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Abstract

In this thesis we investigate the mesoscopic electronic transport properties
of ring-shaped nano-structures connected to two leads at low temperatures in
the wideband limit. In particular we consider the current due to a constant
chemical potential bias and the linear DC conductance. This is done in the
Landauer-Büttiker formalism using equilibrium Green function techniques to
compute transmission amplitudes.

The thesis starts with an introduction to second quantisation and derivations
of the aforementioned formalism and techniques. We then move on to apply the
theory to the specific cases of a single site impurity and an asymmetric four site
ring.

We find that the transmission amplitude as a function of energy is sharply
peaked around energy levels of the nano-structure, but has finite width and a
small shift in resonance due to effective broadening by the coupling between leads
and nano-structure. In the four site ring we also find signs of self-interference
effects when the energy of the incoming electron is exactly half of the on-site
energy.

We conclude with a discussion of possible generalisations of our model and a
schematic overview of the necessary techniques, and areas of current research.
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Introduction

1 Introduction

Figure 1.1: An Atomic Force Microscopy image of a C60 molecule trapped between two gold
nano-wires, to illustrate an appearance of the type of systems we are discussing (taken from [15]).

One of mankind’s most impactful inventions of the past century was probably the
computer. It brought with it the onset of the current information age, wherein any
person at any given time is highly likely to be using or at least carrying with them a
computer-like device (such as a smartphone, a laptop, etc.). The first computers were
large machines that took up entire rooms, and were less powerful than the phone the
author usually carries in his pocket. This miniaturisation was made possible by the
invention of transistors, inherently quantum-mechanical devices that operate on the
nanometre scale.

However, the theoretical and practical limitations of this technology are in sight and
new methods are needed. This has sparked interest for fundamental research into
the electronic transport properties of small systems (which we will often refer to as
nano-structures). At low temperatures, the microscopic properties of such systems
start to dominate the transport qualities as Ohmic behaviour breaks down. This
is due to the fact that in these systems the electron mean free path length (and
other coherence lengths) are not small compared to the system size (in fact they
may even be much larger). Hence statistical, bulk descriptions fail, and microscopic
details need to be taken into account (see the introductions to [6] and [9]). This
blend between macro- and microscopic physics has lead these system to be dubbed
mesoscopic. For example, conductance is no longer a bulk property, but rather is
related to the geometry of the system via transmission functions.

The experimental realisability of these systems has made direct comparison between
theory and experiment possible (see [19] and [3]), resulting in active theoretical re-
search driven by experiment. Popular systems to study include molecules (see fig.1.1),
quantum dots, and point contacts on semiconductors.

A simple yet powerful theoretical approach to the transport properties these system
comes in the form of the Landauer-Büttiker formalism, which will be discussed in
chapter 4, after the stage has been set with the necessary background information
in chapters 2 and 3. In chapter 5 we present a Green function approach that will
take care of the microscopic details. Chapters 6 and 7 will then be dedicated to
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Introduction

specific model systems, and finally, in chapter 8 we discuss how these models may be
extended and provide a sketch of the necessary methods.
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Second Quantisation

2 Second Quantisation

An invaluable set of tools that we will need to do microscopic calculations is provided
by the formalism of second quantisation. It provides an elegant and powerful quantum
mechanical approach to many body physics. The name is unfortunately a historical
misnomer, in the sense that one does not quantise again in this approach, but rather
one switches to a fully quantum mechanical perspective and most of all notation. The
method was introduced by Paul Dirac1 in the late twenties and further developed later
by many others, with notable contributions by Vladimir Fock2 and Pascual Jordan3.
The building blocks of the theory are the first quantisation approach to single-particle
quantum mechanics (taught in all elementary courses) and two additional postulates,
namely that the particles the theory treats are fundamentally indistinguishable and
that few-particle operators retain their first quantised form. Over the course of the
next few sections a schematic derivation of the theory for spinless fermions will be
given. For a more complete treatment we refer to [4].

2.1 First Quantisation

In this section we will review some basics of first quantisation to set the stage for
second quantisation and to recall some results that will be useful later. For details one
could consult [8], or for a more formal reference [17]. Recall from elementary quantum
mechanics that (in the Schrödinger picture) a single particle system is described by
a wave function Ψ : R3 ×R→ C, that lives in a Hilbert space H, whose evolution in
time is governed by the Schrödinger equation4

i~∂tΨ = HΨ =

(
− ~2

2m
∆r + V (r)

)
Ψ. (2.1.1)

One should view H as a “nice” space containing “physically relevant” wave functions,
i.e. these go (sufficiently quickly) to zero at infinity, are as smooth as they need to be
for our manipulations, et cetera. According to Max Born’s5 statistical interpretation
of the wave function, one should viewˆ

U
dr |Ψ(r, t)|2 (2.1.2)

as the probability to find the particle in the region of space U at time t. This
immediately imposes the condition that any wave function must be normalised such
that we have ˆ

R3

dr |Ψ(r, t)|2 = 1.

Thus the wave function is also required to be square integrable over the whole space,
for all times. One may wonder if it is possible to achieve this normalisation, since

11902-1984, English, awarded the 1933 Nobel Prize together with Erwin Schrödinger (will be
mentioned again later) for their work on atomic physics.

21898-1974, Russian.
31902-1980, Prussian/German, not to be confused with the French mathematician Camille Jor-

dan.
4named after Erwin Schrödinger, 1887-1961, Austrian, see the footnote on Paul Dirac.
51882-1970, German, he was awarded the 1954 Nobel prize for this insight.

3



Second Quantisation

the wave function may also vary in time. As it turns out, a wave function that is
normalised at one point in time, will be normalised for all points in time. We will
prove this here as the proof contains a result that will be used to derive the Landauer-
Büttiker formula (see chapter 4, a more general form will also be used in chapter 8).
Since differentiation with respect to time and integration over space commute, it
suffices to consider

∂t|Ψ|2 = Ψ∗∂tΨ + Ψ∂tΨ
∗ = Ψ∗

(
i~
2m

∆Ψ− i

~
VΨ

)
+

(
− i~

2m
∆Ψ∗ +

i

~
VΨ∗

)
Ψ,

= ∇ ·
[
i~
2m

(Ψ∗(∇Ψ)− c.c)

]
=: −∇ · J, (2.1.3)

where we have used (2.1.1) and its complex conjugate, and J is the so called probability
current density. We can now directly compute

dt

ˆ
R3

dr |Ψ|2 =

ˆ
R3

dr ∂t|Ψ|2 = −
ˆ
R3

dr (∇ · J) = − lim
ρ→∞

ˆ
S2
ρ

J · dS = 0.

The last two steps follow from the Gauß-Ostrogradsky theorem6, the definition of
the improper Riemann integral, and from the fact that the wave function and its
derivatives go to zero at infinity and hence so does J.

In the case of a time independent problem, the situation simplifies considerably. One
then uses the (perhaps even more famous) time independent Schrödinger equation

Hψ = Eψ, (2.1.4)

which one can derive by separation of variables. This is an eigenvalue problem and
since energy must be real, H must be an Hermitian operator. It then follows from the
spectral theorem for self-adjoint operators (the mathematician’s word for Hermitian)
that there exists a complete orthonormal basis of eigenvectors (called eigenstates in
physics) indexed by some multi-index of quantum numbers ν. These indices may
be discrete, continuous or consist of both types. Hence (2.1.4) always has solutions,
a comparable statement can be proven for the full equation (2.1.1). Such a set is
usually denoted as {ψν} and the above properties can be stated as the following
identities that are fundamental to quantum mechanics∑

ν

ψ∗ν(r′)ψν(r) = δ(r− r′) (completeness) , (2.1.5)

ˆ
dr ψ∗ν′(r)ψν(r) = δνν′ (orthonormality) . (2.1.6)

One should be mindful of the notation used here, the sum over ν is to be interpreted
as an integral if the quantum number is continuous, and as an appropriate product
of sums and integrals if ν contains several quantum numbers. The upper delta is
the so called Dirac delta7, and the lower one the Kronecker delta, both will make
numerous appearances in what is to come. From now on we will work with these
time independent wave functions.

6This theorem has been independently discovered by several famous mathematicians, but most
prominently by Johann Karl Friedrich Gauß(1777-1855, German), it was however first proven by
Mikhail Ostrogradksy (1801-1862, Russian).

7Popularised by Paul Dirac in his 1930 book ”The Principles of Quantum Mechanics”

4



Second Quantisation

2.2 Many Particle Wave Functions

The goal is now to somehow extend this approach to systems of several particles,
say N . What is meant in this case by the many particle wave function Ψ (or more
specifically the N -particle wave function) is again an element of some Hilbert space
H′. However this time the domain is not real space but rather the 3N dimensional
configuration space of the system, which we may identify with R3N . In this context
we interpret

ˆ
U

dr1 · · · rN |Ψ({ri})|2

as the probability to find the system in the region U of the configuration space, in the
spirit of (2.1.2). If we assume that H′ contains all N -particle wave functions for some
system, for all N , then we have {ψν} ⊂ H′ (we will propose a concrete candidate
for this space later). We will now show that any Ψ can be constructed out of these
states. We define the function C(ν1, {ri}N≥i≥2) by projecting onto the single particle
state ν1 as follows

C1 = C(ν1, r2, . . . , rN ) :=

ˆ
dr1 ψ

∗
ν1(r1)Ψ({ri}),

and iteratively the other N − 1 functions

Cj = C(ν1, . . . , νj , rj+1, . . . , rN ) :=

ˆ
drj ψ

∗
νj (rj) Cj−1.

Note that the N -th iteration simply gives us a collection of complex numbers indexed
by {νi}. We can use (2.1.5) to invert any one of these steps by computing

∑
νj

ψνj (r
′
j)Cj =

ˆ
drj

∑
νj

ψνj (r
′
j)ψ
∗
νj (rj)

 Cj−1 =

ˆ
drjδ(rj − r′j)Cj−1,

= C(ν1, . . . , νj−1, r
′
j , . . . , rN ).

It is easy to check that this procedure maps C1 back to Ψ and hence we find that

Ψ({ri}) =
∑
{νi}

CN ({νi})ψν1(r1) · · ·ψνN (rN ). (2.2.1)

In other words, we have shown that the collection{
N∏
i=1

ψνi(ri) : ∀N ∈ N, ∀{νi}

}

is a basis of H′.

To find out more information about the coefficients, we explore the consequences of
the indistinguishable particles postulate. If we define the permutation operator Pij
that interchanges particles i and j, this operator acting on some state should yield the
same physical answers as an unaffected state (as the particles are indistinguishable).
This implies that Pij can be at most multiplying the permuted state by some complex
number p, and moreover that applying the operator twice should lead to exactly the
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Second Quantisation

same state, i.e. p2 = 1. It follows that p = ±1 and by the spin statistics theorem that
p = −1 corresponds to fermions and p = 1 to bosons. It should be noted that this
argument only holds in three (or more) spatial dimensions, since in lower dimensions
the square of the permutation operator is not necessarily homotopy equivalent to
the identity (loosely speaking one cannot exchange two particles without disturbing
the particles in between). There is experimental evidence for the existence of quasi-
particles that do in fact exhibit different phases under adiabatic exchange, for example
the fractional quantum hall effect. In the case of fermions, p = −1 means that the
coordinates {ri} should appear in a completely antisymmetric way. A common way
of achieving this in physics is to use the so called Slater determinant

A

(
N∏
i=1

ψνi(ri)

)
=
∑
σ∈Sn

sign(σ)
N∏
i=1

ψνσ(i)(rσ(i)). (2.2.2)

Notice that if one were to apply this operator to a product of single particle states
where not all quantum numbers are distinct, the result would be zero. This is known
as the Pauli exclusion principle, in other words, no two fermions may occupy the same
quantum state. These symmetry requirements are hidden in the coefficients CN ({νi})
and additionally it means that states such as ψa(r1)ψb(r2) are not physical. So in a
sense this hypothetical Hilbert space H′ contains much more then is needed. In the
over-next section we will discuss a trimmed down Hilbert space together with some
very slick notation that will be much more convenient.

2.3 A Brief Mathematical Digression

From our computation in the previous section it is clear that the spaceH′ corresponds
to

H′ =
∞⊕
i=0

Hi,

where Hi denotes the i-particle Hilbert space

Hi :=


i⊗

j=1

H i ≥ 1

span {|0〉} ∼= C i = 0

,

the bar indicates that we take the completion8, and |0〉 denotes the vacuum state (not
to be confused with the ground state), i.e. a completely empty system (we will use
Dirac notation from now on). This space is usually called Fock space and denoted
as F := H′. By the Fréchet-Riesz representation theorem we may identify these
tensors with our wave functions. Our discussion indicates that the physically relevant
subspace for fermions is in fact the exterior algebra of H, in symbols Ff := Λ∗H.
Since this space is also the result of a direct sum, it has the property that states with
different amounts of particles are orthogonal. We recall that the multiplication on

8This not only ensures that the space remains Hilbert, but additionally there are physically rele-
vant states that we would discard otherwise, such as the so called coherent states |φ〉 = exp

(
φa†

)
|0〉,

which are eigenstates of the annihilation operator (defined in the next section).
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the exterior algebra is given by the wedge product ∧ (sometimes also called exterior
product)9, which allows us to write a basis of fermionic Fock space as{

N
∧
i=1
|ψνi〉 : ∀N ∈ N, ∀{νi}

}
. (2.3.1)

Note that not only the antisymmetry requirement, but also the Pauli principle is
build into these states, since a ∧ a = 0 for any a ∈ Λ∗F . Moreover the order of
{νi} is important since a ∧ b = −b ∧ a, which one can view as a residual artefact
of trying to label or order the particles. In the next section we will take a more
physical approach to remedy these last hiccups. We will not use any of the algebraic
properties directly, but they will be hidden inside the definitions of operators and
their (anti)commutation relations.

2.4 The Occupation Number Representation

The treatment up to this point should convince us that we must forgo any attempt
to build a many particle wave function out of the particles it describes. Rather it
has become clear that the physical content of such a wave function is not “which
particle is in what state”, but “how many particles are in each state”. At this point
we should fix an ordering of the single particle quantum states. This ordering is
of course arbitrary, but must be used consistently. We now introduce that objects
{|{nνi}〉}, where nνi is the occupation number of the state νi. Concretely we have
reduced the size of (2.3.1) without losing its spanning property by imposing a fixed
order and have defined the N -particle wave functions∣∣∣nνi1 , . . . , nνiN 〉 :=

∣∣∣ψνi1〉 ∧ · · · ∧ ∣∣∣ψνiN 〉 =: |νi1〉 ∧ · · · ∧ |νiN 〉 .

We will often write nνij = nij , which is unambiguous because we have imposed an
order on the quantum labels. This is called the occupation number representation
and it constitutes a lean, elegant, and efficient way to write down many particle wave
functions.

The most natural operator to define now is the operator that when unleashed returns
the occupation number of a certain state, in symbols

n̂i |{nj}〉 := ni |{nj}〉 ,

which defines it on the entire space Ff . Two more natural operators that will turn
out to be intimately linked to the particle number operator are the creation and
annihilation operators a†νj and aνj . We begin by defining the former by demanding

a†νj
∣∣ni1 , . . . , nij , . . . , niN 〉 = C(nij )

∣∣ni1 , . . . , nij + 1, . . . , niN
〉
.

Since we have∣∣ni1 , . . . , nij , . . . , nik , . . . , niN 〉 = −
∣∣ni1 , . . . , nik , . . . , nij , . . . , niN 〉 , (2.4.1)

9Usually a∧ b := a⊗ b (mod I), where I is the two-sided ideal generated by elements of the form
c ⊗ c, i.e. c ∧ c = 0 for all c. This also immediately implies that the wedge product is alternating,
since 0 = (a+ b) ∧ (a+ b) = a ∧ b+ b ∧ a.

7
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it must also hold that {a†νj , a
†
νk} = 0, where we have introduce the anticommutator

{a, b} := ab + ba =: [a, b]+. The relation between a†νj and aνj follows from (we only
write the relevant occupation number)〈

nνj + 1
∣∣ a†νj ∣∣nνj〉∗ =

〈
nνj
∣∣ (a†νj )† ∣∣nνj + 1

〉
=
〈
nνj
∣∣ aνj ∣∣nνj + 1

〉
, (2.4.2)

so aνj is indeed an annihilation operator that sends

aνj
∣∣nνj〉 = A(nνj )

∣∣nνj − 1
〉
.

By taking adjoints aνj and aνk must also satisfy {aνj , aνk} = 0, thus (a†νj )
2 = (aνj )

2 =
0. Applying the same arguments based on (2.4.1) as above it must also hold that

{aνj , a
†
νk} = 0 for j 6= k. We also demand that

aνj |0〉 = 0, a†νj |0〉 =
∣∣0, . . . , 0, nνj = 1, 0, . . .

〉
,

the second condition simply being a normalisation. Hence C(0) = 1, A(0) = 0, and
A(1) = 1 (use (2.4.2)) and we can compute

{aνj , a†νj} |0〉 = |0〉 .

We now assume that we can extend this to the operator identity {aνj , a
†
νj} = 1.

This gives us the full algebra of the creation and annihilation operators, namely the
anticommutation relations

{aνj , aνk} = 0, {a†νj , a
†
νk
} = 0, {aνj , a†νk} = δνjνk . (2.4.3)

At this point we introduce a useful identity whose proof is nothing more than ex-
panding definitions. Let A, B, and C be operators, denote their commutator by
[A,B]− := [A,B] and let σ = ±1, then10

[A,BC]σ = [A,B]±σC ∓ σB[A,C]±. (2.4.4)

We now turn our attention to the operator a†νaν , for which it is easy to see that
|nν = 0〉 and |nν = 1〉 are eigenstates with eigenvalues 0 and 1 respectively, which
are exactly the occupation numbers. Using the commutators

[a†νaν , aν ] = −aν , [a†νaν , a
†
ν ] = a†ν , (2.4.5)

which one can derive from (2.4.4), we find that (a†νaν)2 = a†νaν , hence the only

possible eigenvalues are 0 and 1, as we expected. So indeed we have that n̂ν = a†νaν .

2.5 Operators in Second Quantisation

To complete our discussion of second quantisation we need a few facts about the
representation of general single site/particle operators. The key component is the
observation that

A

 N∏
j=1

ψνij (rj)

 =
∣∣∣nνi1 = 1, . . . , nνiN = 1

〉
= a†νi1

· · · a†νiN |0〉 .

10The way this equation is read is to pick σ on the left and then read either all upper or all lower
sign on the right side.

8
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One of our postulates was that few-particle operators do not change, by which we
mean that if one wants to determine say pi, the momentum of the particle in state i,
from a many-particle wavefunction, one can simply apply the operator id⊗ · · · ⊗ p̂⊗
id ⊗ · · · , where p̂ is in position i11. In other words we postulate that to determine
a property12 of a single particle, we can forget about all other particles present in
the system. This immediately implies that any operator acting on the system on
a particle by particle basis can be simply regarded as the sum of these individual
operators, in symbols

Ôtot =
N∑
i=1

Ôi.

Combining now our observation with the identity from elementary quantum mechan-
ics

Ôi =
∑
νaνb

Oνbνa |νb〉 〈νa| :=
∑
νaνb

(
〈νb| Ôi |νa〉

)
|νb〉 〈νa| ,

and exploiting the properties of the creation and annihilation operators yields the
general formula

Ô =
∑
νaνb

Oνbνaa
†
νb
aνa . (2.5.1)

One could interpret this identity to mean that an operator removes a particle from
state νa and adds one to the state νb with weight Oνbνa . This also tells us what the
creation and annihilation operators do to general states

aνj |{nνi}〉 = (−1)
∑j−1
l=1 nνlnνj

∣∣nν1 , . . . , 1− nνj , . . .〉 ,
a†νj |{nνi}〉 = (−1)

∑j−1
l=1 nνl (1− nνj )

∣∣nν1 , . . . , 1− nνj , . . .〉 ,
which once again reinforces how important the ordering of the states is.

The final thing to consider are changes of basis, which we only need to do for the
creation and annihilation operators by (2.5.1). The situation is no different from first
quantisation, in that

ãµ =
∑
ν

〈
ψ̃µ

∣∣∣ψν〉 aν , ã†µ =
∑
ν

〈
ψ̃µ

∣∣∣ψν〉∗ a†ν .
These transformations have two very important properties that validate them, namely
they preserve the algebra of the creation and annihilation operators (transformations
with this property are called canonical) and the total number of particles. The first
statement is immediate from the linearity of the transformations and the anticom-
mutator. The second statement follows from the computation∑

µ

ã†µãµ =
∑
µ

∑
ν1ν2

〈
ψν1

∣∣∣ψ̃µ〉〈ψ̃µ∣∣∣ψν2〉 a†ν1aν2 =
∑
ν1ν2

〈ψν1 |ψν2〉 a†ν1aν2

=
∑
ν1

a†ν1aν1 .

11One might argue that this is part of the postulate that established the existence of the many-
particle wavefunction, but for clarity we present them as separate here.

12That is, a property from single-particle quantum mechanics.
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Assumptions and Specifics of the Model

3 Assumptions and Specifics of the Model

Now that we have the necessary vocabulary for many-body quantum mechanics, it
is time to discuss the family of models we will be using throughout this thesis.

We consider a ring-shaped nano-structure that is connected to several (usually two
in this thesis) reservoirs of electrons via identical leads13 (see fig.3.2). Our first
assumption is that all of these reservoirs are macroscopic, in thermal equilibrium,
and isolated from each other. This means that we may use equilibrium statistical
physics for the reservoirs when deriving an expression for the current in the system,
even though we are treating a transport problem14. Specifically, we will use Fermi-
Dirac statistics to determine the availability of electrons in certain states. Since our
reservoirs are macroscopic, electrons leaving or entering will have negligible effects
on for example the chemical potential of the reservoir. As we are not interested in
reflections off of the reservoirs, we assume that the leads connecting the reservoirs
to the dot (from quantum dot, used interchangeably here with nano-structure) are
infinitely long (i.e., connection to the dot at n = 0, the reservoir at n → ∞). Also
we use the simplest model possible to describe these leads, as we are not interested
in their properties.

This model will be a tight-binding approach15, where we assume that our Warnier
states are so strongly localised that we may take them to be delta functions at each
site, yet the hopping amplitude t remains finite and is the same in all leads (See
fig.3.1). Additionally we work at low temperatures so that we may neglect phonons.
All of the above is captured in the Hamiltonian

Hres = Hr =
∑
α

Hα
r = −t

∑
α,n

[
c†α,ncα,n+1 + h.c.

]
. (3.0.1)

It will often turn out to be more convenient to work in momentum space where
(3.0.1) is diagonal,

Hα
r = − t

N

∑
n

[(∑
k

e−iknc†k

)(∑
k′

eik
′(n+1)ck′

)
+ h.c.

]
,

= − t

N

∑
k,k′

eik
′

(∑
n

e−in(k−k′)

)
c†kck′ + h.c.

 ,
= −t

∑
k

[
eikc†kck + h.c.

]
,

=
∑
k

[−2t cos(k)]c†kck =
∑
k

εkn̂k. (3.0.2)

In this approach we only look at one band and we also completely neglect any cross-
sectional structure that the wave functions may posses. Since the dot has no such
structure, it cannot have an effect on our answer and only serves to create more

13Identical in the sense that they have the same hopping parameter t and coupling strength t′,
see below.

14However this is still a full non-equilibrium problem.
15Another reason for this approach is that there are numerical results available for these types of

systems, and simulations are inherently discrete.
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t t t t t t t t

Figure 3.1: A cartoon of the tight binding model of the leads described in this section.

transport modes in the wire, which could be incorporated via some pre-factor if
needed.

This ties in with our assumption that the charge carriers (we will use this word and
“electrons” interchangeably) in the leads and the dot are spinless fermions, so we do
not have to worry about any spin effects (again our dot has no spin or spin-coupling
to speak of, so it is irrelevant). In general we assume our charge carriers to be non-
interacting, and the transport to be coherent, i.e. the charge carriers always stay at
the same momentum (elastic scattering). When we calculate the current later on we
will consider a constant symmetric chemical potential bias of some width V which is
centred about the middle of this cosine band.

The dot consists of several sites arranged in a ring-like structure between which
electrons may hop and we associate to each site an energy. In symbols

Hdot = Hd =
∑
γ

εγd
†
γdγ −

∑
γ,γ′

tγ,γ′d
†
γdγ′ , (3.0.3)

where it should be noted that tγ,γ′ = tγ′,γ . Recall from our discussion of second
quantisation that we should fix an ordering of the sites when we start to work with
a concrete system. This will be done when we do so.

We now need a tunnelling Hamiltonian (we will sometimes also call it the tunnelling
operator) that connects the leads to the dot. This is clearly achieved by

Htunnel = Ht =
∑
β

Hβ
t = −

∑
β

tβ

[
c†β,1dβ,0 + h.c.

]
, (3.0.4)

where (β, 0) denotes the site in the dot where the lead is connected, so this site is
part of the dot, not the lead.

Thus our total Hamiltonian will be

H =
∑
α,k

εkc
†
α,kcα,k −

∑
β

tβ

[
c†β,1dβ,0 + h.c.

]
+
∑
γ

εγd
†
γdγ −

∑
γ,γ′

tγ,γ′d
†
γdγ′ ,

which acts on a Hilbert space that has the structure

H = Hres ⊕Hdot ⊕Hres,

where the reservoir spaces are infinite dimensional, but the dot space is finite dimen-
sional. In particular it is no loss to view Hr/d : Hr/d → Hr/d, but this does not apply
to Ht : H → H. These observations will be reflected in the computations in later sec-
tions, and in particular we shall see that the latter one can become very problematic
(see chapter 8). One could say that Ht causes a hybridisation of the different parts of
the Hilbert space, and if this is only a weak coupling, one expects the physics to be
for the most part interpretable in terms of processes within the subspaces. This will
indeed turn out to be the case if we consider a certain physical limit (the wideband
limit).
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Figure 3.2: A cartoon of the model for the case of a 4 site ring with two identical connecting leads and
uniform hopping within the dot and an on-site energy ε at the upper link.
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The Landauer-Büttiker Formalism

4 The Landauer-Büttiker Formalism

As an Ansatz for the wave function caused by an electron coming from reservoir α
with momentum k, we recall from the previous section that in the reservoirs, the
electrons are free, hence their wave functions are plane waves. In a sense we zoom
out so that we only see the reservoirs, which is meaningful since experimentally one
measures the current across the entire system. Additionally the way we “measure”
here is using so called quantum point contacts, i.e. we do not consider the effect of
the structure of the measuring device on the system16. So it is natural to write

〈n, β|ψα,k〉 =
1√
2π

{
e−ikn +Rα(Ek)e

ikn α = β

Tβ,α(Ek)e
ikn α 6= β

. (4.0.1)

The quantities that we are interested in are the reflection coefficient Rα(Ek) and
the transmission coefficient Tβ,α(Ek). Since we use only positive k, the relation
between Ek and k is one to one, and hence letting the coefficients be functions of Ek
is unambiguous. Naturally we demand that probability is conserved, i.e.

|Rα(Ek)|2 +
∑
β 6=α
|Tβ,α(Ek)|2 = 1, (4.0.2)

of which we will show that it holds in general later. The normalisation follows from
the condition

〈
ψα,k

∣∣ψα,k′〉 = δ(k − k′), this is straightforward to check (keeping in
mind that parts of the wave function in different leads are orthogonal). Another
identity that is the linchpin of this normalisation calculation is∑

β 6=α
|Tβ,α(Ek)|2 =

∑
β 6=α
|Tα,β(Ek)|2, (4.0.3)

which we will also derive later once we have explicit formulae for the coefficients.

We now use our assumption of macroscopic reservoirs to compute the current Iα into
reservoir α as

Iα =

ˆ fα(ε)
d

dε
(Iα→α) +

∑
β 6=α

fβ(ε)
d

dε

(
Iβ→α

)dε.

To determine the functions d
dεI

α→β(ε) and d
dεI

α→α(ε) (that is, the current densities
with respect to energy), we compute the differentials of the current contributions as
the probability current per k multiplied by the electron charge. In symbols we have,
using (2.1.3),

dIα→α = −edJα→α = −ejα→α(k)dk,

= −e ~
2mi

(〈n, α|ψα,k〉∗ ∂n [〈n, α|ψα,k〉]− c.c.) dk,

=
e~k
2πm

(
1− |Rα(k)|2

)
dk,

=
e

h

(
1− |Rα(ε)|2

)
dε.

16Hence the name, as we treat it as a point, which has no internal structure.
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The Landauer-Büttiker Formalism

Similarly,

dIα→β = − e
h
|Tα,β(ε)|2dε.

Plugging this into our integral and using (4.0.2) and (4.0.3) we find the Landauer-
Büttiker formula

Iα =
e

h

ˆ
dε

∑
β 6=α
|Tα,β(ε)|2 (fα(ε)− fβ(ε))

 , (4.0.4)

whose power lies in the fact that it has completely separated the general macro-
scopic statistical physics from the microscopic details of the particular system under
consideration.

The groundwork for this equation was laid by Rolf Landauer17 and Markus Büttiker18

in their individual 1957 and 1986 papers [11] and [5] (see equation (2)) respectively.
It has proven to be invaluable in the study of multi-terminal mesoscopic devices
(see [3]), and has inspired many attempts at generalisations to more sophisticated
models (see chapter 8).

If we take the limit of 0 temperature, (4.0.4) simplifies to (assuming µα > µβ ∀β)

Iα =
e

h

∑
β 6=α

ˆ µα

µβ

|Tα,β(ε)|2dε, (4.0.5)

which is even more intuitive than (4.0.4). From the formula one sees that the cur-
rent consists of an integral over the electrons that have the proper wavenumbers to
participate in transport (i.e. they are available in reservoir β, and reservoir α has
room for them) multiplied by their probability to make it to reservoir α (see also the
cartoon in fig.4.1).

α β
Tαβ

Tβα

Figure 4.1: A cartoon of the situation described in this section, for T = 0.

17German-American, 1927-1999.
18Swiss, 1950-2013.
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Assuming we have two reservoirs L and R and Taylor expanding to leading order in
the chemical potential bias µL/R = µ±eV/2 one finds for the linear (DC) conductance

G :=
dI

dV
=
e2

h
|TL,R(µ)|2. (4.0.6)

Note the appearance of the famous conductance quantum e2/h. However the trans-
mission need not be an integer, so there is no sign of conductance quantisation in
this model, but one conductance quantum is still the maximal conductance for the
point contact we are considering here.

Now we need to compute the coefficients of the plane waves, which we shall tackle in
the next section.

15



A Green Function Approach to the Transmission and Reflection Coefficients

5 A Green Function Approach to the Transmission and
Reflection Coefficients

5.1 The Lippmann-Schwinger Equation

We begin by writing our Hamiltonian as H =: H0 +Ht =: H0 + V , then we want to
solve

(H0 + V )
∣∣ψα,k〉 = Ek

∣∣ψα,k〉 .
To do this we make the scattering Ansatz (compare to (4.0.1)) ψα,k = ψ0

α,k + ψsα,k,

where we assume that H0ψ
0
α,k = Ekψ

0
α,k. In general this is quite a strong assumption

(note that all three wavefunctions involved are indexed by the same quantum num-
bers) and is not always meaningful, but it is possibly exact (as it is for our case) and
not a perturbation theory approach. However, in our case we have assumed elastic
scattering, and additionally the scattered contributions have to respect the dispersion
of the wire. In other words, we can only consider energies Ek that are contained in
the cosine-band, where we can always find a matching eigenfunction. One can now
rewrite the problem as follows

V
∣∣ψα,k〉 = (Ek −H0)

[∣∣ψ0
α,k

〉
+
∣∣ψsα,k〉] = (Ek −H0)

∣∣ψsα,k〉 .
This motivates us to investigate the formal expression∣∣ψα,k〉 =

∣∣ψ0
α,k

〉
+
∣∣ψsα,k〉 =

∣∣ψ0
α,k

〉
+

1

Ek −H0
V
∣∣ψα,k〉 .

Clearly this is not well defined, as Ek − H0 has non-trivial kernel, and in general
differential operators are not uniquely invertible if no boundary conditions are im-
posed. A way to fix this is to add an infinitesimal imaginary part ±i0+ =: ±iη in
the denominator, which will turn out to be justified later. This gives rise to the
Lippmann-Schwinger equation∣∣∣ψ±α,k〉 =

∣∣ψ0
α,k

〉
+

1

Ek −H0 ± iη
V
∣∣∣ψ±α,k〉 ,

named after Bernard Lippmann19 and his doctoral advisor Julian Schwinger20, who
introduced it in their 1950 paper [13]21.

Using the operator identity

1

A−B
=

1

A
+

1

A
B

1

A−B
, (5.1.1)

which may be readily proven by simply multiplying by A − B on either the left or
the right, we can express this equation more conveniently22 as∣∣∣ψ±α,k〉 =

∣∣ψ0
α,k

〉
+

1

Ek −H ± iη
V
∣∣ψ0
α,k

〉
. (5.1.2)

19American, 1914-1988.
20also American, 1918-1994, awarded the 1965 Nobel prize for physics together with Richard

Feynman (American, 1918-1988) and Sin-Itiro Tomonaga (Japanese, 1906-1979) for their work on
quantum electrodynamics.

21It is interesting to note that this approach pre-dates the one due to Landauer and Büttiker.
22The word convenient is relative, we get rid of the recursion but we get back a harder operator

to invert. This is a prime example of Rembert Duine’s (Dutch, 1975-) “wet van behoud van elende”.
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In our case,
〈
n, β

∣∣∣ψ0
α,k

〉
= 0 (β 6= α), and

〈
n, α

∣∣∣ψ0
α,k

〉
= −i

√
2/π sin(kn). The first

equality comes from our assumption that the reservoirs are isolated, and the second
uses the sin because of the boundary condition that the wave function vanishes at
n = 0, and the factor −i is chosen for convenience.

We now multiply (5.1.2) with the bra 〈n, β| to find

〈n, β|ψα,k〉 =
〈
n, β

∣∣ψ0
α,k

〉
+

〈
n, β

∣∣∣∣ 1

Ek −H + iη
Ht

∣∣∣∣ψ0
α,k

〉
,

= −tα
〈
n, β

∣∣∣∣ 1

Ek −H + iη

∣∣∣∣0, α〉〈1, α∣∣ψ0
α,k

〉
,

= itα

√
2

π
sin(k)

〈
n, β

∣∣∣∣ 1

Ek −H + iη

∣∣∣∣0, α〉 ,
where we have used the expression (compare to (3.0.4))

Ht = −
∑
β′

tβ′
(∣∣0, β′〉 〈1, β′∣∣+

∣∣1, β′〉 〈0, β′∣∣) . (5.1.3)

We now revert the identity (5.1.1), which yields

〈n, β|ψα,k〉 = itα

√
2

π
sin(k)

(〈
n, β

∣∣∣∣ 1

Ek −H0 + iη

∣∣∣∣0, α〉 ,

+

〈
n, β

∣∣∣∣ 1

Ek −H0 + iη
Hβ
t

1

Ek −H + iη

∣∣∣∣0, α〉) .
The first term vanishes, as the resolvent does not induce any transitions from reservoir
α to reservoir β. In the second term we can simplify the sandwiched operator by first
noting that the tunnel Hamiltonian will move the state out of the dot system and
into reservoir β, so H0 becomes just Hβ

r . After also inserting our expression (5.1.3)

for Hβ
t , the result can be written

〈n, β|ψα,k〉 = −itαtβ

√
2

π
sin(k)

〈
n, β

∣∣∣∣ 1

Ek −Hβ
r + iη

∣∣∣∣1, β〉〈0, β

∣∣∣∣ 1

Ek −H + iη

∣∣∣∣0, α〉 ,
:= i

√
2

π

tαtβ
t

sin(k)eikn
〈
0, β
∣∣GR(Ek)

∣∣0, α〉 , (5.1.4)

where in the last line we have used the result〈
n, β

∣∣∣∣ 1

εk −Hβ
res + iη

∣∣∣∣1, β〉 = −e
ikn

t
,

which is derived in appendix A, and we have defined

GR/A(Ek) :=
1

Ek −H ± iη
. (5.1.5)

If we now compare (5.1.4) with our plane wave Ansatz (4.0.1), we see that

Tβ,α(Ek) = 2i sin(k)
tαtβ
t

〈
0, β
∣∣GR(Ek)

∣∣0, α〉 . (5.1.6)
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We now repeat this recipe to find the reflection coefficient,

〈n, α|ψα,k〉 =
〈
n, α

∣∣ψ0
α,k

〉
+

〈
n, α

∣∣∣∣ 1

Ek −H + iη
Hα
t

∣∣∣∣ψ0
α,k

〉
,

only now the first term does not vanish. We insert our expression for Hα
t , play our

game with (5.1.1), and cancel terms with the same logic as before, which results in

〈n, α|ψα,k〉 = −i
√

2

π
sin(nk) + i

√
2

π

t2α
t

sin(k)eikn
〈
0, α

∣∣GR(Ek)
∣∣0, α〉 .

Comparing this again to (4.0.1) now gives us

Rα(Ek) = 2i sin(k)
t2α
t

〈
0, α

∣∣GR(Ek)
∣∣0, α〉− 1. (5.1.7)

5.2 A Note on Green Functions

The operators defined in (5.1.5) are called the retarded and advanced Green function
respectively. Keep in mind that despite their names they are not functions. More-
over, they are not what a mathematician would call or a classical physicist would
have called a Green function. Green functions were originally introduced by mathe-
matical physicist George Green23 in an 1828 paper on his mathematical formulation
of electromagnetism. He used it to solve Poisson’s24 differential equation for the elec-
tric field, deriving the now well known integral expressions for the electric potential.
In mathematical terms, given a differential operator L(x), a Green function for L is
a “function” that satisfies

L(x)G(x, x′) = δ(x− x′),

i.e. the response of the system to a unit excitation at x′. This is useful since once we
have the Green function, we can solve any inhomogeneous problem L(x)f = g via

L(x)

ˆ
G(x, x′)g(x′)dx′ =

ˆ
δ(x− x′)g(x′)dx′ = g(x).

So in a sense, the Green function inverts the operator L. It is because of this property
that we call (5.1.5) Green functions, as these are in a sense inverses of the Hamil-
tonian. Since we usually sandwich GR/A between the states |0, α〉 and |0, β〉 and
the result is related to transmission and reflection, it can also be thought of as a
propagator of our system, i.e. given the “excitation” |0, α〉 to what extent does it
“propagate” to the states |0, β〉 (note however that a proper propagator also takes
into account the times at which the measurements are made). The simplest concrete
example of a propagator is the case of the free one dimensional particle, where we
can write

G(x, t;x′, t′) =
1

i~
θ(t− t′)

〈
x

∣∣∣∣exp

(
− i
~

(t− t′)H
)∣∣∣∣x′〉 ,

23British, 1793-1841, also known for Green theorem.
24French, 1781-1840, known for lots of things.
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where θ is the Heaviside step function. One can evaluate the matrix element as
follows〈
x

∣∣∣∣exp

(
− i
~

(t− t′)H
)∣∣∣∣x′〉 =

ˆ
dkdk′

{
〈x|k〉

〈
k

∣∣∣∣exp

(
i~∂2

x

2m
(t− t′)

)∣∣∣∣k′〉〈x′∣∣k′〉} ,
=

1

2π

ˆ
dk

{
exp

(
ik(x− x′)− i~k2

2m
(t− t′)

)}
,

=

√
m

2π~it
exp

{
−m(x− x′)2

2i~(t− t′)

}
,

where the last step can be obtained by completing the square in the exponent and
then using a standard Gaußian integral. In conclusion, the (retarded) free particle
propagator in one dimension is given by

G(∆x; ∆t) =
1

i~
θ(∆t)

√
m

2π~it
exp

{
−m∆x2

2i~∆t

}
.

5.3 The Dyson equation, Self Energy, and Effective Broadening

The next step in our derivation is to compute the matrix elements〈
0, β
∣∣∣GR/A(Ek)

∣∣∣0, α〉 .
To find them we consider the states |a〉, |b〉 of the dot system and once again dance
around with (5.1.1),

GRa,b(Ek) : =

〈
a

∣∣∣∣ 1

Ek −H + iη

∣∣∣∣b〉 ,
=

〈
a

∣∣∣∣ 1

Ek −Hd + iη
+

1

Ek −H0 + iη
Ht

1

Ek −H + iη

∣∣∣∣b〉 ,
=

〈
a

∣∣∣∣ 1

Ek −Hd + iη

∣∣∣∣b〉+

〈
a

∣∣∣∣ 1

Ek −H0 + iη
Ht

1

Ek −H0 + iη

∣∣∣∣b〉 ,
+

〈
a

∣∣∣∣ 1

Ek −H0 + iη
Ht

1

Ek −H0 + iη
Ht

1

Ek −H + iη

∣∣∣∣b〉 .
Recall that the tunnel operator only ever moves states out of the dot system into a
reservoir or the other way around. This means that since we consider only states in
the dot, the term involving only one instance of Ht is zero, and in the term containing
Ht twice, only terms involving the same reservoir will remain. We also introduce some
new objects, namely the local Green functions for the dot and the reservoirs, which
we denote

gR/A(Ek) =
1

Ek −Hd ± iη
, gR/Aα (Ek) =

1

Ek −Hα
r ± iη

. (5.3.1)

Note that we can write (5.1.4) with this notation as

〈
n, β

∣∣gRβ (Ek)
∣∣1, β〉 = −1

t
eikn, (5.3.2)
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so in fact we already computed the 1st “column” of the local reservoir Green function.
With this, the result of our computation above reduces to

GRa,b(Ek) =
〈
a
∣∣gR(Ek)

∣∣b〉+

〈
a

∣∣∣∣∣gR(Ek)

[∑
α

Hα
t g

R
α (Ek)H

α
t

]
GR(Ek)

∣∣∣∣∣b
〉
.

Now, what else is there to do but introduce more notation? This time we define
the so called self-energy as the object in square brackets in the previous equation,
explicitly

ΣR/A(Ek) =
∑
α

Hα
t g

R/A
α (Ek)H

α
t . (5.3.3)

Similarly to the Green functions, we have that
(
ΣR/A

)†
= ΣA/R. Using all of our

fancy new notation and keeping in the back of our minds that we work exclusively
in the dot, we drop the bras and kets to find the Dyson equation25

GR = gR + gRΣRGR. (5.3.4)

Iterating (5.3.4) yields

GR = gR + gRΣRgR + gRΣRgRΣRgR + · · · ,

=
(

id + gRΣR +
(
gRΣR

)2
+ · · ·

)
gR.

We recognize the right hand side as the Neumann26 series, whose result is analogous
to the geometric series. Thus we have

GR =
1

1− gRΣR
gR =

1

(gR)−1 − Σ
=

1

Ek −Hd − Σ(Ek)
.

One can repeat this scheme for the advanced Green function as well to find for the
global Green function restricted to the dot system

GR/A(Ek) =
1

Ek −Hd − ΣR/A
. (5.3.5)

A striking feature of this result is that our infinitesimal imaginary term appears to
have vanished, but this is not entirely true, it has hidden itself in our definition
of the self-energy. However, one should note that the self-energy generates a finite
imaginary part by itself that is independent of the convergence factor we introduced
earlier. Additionally, the self-energy has a physical meaning that is independent of
our particular definition. It represents the contribution to the energy of an excitation
due to interactions with the system it is a part of, and is frequently used to define
some form of effective mass for a (quasi-)particle. Thus the real and imaginary parts
of Σ contain information about these excitations. The real part represents a shift in
resonance and can be used to find an expression for the aforementioned effective mass.
The imaginary part of Σ can be interpreted as a decay rate for the excitation when
one keeps in mind the unitary time evolution operator exp

{
− i

~ tH
}

. Thus it makes

25named after Freeman Dyson (American, 1923-), who is also known for the Dyson series, which
represents a formal solution to the time-dependent Schrödinger equation, and in popular culture for
the concept of the Dyson sphere.

26After Carl Neumann (German, 1832-1925).
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sense to define an effective broadening (note the similarity to taking the imaginary
part of a complex number)

Γ = i(ΣR − ΣA), (5.3.6)

which is obviously self-adjoint. A useful identity involving this broadening is

GR −GA = −iGRΓGA = −iGAΓGR, (5.3.7)

which one can prove as follows,

GR −GA = GR
1

GA
GA −GR 1

GR
GA = GR

(
1

GA
− 1

GR

)
GA,

= GR
(
Ek −Hd − ΣA − Ek +Hd + ΣR

)
GA,

= (−i)iGR
(
ΣR − ΣA

)
GA = −iGRΓGA.

The second equality in (5.3.7) is obtained by taking Hermitian conjugates. Coming
back to the self-energies, for our system we can explicitly compute them as

ΣR/A =
∑
α

t2α
〈
1, α

∣∣gRα ∣∣1, α〉 |0, α〉 〈0, α| = −1

t
e±ik

∑
α

t2α |0, α〉 〈0, α| . (5.3.8)

We can use this to also obtain the broadening

Γ(Ek) =
1

2
sin(k)

∑
α

t2α |0, α〉 〈0, α| =:
∑
α

Γα(Ek). (5.3.9)

This now gives us everything we need to compute the operator Ek − Hd − ΣR and
invert it to find the retarded Green function.

Finally we present a formal proof of the identities (4.0.2) and (4.0.3). We begin by
computing

|Tβ,α|2 = 4 sin2(k)
t2αt

2
β

t2
∣∣〈0, β∣∣GR∣∣0, α〉∣∣2,

= 〈0, β|Γβ|0, β〉
〈
0, β
∣∣GR∣∣0, α〉 〈0, α|Γα|0, α〉 〈0, α∣∣GA∣∣0, β〉 ,

=
〈
0, β
∣∣ΓβGRΓαG

A
∣∣0, β〉 .

Notice now that 〈0, β′|Γβ = 0 for any β′ 6= β, which allows us to write

|Tβ,α|2 = Tr
(
ΓβG

RΓαG
A
)
. (5.3.10)

We can now exploit (5.3.7) and the fact that the trace is invariant under cyclic
permutations (Tr(AB) = Tr(BA)) and linear to show (4.0.3),∑

|Tβ,α|2 = Tr
(
ΓGRΓαG

A
)
− Tr

(
ΓαG

RΓαG
A
)
,

= Tr
(
ΓαG

AΓGR
)
− Tr

(
ΓαG

RΓαG
A,
)

= Tr
(
ΓαG

RΓGA
)
− Tr

(
ΓαG

RΓαG
A
)
,

=
∑

Tr
(
ΓαG

RΓβG
A
)

=
∑
|Tα,β|2.

We also compute

|Rα|2 = 1 + 4 sin2(k)
t4α
t2
∣∣〈0, α∣∣GR∣∣0, α〉∣∣2 + 2 sin(k)

t2α
t

〈
0, α

∣∣i (GA −GR)∣∣0, α〉 ,
= 1 + Tr

(
ΓαG

RΓαG
A
)
− Tr

(
ΓαG

RΓGA
)
,

which immediately implies (4.0.2) when paired with the third line from the previous
computation.
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6 Proof of Concept: a Single Impurity

We consider the case of a single site system with energy ε connected to two reservoirs,
and tunnelling amplitude t′ on both sides. Thus we have

Hd +Ht = ε |s〉 〈s| − t′
[
|L, 1〉 〈s|+ |R, 1〉 〈s|+ h.c.

]
,

where have denoted the occupied state of the dot as |s〉. This system is easy to treat
since the Hilbert space of the dot is one dimensional, and hence inverting operators
is trivial. The first step is to compute the only matrix element of GR/A, which is
simply the function

〈s|GR/A |s〉 =
1

ω − ε− 〈s|ΣR/A |s〉
.

For convenience we will make no notational distinction between 〈s| Ô |s〉 and Ô itself
in the rest of the section. It is a straightforward procedure to use (5.3.8) and (5.3.9)
to find

ΣR/A = −2
(t′)2

t
e±ik, ΓL/R = −2

(t′)2

t
sin(k), Γ = −4

(t′)2

t
sin(k), (6.0.1)

which allows us to write

ΣR/A = Re
[
ΣR
]
∓ i

2
Γ.

We use now the derivation of (5.3.10) to compute

|TL,R(ω)|2 = ΓLΓRG
AGR = ΓLΓR

1

ω − ε−Re [ΣR] + i
2Γ

1

ω − ε−Re [ΣR]− i
2Γ
,

= 2π
ΓL(ω)ΓR(ω)

Γ(ω)

1

π

1
2Γ(ω)

(ω − ε−Re [ΣR(ω)])2 + (1
2Γ(ω))2

, (6.0.2)
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Figure 6.1: A plot of the transmission (6.0.3) as a function of k in the limit of equal coupling (t′ = t)
for several values of ε. Note that transmission is perfect for ε = 0 and decays overall for larger values, as

one would expect.
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Figure 6.2: A plot of the current versus bias in the equal coupling limit obtained by numerically
integrating (6.0.3) according to (4.0.4) at 0 temperature for the same values of ε as in fig.6.1. Note the

levelling out of the current for biases larger than 4t, this is due to the finite bandwidth of the cosine
band (which is exactly 4t). For the particular case of ε = 0 we see that the current is linear and behaves

in accordance with I = GV , (see (4.0.6)).

which has the form of a Lorentzian27 (more commonly known as the Cauchy distri-
bution outside physics) of width Γ/2 centred at ε + Re

[
ΣR
]
, reinforcing our earlier

discussion of these quantities. If we now substitute the expressions (6.0.1) into (6.0.2)
we arrive at the explicit form

|TL,R(ω)|2 =
4 sin2(k) (t′)4

t2(
ω − ε− 2 cos(k) (t′)2

t

)2
+ 4 sin2(k) (t′)4

t2

,

where one should keep in mind that k and ω are related by ω = −2t cos(k). We will
consider two cases in detail, the first being t = t′ and the second the wide-band limit
(t� t′).

Setting t = t′, if we substitute the dispersion relation into the above formula, some-
thing peculiar happens,

|TL,R(k)|2 =
(2t sin(k))2

ε2 + (2t sin(k))2
=

[
1 +

(
ε

2t sin(k)

)2
]−1

, (6.0.3)

which is plotted in fig.6.1. Notice that the peak of the transmission always occurs for
k = π/2, independently of the value of ε. This is quite strange, as one would expect ε
to behave like a threshold, below which very little current is transmitted, but this is
not the case (see fig.6.2). Instead we see that the current behaves linearly for small
bias and that for V = ±4t it becomes constant, as the band is full. Increasing the
barier strength ε seems to only decrease the magnitude of the current and smoothen
out the profile, which makes sense as the variations on the bias scale are then small
compared to the barier strength.

However, one could argue that it is indeed correct as follows. It is a canonical
exercise in any introductory quantum mechanics course to compute the transmission

27After Hendrik Lorentz (Dutch, 1853-1928), awarded the 1902 Nobel prize together with fellow
Dutchman Pieter Zeeman (1865-1943) for discovering and explaining the Zeeman effect. Also well
known for laying part of the mathematical framework of special relativity.
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Figure 6.3: A plot of the current versus bias in the equal coupling limit obtained by numerically
integrating (6.0.3) according to (4.0.4) for a range of temperatures and the fixed value ε = t (compare
to fig.6.2). From blue to red we have kbT = 0, 0.1t, t, 10t. From this image on could conclude that
thermalisation very quickly destroys the special properties of the system that we have discussed so far.

coefficient for a delta-function potential with strength ε. This is essentially the same
system as we have here, a single long wire with an impurity. One can use the plane
wave Ansatz (4.0.1) and the boundary conditions to the Schrödinger equation (2.1.4)
to derive

T (ω) =
1

1 + ε2m
2~2ω

, (6.0.4)

where ω(k) = ~2k2/2m is the free electron dispersion. Using the definition of velocity
v(k) = ∂kω(k) one can rewrite this as

T (k) =

[
1 +

(
ε

v(k)

)2
]−1

,

which reproduces both (6.0.3) and (6.0.4) when the relevant dispersion is chosen.
Besides supporting the claim that our result is correct, this suggests that in this
regime the important quantity is not energy, but velocity. We can now explain the
behaviour of our result for the transmission coefficient as a peculiarity of the cosine-
band, since the velocity is always maximal about ω = 0 or equivalently k = π/2 for
this dispersion relation.

On the other hand the effects of temperature (seen in fig.6.3) are what one would
expect. At low temperatures we see the same overal profile but with slightly re-
duced magnitude, this happens because as soon as temperature is finite the fermi-
distributions in (4.0.4) are no longer step functions and hence it becomes less likely
to have an electron available on the left and less likely to have an available state
for it on the right. This effect only becomes stronger for higher temperatures, but
it also comes into play that we have centered our bias at the transimission maxi-
mum, meaning that even though thermalisation allows a larger portion of the band
to participate, these states are less likely to be transmitted.

We now consider the wide-band limit, i.e. t� t′. From (6.0.2) and (6.0.1) we expect
to see very narrow peaks (Lorentzians even tend to delta functions in the limit of
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Figure 6.4: A plot of the transmission (6.0.2) as a function of energy for several values of epsilon, in
the wideband limit (10t′ = t). Since the effective broadening Γ is proportional to t′ and the

transmission function is a Lorentzian, we expect to see delta-function like transmission centred at the
relevant value of ε, and this is indeed the case.

vanishing width) centered approximately around ε, as the self energy is also very
small (conversely we saw in fig.6.1 that the width was compareable to the band size
for the case of equal hopping amplitudes). Looking at fig.6.4, that is indeed what
we see. For the current an exact result was can be found in [1] (equation (63)) with
which we compare our results,

Ist =
1

π

Γ′LΓ′R
Γ′

(
arctan

(
V/2− ε

Γ′/2

)
+ arctan

(
V/2 + ε

Γ′/2

))
, (6.0.5)

where Γ′R/L = 2π(t′)2 and Γ′ = Γ′L + Γ′R . As can be seen from fig.6.5, the results are
in excellent agreement, even though the exact result was derived using very different
methods.

Note that this time we observe exactly what we expected to see earlier in this section.
There is a small amount of current even at low bias due to tunnelling, and as soon
as the barrier strength is reached the current rises sharply until it fills the band.
The band width is now much less since the system is bottlenecked at the quantum
dot in this limit, hence the current essentially vanishes altogether when the barrier
strength exceeds the band width of the dot. Qualitatively one can see that the
overall magnitude of the current is about a factor 100 smaller than before. This is
due to the fact that we chose t/t′ = 10 and t′ = 1 in our computations, and the
inverse square of this ratio is present in the prefactor of (6.0.2). A plot of the effects
of finite temperature can be found in fig.6.6, which exhibits behaviour that is very
similar to the previous case, with the only major difference being the fact that the
onset of the current happens more steeply, which is due to the thermal broadening
effects described before, only this time there is much to gain from this broadening at
first as the current feels the transmission peak earlier, albeit at a reduced strength
(|fL(ω)− fR(ω)| ≤ 1).
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Figure 6.5: A plot of the current versus bias in the wideband limit obtained by numerically integrating
(6.0.2) according to (4.0.4) at 0 temperature (in dashed black) together with the exact result (6.0.5)
(in gray) at 0 temperature for several values of ε. Clockwise: ε = 0, 0.25t, 3t, 1.25t. Visually, there

seems to be no discernible deviations. Note the scale of the ordinate in the bottom right graph, here the
on-site energy is larger than the bandwidth and practically no current flows.
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Figure 6.6: The numerically integrated current versus from fig.6.5 above, but this time we fixed ε = t
and considered a range of temperatures. From blue to red we have kbT = 0, 0.2t′, 0.4t′, t′.
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7 An Asymmetric 4-Site Ring

In this section we explore the results of our theory when applied to a ring of four sites
(see fig.3.2), we consider again the wideband limit t � t′ and set t = t′′. We choose
the basis {|1〉 , |2〉 , |3〉 , |4〉} for the Hilbert space on the dot, where the numbering is
as in fig.3.2. Hence we can write

Hd = ε |2〉 〈2| − t
[
|1〉 〈2|+ |1〉 〈3|+ |2〉 〈4|+ |3〉 〈4|+ h.c.

]
(7.0.1)

7.1 Computing the Green Function

Since our Hilbert space is now four-dimensional, inverting operators is no longer
entirely trivial. Rather, we will need to invert a 4 × 4 matrix to find the Green

function, GR/A =
(
ω −Hd − ΣR/A

)−1
, where one should note that ω is short-hand

notation for the matrix ωδij . We then have using (5.3.8) and (7.0.1)

(
GR
)−1

=


ω 0 0 0
0 ω 0 0
0 0 ω 0
0 0 0 ω

−


0 −t −t 0
−t ε 0 −t
−t 0 0 −t
0 −t −t 0

− Σ


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1



=


ω − Σ t t 0
t ω − ε 0 t
t 0 ω t
0 t t ω − Σ

 ,
where we have defined Σ := − (t′)2

t eik. Using either Cramer’s28 rule or a computer

algebra programme the inverse is readily found to be GR = Ĝ/G with

Ĝ =


ω(ω − ε)(ω − Σ)− Ĝ41 Ĝ21 Ĝ31 Ĝ41

−tω(ω − Σ) ω(ω − Σ)2 − Ĝ32 Ĝ32 Ĝ21

−t(ω − ε)(ω − Σ) 2t2(ω − Σ) (ω − ε)(ω − Σ)2 − Ĝ32 Ĝ31

t2(2ω − ε) Ĝ21 Ĝ31 Ĝ11

 ,

and G = det
((
GR
)−1
)

= (ω − Σ)
(
ω(ω − ε)(ω − Σ)− 2t2(2ω − ε)

)
.

From this way of presenting GR it is clear that it possesses a lot of symmetries which
can be related to symmetries of our model. The most obvious one is that the matrix
Ĝ is symmetric, which is related to the fact that our system is invariant under time
reversal. Another natural symmetry is that Ĝij = Ĝσ(i)σ(j) where σ is the map that
exchanges 1 and 4, but fixes 2 and 3. This can be understood as a consequence of
the reflection symmetry of our model, i.e. from the point of view of sites 2 and 3,
the system looks identical to the left and right, nor is there an inherent difference
between sites 1 and 4.

Additionally one can see a pattern in the the occurrence of powers of t. The elements
Ĝ12 and Ĝ13 are linear in t, as they only represent a single hop. The elements Ĝ32

28Swiss, 1704-1752.
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and Ĝ41 are quadratic in t, as they involve two hops (note that sites 2 and 3 are
not directly connected, hence perhaps the factor 2 as there are two equivalent ways
from 2 to 3). The diagonal terms are special, as they involve both terms without t
and quadratic terms, however these quadratic terms always appear with a negative
sign, so one could argue they represent transport away from the site. A peculiar
phenomenon that one notices when one more closely examines the indices of these
negative sign terms is that they always involve the site itself and the site farthest
away (so 1-4 and 2-3 are paired).

Strikingly, the terms without t always seem to involve factors associated with all
sites except the site in question (concretely ω− ε is associated with site 2, ω = ω− 0
with 3, and ω−Σ with 1 and 4). This means that when the energy ω of the electron
resonates with some other site this term vanishes and the only thing left is the outflow
term. One could apply a similar analysis to the terms Ĝ12 and Ĝ13 to notice that for
example Ĝ12 vanishes when the electron energy either resonates with site 1 or site 3.

Since we are interested in the element GR41 to compute the transmission, we should
mention the following somewhat difficult to interpret identity

GR41 =
GR43G

R
21

GR32

+
GR42G

R
31

GR23

−GR11,

or equivalently

GR11 =
GR12G

R
31

GR23

+
GR13G

R
21

GR32

−GR14.

The first identity can be viewed in light of the discussion above as extracting the
outflow term from GR11 using the other elements of the Green function to replicate
the term without t. It seems that this needs to be done by taking some sort of
mixed average of transport from 1 to 4 via 2 and 3 rather than for example via the
more intuitive expression GR12G

R
24 (aside from the fact that this has the wrong units,

another argument against its occurrence could be that it is indistinguishable from
the expression GR12G

R
21 and hence cannot occur or cancels). It is interesting to note

that the same equalities hold for the local Green function of the dot, which suggests
that this effect is something that is inherent to the dot. Alternatively it is possible
that this is simply a coincidental degeneracy due to the high symmetry of the model
which allows only a few components of the Green function to behave independently.

7.2 Behaviour of the Transmission

The relevant element of the Green function for transmission is as before〈
4
∣∣GR∣∣1〉 =

t2

ω − Σ

2ω − ε
ω(ω − ε)(ω − Σ)− 2t2(2ω − ε)

,

and using the same formula as for the single site system we find

|TL,R(ω)|2 = ΓL(ω)ΓR(ω)
∣∣〈4∣∣GR(ω)

∣∣1〉∣∣2,
= 2πt4

ΓL(ω)ΓR(ω)

ΓLR(ω)
LΓLR(ω)/2(ω −Re [Σ(ω)])M (ω), (7.2.1)
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Figure 7.1: Left column: The transmission (7.2.1) versus energy for the 4-site ring fig.3.2 with t′′ = t,
t′/t = 1/3 (this was chosen for numerical reasons, as the transmission was difficult to integrate for

smaller values due to the narrowness of the peaks), and several values of ε; Clockwise:
ε = 0, 0.75t, 10t, 2.5t. Right column: A plot of the current versus bias computed from these

transmission functions according to (4.0.4) at 0 temperature; Clockwise: ε = 0, 0.75t, 10t, 2.5t. The
insets depict the same physical feature as seen in both the current and the transmission.
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ϵ → ∞
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Figure 7.2: A cartoon of an equivalent characterisation of the nano-structure in the limit of infinite
on-site energy. In this regime the top link is inaccessible and hence the system behaves like an isolated
3-chain with the same hopping (i.e. the lower link has been stretched into a straight line and the top

site has been left out). For the transmission and current in this regime see fig.7.3.

where we have introduced

ΓL/R := −(t′)2

t
sin(k), ΓLR = ΓL + ΓR, Σ = Re [Σ]∓ i

2
ΓLR,

in analogy with the single site system. Additionally Lγ(x0) represents a Lorentzian
distribution of width γ centred at x0 and

M (ω) :=
(2ω − ε)2

(ω(ω − ε)(ω −Re [Σ])− 2t2(2ω − ε))2 + (ω(ω − ε)ΓLR/2)2
. (7.2.2)

The first few terms in (7.2.1) are very reminiscent of (6.0.2), but centred at ω−Re [Σ]
instead of ω − ε − Re [Σ]. This can be understood as the contribution of the lower
link of the system, where no barrier is present (looking at fig.7.1 one sees that this
peak remains unchanged as ε varies). Additional features arise due to the modulating
function M , such as the other peaks and also strikingly a zero in the transmission,
which upon inspection of (7.2.2) is seen to occur for ω = ε/2 (see the inset in the top
right graph in fig.7.1).

Intuitively this zero makes some sense, since to an approaching electron with energy
ε/2 the system appears to be asymmetric, which one can expect to result in a phase
difference between the upper and lower links of the ring. This is in fact what happens,
recall that

〈
4
∣∣GR∣∣1〉 = Ĝ41/G = t2(2ω − ε)/G. One can interpret Ĝ41 ∝ 2ω − ε as

ω − 0 + ω − ε =: ∆ω3 + ∆ω2, i.e. the propagation factor has two contributions, one
from the lower link and one from the upper link. If ω = ε/2 we see that ∆ω2 = −∆ω3

and thus their amplitudes are the same but the contributions are exactly out of phase
and interfere destructively, hence this 0 is a self-interference effect.

The locations of the peaks in the transmission are easy to interpret, they correspond
to energy levels of the system. If one takes the full wideband limit (t′ → 0), Σ
vanishes and the peaks in the Green function should be located at the eigenvalues of
Hd. One can do some analytical computations in the limiting cases ε = 0 and ε→∞
(for the next part we work in units of t). In the former case we can simply consider
the Hamiltonian of an isolated chain of 4 sites with periodic boundary conditions,

H =


0 −1 −1 0
−1 0 0 −1
−1 0 0 −1
0 −1 −1 0

 ,
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Figure 7.3: A plot of the transmission versus energy (left) and the current versus bias (right) for the
limit case described in fig.7.2. The vertical dashed black lines are located at ω = ±

√
2t, the energy

levels of this limit system. The slight deviation comes from the fact that our numerical computations
are not in the true wideband limit.

which has eigenenergies E = ±2, 0, where 0 has multiplicity 2. Comparing to the
case ε = 0 in fig.7.1 (top left) we see that the two are in excellent agreement (up to
a small shift due to our plots not being in the true wideband limit). For the latter
case, the top link becomes inaccessible, and we can simply consider the Hamiltonian
of a chain of length 3 (see fig.7.2),

H =

 0 −1 0
−1 0 −1
0 −1 0

 ,
with the resulting energies being E = ±

√
2, 0. These results are summarized visually

in fig.7.3 and fig.7.4.

However, fig.7.4 reveals more interesting information, namely that the slope of one of
the eigenenergies that is shifted away from 0 with increasing ε is the same initially as
the slope of the line that indicates the 0 in the transmission. This level corresponds
for ε = 0 to the eigenstate 1√

2
(|2〉 − |3〉), which intuitively does not contribute to the

transmission directly. It also has exactly the asymmetry we discussed in the case of
the zero so it makes sense that for small ε these phenomena behave similarly.

7.3 The Current

It is now a simple matter of integration according to (4.0.4) to obtain the current,
the results can be seen in the lower half of fig.7.1.

As one would expect from the above discussion, the overall profile of the current
is dominated by the central peak in the transmission, and the smaller features can
readily be linked to the previous section. In the limit of large ε (bottom right in
fig.7.1 or on the left in fig.7.3) we see that the only features left are the three levels
we discussed earlier. It is however interesting to note that a stronger barrier amplifies
the current instead of diminishing it as we saw for the single impurity. One can see
this in fig.7.5, where the maximal current as a function of the on-site energy is plotted.
This is due to the fact that the energy levels for the 3-chain are fully contained in
the band, whereas the non-zero energy levels for the 4-chain are right on the edge.
In light of the zero in the transmission one could argue that additionally for finite
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Figure 7.4: A plot of the extremising values of ω for the transmission (7.2.1) and the eigenenergies of
Hd (visually indistinguishable) as a function of ε.

barrier strengths the current does not reach its maximum due to interference effects
between the two links (note also that for ε/t ≈ 4 when the zero leaves the band, the
current does not grow much more).

Finally we consider the non-zero temperature case, plotted in fig.7.6. As expected,
nothing surprising happens and the interpretation is the same as for the single site
system (mutatis mutandis).
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Figure 7.6: The current from fig.7.1, but this time we fixed ε = 2.5t and considered a range of
temperatures. From blue to red we have kbT = 0, 0.1t, t, 10t.
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8 Outlook

In this section we discuss (semi-heuristically) some possible generalisations of the
model and the challenges they present. At the same time this section can be seen as
a limited overview of recent and current research in the field of mesoscopic transport
physics.

One might have noted that in our discussion so far, we have been able to avoid using
any non-equilibrium or many-body techniques, even though we were dealing with a
transport problem on a mesoscopic scale. In a sense we have been very fortunate,
because we shall see that this will no longer work for more sophisticated models.

8.1 Interactions and the Meir-Wingreen Formula

Including nearest neighbour interactions within the dot sounds innocent enough, but
this additional term causes our single-particle, elastic scattering approach to break
down completely. This means that we cannot use (4.0.4) to calculate the current,
even if we had the full “interacting single particle Green function”29. We now need
to consider many-particle processes, which entail keeping track of several particles
at once, even for the single-particle Green function. Additionally the interactions
induce non-trivial correlations between particles that extend into the leads. Consider
for example the case of the 4-ring where a particle is present at say site 2, then a
particle that wants to tunnel from the left reservoir into the dot (site 1) is penalised
for doing so by the nearest-neighbour interaction. Fortunately, there does exist a
suitable generalisation of the Landauer-Büttiker formalism.

In 1992, Yigal Meir30 and Ned Wingreen31 published [14], a paper in which they
proposed (in their own words) a Landauer formula for the current through an inter-
acting region. Note that this paper was published 45(!) years after Landauer’s own
work [11]. Their formula in its full generality (eq.(6) in [14]) cannot be meaningfully
stated here, as it makes use of the machinery of the Keldysh formalism, which is far
beyond the scope of this thesis. However, if one assumes that the coupling of the
nano-structure to the leads is proportional in the sense that ΓL(ω) = λΓR(ω) for
some scalar λ, a suitable superposition of the leads can be chosen in such a way that
the current formula simplifies to

Iα = −2e

h

ˆ
dE [fL(E)− fR(E)] Im

{
tr
(
ΓLRG

R
)}
, (8.1.1)

where ΓLR = ΓLΓR/(ΓL + ΓR) (eq.(9) in [14], compare with (6.0.2)).

The imaginary part of the Green function is usually called the spectral function and
loosely speaking it encodes how well excitations in the system can be described as
free particles (one can show that for diagonal/quadratic Hamiltonians this is always
a delta function), the product with ΓLR suggests some additional broadening of this
function due to the coupling. Heuristically speaking one can read the above formula

29We will not give precise definitions in this section, as it requires theory beyond the scope of this
thesis.

30Israeli, 19??-.
31American, 19??-.
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as saying that per energy E one needs to measure availability in the reservoirs and
multiply by a factor that described how free-particle-like this excitation will be, i.e.
to what extend it propagates like the scattered states we have been considering in
this thesis. It is important to note that the proportionally assumption does NOT
hold for the 4-ring from chapter 7. The Γ’s are operators, and in the case of the 4-ring
not all sites in the dot are coupled to the (same) leads, violating the proportionally
assumption. It would however be valid for the single impurity from chapter 6.

A class of models called Anderson-type models usually do satisfy this requirement.
They were introduced by Paul Anderson in his 1961 paper [2] (compare section II
of this paper to chapter 3 of this thesis). Instead of there being “spatial” levels like
in our case, the model considers a single site that has one or several energy levels32,
all of which are coupled to the reservoirs33. Additionally these models differ from
what we treat here in that they almost always include spin-effects. For this family
of Hamiltonians, the above current formula (8.1.1) is very useful.

If one defines the interacting self energy according to ΣR/A = (gR/A)−1 − (GR/A)−1

(compare with (5.3.4)), one can write GR−GA = GRΣGA with Σ = ΣR−ΣA. Using
this and (5.3.6) we can rewrite (8.1.1) as

Iα =
ie

h

ˆ
dE [fL(E)− fR(E)] tr

{
ΓLR(GR −GA)

}
,

=
ie

h

ˆ
dE [fL(E)− fR(E)] tr

{
ΓLΓR

ΓL + ΓR
GRΣGA

}
,

=
e

h

ˆ
dE [fL(E)− fR(E)] tr

{
GAΓRG

RΓL (−iΓL − iΓR)−1 Σ
}
,

=
e

h

ˆ
dE [fL(E)− fR(E)] tr

{
GAΓRG

RΓLΣ−1
0 Σ

}
,

where Σ0 is the non-interacting self-energy. Note the similarities with (5.3.10), and
it even seems plausible that in the non-interacting limit the two coincide (provided
the limit is not singular).

8.2 AC-Conductance

Another possible, more modest generalisation would be to consider what happens if
the system is driven by AC instead of the more battery-like constant chemical poten-
tial difference we have considered so far. The quantity of interest in such situations is
often the AC conductance G(ω). A difficulty that immediately becomes apparent is
that this is not an equilibrium quantity, and non-equilibrium techniques are beyond
the scope of this thesis.

Fortunately, it is possible to compute the linear response AC conductance (we shall
make no notational distinction) using only equilibrium objects. This is due to the
so called Kubo formula, which we shall derive in the next section. We will then
heuristically show how one can write down expressions for the relevant observables
and attempt to apply them to our system. Recall that we in fact already have a

32The canonical Anderson model has a single level, see also [1] which treats a slightly more general
model.

33Of course one can construct models where this symmetry is broken, but those are unusual.
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prediction for the DC limit of this quantity, see (4.0.6). In the last section we will
show that this prediction is recovered if one considers limω↓0G(ω). For details one
may consult chapters 6 and section 7.2.2 of [4].

8.2.1 Linear Response Theory

We wish to investigate the dynamics of the Hamiltonian

H = H0 + V (t),

where we assume that we have solved the time independent problem H0 and we view
V as a small perturbation. To this end we introduce the so called interaction picture
state vectors and operators,∣∣∣ψ̂(t)

〉
:= e

i
~H0t |ψ(t)〉 , Ô := e

i
~H0tOe−

i
~H0t.

The main idea behind these definitions is to extract the “trivial” evolution due to
H0. The governing equation in this picture is given by

i~∂t
∣∣∣ψ̂(t)

〉
=
(
i~∂te

i
~H0t

) ∣∣∣ψ̂(t)
〉

+ e
i
~H0t

(
i~∂t |ψ(t)〉

)
= V̂ (t)

∣∣∣ψ̂(t)
〉
.

This suggests the existence of a unitary operator that evolves a state from say time
t0 to t, i.e. ∣∣∣ψ̂(t)

〉
= Û(t, t0)

∣∣∣ψ̂(t0)
〉
,

and hence we must have Û(t0, t0) = 1. Substituting this into the governing equation
we find that Û is determined by the recursive integral equation

Û(t, t0) = 1 +
~
i

ˆ t

t0

ds V̂ (s)Û(s, t0).

If the perturbation is small or if we are content with linear response, we can say to
first order in V̂ that

Û(t, t0) ' 1− i~
ˆ t

t0

ds V̂ (s). (8.2.1)

Suppose now that V (t) = ϑ(t − t0)H ′, i.e. the perturbation is switched on at some
time t0. What happens to the ensemble average of an operator at times later than
t0? Recall from statistical mechanics that

〈O(t)〉 =
1

Z0

∑
n

〈n(t)|O|n(t)〉 e−βEn ,

where Z0 is the partition function in equilibrium. We assume that the perturbation
does not change the energies, the states, or the form of the operator O, but only their
evolution (hence we use Z0). In light of our discussion above this can be rewritten as

〈O(t)〉 =
1

Z0

∑
n

〈n̂(t0)|Û †(t, t0)Ô(t)Û(t, t0)|n̂(t0)〉 ,
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but by definition |n̂(t0)〉 = |n〉. We now use (8.2.1) and collect the terms up to linear
order to find

〈O(t)〉 ' 〈O〉0 − i~
ˆ t

t0

ds ϑ(s− t0)
〈[
Ô(t), Ĥ ′(s)

]〉
0
, (8.2.2)

where 〈. . .〉0 denotes an equilibrium average. This is the celebrated Kubo formula,
which was first derived in [10] by Ryogo Kubo34. The power of this result lies in
the fact that a deviation from equilibrium can be computed solely using equilibrium
wavefunctions and statistics.

If the perturbing operator has the form H ′(t) = Af(t), where f is simply a function,
the result simplifies considerably in frequency space. To see this we first introduce
the so called retarded correlation function,

〈O(t)〉 − 〈O〉0 =: δ 〈O(t)〉 =:

ˆ ∞
t0

ds CRO,H′(t, s).

If we are not interested in transient behaviour, we can send t0 → −∞. CR should
then only be a function of the time difference and we have

δ 〈O(t)〉 =

ˆ ∞
−∞

ds CRO,A(t− s)f(s) =
(
CRO,A ∗ f

)
(t),

which is convolution. Since F (g ∗ h) = F(g)F(h) we find in the frequency domain
that

δ 〈O(ω)〉 = CRO,A(ω)f(ω). (8.2.3)

8.2.2 Conductivity and Conductance from the Kubo Formula

We now present a sketch of the derivation of the conductivity and conductance in
linear response. Consider a systems of electrons that are perturbed by a spatially uni-
form, but time dependent external electromagnetic field. If we make the gauge choice
ϕext = 0 we have simply that Eext(t) = −∂tAext(t), or Aext(ω) = (1/iω)Eext(ω). Re-
call that the conductivity tensor σ is defined by the relation

Ie(r, ω) =

ˆ
dr′ σ(r, r′, ω)E(ω),

and the linear conductance G as

Ie(ω) = G(ω)V.

This definition agrees with (4.0.6) since we work in linear order of V in this section.
Note that Ie(r, ω) is the current density, whereas Ie(ω) is the total current.

To see how the electrons couple to the field in linear order, we take a look at the
classical case. One can show that upon applying the Euler-Lagrange equations, the
following Lagrangian yields the correct equations of motion,

L =
1

2
mẋ2 − qϕ+ qẋ ·A.

34Japanese, 1920-1995.
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The conjugate coordinate is then the so called kinematic momentum p = mẋ + qA,
which results in the Hamiltonian

H =
1

2m
(p− qA)2 + qϕ.

Taking the functional derivative with respect to A yields

δH = −qẋ · δA = −
ˆ

dr (qJ) ·A,

and hence

H ′(t) = eAext(t) ·
ˆ

dr J(r).

However, the particle current density operator J is not exactly the same as in (2.1.3)
due to the presence of the field (due to its explicit appearance above in H ). One
can show that in this case J = J∇ + e

mAρ(r), where J∇ is the usual particle cur-
rent density operator and ρ(r) the electron density. These contributions are called
the paramagnetic and diamagnetic term respectively (note that the second term is
proportional to −q). Nevertheless, we may disregard this second contribution in H ′,
as it generates a higher order correction, thus

H ′(ω) =
e

iω
E(ω) ·

ˆ
dr J∇(r). (8.2.4)

Since Ie(r, ω) = −e 〈J(r, ω)〉, we compute the right hand side and compare with the
definitions of the quantities above.

〈J(r, ω)〉 =
〈
J∇(r)

〉
(ω) +

〈 e

iωm
E(ω)ρ(r)

〉
'
〈
J∇(r)

〉
(ω) +

e

iωm
E(ω) 〈ρ(r)〉0 ,

as incorporating effects of the fields on the electron density gives higher order terms
that we do not consider here. It remains to tackle to first term, for this we use what
we derived in the last section, specifically (8.2.3). We may use this form since (8.2.4)
is obviously of the form Af(ω). Additionally we only need to keep this deviation
from equilibrium, as our equilibrium state carries no net current. Putting all of this
together we arrive at

〈J(r, ω)〉 '
[ˆ

dr′
e

iω
CRJ∇(r)J∇(r′)(ω) +

e

iωm
〈ρ(r)〉0

]
E(ω),

from which we can read off that

σαβ(r r′, ω) =
e2 〈ρ(r)〉0
miω

δ(r− r′)δαβ −
e2

iω
Ξαβ(r, r′, ω), (8.2.5)

where Ξ is the retarded correlation tensor in frequency space between the α and β
components of the particle current density operator evaluated at r and r′ respectively.

To find the conductance we need to integrate the above current density over some
cross-section. Since field lines of electromagnetic fields away from sources are sub-
manifolds, we can pick an equipotential plane as this cross-section on which we have
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coordinates yz and a perpendicular coordinate z. This is helpful as in these coordi-
nates E(ω) = E(ω)ẑ. Performing this integral amounts to

Ie(z, ω) =

ˆ
dyz ẑ · Ie(z,yz, ω) =

ˆ
dyz

ˆ
dr′ẑ ·

[
σ((yz, z), r

′, ω)E(ω)ẑ′
]
,

=

ˆ
dyz

ˆ
dy′z

ˆ
dz′ẑ ·

[
σ((yz, z), (y

′
z, z
′), ω)E(ω)ẑ′

]
.

We are only interested in the real part of the current, and noting that
´

dyz ẑ·J =: I(z)
is the total particle current at cross-section z we can reduce this to

Ie(z, ω) =

ˆ
dz′ Re

[
ie2

ω
CRI(z)I(z′)

]
E(ω).

However, due to current conservation, there should be no dependence on z. It is
good to recall here that we are interested in the conductance measured across the
reservoirs, so we are always far away from the nano-structure, where this argument
holds undoubtedly. By similar reasoning one can show that in fact there is also no
dependence on z′ in the current-current correlator and then the integration over z′

simply gives rise to the voltage difference (
´

dz′E = V ) and we find

G(ω) = −Im
[
e2

ω
CRII(ω)

]
. (8.2.6)

In the context of our system we can write

H ′ =
eV

2
cos(ωt)(NL −NR),

where Nα is the operator that counts the number of particles in reservoir α. Note

that it is related to the particle current by the relation 〈Iα〉 =
〈
Ṅα

〉
, and in steady

state we have 〈IL〉 = −〈IR〉 = (〈IL〉−〈IR〉)/2. From elementary quantum mechanics
we know that the time derivative of an operator is equal to its commutator with the
Hamiltonian, hence Ṅα = i[H,Nα]. Therefore the quantity we need to compute is
the Fourier transform of

CRI(t),I(0) ∝ iθ(t)
〈

[ṄL(t)− ṄR(t), ṄL(0)− ṄR(0)]
〉

0
.

The first step is to determine [H,Nα] = [Ht, Nα] (because that is the only part of the
Hamiltonian that does not conserve the number of particles in reservoir α), which
we do in k-space where Nα is diagonal and there are coefficients tk such that

[Ht, Nα] =
∑
k,k′

[
tkdαc

†
k + t∗kd

†
αck, Nk′

]
,

=
∑
k,k′

{
tkdα[ck, Nk′ ] + t∗kd

†
α[c†k, Nk′ ]

}
,

=
∑
k

{
tkdα[ck, Nk] + t∗kd

†
α[c†k, Nk]

}
,

=
∑
k

{
−tkdαc†k + t∗kd

†
αck

}
= t′c†0dα − h.c..
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This result is rather intuitive, since the first term in the final result adds a particle
to the reservoir and hence gives a positive contribution to Ṅα (the second terms is
interpreted in the same way).

However, this poses a problem. The operator whose correlator we need to calculate
connects the subspaces of our Hilbert space and hence we need the full wavefunc-
tions to evaluate the expectation values involved in the ensemble average. Despite
having solved the DC problem, we do not have these wavefunctions, as we only con-
sidered scattering Ansätze and these say nothing about what happens inside the
nano-structure. One would in all likelihood not see this in linear response, but in
principle the internal processes of the nano-structure can be non-trivial and take a
long time to decay (see chapter 4 of [16], for example fig 4.15.).

8.2.3 Relation to Landauer-Büttiker

Even though we are not able to compute G(ω) with the methods provided in this
thesis, we can still show that if one makes similar assumptions as in our derivation
of (4.0.4) (i.e. using scattering states and taking the DC limit), the two formulae
agree. If we expand (8.2.6) we find

G(ω) = −e
2

ω
Im

[ˆ ∞
−∞

dt ei(ω+iη)t(−i)θ(t) 〈[I(t), I(0)]〉0
]
, (8.2.7)

where η = 0+ is a convergence factor. We begin by evaluating the commutator. To
this end we expand the current operator I in the scattering basis λ = (α,E) (see
(2.5.1)), this yields

I =
∑
λ,λ′

jxλλ′c
†
λcλ′ ,

where the matrix element35

jxλλ′ =
1

2mi

ˆ
dr ψ∗λ

(
→
∂ x −

←
∂ x

)
ψλ′ ,

carries the superscript x to remind us that it was calculated in the position repre-
sentation (this will become important later). The time dependence comes into the
current operator via the creation and annihilation operators, but since we work in
the scattering basis their time dependence is trivial and we can write

〈[I(t), I(0)]〉0 =
∑

λ,λ′,ν,ν′

jxλλ′j
x
ν,ν′ e

i(Eλ−Eλ′ )t
〈

[c†λcλ′ , c
†
νcν′ ]

〉
0
.

Using the commutator identity (2.4.4) we find

[c†λcλ′ , c
†
νcν′ ] = c†λ[cλ′ , c

†
ν ]cν′ + [c†λ, c

†
ν ]cλ′cν′ + c†νc

†
λ[cλ′ , cν′ ] + c†ν [c†λ, cν′ ]cλ′ .

From (2.4.3) one easily deduces that

[c†a, c
†
b] = 2c†ac

†
b, [ca, cb] = 2cacb, [c†a, cb] = 2c†acb − δab,

35The arrows indicate on which side the derivative acts.
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and hence after some manipulations

[c†λcλ′ , c
†
νcν′ ] = δλ′νc

†
λcν − δλν′c

†
νcλ′ .

Consider the quantity 〈c†acb〉0, if a 6= b it should vanish, as there is no movement in
equilibrium. This leaves the case a = b, then we are computing the equilibrium aver-
age of the number operator, which is simply the fermi-dirac distribution f evaluated
at the relevant energy. Thus 〈c†acb〉0 = δabf(Ea) and〈

[c†λcλ′ , c
†
νcν′ ]

〉
0

= δλ′νδλν′ [f(Eλ)− f(Eλ′)] .

With the additional remark that jxab = (jxba)
∗ we have simplified (8.2.7) to

G(ω) = −e
2

ω

∑
λ,λ′

|jxλλ′ |
2 [f(Eλ)− f(Eλ′)] Im

[ˆ ∞
0

dt(−i)ei(ω+iη+Eλ−Eλ′ )t
]
.

It is easy to see that the integral evaluates to

Im

[ˆ ∞
0

dt(−i)ei(ω+iη+Eλ−Eλ′ )t
]

= Im

[
1

ω + iη + Eλ − Eλ′

]
,

= − η

η2 + (ω + Eλ − Eλ′)2
,

which becomes −πδ(ω + Eλ − Eλ′) for η ↓ 0. If we now take the DC limit

lim
ω↓0

G(ω) = lim
ω↓0

e2π
∑
λ,λ′

|jxλλ′ |
2 f(Eλ)− f(Eλ′)

ω
δ(ω + Eλ − Eλ′),

we see that the fraction converges to a derivative due to the delta function and the
DC limit, in symbols

G(0) = e2π
∑
λ,λ′

|jxλλ′ |
2

(
−∂f(Eλ)

∂Eλ

)
δ(Eλ − Eλ′),

and therefore in the limit of zero temperature,

G(0) = e2π
∑
λ,λ′

|jxλλ′ |
2δ(Eλ − µ)δ(Eλ − Eλ′).

Recalling that λ = (α,E), we can replace
∑

λ →
∑

α
m
2π

´
dE to find

G(0) = e2π
m2

4π2
2
∣∣∣jx(L,µ)(R,µ)

∣∣∣2,
which already looks very similar to (4.0.6). When we compare the definitions of j and
T from our computation of the current operator elements in chapter 4, we see that
there is a factor ~ difference due to unit convention, and another factor (2π/m)2 as
we computed T via energy and j in space. Putting this together we find the desired
equality

lim
ω↓0

G(ω)scatt.states =
e2

h
|TL,R(µ)|2.
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8.3 Transient Behaviour

All of our investigations thus far, even the two more sophisticated cases above, have
focused on obtaining steady-state quantities of the system. As mentioned in the
previous section, cases where transient behaviour is non-trivial are known. For ap-
plications in electronics, knowledge of start-up effects and response to changes in
voltage, etc. is important. To this end one would have to quench the system at some
time t0 and study the resulting time dependent dynamics.

There exists an extension to the Landauer-Büttiker formula that aims to give a fully
dynamical description. It was introduced in 2014 with the paper [18], but the author
is not aware of any work based on this description other than that given in the paper.

Another pen and paper approach is to use perturbation theory in the form of the
quantum master equation (see [7]). In this approach one writes down differential
equations that govern the time-evolution of the density operator ρ36 which has the
property that 〈O〉 = Tr[ρO]. The structure of these equations is (in certain approx-
imations/limits) comparable to the Kolmogorov equations from stochastic processes
theory. The method is perturbative in the sense that one needs to calculate contribu-
tions in orders of the dot-reservoir coupling when the usual von Neumann equation
of motion i~∂tρ = [H, ρ] is approximated by [Hdot, ρdot] on the RHS. Usually (e.g. for
the Anderson model and most other simple cases) this zero-eth order term is purely
real and will only cause unitary oscillations. In analogy with the self-energy we have
seen arise in chapter 5, the higher order contributions will include finite imaginary
terms that induce actual transitions.

Alternatively one could turn to numerics, as in [16].

All avenues are areas of ongoing research and any attempt to treat them is beyond
the scope of this thesis.

36Note that often this approach does not consider the full density operator, but rather the re-
striction to the nano-structure (via tracing out the reservoirs), which is commonly projected onto
n-particle state manifolds.

42



The Reservoir Integral

Appendix A The Reservoir Integral

In this section we will derive the result〈
n, β

∣∣∣∣ 1

εk −Hβ
res + iη

∣∣∣∣1, β〉 = −e
ikn

t
,

which was used in section 5 (see (5.1.4)). The first step is to use the basis of plane
waves for the chain (which is also an eigenbasis for the sandwiched operator) to write〈

n, β

∣∣∣∣ 1

εk −Hβ
res + iη

∣∣∣∣1, β〉 =

ˆ π

0

〈
n, β

∣∣∣ψ(0)
β,k′

〉 1

εk − εk′ + iη

〈
ψ

(0)
β,k′

∣∣∣1, β〉 dk′,

=

ˆ π

0

2

π
sin
(
nk′
)

sin
(
k′
) 1

−2t(cos(k)− cos(k′)) + iη
dk′,

=
1

π

ˆ π

−π

sin(nk′) sin(k′)

−2t(cos(k)− cos(k′)) + iη
dk′.

To evaluate this integral, we make the substitution z = eik
′

and use the complex
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Figure A.1: A plot of the real (blue) and imaginary (red) part of the integrand above. The parameters
were set to n = 20, k = π/2, t = 1, η = 1.

exponential form for the trigonometric functions. This transforms the problem into
a contour integral along the unit circle in the complex plane, which we will evalu-
ate using the Residue Theorem, a useful consequence of Cauchy’s integral formula.
An excellent reference for the complex analysis required for this section is [12], in
particular chapter VI §1 (Theorem 1.2). In symbols we have〈

n, β

∣∣∣∣ 1

εk −Hβ
res + iη

∣∣∣∣1, β〉 =
1

π

˛
C

(
1
2i

)2
(zn − 1

zn )(z − 1
z )

−2t(cos(k)− z
2 −

1
2z ) + iη

i

z
dz,

=
i

4πt

˛
C

1

zn+1

(z2n − 1)(z2 − 1)

2 cos(k)z − z2 − 1− iη
t z

dz,

where C denotes the unit circle in C. It is easy to see that the integrand has three
poles, one at zero and two others at

z± := cos(k)− iη

2t
±

√(
cos(k)− iη

2t

)2

− 1.

Thus we can write rather compactly〈
n, β

∣∣∣∣ 1

εk −Hβ
res + iη

∣∣∣∣1, β〉 =
i

4πt

˛
C

1

zn+1

(z2n − 1)(z2 − 1)

(z − z+)(z − z−)
dz =:

i

4πt

˛
C
g(z)dz.
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Figure A.2: A plot of the moduli of g and z±, left and right respectively (z+ in blue and z− in red).
The parameters were set to n = 6, k = π/2, t = 1 and η = 10−6 (left) and t = 1 and η = 10−4 (right).

As once can see in fig.A.2, only one of z± is in C at any time, and which one it is
depends on k. Additionally one has to be wary of branch cuts when considering the
limit η → 0+ in z±. One can check (either numerically or by hand) that

0 < k < π/2 : z± → e∓ik, z− ∈ Int(C)
π/2 < k < 3π/2 : z± → e±ik, z+ ∈ Int(C)
3π/2 < k < 2π : z± → e∓ik, z− ∈ Int(C)

. (A.0.1)

Thus it is our aim to compute〈
n, β

∣∣∣∣ 1

εk −Hβ
res + iη

∣∣∣∣1, β〉 = − 1

2t
(Res0(g) + Resz±(g)) .

An observation that will prove useful in simplifying the result is that z+z− = 1,
independent of k, t and η.

We start with the residue at 0. Obviously g has a pole of order n+1 at the origin and
so to compute the residue we need to find the Laurent expansion in some annulus
enclosing 0. However, we can ignore the z2n term, as it will not contribute to the
terms we are interested in. We then expand

1− z2

zn+1

[
1

(z − z+)(z − z−)

]
=

1

zn+1

1− z2

z+ − z−

[
1

z − z+
− 1

z − z−

]
,

=
z−(n+1)

z+ − z−
∞∑
j=0

((
1

z−

)j+1

−
(

1

z+

)j+1
)

(zj − zj+2).

From which we extract the term of order −1 and simplify (using z+z− = 1) to find

Res0(g) =
( 1
z− )n+1 − ( 1

z+
)n+1 − ( 1

z− )n−1 + ( 1
z+

)n−1

z+ − z−
= (z+)n + (z−)n.

Now the residue at z±, for this we use the technique of Lemma VI §1 1.3 from [12],
this yields

Resz±(g) =
((z±)2n − 1)((z±)2 − 1)

(z±)n+1(z± − z∓)
= (z±)n − (z∓)n.

Putting all of the above together we see that〈
n, β

∣∣∣∣ 1

εk −Hβ
res + iη

∣∣∣∣1, β〉 = − 1

2t
(Res0(g) + Resz±(g)) = −(z±)n

t
,
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and noting from (A.0.1) that the root inside C always converges to eik, we find the
desired result.
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