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Abstract

We analyze the magnon Hall effect in in a setup that utilizes an electrically driven magnon
current. We give a first approximation for the transverse magnon current by looking
at a setup with simplified boundary conditions and use these results to determine a
simple expression for the transverse current. Furthermore we do calculations to estimate
the order of magnitude of the magnon Hall conductivity in YIG/Pt heterostructures.
This is done by approximating the Berry curvature for the magnetic insulator YIG.
Together with the Berry curvature and the distribution function we calculate the magnon
Hall conductivity. We use two different distribution functions, the Boltzmann and Bose
distribution function. Using the Boltzmann distribution function we get a magnon Hall
conductivity of −3.08 times the longitudinal magnon conductivity, while when using the
Bose distribution we get a result of −83 times the magnon Hall conductivity. From
these results we conclude that this calculation needs to be done more accurately to get
meaningful result, as the Hall conductivity we find is too large to be realistic.
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Chapter 1

Introduction

When an electric current goes through a conductor and a magnetic field is applied per-
pendicular to the electric current a transverse current is created. This effect is called the
the Hall effect and was first observed by Edwin Hall in 1879 [1]. When the charge carri-
ers move through the conductor, the combination of the magnetic field and the moving
charges create a Lorentz force. The Lorentz force pushes the charge carriers sideways,
thereby creating an electric potential between the two sides of the conductor.

More recently various other, similar effects have been discovered such as the quantum
Hall effect and the anomalous Hall effect [2]. Also within the study of magnons, wavelike
spin fluctuations in ferromagnets, a similar effect has also been discovered, the thermal
magnon Hall effect [3]. This magnon Hall effect is not due to the Lorentz force, since
magnons are charge-free particles, but leads to the thermal gradient in the transverse
direction of the magnon current. Magnon currents are not based on moving charges,
but rather on moving magnetic moments. Because there are no moving charges, magnon
currents do not have dissipation due to Joule heating.

Magnon currents can be created both from a temperature gradient and a magnon
potential gradient, which may be electrically induced [4]. The thermal Hall effect for
magnons has already been experimentally verified by detecting the transverse magnon
heat current. However , magnons currents can also be electrically driven. In this thesis
we are interested in the magnon Hall effect due to an electrically driven magnon current,
which is a different effect from the thermal magnon Hall effect because of the difference
between how the magnon current is driven and detected. The presence of such an effect
has been discussed by [5], which gives a basis to determine the size of the magnon Hall
effect. In this thesis we will discuss a first approximation for the size of this transverse
current for an electrically driven magnon current based on works presented in the Ref-
erences.

This thesis is organized as follows. In Chapter 2 we will reproduce part of the work
of [4] in which we will calculate the magnon current in a longitudinal setup. In Chapter
3 we will discuss a first approximation for a transverse magnon current. To calculate this
we will calculate the magnon potential and current using simplified boundary conditions.
The results of this calculation we will use on the Hall geometry to make a first approxi-
mation for the magnon current in the transverse direction. In Chapter 4 we will calculate
the magnon Hall conductivity for an electrically driven magnon current. We expect a
magnon Hall conductivity of between 1 and 10 percent of the magnon conductivity.
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Chapter 2

Longitudinal magnon transport

In this chapter we will work out the magnon current in the longitudinal setup (see Fig.
2.1). Our aim is to calculate the magnon current due to an incoming spin current, js1.
The size of the incoming spin current is determined from the results of [4], for typical
values see appendix. We define our magnon current in accordance with [4]:

~jm(x, y) = −1

~

(
σm σxy
−σxy σm

)(∂µm
∂x (x, y)
∂µm
∂y (x, y)

)
, (2.0.1)

where σm is the magnon conductivity in the longitudinal direction of the magnon current,
σxy the magnon conductivity in the transverse direction, i.e. the magnon Hall conductiv-
ity, and µm the magnon chemical potential. For the purpose of this chapter we assume
σxy = 0 and ∂µm

∂y (x, y) = 0, since we only look at the longitudinal magnon current and
assume that there is no transverse effect.

2.1 Setup

Fig. 2.1 shows the geometry of the ferromagnetic insulator (FI) we will look at. We only
look at the 2 dimensional system because the system is independent on the z-coordinate,
so we will not take into account the height of the geometry. The size in the y-direction is
assumed to be much larger than the magnon diffusion length and therefore we don’t take
into account the edges at y = 0 and y = Ly. Furthermore we do not take into account
the interface current between the normal metal (NM) and FI layers, since we assume
that there is no spin-potential in the NM layers.

2.2 Equations

From[4] we get the following equation to describe this system:

ζ

(
3

2

)
∇2µm +

5kB
2
ζ

(
5

2

)
∇2Tm =

1

l2m

[
ζ

(
3

2

)
µm +

5kB
2
ζ

(
5

2

)
(Tm − Tph)

]
,

where lm is the magnon diffusion length, ζ is the Riemann-Zeta function, kB the Boltz-
mann constant, Tm the magnon temperature and Tph the phonon temperature.Since we
assume that there is no temperature gradient, this leads to

µm(x) = l2m
dµm(x)

dx
. (2.2.1)

For this equation we have the general solution µm(x) = a1e
x/lm + a2e

−x/lm , where a1

and a2 are constants of integration. But if Lx � lm we have to neglect the a1 term and
the solution reduces to:

µm(x) = a2e
−x/lm (2.2.2)
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Figure 2.1 – The longitudinal setup. The green blocks are normal metals (NM) and the
blue block is a ferromagnetic insulator (FI). The FI layer has a length of Lx in the
x-direction and Ly in the y-direction. ~B is the magnetization. The length of the NM
layers in the x-direction is not important for these calculations. We apply a constant
spincurrent js1 into the FI layer, for used data see appendix A.

2.3 Boundary conditions

Now that we have all the equations to describe the magnon current we need the boundary
condition to calculate the integration constants.

At the interface between NM1 and FI we have that, because of conservation of angular
momentum, the spin current is equal to the magnon current. Thus we have the following
boundary condition:

js1 = jm(0).

This we can work out by using Eq. 2.0.1, which results in:

js1 = −σm
~
dµm
dx

(0). (2.3.1)

2.4 Result

Now using the boundary condition 2.3.1 together with 2.2.2 we can solve this system,
which gives

µm(x) =
js1lm~
σm

e−
x
lm .

This gives the following solution for the magnon current:

jm(x) = js1e
− x
lm . (2.4.1)

In Fig. 2.2 we have plotted the magnon current. From this plot we can see that the
magnon current decreases when the distance to the NM1 layer increases. The outgoing
magnon current into the NM2 layer is exponentially suppressed as a function of Lx, with
a characteristic length lm.
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Figure 2.2 – The longitudinal magnon current as a function of x over the magnon diffusion
length in the longitudinal setup in the FI layer. For used data see appendix A.
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Chapter 3

Hall geometry

In this chapter we will make a first approximation for a transverse, electrically driven
magnon current. To make a first approximation of the transverse magnon current we
will look at the hard wall setup (see Fig. 3.1). This means that we assume that no spin
current leaves the system in the transverse direction. This is a reasonable approximation
as we expect the magnon Hall conductivity to be small compared tot the longitudinal
conductivity. With this geometry we want to calculate the longitudinal magnon current,
which we will use to make a first estimate of the magnon current in the transverse
direction. Compared to the setup used in Chapter 2 there is no outgoing magnon current.

Js1
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Ly

Figure 3.1 – The hard wall setup; the green block is a NM layer and the blue block is a FI
layer. The FI layer has a length of Lx in the x-direction and Ly in the y-direction. ~B
is the magnetization. The length of the NM1 layer in the x-direction is not important
for these calculations. Here we apply a constant spin current, js1, from the NM layer.
For used data see appendix A.

This setup we will call the hard wall setup. From the left we apply a spin current
which will create a magnon potential in the FI layer. There is only a NM layer on one
side, all the other sides have hard walls, which cannot conduct. We assume that there is
no spin potential in the NM layer and therefore we also neglect the interface current.

3.1 Equations and boundary conditions

The magnon current is again only driven by the magnon potential, thus to calculate the
magnon current in the FI layer we need to solve the following differential equation:
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µm(x, y) = l2m∇2µm(x, y).

This system has the following boundary conditions:

∂
∂xµm(0, y) = −js1~

σm

∂
∂xµm(Lx, y) = 0.

(3.1.1)

The first boundary condition is due to the conservation of angular momentum at the
first interface (similar as with the longitudinal setup). The second boundary condition
comes from the fact that there is no spin current at the right side of the device due to
the hard walls. Lastly we assume that there is no gradient of the magnon potential in
the y-direction because of the symmetry of the system.

3.2 Solution and results

Now with these boundary conditions we can solve our system, which gives the following
solution:

µm(x) =
js1lm~e−

x
lm

(
e

2Lx
l + e

2x
lm

)
σm

(
e

2Lx
lm − 1

) . (3.2.1)

Using Eq. 2.0.1 we can calculate the magnon current (see Eq. 3.2.2). We plotted
the magnon current in both directions in Figs. 3.2 and 3.3. It is clear that the magnon
current in both directions decreases when we get further away from the NM layer. In the
x-direction the result is very similar to the result from Chapter 2. This can be understood
by looking at what happens when Lx goes to infinity. In this limit we get the same result
as in Chapter 2. From Figs. 3.2 and 3.3 we can also see that | jmyjmx

| = σxy
σm

. The result for
both components of the magnon spin current is:

~jm =
js1e

− x
lm

(
e

2Lx
lm − e

2x
lm

)
e

2Lx
lm − 1

(
1
−σxyσm

)
. (3.2.2)

In Appendix B we give the derivation of a system of equations to get a better solution
for the magnon potential.
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Figure 3.2 – The magnon current in the
x-direction of the hard wall setup (see
Figure: 3.1) as function of the distance
with respect to the magnon diffusion
length lm for the hard wall geometry.
For Lx we used 10−4 m, see Appendix
A for the other parameters.
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Figure 3.3 – The magnon current in the
y direction of the hard wall setup (see
Figure: 3.1) as function of the dis-
tance with respect to the magnon dif-
fusion length lm for the hard wall ge-
ometry. Where we used Lx = 10−4 m
and σxy = σm

10
, see Appendix A for the

other parameters.
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3.3 Magnon current in y direction

Now that we have found the magnon current we will calculate a first approximation of
the magnon current in the y-direction. Therefore we will look at the Hall geometry (see
Fig. 3.4). In this geometry we use the solution from the hard wall setup to find the
outgoing magnon current at the interface between FI and NM2.

In this setup we place a second NM at the top of the device. This NM2 layer is of
length ∆ and is placed at (L,Ly) . The outgoing magnon current can be calculated by
integrating the magnon current over the surface, which leads to the following expression:

Iout =

∫ L+ ∆
2

L−∆
2

dxjmy =
σxy
σm

2js1lm sinh

(
∆

2lm

)
csch

(
Lx
lm

)
sinh

(
L− Lx
lm

)
. (3.3.1)

To discuss the result of Eq. 3.3.1, we will use the following:

limx→∞ csch(x) sinh(x) = 1

limx→0 csch(x) sinh(x) = 1.

This means that when L,Lx � lm and L ∼ Lx that Iout ≈ 0. While when L,Lx � lm,

then Iout ≈ σxy
σm

2js1lm sinh
(

∆
2lm

)
. From Fig. 3.5 it is clear that when the NM2 layer

is placed further away from the NM1 layer, the outgoing current decreases rapidly. If
we compare this with Fig. 3.3 we see that this happens at the same distance, which is
a logical result since the outgoing current is proportional to the magnon current in the
y-direction. Another result that can be deduced from Eq. 3.3.1 is that the outgoing
current becomes zero when Lx ≈ 0. This is also as expected since when there is no FI
layer, there should not be any magnon current in the y-direction.
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L

∆

Figure 3.4 – The Hall geometry, this
is the same geometry as 3.1 with
the addition of a second NM2 layer
of size ∆ at the top of the de-
vice with the middle positioned at
(L,Ly). See Appendix A for the
size of js1.
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Figure 3.5 – The Iout as a function of the
placement of the NM2 layer L with re-
spect to the magnon diffusion length
lm. Where we used Lx = 10−4m,
σxy = σm

10
and ∆ = lm, for the other

parameters used see (Appendix A)
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Chapter 4

Determining the magnon Hall
conductivity

In this chapter we will use the results from [5] to calculate a first approximation of the
magnon Hall conductivity, σxy.

4.1 Relating σxy to L11

We start with the linear response of the magnon current, from [5]:

j = L11[−∇U −∇µ] + L12

[
T∇

(
1

T

)]
,

which is related to the heat current jQ = jE − µj; where jE is the energy current and
L11, L12 and U are defined as in [5]. Since we only look at a magnon current driven by
the magnon potential, we assume that there is no temperature gradient. Thus this gives
the following expression for the magnon current:

j = −L11∇µ. (4.1.1)

Now we want to relate this equation to the definition of the magnon current we use Eq.
2.0.1. This can be done by checking the units of both definitions. One has [5]:

L11 = − 1

~V
∑
n,k

Ωn,z(k)ρ(εn), (4.1.2)

where V is the thickness of the sample, Ωn,z the Berry curvature in momentum space
and ρ the distribution function. From [5] we get that [V ] = m2, [Ωn,z(k)] = 1/m2, ρ is
dimensionless and [~] = Js. This leads to

[L11] = 1/Js.

Note that jQ used in [5] is the two dimensional heat current density, thus [jQ] = 1
m2 Jm

s =
J

m s .
We can compare this to the unit of σm, for which we use [4] and [6] and we obtain

[σm] =
Js

m
.

The difference in units of σm and L11 comes from the fact that [4] uses [jm] = J
m2 , which

is the three dimensional current density. Thus to calculate σxy from L11 we therefore
use following formula:

σxy =
L11~2

L
, (4.1.3)

where L is the thickness of the sample.
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4.2 Equations

Now that we have found Eq. 4.1.3, we can start to calculate L11. We begin by defining
the different elements from Eq. 4.1.2. Ωn,z(k) is the Berry curvature in momentum
space, ρ(εn) is the Bose distribution function of the n-th band and V is the area of the
sample. The summation of n is over all the bands and the summation over k is over the
momenta.

For the Berry curvature we will use the following approximation, which is found in
[5]:

Ωn,z(k)/L2 '


(

1
4
M0

H0

)2

if n = 0;

1
2

(
1
nπ

)4 (M0

H0

)
(kL)2 if n > 0,

(4.2.1)

where M0 is the saturation magnetization and H0 the internal static magnetic field. The
Bose distribution function is defined as ρ(εn) = (eβ(εn−µ) − 1)−1 with εn = ~ωn and we
assume that we are in equilibrium thus µ = 0. In order to calculate the integrals we will
both use the Bose distribution as well as the Boltzmann distribution function (e−βεn) to
approximate the Bose distribution. We use this approximation to simplify the problem
and get easier calculations. For ωn we use the same approximation as found in [5], where
ωn = ωH + ∆ωn with:

∆ωn =

{
1
4ωMkL if n = 0
ωM
2

(
kL
nπ

)2
if n > 0,

(4.2.2)

where ωM = γM0 and ωH = γH0 and γ the gyromagnetic ratio.

4.3 Calculating L11 with the Boltzmann distribution

We can rewrite L11 in terms of the integral over k, which gives us:

L11 = − 1
~
∑
n

∫
dk

(2π)2 Ωn,z(k)ρ(εn)

= − 1
~
∑
n

∫
dθ
∫
dk k 1

(2π)2 Ωn,z(k)ρ(εn)

= − 1
~
∑
n

∫
2π 1

(2π)2 dk k Ωn,z(k)ρ(εn).

The area element cancels because of the integration and in the intermediate step we went
to polar-coordinates.

4.3.1 Boundaries of integration

In order to compute the integrals inside the sum, we need to determine the integration
bounds because the integral diverges. This we do by using that the total number of

magnon modes is equal to the number of lattice sites so that
∫ Λ

0
dk

(2π)2 = s, where s is the

spin-density. So now we can determine the cut-off Λ:

∫ Λ

0

dk

(2π)2
=

∫ 2π

0

dθ

∫ Λ

0

dk
k

(2π)2
=

∫ Λ

0

dk
k

2π
=

1

4π
Λ2 = s,

⇒ Λ =
√

4πs

Now that we know the boundary of integration, we can compute the different integrals.
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4.3.2 Calculating the integrals

For n = 0 we have:

∫ Λ

0

dk
1

2π
k Ω0,zρ(ε0) =

∫ Λ

0
dk 1

2π k
(

1
4
LM0

H0

)2
1

eβ~(wH+ 1
4
ωMkL)

= −
M2

0

(√
πβL
√
swM~−2e

1
2
√
πβL
√
swM~+2

)
e−

1
2
β~(
√
πL
√
swM+2wH)

4πβ2H2
0w

2
M~2 ,

and, for n > 0, we have

∫ Λ

0

dk
1

2π
k Ωn,zρ(ε0) =

∫ Λ

0
dk 1

2πk
1
2

(
1
nπ

)4 (M0

H0

)
(kL)2e−β~(wH+

ωM
2 ( kLnπ )

2
)

=
M2

0

(
πn2

(
e

2βL2swM~
πn2 −1

)
−2βL2swM~

)
e
β~
(
−
(

2L2swM
πn2 +wH

))

2π2β2H2
0n

2w2
M~2 .

Combining these results we calculate L11. We are interested in the rate of convergence,
which we can see in Fig. 4.1a. From this figure we can see that L11 converges rapidly
when the number of terms added increases. From this we conclude that if we compute
the sum from n = 0 to n = 100 we have a good approximation of the actual value of L11.
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-1.5×1034

-1.0×1034

-5.0×1033

0

N

L
11
(1
/J
s)

(a) The convergence rate of L11 as a function
of the size of the sum. We used L = 10−9 m
and β~ωH = 0.01, for the other parameters
see Appendix A.
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(b) The size of the Hall angle
σxy
σm

as a function
of the thickness of the FI layer L with respect
to the lattice vector. We used β~ωH = 0.01,
for the other parameters see Appendix A.

Figure 4.1
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(a) The size of the Hall angle
σxy
σm

as a function
of the thickness of the FI layer L with respect
to the lattice vector. We used β~ωH = 0.01,
for the other parameters see Appendix A.
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for the other parameters see Appendix A.

Figure 4.2
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From Fig. 4.2a we see that when L is more then twice the size of the lattice vector
the Hall angle

σxy
σm

increases rapidly. This is a surprising result as we excepted that
the transverse current should be smaller then longitudinal current. It is clear that our
approximation does not work when we increase the thickness of our sample. When re-
viewing [5] this can be explained by the fact that the authors work with a two dimensional
system. What is even more unexpected is that the Hall angle is only smaller then 1 when
L/a < 0.6 and β~ωH = 0.01. We expected to see a small Hall angle, of the order of 0.1.
We can also see that as β~ωH is increased the Hall angle goes to zero. For L = a and
β~ωH = 0.01 the Hall angle is −3.08.

4.4 Calculating L11 with the Bose distribution

In this section we will calculate L11 while using the Bose-Einstein distribution function.
The calculations are very similar as in section 4.3. We can use the same integration
boundary and rewrite the integral in polar coordinates. We will now evaluate the inte-
grals:

∫ Λ

0
dk 1

2πk Ω0,zρ(ε0) =
∫ Λ

0
dk 1

2π k
(

1
4
LM0

H0

)2
1

eβ~(wH+ 1
4
ωMkL)−1

= − M2
0

16πβ2H2
0ω

2
M~2

[
πβ2L2sω2

M~2 − 8Li2

(
eωHβ~+ 1

2LωMβ
√
π
√
s~
)

−4
√
πβL
√
sωM~ log

(
1− e 1

2

√
πβL
√
sωM~+βωH~

)
+ 8Li2

(
eωHβ~

) ]
,

and, for n > 0,∫ Λ

0
dk 1

2πk Ωn,zρ(ε0) =
∫ Λ

0
dk 1

2πk
1
2

(
1
nπ

)4 (M0

H0

)
(kL)2 1

e
β~(wH+

ωM
2 ( kLnπ )

2
)−1

= − M2
0

2π3β2H2
0n

4ω2
M~2

[
2βL2sωM~ ×

(
βL2sωM~− πn2 log

(
1− e

β~
(

2L2sωM
πn2 +ωH

)))

−π2n4Li2

(
e

(
2sωML2

n2π
+ωH

)
β~
)

+ π2n4Li2
(
eωHβ~

) ]
.

In these expressions Li2(x) =
∑∞
k=1

xk

k2 , which is the polylogarithmic function. With the
found results we can calculate L11. In Fig. 4.3a we can see the convergence rate of L11.
It’s clear that the first 5 terms are the most important terms, so we have decided to
evaluate the sum up to n = 100. With this amount of terms we believe that there is a
good balance between calculation speed and accuracy.
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Figure 4.3
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Figure 4.4

The results of the Hall angle with using the Bose distribution show the same behavior
as with the Boltzmann distribution. With this calculation the Hall angle is larger for
all values of L/a and β~ωH compared to the calculation with using the Boltzmann
distribution. Likely this is because the low-energy states contribute most, and are given a
higher weight in the Bose distribution. Furthermore the Hall angle increases and becomes
much larger than expected as the thickness increases. The Hall angle also converges to
zero, which means there will be no magnon current in the transverse direction when the
strength of the external field is increased. For L = a and β~ωH = 0.01 the Hall angle is
−83.
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Chapter 5

Conclusion

In this thesis we studied the transverse magnon current due to a chemical magnon poten-
tial. We started from the result of [4] to calculate the magnon potential. We reproduced
part of this work as a starting point to calculate the transverse magnon current. After
this we looked at a first approximation to calculate the transverse magnon current, where
we calculated the magnon potential in the hard wall geometry and then placed an extra
NM layer on top of the device. From this we could calculate a magnon current in the
y-direction. To calculate this we used σxy as a transverse magnon conductivity. Lastly
we made an estimate of the magnitude of σxy based on [5], which we did with both the
Boltzmann and the Bose distribution.

From this first calculation of σxy we can conclude our used approximations are not
accurate enough to calculate a physically sensible magnon Hall conductivity . The results
that we got from this calculation were much larger than we expected. Our initial thoughts
were to find a magnon Hall conductivity between 1 and 10 percent of the magnon conduc-
tivity σm. In our calculations the magnon hall conductivity is −3.08σm when using the
Boltzmann distribution function and −83σm when using the Bose distribution function.
We don’t think this is a physical result and therefore more research is needed.

The calculations of σxy can be made better by also taking into account the z-direction.
This has to be done in different parts of the calculations. First, the integration over k-
space should be made three dimensional. Second, the Berry curvature needs to be calcu-
lated in the three dimensional momentum space. Another assumption is that k ∼ 0, from
which the approximations of ωn was made. Since our boundary of integration is of order
1010m−1, this assumption is not valid over the whole surface of integration. Further-
more the Berry curvature is calculated using these approximations, but for calculating
the magnon Hall conductivity the whole Berry curvature has to be taken into account
and not just an approximation for k ∼ 0. Lastly, solving the drift diffusion equations
more accurately is important to find a more accurate prediction for the experimentally
detected signal.
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Appendix A

Data used

See [4] and [6].

js1 −1.4379× 10−11J/m2

lm 9.4× 10−6 m
σm 1.08611× 10−25Js/m
g↑↓ 5× 1018m−2

S 10
Λm 6.24231× 108 m
M0

H0
1

β~ωm 0.01
s 6.529× 1018

a 12.376× 10−10 m
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Appendix B

Higher order approximation
Hall geometry

Here we derive a system of equations to approximate the magnon current in the hall
geometry to a higher order. In this approximation we assume that σxy � σm and define
η =

σxy
σm

. With this we can write the magnon chemical potential as:

µm(x, y) =
∑
i=0

ηiµi(x, y). (B.0.1)

Again we assume that there is no temperature gradient, which gives us the following
equation to solve:

µm(x, y) = l2m~∇2µm(x, y). (B.0.2)

For this system we have the following boundary conditions:

~jm(0,y)
σm

= − 1
~

(
∂µ
∂x (0, y) + η ∂µ∂y (0, y)
∂µ
∂y (0, y)− η ∂µ∂x (0, y)

)
=

( js1
σm
0

)

~jm(Lx,y)
σm

= − 1
~

(
∂µ
∂x (Lx, y) + η ∂µ∂y (Lx, y)
∂µ
∂y (Lx, y)− η ∂µ∂x (Lx, y)

)
= 0

, (B.0.3)

where we have divided by σm in order to get η in our boundary conditions.

Now we will look at the different orders of µi by substituting B.0.1 into B.0.3. This
gives us the following relations:

∂
∂x

∑
i=0 η

iµi(x, y) + η ∂
∂y

∑
i=0 η

iµi(x, y) = js1
σm

∂
∂y

∑
i=0 η

iµi(x, y)− η ∂
∂x

∑
i=0 η

iµi(x, y) = 0
. (B.0.4)

Now we have to take into account the zero-order term. For µ0(x, y) the following holds:

µ0(x, y) = l2m~∇2µ0(x, y)

~∇µ0(0, y) = − ~
σm
js1

~∇µ0(Lx, y) = 0.

(B.0.5)

However the zero-order term gives the magnon chemical potential when there is no
magnon Hall effect, thus ∂µ0

∂y = 0. This leads to the same system as in Chapter 3,

which we can solve exactly (see Eq. 3.2.2).

Now we can combine B.0.4 and B.0.5 to get the following system of equations:
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µ0(x, y) = l2m
∂2

∂2xµ0(x, y) µi(x, y) = l2m~∇2µi(x, y)

∂
∂xµ0(0, y) = − ~

σm
js1

∂
∂xµi(0, y) = − ∂

∂yµi−1(0, y)

∂
∂xµ0(Lx, y) = 0 ∂

∂yµi(0, y) = ∂
∂xµi−1(0, y)

∂
∂xµi(Lx, y) = − ∂

∂yµi−1(Lx, y) ∂
∂yµi(Lx, y) = ∂

∂xµi−1(0, y)

(B.0.6)

With these equations the magnon potential can be solved up to a certain order. Solving
these systems is left for further research.
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