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Abstract

In this thesis we consider quantum fluctuations in the ground state energy of antiferro-
magnetic spin configurations, and phase transitions between these configurations. We
use a Holstein-Primakoff transformation up to second order to transform our spin oper-
ators, and a Bogoliubov transformation to diagonalize the corresponding Hamiltonian.
First we consider a Hamiltonian with Heisenberg-exchange interaction, a magnetic field
and anisotropy, for which we investigated both the the antiferromagnetic phase and the
spin-flop phase. For the antiferromagnetic phase we find that quantum fluctuations lower
the ground state energy. For the spin-flop phase we find that quantum fluctuations lower
the ground state energy even more, such that the phase transition point between these
phases is shifted to a slightly lower strength of the magnetic field. Furthermore, this
shifted phase transition is caused by ground state energies of the spin-flop phase that
become complex, instead of an energy crossing. This energy takes on complex values
due to imaginary eigenvalues for magnons, which correspond to exponentially increasing
semi-classical spin waves.

Next we considered the Dzyaloshinskii-Moriya interaction (DMI) in one dimension, with
the spiral phase it induces. We focused on the magnetic frustration of this phase due
to anisotropy and the magnetic field. We used a superposition of two plane waves to
describe the deviation due to this frustration, and minimized the ground state energy
for their amplitudes numerically. By assuming only spirals of integer length and peri-
odic boundary conditions, we constructed a semi-classical ground state phase diagram
between the three mentioned phases. This phase diagram suggests a triple point between
these phases when the DMI is zero, at the semi-classical phase transition point between
the spin-flop phase and antiferromagnetic phase.
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Chapter 1

Introduction

The magnetic behaviour of materials is caused by the electrons of their atoms. Each
electron has an intrinsic magnetic moment, their so-called spin. When the electron shell
of an atom is completely filled, the spins of these electrons cancel each other out, and
the net magnetic moment of the atom is zero. However, when the outer shell of an atom
is only partially filled, these electrons will give the atom a magnetic moment, and the
material becomes magnetic. This means that we can often interprete a magnetic material
as a lattice of spins, where each spin points in a certain direction. A simple example is
the ferromagnetic configuration, where all spins point in the same direction.

In this thesis we will focus on several antiferromagnetic configurations. For a regular
antiferromagnet, the lattice consists of alternating spins, i.e. neighbouring spins point-
ing in opposite directions, such as “up down up down” for a one-dimensional line. Taking
different interactions into account, such as a magnetic field, changes this configuration,
since spins favour aligning partly along this field. This could cause a spin-flop configu-
ration, which we will investigate in Chapter 4.

All these phases discussed so far are ground states, the states of the magnets at tem-
perature T = 0. Increasing the temperature leads to excitations of these ground states.
Suppose we have the ground state of a ferromagnet. The simplest excitation is turning
one spin in the other direction. This is a common approach in the Ising model, but leads
to quite a high energy difference with the ground state, since neighbouring spins favour
pointing in the same direction (for ferromagnets). Furthermore, these kind of excitations
do not form the eigenstates of the quantum-mechanical Hamiltonian. Due to the wavelike
nature of particles in quantum mechanics, spin waves are a much better ansatz for the
excitations (see Figure 1.1). Another feature of spin waves is that they require a much
lower increase in energy, since the deviation between neighbouring spins is much smaller.
It turns out that this approach leads to quantized spin waves called magnons. These are
quasiparticles corresponding with the collective excitation of the spins, first introduced
by Bloch [1930], and they form the eigenstates of our Hamiltonian.

Figure 1.1 – Semi-classical picture of a spin wave going through a one-dimensional ferro-
magnet, where the spins rotate around their original alignment.

Quantum phase transitions differ from classical phase transitions, in that they occur at
temperature T = 0 instead of at some critical temperature Tc. For quantum phase tran-
sitions, we have a different control parameter g instead of the temperature T , such as
a magnetic field for instance. Varying this parameter leads to a quantum critical point
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(QCP) at some critical value g = gc (and T = 0). Around this critical point quantum
fluctuations determine the behaviour of our material, instead of thermal fluctuations.
In this thesis, these quantum fluctuations will be induced by treating the Hamiltonian
quantum-mechanically instead of semi-classically. When we increase the temperature
and approach the classical phase transition, quantum fluctuations decrease in influence
and are dominated by thermal fluctuations. This behaviour is summarized in Figure 1.2.

Figure 1.2 – Example of a (quantum) phase diagram, where the domains of both types of
fluctuations are specified by the shaded and grey areas. In this diagram the quantum
phase transition is coupled to a classical phase transition, but this is not always the
case. Without a classical phase transition, the diagram reduces to a line, but quantum
fluctuations still exist in the shaded area. Taken directly from Khomskii [2010].

Currently there has been a significant amount of research into quantum phase transi-
tions and fluctuations in magnetic materials, which has lead to the experimental discov-
ery of skyrmions in magnets (Mühlbauer et al. [2009]). They were first introduced as
a topological object in particle physics by Skyrme [1962], but this concept turned out
to be applicable in many other fields of physics. In magnets a skyrmion is a vortex- or
hedgehog-like pattern of the spins, and it has several possible applications in technology,
including a new form of data storage. However, there are still some open problems in
this field, such as a clear analytical description for these skyrmions in antiferromagnets.

Organization of this thesis

This thesis is a continuation of the Bachelor thesis of van Velzen [2016], and therefore
most chapters will be related to her work. The ultimate goal is to determine the effect
of quantum fluctuations on the ground state phase diagram of antiferromagnets with
anisotropy and Dzyaloshinskii-Moriya interaction.

For each spin configuration that we will consider, we will first analyze semi-classical
spin waves going through these spin lattices. We will find that the frequencies that we
derive for these spin waves, will correspond to the eigenvalues of our Hamiltonian, and
therefore give us some insight in diagonalizing this Hamiltonian. First, in Chapter 2,
we will take a look at ferromagnets as an introduction to our methods, using only the
Heisenberg-exchange interaction (coupling between neighbouring spins). Then we will
consider antiferromagnets. Besides the Heisenberg-exchange interaction, we will incorpo-
rate a magnetic field and anisotropy in our Hamiltonian. This gives rise to two configura-
tions, the antiferromagnetic phase (Chapter 3) and the spin-flop phase (Chapter 4). We
will analyze the phase transition between these states, and determine whether quantum
fluctuations shift this point. In Chapter 5 we will investigate the Dzyaloshinskii-Moriya
interaction. Without anisotropy and a magnetic field, this causes a spiral phase, but
when we do incorporate these interactions, we get a distortion to this spiral pattern,
which we will try to describe through a linearization.
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Chapter 2

Ferromagnets

In this chapter we will discuss a regular ferromagnet. To do this, we will analyze the
Heisenberg-exchange Hamiltonian, and we will not assume any further interactions be-
tween the spins. This interaction causes either ferromagnetic or antiferromagnetic or-
dering, determined by the sign of the coupling constant J . For a ferromagnet we have
J > 0, and this Hamiltonian is given by:

H = −J
2

∑
i

∑
δ

Si · Si+δ, (2.0.1)

where the sum over i is a sum over all lattice sites, and the sum over δ denotes a sum
over all nearest neighbours. Note that we count each pair twice, and that we corrected
for this double counting. Furthermore, we will consider a hypercubic lattice in this the-
sis (with lattice spacing a), i.e. a line as our one-dimensional lattice, and a square or
cubic lattice as our two- and three-dimensional lattices respectively. Thus, a site i will
correspond with some vector ri in the higher-dimensional cases. Furthermore, our δ rep-
resents the vectors ±ax̂,±aŷ,±aẑ for the three-dimensional lattice, and similar sets for
lower-dimensional lattices.

In the first paragraph we will treat the Hamiltonian semi-classically. This means that
we interprete each Si as a vector that points in the direction of our spin at site i. This
direction should minimize the energy of our system. Then we can deduce equations of
motion to describe our spin waves, and solve these.
In the second paragraph we will analyze the Hamiltonian quantum-mechanically. This
means that we treat each Si as an operator. Now we can apply a Holstein-Primakoff
transformation to bosonic operators, and deduce a quantum-mechanical ground state
energy for our system. We can compare this energy to our semi-classical results.

2.1 Spin waves in the ferromagnetic configuration

In a regular ferromagnetic phase, all spins points in the same direction. We assume that
our spins are placed on the x̂-axis, and that all spins point in the ẑ-direction. Note that
this does minimize our classical energy (i.e., this is the ground state of our system).1

The corresponding classical energy is −J~S per spin, where ~S is the magnitude of our
spins.

Now we want to find the equations of motion for our spin. From Ehrenfest’s theorem,
we can derive the following equation for the motion of a spin Sj :

∂Sj
∂t

= −Sj ×
∂H

∂Sj
. (2.1.1)

1Actually, we could have chosen any direction, not only the ẑ-direction, as long as all spins point in
the same direction.
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The partial derivative on the right-hand side is given by −J(Sj−1 + Sj+1). There is
one problem however. First we assumed that all spins were static and point in the
same direction. In this case we would find that the time derivative on the left-hand side
vanishes, just as the cross product on the right-hand side vanishes. For a spin wave
through the lattice, this is obviously not the case. Therefore, we will assume that our
spins have small deviations perpendicular to the original direction of the spin, that do
depend on the time and site (δSxj , δS

y
j ). Mathematically we can express this in the

following formula:
Sj = δSxj x̂+ δSyj ŷ + ~Sẑ, (2.1.2)

where ~S is the original magnitude of our spin. Applying this formula to Equation 2.1.1,
we get the following equations of motion:

δṠxj = 2J~SδSyj − J~S
(
δSyj−1 + δSyj+1

)
,

δṠyj = J~S
(
δSxj−1 + δSxj+1

)
− 2J~SδSxj ,

(2.1.3)

where the equation for the ẑ-component vanishes, since both sides are equal to zero.2

Now we need to make some kind of ansatz to solve these equations. We expect a spin
wave through our lattice, so we make the following plane-wave ansatz:

δSxj = Axe
i(kja−ωt),

δSyj = Aye
i(kja−ωt),

(2.1.4)

where k is our wave constant, ω is our frequency, and Ax, Ay are our amplitudes. Filling
these formulas in into our equations of motion, we get the following set of equations:

−iωAx = 2J~SAy − 2J~S cos(ka)Ay,

−iωAy = 2J~S cos(ka)Ax − 2J~SAx,
(2.1.5)

where we divided both equations by our exponential exp[i(kja− ωt)] to derive these
relations between the amplitudes. We can put this set of equations into the following
matrix equation:(

iω 2J~S − 2J~S cos(ka)
2J~S cos(ka)− 2J~S iω

)(
Ax
Ay

)
= 0. (2.1.6)

Now we have a solution for Ax, Ay, provided that the determinant of the matrix is equal
to zero. Solving this for ω yields the following dispersion relation:

ωk = 2J~S
(
1− cos(ka)

)
. (2.1.7)

This dispersion relation has been depicted graphically in Figure 2.1. From this dispersion
relation we can derive the following eigenvector (for all values of k):

v =

(
i
1

)
. (2.1.8)

The other eigenvector gives us the static solution, i.e. Ax = Ay = 0.
We can combine the non-zero eigenvector with our plane-wave ansatz to find the following
(real) solution:

δSxj ∝ − sin(kja− ωkt),
δSyj ∝ cos(kja− ωkt).

(2.1.9)

This spin wave can be interpreted as a precessing spin at each site. The term kja stands
for a phase shift, where each next spin is rotated by ka with respect to the previous
spin. Furthermore, we find at k = 0 that our frequency is also zero. This means that

2Note that the left-hand side is zero, because our spins are constant in the ẑ-direction and we take a
time derivative, while the right hand side is zero because it is second order in our small deviations, and
we can neglect these terms.
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Figure 2.1 – Dispersion relation for spin waves throught a one-dimensional ferromagnetic
lattice.

our spins are rotated to another (static) direction, which is the same direction for all
spins. Physically, this can be explained by a symmetry for our spin configuration. As
mentioned earlier, we could have chosen any direction for the spins to point to, not
only the ẑ-direction, as long as all spins point in the same direction. This spin wave
just corresponds to (the spontaneous breaking of) this symmetry. Modes like this are
commonly called Goldstone modes, and were first hypothesized by Goldstone et al. [1962].

A typical feature of Goldstone modes is that they do not cost any energy at k = 0.
For our semi-classical spin waves, this can be explained by the symmetry between the
two configuration with and without the spin wave. This argument would be a bit differ-
ent from a quantum-mechanical point of view. Then we would treat these spin waves as
quasiparticles called magnons, each with an energy ~ωk. Since the frequency is zero at
k = 0, we find that our magnons are gapless, and thus that they obey Goldstone’s theo-
rem. Furthermore, we will find this suggested relation between semi-classical spin waves
and magnons in the next paragraph. The frequencies of these spin waves will correspond
with the eigenvalues and eigenstates of our Hamiltonian, which are these magnons. For
the semi-classical analysis we can conclude that spin waves are not included in the ground
state, since they increase the energy of our system for k 6= 0.

2.2 Quantum-mechanical approach

Now we will treat our Hamiltonian as a quantum-mechanical operator. We will need
to use a Holstein-Primakoff transformation to transform our spin operators (Holstein
and Primakoff [1940]). This is a mapping from the angular momentum operators to
bosonic creation and annihilation operators. Here, the Szi -component must be aligned
along the (classical) direction of the spin at site i. This is always the ẑ-direction for our
ferromagnet, hence the superscript z. For other spin configurations, we should be more
careful with this. This transformation is given by:

S+
i = ~

√
2S − a†iaiai '

√
2S~ai,

S−i = ~a†i
√

2S − a†iai '
√

2S~a†i ,

Szi = ~S − a†iai,

(2.2.1)

where we used a Taylor expansion in 1/S to derive our final expressions. We neglect any
higher orders in 1/S, since we assume that S is large and because we are only interested

in the ground state energy, not magnon-magnon interactions. Furthermore, a†i and ai are
the boson creation and annihilation operators, and these obey the bosonic commutation
relation [ai, a

†
j ] = δij (and [ai, aj ] = [a†i , a

†
j ] = 0). Together, as the operator ni = a†iai,
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they count the boson number at site i. Because of this, we need that 〈ni〉 ≤ 2S, since
otherwise our final expressions do not seperate the non-physical states from the physical
ones. Suppose for instance that 〈ni〉 > 2S. Then the expected values for our initial spin
raising and lowering operators, 〈S±i 〉, would become imaginary. This is not the case for
our expressions after the Taylor expansion, hence the remark.

Furthermore, we need to express our spin raising and lowering operators S±i in terms of
the components of our spin. We know that we have the relation S±i = Sxi ± iS

y
i for these

operators. Using this, we can rewrite the Hamiltonian as the following expression:

H = −J
2

∑
i

∑
δ

(
Szi S

z
i+δ +

1

2
S+
i S
−
i+δ +

1

2
S−i S

+
i+δ

)
. (2.2.2)

Consider these last two terms, S+
i S
−
i+δ and S−i S

+
i+δ. The first term raises the spin at

site i, while it lowers the neighbouring spins, whereas the second term does exactly the
opposite. This makes it seem as if there is some kind of spin wave going through our
lattice for an eigenstate of this Hamiltonian. We can take a further look at this by
applying our Holstein-Primakoff transformation from Equation 2.2.1. When we write
out the products in our Hamiltonian, we only include terms up to order two in our
bosonic operators, for similar reasons as the Taylor expansion of our Holstein-Primakoff
transformation. This gives us the following Hamiltonian:

H = −J
2
~2S

∑
i

∑
δ

(
S − a†iai − a

†
i+δai+δ + a†i+δai + a†iai+δ

)
. (2.2.3)

This Hamiltonian is not diagonal, and we need a diagonalized Hamiltonian to be able
to describe the ground state energy and eigenstates. To do this, we apply a Fourier
transformation on our bosonic operators:

ai =
1√
N

∑
k

eik·riak, (2.2.4)

where we introduced a wave vector k as part of our Fourier transformation, and obviously
a†i is given by the hermitian conjugate of this expression. Note that it is important that
every transformation of these operators preserves the bosonic commutation relations,
which is indeed the case for this Fourier transformation.

Now we want to apply this transformation on our Hamiltonian. There are some general
identities involving this Fourier transformation included in Appendix A.3, to simplify the
expressions. Using these, we can rewrite our Hamiltonian as:

H = −z
2
J~2S2N + zJ~2S

∑
k

a†kak
(
1− γk

)
, (2.2.5)

where we defined zγk =
∑
δ cos(k · δ), with z the number of nearest neighbours and N the

number of lattice sites. Now we can define E0 = −zJ~2S2N/2 and ωk = zJ~S
(
1− γk

)
,

which simplifies our expression as:

H = E0 +
∑
k

~ωka
†
kak. (2.2.6)

Note that our frequency reduces to ωk = 2J~S
(
1−cos(kxa)

)
in the one-dimensional case,

which is the same frequency as for our semi-classical spin wave. Thus we find indeed
that there is a correspondence between the frequency of semi-classical spin waves and
the eigenvalues of our Hamiltonian. Furthermore, this Hamiltonian is now given by a
sum over independent harmonic oscillators, each corresponding with a wave vector k.
The quanta of these harmonic oscillators are the earlier mentioned magnons, spin waves,
and they form the eigenstates of this Hamiltonian. Similar to our semi-classical results,
we see that these magnons have a positive energy ~ωk > 0. Thus there are no magnons
included in the ground state. Furthermore, we find the same ground state energy as in
our semi-classical approach, and we can conclude that quantum fluctuations do not shift
this energy for ferromagnets.
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Chapter 3

Antiferromagnet in a magnetic
field

Now we will consider a regular antiferromagnet. To make our system more realistic, we
will take a few other types of interactions into consideration. Besides the Heisenberg-
exchange interaction with J < 0, we will assume interaction with a magnetic field of
strength B, and anisotropy (easy-axis) of strength K < 0. Note that we incorporate the
strength of the spin with respect to the magnetic field, such as the Bohr magneton µB , in
the value of B, for convenience in notation. Furthermore, we assume that this magnetic
field is applied along the easy axis of the system, which we define as our ẑ-axis. This
means that spins favour the +ẑ-direction due to the magnetic field, and the ±ẑ-directions
due to anisotropy. Combining these interactions, we get the following Hamiltonian:

H = −J
2

∑
i

∑
δ

Si · Si+δ −B
∑
i

Si · ẑ +K
∑
i

(
Si · ẑ

)2
. (3.0.1)

3.1 Spin waves in an antiferromagnetic configuration

The antiferromagnetic state corresponds with a lattice where neighbouring spins are
aligned antiparallel, i.e. they point in opposite directions. This means that we have two
different directions for our spins. To deal with this, we introduce a local rotated coor-
dinate system, as described in Appendix A.1. We divide our lattice into two sublattices
A and B, each corresponding with one of the directions. In such a coordinate system,
the third axis will describe the direction of our spin in spherical coordinates (with θ the
polar angle and φ the azimuthal angle). This means that, if A consists of all spins that
point up, and B consists of all spins that point down, we get for sublattice A the angles
θA = φA = 0, and for sublattice B the angles θB = π and φB = 0. Then we get the
following vectors as the local rotated bases for our sublattices:

êA1 = x̂, êB1 = −x̂,
êA2 = ŷ, êB2 = ŷ,

êA3 = ẑ, êB3 = −ẑ.
(3.1.1)

The classical energy of one spin of this system is given by EAFM = zJ~2S2/2 +K~2S2.
Note that the energy due to the magnetic field drops out in this expression, because of
the alternating pattern of the antiferromagnetic state. Now we want to describe a spin
wave in this lattice. Just like in Chapter 2, we can use the equation from Ehrenfest’s
theorem to describe the motion of our spin wave. However, the partial derivative of the
Hamiltonian will look a bit different, since we have two sublattices instead of one lattice,
and two extra interactions. Identifying SAj and SBj with their corresponding sublattices,
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we get the following equations of motion:

∂SAj
∂t

= −SAj × [−J
∑
δ

SBj+δ −Bẑ + 2K(SAj · ẑ)ẑ],

∂SBj
∂t

= −SBj × [−J
∑
δ

SAj+δ −Bẑ + 2K(SBj · ẑ)ẑ].
(3.1.2)

Now we can apply similar small deviations as in chapter 2 to our spin vectors, but each
in their own local basis:

SAj = δSA,1j êA1 + δSA,2j êA2 + ~SêA3 ,

SBj = δSB,1j êB1 + δSB,2j êB2 + ~SêB3 .
(3.1.3)

Filling these formulas in into our equations of motion, we get the equations for our small
deviations:

δṠA,1j =
(
− zJ~S +B − 2K~S

)
δSA,2j − J~S

∑
δ

δSB,2j+δ,

δṠA,2j = −
(
− zJ~S +B − 2K~S

)
δSA,1j − J~S

∑
δ

δSB,1j+δ,

δṠB,1j = −J~S
∑
δ

δSA,2j+δ −
(
zJ~S +B + 2K~S

)
δSB,2j ,

δṠB,2j = −J~S
∑
δ

δSA,1j+δ +
(
zJ~S +B + 2K~S

)
δSB,1j ,

(3.1.4)

where z is the coordination number, i.e. the number of nearest neighbours. Note that,
like in the previous chapter, we didn’t write down our equations for the third component,
since we can neglect terms of order two or higher. Now we can make a wave ansatz for
the spins of both sublattices, similar to Chapter 2:

δSA,ij = Ai exp[i(k · rj − ωt)] for i = 1, 2,

δSB,ij = Bi exp[i(k · rj − ωt)] for i = 1, 2,
(3.1.5)

where Ai, Bi are our amplitudes, k is our wave vector and ω is our frequency. Filling
this ansatz in into our equations of motion, we get the following set of relations between
our amplitudes:

−iωA1 =
(
− zJ~S +B − 2K~S

)
A2 − zJ~SγkB2,

−iωA2 = −
(
− zJ~S +B − 2K~S

)
A1 − zJ~SγkB1,

−iωB1 = −zJ~SγkA2 −
(
zJ~S +B + 2K~S

)
B2,

−iωB2 = −zJ~SγkA1 +
(
zJ~S +B + 2K~S

)
B1,

(3.1.6)

where we defined the phase factor zγk =
∑
δ cos(k · δ). Now we can sort these relations

between the amplitudes into the following matrix:
iω −zJ~S +B − 2K~S 0 −zJ~Sγk

zJ~S −B + 2K~S iω −zJ~Sγk 0
0 −zJ~Sγk iω −zJ~S −B − 2K~S

−zJ~Sγk 0 zJ~S +B + 2K~S iω

 .

(3.1.7)
We know that we have solutions for our amplitudes when the determinant of this matrix
is zero. Solving this determinant equation for ω, we find four solutions for our dispersion
relation:

ωk = ±B ± ~S
√

4K2 + 4zJK + z2J2(1− γ2k). (3.1.8)
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For symmetry reasons, we can neglect the negative frequencies of these dispersion re-
lations, since these waves are similar but move in the other direction. Then our one-
dimensional dispersion relation reduces to ω±kx = |B ± 2~S

√
(J +K)2 − J2 cos2(kxa)|.

These frequencies correspond with the following eigenvectors u± at kx = 0:

u± =


−iα±
−α±
−i
1

 , (3.1.9)

where we have defined the constant α± = 1 +K/J ±
√
K/J(2 +K/J). This means that

we get a scaling between the amplitudes of neighbouring spins. This scaling is caused
by the anisotropy K, and this scaling is independent of the magnetic field strength B.
Furthermore, spins in lattice A rotate clockwise in their êA1 , ê

A
2 -plane, while the spins

in lattice B rotate counterclockwise in their êB1 , ê
B
2 -plane. Also, there is a phase shift

between the two sublattices due to different eigenvectors, namely (−i,−1) versus (−i, 1).
This means that if α± = 1, i.e. K = 0, then neighbouring spins would be aligned an-
tiparallel during their entire rotation. The anisotropy causes a small deviation from this
case. Altogether, the spin waves v± will scale as:

v± ∝


−α± sinω±0 t
−α± cosω±0 t
− sinω±0 t
cosω±0 t

 . (3.1.10)

Furthermore, we find that there is a minimum value for B such that ω−k = 0 for some
value of k, as we can observe in Figure 3.1. Otherwise, they are similar but shifted by 2B.
This point is given by B = 2~S

√
K(K + zJ), which has the value B/|J |~S = 0.571314

in the one-dimensional case, for K/|J | = −0.04. In the next paragraph we will find that
this point corresponds to magnons with negative eigenvalues.
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ω/|J|ℏS

(a) K/|J | = −0.04 and B/|J |~S = 0.5.

1 2 3 4 5 6
k xa

1

2

3

4
ω/|J|ℏS

(b) K/|J | = −0.04 and B/|J |~S = 1.

Figure 3.1 – Dispersion relations of spin waves for the antiferromagnet for two different
values of the magnetic field.

3.2 Quantum-mechanical approach

Now we will treat our Hamiltonian as a quantum-mechanical operator. We assume
the same rotated local coordinate systems as in the semi-classical approach, where the
Holstein-Primakoff transformation will be applied along êA3 and êB3 (see Appendix A.1
for a more detailed explanation). This will give us two types of bosonic operators, ai and
bi, corresponding with the sublattices A and B.
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Altogether, we can write down the following Hamiltonian:

H =H0 +
1

2
J~2S

(∑
i∈A

∑
δ

(
aibi+δ + a†i b

†
i+δ − 2a†iai

)
+
∑
i∈B

∑
δ

(
biai+δ + b†ia

†
i+δ − 2b†i bi

))

+B~

(∑
i∈A

a†iai −
∑
i∈B

b†i bi

)
− 2K~2S

(∑
i∈A

a†iai +
∑
i∈B

b†i bi

)
,

(3.2.1)
where H0 = zJ~2S2N/2 + K~2S2N , with N the number of lattice sites. Then we can
apply a Fourier transformation to rewrite this Hamiltonian, according to:

aj =
1√
Na

∑
k

eik·rjak,

bj =
1√
Nb

∑
k

eik·rj bk.

(3.2.2)

Using some summation identities for these operators (see Appendix A.3), we get the
following Hamiltonian:

H =H0 − (zJ + 2K)~2S
∑
k

(
a†kak + b†kbk

)
+B~

∑
k

(
a†kak − b

†
kbk

)
− zJ~2S

∑
k

γk

(
akb−k + a†kb

†
−k

)
,

(3.2.3)

where again zγk =
∑
δ cos(k · δ). Now we are going to write this Hamiltonian in the

desired form of Method 2 of Appendix A.2. There we work out a more general form of a
Bogoliubov transformation. This is a transformation of bosonic operators that preserves
the commutation relations, and can be used to diagonalize our Hamiltonian, developed
by Bogoliubov [1958]. By defining Ak = −(zJ+2K)~2S, Bk = −zJ~2Sγk and Ck = B~,
we get a similar form as this method. This gives us the following Hamiltonian:

H = E0 +
∑
k

~ω+
k (α†kαk +

1

2
) +

∑
k

~ω−k (β†kβk +
1

2
), (3.2.4)

where E0 = H0+(zJ+2K)~2SN/2,1 and ω±k = ±B+~S
√

(zJ + 2K)2 − (zJ)2γ2k. These
are the same frequencies as we found in the semi-classical approach. Also, the ground
state energy is given by:

EGS = E0 +
1

2

∑
k

(
~ω+

k + ~ω−k

)
=
z

2
J~2S2N +K~2S2N +

1

2
(zJ + 2K)~2SN +

∑
k

~2S
√

(zJ + 2K)2 − (zJ)2γ2k.

(3.2.5)
Note that this energy is lower than the classical energy, since J and K are negative.
Thus we see that quantum fluctuations lower the ground state energy for a regular
antiferromagnet.2 Furthermore, as discussed in the previous paragraph, we find that
there are cases where magnons have negative eigenvalues. This means that these magnons
could be part of the ground state. The condition is that the strength of the magnetic field
must be high enough, namely B ≥ 2~S

√
K(zJ +K). In the next chapter we will find

that, for these values of the magnetic field B, antiferromagnets prefer to be in a different
configuration. Thus we can still say that we do not expect magnons in the ground state
of the regular antiferromagnet, but we will discuss this in more detail in Chapter 6.

1Note that we have a factor N/2 instead of N . This factor arises because we had a sum over k, but
since we have two sublattices instead of one lattice, this gives us N/2 terms instead of N terms

2Actually, there is also a shift upwards due to the sum over the frequencies, but in general this sum
is smaller.
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Chapter 4

Spin-flop state and phase
transition

In this chapter we will consider the spin-flop phase for antiferromagnets. We will an-
alyze this phase with the same Hamiltonian as the regular antiferromagnet, i.e. with
Heisenberg-exchange interaction, a magnetic field and anisotropy. We can deduce what
this configuration looks like from the limit B � |J |~S. In this limit the system favours
that all spins point in the direction of the magnetic field, the ẑ-direction. When we
lower the strength of our magnetic field, the negative coupling constant J will increase
in influence. This will cause an alternating pattern of the spins in the xy-plane, while
their z-component will decrease accordingly. This can be visualized as in Figure 4.1.

θ

Figure 4.1 – Graphical depiction of the spin-flop state in the xz-plane.

The angle of this flop, θ, must minimize the classical energy of our Hamiltonian. This
is the first calculation we will perform. Furthermore, we will compare this energy to the
energy of the antiferromagnet, and determine the point of the phase transition for the
magnetic field B. Then we will take a look at spin waves through this lattice. In the next
paragraph we will treat this state quantum-mechanically, diagonalize the corresponding
Hamiltonian and determine the ground state energy. This energy will be compared to
the (quantum) ground state energy of the antiferromagnet, and we will determine wether
quantum fluctuations shift the phase transition.

4.1 Spin waves and ground state energies

First we are going to minimize the classical energy of one spin to determine the angle
of our flop. We can divide our lattice into two sublattices A and B, as we did for the
antiferromagnet. Similarly, we will use a local rotated coordinate system to describe
the spin vectors of both sublattices (Appendix A.1). As mentioned, we want spins of
different sublattices to point in opposite directions in the xy-plane, and to have the same
magnitude in the ẑ-direction. The first condition corresponds with φi = πi, 1 or, for the
sublattices, φA = 0 and φB = π. From minimizing the classical energy we find the angle
θ = arccos[B/(2~S(K − zJ))].

1In fact, this angle could correspond with φi = πi+φ0, where φ0 is an added constant rotation. This
rotation is possible because of the rotational symmetry in the xy-plane, as long as two neighbouring
spins point in opposite directions in this plane.
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Then our local rotated coordinate systems are given by:

êA1 = (x, 0,−y), êB1 = (−x, 0,−y),

êA2 = (0, 1, 0), êB2 = (0,−1, 0),

êA3 = (y, 0, x), êB3 = (−y, 0, x),

(4.1.1)

where x = B/(2~S(K − zJ)) and y =
√

1− x2. Now we want to compare the classical
energy of this spin-flop phase with the energy of the antiferromagnetic phase. These
energies (per spin) are given by:

ESF =
z

2
J~2S2 − B2

4(K − zJ)
,

EAFM =
z

2
J~2S2 +K~2S2.

(4.1.2)

Using these expressions, we find that the phase transition occurs atB = 2~S
√
K(zJ −K).

Below this value the system will favour the antiferromagnetic ordering, and above this
value the spin-flop ordering. When we analyzed the regular antiferromagnetic ordering,
we found that there exist magnons with negative eigenvalues for B > 2~S

√
K(zJ +K).

However, the phase transition point we just found, occurs at a lower value for the mag-
netic field B. Thus, from a semi-classical point of view, we can already argue that these
magnons with negative eigenvalues are not included in any ground state, since the system
will form a spin-flop configuration instead of an antiferromagnetic configuration. A shift
due to quantum fluctuations in this phase transition point could (but doesn’t) change
this, as we will find in the next paragraph.

Now we will derive our equations of motion for a spin wave. We will use the same
equation of motion that followed from Ehrenfest’s theorem as in Chapter 3, but now
with the spin vectors of the spin-flop phase, i.e. the êA3 - and êB3 -directions. Again as-
suming small deviations in the directions perpendicular to the spin vectors, we get the
following equations of motion for these deviations:

δṠA,1j = −zJ~SδSA,2j + J~S
∑
δ

δSB,2j+δ,

δṠA,2j = (zJ~S − 2K~Sy2)δSA,1j + (1− 2x2)J~S
∑
δ

δSB,1j+δ,

δṠB,1j = J~S
∑
δ

δSA,2j+δ − zJ~SδS
B,2
j ,

δṠB,2j = (1− 2x2)J~S
∑
δ

δSA,1j+δ + (zJ~S − 2K~Sy2)δSB,1j ,

(4.1.3)

where the equations for the third components vanish as usual. Applying a similar wave
ansatz as in the previous chapter, this yields the following set of equations:

−iωA1 = −zJ~SA2 + zJ~SγkB2,

−iωA2 = (zJ~S − 2K~Sy2)A1 + (1− 2x2)zJ~SγkB1,

−iωB1 = zJ~SγkA2 − zJ~SB2,

−iωB2 = (1− 2x2)zJ~SγkA1 + (zJ~S − 2K~Sy2)B1,

(4.1.4)

where we used the phase factor zγk =
∑
δ cos(k · δ) again. Now we do note a symmetry

in these equations between our sublattices A and B. Namely, we can change A1 with B1

and A2 with B2, and then our equations of motions will stay the same. This symmetry
corresponds to rotating by π around the ẑ-axis, and we could have used this earlier to
reduce our system to one lattice. However, it is easier to adjust for this symmetry now,
and set A1 = B1 and A2 = B2. This gives the following two equations of motions:

−iωA1 = (−zJ~S + zJ~Sγk)A2,

−iωA2 = (zJ~S − 2K~Sy2 + (1− 2x2)zJ~Sγk)A1.
(4.1.5)
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From these equations, we can construct the following matrix equation:(
iω −zJ~S + zJ~Sγk

zJ~S − 2K~Sy2 + (1− 2x2)zJ~Sγk iω

)(
A1

A2

)
= 0 (4.1.6)

From the determinant of this matrix we can derive the following dispersion relation:

ωk = z|J |~S
√

(1− 2Ky2

zJ
+ (1− 2x2)γk)(1− γk) (4.1.7)

Notice that we found a Goldstone mode, since ω0 = 0. We find at k = 0 that this
corresponds to eigenvectors of the form (0, 1, 0, 1)T . Using the basis of our matrix, it
follows that this vector corresponds to a rotation of two neighbouring spins such that
they maintain their antiparallel alignment in the xy-plane. This is exactly the symmetry
we noticed when we defined our local rotated coordinate system, and it is the symmetry
responsible for this Goldstone mode.

1 2 3 4 5 6
k xa
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1.5

2.0

ω/|J|ℏS

(a) K/|J | = −0.04 and B/|J |~S = 0.25.
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1.5

2.0

ω/|J|ℏS

(b) K/|J | = −0.04 and B/|J |~S = 1.

Figure 4.2 – Dispersion relations of spin waves for the spin-flop phase for two different
values of the magnetic field, for a one-dimensional line. Note for (a) that the blue and
yellow curves correspond with the real and imaginary parts of the frequency respectively.

Furthermore, as we find in Figure 4.2a, it follows that the frequency has an imaginary part
if the magnetic field B is weak enough. This means that we get exponentially increasing
spin waves (for the right values of k), with an eigenvector of the form (1, 0, 1, 0)T . We find
that this is a rotation back to the antiferromagnetic phase, compared to our rotated bases.
The point where this modes becomes complex is given by ωπ/a = 0 in the one-dimensional
case. This is an equation we can solve for the magnetic field B. Furthermore, this wave
vector generalizes as (π/a, π/a)T and (π/a, π/a, π/a)T in the higher-dimensional cases,
and we will find that solving those equations will give us the phase transition points
between the spin-flop phase and the antiferromagnetic phase.

4.2 Quantum fluctuations in the phase transition point

Now we will work out the Hamiltonian of magnons for the spin-flop state. We will use the
same local rotated coordinate systems as in the semi-classical approach. Since we found
one set of frequencies in this approach, we will try to diagonalize this Hamiltonian for one
set of bosonic operators. First we are going to apply a Holstein-Primakoff transformation
on our spin operators in the êA3 - and êB3 -directions. This gives us:

H = H0 + ~2S
(

(Ky2 − zJ)
∑
i

a†iai +
1

2
Ky2

∑
i

(
aiai + a†ia

†
i

)
+

1

2
Jx2

∑
i

∑
δ

(
a†iai+δ + aia

†
i+δ

)
− 1

2
Jy2

∑
i

∑
δ

(
aiai+δ + a†ia

†
i+δ

))
,

(4.2.1)

where we defined H0 = −B~SxN/2 + zJ~2S2N/2 +K~2Sy2N/2.
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This Hamiltonian matches the form of Method 1 of Appendix A.2. Thus we can de-
fine the following constants C1 = ~2S(Ky2 − zJ), C2 = ~2SJx2, C3 = ~2SKy2 and
C4 = −~2SJy2, which correspond with the constants in front of our summations.
From these constants, we can define the following functions of the wave vector k, namely
Ak = C1 + zC2γk and Bk = C3 + zC4γk. These functions match the requirements set
by Method 1. Thus we can write down the following diagonalized Hamiltonian:

H = E0 +
∑
k

~ωk(α†kαk +
1

2
), (4.2.2)

with E0 = H0 − 1
2

∑
kAk and ~ωk =

√
A2

k −B2
k. This frequency ωk is identical to our

semi-classical dispersion relation, just as we expected. Now we can analyze the energy
for one-dimensional lines, but results generalize similarly for higher-dimensional cases.
As we can observe in Figure 4.3, the energy of the spin-flop phase is significantly lower
than the energy of the antiferromagnetic phase, for all values of B. However, there is a
lower bound for B, and below this bound the ground state energy for the spin-flop phase
becomes complex. This is caused by the frequency, since it becomes imaginary for cer-
tain values of k, and a sum of the frequency over these values of k is part of our ground
state energy. As we found in the semi-classical approach, these frequencies correspond
to exponentially increasing spin waves, rotating to the antiferromagnetic phase. Thus
we can argue that the spin-flop phase becomes unphysical due to these magnons, and a
phase transition point will occur.

Now we need to determine for which value of B our frequencies become complex. In
the one-dimensional case we found that the frequency became imaginary at k = π/a.
Similarly for the higher-dimensional cases, this point is given by k = (π/a, π/a)T or
k = (π/a, π/a, π/a)T , since all these wave vectors correspond with γk = −1. Now we
want to solve ωk = 0 for the magnetic field B for these wave vectors. This corresponds
to solving Ak = ±Bk for B with γk = −1. This gives us a complex and a real solution
for B. Since complex values for the strength of the magnetic field are unphysical, we
get a phase transition at the value B = 2~S(K − zJ)

√
K/(zJ +K). Compared to the

classical phase transition point B = 2~S
√
K(zJ −K), this means that we get a shift to

a slightly lower value of B due to quantum fluctuations. This result is valid for not only
the one-dimensional lattice, but also the two- and three-dimensional lattices.
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Figure 4.3 – Plot of the energies for K/|J | = −0.04, for a one-dimensional lattice. Higher-
dimensional lattices give similar curves and crossings. Note that the upper graphs are
the classical energies and the lower graphs the energies shifted by quantum fluctuations.
Furthermore, the yellow horizontal lines are the antiferromagnetic energies and the blue
curves the spin-flop energies.



15

Chapter 5

Antiferromagnets with DMI

Now we will investigate the influence of the Dzyaloshinskii-Moriya interaction (DMI).
This type of interaction is an antisymmetric exchange between neighbouring spins, and
was postulated by Dzyaloshinskii [1958] as an explanation for weak ferromagnetism in
antiferromagnets. Then Moriya [1960] identified that this interaction is caused by a lack
of inversion symmetry in a system, combined with a strong spin-orbit coupling. DMI
favours that neighbouring spins are aligned perpendicular to each other, and, depending
on the antisymmetric tensor Dij , the spins will form either a clockwise or counterclock-
wise pattern. In the one dimensional case, this tensor is given by:

Dij =


Dŷ if j is the right neighbour of i,

−Dŷ if j is the left neighbour of i,

0 otherwise.

(5.0.1)

This definition generalizes similarly for higher dimensions in the other directions. The
sign of this D determines wether the earlier mentioned pattern is clockwise or counter-
clockwise. In this chapter, we will consider this one-dimensional case for simplicity, and
investigate the spiral phase that this interaction induces. In higher dimensions, more
complex patterns can be formed by the spins, such as skyrmions.

HDM = −1

2

∑
i

∑
δ

Dii+δ ·
(
Si × Si+δ

)
. (5.0.2)

First we will consider a Hamiltonian without anisotropy and no magnetic field, thus
K = 0 and B = 0. We will notice that the energy of this Hamiltonian is minimized
for a (cycloidal) spiral, with some wave number that depends on both D and J , which
we will investigate in the first paragraph. In the next paragraph we will consider the
Hamiltonian with anisotropy and a magnetic field, which will lead to a distortion in the
spiral pattern.

5.1 Basics of the Dzyaloshinskii-Moriya interaction

As mentioned, we will take a look at an antiferromagnet with only Heisenberg-exchange
interaction and DMI, and we will assume a one-dimensional lattice for convenience. This
means the DMI tensor Dij is given by the expression above. This means that we will
deal with the following Hamiltonian in this paragraph:

H = −J
2

∑
i

∑
δ

Si · Si+δ −
D

2

∑
i

(
(Si × Si+1)y − (Si × Si−1)y

)
. (5.1.1)

Now we want to determine the equations we need to solve to minimize our energy.
Our ansatz for minimizing the effective energy was a spiral phase. We can argue the
existence of this state qualitatively. For two neighbouring spins, the Heisenberg-exchange
interaction favours that these spins point in opposite directions, while the DMI favours
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that these spins are perpendicular. This means that there is some angle between these
spins that minimizes this energy. This angle must be the same for all neighbouring spins,
and this causes an (alternating) spiral pattern. Thus, we get a spiral wave with an angle
aq + π between neighbouring spins, where q is the wave number of our spiral and a
our lattice constant, and we add π to induce an alternating pattern. This gives us the
following ansatz for our spin vector:

Si/~S = sin(aqi+ πi)x̂+ cos(aqi+ πi)ẑ. (5.1.2)

Then the classical energy is given by Espiral = J cos(aq) + D sin(aq) per spin. This
energy is minimized for the angle aq = arctan[D/J ]. Our minimized energy per spin is
given by Espiral = −

√
J2 +D2~2S2. For a regular antiferromagnet, the minimal energy

is given by EAFM = J~2S2. Thus we find that these energies are equal at D = 0, and
for this value we find indeed that our spiral forms an antiferromagnetic configuration
(aq = 0). For other values of D, the energy of our spiral phase is lower compared to
the antiferromagnetic phase, and is thus the preferred state. Note that all these results
are quite similar for ferromagnets, with as difference that the spiral moves in the other
direction.

(a) Spiral phase for a ferromagnet.

(b) Spiral phase for an antiferromagnet.

Figure 5.1 – Graphical depiction of spiral phases for both types of magnets. Both for 64
spins with D/|J | = 0.0984914.

Now we will look at spin waves through the spiral phase. In a similar fashion as in the
previous chapters, we can derive the equations of motion for the deviations of a spin at
site i by using the equation following from Ehrenfest’s theorem. Note that the partial
derivative is a bit different for the DMI-term, since it involves a cross product instead of
an inner product. To be able to work this out, we need to define local rotated coordinate
systems corresponding with θi = aqi+ πi and φi = 0. Furthermore, it turns out that it
is sufficient to make one general plane-wave ansatz for our spins. Altogether, this gives
us the following matrix equation for the amplitudes:(

iω 2~S
(√
J2 +D2 − J cos(ka)

)
−2~S

√
J2 +D2

(
1− cos(ka)

)
iω

)(
A1

A2

)
= 0. (5.1.3)

We can derive the following dispersion relation from the determinant equation of this
matrix:

ωk = 2~S
√
J2 +D2

√(
1− J√

J2 +D2
cos(ka)

)(
1− cos(ka)

)
. (5.1.4)

This mode is a Goldstone mode, corresponding to the symmetry that we could have
started a spiral at any site, and thus that we can rotate all spins with the same angle
around the ŷ-axis.
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Figure 5.2 – Dispersion relation for the regular spiral phase, with D/|J | = 0.5.

Now we can examine the quantum-mechanical Hamiltonian of magnons for this spi-
ral phase. Using the same local rotated coordinate systems as before, and applying a
Holstein-Primakoff transformation as described in Appendix A.1 for these axes, we can
write down the following Hamiltonian:

H =H0 + 2
√
J2 +D2~2S

∑
i

a†iai

− 1

4

(
J +

√
J2 +D2

)
~2S

∑
i

∑
δ

(
aia
†
i+δ + a†iai+δ

)
+

1

4

(
J −

√
J2 +D2

)
~2S

∑
i

∑
δ

(
aiai+δ + a†ia

†
i+δ

)
,

(5.1.5)

where we defined H0 = −N~2S2
√
J2 +D2. We can follow Method 1 and set C1 =

2
√
J2 +D2~2S, C2 = −(J +

√
J2 +D2)/2, C3 = 0 and C4 = (J −

√
J2 +D2)/2.

Then we can define the functions Ak = C1 + 2C2 cos(ka) and Bk = 2C4 cos(ka) from
these constants. This gives us the frequency ~ωk =

√
A2
k −B2

k, which is identical to the
dispersion relation from the semi-classical approach. Furthermore, we get the following
diagonalized Hamiltonian:

H = E0 +
∑
k

~ωk(α†kαk +
1

2
), (5.1.6)

with E0 = H0 − 1
2

∑
k Ak.

Now we will conclude this paragraph with a short note on the effect of DMI for an-
tiferromagnetic or spin-flop configurations. Due to the alternating pattern of both con-
figurations, it turns out that the contribution to the semi-classical energy by DMI is
zero. Similarly, the DMI sum of the quantum-mechanical Hamiltonian vanishes, when
we transform our spin operators as we did in Chapters 3 and 4. This means that our
results from these chapters are still valid when we consider a Hamiltonian with DMI,
and we do not need to perform any new calculations to compare these states to the spi-
ral phase. Up front, we could have expected this, since both these configurations have
inversion symmetry, while DMI is restricted to systems that lack inversion symmetry.
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5.2 Magnetic frustration of the spiral phase

In this paragraph we consider the effects of anisotropy and a magnetic field on the spiral
phase. Anisotropy favours that the spins point in the ±ẑ-directions, while the magnetic
field only favours the +ẑ-direction. These interactions cause a magnetic frustration in
our spin lattice, i.e. the spins can not satisfy every interaction simultaneously. For our
system, this means that our spins will form a spiral pattern, but deviate slightly to favour
these other interactions. However, we will not be able to develop an analytical solution
to describe these deviations, since problems involving magnetic frustration are, simply
put, too complicated for this. A good starting point is linearizing the equations involving
this frustration, and either use an ansatz which approximates these equations, or solve
them numerically. Later on we will use the insights that we get from this approach to
calculate the deviations quite accurately.

H =− J

2

∑
i

∑
δ

Si · Si+δ −
1

2

∑
i

∑
δ

Dii+δ ·
(
Si × Si+δ

)
−B

∑
i

Si · ẑ +K
∑
i

(
Si · ẑ

)2
.

(5.2.1)

We can describe the deviations from the regular spiral phase by the angles δθi, which are
still unknown. Then the vector of our spin is described by:

Si/~S = sin(aqi+ πi+ δθi)x̂+ cos(aqi+ πi+ δθi)ẑ. (5.2.2)

We can fill these vectors in into our Hamiltonian (Equation 5.2.1). This gives us the
following classical energy for our system:

Etotal =− 1

2

√
J2 +D2~2S2

∑
i

(
cos(δθi+1 − δθi) + cos(δθi − δθi−1)

)
−B~S

∑
i

cos(aqi+ πi+ δθi) +K~2S2
∑
i

cos2(aqi+ δθi).
(5.2.3)

Now we want to minimize this classical energy. Compared to our previous phases, it is
not possible to construct a general energy per spin for the spiral phase. Thus, we must
minimize our total classical energy for each deviation δθj . This yields the following set
of equations:√

J2 +D2
(

sin(δθj − δθj+1) + sin(δθj − δθj−1)
)

=K sin(2aqj + 2δθj)

− B

~S
sin(aqj + πj + δθj).

(5.2.4)

Note that the factor 1/2 on the left side disappears, since each term in the nearest neigh-
bour sum appears twice. This gives us a set of N non-linear equations. By assuming
periodic boundary conditions, we have N variables δθi for which we want to solve these
equations. The regular antiferromagnetic phase (which corresponds with δθi = −aqi)
solves these equations. Similarly, it is quite possible that there are many more solutions
to this set of equations, due to the large number of variables and equations. Some of
these solutions can even be maxima, since we are only certain that we determine extrema
with this method. Therefore each of the solutions to this set of equations can be correct,
but also quite far off in minimizing the energy absolutely.

It turns out that numerical solutions to these non-linear equations are an example of
this type of useless solutions. First of all, they do not lower the total energy below the
energy of the regular spiral phase. Second, the angles that we calculate with this method
seem rather unphysical, i.e. the deviations are sometimes in favour of anisotropy and the
magnetic field, and sometimes at expense of these interactions. Altogether, we can con-
clude that this set of non-linear equations will not provide a good solution consistently.
Therefore, we will linearize these equations.
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Since the anisotropy is typically weak, i.e. |K| �
√
J2 +D2, we expect that the devia-

tion with respect to the spiral phase due to this interaction will be small too. Similarly,
if we will only consider weak magnetic fields, i.e. B � ~S

√
J2 +D2, the deviation due

to this interaction will be small too. Thus, we can linearize our equations in δθi, which
gives us the following set of equations:

2δθj =δθj+1 + δθj−1 + x sin(2aqj) + 2x cos(2aqj)δθj

− y sin(aqj + πj)− y cos(aqj + πj)δθj ,
(5.2.5)

where we defined the dimensionless constants x = K/
√
J2 +D2 and y = B/(~S

√
J2 +D2).

This is a set of equations that we can solve numerically. However, we can find an approx-
imate solution by some physical arguments. Since we assume that the anisotropy and
the magnetic field are weak, we know that x and y must be small. We also argued that
the corresponding deviations δθi must be small. This means that we can neglect terms
involving both a factor x or y, and the deviation δθi. Then our equation reduces to:

2δθj =δθj+1 + δθj−1 + x sin(2aqj)− y sin(aqj + πj). (5.2.6)

Now we can split our deviation into two parts, one due to anisotropy and one due to the
magnetic field. By our approximation in the equation above, any interaction between
these parts can be neglected. The basic idea is that the deviation due to the magnetic
field is always towards the +ẑ-direction, whereas the deviation due to the anisotropy
depends on wether the spin points up or down. Furthermore, it is likely that these
deviations behave as a wave, since the influence of the deviation varies with the position
in the spiral wave. This behaviour has been summarized in Figure 5.3. Note that, when
we do not neglect the other two terms, more waves in the form of higher order harmonics
will be needed to describe our solutions, and a coupling between the two interactions will
arise.

(a) Spiral phase for a ferromagnet, frustrated by anisotropy.

(b) Spiral phase for an antiferromagnet, frustrated by anisotropy.

(c) Spiral phase for a ferromagnet, frustrated by a magnetic field.

(d) Spiral phase for an antiferromagnet, frustrated by a magnetic field.

Figure 5.3 – Graphical depiction of frustrated spiral phases for both types of magnets,
now for 20 spins with D/|J | = 0.32492. Note that the original alignment is shown by
the gray arrows, while the frustrated alignment is shown by the black arrows.
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Following the previous arguments, we can use a superposition of two waves to de-
scribe the frustration through our spin configuration. This ansatz is given by δθi =
X sin(2aqi) + Y sin(aqi+ πi), where X,Y are the amplitudes of both waves. Note that
these two sines are identical to the sines in the equation, and that both show exactly the
behaviour we expect for the deviations. When we plug this ansatz into Equation 5.2.6,
we find the amplitudes X = x/[2(1− cos(2aq))] and Y = −y/[2(1 + cos(aq))]. When we
compare this approximated ansatz to numerical results for Equation 5.2.5, we find that
both methods give similar results.

Furthermore, we see that these solutions do lower the ground state energy compared
with the regular spiral phase. However, when the magnetic field is strong, our lineariza-
tion is no longer valid, and this energy could be minimized more effectively. Therefore
we can use this ansatz δθi = X sin(2aqi) + Y sin(aqi+ πi), and derive the following two
equations by minimizing the total energy for the amplitudes X,Y :

∂Etotal

∂X
= 0, and

∂Etotal

∂Y
= 0. (5.2.7)

Now we have two non-linear equations, and two unknown variables. It turns out that
numerical solutions to these equations do minimize the ground state energy more effec-
tively.1 We can use these solutions to develop a phase diagram between the spin-flop
phase, the antiferromagnetic phase and the spiral phase in the (B,D)-plane, where we
can use our analytical results for the first two phases.

This phase diagram is given in Figure 5.4. Note that we acquired this phase diagram by
assuming periodic boundary conditions and spirals of integer length. For a given set of
values for the magnetic field B/|J |~S, we varied the length of these spirals (and thus the
value D/|J |) to match the energy of the antiferromagnetic phase or the spin-flop phase.
This explains the rather discrete behaviour of our phase diagram for large values of D/|J |,
since this domain corresponds to short spirals. However, it is an effective method to de-
scribe the phase diagram for low values of D/|J |, which is a more interesting domain,
since it suggests a triple point between our phases. Furthermore, we only considered odd
spirals when the magnetic field is non-zero, since the magnetic field favours that spirals
have a net magnetic moment.
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Figure 5.4 – Ground state phase diagram of a one-dimensional antiferromagnet, for the
antiferromagnetic phase (AFM), the spin-flop phase (SF) and the spiral phase (SPI-
RAL). Furthermore we set the anisotropy to K/|J | = −0.04. Note that the original
AFM-SPIRAL and AFM-SF phase transitions are visualised by dashed lines.

1Note that we should divide both equations by
√
J2 +D2~2S2 (or another constant) to make the

equation dimensionless and suitable for numerical computations.
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Chapter 6

Conclusion and discussion

6.1 Conclusion

In the first part of this thesis we analyzed the influence of quantum fluctuations on mag-
netic configurations, and compared these results to a semi-classical analysis. We found
that quantum fluctuations lower the ground state energy for an antiferromagnetic con-
figuration, and that this configuration has two different kind of magnons. Furthermore,
we found that one type of these magnons has negative eigenvalues for high values of the
magnetic field strength B. When we analyzed the spin-flop phase, we noticed that this
phase is preferred when these magnons exist, i.e. the phase transition to the spin-flop
state occurs for a lower value of the magnetic field strength B. We also found that
quantum fluctuations lower the energy of this spin-flop phase, such that phase transition
point to the antiferromagnetic phase is shifted to a slightly lower value of B.

Then we considered a Hamiltonian with Dzyaloshinskii-Moriya interaction. Without
a magnetic field and anisotropy, this causes a spiral pattern. We found that quantum
fluctuations do not influence this phase, and the phase transition to the antiferromag-
netic case always occurs when the DMI is zero. When we did consider these interactions,
we argued that both interactions cause a frustration to this pattern. We found a useful
description of this frustration from a linearization, which we used to develop a ground
state phase diagram between the antiferromagnetic phase, the spin-flop phase and the
spiral phase. This diagram suggested a triple point when the DMI is zero, at the phase
transition point between the antiferromagnetic phase and the spin-flop phase.

Combining these results, we expect that either the triple point is slightly shifted due
to quantum fluctuations, or that it is divided into two seperate phase transitions. Since
we couldn’t determine the effect of quantum fluctuations on the spiral phase, we do not
know which case holds, and we will discuss this in the next paragraph.

6.2 Discussion and suggestions for future research

The first questionable result we found was the existence of magnons with negative eigen-
values in the antiferromagnetic phase. We found that these exist for high values of
the magnetic field B, where we expect the spin-flop phase. Arguing from the antifer-
romagnetic phase, we could add these magnons until the ground state energy is lower
than the spin-flop energy. However, when we consider magnons in a ground state, we
should at least take magnon-magnon interactions into consideration, since these do in-
fluence the energy. This can be done by including bosonic operators up to fourth order,
when we apply the Holstein-Primakoff transformation. The expected result is that these
magnon-magnon interactions cancel the negative eigenvalues at least partly, such that
the spin-flop state remains the preferred configuration. However, this is just speculation
and could be investigated in the future.
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Then we found that quantum fluctuations lower the strength of the magnetic field B
for the phase transition between the antiferromagnetic phase and the spin-flop phase.
However, we noticed that the ground state energy of the spin-flop phase was still lower
at this point, and that this phase transition was induced by the fact that this energy
became complex, instead of an energy crossing.

First of all, the fact that this ground state energy is complex, means that this state
is unphysical, since physical states have real energies.
Second, we found that the imaginary part of the energy was caused by the imaginary
eigenvalues for magnons. These eigenvalues correspond to exponentially increasing (semi-
classical) spin waves, which rotate to the antiferromagnetic phase. This explains the
phase transition from a semi-classical point of view.
At last, we applied a numerical analysis on both states, using an algorithm developed by
van Dieten [2015]. We found that this analysis agrees with our analytical results, which
has been included in Appendix A.4. Combining these arguments, we can be certain of
the correctness of our calculation and the interpretation of these results.

Then we considered the Dzyaloshinskii-Moriya interaction, and constructed a phase di-
agram by only using spirals of integer length. Furthermore, we used an ansatz that was
derived in an approximation where the magnetic field was weak, and used this for all
values of the magnetic field.

For both points we need to remember that they still describe spirals, and it only causes
our subset of all possible spiral configurations to become smaller. This means that the
suggestion for a triple point is still valid, but that the area for the spiral phase would
be larger if we could consider more spiral configurations. Optimizing our model for the
magnetic frustration is therefore a good starting point for future research. Using higher
order harmonics in the deviation due to the magnetic field, which we neglected in Chap-
ter 5, is one way this could be achieved.

Another method for developing this phase diagram is considering a fixed number of
spins, and vary D/|J | for this lattice instead of the integer length of the spirals. This
way, we would get more accurate results in the high D/|J |-regime. However, it also
means that our spiral pattern is not always periodic on the boundaries, which means
that our numerical computation of the amplitudes is no longer possible, since it relies
on this periodicity. Furthermore, the length of our spirals should be negligible compared
to the number of spins (since there is an unfinished spiral at the end our lattice), which
causes another difficulty for our numerical computations, since the typical length of spi-
rals in the low D/|J |-regime is ∼ 1000 spins.

At last, we tried a numerical approach to quantum fluctuations in the frustrated spi-
ral phase (using the method of van Dieten [2015]), which has not been included in this
thesis. We couldn’t develop a useful algorithm to make a phase diagram of these fluctu-
ations, because the energies of the spiral configuration were not consistent. With this we
mean that the energies for most spiral configurations were complex, and that this imag-
inary part could not be neglected. This suggests that our configurations are unphysical
in the quantum-mechanical sense, which is probably due to the fact that our model for
the frustration is only an approximation. Again, optimizing this model could solve this
problem. Furthermore, for completeness, we have included an analytical approach to di-
agonalize the Hamiltonian for general unknown deviations in Appendix A.2. This could
be used in the case that an analytical description for the frustration has been derived.
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Appendix A

Derivations, identities and
numerical results

In this appendix we will explain concepts and methods that we used in this thesis. In the
first section we will introduce some general concepts such as rotated coordinate systems
and general Holstein-Primakoff transformations. In the next section we will give some
general derivations and methods to diagonalize the Hamiltonian for spin lattices, includ-
ing an attempt to diagonalize the Hamiltonian for the frustrated spiral phase. We will
try to keep our results in these section as general as possible. Then, in the third section,
we will give a list of equations that we used in this thesis, each of which we supply with
a short explanation or derivation. In the last section we include a comparison between
our analytical results on the ground state energy for the spin-flop and antiferromagnetic
configuration, and numerical computations of these energies.

A.1 Mathematical concepts

To describe the direction and components of our spin, we introduce a local rotated
coordinate system. The direction of the spin at site i is given by êi3, and described by
the polar angle θi and the azimuthal angle φi. This rotated coordinate system is given
by the following expressions:

êi1 = cos θi cosφix̂+ cos θi sinφiŷ − sin θiẑ,

êi2 = êi3 × êi1,

êi3 = sin θi cosφix̂+ sin θi sinφiŷ + cos θiẑ.

(A.1.1)

For certain lattices it could be useful to split this up for two different sublattices A and
B, which could be expressed as i = A,B. This is useful for both the semi-classical and
the quantum-mechanical approach, and we used this method for the antiferromagnetic
configuration in Chapter 3. Then, for the semi-classical approach, it is useful to let spin
vectors deviate from their initial alignment along ê3. This can be expressed as:

Sj = δS1
j ê
j
1 + δS2

j ê
j
2 + ~Sêj3. (A.1.2)

If necessary, we can couple the position j to a sublattice A or B, just like for the rotated
coordinate system. A good ansatz for spin waves is then given by:

δSij = Ai exp[i(k · rj − ωt)] for i = 1, 2, (A.1.3)

where Ai is the amplitude of the deviations of the spin for the two components i = 1, 2,
k is the wave vector of the spin wave, and ω the frequency. Note that multiple spins can
have the same amplitude for their components, while their phase factor (the complex
exponential) is different. In general we should only use different amplitudes for spins,
if they belong to different sublattices. This concludes all the mathematics needed for a
semi-classical approach.
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In the quantum-mechanical approach, one can express the Holstein-Primakoff trans-
formation as the following transformation for the components of a spin operator:

S1
i = ~

√
S

2
(ai + a†i ),

S2
i = −i~

√
S

2
(ai − a†i ),

S3
i = ~(S − a†iai),

(A.1.4)

where we used S±i = S1
i ± iS2

i and the regular Holstein-Primakoff transformation for
the spin lowering and raising operator. Furthermore, the spin operator at site i can be
written as Si = S1

i ê
1
i + S2

i ê
2
i + S3

i ê
3
i . Now we have all the mathematics needed to write

out our Hamiltonian in bosonic operators.

A.2 Analytical diagonalization of the Hamiltonian

In this paragraph we will start with two general expressions for the Hamiltonian, and
diagonalize it using both Fourier transformations and Bogoliubov transformations. The
basic idea is to choose our transformation in such a way, that our off-diagonal terms
vanish, while maintaining the bosonic operator relations (Stoof et al. [2009]). This can
be accomplished by letting our transformation depend on two functions uk and vk, that
depend on the wave vector k.

Method 1

Suppose we start with a general Hamiltonian of the following form:

H =H0 +
∑
i

C1a
†
iai +

1

2

∑
i

∑
δ

C2

(
a†iai+δ + aia

†
i+δ

)
+

1

2

∑
i

C3

(
aiai + a†ia

†
i

)
+

1

2

∑
i

∑
δ

C4

(
aiai+δ + a†ia

†
i+δ

)
,

(A.2.1)

where it is important that our constants C1, C2, C3, C4 do not depend on the position
i. Otherwise, some identities for the Fourier transformation, as given in Equation A.3.2,
would not work, which brings us to our next step. We want to apply a Fourier transfor-
mation according to aj =

∑
k e

ik·rjak. This yields the following Hamiltonian:

H =H0 +
∑
k

C1a
†
kak +

∑
k

zC2γka
†
kak

+
1

2

∑
k

C3

(
aka−k + a†ka

†
−k

)
+

1

2

∑
k

zC4γk

(
aka−k + a†ka

†
−k

)
,

(A.2.2)

where we defined zγk =
∑

k cos(k · δ). To be able to do this, we used Equations A.3.1
and A.3.2. Now, by writing Ak = C1 + zC2γk and Bk = C3 + zC4γk, we can simplify
our Hamiltonian as:

H = H0 +
∑
k

Aka
†
kak +

1

2

∑
k

Bk

(
aka−k + a†ka

†
−k

)
. (A.2.3)

Now we can apply the Bogoliubov transformation ak = ukαk + vkα
†
−k, where we have

uk = cosh θk and vk = sinh θk as our functions of k, with θk = θ−k. We force these
conditions to ensure that our new operator αk obeys the boson commutation relations
[αk, α

†
k′ ] = δkk′ and [αk, αk′ ] = [α†k, α

†
k′ ] = 0, as is required for Bogoliubov transforma-

tions. Later on we will see that, because θk needs to be symmetric, that Ak and Bk both
need to be symmetric. This is indeed the case, since γk is symmetric. Using hyperbolic
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trigonometric identities for our functions uk and vk, we can rewrite our Hamiltonian as:

H = H0 −
1

2

∑
k

Ak +
∑
k

(
Ak(u2k + v2k) +Bk2ukvk

)
(α†kαk +

1

2
)

+
1

2

∑
k

(
Ak2ukvk +Bk(u2k + v2k)

)
(αkα−k + α†kα

†
−k).

(A.2.4)

This means that we get the following restriction to diagonalize our Hamiltonian:

tanh 2θk = −Bk

Ak
. (A.2.5)

As mentioned, from this equation we see that, because θk must be symmetric, both Ak

and Bk must be symmetric (or antisymmetric). Using this equation, we get the following
Hamiltonian:

H = E0 +
∑
k

~ωk

(
α†kαk +

1

2

)
, (A.2.6)

where we defined E0 = H0 − 1
2

∑
kAk and ~ωk =

√
A2

k −B2
k. In Appendix A.3 we

included a calculation of this frequency.

Method 2

Now suppose our Hamiltonian doesn’t match the required form of Method 1. That is,
some constants do depend on the position i, and, to be more specific, on which sublattice
i belongs to. We can fix this problem by splitting the lattice in two sublattices A and B
with boson operators ai and bi. Then we can apply a Fourier transformation on these
operators, and write the Hamiltonian in the following form:

H =H0 +
∑
k

Ak

(
a†kak + b†kbk

)
+
∑
k

Bk

(
akb−k + a†kb

†
−k

)
+
∑
k

Ck(a†kak − b
†
kbk).

(A.2.7)

Here, this last sum is caused by the fact that some of our original constants did depend
on the lattice site i. Now we are going to apply a Bogoliubov transformation according
to ak = ukαk + vkβ

†
−k and bk = ukβk + vkα

†
−k. Once again, we have uk = cosh θk and

vk = sinh θk, with θk = θ−k, to enforce the commutation relations. As we will see later,
we want again for Ak and Bk to be symmetric to get a symmetric θk. 1 Applying this
transformation, we get the following Hamiltonian:

H = H0 −
∑
k

Ak +
∑
k

(
Ak(u2k + v2k) +Bk2ukvk

)
(α†kαk +

1

2
+ β†kβk +

1

2
)

∑
k

(
Ak2ukvk +Bk(u2k + v2k)

)
(αkβ−k + α†kβ

†
−k) +

∑
k

Ck(α†kαk − β†kβk).
(A.2.8)

This gives us the following solution to diagonalize our Hamiltonian:

tanh 2θk = −Bk

Ak
. (A.2.9)

This equation is identical to Method 1. Then we can write out our Hamiltonian as:

H = E0 +
∑
k

~ω+
k

(
α†kαk +

1

2

)
+
∑
k

~ω−k
(
β†kβk +

1

2

)
, (A.2.10)

with E0 = H0 −
∑

kAk and ~ω±k =
√
A2

k −B2
k ± Ck. When calculating these values,

and especially these sums over k, one should remember that it is caused by our Fourier
transformation of ai and bi, so it is a sum over N/2 terms instead of N terms, which was
the case in Method 1.

1We want Ck to be symmetric too, so that some cross terms will cancel out to make the diagonalization
easier.
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Hamiltonian for the frustrated spiral phase

Now we will provide an expression for the Hamiltonian of the frustrated spiral phase, for
the (general) angles θi = aqi + πi + δθi (and φi = 0). We used the corresponding local
rotated coordinate systems and applied Holstein-Primakoff transformations to describe
our spin operators. This gave us the following expression:

H =− 1

2
~2S2

√
J2 +D2

∑
i

(cos(δθi+1 − δθi) + cos(δθi−1 − δθi))

+K~2S2
∑
i

cos2(aqi+ δθi) +K~2
S

2

∑
i

sin2(aqi+ δθi)

−B~S
∑
i

sin(aqi+ πi+ δθi)

+ ~2S
∑
i

a†iai

(√
J2 +D2(cos(δθi+1 − δθi) + cos(δθi−1 − δθi))

+
1

2
K(1− 3 cos2(aqi+ δθi)) +

B

~S
cos(aqi+ πi+ δθi)

)
− 1

4
~2S

∑
i

∑
δ

(aia
†
i+δ + a†iai+δ)

(√
J2 +D2 cos(δθi+δ − δθi) + J

)
− 1

4
~2S

∑
i

∑
δ

(aiai+δ + a†ia
†
i+δ)

(√
J2 +D2 cos(δθi+δ − δθi)− J

)
+

1

2
K~2S

∑
i

(aiai + a†ia
†
i ) sin2(aqi+ δθi)

(A.2.11)

Note that our linear part is zero, since it reduces to our set of minimization equations,
and these must be satisfied. Since δθi is unknown, we can not proceed in simplifying this
Hamiltonian any further. Possibly some insight in this deviation δθi might help in the
diagonalization.

A.3 General identities

In this section we will include the most important identities we used throughout this
thesis, each provided with a short description.

The first identity involves some complex exponentials. For the last equality sign we
used that we defined a function γk as zγk =

∑
δ cos(k · δ). This equations turns out to

be very useful in both the semi-classical and the quantum-mechanical approach.∑
δ

e±ik·δ =
∑

δ∈{ax̂,aŷ,aẑ}

e±ik·δ + e∓ik·δ = 2
∑

δ∈{ax̂,aŷ,aẑ}

cos(k · δ)

=
∑
δ

cos(k · δ) = zγk.
(A.3.1)

Now we get a list of equations for summations involving Fourier transformations for
a single operator. One can find the hermitian conjugate of these by using commutation
relations for boson operators and conjugating the expression. We also used the previously
derived Equation A.3.1. These equalities are written down for an operator ai, but are
exactly the same for an operator bi.∑

i

∑
δ

a†iai =
1

z

∑
k

a†kak,∑
i

∑
δ

a†iai+δ =
∑
k

∑
δ

eik·δa†kak = z
∑
k

γka
†
kak,∑

i

∑
δ

aiai+δ =
∑
k

∑
δ

e−ik·δaka−k = z
∑
k

γkaka−k.

(A.3.2)
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The next equation is an equation for summations involving Fourier transformations for
two operators ai and bi. Just as for the previous equation, by using commutation rela-
tions, hermitian conjugation, switching a and b, and switching the order of summation
according to k→ −k, all the other necessary equations can be derived.∑

i

∑
δ

aibi+δ =
∑
k

∑
δ

e−ik·δakb−k = z
∑
k

γkakb−k. (A.3.3)

The last equation involves the diagonalization of the Hamiltonian, where we found
tanh 2θk = −Bk

Ak
as the condition for these diagonalization. We will provide a short

derivation for Method 1 by using identities for hyperbolic trigonometry. The derivation
for Method 2 is similar.

Ak(u2k + v2k) +Bk2ukvk = Ak cosh 2θk +Bk sinh 2θk =
Ak√

1− B2
k

A2
k

−
Bk

Bk

Ak√
1− B2

k

A2
k

=
1

Ak

A2
k −B2

k√
1− B2

k

A2
k

=
Ak

|Ak|
A2

k −B2
k√

A2
k −B2

k

=
Ak

|Ak|

√
A2

k −B2
k.

(A.3.4)

Note that, in general, we will find that this prefactor is +1, but this is something that
should be checked. Furthermore, we also used that Ak is typically larger than Bk, but
this does not need to hold. Note that, in these cases, our frequency becomes complex,
which will cause the ground state to become unphysical.

A.4 Numerical results

In this section we will give a comparison between our analytical results on the ground
state energy of the antiferromagnetic configuration and the spin-flop configuration, to
numerical results. For these numerical results we used an algorithm developed by van
Dieten [2015], which is a numerical interpretation of the diagonalization of a quadratic
Hamiltonian by Colpa [1978].
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Figure A.1 – Comparison between our analytical computation of the (quantum-
mechanical) ground state energies and numerical computations, for both the antiferro-
magnetic phase and the spin-flop phase. Note that we have set K/|J | = −0.04.
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