, in its current state it
assumes the fluid has a constant refractive index, but this is a solvable problem. In

the same vein, Sander van Oers is researching the subglacial oceans of Neptunes moon
Enceladus. Various visual cues on the ice suggest that the “volcanic activity beneath its
surface is of a Nonlinear Wave Attracting nature. Before sending probes into the void to
find out, we might try to simulate those conditions back on earth, and in doing so gain
more insight both into lunar volcanic activity and, into the behavior of the Linear Wave
Attractors. FS-SS as a non-intrusive imaging method might prove a very valuable asset
in this research. An attractive thought is the possibility that FS-SS may be used outside

of the laboratory, or “in the field, as it were. This may once prove possible but we fear
that the limiting factors may simply prove too stringent to allow it. If someone was to
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try to map a body of water, and successfully established pattern recognition, they still
would have the problem of caustics. As most bodies of water are either deep or agitated
enough to cause ray crossings and caustics, any information gained in even this best case
scenario would be rife with error. An unforeseen development might make it realistic to
apply this technique outside of a laboratory environment but for now we have a better
idea.

In [12], Sokoray-Varga and Jósza detail their use of PTV to analyze a physical minia-
ture model of the Maros river in Hungary. They built a specific bend in that river, and
observed the flow of water, the surface deformations, and the various eddies and vortices
that formed. These kinds of irregular chaotic currents could prove very useful to study
for the biologists and ecologists at NIOZ, to better understand the factors that play a
role in say, the reproductive habits of fish, where they lay their eggs, and why. Or it
might provide insight into the kind of current that more efficiently pollutes key areas.
The end result of such research would be a better understanding of how the most com-
plex and vulnerable parts of the ocean could better be protected, or indeed recreate such
conditions where earlier conservationist efforts have already failed.
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