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Abstract

In this thesis we find and blow up the Kleinian singularities and show their relationship
with Dynkin diagrams of type ADE. Furthermore, we construct the McKay graphs of
the finite subgroups of SL(2,C) and show their connection with the ADE type Dynkin
diagrams and hence the Kleinian singularities. The purpose of this thesis is to establish
all of the above in great detail and to work out the specifics.
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1 Introduction

1.1 Historical note

In 1979, John McKay [McK80] outlined a remarkable correspondence between the the-
ory of Kleinian singularities, the conjugacy classes of finite subgroups of SL(2,C) and
the Dynkin diagrams which show up in the ADE classification of simple Lie algebras.
The recurring element in each of the branches of the correspondence is a relationship
with the finite subgroups of SL(2,C). These subgroups are related to the platonic
solids and have been studied since antiquity.
Felix Klein characterized the structure of the quotient space C2/Γ for each finite sub-
group Γ of SL(2,C) in 1884 [Kle84]. By invariant theory, we can obtain varieties in C3

with an isolated singularity at the origin. These singularities have been aptly named
the Kleinian singularities. The Kleinian singularities appear throughout the classifi-
cation of surfaces and other areas of geometry. The connection between the Kleinian
singularities and Dynkin diagrams was shown by Patrick Du Val in 1934 [DV34]. Du
Val showed that resolving the Kleinian singularities by means of blowing up yields an
exceptional divisor that can be converted to a Dynkin diagram of type ADE.
In 1979 McKay used representation theory to construct a graph called the McKay graph
of the binary polyhedral groups. He observed the connection between these McKay
graphs and the (extended) Dynkin diagrams of type ADE.
Since Du Val, further connections have been discovered by Brieskorn, Kostant and
Steinberg, Grothendieck, Kronheimer and more.

1.2 Motivation and organization of this thesis

The scope of the McKay correspondence and the diversity of topics it connects make
it an extremely interesting topic for a thesis. We will show the existence of the McKay
correspondence and we will also mirror the work of Du Val by resolving the Kleinian
singularities and construct the intersection diagrams.
In addition to obtaining the above correspondences, this thesis aims to introduce many
advanced topics to bachelor students and it was written with this audience in mind.
Consequently we will not introduce any theory concerning elementary algebra but we
will develop all the necessary algebraic geometry, invariant theory and representation
theory.
While introducing the necessary preliminary knowledge, we will state the relevant the-
orems and definitions without proof. If the reader is interested in those, we refer to
the books where these theorems are proved. For the reader who is well versed in these
topics, it should be possible to skip sections at their leisure since we have attempted
to stick to conventional terminology and notation.
We have opted for a roughly chronological approach to this subject. Firstly, we char-
acterize the finite subgroups of SL(2,C) and use invariant theory to find the Kleinian
singularities. Then we will introduce the basics on algebraic geometry and introduce
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blowups. This gives us enough knowledge to resolve the Kleinian singularities and ob-
tain the intersection diagrams. This section constitutes a major part of this thesis due
to the difficulties that arise when one attempts to do this in detail. However, the reader
could ignore the details of the calculations and only look at the resulting diagrams to
understand the correspondence. Afterwards we briefly introduce representation theory
and construct the McKay graphs to complete the McKay correspondence.

1.3 Outline of the main results

Klein showed that the quotient space C2/Γ for finite subgroups Γ of SL(2,C) is isomor-
phic to some surface in C3 defined by a single polynomial. The corresponding surfaces
have (isolated) singularities at the origin. The defining polynomials are

Group ADE-classification Defining polynomial
Cyclic (Zn+1) An xy − zn+1

Binary Dihedral (BD4n) Dn+2 x2 + zy2 + zn+1

Binary Tetrahedral (BT24) E6 x4 + y3 + z2

Binary Octahedral (BO48) E7 x2 + y3 + yz3

Binary Icosahedral (BI120) E8 x5 + y3 + z2

Resolving these singularities involves locally blowing up the surfaces to obtain a smooth
surface locally inside C3 × P2. The exceptional divisor consists of projective lines that
emerge from the singular point itself. These projective lines meet transversally and
the graph whose vertices correspond to the irreducible components of the exceptional
divisor (the projective lines), with two vertices joined if the lines intersect, is a Dynkin
diagram of type ADE.
Lastly, if we find the irreducible representations of the finite subgroups of SL(2,C),
we can use the character tables to construct the McKay graph. These graphs also
correspond to the Dynkin diagrams of type ADE.
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2 The subgroups of SL(2,C)
At the basis of this thesis lie the finite subgroups of SL(2,C), which are conjugate to the
finite subgroups of SU(2) [Boc, page 4]. Hence, we will start by finding the generators
of these subgroups. To do so, we look at a homomorphism ϕ : SU(2)→ SO(3,R) and
its kernel. We repeat the argument made in [Arm88, Chapter 19] for finding the finite
subgroups of SO(3,R). When we have those, we can lift them to the finite subgroups
of SU(2).

2.1 A homomorphism on SU(2)

As mentioned, the finite subgroups of SL(2,C) are conjugate to the finite subgroups
of SU(2). Recall that the special unitary group is defined as follows (A∗ denotes the
conjugate transpose)

SU(2) = {A ∈ GL(2,C) | AA∗ = A∗A = I, det(A) = 1}

Suppose we have an element of the form U =

(
a b
c d

)
. From U∗U = I follows that

|a|2 + |c|2 = 1, |b|2 + |d|2 = 1 and ab + cd = 0. So we only need to consider val-
ues for a, b, c, d on the unit disk in C. From det(U) = 1 we get ad − bc = 1. If
b = 0, we get |d|2 = 1 so ad = 1 ↔ a = d. Since ad = 1 we get d 6= 0 and thus

c = 0. So we get an element of the form

(
a 0
0 a

)
. If b 6= 0, we get a = −cd/b and

|a|2 + |c|2 = |c|2
(
|d|2
|b|2 + 1

)
= 1. Hence |c| = |b| and |a| = |d|.

We can pick a = eiα cos(x) for some x ∈ R since a lies on the unit disk. Since
|a|2 + |c|2 = 1, this fixes c = eiγ sin(x). Similarly, we can pick d = eiδ cos(y) which fixes
b = eiβ sin(y). Lastly, from |a| = |d| follows that x = y. Therefore, keeping in mind
that a = −cd/b, we can define the parameterizations

a = eiα cos(x), b = eiβ sin(x), c = −eiγ sin(x), d = eiδ cos(x)

From a = − cd
b

we get

eiα cos(x) =
eiγ sin(x)e−iδ cos(x)

e−iβ sin(x)

Hence, ei(α+δ) = ei(β+γ). So from det(U) = ad− bc = 1 we get

ei(α+δ) cos(x)2 + ei(β+γ) sin(x)2 = ei(α+δ) = 1

We obtain that α = −δ and β = −γ. So a = d and b = −c. So we get an element of
the form

U ∈ SU(2), U =

(
x y
−y x

)
=

(
a+ bi c+ di
−c+ di a− bi

)
3



There exists a surjective homomorphism between SU(2) and SO(3,R) (the real orthog-
onal 3× 3 matrices). In fact, SO(3,R) ∼= SU(2)/Z2. This homomorphism is [Wes08]

ϕ : SU(2)→ SO(3,R),(
a+ bi c+ di
−c+ di a− bi

)
7→

a2 − b2 − c2 + d2 2ab+ 2cd −2ac+ 2bd
−2ab+ 2cd a2 − b2 + c2 − d2 2ad+ 2bc
2ac+ 2bd −2ad+ 2bc a2 + b2 − c2 − d2


The only elements that map to the identity are I and −I so the kernel of this homo-
morphism is {I,−I}. By the first isomorphism theorem we get SU(2)/Z2

∼= SO(3,R).

So for U ∈ SU(2) we get ϕ(U) = ϕ(−U) = Ũ with Ũ ∈ SO(3,R). Suppose that G is
a finite subgroup of SU(2). We have to check whether −I 6∈ G since in that case we
have |ϕ(G)| = |G|. Otherwise, we have |G| = 2|ϕ(G)|. Firstly, we need to know what
the subgroups of SO(3,R) are.

2.2 Classifying the finite subgroups of SO(3,R)

The classification of the finite subgroups of SO(3,R) is done in [Arm88, Chapter 19].
We repeat the argument here for the sake of completeness. We know that every element
of SO(3,R) has two antipodal fixed points in the induced action on the sphere S2 since
we know that SO(3,R) acts on R3 by rotation. Furthermore, if it is not an identity
element, it has no more fixed points. Let G be a finite subgroup of SO(3,R), then
every non-identity element of G has precisely two fixed points on S2. We define

F = {p ∈ S2 | ∃x ∈ G, x 6= e, x · p = p}

The action of G on S2 sends F to itself since for all q ∈ F , g · q is held fixed by gxg−1

where x holds q fixed. For every f ∈ F , the stabilizer Gf contains the two antipodal
points. Let R denote the number of distinct orbits of the action of G. Then by the
counting theorem we get R = 1

|G|(2(|G| − 1) + |F |). We know that |F | = ∑R
i=1 |G(fi)|

for fi representatives of the orbits (G(f) denotes the orbit of f). So we obtain

2

(
1− 1

|G|

)
= R− 1

|G|
R∑
i=1

|G(fi)| (2.1)

By the Orbit-Stabilizer theorem we get |Gf | = |G|
|G(f)| , so we obtain

2

(
1− 1

|G|

)
= R−

R∑
i=1

1

|Gfi |
=

R∑
i=1

(
1− 1

|Gfi |

)
(2.2)

Note that each Gfi contains at leas 2 points so we get 1
|Gfi
| ≤ 1

2
⇔ 1− 1

|Gfi
| ≥ 1

2
. Since

G 6= {e} we get that 1 − 1
|G| ≥ 1

2
. Obviously 1 − 1

|G| < 1 so from the above equation

we obtain that 1 ≤∑R
i=1(1− 1

|Gfi
|) < 2. Each term of the sum is greater than 1

2
so the

4



only possibilities for R are R = 2 or R = 3.

Case R=2
If R = 2, equation (2.1) above gives us 2|G| − 2 = 2|G| − (|G(f1)| + |G(f2)|). So
|G(f1)| + |G(f2)| = 2. This means that there is one axis around which all the points
are rotated. So G must be cyclic and isomorphic to Zn.

Case R=3
If R = 3, equation (2.2) gives us 2

|G| + 1 =
∑3

i=1
1
|Gfi
| . From now on we will denote

Gfi as Gi. This means that 1
G1

+ 1
G2

+ 1
G3

> 1. Suppose that G1 = 2. If G2 = 2 we
get that G3 = n can be arbitrary. Suppose G2 = 3, then G3 < 6 which gives us the
possibilities G3 = 3, 4, 5 (G3 = 2 is the previous case). It is easy to check that all the
other combinations turn out to be permutations of these.

If |G1| = |G2| = 2 and |G3| = n, we get 1 + 2
|G| = 1 = 1

|G3| . Since |G| = 2|G3|
and G3 is cyclic we conclude that G is the dihedral group of order 2|G3| = 2n.
If |G1| = 2, |G2| = |G3| = 3, we get |G| = 12. By the orbit stabilizer theorem we know

that |G(x)| = |G|
|Gx| and thus |G(f3)| = 4. Similarly the other two orbits have sizes 4

and 6. This is the symmetry group of the regular tetrahedron.
If |G1| = 2, |G2| = 3, |G3| = 4, we get |G| = 24 and so the orbit sizes are 12, 8 and 6.
This corresponds to the symmetry group of the regular octahedron.
If |G1| = 2, |G2| = 3, |G3| = 5, we get |G| = 60 and orbit sizes 30, 20 and 12. This
corresponds to the symmetry group of the dodecahedron. In total, the finite subgroups
of SO(3,R) are (for more details see [Arm88, Chapter 19])

Group Symmetry figure
Cyclic (Zn) Oriented regular polygon
Dihedral (D2n) Regular polygon
Alternating (A4) Regular tetrahedron
Symmetric (S4) Cube or regular octahedron
Alternating (A5) Regular dodecahedron or icosahedron

2.3 Classifying the finite subgroups of SU(2)

We are now in a position to classify the subgroups of SU(2). For each of the finite sub-
groups of SO(3,R) we will find the generators. Using the homomorphism from section
2.1 we can obtain the generators of the corresponding subgroups of SU(2).

Case Zn (n-gon)
We start with the cyclic group Zn which has the well known generator

g =

 cos(2π/n) sin(2π/n) 0
− sin(2π/n) cos(2π/n) 0

0 0 1
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If we look at the homomorphism we see that a2− b2− c2 + d2 = a2− b2 + c2− d2 which
implies c2 = d2. Furthermore, 2ab+2cd+(−2ab)+2cd = 4cd = sin(2π/n)−sin(2π/n) =
0. Together with c2 = d2 this means that c = d = 0. Now we obtain that a2 + b2 = 1,
a2 − b2 = cos(2π/n) and 2ab = sin(2π/n). Note that (a + bi)2 = a2 − b2 + 2abi =
cos(2π/n) + i sin(2π/n) = e2πi/n. This gives us a + bi = eπi/n which is a root of unity
of order 2n. So the generator of the cyclic subgroup of SU(2) has the form

U =

(
eπi/n 0

0 e−πi/n

)
=

(
ε 0
0 ε−1

)
We are not done yet since −I ∈ 〈U〉 and 〈U〉 is not of order n. Suppose that n is
even, then we pick m = n

2
and we obtain a cyclic subgroup of order m. Suppose that

n is odd, then −U has order n so we choose −U as generator and we obtain a cyclic
subgroup of order n. So for all n ∈ N we can obtain a cyclic subgroup of SU(2) (and
SL(2,C)) of order n of the form 〈U〉.

Case D2n (Dihedral group)
The dihedral group has the extra operation of reflection given by

r =

1 0 0
0 −1 0
0 0 −1


If we look at the homomorphism, the diagonal gives a2 = b2 and 2ab − 2ab + 4cd = 0
which implies cd = 0. This also gives us 2ab + 2cd = 2ab = 0. Therefore, (a + bi)2 =
a2−b2 +2abi = 0 so a+bi = 0. Furthermore, it gives us d2−c2 = 1 and −d2−c2 = −1.
So c = 0 and we get the generator

V =

(
0 i
i 0

)
Note that V 2 = −I so the finite subgroup of SU(2) generated by U and V has twice
the order of the dihedral group (so 4n). In conclusion, we get another finite subgroup
of SU(2), the Binary Dihedral group BD4n = 〈U, V 〉.

Case A4 (Tetrahedron)
There are three different operations on the tetrahedron; a rotation that keeps a vertex
fixed, rotation about the z-axis which joins the midpoints of two edges and rotation
about the x-axis. The rotation about the y-axis is achieved by rotating about the x
and z axis consecutively.

r =

0 0 1
1 0 0
0 1 0

 , z =

−1 0 0
0 −1 0
0 0 1

 , x =

1 0 0
0 −1 0
0 0 −1
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Using the homomorphism, we get the following generators for r,x and z

ϕ(U) = r = −1

2

(
1− i −1− i
1− i 1 + i

)
, ϕ(V ) = x =

(
0 1
−1 0

)
, ϕ(W ) = z =

(
i 0
0 −i

)
The orders of V and W are 4 and the order of U is 6. However, W 2 = V 2 = U3 = −I
so the subgroup generated by U and V has order 24. This is correct considering that
it contains −I and it must therefore have twice the order of the tetrahedral group
(which is 12). So we get another subgroup of SU(2), the Binary Tetrahedral group
BT24 = 〈U, V,W 〉.

Case S4 (Octahedron and Cube)
We have three rotational operations for the octahedron,

a =

 0 1 0
−1 0 0
0 0 1

 , b =

0 0 1
1 0 0
0 1 0

 , c =

1 0 0
0 −1 0
0 0 −1


Note that a2 = z where z is the rotation of the tetrahedron and c is the rotation x of the
tetrahedron. The rotation b is the same as r for the tetrahedron so the homomorphism
yields the same element U and clearly c yields V . Using the homomorphism on a yields:

U = −1

2

(
1− i −1− i
1− i 1 + i

)
, V =

(
0 1
−1 0

)
, ϕ(W ) = a =

1√
2

(
1 + i 0

0 1− i

)
Note that W 2 equals the generator W of the tetrahedron. So W has order 8, V has
order 4 and U has order 6. We have W 4 = U3 = V 2 = −I so the subgroup generated
by U , V and W has order 48. This is correct considering that it contains −I. So we
get another subgroup of SU(2), the Binary Octahedral group BO48 = 〈U, V,W 〉.

Case A5 (Icosahedron and Dodecahedron)
According to [Lit90], we have three rotational operations for the octahedron (here

Φ = 1+
√

5
2

is the golden ratio),

q =
1

2

1 −Φ 1
Φ

Φ 1
Φ
−1

1
Φ

1 Φ

 , r =

0 0 1
1 0 0
0 1 0

 , z =

−1 0 0
0 −1 0
0 0 1


We already know r and z from the tetrahedral case. Using the homomorphism for q
yields:

U = −1

2

(
1− i −1− i
1− i 1 + i

)
, V =

(
i 0
0 −i

)
, ϕ(W ) = q =

1

2

(
Φ− i i(1− Φ)
i(1− Φ) Φ + i

)
U has order 6, V has order 4 and W has order 10. We have U3 = V 2 = −I so the
subgroup generated by U , V and W has order 120. This is correct considering that
it contains −I. So we get another subgroup of SU(2), the Binary Icosahedral group
BI120 = 〈U, V,W 〉.
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3 Basics of algebraic geometry

This section consists of the definitions and theorems of introductory algebraic geometry
that the reader should be familiar with. Our goal is to lay the framework for the next
sections where we find the Kleinian singularities and introduce blowups. Anyone who
is well-versed in these concepts should feel free to skip sections at their leisure.

3.1 Affine varieties

We will discuss varieties over a field K which is algebraically closed. This means that
every non-constant polynomial in K[X] has all its root in K. An example of such a
field (and the one we will mostly consider) is C. The problems in algebraic geometry
revolve around studying objects which locally resemble zero sets to sets of polynomial
equations. This usually involves studying an objects affine space.

Definition 3.1. [Har92] By the affine space over a fieldK we mean the vector spaceKn

without the special structure of a vector space. Alternatively, we can think of the affine
space as the set of n-tuples of elements of K, Kn = {(a1, . . . , an) | a1, . . . , an ∈ K}.
We call K the coefficient field.

Intuitively, an affine space is the remainder of a vector space when ignoring the origin
that is characterized by the identity element 0.

Definition 3.2. [Har92] An affine variety X ⊆ Kn is the set of zeroes (zero locus) of
a collection of polynomials fi ∈ K[z1, . . . , zn]. Finite unions and intersections of affine
varieties are again affine varieties. Infinite intersections of affine varieties are again
affine varieties but infinite unions need not be.

Definition 3.3. A variety X is irreducible if for any pair of closed subvarieties Y, Z ⊂
X such that Y ∪ Z = X, we have either Y = X or Z = X.

Example: A classic example of a variety in R2 is defined by f = x2 + y2− 1, which is
the circle.

Example: Suppose we have the polynomial f = (x2 + y2 − z2)(z − 1) ∈ K[x, y, z].
Then the zero locus of f is an affine variety that consists of a cone through 0 and a plane.

Example: Another example is the variety in R3 defined by x2 − y2z2 + z3 = 0 (see
figure 1). This variety has a line of singularities where it intersects itself. What this is
precisely will be discussed in section 5.

Definition 3.4. [CLD15] Let f1, . . . , fs ∈ K[x1, . . . , xn], then

〈f1, . . . , fn〉 = {
s∑
i=1

hifi | h1, . . . , hs ∈ K[x1, . . . , xn]}

8
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Figure 1: The variety x2 − y2z2 + z3.

is called the ideal generated by f1, . . . .fs. Let X ⊆ Kn be an affine variety. The ideal
of X is defined as

I(X) = {f ∈ K[x1, . . . , xn] | f(a1, . . . , an) = 0, ∀(a1, . . . , an) ∈ X}

Definition 3.5. [CLD15] Let I ⊆ K[x1, . . . , xn] be an ideal. The corresponding variety
is defined as

V (I) = {(a1, . . . , an) ∈ Kn | f(a1, . . . , an) = 0 for all f ∈ I}

If I = 〈f1, . . . , fs〉, then V (I) = V (f1, . . . , fs).

3.2 Projective space

So far we have looked at varieties in affine spaceKn. Now we will look at an enlargement
of Kn by adding ”points at infinity” to create the projective space. By the projective
space Pn we intuitively mean the set of lines through the origin of Kn+1.

9



Definition 3.6. Let V be a vector space. The projective space P(V ) of V is the set
of 1-dimensional vector subspaces of V . If V has dimension n, P(V ) has dimension n−1.

For a field K we will use the notation Pn = P(Kn+1) when it’s clear what K is or
if it is irrelevant. Projective spaces are in essence compactifications of affine spaces,
we will formalize this intuition later. Firstly, it is useful for our intuition to consider
V = Rn+1, then the projective space is the set of lines through the origin. Each such
line intersect the sphere Sn = {x ∈ Rn+1 | ∑i x

2
i = 1} so P(Rn+1) can be interpreted

as a hemisphere of Sn with antipodal points on the equator identified.
4. THE SPHERE AND ITS HIGHER DIMENSIONAL VERSIONS 13

p

p

N

S

 The stereographic projection (sending the red points to the blue ones)

p

f(p)

Figure 10.

Exercise 1.10. Explain on the picture that the stereographic projection is a homeomorphism
between Sn − {pN} and Rn, and that it cannot be extended to a continuous function defined on
the entire Sn. Then try to give a meaning to: “Sn can be obtained from Rn by adding a point
at infinity to”. Also, find the explicit formula for f .

Here is anther construction of the n-sphere. Take a copy of Dn, grab its boundary Sn−1 ⊂ Dn

and glue it together (so that it becomes a point). You then get Sn (see Figure 11).

Sn−1D
n

S

O

(0, ... , 0, 1)

n

n
glue the boundary of D   to a point to obtain S

n

Figure 11.

Exercise 1.11. Find explicitly the function

f : D2 → S2

from Figure 11, check that f−1(pN ) is precisely S1 ⊂ D2, then generalize to arbitrary dimensions.

Another interesting way of obtaining the sphere S2 is by taking the unit disk D2, dividing its
boundary circle S1 into two equal sides and gluing the two half circles as indicated in the Figure
12.

Figure 2: [Cra15, page 13] An interpretation of Pn in relation to the hemisphere of Sn

for the case n = 2.

Another interpretation of the projective space involves representative vectors for points
in P(V ). We know that any 1-dimensional subspace of V is simply the set of linear
multiples of a non-zero vector v ∈ V . We then say that v is a representative vector for
the point [v] ∈ P(V ). If {e1, . . . , en} is a basis for V we can write v =

∑n
i=1 xiei and

(x1, . . . , xn) are the coordinates of v. If v 6= 0 we write [v] = [x1 : . . . : xn] which are its
homogeneous coordinates. Note that for λ 6= 0 we have [λx1 : . . . : λxn] = [x1 : . . . : xn].

Let K be our coefficient field and W ⊆ P(V ) such that x1 6= 0. Then we have

[x1 : . . . : xn] =
[
1 : x2

x1
: . . . : xn

x1

]
= [1 : y2 : . . . , yn]. So W ∼= Kn−1. If x1 = 0 we are

actually considering the projective space of one lower dimension.
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Let Ui ⊂ Pn be the subset of points [x0 : . . . : xn] with xi 6= 0. The map

[x0 : . . . : xn] 7→
[
x0

xi
: . . . :

xi−1

xi
: 1 :

xi+1

xi
: . . . :

xn
xi

]
is an isomorphism from Ui to Kn. So this map takes a line L ⊂ Kn+1 with xi 6= 0
and returns the point of intersection with the plane xi = 1. By the definition of Ui
we see that Pn = Ui ∪H where H = {p ∈ Pn | p = [x0, . . . , xi−1, 0, xi+1, . . . , xn]}. We
can identify Ui with the affine space Kn and interpret H as a hyperplane at infinity. It
follows that there is a one-to-one correspondence between H and Pn−1 so we can write
Pn = Kn ∪ Pn−1 and Pn = ∪ni=0Ui. This makes the projective space a compactification
of affine space with the sets Ui a cover of Pn by affine open sets.

To better illustrate that the projective space is the compactification of affine space
we consider [a0, a1] ∈ P1. Suppose a0 6= 0, then we can write the point as [1, a1/a0]
as we have done previously and so we can see that the set of points with a0 6= 0 is
isomorphic to K. If a0 = 0, then a1 6= 0 and we can write this point as [0, 1]. Thus P1

is just K with one point added, the ”point at infinity” you have no doubt encountered
during introductory courses in topology.

3.3 Zariski topology and morphisms

Definition 3.7. [Har92] The Zariski topology on a variety X is the topology whose
closed sets are the subvarieties of X.

So for X ⊆ Kn the open sets are given by Uf = {p ∈ X | f(p) 6= 0} for the polynomials
f . From now on, if we speak of an open subset of a variety X, we mean the complement
of a subvariety.

Definition 3.8. [Har92] Let U ⊂ X be an open set and p ∈ U . A function f on U is
regular at p if in some neighbourhood V of p it is expressible as a quotient g/h, where
g, h ∈ K[x1, . . . , xn] with h(p) 6= 0. We say that f is regular on U if it is regular at
every point of U .

The set of all regular functions on a variety X defines a ring with addition and mul-
tiplication defined as for polynomials. This ring is the coordinate ring A(X). Each
polynomial f ∈ K[x1, . . . , xn] can be seen as a function on the points of X, denoted
by ϕ ∈ A(X). Therefore, we have a homomorphism between A(X) and K[x1, . . . , xn].
The kernel of this homomorphism consists of the polynomials that are zero on X, i.e.
I(X). Therefore we have the following definition.

Definition 3.9. [Har92] We define the coordinate ring of a variety X to be the quotient

A(X) = K[x1, . . . , xn]
/
I(X)

11



Note that this is the set of equivalence classes modulo I. So polynomials are considered
equivalent if their difference vanishes on the variety. For affine varieties we have the
following.

Definition 3.10. [Wil06] For X ⊆ Kn and Y ⊆ Km, a map ϕ : X → Y is regular if
there exists m regular functions f1, . . . , fm on X such that ϕ(x) = (f1(x), . . . , fm(x))
for all x ∈ X.

If ϕ : X → Y is a regular map, then for every function g on Y we associate a function
f on X by f(x) = g(ϕ(x)). We define f = ϕ∗(g) as the pullback of g. So inversely,
ϕ∗ maps functions on Y to functions on X. The pullback gives us a homomorphism
between coordinate rings ϕ∗ : A(Y ) → A(X). The kernel of ϕ∗ is zero if and only if
ϕ(X) is dense in Y . When this is the case, ϕ∗ defines an isomorphic inclusion (embed-
ding) from A(Y ) to A(X). Regular maps give us a notion of when affine varieties are
the same. X and Y are isomorphic or biregular if there exist two maps ϕ : X → Y
and ψ : Y → X that are inverse to one another, or equivalently A(X) ∼= A(Y ).

Definition 3.11. [Wil06] Let X ⊂ Kn be an irreducible affine variety. We define
the rational function field of X as the quotient field of the coordinate ring A(X). We
usually denote it by K(X). An element h ∈ K(X) of the rational function field of X
is called a rational function h = f/g on X.

Note that while f and g are regular functions on X, h is not a function on X. For
X ⊆ Kn and Y ⊆ Km, a rational map ϕ : X → Y is a tuple of rational functions
f1, . . . , fm ∈ A(X) such that the functions fi are regular at all points x ∈ X and
ϕ(x) = (f1(x), . . . , fm(x)).

Definition 3.12. [Wil06] Let X be an irreducible variety and Y any variety. A ra-
tional map ϕ : X → Y is an equivalence class of pairs (U, γ) where U ⊂ X is a dense
Zariski open subset and γ : U → Y is a regular map. Two pairs (U, γ) and (V, η) are
considered equivalent if γ|U∩V = η|U∩V .

Rational maps are important because of the connection they have with maps between
function fields over varieties. A rational map is said to be birational if there exists a
rational map that is its inverse. To construct a definition formally we need to define
composition of rational maps. Let ϕ : X → Y and η : Y → Z be rational maps
represented by the pairs (U, f) and (V, g) respectively. Suppose that f−1(V ) 6= ∅, then
the composition η ◦ ϕ is defined as the equivalence class (f−1(V ), g ◦ f).

Definition 3.13. [Wil06] A rational map ϕ : X → Y is said to be birational if there
exists a rational map γ : Y → X such that ϕ ◦ γ and γ ◦ ϕ are defined and equal to
the identity. If there exists a birational map between two irreducible varieties we call
them birationally isomorphic or birational.

12



Theorem 3.1. [Wil06, Theorem 21] Two varieties X and Y are birational if and only
if R(X) ∼= R(Y ). Equivalently, they are birational if and only if there exists nonempty
open subsets U ⊂ X and V ⊂ Y that are isomorphic.

Example: The cusp C = V (y2−x3) is birational to A1 (affine space of K1). The map
ϕ : t 7→ (t2, t3) has the inverse ψ : C − − → A1, (x, y) 7→ y/x.

Example: P2 is birational to P1 × P1 since they both have A2 = A1 × A1 as open
subset.
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4 The Kleinian singularities

In this section we study the Kleinian singularities. These are surfaces in C3 with
a singularity at the origin. Firstly, we introduce the relevant invariant theory as it
is introduced in [CLD15, Chapter 7]. Secondly, we opted to include a section on
Grundformen for theoretical background. The Grundformen can be used to find a
single polynomial that defines a singular surface in C3. Some parts of this section
require additional knowledge that is outside the scope of this thesis if we were to
compute them explicitly. Therefore, we have opted to largely give only the results and
refer to additional material for the specifics.

4.1 Invariant theory

Let Γ be a finite matrix group of GL(2,C). The subgroup Γ acts on C2 by means of
matrix multiplication. This induces an action on C[x, y] by

(A, f(x, y)) 7→ f(A · (x, y)), for A ∈ Γ and (x, y) ∈ C2

Definition 4.1. The ring of Γ-invariant polynomials C[x, y]Γ consists of all polynomi-
als f ∈ C[x, y] such that A · f(x, y) := f(A · (x, y)) = f(x, y) for all A ∈ Γ.

We would like to find the generators of the ring of invariant polynomials. To do
so, we define the Reynolds operator (average over G):

Definition 4.2. Let G ⊂ GL(n,K) be a finite matrix group, the Reynolds operator of
G is the map

RG : K[x1, . . . , xn]→ K[x1, . . . , xn], RG(f(x)) =
1

|G|
∑
A∈G

f(A · x)

Theorem 4.1. [CLD15, Theorem 7.3.5] Let G ⊂ GL(n,K) be a finite matrix group,
let xβ1 , . . . , xβm be all monomials of total degree at most |G|. Then

K[x1, . . . , xn]G = K[RG(xβ1), . . . , RG(xβm)] = K
[
RG(xβ)

∣∣ |β| ≤ |G|]
So checking the Reynolds operator for finitely many monomials will yield us our gen-
erators. We can define the following useful ideal.

Definition 4.3. LetK[x1, . . . , xn]G be generated by f1, . . . , fm and let F = (f1, . . . , fm)
be a polynomial in K[y1, . . . , ym]. We define the ideal of relations

IF = {h ∈ K[y1, . . . , ym] | h(f1, . . . , fm) = 0}

14



Theorem 4.2. [CLD15, Theorem 7.4.2] Let K[x1, . . . , xn]G be generated by f1, . . . , fm
and let IF be the ideal of relations. Then there is a ring isomorphism

K[x1, . . . , xn]G ∼= K[y1, . . . , ym]
/
IF

Here the quotient of K[y1, . . . , ym] modulo IF is the set of equivalence classes for congru-
ence modulo I. The ideal of relations defines a variety V (IF ) ⊆ Km which is irreducible
and IF defines the ideal of all the polynomials that vanish on VF [CLD15, Proposition
7.4.7]. Eventually we intend to obtain surfaces in C3. The following theorem completes
the correspondence with Γ ⊂ SL(2,C).

Theorem 4.3. [CLD15, Theorem 7.4.10] Let G ⊂ GL(n,K) be a finite matrix group,
a ∈ Kn and IF the ideal of relations. The G-orbit of a is G · a = {A · a | A ∈ G} and
the set of all G-orbits is called the orbit space. The map sending the G-orbit G · a to
the point F (a) ∈ VF induces a one-to-one correspondence.

Kn
/G ∼= VF

4.2 Divisors and Grundformen

The previous section showed that the quotient space C2/Γ defines a variety but we
do not yet know how to find it explicitly. The Reynolds operator is one option and
we will use it for the cyclic case. However, for the other cases the Reynolds operator
turns out to be cumbersome. Therefore, we outline an alternative method here. The
following section is based largely on [Dol07, section 1.2] and introduces Grundformen.
Grundformen can be used to find generators for the ring of invariants.

Definition 4.4. [BT11] Let X be a connected irreducible variety of dimension d. A
prime divisor on X is a closed irreducible subset Z ⊂ X of dimension d− 1.

Definition 4.5. [BT11] A divisor on X is an element of the group generated by the
prime divisors. This group is denoted by Div(X).

We write a divisor as
∑

Z nZZ where Z ranges over the prime divisors and nZ are
integers. Only finitely many nZ are non-zero.

Definition 4.6. [BT11] An effective divisor is a divisor where each nZ ∈ N.

Let f(x, y) be a homogeneous polynomial of degree d. Note that if a is a zero of
f , then f(λa) = λdf(a) is also a zero. Therefore, a defines a line of zeroes that inter-
sects the origin. Thus, the zero set of the polynomial in C2 is a set of lines through
the origin. Hence, it is a set of points in P1. This set consists is a finite union of
prime divisors (points are irreducible and have codimension 1). Hence, the set forms
an effective divisor, which we denote by V (f), because we can take each nZ equal to
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the multiplicity of the points. Let g ∈ SL(2,C), we define the action of g on C[x, y]d
(the space of homogeneous polynomials in two variables of degree d) as [Dol07]

g · f(x, y) =

(
a b
c d

)
· f(x, y) = f(dx− by, ay − cx)

Note that

g · f(x, y) = 0⇔ f(g−1 · (x, y)) = 0⇔ g−1 · (x, y) ∈ V (f)⇔ (x, y) ∈ g(V (f))

So we have that V (g · f) = g(V (f)). This leads to the following definition:

Definition 4.7. [Dol07] A homogeneous polynomial f is a relative invariant of G if
for all g ∈ G, g(V (f)) = V (f). This means that f is a relative invariant if and only if
for all g ∈ G, g · f = λgf with λg ∈ C.

The map χf : G→ C, g 7→ λg is called the character of f .

Definition 4.8. [Dol07] A polynomial Φ is called a Grundform if it is a relative in-
variant and its divisor V (Φ) is equal to an orbit with non-trivial stabilizer. So, every
g ∈ G has to send the set of points in P1, V (Φ), to itself while keeping some of them
fixed.

The Grundformen will form a basis of the invariant polynomials. Dolgachev states
the following criterion that has to be satisfied for this to be true.

Theorem 4.4. [Dol07] If there exist two Grundformen Φ1 and Φ2 whose orbits have
cardinalities |G|/e1 and |G|/e2 such that the characters satisfy

χe1Φ1
= χe2Φ2

Then every relative invariant is a polynomial in Grundformen.

We can now calculate the Grundformen for each finite subgroup Γ ⊂ SL(2,C) and
show that the above theorem applies. This will help us when finding the generators of
the ring of invariants. The full calculation can be found in [Dol07, section 1.2] but we
will repeat the key points here.

Case: Cyclic An
The Grundformen and the corresponding characters are:

Φ1 = x, Φ2 = y

χΦ1(u) = εn, χΦ2(u) = ε−1
n

So indeed χnΦ1
= χnΦ2

and therefore every relative invariant is a polynomial in Grund-
formen.
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Case: Binary Dihedral BD4n

The Grundformen of BD4n are:

Φ1 = xn + yn, Φ2 = xn − yn, Φ3 = xy

The binary dihedral group has 2 generators so we get two values for the characters:

χΦ1(u) = −1, χΦ2(u) = −1, χΦ3(u) = 1

χΦ1(v) = in, χΦ2(v) = −in, χΦ3(v) = −1

For Φ1 and Φ2 we have e1 = e2 = 2. We only need two characters for the theorem and
indeed χ2

Φ1
= χ2

Φ2
so every relative invariant is a polynomial in Grundformen.

Case: Binary Tetrahedral BT24

The Grundformen of BT24 are:

Φ1 = xy(xn − yn), Φ2 = x4 + 2i
√

3x2y2 + y4, Φ3 = x4 − 2i
√

3x2y2 + y4

The binary tetrahedral group has 3 generators so we get three values for the characters:

χΦ1(u) = 1, χΦ2(u) = ε3, χΦ3(u) = 1

χΦ1(v) = 1, χΦ2(v) = ε3, χΦ3(v) = 1

χΦ1(w) = 1, χΦ2(w) = ε3, χΦ3(w) = ε23

For Φ2 and Φ3 we have e2 = e3 = 3. We only need two characters for the theorem and
indeed χ3

Φ2
= χ3

Φ3
so every relative invariant is a polynomial in Grundformen.

Case: Binary Octahedral BO48

The Grundformen of BO48 are:

Φ1 = xy(xn − yn), Φ2 = x8 + 14x4y4 + y8, Φ3 = (x4 + y4)((x4 + y4)2 − 36x4y4)

The binary octahedral group has 3 generators so we get three values for the characters:

χΦ1(u) = −1, χΦ2(u) = 1, χΦ3(u) = −1

χΦ1(v) = 1, χΦ2(v) = 1, χΦ3(v) = 1

χΦ1(w) = 1, χΦ2(w) = 1, χΦ3(w) = 1

For Φ1 and Φ3 we have e1 = 4 and e3 = 2. We only need two characters for the the-
orem and indeed χ4

Φ1
= χ2

Φ3
so every relative invariant is a polynomial in Grundformen.

Case: Binary Icosahedral BI120

The Grundformen of BI120 are:

Φ1 = xy(x10 + 11x5y5 − y10), Φ2 = 228(x15y5 − x5y15)− x20 − y20 − 494x10y10

Φ3 = x30 + y30 + 522(x25y5 − x5y25)− 10005(x20y10 + x10y20)

The characters are trivial, i.e. χΦ1 = χΦ2 = χΦ3 = 1. Hence, every relative invariant is
a polynomial in Grundformen.
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4.3 The Kleinian singularities

In this section we will determine generators for the rings of Γ-invariant polynomials for
each finite subgroup Γ ⊂ SL(2,C). Note that a polynomial f ∈ C[x, y]Γ if and only if
χf = 1. We will need the following important lemma from [Dol07].

Lemma 4.5. Suppose that an invariant polynomial F can be written as
∑
ciΦi with

ci 6= 0 and Φi relative invariants corresponding to different characters. Then each Φi

is invariant.

Now we have the prerequisite tools to find the generators for C[x, y]Γ and construct
the polynomial g ∈ C[x, y, z] that defines our surface in C3. For the cyclic case we do
not yet need Grundformen. If we look at the generator of the cyclic subgroup (denoted
by An)

U =

(
εn 0
0 ε−1

n

)
we see that on C[x, y] it sends x 7→ εnx and y 7→ ε−1

n y. Applying the Reynolds operator
to monomials of the form xiyj yields

RG(xiyj) =
1

n

n∑
k=1

εikx
iε−jk yj =

xiyj

n

n∑
k=1

εi−jk

This is 0 if i 6= j mod n and it is xiyj if i = j mod n. So using Theorem 4.2 we
conclude that the ring of invariants is generated by f1 = xn, f2 = yn and f3 = xy. It
turns out that for each subgroup of SL(2,C) the ring of invariants has three generators.

We have the relation fn3 = f1f2 so if we set x = f1, y = f2 and z = f3 we obtain
the equation xy − zn = 0. Klein [Kle84] proved in 1884 that the ideals of relations for
the subgroups of SL(2,C) are generated by one element. In other words, C2/Γ can be
interpreted as a surface in C3 defined by the polynomial F . For An this means that

C[x, y]An ∼= C[x, y, z]
/
I(xy − zn)

By Theorem 4.4, An defines a surface in C3 defined by xy − zn. By convention, there
is a shift in An such that An is defined by xy − zn+1.

For the other four cases it is convenient to use Grundformen. The idea is that we
take any invariant F =

∑
i Φ

ai
1 Φbi

2 Φci
3 and show that it can be written as a polynomial

in generators fi. By Lemma 4.6, we know that each monomial Φa
1Φb

2Φc
3 is an invariant.

The next step in the procedure is to define three invariant polynomials (do this by
finding monomials in Grundformen with trivial character) and show that any mono-
mial that is not generated by those is not an invariant. The method requires a lot
of calculations that we did not do ourselves. Therefore, we will show how Dolgachev
computes the binary dihedral case and refer to his notes for the other cases.
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For the binary dihedral case, the following generators are invariants:

f1 = Φ1Φ2, f2 = Φ2
3, f3 = Φ3Φ2

2

If we take a monomial Φa
1Φb

2Φc
3, we see that if c ≥ 2 we can factor a power of f2. Hence,

we assume c ≤ 1. Furthermore, if a, b ≥ 1, we can factor f1 until either a = 0 or b = 0.
Hence, we assume that a = 0 or b = 0. We are left with the following possibilities for
the monomial:

{Φk
1,Φ

k
2,Φ

k
1Φ3,Φ

k
2Φ3,Φ3}

Observe that the following monomials are also expressible in fi:

Φ3Φ2
1 = xy((xn + yn)2 − 4(xy)n) = f3 − 4f

n+1
2

2

Φ4
2 = (x2n − y2n)2 − 4xnyn(xn − yn)2 = f 2

1 − 4f3f
n−1
2

2

Φ4
1 = ((xn − yn)2 + 4xnyn)2 = f 2

1 + 4f3f
n−1
2

2 + 16fn2

Hence, we can factor any of Φ4
1,Φ

4
2,Φ

2
1Φ3,Φ

2
2Φ3. This restricts the possibilities to:

{Φk
1,Φ

k
2,Φ1Φ3,Φ2Φ3,Φ3 | k ≤ 3}

None of the elements of the set is an invariant and hence we have shown that any
invariant monomial can also be written as polynomial in fi. Hence, any invariant is
generated by the fi. Dolgachev observes the following relation:

f 2
3 + f2f

2
1 + 4f3f

n+1
2

2 = (f3 + 2f
n+1
2

2 )2 − 4fn+1
1 − f2f

2
1 = 0

If we substitute f ′3 = f3 + 2f
n+1
2

2 we get

f ′23 − 4fn+1
1 − f2f

2
1

If we scale the generators properly we get

C[x, y]BD4n ∼= C[x, y, z]

(x2 + z(y2 + zn))

By Theorem 4.4 and Lemma 4.6, BD4n defines a surface in C3 defined by x2+z(y2+zn).

As mentioned, the rest of the calculations can be found in [Dol07, section 1,2]. Histor-
ically, Klein [Kle84] proved the following for all finite subgroups of SL(2,C).

Group ADE-classification Defining polynomial
Cyclic (Zn+1) An xy − zn+1

Binary Dihedral (BD4n) Dn+2 x2 + zy2 + zn+1

Binary Tetrahedral (BT24) E6 x4 + y3 + z2

Binary Octahedral (BO48) E7 x2 + y3 + yz3

Binary Icosahedral (BI120) E8 x5 + y3 + z2

The corresponding varieties are all irreducible and they all have a singularity at the
origin. Therefore, they have been coined the Kleinian Singularities. The next pages
show some graphs of the real parts of the varieties.
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Figure 3: The graph of the real part of A1.

Figure 4: The graph of the real part of D5.
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Figure 5: The graph of the real part of E6.

Figure 6: The graph of the real part of E7.
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Figure 7: The graph of the real part of E8.
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5 Blowups

Many affine varieties are not entirely smooth but have singular points. Studying such
an object in projective space may allow us to view it without it’s singular points. We
would like to find a map from a smooth variety V ⊂ Kn×Pn−1(K) to an affine variety
W ⊂ Kn. We would like this mapping to be such that W and V are isomorphic every-
where at perhaps the singular points. A method for removing singular points is called
blowing up. A blowup can be thought of as a higher-dimensional parametrization of
our variety such that it does not intersect itself. The blowup map is an example of
a birational map that is not isomorphic. In certain cases it is an isomorphism on the
regular points but not on the singular points.

-1.0

-0.5

0.0

0.5

-0.5
0.0

0.5

-1

0

1

Figure 8: An example of the node x3 + x2 − y2 and its blowup.
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5.1 Blowing up at a point

Suppose we have some affine variety V ⊂ Kn and some point p ∈ V . The idea behind
blowing up at p is to leave every part of Kn unchanged except for the point p. This
point we will replace with an entire copy of Pn−1(K). This means that all the lines
through p can be uniquely associated with a point in Pn−1(K). This should enforce the
idea of separating the lines through p. From now on we will assume p to be the origin
since this could be achieved by an appropriate change of coordinates. Firstly, we will
formalize the concept of a singularity.

Definition 5.1. Let V ⊂ Kn be an affine variety described by f1, . . . , fm. A singularity
of V is a point p ∈ V such that the Jacobian

∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fm
∂xn

· · · ∂fm
∂xn

 (p)

has rank strictly less than min(m,n).

This requirement guarantees that the null space of the Jacobian is non-empty, i.e.
we have a singular point. We can now construct a blowup surface as the set of all pairs
of points (p, q) ∈ Kn × Pn−1 with p ∈ Kn and q ∈ Pn−1 the line through p and the
origin.

Definition 5.2. [Har92]A blowup surface BlOV of a space V = Kn is defined to be:

BlOV = {(x1, . . . , xn, y1 : . . . : yn) | xiyj = xjyi 1 ≤ i < j ≤ n} ⊂ Kn × Pn−1(K)

Definition 5.3. The blowup of Kn at the origin is the blowup surface BlOV and the
projection map π : BlOV → Kn, (q, p) 7→ q.

The map π is a projection onto Kn. An important observation is that π is an iso-
morphism on An\{O} so the condition that we leave An unchanged except at the
origin is satisfied. Obviously the origin is where things get interesting. We can see that
the preimage of the origin is π−1(O) = {O} × Pn−1(K) ∼= Pn−1(K). We call π−1(O)
the exceptional divisor of the blowup. Let X be a variety passing through the origin.
We call π−1(X) the strict transform. What we are interested in however is the proper
transform.

Definition 5.4. [Wil06] Let X ⊆ An be variety through the origin. The proper trans-
form of X under π : BlOV → Kn is defined as BlO(X) = π−1(X\{O}) with closure
defined by the Zariski topology. Whenever we talk about the blowup of a variety X in
O we are referring to the proper transform.
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Example : We will blow up the cusp C = V (x3 − y2) at the origin. To do so,
we first look at the blowup when we restrict P1 to U0. In that case, x0 6= 0 so we get
that x0y = xx1 becomes y = tx. If we fill this in we get x3 − t2x2 = x2(x − t2) = 0.
This means that either x2 = 0 or x = t2. However, x = 0 implies y = 0 which is the
origin. So this is the exceptional divisor. The other option is x = t2 which means that
y = t3.
Now we look at the other chart U1. Then we get x = sy which implies y2(s3y− 1) = 0.
Again y2 = 0 is the exceptional divisor and the other solution is s3y = 1. At this point
we note that the only point we missed when looking at U0 was [0, 1]. This is the point
where s = 0. This point is clearly not on s3y = 1 so the point is of no consequence.
We conclude that the exceptional divisor intersects π−1(C\{O}) at one point. This
means that π−1(C\{O}) requires the addition of one point. Note that π defines an
isomorphism outside of the origin by (x, y) 7→ (x, y : x

y
) and (x, y, : t) 7→ (x, y).

0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 9: The blowup of the cusp x3 − y2.
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The homogeneous polynomials xiyj − xjyi define a variety Γ ⊆ Pn−1 × Kn. We will
illustrate why this variety corresponds with our intuition of a blowup.

Lemma 5.1. Let (p, q) ∈ Pn−1 × Kn be a point and p̂ ∈ Kn\{0} the affine vector
corresponding to p. Then (p, q) ∈ Γ if and only if q = tp̂ for some t.

Proof. Let (p, q) ∈ Pn−1 × Kn with p = [p1 : . . . : pn] and not all pi = 0. Suppose
(p, q) ∈ Γ, then piqj = pjqi. There exists a coordinate pk 6= 0 and for this coordinate
we have pkqj = pjqk for all j. So qj = qk

pk
pj = tpj and we conclude that q = tp̂.

Suppose that q = tp̂ for some t ∈ K. We have that piqj − pjqi = pitpj − pjtpi = 0 is
satisfied. Hence (p, q) ∈ Γ.

So points lie on Γ if and only if they lie on some line through the origin. Now we look
at what happens at the origin.

Lemma 5.2. Let q ∈ Kn be such that q 6= 0. Then for some p ∈ Pn−1 we have
(Pn−1×{q})∩Γ = {(p, q)} ∈ Pn−1×Kn. If q = 0, then (Pn−1×{0})∩Γ = Pn−1×{0}.

Proof. Suppose q 6= 0, then we know that (p, q) ∈ Γ if and only if q = tp̂ for some
t 6= 0. We have p̂ = (p1, . . . , pn) = q

t
which is clearly unique. Hence the intersection

(Pn−1 × {q}) ∩ Γ consists of one point (p, q).
Suppose q = 0, then (p, q) ∈ Γ if and only if tp̂ = 0. Because there exists pi 6= 0, we
require t = 0. So every p̂ ∈ Kn\{0} satisfies the criterion which corresponds with a
copy of Pn−1. So indeed (Pn−1 × {0}) ∩ Γ = Pn−1 × {0}.

If we take π : Γ→ Kn the projection map. Then π−1(q) consists of a single point when
q 6= 0 and when q = 0 it consists of a copy of Pn−1. So we can regard Γ as the variety
obtained by removing the origin from Kn and replacing it by a copy of Pn−1.

Lemma 5.3. Let L be a line through the origin of Kn parametrized by tv with v ∈
Kn\{O}. Then L defines a curve in Γ that intersects Pn−1 × {0} in a distinct point.

Proof. Let L be parametrized by tv with v ∈ Kn\{0} and w the point in Pn−1 defined by
L. We have for (w, tv) that witvj−wjtvi = tvivj−tvjvi = 0 so (w, tv) ∈ Γ. L intersects
the origin when t = 0. This corresponds to the unique point (w, 0) ∈ Pn−1×{0}. Hence
the curve defined by L intersects the origin in a distinct point in Pn−1 × {0}.

The lemma illustrates that there is a one-to-one correspondence between lines through
the origin in Kn and points in π−1(0). Thus, Γ separates tangent directions at the
origin. This should reinforce your intuition on what a blowup does.

5.2 Blowing up along a variety

Let X ⊆ Kn be an affine variety and Y ⊆ X a subvariety. For blowing up along a
subvariety we will define a regular birational map π : BLO(X) → X associated to Y
that is an isomorphism away from Y .
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Definition 5.5. Let the ideal of Y be generated by the functions f0, . . . , fn (we can
do this locally and the set does not have to be minimal). We define ϕ : X →
Pn, p 7→ [f0(p), . . . , fn(p)]. Note that ϕ is not defined on Y . For the graph of ϕ
we have graph(ϕ) = {(p, ϕ(p)) | p ∈ X\Y } ⊂ X × Pn. We define the blowup as
BlY (X) = graph(ϕ).

Example : We look at the case where Y = (0, 0) is the origin in affine space A2. The
ideal is I(Y ) = (x, y) and the graph is graph(ϕ) = {(x, y : x : y) | (x, y) 6= (0, 0)}. We
define F = xx1 − yx0 where x1, x0 are homogeneous coordinates and graph(ϕ) lies in
the zero set of F . By the definition of closed sets in the Zariski topology, this zero set
is closed. Furthermore, since graph(ϕ) is 2D, F is irreducible and 2D we conclude that
the zero set is the smallest set containing graph(ϕ). So our new definition corresponds
to our earlier definition of blowing up at a point.

Example : Now we will blow up along the circle x2 + y2 − 1 = 0, z = 0. The ideal is
I(S1) = 〈z, x2+y2−1〉 and the graph is {(x, y, z, z : x2+y2−1) | (z, x2+y2−1) 6= (0, 0)}.
We define F = x0(x2 + y2 − 1)− zx1 and obtain our blowup.
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6 Blowing up the Kleinian singularities

In this section we blow up the Kleinian singularities. Du Val obtained the following
description of a resolution of a Kleinian singularity [Bur83, page 111]. The preimage
of a singularity s is a connected union of projective lines that intersect transversally

π−1(s) = C1 ∪ · · · ∪ Cm, Ci ∼= P1

We associate a vertex with each curve and two vertices are connected by an edge if the
corresponding curves intersect. The resulting graph is called a intersection diagram.
To blow up the Kleinian singularities, we find a sufficiently large set of polynomial
equations that our surfaces must satisfy and use irreducibility to show that these equa-
tions must constitute the proper transform (the Zariski closure of π−1(X/{O}). We
check irreducibility in every chart but to guarantee irreducibility in our entire space
we need the following theorem.

Theorem 6.1. Let X be a connected variety and suppose we have a finite collection
of non-empty open sets {Ui} that cover X. Suppose that X ∩Ui is irreducible for all i,
then X is irreducible.

Proof. Suppose that X is reducible, then X has a minimal decomposition into irre-
ducible varieties X = C1 ∪ · · · ∪ Cm [Har92, Theorem 5.7]. We consider Y = Ca ∪ Cb
such that Y is connected, i.e. Ca ∩ Cb 6= ∅. Since {Ui} is a cover of X, we choose a Ui
that contains a point p ∈ Ca ∩ Cb such that Ui ∩ Ca 6⊆ Ui ∩ Cb and Ui ∩ Cb 6⊆ Ui ∩ Ca.
Hence Y ∩Ui = (Ui∩Ca)∪(Ui∩Cb) is the union of two non-empty irreducible varieties.
So Y ∩ Ui is reducible and hence there exists an i such that X ∩ Ui is reducible.

The Kleinian surfaces are connected and a connected variety remains connected after
blowing up. Therefore, using the theorem it is sufficient for us to check for irreducibil-
ity in each of the charts Ui. One could check this using Eisenstein’s criterion but
doing so would add a significant number of pages to this thesis. Hence we checked for
irreducibility using the computer.
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6.1 Resolution of Kleinian singularities: An

In this section we resolve the Ak−1 singularity xy− zk and construct the corresponding
intersection diagram. We will blow up xy−zk at the singularity Y = (0, 0, 0). We take
a sufficiently large collection of equations:

xX1 − yX0, xX2 − zX0, yX2 − zX1, X0y −X2z
k−1, X0X1 −X2

2z
k−2

• U0 ∩BlYX : We define u = X1

X0
and v = X2

X0
and obtain for our equations:

xu− y, xv − z, yv − zu, y − vzk−1, u− v2zk−2

Note that xv − z = xvu − zu = yv − zu if u 6= 0. Hence yv − zu is redundant.
Similarly, u − v2zk−2 = xu − xv2zk−2 = y − vzk−1 if x 6= 0 so y − vzk−1 is
redundant. We are left with three irreducible, independent equations.

xu− y, xv − z, u− v2zk−2

Our current space is isomorphic with C5
x,y,z,u,v so the variety defined by these

equations has dimension 2. Hence, it is defines the proper transform of our
blowup. Using the first two equations, we can embed our surface into C3

x,u,v with
the remaining equation u− xk−2vk.
Note: From now on, we will give the three relevant equation without argument
to make these sections less cumbersome.

• U1 ∩ BlYX : We define u = X0

X1
and v = X2

X1
and obtain for our equations in

C5
x,y,z,u,v:

yu− x, yv − z, u− v2zk−2

This is isomorphic to u− yk−2vk in C3
u,y,v.

• U2 ∩ BlYX : We define u = X0

X2
and v = X1

X2
and obtain for our equations in

C5
x,y,z,u,v:

zu− x, zv − y, uv − zk−2

This is isomorphic to uv − zk−2 in C3
u,v,z.

Case k = 2

• U0∩BlYX : After blowing up, we obtain the equation u−v2 which has Jacobian

(0, 1, −2v),

which is smooth. No singularity.

• U1∩BlYX : After blowing up, we obtain the equation u−v2 which has Jacobian

(0, 1, −2v),

which is smooth. No singularity.
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• U2∩BlYX : After blowing up, we obtain the equation uv−1 which has Jacobian

(v, u, 0),

which is smooth. No singularity.

Going back to the equations, the exceptional divisor π−1(O) gives X0X1 − X2
2 . This

is a smooth quadric which is isomorphic to P1. So the intersection diagram is a single
vertex. The following picture illustrates that π−1(O) contracts the circle (P1) to a
point.

Figure 10: The resolution of A1 type singularity.

Case k = 3

• U0 ∩ BlYX : After blowing up, we obtain the equation u − xv3 which has
Jacobian

(−v3, 1, −3xv2),

which is smooth. No singularity.

• U1 ∩ BlYX : After blowing up, we obtain the equation u − yv3 which has
Jacobian

(−v3, 1, −3yv2),

which is smooth. No singularity.

• U2∩BlYX : After blowing up, we obtain the equation uv−z which has Jacobian

(v, u, −1),

which is smooth. No singularity.
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The exceptional divisor π−1(O) gives X0X1 = 0. This constitutes two intersecting
projective lines.

Case k ≥ 4

• U0 ∩ BlYX : After blowing up, we obtain the equation u − xk−2vk which has
Jacobian

(−(k − 2)xk−3vk, 1, −kxk−2vk−1),

which is smooth. No singularity.

• U1 ∩ BlYX : After blowing up, we obtain the equation u − yk−2vk which has
Jacobian

(−(k − 2)yk−3vk, 1, −kyk−2vk−1),

which is smooth. No singularity.

• U2 ∩ BlYX : After blowing up, we obtain the equation uv − zk−2 which has
Jacobian

(v, u, −(k − 2)zk−3),

which has a singularity at (0, 0, 0). Note that this is exactly the equation for
Ak−3.

The exceptional divisor π−1(O) gives X0X1 = 0. This constitutes two intersecting
projective lines. The singularity found in the U2 chart lies at the intersection of these
two lines since u = v = 0 implies X0 = X1 = 0. If we blow up again, we get another
two projective lines. This continues until we reach A1 or A2 which can be resolved
by one last blowup. Hence we have: Using the procedure for finding the intersection

Figure 11: The exceptional divisor of An−1 type singularity.

diagram described above, we get the following graph for An (there are n nodes):

An :
n

◦ – ◦ · · · ◦ – ◦
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6.2 Resolution of Kleinian singularities: Dn

In this section we resolve the Dn+2 singularity x2 + y2z + zn+1 and construct the
corresponding intersection diagram. We will blow up x2 + y2z+ zn+1 at the singularity
Y = (0, 0, 0). we take a sufficiently large collection of equations:

xX1 − yX0, xX2 − zX0, yX2 − zX1, X2
0 + zX2

1 +X2
2z

n−1

• U0 ∩ BlYX : We define u = X1

X0
and v = X2

X0
and obtain for our equations in

C5
x,y,z,u,v:

xu− y, xv − z, 1 + zu2 + v2zn−1

This is isomorphic to 1 + xvu2 + xn−1vn+1 in C3
x,u,v.

• U1 ∩ BlYX : We define u = X0

X1
and v = X2

X1
and obtain for our equations in

C5
x,y,z,u,v:

yu− x, yv − z, u2 + z + v2zn−1

This is isomorphic to u2 + yv + yn−1vn+1 in C3
u,y,v.

• U2 ∩ BlYX : We define u = X0

X2
and v = X1

X2
and obtain for our equations in

C5
x,y,z,u,v:

zu− x, zv − y, u2 + v2z + zn−1

This is isomorphic to u2 + v2z + zn−1 in C3
u,v,z.

Case n = 2

• U0 ∩ BlYX : After blowing up, we obtain the equation 1 + xvu2 + xv3 which
has Jacobian

(v(v2 + u2), 2xuv, x(u2 + 3v2)),

which is smooth. No singularity.

• U1∩BlYX : After blowing up, we obtain the equation u2 + yv+ yv3 which has
Jacobian

(2u, v(1 + v2), y(1 + 3v2)),

which has three singularities at (0, 0, 0), (0, 0, i) and (0, 0,−i).

• U2 ∩BlYX : After blowing up, we obtain the equation u2 + v2z + z which has
Jacobian

(2u, 2vz, 1 + v2),

which has two singularities at (0, i, 0) and (0,−i, 0).

32



Figure 12: The exceptional divisor of D4 at this moment.

However, note that v = ±i in the U2 chart implies X1 = ±iX2. Hence, the two sin-
gularities found in the U2 chart are the same as the singularities (0, 0, i) and (0, 0,−i)
found in the U1 chart. Going back to the equations, the exceptional divisor π−1(O)
gives X2

0 . This is a single projective line P1. Note that in the U1 chart, u = 0 for all
singularities so all three lie on the exceptional divisor.

To further resolve the D4 singularity we have to blow up at the three singularities
consecutively. If we translate our blowup surface by ε = v, v − i, v + i we can do this
easily. This is however quite cumbersome so we will do the center singularity (0, 0, 0)
here and leave the other two to the reader if they so desire.

Convention: To avoid a plethora of variables, we resort back to x, y, z coordinates
after each blowup.

So we will blow up x2 + yz + yz3 at the singularity Y = (0, 0, 0). we take a suffi-
ciently large collection of equations:

xX1 − yX0, xX2 − zX0, yX2 − zX1, X2
0 +X1X2 +X1X2z

2

• U0 ∩ BlYX : We define u = X1

X0
and v = X2

X0
and obtain for our equations in

C5
x,y,z,u,v:

xu− y, xv − z, 1 + uv + uvz2

This is isomorphic to 1 + uv + ux2v3 in C3
x,u,v. The Jacobian is

(2uxv3, v(1 + x2z2), u(1 + 3x2v2)),

which is smooth. No singularity.

• U1 ∩ BlYX : We define u = X0

X1
and v = X2

X1
and obtain for our equations in

C5
x,y,z,u,v:

yu− x, yv − z, u2 + v + vz2

f This is isomorphic to u2 + v + y2v3 in C3
u,y,v. The Jacobian is

(2u, 2yv3, 1 + 3y2v2),

which is smooth. No singularity.
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• U2 ∩ BlYX : We define u = X0

X2
and v = X1

X2
and obtain for our equations in

C5
x,y,z,u,v:

zu− x, zv − y, u2 + v + vz2

This is isomorphic to u2 + v + vz2 in C3
u,v,z. The Jacobian is

(2u, 1 + z2, 2vz),

which has two singularities at (0, 0, i) and (0, 0,−i).

The two singularities at (0, 0, i) and (0, 0,−i) are the previous two we have not yet
resolved. After resolving these two we obtain a smooth surface. Going back to the
equations, the exceptional divisor π−1(O) gives X2

0 +X1X2. This is a smooth quadric
which is isomorphic to P1. Hence we have:

Figure 13: The exceptional divisor of D4 at this moment.

The corresponding intersection diagram is

D4 :
◦ – ◦ – ◦

◦

The following picture illustrates how π−1(O) contracts the circles (P1) to a point.

Case n ≥ 3

• U0 ∩ BlYX : After blowing up, we obtain the equation 1 + xvu2 + xn−1vn+1

which has Jacobian

(v(u2 + (n− 1)xn−2vn), 2xvu, x(u2 + (n+ 1)xn−2vn)),

which is smooth. No singularity.
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Figure 14: [Bur83, page 112] The blow up of D4 and the exceptional divisor.

• U1∩BlYX : After blowing up, we obtain the equation u2 +yv+yn−1vn+1 which
has Jacobian

(2u, v(1 + (n− 1)yn−2vn), y(1 + (n+ 1)yn−2vn)),

which has a singularity at (0, 0, 0).

• U2 ∩ BlYX : After blowing up, we obtain the equation u2 + v2z + zn−1 which
has Jacobian

(2u, 2vz, v2 + (n− 1)zn−2),

which has a singularity at (0, 0, 0). Note that this is exactly the equation for
Dn−2.

The exceptional divisor π−1(O) gives X2
0 = 0. This is one projective line. Both the

singularity found in the U2 chart and the singularity found in the U1 chart lie on this
projective line.

We will blow up the singularity in the U1 chart first. So we blow up x2 + yz+ yn−1zn+1

at the singularity Y = (0, 0, 0). we take a sufficiently large collection of equations:

xX1 − yX0, xX2 − zX0, yX2 − zX1, X2
0 +X1X2 +X2

2 (yz)n−1

• U0 ∩ BlYX : We define u = X1

X0
and v = X2

X0
and obtain for our equations in

C5
x,y,z,u,v:

xu− y, xv − z, 1 + uv + v2(yz)n−1
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This is isomorphic to 1 + uv + un−1vn+1x2(n−1) in C3
x,u,v. The Jacobian is

(2(n−1)un−1vn+1x2n−3, v(1+(n−1)un−2vnx2(n−1)), u(1+(n+1)un−2vnx2(n−1))),

which is smooth. No singularity.

• U1 ∩ BlYX : We define u = X0

X1
and v = X2

X1
and obtain for our equations in

C5
x,y,z,u,v:

yu− x, yv − z, u2 + v + v2(yz)n−1

This is isomorphic to u2 + v + vn+1y2(n−1) in C3
u,y,v. The Jacobian is

(2u, 2(n− 1)vn+1y2n−3, 1 + (n+ 1)vny2(n−1)),

which is smooth. No singularity.

• U2 ∩ BlYX : We define u = X0

X2
and v = X1

X2
and obtain for our equations in

C5
x,y,z,u,v:

zu− x, zv − y, u2 + v + (yz)n−1

This is isomorphic to u2 + v + vn−1z2(n−1) in C3
u,v,z. The Jacobian is

(2u, 1 + (n− 1)vn−2z2(n−1), 2(n− 1)vn−1z2n−3),

which is smooth. No singularity.

The exceptional divisor π−1(O) gives X2
0 + X1X2. This is a smooth quadric which is

isomorphic to P1. So blowing up Dn gives two intersecting projective lines with a Dn−2

type singularity on one of them. Resolving it will eventually lead to the following:
Using the procedure for finding the intersection diagram, we get the following graph

Figure 15: The exceptional divisor of Dn type singularity.

for Dn for n ≥ 4 (there are n vertices in total):

Dn :

◦ n

◦ – ◦ · · · ◦ – ◦

◦
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6.3 Resolution of Kleinian singularities: E6

In this section we resolve the E6 singularity x4+y3+z2 and construct the corresponding
intersection diagram. We will blow up x4 + y3 + z2 at the singularity Y = (0, 0, 0). we
take a sufficiently large collection of equations:

xX1 − yX0, xX2 − zX0, yX2 − zX1, X2
0x

2 +X2
1y +X2

2

• U0 ∩ BlYX : We define u = X1

X0
and v = X2

X0
and obtain for our equations in

C5
x,y,z,u,v:

xu− y, xv − z, x2 + u2y + v2

This is isomorphic to x2 + xu3 + v2 in C3
x,u,v. The Jacobian is

(2x+ u3, 3xu2, 2v),

which has a singularity at (0, 0, 0).

• U1 ∩ BlYX : We define u = X0

X1
and v = X2

X1
and obtain for our equations in

C5
x,y,z,u,v:

yu− x, yv − z, u2x2 + y + v2

This is isomorphic to y2u4 + y + v2 in C3
u,y,v. The Jacobian is

(4y2u3, 1 + 2yu4, 2v),

which is smooth. No singularity.

• U2 ∩ BlYX : We define u = X0

X2
and v = X1

X2
and obtain for our equations in

C5
x,y,z,u,v:

zu− x, zv − y, 1 + u2x2 + v2y

This is isomorphic to 1 + zv3 + z2u4 in C3
u,v,z. The Jacobian is

(4z3u3, 3zv2, v3 + 2zu4),

which is smooth. No singularity.

The exceptional divisor π−1(O) gives X2
2 = x = y = z = 0. In U0 this is x = 0∧ v = 0.

This is one projective line with a singularity on it. We will blow up x2 + xy3 + z2 at
the singularity Y = (0, 0, 0). we take a sufficiently large collection of equations:

xX1 − yX0, xX2 − zX0, yX2 − zX1, X2
0 +X2

1xy +X2
2

• U0 ∩ BlYX : We define u = X1

X0
and v = X2

X0
and obtain for our equations in

C5
x,y,z,u,v:

xu− y, xv − z, 1 + u2xy + v2

This is isomorphic to 1 + x2u3 + v2 in C3
x,u,v. The Jacobian is

(2xu3, 3x2u2, 2v),

which is smooth. No singularity.
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• U1 ∩ BlYX : We define u = X0

X1
and v = X2

X1
and obtain for our equations in

C5
x,y,z,u,v:

yu− x, yv − z, u2 + xy + v2

This is isomorphic to u2 + uy2 + v2 in C3
u,y,v. The Jacobian is

(2u+ y2, 2uy, 2v),

which has a singularity at (0, 0, 0).

• U2 ∩ BlYX : We define u = X0

X2
and v = X1

X2
and obtain for our equations in

C5
x,y,z,u,v:

zu− x, zv − y, 1 + u2 + v2xy

This is isomorphic to 1 + u2 + uz2v3 in C3
u,v,z. The Jacobian is

(2u+ z2v3, 3uz2v2, 2uzv3),

which is smooth. No singularity.

The exceptional divisor of the previous blowup gave us x = 0 ∧ v = 0 which, after the
change in coordinates, is x = 0 ∧ z = 0 in this blowup. In C5

x,y,z,u,v this means that
yu = 0 ∧ yv = 0 which gives us two cases:

• y = 0 This gives us u2 + v2 = 0 which constitutes two intersecting projective
lines (u, 0, iu) and (u, 0,−iu) that intersect at (0, 0, 0).

• u = 0 ∧ v = 0 This gives us another projective line (0, y, 0) which intersects
the other at the origin.

After the second blowup we have an exceptional divisor which consists of three projec-
tive lines that intersect in the origin. The origin is also the position of the singularity.

We will blow up x2 + xy2 + z2 at the singularity Y = (0, 0, 0). we take a sufficiently
large collection of equations:

xX1 − yX0, xX2 − zX0, yX2 − zX1, X2
0 +X2

1x+X2
2

• U0 ∩ BlYX : We define u = X1

X0
and v = X2

X0
and obtain for our equations in

C5
x,y,z,u,v:

xu− y, xv − z, 1 + xu2 + v2

This is isomorphic to 1 + xu2 + v2 in C3
x,u,v. The Jacobian is

(u2, 2xu, 2v),

which is smooth. No singularity.
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Figure 16: The exceptional divisor of E6 after the second blowup.

• U1 ∩ BlYX : We define u = X0

X1
and v = X2

X1
and obtain for our equations in

C5
x,y,z,u,v:

yu− x, yv − z, u2 + x+ v2

This is isomorphic to u2 + yu+ v2 in C3
u,y,v. The Jacobian is

(2u+ y, , u 2v),

which has a singularity at (0, 0, 0).

• U2 ∩ BlYX : We define u = X0

X2
and v = X1

X2
and obtain for our equations in

C5
x,y,z,u,v:

zu− x, zv − y, 1 + u2 + v2x

This is isomorphic to 1 + u2 + zuv2 in C3
u,v,z. The Jacobian is

(2u+ zv2, 2zuv, uv2),

which is smooth. No singularity.

The exceptional divisor of the previous blowup gave us three cases in C5
x,y,z,u,v. Finding

the entire exceptional divisor is not as straightforward this time since we have to check
all the charts. We do U1 first. To keep track of the various lines we designate each P1

by some Ei during this procedure,
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• y = 0 ∧ x2 + z2 = 0 This translates to y = 0 ∧ y2(u2 + v2) = 0 and it has to
satisfy u2 + yu + v2. Thus we get y = 0 ∧ u2 + v2 = 0 which is still a cross of
projective lines that intersect at (0, 0, 0). The two components of the cross are
E1 and E2.

• z = 0 ∧ x = 0 This translates to yv = 0 ∧ yu = 0 which gives us two options.
y = 0 gives us the same cross as the previous case. The case u = 0 ∧ v = 0 gives
us a new projective line (E3) that intersects the cross at the origin.

At this point the exceptional divisor has not significantly changed with respect to the
second blowup. Now we check the U0 chart.

• y = 0 ∧ x2 + z2 = 0 This translates to xu = 0 ∧ x2(1 + v2) = 0, which gives us
two cases:
If x = 0, we get v = ±i which constitute two projective lines that never intersect
(E ′1 and E ′2).
If u = 0, we get v = ±i which are also two non-intersecting lines (E ′3 and E ′4).
Note that E ′3 intersects E ′1 at (0, 0, i) and E ′4 intersects E ′2 at (0, 0,−i).

• z = 0 ∧ x = 0 This translates to xv = 0 ∧ x = 0 which gives us E ′1 and E ′2.

We do not have seven different projective lines but rather perceive portions of the same
ones in the different charts. We can compare the various lines by keeping in mind that
on U0∩U1 we have u1 7→ 1

u0
and v1 7→ v0

u0
. Firstly, note that E ′3 and E ′4 do not lie in U1

since u0 = 0 implies X1 = 0. Note that u2
1 + v2

1 7→ 1
u20

(1 + v2
0) which is indeed satisfied

by v0 = ±i. So E ′1 and E ′2 correspond to E1 and E2.
To sum up, we have the three lines that intersect in the origin in U1 but two of its com-
ponents (E1 and E2) intersect with two lines that are not visible in U1. The situation
is illustrated in the following diagram.

Obviously it is necessary to check the U2 chart as well. However, it yields no changes to
the exceptional divisor and, considering the already substantial length of this section,
we refrain from doing it here.

We will blow up x2 + xy + z2 at the singularity Y = (0, 0, 0). Although we con-
tinue in the U1 chart, the two projective lines E ′3 and E ′4 are still present but we can
no longer perceive them. we take a sufficiently large collection of equations:

xX1 − yX0, xX2 − zX0, yX2 − zX1, X2
0 +X0X1 +X2

2

• U0 ∩ BlYX : We define u = X1

X0
and v = X2

X0
and obtain for our equations in

C5
x,y,z,u,v:

xu− y, xv − z, 1 + u+ v2

This is isomorphic to 1 + u+ v2 in C3
x,u,v. The Jacobian is

(0, 1, 2v),
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Figure 17: The exceptional divisor of E6 after the third blowup.

which is smooth. No singularity.

• U1 ∩ BlYX : We define u = X0

X1
and v = X2

X1
and obtain for our equations in

C5
x,y,z,u,v:

yu− x, yv − z, u2 + u+ v2

This is isomorphic to u2 + u+ v2 in C3
u,y,v. The Jacobian is

(2u+ 1, , 0 2v),

which is smooth. No singularity.

• U2 ∩ BlYX : We define u = X0

X2
and v = X1

X2
and obtain for our equations in

C5
x,y,z,u,v:

zu− x, zv − y, 1 + uv + u2

This is isomorphic to 1 + uv + u2 in C3
u,v,z. The Jacobian is

(2u+ v, u, 0),

which is smooth. No singularity.
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The E6 singularity has been resolved. The exceptional divisor of the previous blowup
gave us three cases in C5

x,y,z,u,v. Finding the entire exceptional divisor requires only
checking U0 and U1 since the other chart yields no changes (the reader can check this).
For U0:

• y = 0 ∧ x2 + z2 = 0 This translates to xu = 0 ∧ x2(1 + v2) = 0, which gives us
two cases:
If x = 0, we get 1 + u + v2 = 0 which is one projective line. This is a new
projective line we will denote by E4.
If u = 0, we get v = ±i which are two non-intersecting lines (E1 and E2). Note
that they intersect E4 in (0, 0, i) and (0, 0,−i) respectively.

• z = 0 ∧ x = 0 This translates to xv = 0 ∧ x = 0 which gives us E4 again.

Now we check the U1 chart.

• y = 0 ∧ x2 + z2 = 0 This translates to y = 0 ∧ y2(u2 + v2) = 0, which means
that y = 0 ∧ u2 + u + v2 = 0. A simple change in coordinates on U0 ∩ U1 will
show that this the portion of E4 that lies in U1.

• x = 0 ∧ z = 0 This translates to yu = 0 ∧ yv = 0 which gives us two cases. If
y = 0 we obtain the previous case. If u = 0 ∧ v = 0 we obtain a new projective
line. Note that in C5

x,y,z,u,v this implies x = 0 ∧ z = 0 so this is E3 from the
previous blowups.

The fourth blowup separated the cross into three non-intersecting lines who each in-
tersect a fourth. If we recall that E1 and E2 intersected with E ′3 and E ′4 we get the
following illustration. Using the procedure for finding the intersection diagram, we get

Figure 18: The exceptional divisor of E6 after the fourth and final blowup.

the following graph for E6:

E6 :
◦ – ◦ – ◦ – ◦ – ◦

◦
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6.4 Resolution of Kleinian singularities: E7

In this section we resolve the E7 singularity x2 +y3 +yz3 and construct the correspond-
ing intersection diagram. This procedure is very elaborate and we will therefore refrain
from discussing any charts that do not contribute anything. The reader can check for
them self that these charts do not contain singularities or any additional projective
lines.

We will blow up x2 + y3 + yz3 at the singularity Y = (0, 0, 0). we take a sufficiently
large collection of equations:

xX1 − yX0, xX2 − zX0, yX2 − zX1, X2
0 + yX2

1 + yzX2
2

• U2 ∩ BlYX : We define u = X0

X2
and v = X1

X2
and obtain for our equations in

C5
x,y,z,u,v:

zu− x, zv − y, u2 + yv2 + yz

This is isomorphic to u2 + zv3 + z2v in C3
u,v,z. The Jacobian is

(2u, z(3v2 + z), v(v2 + 2z)),

which has a singularity at (0, 0, 0).

The exceptional divisor π−1(O) gives X2
0 = x = y = z = 0. In U2 this is u = 0∧ z = 0.

This is one projective line with a singularity on it. We will blow up x2 + zy3 + z2y at
the singularity Y = (0, 0, 0). we take a sufficiently large collection of equations:

xX1 − yX0, xX2 − zX0, yX2 − zX1, X2
0 + yzX2

1 + yX2
2

• U1 ∩ BlYX : We define u = X0

X1
and v = X2

X1
and obtain for our equations in

C5
x,y,z,u,v:

yu− x, yv − z, u2 + yz + yv2

This is isomorphic to u2 + vy2 + yv2 in C3
u,y,v. The Jacobian is

(2u, v(v + 2y), y(y + 2v)),

which has a singularity at (0, 0, 0).

• U2 ∩ BlYX : We define u = X0

X2
and v = X1

X2
and obtain for our equations in

C5
x,y,z,u,v:

zu− x, zv − y, u2 + yzv2 + y

This is isomorphic to u2 + zv + z2v3 in C3
u,v,z. The Jacobian is

(2u, z(1 + 3zv2), v(1 + 2zv2)),

which has a singularity at (0, 0, 0).
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We have a situation where each chart has one singularity which is not visible from the
other chart. Since blowing up is a local procedure, we can blow up the singularities
consecutively provided we keep proper track of all the projective lines. The exceptional
divisor of the previous blowup gave us u = 0 ∧ z = 0 which, after the change in coor-
dinates, is x = 0 ∧ z = 0 in this blowup. We consider each chart separately.

Chart U1 We have x = 0 ∧ z = 0 which means that yu = 0 ∧ yv = 0 which gives us
two cases:

• y = 0 This gives us u2 = 0 which is one projective line (0, 0, v) through the
origin.

• u = 0 ∧ v = 0 This gives us one projective line that intersects at the origin.

Chart U2 We have x = 0∧ z = 0 which means that zu = 0∧ z = 0 which gives us two
cases:

• z = 0 This gives us u2 = 0 which is one projective line (0, v, 0) through the
origin.

Obviously the line u = 0∩v = 0 in U1 does not exist in U2. The line in U2 is a segment
of the other one in U1. Hence we get the following situation:

Figure 19: The exceptional divisor of E7 after the second blowup.

Firstly, we resolve the singularity (0, 0, 0) in the U2 chart. We will blow up x2+yz+y3z2

at the singularity Y = (0, 0, 0). At this point it is important to note that the projective
line that contains both the singularities is x = 0 ∧ z = 0 in the U2 chart at this point.
we take a sufficiently large collection of equations:

xX1 − yX0, xX2 − zX0, yX2 − zX1, X2
0 +X1X2 +X2

2y
3

• U1 ∩ BlYX : We define u = X0

X1
and v = X2

X1
and obtain for our equations in

C5
x,y,z,u,v:

yu− x, yv − z, u2 + v + v2y3
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This is isomorphic to u2 + v + v2y3 in C3
u,y,v. The Jacobian is

(2u, 3y2v2, 1 + 2vy3),

which is smooth. No singularity.

• U2 ∩ BlYX : We define u = X0

X2
and v = X1

X2
and obtain for our equations in

C5
x,y,z,u,v:

zu− x, zv − y, u2 + v + y3

This is isomorphic to u2 + v + v3z3 in C3
u,v,z. The Jacobian is

(2u, 1 + 3v2z2, 3v3z2),

which is smooth. No singularity.

The exceptional divisor of the previous blowup gave us one case in C5
x,y,z,u,v. We only

need to check U1.

• x = 0 ∧ z = 0 This translates to yu = 0 ∧ yv = 0 which gives us two options.
y = 0 gives us y = 0 ∧ u2 + v = 0 which is a projective line through the origin.
The case u = 0 ∧ v = 0 gives us a new projective line that intersects the other
one.

We need to figure out which one connects to the other singularity. We can do this by
determining what each line ”folds down to”. Recall that the line we are looking for
corresponded to x = 0 ∧ z = 0.

The line z = 0 ∧ u2 + v = 0 folds down to x = 0, y = 0 and z = 0. Hence it
contracts to the singularity. The line u = 0 ∧ v = 0 in U1 corresponds to x = 0 and
z = 0 when folded down. Hence this last projective line connects to the other singu-
larity. This gives us the following situation:

Figure 20: The exceptional divisor of E7 after resolving the first of two singularities
during the third blowup.
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Now we resolve the singularity (0, 0, 0) in the U1 chart. We will blow up x2 + zy2 + yz2

at the singularity Y = (0, 0, 0). At this point it is important to note that the projective
line that connected the two singularities (although one is now resolved) is x = 0∧y = 0
in the U1 chart. we take a sufficiently large collection of equations:

xX1 − yX0, xX2 − zX0, yX2 − zX1, X2
0 +X2

1z +X2
2y

• U1 ∩ BlYX : We define u = X0

X1
and v = X2

X1
and obtain for our equations in

C5
x,y,z,u,v:

yu− x, yv − z, u2 + z + v2y

This is isomorphic to u2 + vy + v2y in C3
u,y,v. The Jacobian is

(2u, v(1 + v), y(1 + 2v)),

which has two singularities at (0, 0, 0) and (0, 0,−1).

• U2 ∩ BlYX : We define u = X0

X2
and v = X1

X2
and obtain for our equations in

C5
x,y,z,u,v:

zu− x, zv − y, u2 + v2z + y

This is isomorphic to u2 + v2z + vz in C3
u,v,z. The Jacobian is

(2u, z(1 + 2v) v(1 + v)),

which has two singularities at (0, 0, 0) and (0,−1, 0).

The singularities (0, 0,−1) in U1 and (0,−1, 0) in U2 are the same singularity. We have
the curious situation of both charts containing two singularities of which one is shared.
The exceptional divisor of the previous blowup gave us two cases in C5

x,y,z,u,v. We do
each chart separately.

Chart U1

• x = 0 ∧ y = 0 This translates to yu = 0 ∧ y = 0, which gives us y = 0 ∧ u = 0
which is a projective line through both singularities.

• x = 0 ∧ z = 0 This translates to yu = 0 ∧ yv = 0 which gives us two options.
y = 0 gives the other projective line and the case u = 0 ∧ v = 0 gives us a new
projective line that intersects the other one in the (0, 0, 0) singularity.

Chart U2

• x = 0 ∧ z = 0 This translates to zu = 0 ∧ z = 0, which gives us z = 0 ∧ u = 0
which is a projective line through both singularities.

• x = 0 ∧ y = 0 This translates to zu = 0 ∧ zv = 0 which gives us two options.
z = 0 gives the other projective line and the case u = 0 ∧ v = 0 gives us a new
projective line that intersects the other one in the (0, 0, 0) singularity.
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At this point the reader should be familiar with mapping the ui and vi to one another.
We obtain that y = 0 ∧ u = 0 in U1 is a segment of the same line as z = 0 ∧ u = 0 in
U2. We are left with three distinct projective lines, one of which connects tot the tail
section we have already found. We check which one by folding down:

• u1 = 0 ∧ y = 0 in U1 This collapses to x = y = z = 0 which is the singularity.

• u1 = 0 ∧ v1 = 0 in U1 This collapses to x = z = 0 which is not the correct
projective line.

• u2 = 0 ∧ v2 = 0 in U2 This collapses to x = y = 0 which is the correct line.

We conclude that the line u2 = 0∧ v2 = 0 in U2 connects to the tail section we already
had. This gives us the following situation:

Figure 21: The exceptional divisor of E7 after resolving both singularities of the second
blowup.

We have the situation of both charts containing two singularities of which one is shared.
We blow up x2 + yz + y2z at (0,−1, 0) in the U2 chart first. If y = y′ − 1 we obtain
x2+y′2z−y′z and blow up in (0, 0, 0). we take a sufficiently large collection of equations:

xX1 − y′X0, xX2 − zX0, y′X2 − zX1, X2
0 −X1X2 +X2

1z

• U1 ∩ BlYX : We define u = X0

X1
and v = X2

X1
and obtain for our equations in

C5
x,y′,z,u,v:

y′u− x, y′v − z, u2 + z − v
This is isomorphic to u2 − v + y′v in C3

u,y′,v. The Jacobian is

(2u, v, y′ − 1),

which has a singularities at (0, 1, 0).
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• U2 ∩ BlYX : We define u = X0

X2
and v = X1

X2
and obtain for our equations in

C5
x,y′,z,u,v:

zu− x, zv − y′, u2 + v2z − v
This is isomorphic to u2 + v2z − v in C3

u,v,z. The Jacobian is

(2u, 2vz − 1 v2),

which is smooth. No singularity.

The singularity (0, 1, 0) in U1 is the old singularity that is visible in the U2 chart. The
exceptional divisor of the previous blowup gave us two cases in C5

x,y′,z,u,v. We only need
to check U1.

Chart U1

• x = 0 ∧ z = 0 This translates to y′u = 0 ∧ y′v = 0 which gives us two options.
y′ = 0 gives us y′ = 0 ∧ v − u2 = 0 which is a projective line that does not
intersect the singularity. The case u = 0 ∧ v = 0 gives us a new projective line
that intersects the other one and also crosses the singularity.

• x = 0∧ y′ = 1 This translates to y′u = 0∧ y′ = 1. This gives us u = 0∧ y′ = 1
which intersects u = 0 ∧ v = 0 in the singularity (0, 1, 0).

We are left with three distinct projective lines. Note that u = 0∧y′ = 1 in U1 collapses
to x = 0∧y = 0 so it connects to our tail section. This gives us the following situation:

Figure 22: The exceptional divisor of E7 after resolving one of the singularities during
the fourth blowup.
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Now we want to blow up x2 + y′z − z at (0, 1, 0) in the U1 chart. However, suppose
that y′ = 1− y, then we obtain x2− yz which is a singularity of type A1. Furthermore,
blowing up at (0, 0,−1) in U1 is symmetrical to the U2 case since x2 + yz2 + yz leads
to x2 + y2z+ yz by exchanging y and z. Therefore, the other singularity is also of type
A1.
We only blow up the U2 case, i.e. we blow up x2 − yz in (0, 0, 0) (after the coordinate
change). Recall that the two relevant exceptional divisors are x = 0 ∧ y = 0 which
connects to the tail section and x = 0∧z = 0 which also intersects the second singularity
in U1. we take a sufficiently large collection of equations:

xX1 − yX0, xX2 − zX0, yX2 − zX1, X2
0 −X1X2

• U1 ∩ BlYX : We define u = X0

X1
and v = X2

X1
and obtain for our equations in

C5
x,y,z,u,v:

yu− x, yv − z, u2 − v
This is isomorphic to u2 − v in C3

u,y,v. The Jacobian is

(2u, 0, −1),

which is smooth. No singularity.

• U2 ∩ BlYX : We define u = X0

X2
and v = X1

X2
and obtain for our equations in

C5
x,y,z,u,v:

zu− x, zv − y, u2 − v
This is isomorphic to u2 − v in C3

u,v,z. The Jacobian is

(2u, −1, 0),

which is smooth. No singularity.

The exceptional divisor of the previous blowup gave us two cases in C5
x,y,z,u,v. We do

each chart separately.

Chart U1

• x = 0∧y = 0 This translates to yu = 0∧y = 0, which gives us y = 0∧u2−v = 0
which is a projective line through the origin.

• x = 0 ∧ z = 0 This translates to yu = 0 ∧ yv = 0 which gives us two options.
y = 0 gives the other projective line and the case u = 0 ∧ v = 0 gives us a new
projective line that intersects the other one in (0, 0, 0).

Chart U2

• x = 0∧z = 0 This translates to zu = 0∧z = 0, which gives us z = 0∧u2−v = 0
which is a projective line through the origin.
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• x = 0 ∧ y = 0 This translates to zu = 0 ∧ zv = 0 which gives us two options.
z = 0 gives the other projective line and the case u = 0 ∧ v = 0 gives us a new
projective line that intersects the other one in (0, 0, 0).

The two lines u2
i − vi are segments of the same exceptional divisor. Furthermore, the

projective line u = 0 ∧ v = 0 in U2 connects to our tail section while u = 0 ∧ v = 0 in
U1 connects to the other singularity in the previous U1 chart. As mentioned, both of
the remaining singularities were of the type A1 and both resolved similarly. This leads
to the following: Using the procedure for finding the intersection diagram, we get the

Figure 23: The exceptional divisor of E7 after resolving all the singularities.

following graph for E7:

E7 :
◦ – ◦ – ◦ – ◦ – ◦ – ◦

◦
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6.5 Resolution of Kleinian singularities: E8

In this section we resolve the E8 singularity x5+y3+z2 and construct the corresponding
intersection diagram. This procedure is very elaborate and we will therefore refrain
from discussing any charts that do not contribute anything. The reader can check for
them self that these charts do not contain singularities or any additional projective
lines.

We will blow up x5 + y3 + z2 at the singularity Y = (0, 0, 0). we take a sufficiently
large collection of equations:

xX1 − yX0, xX2 − zX0, yX2 − zX1, X2
0x

3 +X2
1y +X2

2

• U0 ∩ BlYX : We define u = X1

X0
and v = X2

X0
and obtain for our equations in

C5
x,y,z,u,v:

xu− y, xv − z, x3 + u2y + v2

This is isomorphic to x3 + xu3 + v2 in C3
x,u,v. The Jacobian is

(3x2 + u3, 3u2x, 2v),

which has a singularity at (0, 0, 0).

The exceptional divisor π−1(O) gives X2
2 = 0 (and x = y = z = 0). This is one

projective line with the singularity on it. We will blow up x3+xy3+z2 at the singularity
Y = (0, 0, 0). we take a sufficiently large collection of equations:

xX1 − yX0, xX2 − zX0, yX2 − zX1, X2
0x+X2

1yx+X2
2

• U1 ∩ BlYX : We define u = X0

X1
and v = X2

X1
and obtain for our equations in

C5
x,y,z,u,v:

yu− x, yv − z, u2x+ yx+ v2

This is isomorphic to u3y + uy2 + v2 in C3
u,y,v. The Jacobian is

(y(y + 3u2), u(u2 + 2y), 2v),

which has a singularity at (0, 0, 0).

The exceptional divisor of the previous blowup gave us v = 0 ∧ x = 0 which, after the
change in coordinates, is x = 0 ∧ z = 0 in this blowup. So we get yu = 0 ∧ yv = 0.
If y = 0, then v = 0 so we have one projective line y = 0 ∧ v = 0 that crosses the
singularity. The other case is u = 0 ∧ v = 0 which intersects the previous projective
line in the origin.

We will blow up x3y + xy2 + z2 at the singularity Y = (0, 0, 0). we take a sufficiently
large collection of equations:

xX1 − yX0, xX2 − zX0, yX2 − zX1, X2
0xy +X2

1x+X2
2
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• U0 ∩ BlYX : We define u = X1

X0
and v = X2

X0
and obtain for our equations in

C5
x,y,z,u,v:

xu− y, xv − z, xy + u2x+ v2

This is isomorphic to ux2 + xu2 + v2 in C3
x,u,v. The Jacobian is

(u(u+ 2x), x(x+ 2u), 2v),

which has a singularity at (0, 0, 0).

• U1 ∩ BlYX : We define u = X0

X1
and v = X2

X1
and obtain for our equations in

C5
x,y,z,u,v:

yu− x, yv − z, xyu2 + x+ v2

This is isomorphic to uy + v2 + y2u3 in C3
u,y,v. The Jacobian is

(3y2u2, u(1 + 2yu2), 2v),

which has a singularity at (0, 0, 0).

We have one singularity in each chart. The exceptional divisor of the previous blowup
gave us two cases in C5

x,y,z,u,v. We do each chart separately.

Chart U0

• x = 0 ∧ z = 0 This translates to x = 0 ∧ xv = 0, which gives us x = 0 ∧ v = 0
which is a projective line through the singularity. This line folds down to a point
if we reverse the blowup.

• y = 0 ∧ z = 0 This translates to xu = 0 ∧ xv = 0 which gives us two options.
x = 0 gives the other projective line and the case u = 0 ∧ v = 0 gives us a new
projective line that intersects the other one in the (0, 0, 0) singularity. This line
is y = 0 ∧ z = 0 from before the blowup.

Chart U1

• y = 0 ∧ z = 0 This translates to y = 0 ∧ yv = 0, which gives us y = 0 ∧ v = 0
which is a projective line through the singularity. This line is a segment of the
x = 0 ∧ v = 0 line in U0.

• x = 0 ∧ z = 0 This translates to yu = 0 ∧ yv = 0 which gives us two options.
y = 0 gives the other projective line and the case u = 0 ∧ v = 0 gives us a new
projective line that intersects the other one in the (0, 0, 0) singularity. This line
is x = 0 ∧ z = 0 from before the blowup.
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Figure 24: The exceptional divisor of E8 after the third blowup.

If we look at the U1 chart we obtain the equation xy + x3y2 + z2. This is the same
equation as the third blowup of E7 if we exchange the variables x 7→ y, y 7→ z and
z 7→ x. So we can immediately obtain: We will blow up x2y+xy2 +z2 at the singularity
Y = (0, 0, 0). we take a sufficiently large collection of equations:

xX1 − yX0, xX2 − zX0, yX2 − zX1, X2
0y +X2

1x+X2
2

• U0 ∩ BlYX : We define u = X1

X0
and v = X2

X0
and obtain for our equations in

C5
x,y,z,u,v:

xu− y, xv − z, y + u2x+ v2

This is isomorphic to ux+ u2x+ v2 in C3
x,u,v. The Jacobian is

(u(1 + u), x(1 + 2u), 2v),

which has two singularities at (0, 0, 0) and (0,−1, 0).

• U1 ∩ BlYX : We define u = X0

X1
and v = X2

X1
and obtain for our equations in

C5
x,y,z,u,v:

yu− x, yv − z, x+ u2y + v2

This is isomorphic to uy + u2y + v2 in C3
u,y,v. The Jacobian is

(y(1 + 2u), u(1 + u), 2v),

which has two singularities at (0, 0, 0) and (−1, 0, 0).

We have two singularities in each chart, one of which is shared. The exceptional divisor
of the previous blowup gave us two cases in C5

x,y,z,u,v. Note that before the blowup, the
line that connected to the tail section was x = 0∧ z = 0. We do each chart separately.

Chart U0

• x = 0 ∧ z = 0 This translates to x = 0 ∧ xv = 0, which gives us x = 0 ∧ v = 0
which is a projective line through both singularities. This line folds down to a
point if we reverse the blowup.
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• y = 0 ∧ z = 0 This translates to xu = 0 ∧ xv = 0 which gives us two options.
x = 0 gives the other projective line and the case u = 0 ∧ v = 0 gives us a new
projective line that intersects the other one in the (0, 0, 0) singularity. This line
is y = 0 ∧ z = 0 from before the blowup.

Chart U1

• y = 0 ∧ z = 0 This translates to y = 0 ∧ yv = 0, which gives us y = 0 ∧ v = 0
which is a projective line through both singularities. This line is a segment of
the x = 0 ∧ v = 0 line in U0.

• x = 0 ∧ z = 0 This translates to yu = 0 ∧ yv = 0 which gives us two options.
y = 0 gives the other projective line and the case u = 0 ∧ v = 0 gives us a new
projective line that intersects the other one in the (0, 0, 0) singularity. This line
is x = 0 ∧ z = 0 from before the blowup.

We have the following:

Figure 25: The exceptional divisor of E8 after the fourth blowup.

We will blow up xy + x2y + z2 at the singularity Y = (0, 0, 0) in the U1 chart. we take
a sufficiently large collection of equations:

xX1 − yX0, xX2 − zX0, yX2 − zX1, X0X1 +X2
0y +X2

2
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• U0 ∩ BlYX : We define u = X1

X0
and v = X2

X0
and obtain for our equations in

C5
x,y,z,u,v:

xu− y, xv − z, u+ y + v2

This is isomorphic to u+ xu+ v2 in C3
x,u,v. The Jacobian is

(u, 1 + x, 2v),

which has a singularity at (−1, 0, 0).

• U1 ∩ BlYX : We define u = X0

X1
and v = X2

X1
and obtain for our equations in

C5
x,y,z,u,v:

yu− x, yv − z, u+ u2y + v2

This is isomorphic to u+ u2y + v2 in C3
u,y,v. The Jacobian is

(1 + 2uy, u2, 2v),

which is smooth. No singularity.

We have one singularity in the U0 chart which is the one from the previous blowup.
The exceptional divisor of the previous blowup gave us two cases in C5

x,y,z,u,v. Note
that before the blowup, the line that connected to the tail section was x = 0 ∧ z = 0.
We do each chart separately.

Chart U0

• x = 0∧z = 0 This translates to x = 0∧xv = 0, which gives us x = 0∧u+v2 = 0
which is a projective line that folds down to a point if we reverse the blowup.

• y = 0 ∧ z = 0 This translates to xu = 0 ∧ xv = 0 which gives us two options.
x = 0 gives the other projective line and the case u = 0 ∧ v = 0 gives us a new
projective line that intersects the other one in (0, 0, 0) and it also crosses the
singularity. This line is y = 0 ∧ z = 0 from before the blowup.

Chart U1

• y = 0∧z = 0 This translates to y = 0∧yv = 0, which gives us y = 0∧u+v2 = 0
which is a segment of the x = 0 ∧ u+ v2 = 0 line in U0.

• x = 0 ∧ z = 0 This translates to yu = 0 ∧ yv = 0 which gives us two options.
y = 0 gives the other projective line and the case u = 0 ∧ v = 0 gives us a new
projective line that intersects the other one. This line is x = 0 ∧ z = 0 from
before the blowup.
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Figure 26: The exceptional divisor of E8 after the fifth and sixth blowup.

So the line u = 0 ∧ v = 0 in U1 connects to the tail section. Moreover, note that in
U0 we have the singularity (−1, 0, 0) and the equation y + xy + z2. If we substitute
x = −x′ − 1 we get z2 − x′y which is a singularity of type A1. Hence, we have the
following:

The reader can compute the blowup of (0,−1, 0) in the U0 chart to see that, after a
suitable change of coordinates, we end up with z2−xy. This obviously has a singularity
at (0, 0, 0) and we also have three projective lines: x = 0 ∧ z = 0, y = 0 ∧ z = 0 and
y = 1 ∧ x = z2. The latter does not intersect with the singularity and can therefore
be ignored. Finally, We will blow up z2 − xy at the singularity Y = (0, 0, 0) in the U0

chart. we take a sufficiently large collection of equations:

xX1 − yX0, xX2 − zX0, yX2 − zX1, X2
2 −X0X1

• U0 ∩ BlYX : We define u = X1

X0
and v = X2

X0
and obtain for our equations in

C5
x,y,z,u,v:

xu− y, xv − z, v2 − u
This is isomorphic to v2 − u in C3

x,u,v. The Jacobian is

(0, −1, 2v),

which is smooth. No singularity.

• U1 ∩ BlYX : We define u = X0

X1
and v = X2

X1
and obtain for our equations in

C5
x,y,z,u,v:

yu− x, yv − z, v2 − u
This is isomorphic to v2 − u in C3

u,y,v. The Jacobian is

(−1, 0, 2v),

which is smooth. No singularity.
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The exceptional divisor of the previous blowup gave us two cases in C5
x,y,z,u,v. We do

each chart separately.

Chart U0

• x = 0∧z = 0 This translates to x = 0∧xv = 0, which gives us x = 0∧v2−u = 0
which is a projective line that folds down to a point if we reverse the blowup.

• y = 0 ∧ z = 0 This translates to xu = 0 ∧ xv = 0 which gives us two options.
x = 0 gives the other projective line and the case u = 0 ∧ v = 0 gives us a new
projective line that intersects the other one. This line is y = 0 ∧ z = 0 from
before the blowup.

Chart U1

• y = 0∧z = 0 This translates to y = 0∧yv = 0, which gives us y = 0∧v2−u = 0
which is a segment of the x = 0 ∧ v2 − u = 0 line in U0.

• x = 0 ∧ z = 0 This translates to yu = 0 ∧ yv = 0 which gives us two options.
y = 0 gives the other projective line and the case u = 0 ∧ v = 0 gives us a new
projective line that intersects the other one. This line is x = 0 ∧ z = 0 from
before the blowup.

We have resolved the E8 singularity and obtained: Using the procedure for finding the

Figure 27: The exceptional divisor of E8 after resolving all the singularities.

intersection diagram, we get the following graph for E8:

E8 :
◦ – ◦ – ◦ – ◦ – ◦ – ◦ – ◦

◦
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7 The McKay correspondence

In this section we establish the McKay correspondence. Firstly, we introduce the
relevant representation theory as it is introduced in [JL12] and [FH91]. Then we use it
to find the McKay graphs of the finite subgroups of SL(2,C) and show their relationship
to the Dynkin diagrams of type ADE.

7.1 Representation theory

Definition 7.1. [JL12] Let G be a group and let F be R or C. A representation of G
over F is a homomorphism ρ from G to GL(n, F ), for some n. The degree of ρ is the
integer n.

The representation gives the vector space F n the so called structure of an FG-module
which has the following formal definition.

Definition 7.2. [JL12] Let V be a finite dimensional vector space over F and let G
be a group. Then V is an FG-module if a multiplication vg is defined satisfying:

• vg ∈ V

• v(gh) = (vg)h

• ve = e

• (λv)g = λ(vg)

• (u+ v)g = ug + vg

A subset W of V is an FG-submodule if it a subspace that is itself an FG-module, i.e.
wg ∈ W for all w ∈ W , g ∈ G.

Definition 7.3. [JL12] An FG-module V is irreducible if it is non-zero and its only
FG-submodules are {0} and V .

We will adhere to the convention of denoting a representation of V by V itself when
there is little ambiguity about the map ρ. Whenever we write gv (with v ∈ V and
g ∈ G) we mean ρ(g)v. There is a correspondence from the FG-modules to represen-
tations by the map g 7→ [g]B where [g]B is the matrix of v 7→ gv relative to the basis
B. Similarly, a representation yields an FG-module by setting V = F n and defining
multiplication as gv = ρ(g)v. We say that a representation is irreducible if its corre-
sponding FG-module is irreducible.

Both the direct sum and tensor product of two representations are again represen-
tations. Recall that a sum V = U1 + · · · + Ur = {u1 + · · · + ur | ui ∈ Ui} is a direct
sum if every element of the sum can be written in a unique way as u1 + · · · + ur for
ui ∈ Ui. In this case we write V = U1 ⊕ · · · ⊕ Ur.
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Definition 7.4. [FH91] Let V and W be vector spaces over C with bases v1, . . . , vm
and w1, . . . , wn. The tensor product space V ⊗W is an mn-dimensional vector space
over C with a basis given by

{vi ⊗ wj | 1 ≤ i ≤ m, 1 ≤ j ≤ n}

So V ⊗W consists of all expressions of the form∑
i,j

λij(vi ⊗ vj), λij ∈ C

We define the tensor product of two representations V and W such that g(v ⊗ w) =
gv ⊗ gw. The nth power tensor product V ⊗n simply means V ⊗n = V ⊗ · · · ⊗ V (n
times). Similarly, V ⊕n means V ⊕ · · · ⊕ V (n times).

Theorem 7.1. [JL12, Theorem 8.1] (Maschke’s Theorem) Let G be a finite group and
V an FG-module. If U is an FG-submodule of V , then there is an FG-submodule W
of V such that V = U ⊕W .

A consequence of Maschke’s is that every non-zero FG-module is decomposable into
irreducible components. Formally, an FG-module V is said to be completely reducible
if V = U1 ⊕ · · · ⊕ Ur where each Ui is irreducible.

Theorem 7.2. [JL12, Theorem 8.7] If G is a finite group, then every non-zero FG-
module is completely reducible.

Theorem 7.3. [JL12, Theorem 9.1] (Schur’s Lemma) Let V and W be irreducible
CG-modules.

• If f : V → W is a homomorphism, then either f is an isomorphism or f(v) = 0
for all v ∈ V .

• If f : V → V is an isomorphism, then f is a scalar multiple of the identity map.

The above theorems and definitions neatly summarize into the following theorem:

Theorem 7.4. [FH91, Theorem 1.8] For any representation V of a finite group G
there is a unique decomposition (up to reordering)

V ∼= V ⊕a11 ⊕ · · · ⊕ V ⊕akk

Where Vi are distinct irreducible representations.

One of our remaining major objectives is determining this irreducible decomposition.
For finite abelian groups it is fairly straightforward.
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Theorem 7.5. [JL12, Theorem 9.8] Let G be the abelian group Zn1 × · · · × Znr . We
define the representation ρ = ρλ1···λr as ρ(g) = ρ(gi11 · · · girr ) = λi11 · · ·λirr (here λi is an
nith root of unity). The representation ρ is irreducible and has degree 1. There are
|G| of these representations, and every irreducible representation of G is equivalent to
precisely one of them.

Another important theorem that we will use is

Theorem 7.6. [JL12, Theorem 11.12] Let V1, . . . , Vk form a complete set of non-
isomorphic irreducible CG-modules. Then

k∑
i=1

(dimVi)
2 = |G|

7.2 Characters

Definition 7.5. [JL12] Let ρ : G → GL(V ) be a representation. For any g ∈ G, we
define the character of ρ as χρ(g) = Tr(ρ(g)) where Tr is the trace. The character of
an irreducible representation is called an irreducible character.

Theorem 7.7. [JL12, Theorem 13.5] The number of irreducible characters of G is
equal to the number of conjugacy classes of G.

We have that χV⊕W = χV + χw and χV⊗W = χV χW and χV (h−1gh) = χV (g). So
the character is really a function on the conjugacy classes of G which motivates the
definition of a character table. Here we list the conjugacy classes of G at the top in the
form of some representative and denote the number of elements in the class above it.
The irreducible representations Ui of G are listed in the leftmost column and the value
of χV (g) is shown in the appropriate position.

We define an inner product for the characters as

〈χ1, χ2〉 =
1

|G|
∑
g∈G

χ1(g)χ2(g)

And we obtain that a representation V is irreducible if and only if 〈χV , χV 〉 = 1 [JL12,
Theorem 14.20].

7.3 The McKay graphs

We now have sufficient machinery to define and determine the McKay graph. Let Γ ⊂
SL(2,C) be a finite subgroup. We already know the representation V : Γ → GL(C2).
The representation is decomposable into irreducible representations V0, . . . , Vk (V0 is
trivial). Next, we determine

Vi ⊗ V ∼= V ⊕ai00 ⊕ · · · ⊕ V ⊕aikk
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to obtain aij. Using what we know from characters we know that aij = 〈χVi⊗V , χVj〉 =
〈χViχV , χVj〉. We now construct the graph with vertices Vi and the number of edges
between Vi and Vj is aij. Lastly, we remove the trivial vertex V0 and its accompanying
edges to obtain the McKay graph.

Case cyclic Zn
The cyclic group Zn is abelian and so it has n 1-dimensional representations. We
denote the elements of Zn as εk where ε is an nth root of unity. The irreducible repre-
sentations are given by Vi(ε

k) = εik. We take as our representation V : Zn → GL(C2)
the representation given in section 2.3, which is

V : Zn → GL(C2), εk 7→
(
εk 0
0 ε−k

)
If we calculate the characters we see that χV (εk) = εk+ε−k and obviously χVi(ε

k) = εik.
So we get for aij

aij = 〈χViχV , χVj〉 =
1

n

n∑
k=1

χVi(ε
k)χV (εk)χVj(ε

k)

=
1

n

n∑
k=1

εk(i+1) + εk(i−1)εjk =
1

n

n∑
k=1

εk(j−i−1) + εk(j−i+1)

Note that 1
n

∑n
k=1 ε

ak is 0 if a 6= 0 and 1 if a = 0. So aij = 0 if j 6= i + 1 (mod n)
and j 6= i − 1 (mod n) and aij = 0 if j = i + 1 (mod n) or j = i − 1 (mod n). So in
the McKay graph, each vertex Vi is only connected to Vj−1 and Vj+1 (cyclically so V0

is connected to Vn−1 and V1). Hence, our graph is currently a cycle. If we remove the
vertex V0 we end up with a Dynkin diagram of type An−1.

Figure 28: The McKay graph of the cyclic subgroup of order n.

Case binary dihedral BD4n

The binary dihedral group generated by u and v has the form 〈u, v | u2n = v4 = 1, v2 =
un, uv = vu−1〉. Looking at the 1-dimensional case, we can map u 7→ ε where ε is 2nth
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root of unity. We know that (un)2 = 1 so un = ±1 = v2. Therefore, v = 1,−1, i,−i.
We know uv = vu−1 so u = u−1 and therefore u = ±1. So we have the representations:

ρ1 : BD4n → GL(C), u 7→ 1, v 7→ 1

ρ2 : BD4n → GL(C), u 7→ 1, v 7→ −1

ρ3 : BD4n → GL(C), u 7→ −1, v 7→ i

ρ4 : BD4n → GL(C), u 7→ −1, v 7→ −i
Since v2 = un, we can easily construct the character table

uk vuk

ρ1 1 1
ρ2 1 −1
ρ3 (−1)k (−1)ki
ρ4 (−1)k (−1)k+1i

For the 2D representations, recall that we obtained

σ : BD4n → GL(C2), u 7→
(
ε 0
0 ε−1

)
, v 7→

(
0 i
i 0

)
In general, we can define additional representations for 0 < j < n as

σj : BD4n → GL(C2), u 7→
(
εj 0
0 ε−j

)
, v 7→

(
0 ij

ij 0

)
Looking at the characters gives us χσj(u

k) = εjk + ε−jk and χσj(vu
k) = 0. The latter

means that we only have to take into account the elements uk when calculating the
inner products (in particular aij) since otherwise one of the characters in the inner
product is 0. We see that

〈χσj , χσj〉 =
1

4n

2n∑
k=1

χσj(u
k)χσj(u

k) = 1

Therefore, we know that each σj is irreducible. Note that σ = σ1. By Theorem 7.6 we
have 4 ∗ 12 + (n− 1) ∗ 22 = 4n so these are all the representations. Furthermore, this
means that ρ1 and ρ2 link to the same vertices, as do ρ3 and ρ4.

The reader can easily check that aρiρj = 0 for all i and j. Now we look at connections
between ρ1 and σj.

aρ1σj = 〈χρ1χσ, χσj〉 =
1

4n

2n∑
k=1

χρ1(ε
k)χσ(εk)χσj(ε

k) =
1

4n

2n∑
k=1

(εk + ε−k)(εjk + ε−jk)

=
1

4n

2n∑
k=1

εk(j+1) + ε−k(j+1) +
1

4n

2n∑
k=1

εk(j−1) + ε−k(j−1)
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For convenience we introduce Sa = 1
4n

∑2n
k=1 ε

ak + ε−ak for 0 ≤ a ≤ n which is 1 if a = 0
and 0 otherwise. Hence, aρ1σj = 1 if j = 1 and 0 otherwise (this also holds for ρ2).
Now we look at connections between ρ3 and σj.

aρ3σj =
1

4n

2n∑
k=1

(−1)k(εk(j+1) + ε−k(j+1)) +
1

4n

2n∑
k=1

(−1)k(εk(j−1) + ε−k(j−1))

This means that aρ3σj is 1 if j = n−1 and 0 otherwise. Lastly, we check the connections
between σi and σj.

aσiσj = Sj+i+1 + Sj+i−1 + Sj−i+1 + Sj−i−1

This means that for 1 < i < n− 1 the vertex σi has an edge with σi−1 and with σi+1.
If i = 1, it only has a connection with σ2 and σn−1 is connected to σn−2. Finally, we
remove ρ1 since it is the trivial representation to obtain our McKay graph. We end up
with a Dynkin diagram of type Dn+2.

Figure 29: The McKay graph of the binary dihedral subgroup of order 4n.

Case binary tetrahedral BT24

The binary tetrahedral group is 〈X, Y, Z | X3 = Y 3 = Z2 = XY Z = T, T 2 = 1〉. We
look at the 1-dimensional representations first. If T = −1, we get Z = ±i but then
X3 = Y 3 = ±iXY = −1 which can never be satisfied. If T = 1 and Z = −1 we get
Z3 = Y 3 = −XY = 1 which can also never be satisfied. Lastly, if T = 1 and Z = 1
we get three options: X = Y = 1 or X = ε and Y = ε2 or X = ε2 and Y = ε (here ε
is a 3th root of unity). So we have three 1-dimensional representations which we will
denote by σ0, σ1, σ2 respectively.
By theorem 7.6, we know that we have to form 21 by a sum of squares that does not
involve 12. The only option is 32 + 3 · 22 = 21. Hence, we have an additional three 2
dimensional representation ρ0, ρ1, ρ2 and another 3-dimensional representation τ .
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For the binary tetrahedral case, the character table is [Boc]:

σ0 1 1 1 1 1 1 1
σ1 1 ε ε2 ε 1 ε2 1
σ2 1 ε2 ε ε2 1 ε 1
ρ0 2 -1 -1 1 -2 1 0
ρ1 2 −ε2 −ε ε2 -2 ε 0
ρ2 2 −ε −ε2 ε -2 ε2 0
τ 3 0 0 0 3 0 -1

We denote by ρ the original representation we derived in section 2. Bocklandt denotes
the original representation as ρ0 = σ0 ⊗ ρ since σ0 is the identity. Recall that we
put an edge between ρi and ρj if ρj appears in the direct summand of ρ0 ⊗ ρi. We
know that χV⊕W = χV + χw and χV⊗W = χV χw so for each representation and each
representative of a conjugacy class, we look at χρ0χρi and write it as a sum of other
characters. If this is possible, we immediately know that there is an edge between ρi
and the representations present in the sum. For convenience, we write the character
function as a vector (x1, . . . , xk) where xi is the value for each of the conjugacy classes.

Firstly, for τ we get χρ0χτ = (6, 0, 0, 0,−6, 0, 0). This is equal to χρ0 + χρ1 + χρ2
so there are edges between τ and ρ0, ρ1, ρ2. We already know that ρ0 = ρ ⊗ σ0 and
so the trivial representation σ0 only has an edge with ρ0. For ρ0 we get χρ0χρ0 =
(4, 1, 1, 1, 4, 1, 0) = χσ0 + χτ so ρ0 has no other edges.
For ρ1 we get χρ0χρ1 = (4, ε2, ε, ε2, 4, ε, 0) = χτ+χσ2 . Similarly, χρ0χρ2 = (4, ε, ε2, ε, 4, ε2, 0) =
χτ+χσ1 . Lastly, χρ0χσ1 = (2,−ε,−ε2, ε,−2, ε2, 0) = χρ2 and χρ0χσ2 = (2,−ε2,−ε, ε2,−2, ε, 0) =
χρ1 so there are no further edges.
Now that we have checked every case we can construct our McKay graph. We see that
it is a Dynkin diagram of type E6.

Figure 30: The McKay graph of the binary tetrahedral subgroup.
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Case binary octahedral BO48

The binary octahedral group is 〈X, Y, Z | X3 = Y 4 = Z2 = XY Z = T, T 2 = 1〉.
We look at the 1-dimensional representations first. If T = −1, we get Z = ±i but
then X3 = Y 4 = ±iXY = −1 which can never be satisfied. If T = 1 and Z = 1 we
have X3 = Y 4 = XY = 1. This means that X = 1 and Y = 1 which is the trivial
representation σ0. If T = 1 and Z = −1 we once again require X = 1. This gives
Y 4 = −Y = 1 which gives Y = −1 and another representation σ1. So we have two
1-dimensional representations. This means that we have to solve a22 +b32 +c42 +d52 +
e62 = 46. We obtain three possibilities:

48 = 52 + 32 + 3 · 22 + 2 · 12 = 42 + 2 · 32 + 3 · 22 + 2 · 12 = 2 · 32 + 7 · 22 + 2 · 12

The symmetries of the octahedron give us a 3-dimensional representation τ which
gives us two others τi = τ ⊗ σi. Hence the first option is no longer possible. Accord-
ing to Bocklandt there is a four dimensional representation. Hence, we have the case
42 + 2 · 32 + 3 · 22 + 2 · 12.

For the binary octahedral case, the character table is [Boc]

σ0 1 1 1 1 1 1 1 1
σ1 1 1 1 1 -1 -1 -1 1
µ 2 -1 -1 2 0 0 0 2

ρ0 2 -1 1 -2 0
√

2 −
√

2 0

ρ1 2 -1 1 -2 0 −
√

2
√

2 0
τ0 3 0 0 3 1 -1 -1 -1
τ1 3 0 0 3 -1 1 1 -1
ν 4 1 -1 4 0 0 0 0

This time, we go about calculating the McKay graph more systematically. We already
know that σ0 is only connected to ρ0 (since ρ0 = σ0⊗ ρ). We then construct the chain
by looking at the next representation and construct the whole chain.

χρ0χρ0 = (4, 1, 1, 4, 0, 2, 2, 0) = χσ0 + (3, 0, 0, 3,−1, 1, 1,−1) = χσ0 + χτ1

χρ0χτ1 = (6, 0, 0,−6, 0,
√

2,−
√

2, 0) = χρ0 + (4, 1,−1,−4, 0, 0, 0, 0) = χρ0 + χν

χρ0χν = (8,−1,−1, 8, 0, 0, 0, 0) = χτ1 + (5,−1,−1, 5, 1,−1,−1, 1) = χτ1 + χτ0 + χµ

χρ0χµ = (4, 1,−1,−4, 0, 0, 0, 0) = χν

χρ0χτ0 = (6, 0, 0,−6, 0,−
√

2,
√

2, 0) = χν + (2,−1, 1,−2, 0,−
√

2,
√

2, 0) = χν + χρ1
χρ0χρ1 = (4, 1, 1, 4, 0,−2,−2, 0) = χτ0 + (1, 1, 1, 1,−1,−1,−1, 1) = χτ0 + χσ1

χρ0χσ1 = (2,−1, 1,−2, 0,−
√

2,
√

2, 0) = χρ1

If we remove the trivial representation σ0 we obtain the McKay graph. We see that it
is a Dynkin diagram of type E7.
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Figure 31: The McKay graph of the binary octahedral subgroup.

Case binary icosahedral BI120

The binary icosahedral group is 〈X, Y, Z | X3 = Y 5 = Z2 = XY Z = T, T 2 = 1〉. We
look at the 1-dimensional representations first. The only solution yields T = 1, X =
1, Y = 1, Z = 1 which is the trivial representation σ. Unfortunately, using Theorem
7.6 yields 69 possibilities. We refer to [Boc] for the classification of the representations.

For the binary icosahedral case, the character table is [Boc] (Φ = 1+
√

5
2

, the golden
ratio)

σ 1 1 1 1 1 1 1 1 1
ρ1 2 −1 1 −2 0 Φ −Φ Φ− 1 1− Φ
ρ2 2 −1 1 −2 0 1− Φ Φ− 1 −Φ Φ
τ1 3 0 0 3 −1 1− Φ 1− Φ Φ Φ
τ2 3 0 0 3 −1 Φ Φ 1− Φ 1− Φ
ν1 4 1 1 4 0 −1 −1 −1 −1
ν1 4 1 −1 −4 0 1 −1 −1 1
µ 5 −1 −1 5 1 0 0 0 0
ζ 6 0 0 −6 0 −1 1 1 −1

The representation ρ1 = σ⊗ ρ is our original representation. We know that the trivial
representation σ is only connected to ρ1. We construct the chain by starting with ρ1.
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χρ1χρ1 = (4, 1, 1, 4, 0, 1 + Φ, 1 + Φ, 2− Φ, 2− Φ)

= χσ + (3, 0, 0, 3,−1,Φ,Φ, 1− Φ, 1− Φ) = χσ + χτ2
χρ1χτ2 = (6, 0, 0,−6, 0, 1 + Φ,−1− Φ,Φ− 2, 2− Φ)

= χρ1 + (4, 1,−1,−4, 0, 1,−1,−1, 1) = χρ1 + χν2
χρ1χν2 = (8,−1,−1, 8, 0,Φ,Φ, 1− Φ, 1− Φ)

= χτ2 + (5,−1,−1, 5, 1, 0, 0, 0, 0) = χτ2 + χµ

χρ1χµ = (10, 1,−1,−10, 0, 0, 0, 0, 0) = χν2 + (6, 0, 0,−6, 0,−1, 1, 1,−1) = χν2 + χζ

χρ1χζ = (12, 0, 0, 12, 0,−Φ,−Φ,Φ− 1,Φ− 1)

= χµ + (7, 1, 1, 7,−1,−Φ,−Φ,Φ− 1,Φ− 1) = χµ + χν1 + χτ1
χρ1χτ1 = (6, 0, 0,−6, 0,−1, 1, 1,−1) = χζ

χρ1χν1 = (8,−1, 1,−8, 0,−Φ,Φ, 1− Φ, 1− Φ)

= χζ + (2,−1, 1,−2, 0, 1− Φ,Φ− 1,−Φ,Φ) = χζ + χρ2
χρ1χρ2 = (4, 1, 1, 4, 0,−1,−1,−1,−1) = χν1

If we remove the trivial representation σ we obtain the McKay graph. We see that it
is a Dynkin diagram of type E8.

Figure 32: The McKay graph of the binary icosahedral subgroup.

McKay’s observation can be formulated in the following way [McK80]:

Theorem 7.8. (McKay correspondence) Let Γ be a finite subgroup of SL(2,C). One
attaches to Γ a graph by associating to each irreducible representation a vertex and
connecting the ith and jth by arrows in the manner described in the previous sec-
tion. The resulting McKay graph is one of the extended Dynkin diagrams of type
An, Dn, E6, E7, E8, which occur respectively for cyclic, binary dihedral, binary tetrahe-
dral, binary octahedral, binary icosahedral groups.
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8 Conclusion

Let Γ be a finite subgroup of SL(2,C). We have shown how to obtain these subgroups
and their generators. As Klein did in 1884, we used invariant theory to associate
to Γ a surface in C3 with an isolated singularity at the origin. We followed in Du
Val’s footsteps and resolved these singularities in great detail to obtain the intersection
diagrams of the exceptional divisors. These intersection diagrams turned out to be
the Dynkin diagrams of type ADE. Lastly, we used characters to construct the McKay
graph of Γ which also turned out to be Dynkin diagrams of type ADE. This peculiar
correspondence is often called the classical McKay correspondence.
We have neglected to discuss what Dynkin diagrams are and the reader may wonder
whether there is a more intricate relation between the irreducible representations of Γ
and the resolution of the Kleinian singularities. Indeed, all of what we have shown here
is related to Lie groups which is where the Dynkin diagrams come from. Since Klein,
much more of this correspondence has been discovered by for example Kronheimer
and Grothendieck. A more fundamental connection concerning K theory has been
discovered in 1999 by Kapranov and Vasserot [KE99]. A further generalization was
obtained in 2001 by Bridgeland, King and Reid [BKR01].
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