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Abstract

By means of the Boltzmann equation we study the time evolution of the magnon distri-
bution function for a magnetic insulator in contact with a normal metal. We consider
a quasi-equilibrium realized by dc pumping of magnons, including Gilbert damping and
magnon-magnon scattering processes. We show that the magnon distribution is well
described using a Bose-Einstein distribution ansatz with time dependent magnon tem-
perature and chemical potential. Furthermore we show that this model breaks down for
low energies, and we calculate the crossover energy to be ε∗ ≈ 2.5K. In order to study
low-energy behavior, we derive the scattering rate due to magnon-magnon collisions.
Starting from a Heisenberg exchange Hamiltonian, we exploit the Holstein-Primakoff
transformation to find the magnon scattering amplitude. Using Fermi’s golden rule, the
scattering rate is derived.
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Chapter 1

Introduction

Magnetic properties of materials ultimately arise due to specific orientations of electron
spin [1]. In ferromagnetic materials, the magnetic ground state is occupied when all
spins are aligned. For this state to be reached, the temperature of the system must be at
absolute zero. At temperatures above 0K, excitations will emerge due to the availability
of thermal energy. Such excitations are called spin waves, which can propagate through
the material.

Within the language of quantum mechanics, a spin wave can be described as a quasi-
particle called a magnon. Magnons carry energy as well as linear and angular momentum.
They obey the Bose-Einstein statistics, as a consequence of their bosonic nature. Similar
to other bosons, magnons can undergo Bose-Einstein condensation, in which a macro-
scopic occupation of the ground state is reached.

In order to realize such a phase of matter, a certain critical magnon density must
be reached. There are different methods with which this can be achieved. Microwave
pumping has been expected [2] and observed [3] to create magnon Bose-Einstein conden-
sates. Another proposed method is the so called ’dc electronic pumping’ [4]. Consider a
conducting metal attached to a magnetic insulator. By applying a current to the con-
ductor, electrons will scatter at the interface of the materials, transferring momentum
to the insulator. This will cause a slight disturbance of the insulator spin density, by
conservation of angular momentum. Therefore, magnons are effectively injected into the
magnetic insulator.

Ref. [5] predicts the existence of dc pumped magnon Bose-Einstein condensates. The
steady-state behavior of a thin film insulating magnet is studied, with a magnon dis-
tribution driven by the combination of a thermal gradient and electric potential. The
thermal magnons undergo quasi-equilibration, as magnons are created and annihilated
continuously.

In this thesis we go beyond the work of Ref. [5], which considers the system in quasi-
equilibrium, and study the full time evolution of the magnon distribution function by
means of the Boltzmann equation. We include Gilbert damping, which decreases the
magnon density due to interactions with phonons, as well as elastic magnon-magnon
scattering, which plays an important role in the equilibration of the magnon cloud. As
in Ref. [5], we limit ourselves to a thin film magnet system, enabling us to use a spatially
uniform magnon temperature.

In chapter 2, the theoretical framework for magnon dynamics is drawn and explored,
deriving regimes in which different interactions dominate the Boltzmann equation. In
chapter 3, we solve the Boltzmann equation with a Bose-Einstein distribution as an
ansatz, and find equations for a time dependent magnon chemical potential and temper-
ature. We find regions wherein the chemical potential converges to a non-zero value, thus
showing a quasi-equilibrium state. In chapter 4 we derive the explicit form of magnon-
magnon scattering processes, starting from a Heisenberg model Hamiltonian. Chapter 5
summarizes our results and offers an outlook for future research.
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Chapter 2

Theoretical framework

Spin waves are a quantum mechanical phenomenon. They are excitations of the magnetic
ground state of a system (see Fig. 2.1). So as to describe them properly, we look at these
excitations as quasiparticles called magnons. Using the Holstein-Primakoff transforma-
tion (see chapter 4), the spin operators can be expressed in terms of magnon creation
and annihilation operators, since magnons are bosonic particles.

Figure 2.1 – In the ferromagnetic ground state, all spins are aligned. When excited,
the individual spins precess around this ground state, creating spin waves. Copyright:
Addison-Wesley 2000.

The system studied in this paper consists of a conducting metal attached to a thin film
ferromagnetic insulator. See Fig. 2.2. Magnons are created by dc electronic pumping
through the conductor. As magnons are bosons, they are described by Bose-Einstein
statistics, with a proper magnon distribution function. This approach of describing
magnons will not capture all quantum mechanical effects, such as interference between
magnons, however it will give more insight into the nonequilibrium macroscopic behavior
within the magnetic film. Due to the fact that we are studying a thin film, we approximate
the magnon temperature to be spatially uniform. As a result, our magnon distribution
function depends on time and energy only.

We define the magnon distribution g(ε, t) with the following formula:∫
dεD(ε)g(ε, t) = nm, (2.1)

with D(ε) the density of states and nm the density of magnons. Assuming a gapless
quadratic magnon dispersion in terms of the spin stiffness Js, the magnon density of

states is D(ε) =
√
ε/4π2J

3/2
s [6].

In order to study the dynamics of the magnon distribution, we must consider the
different interactions involved. Pumping of electrons causes magnetic excitations in the
insulator, therefore increasing the magnon density. There is a decrease in density due to
Gilbert damping. Furthermore, we include particle number preserving magnon-magnon
scattering, which is important for the thermalization of the magnons. This results in a
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Figure 2.2 – A schematic representation of the setup studied. A non-magnetic conductor,
with respective electronic temperature and spin accumulation TL, µL, is placed on top
of a ferromagnetic insulating film of thickness d. Within the magnetic film, a non-zero
magnon chemical potential µm arises, which relaxes to the phonon temperature Tp.

Boltzmann equation of the following form:

∂g(ε, t)

∂t
= Γe + ΓG + Γmm, (2.2)

with Γe representing the electron-magnon interaction, ΓG the Gilbert damping and Γmm
the magnon-magnon scattering. The explicit forms of the interactions are given below
(see Refs. [5] and [7]).

Γe = −
( g↑↓
~πsd

)
(ε− µL)

[
g(ε, t)− nB

(
ε− µL
kBTL

)]
,

ΓG = −
(

2α

~

)
ε

[
g(ε, t)− nB

(
ε

kBTp

)]
,

Γmm = −2π

~

∫∫∫
dε′dε′′dε′′′D(ε′)D(ε′′)D(ε′′′)|V |2δ(ε+ ε′ − ε′′ − ε′′′)

× {g(ε, t)g(ε′, t) (g(ε′′, t) + 1) (g(ε′′′, t) + 1)

−g(ε′′, t)g(ε′′′, t) (g(ε, t) + 1) (g(ε′, t) + 1)} .

(2.3)

Here g↑↓ is the real part of the spin mixing conductance, s the spin density and d
the thickness of the magnetic film. The interactions are described by Bose-Einstein
distributions nB(x) = (ex − 1)−1, with electronic temperature and spin accumulation in
the conductor respectively, TL, µL, and phonon temperature Tp.

Steady states for each interaction are reached for Boltzmann distributions with the
appropriate chemical potential and temperature. Before trying to solve the equation, it
is insightful to calculate the different energy regimes of the processes. For the magnon-
magnon scattering a relaxation-time approximation is used:

Γmm(ε, t) ' − 1

τ(ε)

[
g(ε, t)− nB

(
ε− µm
kBTm

)]
. (2.4)

Furthermore we use 1/τ(ε) = gε4 with g ≈ 1097J−4s−1. For the derivation of this energy
dependence, see chapter 4.

The electron interaction term and the Gilbert damping term have the same energy
dependence when neglecting µL. This is valid for high energies. Equating these terms
then yields a crossover thickness:

d∗ =
g↑↓

2απs
≈ 10−6m. (2.5)

The values for the constants are taken from Ref. [7], and are appropriate for a Pt-
YIG setup. When the thickness d of the ferromagnet is small enough (d < d∗), the
Gilbert damping term will be dominated by the electron pumping, maintaining a non-
zero magnon density. Physically, this is due to the fact that lattice interactions are
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volume effects, while the electron interaction is a surface effect. The ratio of the volume
and the surface determines the ratio of the strengths of these interactions.

Neglecting the effect of Gilbert damping, we can equate the resulting terms to find a
crossover energy

ε∗ =

(
g↑↓

~πsdg

) 1
3

≈ 10−23J, (2.6)

which corresponds to a temperature of approximately 2.5K. For energies higher than ε∗,
magnon-magnon scattering dominates over electron-magnon interactions at the interface.
This will cause the magnons to thermalize and reach a quasi-equilibrium state. We thus
expect that for energies larger than ε∗ the distribution function will be well described by
a Bose distribution function with nonzero chemical potential.
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Chapter 3

Time dependent Bose-Einstein
distribution

In this chapter we solve the Boltzmann equation assuming a Bose-Einstein distribution
for g(ε, t). We will work with the following ansatz:

g(ε, t) =
1

e
ε−µm(t)
kBTm(t) − 1

, (3.1)

assuming that µm and Tm are time dependent. For convenience, we will write (kBTm)−1 =
βm. Furthermore, we introduce an energy gap ∆ in the density of states and magnon
dispersion. This model offers a good description of the high-energy regime, in which
magnon-magnon interaction dominates. The magnon-magnon term will not contribute
to the equation since our ansatz is a steady state solution of this interaction, i.e. Γmm
in Eq. (2.3) is zero for the above distribution function. In order to solve the Boltz-
mann equation, it is convenient to split it into two separate differential equations for the
magnon number density and magnon energy. The equations are derived in the sections
below. We will limit ourselves to linear response.

3.1 Magnon density equation

Taking a time derivative of Eq. (2.1), we get

∂nm
∂t

=
∂

∂t

∫
dεD(ε)g(ε, t) =

∫
dεD(ε)

∂

∂t
g(ε, t). (3.2)

Since we assume only µm and Tm to be time dependent, we expect the derivative of the
magnon density to have the following form:

∂nm
∂t

= A
∂µm
∂t

+B
∂Tm
∂t

. (3.3)

Assuming Tm to be constant, we can write:

∂nm
∂t

=
∂

∂t

∫
dεD(ε)g(ε, t) =

∂µm
∂t

∫
dεD(ε)

∂

∂µm
g(ε, t) = −∂µm

∂t

∫
dεD(ε)

∂

∂ε
g(ε, t).

(3.4)
Using partial integration, shifting the integral and using substitution of variables we can
simplify this integral. We repeat this procedure taking µm constant instead of Tm. The
final result is:

4π2

J
3/2
s

∂nm
∂t

= µ̇m

[
1
2

√
πβ−1/2

m Li− 1
2
(e(µm−∆)βm)

]
+ṪmkB

[
3
4

√
πβ−1/2

m Li 1
2
(e(µm−∆)βm) + ∆

2

√
πβ1/2

m Li− 1
2
(e(µm−∆)βm)

]
,

(3.5)
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with Lin(z) the polylogarithmic function.
Now we will work out the right hand side of Eq. (3.2) by substituting our ansatz.

∫
dεD(ε)

∂

∂t
g(ε, t) =

J
3/2
s

4π2

∫ ∞
∆

√
ε−∆

×
[( g↑↓

~πsd
)

(ε− µL) [g(ε, t)− nB ((ε− µL)βL)]−
(

2α
~
)
ε [g(ε, t)− nB (εβp)]

]
.

(3.6)

With the same methods as before, we find

1

J
3/2
s

∂nm
∂t

=

−
( g↑↓
~πsd

) [
3
4

√
πβ−5/2

m Li 5
2
(e(µm−∆)βm) + 1

2

√
π(∆− µL)β−3/2

m Li 3
2
(e(µm−∆)βm)

]
+
( g↑↓
~πsd

) [
3
4

√
πβ
−5/2
L Li 5

2
(e(µL−∆)βL) + 1

2

√
π(∆− µL)β

−3/2
L Li 3

2
(e(µL−∆)βL)

]
−
(

2α
~
) [

3
4

√
πβ−5/2

m Li 5
2
(e(µm−∆)βm) + 1

2

√
π∆β−3/2

m Li 3
2
(e(µm−∆)βm)

]
+
(

2α
~
) [

3
4

√
πβ−5/2

p Li 5
2
(e−∆βp) + 1

2

√
π∆β−3/2

p Li 3
2
(e−∆βp)

]
.

(3.7)
In order to solve the equations analytically, we need to linearize them. We assume the
magnon temperature Tm relaxes to the phonon temperature Tp. We also linearize with
respect to the electron temperature and the chemical potentials. We get:

Tm(t) = Tp + δTm(t)

TL = Tp + δTL

µm(t) = 0 + µm(t)

µL = 0 + µL

(3.8)

After linearization, we find as our final equation for the magnon density:

µ̇m

[
1
2

√
πβ−1/2

p Li− 1
2
(e−∆βp)

]
+ṪmkB

[
3
4

√
πβ−1/2

p Li 1
2
(e−∆βp) + ∆

2

√
πβ1/2

p Li− 1
2
(e−∆βp)

]
=

−(µm − µL)
( g↑↓
~πsd

) [
3
4

√
πβ−3/2

p Li 3
2
(e−∆βp) + ∆

2

√
πβ−1/2

p Li 1
2
(e−∆βp)

]
−(µm)

(
2α
~
) [

3
4

√
πβ−3/2

p Li 3
2
(e−∆βp) + ∆

2

√
πβ−1/2

p Li 1
2
(e−∆βp)

]
−(Tm − TL)kB

( g↑↓
~πsd

) [
15
8

√
πβ−3/2

p Li 5
2
(e−∆βp) + 3∆

2

√
πβ−1/2

p Li 3
2
(e−∆βp)

+∆2

2

√
πβ1/2

p Li 1
2
(e−∆βp)

]
−(Tm − Tp)kB

(
2α
~
) [

15
8

√
πβ−3/2

p Li 5
2
(e−∆βp) + 3∆

2

√
πβ−1/2

p Li 3
2
(e−∆βp)

+∆2

2

√
πβ1/2

p Li 1
2
(e−∆βp)

]
,

(3.9)

where ẋ denotes the temporal derivative of variable x.

3.2 Magnon energy equation

In our system, the mean energy per volume is defined as

um =

∫
dεD(ε)εg(ε, t). (3.10)
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Using the same methods as for the magnon density equation, we can derive a differential
equation for Tm(t) and µm(t), and linearize it to enable us to solve it analytically. We
find

µ̇m

[
3
4

√
πβ−3/2

p Li 1
2
(e−∆βp) + ∆

2

√
πβ−1/2

p Li− 1
2
(e−∆βp)

]
+ṪmkB

[
15
8

√
πβ−3/2

p Li 3
2
(e−∆βp) + 3∆

2

√
πβ−1/2

p Li 1
2
(e−∆βp)

+∆2

2

√
πβ1/2

p Li− 1
2
(e−∆βp)

]
=

−(µm − µL)
( g↑↓
~πsd

) [
15
8

√
πβ−5/2

p Li 5
2
(e−∆βp) + 3∆

2

√
πβ−3/2

p Li 3
2
(e−∆βp)

+∆2

2

√
πβ−1/2

p Li 1
2
(e−∆βp)

]
−(µm)

(
2α
~
) [

15
8

√
πβ−5/2

p Li 5
2
(e−∆βp) + 3∆

2

√
πβ−3/2

p Li 3
2
(e−∆βp)

+∆2

2

√
πβ−1/2

p Li 1
2
(e−∆βp

]
−(Tm − TL)kB

( g↑↓
~πsd

)[
105
16

√
πβ−5/2

p Li 7
2
(e−∆βp) + 15

8 ∆
√
πβ−3/2

p Li 5
2
(e−∆βp)

− 3∆2

4

√
πβ−1/2

p Li 3
2
(e−∆βp)− ∆3

2

√
πβ1/2

p Li 1
2
(e−∆βp)

]
−(Tm − Tp)kB

(
2α
~
)[

105
16

√
πβ−5/2

p Li 7
2
(e−∆βp) + 15

8 ∆
√
πβ−3/2

p Li 5
2
(e−∆βp)

− 3∆2

4

√
πβ−1/2

p Li 3
2
(e−∆βp)− ∆3

2

√
πβ1/2

p Li 1
2
(e−∆βp)

]
.

(3.11)

3.3 Results

The differential equations can be expressed in the following form:

~(∂µnµ̇m + ∂TnṪm) = G(µm − µL) + S(Tm − TL) +Gp(µm) + Sp(Tm − Tp);
~(∂µuµ̇m + ∂TuṪm) = Π(µm − µL) + κ(Tm − TL) + Πp(µm) + κp(Tm − Tp),

(3.12)

with G the interface spin conductance, S the Seebeck coefficient, Π the interface spin
Peltier coefficient, κ the interface heat coefficient, and Gp, Sp,Πp, κp similar transport
coefficients describing the magnon-phonon interactions. We note that the phonon pro-
cesses are not interfacial, but take place inside the magnetic insulator. Therefore they are
not really transport coefficients. We find that up to linear order Π = TS, in accordance
with Onsagers reciprocity relations.

It is insightful to rewrite the equations into a dimensionless form prior to solving
them. This will make the physical properties more transparent. We find

∂t̃µ̃m + η1∂t̃T̃m = η2(µ̃m − 1) + η3(T̃m − T̃L) + η4µ̃m + η5(T̃m − T̃p);
∂t̃µ̃m + ν1∂t̃T̃m = ν2(µ̃m − 1) + ν3(T̃m − T̃L) + ν4µ̃m + ν5(T̃m − T̃p),

(3.13)
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where we made use of the following substitutions:

t̃ =
−G
~∂µn

t ≡ t

t0
,

µ̃m =
µm
µL

, T̃m =
kBTm
µL

, T̃p =
kBTp
µL

, T̃L =
kBTL
µL

η1 =
1

kB

∂Tn

∂µn
, η2 = −1, η3 =

−S
GkB

, η4 =
−Gp
G

, η5 =
−Sp
GkB

ν1 =
1

kB

∂Tu

∂µu
, ν2 =

−∂µn
∂µu

Π

G
, ν3 =

−1

kB

∂µn

∂µu

κ

G
, ν4 =

−∂µn
∂µu

Πp

G
, ν5 =

−1

kB

∂µn

∂µu

κp
G
.

(3.14)

The dimensionless magnon chemical potential is shown as a function of time in
Fig. 3.1. At t = 0, magnon pumping starts. We see that the chemical potential rises to
a non-zero value. This is evidence for a quasi-equilibrium distribution of magnons.

The behavior of the characteristic time t0 is shown at the bottom of Fig. 3.1. In
the limit where ∆→ 0, t0 diverges. As a consequence, t/t0 will vanish and the magnon
chemical potential will remain constant. This is an nonphysical situation resulting from
the fact that our ansatz in Eq. (3.1) does not hold for energies below ε∗. Below this
energy magnon-magnon interaction is dominated by electron pumping, preventing the
magnons from internally equilibrating. The magnon distribution is then poorly described
by a Bose-Einstein distribution.



3.3. RESULTS 9

0 2 4 6 8 10

0.0

0.1

0.2

0.3

0.4

0.5

t�t0

Μ
m

�Μ
L

0 2 4 6 8 10
0

5

10

15

20

25

30

DkB

t 0
´

1
0
7

Figure 3.1 – Time evolution of the magnon chemical potential µm (top) and the charac-
teristic time t0 as a function of the energy gap ∆ (bottom). We used d = 10−6m, Tp =
TL = 300K. For the calculation of µm we used ∆ = 1K × kB .



10

Chapter 4

Magnon-magnon interactions

In this chapter we derive the general form of the magnon-magnon interaction, which
enables us to study the behavior of the Boltzmann equation for lower energies. We
are interested in interactions that conserve the number of magnons. These processes
redistribute the energy of the magnons, thus causing thermalization of the system. This
makes Bose-Einstein condensation of magnons possible.

The derivations in this chapter are built on previous research. In Ref. [8] the fourth
order term of the Hamiltonian is derived. For Fermi’s golden rule, Ref. [9] was used.
Furthermore, Ref. [10] and Ref. [11] were used for the derivation of the collision integral.

We consider a Heisenberg model with exchange interactions, with spins of magnitude
S on a cubic lattice with constant a. The Hamiltonian has the following form:

H = −h
∑
m

Szm −
1

2

∑
m,n

JmnSm · Sn, (4.1)

where h is the coupling to an external magnetic field in the z-direction, while the second
term embodies the nearest neighbor interaction between two spins at lattice positions
rm = am and rn = an. It is convenient to express this Hamiltonian in terms of the
magnon creation and annihilation operators, b† and b respectively. We use the Holstein-
Primakoff transformation to rewrite the spin operators

S+ =
√

2S

√
1− b†b

2S
b ≈
√

2S

(
b− b†bb

4S
+O(b5)

)
,

S− =
√

2Sb†
√

1− b†b

2S
≈
√

2S

(
b† − b†b†b

4S
+O(b5)

)
,

Sz = S − b†b,

(4.2)

with S+ = Sx + iSy and S− = Sx − iSy. After substitution of this transformation, we
split the terms of different orders to find

H0 = −hSN − 1
2S

2J0N,

H2 = h
∑
m,n

δm,nb
†
mbn − S

∑
m,n

Jmn(1− δm,n)b†mbn,

H4 =
1

4

∑
m,n

Jmn

(
bmb

†
nb
†
nbn + b†mb

†
nbnbn − 2b†mbmb

†
nbn
)
.

(4.3)

For a full derivation of the Hamiltonian, see appendix A. Note that there are no first
and third order terms in the Hamiltonian. The magnon interaction processes we are
interested in are described by the fourth order terms. Fourier transforming H4 using
bm =

∑
k bke

ik·rm/N where k is the magnon wave vector and N is the number of lattice
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sites, and normal ordering afterwards, reads

H4 =
1

2Na3

∑
k1,k2,k3,k4

b†k1b
†
k2bk3bk4δk1+k2−k3−k4Γk1,k2,k3,k4a

3

+
1

2N

∑
k,k′

b†kb
†
k2
∑
α

(cos(aα · k′)− cos(aα · (k− k′))) .

(4.4)

We find the magnon-magnon scattering amplitude to be

Γk1,k2,k3,k4 =J0

∑
α

(cos(aα · k1) + cos(aα · k4)− 2 cos(aα · (k4 − k2))) , (4.5)

with α = {x̂, ŷ, ẑ}. Considering the case in which ki is small, we can approximate the
amplitude

Γk1,k2,k3,k4 ≈
J0a

2

2

(
−k2

1 − k2
4 + 2(k4 − k2)2

)
. (4.6)

Before we continue, we will rewrite this expression into a more convenient form. By using
the following identities

k2
1 = k1 · (k3 + k4 − k2) = −k1 · k2 + k1 · k3 + k1 · k4,

k2
2 = k2 · (k3 + k4 − k1) = −k1 · k2 + k2 · k3 + k2 · k4,

k2
4 = k4 · (k1 + k2 − k3) = −k3 · k4 + k1 · k4 + k2 · k4,

(4.7)

we can rewrite the amplitude

Γk1,k2,k3,k4 ≈
J0a

2

2
(−k1 · k2 − k3 · k4 + k2 · (k3 − k4)− k3 · (k1 − k2)) . (4.8)

The last two terms in this expressions will cancel, since we sum over all values for ki in
the Hamiltonian. Therefore, we may leave them out, resulting in the following expression:

Γk1,k2,k3,k4 ≈
J0a

2

2
(−k1 · k2 − k3 · k4) . (4.9)

Using Fermi’s golden rule, we calculate the rate of the scattering of magnons.

Γmm[f ] =
π

~
1

(2π)9

∫∫∫
dk2dk3dk4|Γk1,k2,k3,k4a

3|2

× δ(k1 + k2 − k3 − k4)δ(ε1 + ε2 − ε3 − ε4)

× [f(k3, t)f(k4, t) (1 + f(k1, t)) (1 + f(k2, t))

−f(k1, t)f(k2, t) (1 + f(k3, t)) (1 + f(k4, t))] ,

(4.10)

with εi the energy of magnon i. The second line is a statistical factor which ensures
that in equilibrium a Bose-Einstein distribution is reached. The bosonic nature of the
magnons is reflected in the (1 + f(k, t)) terms, which would have been (1− f(k, t)) if we
were dealing with fermions.

Next, we derive the the energy dependence of Γmm using the relaxation-time approx-
imation. This approximation amounts to

Γmm ≈ −
1

τk

[
g(ε, t)− nB

(
ε− µm
kBTm

)]
, (4.11)
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with g(ε, t) the magnon distribution as before. The relaxation time has the following
form

1

τk
=
π

~
a6

(2π)9

∫∫∫
dk2dk3dk4|Γk1,k2,k3,k4|2

× δ(k1 + k2 − k3 − k4)δ(ε1 + ε2 − ε3 − ε4)

× [nB(ε2)(1 + nB(ε3))(1 + nB(ε4))] .

(4.12)

By substituting ki = xi/Λ, with Λ = h√
2πmkBT

the De Broglie wavelength, we can make

the integrals dimensionless. We find

1

τk
=

1

Λ8

2m

~2

π

~
a6

(2π)9

J2
0a

4

4

∫∫∫
dx2dx3dx4|Γx1,x2,x3,x4|2

× δ(x1 + x2 − x3 − x4)δ(x2
1 + x2

2 − x2
3 − x2

4)

× [nB(ε2)(1 + nB(ε3))(1 + nB(ε4))] .

(4.13)

Now we define J0 = kBTc. Using ~2/2m = J0a
2, we can rewrite the expression for the

scattering time

1

τk
=

1

~
1

(kBTc)3
(kBT )4 π

(2π)13

1

64

∫∫∫
dx2dx3dx4|Γx1,x2,x3,x4|2

× δ(x1 + x2 − x3 − x4)δ(x2
1 + x2

2 − x2
3 − x2

4)

× [nB(ε2)(1 + nB(ε3))(1 + nB(ε4))]

≡ g · (kBT )4,

(4.14)

with

g =
1

~
1

(kBTc)3
× (some numerical factor) ≈ 1097J−4s−1, (4.15)

approximating the numerical factor to be of order 1. We conclude that the magnon-
magnon scattering process depends on the energy as ε4. This justifies our use of this
approximation in chapter 1.

Now we will calculate the collision term explicitly. Due to the fact that we are dealing
with a thin film, our magnon distribution is assumed to be spatially uniform. Therefore,
we may use f(k, t) = g(ε(k), t)). Starting from Eq. (4.10), we make a phase space
projection of the collision integral

Γmm(ε, t) =

∫
dk

(2π)3
δ(ε− E(k))Γmm[f ]. (4.16)

We want to express the collision integral in terms of the energy. In order to accomplish
this, we use the following relation

1

(2π)3

∫
dk =

∫
dεD(ε) =

∫
dε

(
1

(2π)3

∫
dkδ(ε− E(k))

)
. (4.17)

The collision integral then reads

Γmm(ε1, t) =
π

~
a6

(2π)12

∫∫∫
dε2dε3dε4δ(ε1 + ε2 − ε3 − ε4)

[g(ε3, t)g(ε4, t) (1 + g(ε1, t)) (1 + g(ε2, t))

−g(ε1, t)g(ε2, t) (1 + g(ε3, t)) (1 + g(ε4, t))]

×
∫∫∫∫

dk1dk2dk3dk4|Γk1,k2,k3,k4|2δ(k1 + k2 − k3 − k4)

δ(ε1 − E1(k))δ(ε2 − E2(k))δ(ε3 − E3(k))δ(ε4 − E4(k)).

(4.18)
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Now we focus on working out the momentum integrals. We transform to total momenta
K = k1 +k2,K

′ = k3 +k4 and relative momenta q = (k1−k2)/2,q′ = (k3−k4)/2. The
momentum conserving delta function now yields K = K′. We rewrite the delta functions
and transform to spherical coordinates.

δ(ε1 − E1) = δ(ε1 − ~2k2
1

2m ) =
2m

~2
δ( 2mε1

~2 − K2

4 − q
2 −K · q)

=
2m

~2

1

Kq
δ( 1
Kq ( 2mε1

~2 − K2

4 − q
2)− cos(θ′)).

(4.19)

The other delta functions are transformed in a similar fashion. Furthermore we rewrite
the scattering amplitude

|Γk1,k2,k3,k4|2 = |ΓK,q,q′ |2 =
J2

0a
4

4
|q2 + q′2 − 1

2K
2|2. (4.20)

The momentum integrals now take the following form

(2π)2

(
2m

~2

)4 ∫
dK

1

K4

∫∫
dqdq′|ΓK,q,q′ |2

∫∫
dudu′

×δ( 1
Kq ( 2mε1

~2 − K2

4 − q
2)− u′)

δ( 1
Kq ( 2mε2

~2 − K2

4 − q
2) + u′)

δ( 1
Kq ( 2mε3

~2 − K2

4 − q
2)− u)

δ( 1
Kq ( 2mε4

~2 − K2

4 − q
2) + u).

(4.21)

where u(u′) is the cosine of the angle between K and q(q′). Performing the integrals over
u and u′ results in a product of Heaviside Step functions, setting integration boundaries
for q and q′. Subsequently, we can perform the integration over the orientation of K.
This gives

(2π)2(4π)

(
2m

~2

)4 ∫
dK

1

K4

∫ u2

u1

dq

∫ u′2

u′1

dq′|ΓK,q,q′ |2,

u1 = max

(
max

(
K

2
− 2mε1

~
,−K

2
+

2mε1
~

)
,max

(
K

2
− 2mε2

~
,−K

2
+

2mε2
~

))
,

u2 =
K

2
+

√
2m

~
min (

√
ε1,
√
ε2) ,

u′1 = max

(
max

(
K

2
− 2mε3

~
,−K

2
+

2mε3
~

)
,max

(
K

2
− 2mε4

~
,−K

2
+

2mε4
~

))
,

u′2 =
K

2
+

√
2m

~
min (

√
ε3,
√
ε4) .

(4.22)

From this point, the Boltzmann equation can be solved numerically. We leave this as
a starting point for future work.
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Chapter 5

Conclusions and outlook

We studied the behavior of the magnon distribution for a dc-pumped thin film magnetic
insulator. First of all we found different regimes that characterize our setup. For a film
of thickness d ≈ 10−6m, Gilbert damping and spin pumping are equal in strength. In
insulators of this dimension or smaller, a quasi-equilibrium magnon distribution can be
realized. For large energies, the Boltzmann equation was solved analytically. The re-
sults confirm the existence of a nonzero magnon chemical potential, converging to an
equilibrium value. Finally, the magnon-magnon interaction was studied. We provided a
derivation of its contribution to the Boltzmann equation. In time-relaxation approxima-
tion, the interaction was found to behave as ε4, dominating other processes in the high
energy regime.

The analysis provided in this thesis focuses on higher energies only. This is due to
the fact that the derivation of the explicit form of the magnon-magnon interaction is still
incomplete. When complete, this result would learn us more about the nature of the
magnon equilibration. Future work could focus on continuing with the derivation where
we left off. Using the result, low energy behavior could be studied, giving us more insight
in Bose-Einstein condensation of magnons. This is crucial for a broader understanding
of magnon dynamics.

We have limited ourselves to linear response. This enables us to approach the prob-
lem analytically, but keeps us from capturing the whole physical picture. Numerical
evaluation could deal with the full Boltzmann equation, and could be used to check the
validity of our approximation.

In this research, magnon-phonon scattering was not accounted for. Future research
could improve on our work by deriving the contribution of this process to the Boltzmann
equation in the same manner as magnon-magnon scattering was treated in this thesis. By
adding this interaction, a more complete picture of magnon kinematics could be acquired.
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Appendix A

Derivation of H4

We consider a Heisenberg model with exchange interactions, with spins of magnitude S
on a cubic lattice with constant a. The Hamiltonian has the following form:

H = −h
∑
m

Szm −
1

2

∑
m,n

JmnSm · Sn. (A.1)

We use the Holstein-Primakoff transformation to rewrite the spin operators:

S+ =
√

2S

√
1− b†b

2S
b ≈
√

2S

(
b− b†bb

4S
+O(b5)

)
,

S− =
√

2Sb†
√

1− b†b

2S
≈
√

2S

(
b† − b†b†b

4S
+O(b5)

)
,

Sz = S − b†b,

(A.2)

with S+ = Sx + iSy and S− = Sx − iSy. Filling this in, we get:

H = −h
∑
m

(S − b†mbm)− 1

2

∑
m,n

Jmn[SxmS
x
n + SymS

y
n + SzmS

z
n]

= −h
∑
m

(S − b†mbm)− 1

2

∑
m,n

Jmn

[(
S++S−

2

)
m

(
S++S−

2

)
n

+
(
S+−S−

2i

)
m

(
S+−S−

2i

)
m

+ (S − b†b)m(S − b†b)n
]

= −h
∑
m

(S − b†mbm)− 1

8

∑
m,n

Jmn

[
(S+ + S−)m(S+ + S−)n

− (S+ − S−)m(S+ − S−)n

+4(S2 − S(b†mbm + b†nbn) + b†mbmb
†
nbn)

]
= −h

∑
m

(S − b†mbm)− 1

8

∑
m,n

Jmn

[
2S+

mS
−
n + 2S−mS

+
n

+4(S2 − S(b†mbm + b†nbn) + b†mbmb
†
nbn)

]
S+
mS
−
n = 2S

(
bmb

†
n −

bmb
†
nb
†
nbn

4S
− b†mbmbmb

†
n

4S

)
,

S−mS
+
n = 2S

(
b†mbn −

b†mb
†
nbnbn
4S

− b†mb
†
mbmbn
4S

)
.

(A.3)
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Splitting the terms of different orders, we obtain:

H0 = −hS
∑
m

−S
2

2

∑
m,n

Jmn = −hSN − 1
2S

2J0N,

H2 = h
∑
m

b†mbm −
S

2

∑
m,n

Jmn

[
bmb

†
n + b†mbn − b†mbm − b†nbn)

]
= h

∑
m,n

δm,nb
†
mbn −

S

2

∑
m,n

Jmn

[
2b†mbn + δm,n − 2δm,nb

†
mbn

]
,

(A.4)

which is equal to the following expression if we drop the 0th order term:

H2 = h
∑
m,n

δm,nb
†
mbn − S

∑
m,n

Jmn(1− δm,n)b†mbn,

H4 = −1

8

∑
m,n

Jmn

[
−bmb†nb†nbn − b†mbmbmb†n − b†mb†nbnbn − b†mb†mbmbn + 4b†mbmb

†
nbn
]

=
1

8

∑
m,n

Jmn

(
2bmb

†
nb
†
nbn + 2b†mb

†
nbnbn − 4b†mbmb

†
nbn + [b†nb

†
nbn, bm] + [b†nbnbn, b

†
m]
)

=
1

4

∑
m,n

Jmn

(
bmb

†
nb
†
nbn + b†mb

†
nbnbn − 2b†mbmb

†
nbn
)
,

(A.5)

where the last two 2nd cancel. There are no first order or third order contributions to
the Hamiltonian.

Next, we will Fourier transform the expressions for H2 and H4 using
bm = 1√

N

∑
k bke

ik·rm , with k the magnon wavevector and N the number of lattice sites.

We transform the different terms one by one:

∑
m,n

δm,nb
†
mbn =

∑
m

b†mbm

=
1

N

∑
m

∑
k,k′

b†kbk′e
−ik·maeik

′·ma

=
1

N

∑
k,k′

b†kbk′
∑
m

ei(k
′−k)·ma

=
∑
k,k′

b†kbk′δk′,k

=
∑
k

b†kbk.

(A.6)

∑
m,n

Jmn(1− δm,n)b†mbn = J0

∑
m

∑
α

b†m(bm+α + bm−α)

=
J0

N

∑
m

∑
α

∑
k,k′

b†kbk′e
−ik·ma(eik

′·(m+α)a + eik
′·(m−α)a)

=
J0

N

∑
k,k′

b†kbk′
∑
m

ei(k
′−k)·ma

∑
α

(eik
′·αa + e−ik

′·αa)

= J0

∑
k,k′

b†kbk′δk,k′
∑
α

2 cos(aα · k′)

= 2J0

∑
k

b†kbk
∑
α

cos(aα · k).

(A.7)
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∑
m,n

Jmnbmb
†
nb
†
nbn = J0

∑
m

∑
α

bm(b†m+αb
†
m+αbm+α + b†m−αb

†
m−αbm−α)

=
J0

N2

∑
m

∑
α

∑
k1,k2,k3,k4

bk1b
†
k2b
†
k3bk4e

ik1·ma

× (e−ik2·(m+α)ae−ik3·(m+α)aeik4·(m+α)a

+ e−ik2·(m−α)ae−ik3·(m−α)aeik4·(m−α)a)

=
2J0

N

∑
k1,k2,k3,k4

bk1b
†
k2b
†
k3bk4δk1+k2−k3−k4,0

×
∑
α

cos(aα · (k4− k2− k3)).

(A.8)

We find the following expressions:

H2 =
∑
k

(
h− 2SJ0

∑
α

cos(aα · k)

)
b†kbk, α = {x̂, ŷ, ẑ},

H4 =
1

2N

∑
k1,k2,k3,k4

b†k1b
†
k2bk3bk4δ(k3 + k4 − k1 − k2)

×
∑
α

(cos(aα · k1) + cos(aα · k4)− 2 cos(aα · (k4 − k2)))

+
1

2N

∑
k,k′

b†kb
†
k2
∑
α

(cos(aα · k′)− cos(aα · (k− k′))) ,

(A.9)

in which the second line of H4 represents corrections to the second order term of the
hamiltonian, which arise due to normal ordering of the annihilition and creation opera-
tors.
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