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Abstract

In this thesis a simulation is described to estimate the transmission from a luminescent rod (Lumirod)
with a pyramid structured diffraction grating. The aim is to optimize the transmission. A Lumirod is a
rectangular phosphor cuboid that absorbs and emits light. Most of the emitted light remains captured within
the Lumirod, due to its high refractive index. When transmitted from the diffraction grating on one side
of the rod, the light is coupled out. This phenomena has theoretically been approached with a simulation to
calculate the total transmission coefficient. For a grating constant of 500nm this coefficient is 0.312, and for
a 2µm period the total transmission 0.349 is obtained. A greater variety of diffraction structures should be
modeled to make a solid statement about the structure that optimizes the transmission.

∗This paper has been written as thesis for both bachelors Physics & Astronomy and Mathematics at Philips Research.
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1 Introduction

Nowadays, LEDs are becoming the preferred technique of illumination within many applications.
Only few applications exist where gas-discharge lamps are more often applied than LEDs. Projec-
tion is an example of such an application where these lamps are still preferred, due to their ability
to provide a small source with high brightness. The short life time of these gas-discharge lamps is a
major disadvantage. However, it is not possible to implement LEDs in an application as projection.
Multiple LEDs may combine to one bright source, however they can never combine the light in a
small bright area, with low angular divergence. Therefore the power per surface area per angle of
LEDs is not suitable for projection [1].

Figure 1: Schematic two dimensional view of the Lumirod
with pyramid structure (A) and with the CPC (B) [2].

To accomplish that LEDs can
be implemented for projection, a
new mechanism to convert light
in a LED projector is being de-
veloped at Philips. The current
technique is a so called Lumirod
with Compound Parabolic Concen-
trator (CPC) shown in figure 1B
[2]. The Lumirod is a rectangular
cuboid with size 1.2 x 1.9 x 52 mm
and high refractive index, approxi-
mately 1.83. The Lumirod consists
of a material similar to Cerium (III)-
doped Yttrium Aluminum Garnet,
a phosphor that absorbs light with a wavelength around 450nm. The light from the LEDs is absorbed
by the Lumirod material and emitted at a longer wavelength, approximately 550nm, reestablishing
the state of lowest energy. The absorption spectrum and emission spectrum of the phosphor are
shown in figure 2.

Figure 2: The absorption spectrum and emission spectrum of the phosphor. The green line repre-
sents the shifted red emission spectrum that refracts out of the Lumirod.
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Due to the high refractive index of the Lumirod most of the emitted light remains captured
within the rod. To extract the captured light from the Lumirod the CPC, a parabolic cap with in
approximation the same refractive index as the rod, is placed on the smallest surface of the rod. The
shape of the CPC is such that it bends most of the light toward its opposite site in a way that the
light strikes the side with an angle of incidence smaller than the angle of total internal reflection.
This causes the light to leave the rod with low angular divergence, which makes it possible to use
the emitted light in a LED projector.

However, this mechanism with the CPC has some disadvantages. The CPC enlarges the area
from which light is emitted, to name one. That is why a different method to extract light from the
Lumirod is being developed. Instead of placing a CPC on the smallest surface of the rod, creating
a nanostructure on that surface can diffract the light such that it leaves the rod as well. Figure 1A
shows a schematic view of this concept.

Figure 3: Examples of experimentally created and
tested structures on the rod. These pyramid mi-
crostructures are created from a titanium oxide
layer [2].

Anne Souren has done practical exper-
iments for research group Photonic Ma-
terials and Devices of Philips Research
to test this insight [2]. She has fo-
cused on creating pyramid structured grat-
ings on the rod, with a grating con-
stant of 2µm, a height of 1µm and re-
fractive indices in a range of 1.7 to 2,
by varying the substances to make the
pyramid grated layer. Furthermore she
has tested the efficiency of these struc-
tures. Some examples of the grating
structures made are shown in figure 3.
These figures show that the structures
made, can deviate from a perfect pyramid
structured grating, and are only approxi-
mately pyramids of height 1µm and width
2µm.

The composition of substances for which
optical experiments have been done, has a
refractive index of 1.936. By experimentally
testing the efficiency of this structure, the
gain if compared to the fraction of light ex-
tracted from an unstructured rod is found to be between 1.55 and 1.74. Since these numbers appear
to be higher than initially expected, this theoretical research has been started to clarify the results.

The gain is the ratio between the total transmission coefficient of the Lumirod with a grating
structure and an unstructured Lumirod. For the experimentally obtained transmission coefficients,
the total intensity of light extracted from the nose of the Lumirod is measured. This is divided by
an approximation of the total intensity of light at the nose of the rod. To obtain this approximation,
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measurements have been done at Philips Research to calculate the intensity of the light emitted
within the Lumirod. This total emitted intensity has been used as the total intensity at the nose of
the rod, for the calculation of the transmission coefficients. In approximation this emitted intensity
within the rod is the total intensity at the nose of the rod, except that not all light emitted in the
Lumirod reaches the nose.

Within this thesis a simulation of the Lumirod with a pyramid structured grating, of period
2µm and height 1µm, will be modeled. To approximate the Lumirod we will simulate an infinite
plane with a pyramid structured grating of width 2µm and height 1µm. Since the composition of
substances of the structure that best reflects a pyramid structured grating with this geometry has a
refractive index of 1.93, this number will be used for the modeled pyramids. Furthermore, a plane
wave of wavelength 550nm will travel from a substrate with refractive index 1.83, through the pyra-
mid grated plane, to a superstrate of refractive index 1. In this way the substrate will resemble the
Lumirod that emits light with a wavelength of 550nm and the superstrate will be air. Although in
reality light is emitted in a broader wavelength range, it is expected to obtain a good impression by
doing simulations for 550 nm.
Finally, since not all angles are present at the end of the Lumirod (section 3), we will only take into
account angles of incidence within the range [−57◦, 57◦].

Finally, the transmission coefficients of an s-polarized and p-polarized plane wave will be calcu-
lated, to obtain the gain of the Lumirod if compared to an unstructured rod, after which we compare
this theoretical calculated gain with the experimentally obtained gain. Hereby we assume the light
emitted within the Lumirod is for one half p-polarized and the other half is s-polarized.

To further explore the effect of different grating structures on the diffractive outcoupling of light
from the Lumirod, the same model, with instead a period of 500nm and the same geometrical
proportions, is simulated. Again the transmission will be explored.
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2 Theoretical background

2.1 Maxwell’s equations

Maxwell’s equations are a set of differential equations that describe how electric and magnetic fields
are influenced by each other or by currents and charges. They are the principal building blocks of
electrodynamics in the same way that Newton’s laws are for classical mechanics. Many theories
within this field of physics have been derived from the Maxwell equations [3], [4], [5].
Maxwell’s equations in matter in there most general differential form are:

∇ · D = ρ f (1)

∇ · B = 0 (2)

∇× E = −∂B
∂t

(3)

∇× H = J f +
∂D
∂t

(4)

Here E is the electric field, B the magnetic field, D the electric displacement, H the auxiliary
magnetic field, ρ f the density of free charge and J f the current of free charge with

D = εE, H =
1
µ

B.

and ε = ε0(1 + χe) the electric permittivity, µ = µ0(1 + χm) the magnetic permeability, χe and
χm the electric respectively magnetic susceptibility [6], [7], [8].
Solving the Maxwell equations provides the electric and magnetic field everywhere through space.
Hence in this project, by solving Maxwell’s equations with the proper boundary conditions, one can
obtain the intensities of light for every point in space.

2.2 Fresnel Equations

The Fresnel Equations follow from the Maxwell equations [9], [4]. When light travels from one
medium to another medium with a different refraction index, both refraction and reflection may
occur at boundary between the media. The Fresnel Equations provide the fractions of light being
transmitted and reflected, as well as the phase shift of the reflected light.
This theory finds its foundation in the Maxwell equations, assuming both media are homogeneous
and the interface is flat. The space in which the light travels is assumed to be semi-infinite. Further-
more the light is described as a plane wave.

7



The Fresnel equations read

Rs =

∣∣∣∣∣∣∣∣
nin cos(θin)− nout

√
1−

(
nin
nout

sin(θin)
)2

nin cos(θin) + nout

√
1−

(
nin
nout

sin(θin)
)2

∣∣∣∣∣∣∣∣
2

Rp =

∣∣∣∣∣∣∣∣
nin

√
1−

(
nin
nout

sin(θin)
)2
− nout cos(θin)

nin

√
1−

(
nin
nout

sin(θin)
)2

+ nout cos(θin)

∣∣∣∣∣∣∣∣
2

Ts = 1− Rs

Tp = 1− Rp,

for which holds

R =
Rs + Rp

2

T =
Ts + Tp

2
.

Here θin is the angle of incidence, nin and nout are the refractive index of the substrate and superstrate
respectively. Furthermore Rs, Rp are the reflection coefficients in s-polarization and p-polarization
respectively, with R the total reflection coefficient. Analog to this is the transmission coefficient T.
The equality T + R = 1 always holds.

2.3 Conservation of the wave vector

Crystal momentum is defined
~Pcrystal ≡ h̄~k,

with h̄ the reduced Planck’s constant and~k the wave vector (in our case of electromagnetic radiation)
in the lattice [10].

While regular momentum in general is completely conserved, it follows from Maxwell’s equa-
tions that crystal momentum is only conserved to within a lattice vector. This means the wave vector
can always be written

~k′ =~k + ~G, (5)

with ~G an arbitrary reciprocal lattice vector. The reason for this is the fact that the lattice sym-
metry is discrete in stead of continuous. With this conservation of the wave vector we will derive
equations of diffraction from a simple cubic lattice.
Since the pyramid structure of this research has a square base, the diffraction from the structure can
be compared to diffraction from a plane in a simple cubic lattice.
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Figure 4: Wave vector in spherical coordinates.

We will write equation 5 as

~kout =~kin + ~G. (6)

From figure 4 it follows that the wave vector can be written

~k = ||~k||

sin(θ) cos(φ)
sin(θ) sin(φ)

cos(θ)

 , (7)

using || · || to denote the length of a vector [11].
To write equation 6 componentwise, the reciprocal lattice vector will be written as an arbitrary linear
combination of the basis vectors in the reciprocal lattice space

~G = m1~a∗1 + m2~a∗2 + m3~a∗3 . (8)

Here~a∗i denotes the ith reciprocal primitive vector of the reciprocal lattice space and mi ∈ Z ∀i ∈
{1, 2, 3} an arbitrary integer [12]. Given (~a1,~a2,~a3) the three primitive vectors for an infinite lattice
space, the ith reciprocal primitive vector is defined

~a∗i = 2π
~aj ×~ak

~ai · (~aj ×~ak)
,

where i, j, k cyclic permute [13].
A simple orthorhombic Bravais lattice is a simple cubic lattice stretched along two of its base di-
rections, hence resulting in a rectangular prism [14], [15]. It follows that for a simple orthorhombic
Bravais lattice space with lattice constants dx, dy, dz, respectively in the x, y and z direction, the
reciprocal primitive vectors are given by

~a∗1 =
2π

dx
x̂, ~a∗2 =

2π

dy
ŷ, ~a∗3 =

2π

dz
ẑ. (9)
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From equations 6 , 7 , 8 , 9 and the fact that ||~k|| = 2π
λ = 2π·n

λ0
, with n the refraction index of the

medium and λ0 the wavelength in vacuum, we find the three equations describing diffraction from
a simple orthorhombic Bravais lattice

nout

sin(θout) cos(φout)
sin(θout) sin(φout)

cos(θout)

 = nin

sin(θin) cos(φin)
sin(θin) sin(φin)

cos(θin)

+ λ0


mx
dxmy
dy
mz
dz

 . (10)

When a plane wave reaches the pyramid structured grating of the Lumirod the diffraction of light
is equivalent to that from a two-dimensional square lattice with lattice constant d. Hence equation 10
with lattice spacing dx = dy = d and mz = 0, since we take two dimensions into account, describes
the diffraction of light from the Lumirod.

2.4 Snell’s law

Snell’s law follows from the three equations describing ray tracing of diffraction from a simple cubic
lattice (equation 10) with lattice spacing d (dx = dy = dz = d) in the plane of incidence (φin = φout)
for the zeroth order (mx = my = mz = 0) (figure 5)

nin sin(θin) = nout sin(θout). (11)

Figure 5: Refraction of light on an interface between two media [16]. Here θ1 and θ2 represent θin
and θout respectively. The same holds for the refractive indices n.
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2.5 Bragg’s law

As another application of equation 10, we discuss Bragg’s law [12], [17]. Bragg’s law describes
the angles for coherent and incoherent scattering from a crystal lattice. It can be derived from
the conservation of the wave vector for a simple cubic lattice (equation 10) with lattice spacing d
(dx = dy = dz = d).
As shown in figure 6 the diffraction takes place in the plane of incidence so φin = φout. Furthermore
the reciprocal lattice vector is given by ~G = mx~a∗x + my~a∗y + mz~a∗z with mx = 0, my = 0, mz ∈ Z.

Figure 6: Bragg diffraction from a simple cubic lattice.

For the angle of incidence with the z-axis holds α = 90◦+ θ, for the angle of reflection β = 90◦− θ.
Since the incoming wave vector and the outgoing wave vector travel through the same medium
nin = nout. Putting all together with equation 10 three equations follow

n

sin(90◦ − θ) cos(φ)
sin(90◦ − θ) sin(φ)

cos(90◦ − θ)

 = n

sin(90◦ + θ) cos(φ)
sin(90◦ + θ) sin(φ)

cos(90◦ + θ)

+
λ0

d

 0
0

mz


from which the equations for the x- and y-component are trivial.

Using that λ = λ0
n and cos(90◦ − x) = sin(x) Bragg’s law follows from the equation for the z-

component

2d sin(θ) = mzλ.

2.6 Floquet theory

To solve Maxwell’s equations on an infinite periodic domain it can be convenient to apply Floquet
theory, among physicists often better known as Bloch’s theory. Bloch’s theory is the analogous re-
sult in solid-state physics. Floquet’s theorem is an important mathematical foundation for Rigorous
coupled wave analysis. Furthermore, in this research, it is applied in the simulation modeled with
COMSOL.
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Floquet’s theorem states that a solution of a periodic system ẋ = A(t)x (i.e. A(t) a p-periodic
matrix) can be written Φ(t) = P(t)eBt, whereas P(t) a periodic matrix with the same period p as
A(t) [18]. From this it follows that Φ(t + np) is a solution for all n, with n an integer. Whenever
the solution of the system is written in this form, the solution can be constructed given any initial
conditions for infinite repetitions. Since the domain is periodic over an infinite space, especially this
last property is convenient.

The exact Floquet theorem with proof are written below for completeness.

Definition 2.1. Fundamental matrix
A non-singular matrix solution F(t) of the differential equation

dF(t)
dt

= A(t)F(t)

is called a fundamental matrix [19].

Floquet’s theorem states the following:

Theorem 2.1. Floquet Theorem
If Φ(t) is a fundamental matrix solution of the system

ẋ = A(t)x,

with A(t) a time dependent periodic matrix with period p, then Φ(t + p) is also a fundamental matrix
solution.
Moreover Φ(t) can be written

Φ(t) = P(t)eBt,

in which P(t) an invertible p-periodic matrix and B a matrix.

Remark. Even though A(t) is a periodic matrix, Φ(t) need not to be periodic.

Proof. Given a system
ẋ = A(t)x,

with A(t) a time dependent p-periodic matrix. Define Ψ(t) = Φ(t + p), with Φ(t) a fundamental
matrix of the system. Since Φ(t) is invertible ∀t ∈ R, Φ(t + p) is invertible, hence Ψ(t) is non-
singular. Furthermore

Ψ̇(t) = Φ̇(t + p) = A(t + p)Φ(t + p) = A(t)Φ(t + p) = A(t)Ψ(t)

which states that Ψ(t) is a matrix solution of the system [20]. Therefore Ψ(t) is a fundamental
matrix.
Define the matrix B(t) = Φ−1(t)Ψ(t). It follows from

B(t)Ψ−1(t)Φ(t) =
(

Φ−1(t)Ψ(t)
) (

Ψ−1(t)Φ(t)
)
= I,

that B(t) is a non-singular matrix.
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Define β(t) = Φ(t)B0 with B0 = B(t0). For the same reason that B(t) is invertible, β(t) is
invertible. And since

β̇(t) = Φ̇(t)B0 = A(t)Φ(t)B0 = A(t)β(t),

β(t) is a fundamental matrix of the system.

Evaluating both Ψ(t) and β(t) at time t = t0 gives

Ψ(t0) = Φ(t0)B(t0) = Φ(t0)B0 = β(t0).

By uniqueness of the solution for a differential field, it follows that Ψ(t) = β(t) ∀ t ∈ R. Hence
Φ(t + p) = Φ(t)B0 with B0 a non-singular constant matrix.

Since every invertible n × n matrix can be expressed as eC for some C ∈ Mn(C), we write
B0 = eDp where D is some constant matrix [21], [22]. Define P(t) = Φ(t)e−Dt an invertible matrix,
since Φ(t) and B0 are non-singular, so that Φ(t) = P(t)eDt.
Then

P(t + p) = Φ(t + p)e−D(t+p) = Φ(t)B0e−D(t+p) = Φ(t)eDpe−D(t+p) = Φ(t)eD(p−(t+p)) = Φ(t)e−Dt

= P(t).

Therefore P(t) is a p-periodic matrix.

2.7 Modeling methods

The three modeling methods illustrated in this chapter are the main methods applied in software
programs for solving Maxwell’s equations. In this research the last two are used.

2.7.1 Finite difference time domain

Finite difference time domain (FDTD) is a numerical technique used to model electrodynamic sim-
ulations. It can cover a wide frequency range and treat nonlinear material properties in a natural
way. Finite difference time domain starts from the Maxwell equations (equation 1) to analyze the
time evolution of electromagnetic fields.
Specifically Ampere’s law and Faraday’s law show that the change in time of the electric field is
dependent on the change of the magnetic field in space, and vice versa. Therefore Finite difference
time domain is based on the relation that, at any point x0 in space, the new value in time of the
electric field depends on the previous value in time of the electric field and the curl of the local
distribution about x0 of the magnetic field in space. Even so at any point x0 in space, the new value
in time of the magnetic field depends on the previous value in time of the magnetic field and the
curl of the local distribution about x0 of the electric field in space.

To perform calculations using these relations, Finite difference time domain is based on one of
the most basic mathematical approximations, namely finite differences [23]. In the approximation
δ << 1 a partial differential can be discretized in a central-difference approximation

∂ f (x)
∂x
|x=x0 ≈

f (x0 + δ)− f (x0 − δ)

2δ
.
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With this approximation Finite difference time domain can be summarized in five principal steps:

• Discretize time and space by replacing all (partial) derivatives in Ampere’s and Faraday’s law
with a central-difference approximation.

• Rewrite the obtained discretized equations, such that the future (unknown) time step of both
the electric and magnetic field is written as a function of the previous time step of the elec-
tric respectively magnetic field and the curl of the magnetic respectively electric field of the
previous time step.

• Evaluate the electric field one step in time, this future step now becomes the previous step
since it has just become known.

• Evaluate the magnetic field one step in time, in the same way as the electric field, this magnetic
field now becomes the previous step.

• Repeat the previous two steps over the desired time to evaluate both fields for.

2.7.2 Finite element method

The Finite Element Method (FEM) is a numerical technique to approximate the solution of a set of
partial differential equations constricted to the boundary conditions of the problem domain. The
idea of the technique is to subdivide the problem domain into many simpler parts, named finite el-
ements, in which the parameters describing the domain properties can be considered constant [24].
By solving the differential equations on these finite elements and connecting them to the solution
of the differential equations on their neighbor elements, an approximation of the solution on the
complex equations of the whole problem domain is made.

The finite element method can be formulated using the weighted residual method [25]. Intro-
ducing the basic principle of this method, we consider a general partial differential equation on the
solution domain Ω

L φ = f . (12)

Here f represents a given function, φ is the function we will solve for and L the differential
operator.
The first step is to subdivide the solution domain into N smaller subdomains, such that the function
to solve for can be written as a expansion of basis functions on the subdomains

φ =
N

∑
i=0

civi. (13)

These subdomains are the finite elements. The basis is given by the set {vi} for (i=1,2,...,N). The
coefficients are denoted by {ci}, they represent the value of φ at the boundary between the ith and
i + 1th subdomain.
Substituting expansion 13 in equation 12 and integrating over the entire solution domain with a
given weighted function wj, yields

∫
Ω

wjL

(
N

∑
i=1

civi

)
dΩ =

∫
Ω

wj f dΩ. (14)
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In general the most popular choice for the weighted function is wj = vj, therefor equation 14
becomes

N

∑
i=1

ci

∫
Ω

vjL (vi)dΩ =
∫

Ω
vj f dΩ j = 1, 2, ..., N.

This expression defines a set of N linear algebraic equations that, given the initial and boundary
conditions, can be solved for {ci}. In this way, the solution φ of equation 12 is obtained.

2.7.3 Rigorous coupled wave analysis

Rigorous coupled wave analysis (RCWA) is a computational method used for electromagnetics. It is
most typically applied to solve scattering from periodic dielectric structures. The method is based
on Fourier transformations. In the modeled simulation of the system, devices and fields are repre-
sented as an expansion of principal wave functions of the system, i.e. a sum of spatial harmonics
[26].
Floquet’s theorem (section 2.6) has an important role in Rigorous coupled wave analysis. It makes
use of the fact that solutions of periodic differential equations can be expanded with Floquet func-
tions (equation 2.1). (Often referred to, in solid state physics, as Bloch waves.) Since the simulation
of the Lumirod is done in an infinite plane with a pyramid structured grating, the Maxwell equa-
tions are solved on a periodic domain. Hence the solutions of these periodic differential equations
can be written as Floquet functions.

Figure 7: Two dimensional front view of
a staircase approximation of a pyramid,
based on layers.

To do a model calculation, a device is divided into
layers [27]. All layers are uniform in one of three spatial
directions x,y or z.
For oblique or curved devices, or devices with for in-
stance a dielectric permittivity graded (i.e. non homo-
geneous) along the uniform direction of the layers, the
structure of the device is built up in a staircase approx-
imation.
In the simulation of the Lumirod, the curved device that
is divided into layers, built up in a staircase approxi-
mation, corresponds with the pyramids of the grating
structure. These layers are uniform in the direction
from the base of the pyramids to the top. In figure 7 a
two dimensional view of this pyramid structure, based
on layers in a staircase approximation, is shown.
The electromagnetic harmonics are calculated in all the layers individually, after which they are
propagated through the layers analytically. By matching the boundary conditions at all interfaces
between the layers and at the borders of the device, the electric modes can be solved uniquely. The
boundary condition at the interface where the plane wave reaches the device is determined by the
wave vector of this incident plane wave in the periodic dielectric medium.
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3 Modeling

Figure 8: A two dimensional view of
one unit cell of the simulated pyramid
structured grating, with grating con-
stant d.

In this research our goal is to model the nanos-
tructure on the rod as an infinite plane of pyra-
mids to get an insight of the influence of trans-
mitted and reflected diffraction orders on the trans-
mitted intensity. The refractive index of the Lu-
mirod is 1.83, it emits light with a wavelength around
550nm and the nanostructure on the rod has an in-
dex of approximately 1.936. Hence we will simu-
late in our model such that a plane wave of wave-
length 550nm travels from a superstrate of refrac-
tive index 1.83 through the infinite plane with pyra-
mid structure of index 1.936 to a substrate of in-
dex 1, in approximation the refractive index of
air.
One unit cell (i.e. one period) of the geometrical struc-
ture of the modeled pyramids is shown in figure 8. Here
d is the so called grating constant of the structure. It
represents the periodicity in both the x and y direc-
tion.
Furthermore the emitted rays in the rod can include
all kind of polarization directions. Therefore we will
look at both a s-polarized plane wave and a p-polarized
plane wave separately. These two polarizations to-
gether form a orthogonal basis for all polarizations,
hence we can describe any arbitrary polarization in our
rod.
We will not take into account that any en-
ergy might be absorbed in the system, neither
that there are any external electrodynamic influ-
ences.

With Snell’s law (equation 11) we find the critical angle of the rod to be

θcrit = arcsin(
1

1.83
) ≈ 33◦.

We will do simulations for all angles of incidence, but in the evaluation of the results we will
take into account that not all angles of incidence on the pyramid structure are equally likely. A ray
emitted by the rod will eventually reach a side with some angle of incidence. Figure 9 shows a two-
dimensional simplification of these possible ray trajectories when the absorbed beam gets emitted
within the rod.
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Figure 9: Ray trace trajectory inside the rod without pyramid structure. From a ray that reaches
a long side of the rod with an angle of incidence θin ≤ θcrit (black line) only the Fresnel reflection
remains inside the rod. A ray that reaches the rod with an angle θcrit < θin < 90◦ − θcrit (red line),
under the assumption that no energy disappears in the system, will keep on circulating within the
rod for ever. Finally, a ray with an angle of incidence θin ≥ 90◦ − θcrit, when reaching a long side of
the rod, (green line) will escape from the rod at the short side according to the Fresnel equations.

When the angle of incidence, at which a ray reaches a long side of the rod, is less than or equal to
the critical angle of the rod, the ray is transmitted and leaves the rod with only the Fresnel reflection
remaining inside the rod (black beam). We will neglect this reflected part of the ray, since R << 1
for angles θin < θcrit. Figure 10 shows the s-polarized and p-polarized Fresnel reflections on a flat
interface between the rod and the air, showing that, for θin < θcrit, indeed R«1. Nevertheless the
reflection is certainly not zero.
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Figure 10: The s-polarized and p-polarized Fresnel reflection coefficients on a flat interface from a
substrate of refraction index 1.83 to a superstrate with index 1.

The opposite holds for an angle of incidence θcrit < θin < 90◦− θcrit (red beam). Such a ray is cap-
tured within the rod because it will strike every side of the rod with an angle θcrit < θin < 90◦ − θcrit
and therefore total internal reflection of the ray occurs.
Finally if the ray reaches the long surface of the rod under an angle θin ≥ 90◦ − θcrit the ray is
internally reflected at this side. However this ray will strike the short side of the rod with an angle
less then the critical angle and hence be transmitted at this surface. Again a small part of this ray
remains inside the rod due to Fresnel reflection (green beam).
Summarizing the above, we find that light that indirectly (by first striking one of the four long
sides of the rod) reaches the short side of the rod, strikes the short side with an angle less than
90◦ − θcrit ≈ 57◦. Note that this holds in two dimensions, in a plane perpendicular to two sides.
Skew rays can be at somewhat higher angles, but in first approximation we can limit ourselves to
rays with θ < 57◦.

Most rays emitted in the rod will first strike one of the four large boundary surfaces, therefore
reach the small side of the rod indirectly. This is due to the dimensions of the rod. The Lumirod has
size 1.2 x 1.9 x 52 mm. Simple geometry shows that a light ray within the rod that directly strikes
the pyramid structured surface with an angle of incidence greater than or equal to 57◦, has been
emitted within a distance of

√
1.22 + 1.92 tan(57◦) ≈ 3.46mm of that surface. Since 3.46mm is only a

small fraction of 52mm we will neglect this contribution of light and therefore not take into account
that the rays strike the pyramid structured surface direct, with an angle of incidence greater than
57◦.
Therefore to calculate the efficiency of the nanostructure on the Lumirod, we will omit the angles of
incidence θin ≥ 57◦ on our infinite pyramid structured plane.
We assume the angles of incidence θin < 57◦ to be homogeneous.
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3.1 COMSOL Multiphysics

COMSOL Multiphysics is a software program designed to model and simulate physics-based phe-
nomena. It includes multiple user interfaces on a variety of physics theories, which together form a
multiphysics simulation platform. Solving techniques that COMSOL uses to evaluate physics-based
simulations are primarily based on the finite element method described in section 2.7.2. The spe-
cific interface used for this research project, Electromagnetic Waves Frequency Domain, applies the
finite element method on Maxwell’s equations (section 2.1) in order to solve these on the modeled
simulation domain.

3.1.1 Modeling activities

Figure 11: Two-dimensional unit cell of a rectangular grating.

One of the first simplified simulations of the rod was a two-dimensional infinite array of rectangular
grating structures shown in figure 11. In this simulation a plane wave travels from a medium with
refractive index 1.936 to one with index 1. The wave has wavelength 550nm in vacuum and is fully
s-polarized. The wave vector is real, meaning no energy is absorbed in the system. Since we are
only interested in the diffraction of a plane wave without any other electric influences, we chose that
there is no external electric field. To simulate an infinite array with this grating structure Floquet
periodic boundary conditions are applied to the boundaries of one unit cell.
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Name Expression Description
nrod 1.936 Refractive index rod
nair 1 Refractive index air
λ0 550nm Wavelength in vacuum
f0

c
λ0

Frequency
d 400nm Grating constant
θin 0 Angle of incidence
θout arcsin( nrod sin(θin)

nair
) Angle of refraction

Table 1: Parameters of the simulations performed with COMSOL. Here f0 follows directly from
f = v

λ with v the phase velocity and c the speed of light. θout follows from Snell’s law (equation 11).

To set up this simulation in COMSOL, open the Electromagnetic Waves Frequency Domain user
interface and define the parameters as given in table 1. Next, first set up the geometrical structure of
the diffraction grating by building a unit cell as given in figure 11 that is made with three rectangles
of which two form a union together. This leaves us with two domains. To define the materials
substitute the refractive index and the complex part of the wave vector for each domain. Since we
do not want energy to be absorbed in the system, we choose the complex part of the wave vector to
be zero. Furthermore, following the convention of the angles defined within COMSOL, we will say
the upper part of the unit cell represents the rod and the lower part is air.
Now that the basics of our diffraction plane has been set up, we come to the part where we set up
the electric field. Set the external electric field equal to zero. For a s-polarized plane wave, set all
measurements of electric field components in the z-direction (out of plane). Finally for the electric
field create two horizontal ”ports” (as they are called in COMSOL), one at the top of the rod and
the other one at the opposite side at the bottom of air. Port1 at the top of the rod will radiate a
periodic s-polarized plane wave (meaning its electric field only has a z-component). Whereas port2
just measures the electric field in the z-direction. Substitute the refractive indices (the materials are
isotropic), the frequency, the angle of incidence θin at port1 and the angle of refraction −θin at port2.
The physical part of modeling the unit cell is done. By selecting Floquet periodic boundary con-
ditions for the vertical borders of the unit cell, we turn our cell into an infinite array with this
diffraction grating structure.

To finish our model we will have to subdivide the modeling domain in small parts, in such a way
that COMSOL can apply the finite element method to solve Maxwell’s equations in our model. To
achieve this we set the mesh of an area equal to λ0

8·narea
, the mesh of a port to λ0

20·nport
, copy the bound-

aries so that the periodicity is conserved and finally create the division of the domain in triangular
elements which makes our model ready for calculation. narea and nport are variables, correspond-
ing to the refractive index of their particular domain, defined within COMSOL. A triangular is a
2-simplex, which simply means that any volume, regardless of shape or topology, can be meshed
with it. Therefore we choose the finite elements of this calculation to be triangular elements.
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3.1.2 Experience

Figure 12: Transmission orders of s-polarized light
on an infinite plane calculated with COMSOL
while it still contains the bug. The diffraction grat-
ing is as shown in figure 11 and a grating period
of 400nm. The azimuthal angle of incidence is
φ = 0◦ and the polar angle is an element of the
interval [−90◦, 90◦].

Figure 13: Repeated calculation as shown in figure
12 with the same conditions, however now calcu-
lated with GSolver.

Figure 14: Repeated calculation as shown in figure
12 with the same conditions, however now calcu-
lated with COMSOL after fixing the bug.

Comparing COMSOL with GSolver In or-
der to benchmark the results obtained with
COMSOL we use GSolver to simulate ex-
actly the same two-dimensional model (sec-
tion 3.2). GSolver is specialized in solv-
ing Maxwell’s equations for diffraction grat-
ings. It therefore offers a more straight-
forward user interface which can be man-
aged easier. Nevertheless in three dimen-
sions GSolver will be inconvenient for this
research, hence we will not use it for any
more than a benchmark in two dimen-
sions.

Around the 15th of July, two weeks af-
ter I started, it became clear that the re-
sults obtained with COMSOL and GSolver,
for the transmission and reflection coeffi-
cient as a function of the angle of in-
cidence, did not match whenever light
travels from high refractive index to low
refractive index. Figures 12 and 13
show these results for the two-dimensional
infinite array with a rectangular grat-
ing structure. However the other way
round, when light travels from low re-
fractive index to high refractive index
the results of both software agreed per-
fectly. Since the results of COMSOL
were not symmetric in θ and gave val-
ues for the reflection and transmission
coefficient greater than one, I assumed
the problem would be in the COM-
SOL software, hence I contacted COM-
SOL for the problem. Begin August
after weeks of modeling slightly differ-
ent diffraction gratings in both GSolver
and COMSOL, comparing these to see
how they differ from one another, a
bug in the software of COMSOL was
found in cooperation with the Dutch and
Swedish COMSOL development depart-
ments.
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Debugging The bug was that COMSOL’s software assumed the wave vector component parallel
with the port boundary is always given by:

k0 · n · sin(θ),

where k0 is the wave number in vacuum, n the refractive index and θ the angle of incidence
or refraction. In a perfect analytic world this would be true, but in a numeric calculation this
doesn’t hold. Because the light travels from high to low refraction index, there is a range of angles
θin ∈ [−90,−θcrit] ∪ [θcrit, 90] for which total internal reflection of the zeroth order (m = 0) occurs.
In this range of angles, due to numeric calculations, the angle θ becomes complex.
When COMSOL evaluates sin(θ) for a complex angle, there will be a tiny imaginary part in the wave
vector. That tiny imaginary part influences the calculations in such a way that the complex part of
the wave vector blows up due to an iterative algorithm, thereby resulting in that the power was not
conserved (or rather that power was obtained). Hence the transmission and reflection coefficients T
and R respectively become unphysical results (T, R >> 1).

Correcting the software code The bug fix was to surround all sine expressions with the real(...) op-
erator, so we only get the real part of the wave vector component parallel with the port boundaries.
Unfortunately in a three-dimensional simulation this means correcting two equations per order. The
amount of orders in a simulation can accumulate to about 1500 orders. Correcting these formula by
hand in the programming code of COMSOL’s software would easily lead to mistakes. Therefore a
with java written patch was necessary to automate the correction of all diffraction orders. COMSOL
was not willing to write this patch but argued that this software-update would be implemented in
COMSOL5.2 available from the end of November. Therefore I started writing my own patch since
I could not wait till November. COMSOL gave tips on how to adjust their software, nevertheless at
the end of September the software still was not calculating properly. Eventually they finished the
patch I started writing.

Late in October after just a week of working with the new written patch, it became clear that new
problems appeared. The memory was too limited for the simulations I made. Furthermore the
scaling of matrices in the calculation gave errors. This was due to the fact that the electric field was
of much larger order of magnitude then the intensities, both turned into dimensionless quantities in
order to be compared. Hence the intensities became negligible compared to the electric field, which
resulted in matrices that could not influence one another. Therefore making it impossible to run the
simulations. At that point I switched to RSoft and put my simulations in COMSOL aside.
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3.2 GSolver

GSolver is a software program recommended for analysis of grating structures. It is designed to
simulate diffractive structures in metals or dielectrics. Semiconductor manufacturing tools, includ-
ing photolithographic techniques, have been built in the software.
The piecewise constant approximation is central to the mathematical solution method of GSolver,
Rigorous coupled wave analysis (section 2.7.3).

3.2.1 Modeling activities

For this thesis GSolver was used as a benchmark in two dimensions for both COMSOL and RSoft.
Since the desired structure to simulate is a pyramid grating, the most useful model able to be created
with GSolver is a two dimensional triangle grating structure. This is the two dimensional geometric
shape closest to a pyramid.
In this simulation a plane wave, of wavelength 550nm in vacuum, travels from a superstrate of
refractive index 1.936, through the triangle grating with period 200nm, to a substrate of index 1. The
plane wave is fully s-polarized.

To simulate this triangle grating structure in GSolver, open the first tab, named parameters, on
the GSolver user interface. Define the parameters given in table 2. Choose Nanometres Units Selec-
tion and select a superstrate index of 1.936 and a substrate index of 1.

Name Expression Description
Vacuum wavelength 550nm Wavelength in vacuum
Grating period 2000nm Grating constant
Theta 0 Polar of incidence
Phi 0 Planar angle of incidence
Alpha 0 Polarization direction
Beta 0 Polarization ratio

Table 2: Parameters of the simulations created with GSolver.

After setting these parameters continue to the second tab, Graphical Editor. Draw a triangle of
width 2000nm (the horizontal-axis is always one grating period) and height 1000nm. To select the
refractive index 1 of the triangle, right click and go to properties, after which a selection can be
made. Since GSolver automatically applies periodic boundary conditions to the structure, assumes
no external electric field is present in space and no energy is absorbed in the structure, we can con-
tinue with the calculation. GSolver will calculate the piecewise constant approximation by choosing
the button approximation. Moreover to implement this piecewise constant approximation in the
calculation continue to the tab Listing/Run and choose Populate.

On the tab Run we can indicate which parameters we would like to vary. Since we are interested in
the angle of incidence dependence of the transmission and reflection orders, we choose to vary theta
for θ ∈ [−90◦, 90◦] in steps of one degree. Furthermore, substitute the number of desired orders to
calculate for. We will choose 16 orders.
Finally, choose Run to obtain the results of the triangle structured grating just set up.
On the tab Results, the calculated data are shown. To visualize these choose chart after selecting the
columns to plot.
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3.3 RSoft

Synopsys’ Optical Solutions Group is a developer of optical analysis and design tools. RSoft is one
of these tools. It is specialized in photonic and optical network design. It is built on multiple math-
ematical methods, among others finite difference time domain and Rigorous coupled wave analysis.
The RSoft package used for modeling doing this research is the Diffraction Module. This module
relies mostly on Rigorous coupled wave analysis. This package is specialized in calculating the elec-
tromagnetic fields of light diffracted by some periodic structure.
Another module (Fullwave), which we did not use, relies on the Finite difference time domain
method (section 2.7.1).

Synopsys also offers the optical ray tracing package LightTools, which is widely used within
Philips. One of the advantages of RSoft is that the results can be fed into LightTools, enabling the
coupling of nanoscale optics to macroscopic optics for practical applications.

3.3.1 Modeling activities

To simulate the Lumirod, we set up a model of an infinite plane with pyramid structured grating as
described in the introduction of section 3. To accomplish this, first chose edit symbol and define the
parameters in table 3.

Name Expression Description
Vacuum wavelength 550nm Wavelength in vacuum
Grating period 2000nm Grating constant
Theta 0 Polar of incidence
Phi 0 Planar angle of incidence
Alpha 0 Polarization direction
L 3*Period Geometrical factor
Layers 11 Number of layers used for RCWA
M 16 Number of harmonics
Period 2 Grating constant in microns
Rod 0.83 Refractive index rod relative to the environment (air)
TiO2 0.936 Refractive index pyramid structure relative to the environ-

ment (air)

Table 3: Parameters of the simulations created with RSoft.

After defining the parameters, choose Global Settings to define how these parameters should be
integrated in the model. Since the wave length of the plane wave is 550nm, substitute 0.55 for the
wavelength. (Remark that microns is the unit.) The surrounding of the Lumirod is air, therefore we
will simulate the model with a background refractive index of 1. Also check the box 3D, since the
model is set up in three dimensions.

All definitions have been introduced, therefore the geometric structure will be generated now.
Draw a segment of structure type channel that is orientated in the z-direction. This segment rep-
resents one half of the Lumirod. Make sure all tapers are set to none, except for the position taper
in the z-direction. This one is set to N/A. The segment reaches the area from the origin to the
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coordinate (0,0,L/2) and has a width and height equal to twice the period of the system. (This is to
make sure the boundaries of the segment do not intersect with the period of the grating.) The index
difference (relative to the background) of this segment is 0.83, hence substitute Rod. Furthermore
no energy is absorbed, therefore the imaginary part of the index is set to zero.

To create the other half of the Lumirod, draw the exact same segment as before only now the
coordinates are (0,0,-L) to (0,0,0).

The pyramid is the most tricky part of the structure. Draw another channel segment from
(0,0,L/2) to (0,0,(L+Period)/2) as before. Since the refractive index of the pyramid structure is 1.936,
this time the index difference is set to TiO2. The imaginary part of the index remains zero. Set all
tapers equal to zero except for the width and height taper. These will be defined linear. To create a
pyramid, define the width and height of the starting vertex equal to the period of the system and set
the width and height of the ending vertex to zero. Make sure this device is divided in the number
of layers defined in the parameters section. This is necessary for Rigorous coupled wave analysis
(section 2.7.3).

To define the periodicity of the system, open the Compute material profile tab. Substitute a do-
main containing x ∈ [− Period

2 , Period
2 ], y ∈ [− Period

2 , Period
2 ] and z ∈ [− L

2 , 3
2 L]. Note that the z-direction

of the period has to satisfy that the period ends above the pyramid grating structure and commences
in the material of the rod, below the origin.

Figure 15: RSoft user interface after setting up the pyramid grating structure and period.
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The structure of the model has been prepared. If everything has worked out, the user interface
should appear as in figure 15. Now to perform a calculation, we would like to define the polarization
of the plane wave and indicate which parameters should be varied. Therefore choose the direction
of the polarization in the Plane wave launch options tab and make sure the standard spherical angle
convention is applied.
Furthermore define, in the Perform simulation tab, the primary direction in the z-direction and the
number of harmonics in both the x-direction and y-direction to be M. For the output we will choose
the angle φ ∈ [0, 90]. (Note that in RSoft φ is the polar angle.) Moreover choose the quantity to sim-
ulate, for now we will choose the reflection diffraction orders. Save the settings for the calculation,
after which we define the other parameter that should be varied in the RSoft most parameters tab.
Here we define θ ∈ [0, 90]. (In RSoft θ is the azimuthal angle.) Since the pyramid grating structure
is symmetric over 45◦ we could have chosen θ ∈ [0, 45] to minimize the calculation time. On the
measurements tab, select all orders to add them to the calculation and run the simulation.

The calculation time of the simulations with RSoft takes quite some time. On average a simula-
tion run over all relevant angles would take five days for one polarization. Therefore it would be
convenient when multiple computers could be linked to each other to calculate through one simula-
tion simultaneously. Moreover it would be extremely useful when the results would be saved while
running the calculation so that if a calculation fails at a certain moment, the already obtained results
are available.
To make sure a simulation obtains reliable results, parameters describing the model have to be opti-
mized first, hence chosen by hand after varying them in a calculation. This again takes a lot of time,
but more important it enlarges the chances of making a mistake by forgetting to optimize and cor-
rectly choose a parameter that influences the outcome of the intensities. Inserting this optimization
automatically in the calculations of the intensity would prevent making such mistakes.
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4 Results

Figure 16: A two dimensional view of
one unit cell of the simulated pyramid
structured grating, with grating con-
stant d.

Figure 17: The top view of a pyra-
mid. The angle phi is defined such that
φ = 45◦ corresponds to a diagonal of
the pyramid.

The results in this section are obtained with RSoft. The
simulations are modeled as described in section 3.3.1.
To give a brief overview of the model, the two dimen-
sional front view of the simulation is shown in fig-
ure 16. This figure has already been shown in section
3.
First the results of the Lumirod simulation with a grat-
ing period of d = 500nm will be discussed, after which
the results for the simulation with a 2 micron period
will follow.

For both simulations four different calculations
have been evaluated. Since we are interested in
the s-polarization as well as the p-polarization, both
polarization directions are calculated separately by
defining the incoming plane wave as a fully s-
polarized (or p-polarized) plane wave. Further-
more we simulate all transmission and reflection or-
ders separately for φ ∈ [0, 90◦] and θ ∈ [0, 90◦].
Since the pyramid structured grating is rotation-
ally symmetric over 90◦ in the azimuthal angle,
we may quadruple the matrices containing the data
in such a way that a dataset matrix of all co-
ordinates in space (i.e. φ ∈ [0, 360◦]) is ob-
tained. To this end the matrices are manipulated
with a standard coordinate transformation from a
cartesian coordinate system to a spherical coordi-
nate system, hence using

∫
dxdy =

∫
sin(θ)dθdφ.

(For more details, see the Matlab code in appendix
7.1.1.)
The azimuthal angle is defined as shown in figure
17.

Now a set of matrices describing all diffrac-
tion orders separately, in spherical coordinates
through the entire space, is accessible. For ev-
ery diffraction order there is a matrix of which
the transmitted intensities are given as the co-
efficients for every angle of incidence θ and
φ. The columns correspond to increasing steps
of the azimuthal angle φ ∈ (0◦, ..., 90◦) and
the rows to steps of the polar angle θ ∈
(0◦, ..., 90◦).
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These datasets will be used to calculate the total transmission and total reflection, as a function of
the angles of incidence, for both an s-polarized and p-polarized incoming plane wave, by adding up
all orders. This calculation is done with Matlab by iteratively adding up the matrices of all diffraction
orders of a p-polarized (or s-polarized) plane wave, in a componentwise manner. (See appendix 7.1.2
for the full Matlab code.) Next, only polar angles for which θ ∈ [−57◦, 57◦] holds, will be taken into
account. (See the introduction of section 3 for further explanation of this approximation.) We define
the vector ~θ with coordinates (0◦, ..., 90◦), for which holds that the ith coordinate is

θi =


θi if θi ∈ [0◦, 57◦]

0 if θi ∈ [58◦, 90◦].

To leave out the data of the matrices for angles θ ∈ [−90◦,−57◦]
⋃
[57◦, 90◦], we start from the ma-

trices containing the total transmission (or reflection) data in cartesian coordinates. Matrix multiply-
ing these with the vector sin(~θ), where the sine acts as an componentwise operator on ~θ, transforms
the data to spherical coordinates leaving out the angles θ ∈ [−90◦,−57◦]U[57◦, 90◦]. Eventually
adding up all components of the just calculated vector gives us the total intensity of the matrix for
polar angles θ ∈ [−57◦, 57◦]. Appendix 7.1.3 contains the Matlab code describing how this calcula-
tion is performed.

When we are interested in the total (transmitted or reflected) intensity through the whole space
(i.e. θ ∈ [−90◦, 90◦]) we add up all diffraction orders and change coordinates to a spherical system,
according to appendixes 7.1.2 and 7.1.1 explained earlier this section. The matrix obtained in this
way represents the total (s-polarized or p-polarized) transmission or reflection for all angles of
incidence through space. Summing over all indices of this intensity matrix, as written in appendix
7.1.4, we obtain the total intensity, I, of the entire space (i.e. an infinite plane).
This calculation corresponds with the formula

I = ∑
i

∑
j

Iθi ,φj sin(θi)∆θ∆φ. (15)

Here Iθi ,φj is the coefficient at place (θi, φj) of the intensity matrix. Note that this coefficient rep-
resents the transmission (or reflection) as a function of the angles of incidence in space.
This calculation could also be done by a matrix multiplication with the vector sin(~θ) as described
before. Instead now ~θ would be defined (0◦, ..., 90◦), taking all angles into account.

Finally the total transmission coefficient, T, is calculated

T =
Ts + Tp

2
. (16)

Here Ts and Tp represent the total transmission coefficients of a s-polarized and p-polarized incom-
ing plane wave respectively. This implies that Ts is the total transmitted s-polarized intensity from
the rod divided by the total s-polarized intensity (i.e. s-polarized reflection and transmission inten-
sity) of the incoming plane wave. The analogous holds for Tp and the reflection coefficients Rs and
Rp.
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Eventually the gain of the 2µm Lumirod, if compared to an unstructured rod, is calculated.
The gain is the ratio between the total transmission coefficient of the Lumirod with a grating struc-
ture and an unstructured Lumirod. The total transmission coefficient of an unstructured Lumirod
can be approximated theoretically, with the same assumptions made as for the structured Lumirods.
Hence for an unstructured rod all light with an angle of incidence |θin| ≤ θcrit ≈ 33◦ is, by Snell’s
law, refracted out of the rod. We will neglect the small Fresnel reflection (figure 10) outside this
region. This implies that the intensity of the total transmission of such a rod is proportional to

∫ 2π

0
dφ
∫ θ

0
dθ′ sin(θ′) = 2π(1− cos(θ)) with θ = 33◦.

Since we assume only angles of incidence |θin| ≤ 57◦ are present at the end of the rod, the total
intensity of the incoming light at the end of the rod is proportional to the same expression above
with θ = 57◦. Therefore in approximation the theoretically calculated total transmission coefficient
of this unstructured rod is

1− cos(33◦)
1− cos(57◦)

= 0.358. (17)

4.1 Rod with 500 nanometre pyramid structure

From the obtained datasets multiple figures can be created. To visualize the data in an insightful
manner, we prefer a contour plot and a three dimensional surface plot.

Both figure 18 and 19 show the total transmission coefficient of an infinite plane with a pyramid
structured diffraction grating and grating constant of 500 nanometre. This total transmission is
obtained, from the s-polarized and p-polarized total transmissions, by calculating the total transmis-
sion coefficient, for each angle of incidence, according to equation 16.

Figure 18: Total transmission coefficient of an
infinite plane with a 500nm pyramid structured
diffraction grating. The transmission is visual-
ized as a three dimensional polar surface plot in
spherical coordinates. The azimuthal angle, φ,
in the horizontal plane of the coordinate system
rotates from 0◦ to 360◦. The polar angle, θ, (the
angle with the vertical direction) is an element
of the interval [0◦, 90◦].

Figure 19: Total transmission coefficient of an
infinite plane with a 500nm pyramid structured
diffraction grating. The transmission is visual-
ized as a polar contour plot in spherical coordi-
nates. This contour plot corresponds with fig-
ure 18. The azimuthal angle, φ, rotates from 0◦

to 360◦.
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Both figures show that most of the light transmitted initially comes from an angle of incidence
θin ∈ [−θcrit, θcrit], with θcrit = 33◦. The total transmission coefficient within this region is approxi-
mately 0.75. Figures 20, 21, 22 and 23 also clearly show this phenomenon.

Figures 20 and 21 show the transmission orders of p-polarized and s-polarized light as a func-
tion of θ, at φ = 0◦, whereas figures 22 and 23 show the transmission orders of p-polarized and
s-polarized light at an azimuthal angle φ = 45◦. In all four figures the zeroth, first and second
transmission orders are shown.

From these figures it becomes clear that within the region [−θcrit, θcrit], the zeroth diffraction
order predominates. Hence most of the light transmitted is due to the zeroth order. Outside this
region the zeroth order vanishes and only higher diffraction orders contribute to the total transmis-
sion. Figures 18 and 19 show that the contribution to the total transmission from all transmission
orders outside this region is approximately 0.1. This contribution is mainly due to the first diffrac-
tion order as shown in figures 20, 21, 22 and 23.

Figure 20: The zeroth, first and second trans-
mission order of p-polarized light on an infinite
plane with a 500nm pyramid structured diffrac-
tion grating. Here the azimuthal angle of inci-
dence is φ = 0◦. Furthermore the polar angle is
an element of the interval [−90◦, 90◦].

Figure 21: The same as in figure 20 except now
for s-polarized light and an azimuthal angle of
incidence φ = 0◦.
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Figure 22: The same as in figure 20 except now
for p-polarized light and an azimuthal angle of
incidence φ = 45◦.

Figure 23: The same as in figure 20 except now
for s-polarized light and an azimuthal angle of
incidence φ = 45◦.

Summing the data of the total s-polarized transmitted intensity over all angles of incidence (equa-
tion 15), hence for an infinite plane, and dividing this by the total s-polarized intensity of the in-
coming plane wave, summed over all angles, we obtain the transmission coefficient of s-polarized
light

Ts = 0.154.

Equivalent, we obtain the transmission coefficient of p-polarized light

Tp = 0.153.

Next, applying equation 16 results in a total transmission coefficient

T = 0.154.

Since most light within the Lumirod has an angle of incidence |θin| < 57◦ on the pyramid
structured plane, and we approximate this by exclusively taking into account angles for which
−57◦ < θin < 57◦ holds, we will leave out all other angles of θin, as described previously in this
section, and recalculate the transmission coefficients.

We obtain

Ts = 0.317

Tp = 0.307.

Hence the "real" total transmission coefficient (meaning the total transmission coefficient that
best reflects the Lumirod within the assumptions made (section 3)) is

T = 0.312.
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4.2 Rod with 2 micrometre pyramid structure

Figures 24 and 25 show the total transmission coefficient of an infinite plane with a pyramid struc-
tured diffraction grating and grating constant 2 micrometre.

Figure 24: Total transmission coefficient of an
infinite plane with a 2µm pyramid structured
diffraction grating. The transmission is visual-
ized as a three dimensional polar surface plot in
spherical coordinates. The azimuthal angle, φ,
in the horizontal plane of the coordinate system
rotates from 0◦ to 360◦. The polar angle, θ, (the
angle with the vertical direction) is an element
of the interval [0◦, 90◦].

Figure 25: Total transmission coefficient of an
infinite plane with a 2µm pyramid structured
diffraction grating. The transmission is visual-
ized as a polar contour plot in spherical coordi-
nates. This contour plot corresponds with fig-
ure 18. The azimuthal angle, φ, rotates from 0◦

to 360◦.

In contrast with the 500nm pyramid structured grating, both figures show that most of the light
transmitted comes from an angle of incidence −50◦ < θin < 50◦. The total transmission coefficient
within this region is approximately 0.38. So the transmission for a certain angle of incidence does
not reach high values but is spread out over more angles, compared to the 500nm pyramid structure.
This phenomena is due to the higher diffraction orders, shown in figures 26, 27, 28 and 29. Here
we clearly see that these orders have a large contribution to the total transmission compared to the
zeroth order, that at its maximum only contributes 0.04 to the total transmission coefficient. The fact
that the higher diffraction orders are of great influence to the total transmission, explains why the
total transmission does not vanish for angles of incidence |θin| > θcrit.

Again the transmission orders of p-polarized and s-polarized light as a function of θ, at φ = 0◦

are shown, this time of the 2µm pyramid structured grating in figures 26 and 27. Whereas figures
28 and 29 show the transmission orders of p-polarized and s-polarized light at an azimuthal angle
φ = 45◦.

As expected more diffraction orders are observed at the 2µm pyramid structure compared to the
two diffraction orders of the 500nm pyramid structured grating.
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Note that the eight peaks visible in figures 24 and 25 are not physical since the calculated trans-
mission at these points is larger than one. It is not clear why this result is obtained, but there must
have been a bug in RSoft software used to calculate through the simulation. Since these peaks only
occur for a couple of angles θ and φ they do not have a significant impact on the results. However
further research on these peaks would be interesting to find an explanation why the calculation
failed for these specific angles.

Figure 26: The zeroth to fourteenth transmis-
sion order of p-polarized light on an infinite
plane with a 2µm pyramid structured diffrac-
tion grating. Here the azimuthal angle of inci-
dence is φ = 0◦. Furthermore the polar angle is
an element of the interval [−90◦, 90◦].

Figure 27: The same as in figure 26 except now
for s-polarized light and an azimuthal angle of
incidence φ = 0◦.

Figure 28: The same as in figure 26 except now
for p-polarized light and an azimuthal angle of
incidence φ = 45◦.

Figure 29: The same as in figure 26 except now
for s-polarized light and an azimuthal angle of
incidence φ = 45◦.
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Summing the data of the total s-polarized transmitted intensity over all angles of incidence (equa-
tion 15), hence for an infinite plane, and dividing this by the total s-polarized intensity of the incom-
ing plane wave, summed over all angles, we obtain the transmission coefficient of s-polarized light
As before, we calculate the total transmission coefficients by summing the data of the transmitted
intensity over all angles and dividing this by the total intensity of the incoming wave. Hence we
obtain the transmission coefficients:

Ts = 0.208

Tp = 0.173.

Applying equation 16, we obtain
T = 0.190.

Now we are especially interested in transmitted light when taking the boundaries of the rod
into account, hence approximating the Lumirod by exclusively using the transmission of the infinite
plane of angles for which θ ∈ [−57◦, 57◦] holds. We recalculate the transmission coefficients as
described in section 4. In this approximation we obtain

Ts = 0.370

Tp = 0.329.

Hence the total transmission coefficient is

T = 0.349.

These numbers can be compared to those of an unstructured rod. As explained at the end of
section 4, the transmission coefficient is in good approximation 0.358. Hence the theoretical gain of
this Lumirod, with a pyramid structured grating of period 2µm, height 1µm and refractive index
1.93, is 0.349

0.358 = 0.97. This implies that there is no extraction gain of the 2µm structure with respect
to the unstructured rod.
As mentioned in section 1, the experimentally obtained gain of this rod, if compared to a unstruc-
tured rod, is within a range 1.55 to 1.74. In comparison with the gain obtained in experiments, this
calculated theoretical gain of 0.97 seems rather low.
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5 Discussion

If comparing the results of the simulation and the experiment it is striking that the total transmission
coefficient of the 2µm pyramid structured grating calculated with the simulations does not match
the experimentally obtained fraction of emitted light.
This could be due to the assumption made that exclusively angles of incidence for which θ ∈
[−57◦, 57◦] holds, are taken into account. This assumption to ignore all other angles of incidence
has great influence to the transmission coefficient. To illustrate this we will now assume the angle
of incidence to be θ ∈ [−51◦, 51◦], which slightly differs from the approximation made in this thesis.
Recalculating the total transmission coefficients for the 2µm pyramid grated simulation given this
new approximation we obtain:

Ts = 0.383

Tp = 0.344

T = 0.364.

Hence under this approximation the total transmission coefficient is a factor 0.364
0.349 ≈ 1.04 larger.

Several reasons can point out that the assumption, θ ∈ [−57◦, 57◦], might not have been a good
approximation for the boundaries of the Lumirod.
First of all we have neglected the fact that light emitted within the Lumirod can immediately reach
the structured surface without first reflecting on another surface of the rod. This can cause angles
of incidence |θ| > 57◦ on the grating structure. Even more we neglected the Fresnel reflection, that
can also cause angles of incidence to be larger than we assumed.
Light that scatters from the vertexes and edges of the rod may as well influence the angles of inci-
dence.
It seems to be likely that there is a certain distribution of in which proportions the angles of inci-
dence appear within the Lumirod. This distribution will not be as strict as our assumption that all
angles of incidence |θ| > 57◦ have probability zero, and all angles |θ| ≤ 57◦ are equally likely. This
could strongly effect the transmission coefficients.

Figure 30: Polar graph of ray tracing
simulations show which angles of inci-
dence are present at the end of the Lu-
mirod (left figure). The right figure indi-
cates which angles greater than 57◦ are
present.

Ray tracing simulations in Philips Research have
shown that the real angular distribution extends
to higher angles because of skew rays (figure 30).
The difference, between the assumption that all an-
gles of incidence |θ| < 57◦ are equally likely
and the real angular distribution obtained with Ray
tracing simulations, is too small to explain the
small simulated value for the amount of extracted
light.

Since the s-polarized and the p-polarized transmis-
sion coefficient are not the same there could be a depen-
dence of the total transmission coefficient depending on
the distribution between these polarizations. It sounds
logical to assume the light emitted within the Lumirod
can be described as a plane wave of which half of the
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light is s-polarized and the other half is p-polarized. However this does not have to be true. Tak-
ing the Fresnel reflection into consideration and looking back at figure 10, it is shown that the
p-polarized Fresnel reflection is always less than the s-polarized Fresnel reflection. Moreover at one
point the p-polarized Fresnel reflection reaches zero, the Brewster angle. Hence it might be that
more s-polarized light then p-polarized light remains within the rod.
Since the s-polarized transmission coefficient in the simulation is larger than the p-polarized trans-
mission coefficient, the total transmission coefficient could be higher than we calculated. However,
the mentioned ray tracing simulations indicate that the light in the rod nose is essentially unpolar-
ized.

Another reason for the discrepancy between simulation and experiment may be that in the exper-
iment the emitted light includes light reflected from the front surface that, after several reflections
to the other rod sides, comes back at the front surface and has another chance to be outcoupled. For
an unstructured front surface on a block-shaped rod this is not possible, but it is possible in case of
a structured surface. This effect could be quantified by coupling the RSoft simulations to ray-tracing
simulations (LightTools). Preliminary LightTools simulations at Philips, using the transmission co-
efficients found in this work (and a Lambertian approximation for the angular distribution) yields a
gain of 1.34, in better agreement with experiment.

Figure 31: Examples of experimentally created structures on
the rod that turned out to have failed [2].

Furthermore part of the rea-
son that the theoretically based re-
sults do not agree with the ex-
perimentally obtained results, done
with a Lumirod with a 2µm pyra-
mid structured grating, is probably
due to the fact that the 2µm pyra-
mid structured grating is not per-
fect, meaning it deviates from the
geometrical preferred form, while
the theoretical model approximates
this structure by only deviating
from it due to the discretization of computer techniques. The pictures in figure 31 already show
a couple of problems that indicate the experimentally created pyramid grated structure shows some
deviations. The pyramid structured layer can for instance be torn or the layer is detached from the
surface of the Lumirod, hence not the entire surface of the rod is covered with the grating structure.
Another important difference between the theoretically simulated geometry and the geometrical
form of the experimentally created pyramids is that the pyramids in the experiment are truncated
and slightly collapsed, reducing their height (upper picture in figure 3), while the modeled pyra-
mids have perfectly sharp edges and vertexes and a height of half the period. Also the pyramid
width may play a role in the difference between the experiment and the simulation. The simulation
is modeled with a width of 2µm, while in the experiments the period is 2µm but the pyramids
do not exactly connect to their neighbors. There is a small spacing in between the pyramids, mean-
ing the width of the experimentally obtained pyramid grating structure is slightly smaller than 2µm.
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However, also the reference experiments for the unstructured rod may be in error. It was found
that the output luminous flux of bare rods may vary by a factor 1.3 or more.

Finally the software to calculate through the modeled simulation could possibly contain bugs,
therefore the obtained data with simulating the model could have been incorrect. The eight peaks
in figures 24 and 25 are an example of such a bug.
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6 Conclusion

The aim of this research is to provide the theoretically calculated transmission of light that diffracts
from a Lumirod with a pyramid grating structure (section 1). For a pyramid grating structure of
width 2µm and height 1µm we compare these with the experimental results obtained by research
group Photonic Materials and Devices of Philips Research.

The light emitted within the Lumirod is approximated by an s-polarized or p-polarized plane
wave, diffracting from a pyramid structured grating, described in section 3 and shown in figure 8.
The assumption that only angles of incidence θ ∈ [−57◦, 57◦] are present at the grating structure of
the rod is made. This is because light reaches the grating by total internal reflection from the sides
of the rod.
For a pyramid structured grating with a grating constant of 500nm the s-polarized, p-polarized and
total transmission coefficients are obtained

Ts = 0.317

Tp = 0.307

T = 0.312.

Calculating the s-polarized, p-polarized and total transmission coefficients for the same simula-
tion with instead a period of 2µm, results in

Ts = 0.370

Tp = 0.329

T = 0.349.

For an unstructured rod, the calculated transmission coefficient is 0.358, slightly more than for
the structured case. The experimentally obtained gain for this Lumirod with a pyramid structured
grating with grating coefficient 2µm and refractive index 1.936 is within a range 1.55 to 1.74.
The theoretically calculated result of the gain seems rather low compared to these experimentally
obtained ratios. This is possibly due to the fact that the Lumirods tested in the experiments do not
exactly reflect a "perfect" pyramid structured grating with period 2µm and height 1µm (see section
5 for further explanation). Furthermore, recycling of reflected light would enhance the above men-
tioned numbers that are based on direct transmission only.

We observe that the calculated transmission coefficient for a simulated Lumirod with period
500nm is less than a Lumirod with period 2µm. Since there are no further results, too little is known
to generate a reliable conclusion of which grating structure would optimize the total transmitted
light diffracted from the rod. Ongoing research both experimental and theoretical is recommended
to analyze why the obtained theoretical and experimental results do not match, as well as which
diffraction grating optimizes the total transmission. It is important for this further research to sim-
ulate a structure that best reflects the experimentally created grating. Moreover the experimentally
obtained gratings should be checked, for instance on whether they cover the entire surface of the
Lumirod.
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Variations in the grating structure can be made, not limited to the period, height and refractive
index of the structure, but also including the shape.

Finally to implement the Lumirod in a LED projector it is requested the light, diffracted from the
rod, is transmitted with low angular divergence. Hence research on the diffraction angle would be
interesting. One could calculate the diffraction angle for each angle of incidence per order, hereby
obtaining the transmission as a function of the escape angle instead of the angle of incidence. This
would give insight in whether the transmitted light can be used for projection.
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7 Appendix

7.1 Matlab codes

7.1.1 Quadruple

function y = viervoudigen(x)

data=transpose(x);
grootte=size(data);
bb=zeros(grootte (2),grootte (2));

step =3;
for i=1: grootte (2);
bb(i,1)=data(1,i);
end
for j=2: grootte (2);
bb(1,j)=data(grootte (1),j);
end
for i=2: grootte (2);
x=i-1;
for j=2: grootte (2);
y=j-1;
polhoek=atan(y/x)*180/pi;
azimuth=sqrt(x^2+y^2);
iazimuth=int16(azimuth)+1;
jpolhoek=int16(polhoek)/step +1;
if iazimuth <grootte (2) +1;
bb(i,j)=data(jpolhoek ,iazimuth);
end
end

end
sizebb=size(bb);

bb=transpose(bb);
theta =0:3:3*( sizebb (1) -1); %theta (rotation angle in the

plane) is defined here
thetasize=size(theta);
figure (1)
pcolor(theta ,theta ,bb)
%caxis ([0 1])
colorbar

b4=zeros (2* grootte (2) -1,2* grootte (2) -1);
for i=1: grootte (2);
for j=1: grootte (2);
b4(i,j)=bb(grootte (2)+1-i,grootte (2)+1-j);
end
for j=grootte (2) +1:2* grootte (2) -1;
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b4(i,j)=bb(grootte (2)+1-i,j-( grootte (2) -1));
end
end
for i=grootte (2) +1:2* grootte (2) -1;
for j=1: grootte (2)
b4(i,j)=bb(i-( grootte (2) -1) ,(grootte (2) +1)-j);
end
for j=grootte (2) +1:2* grootte (2) -1;
b4(i,j)=bb(i-( grootte (2) -1),j-( grootte (2) -1));
end
end

%sizeb4=size(b4);
%theta = -3/2*( sizeb4 (1) -1):3:3/2*( sizeb4 (1) -1); %theta

[ -87:3:87] (rotation angle in the plane) is defined here
%thetasize=size(theta);
%figure (2)
%pcolor(theta ,theta ,b4)
%caxis ([0 3])
%shading flat
%colorbar

%s = sprintf (’57%c’, char (176));
%figure (3)
%hold on
%surf(b4)
%title(’Graph of angle -filtered data ’)
%xlabel([’-’ s ’< \theta <’ s]) % x-axis label
%ylabel([’-’ s ’< \theta <’ s]) % y-axis label
%legend(’y = sin(x)’,’y = cos(x) ’)

y = b4;

end

7.1.2 Combining diffraction orders

M=16; %aantal orders
%string = ’C:\Users \310209797\ Documents\MATLAB\ROD_500nm\

Transmission_orders_p -polarized_work\results\
Transmission_orders_p -polarized_dm_de_t_ ’;

%string = ’C:\Users \310209797\ Documents\MATLAB\ROD_500nm\
Transmission_orders_s -polarized_work\results\
Transmission_orders_s -polarized_dm_de_t_ ’;

%string = ’C:\Users \310209797\ Documents\MATLAB\ROD_500nm\
Reflection_orders_p -polarized_work\results\Reflection_orders_p -
polarized_dm_de_r_ ’;

%string = ’C:\Users \310209797\ Documents\MATLAB\ROD_500nm\
Reflection_orders_s -polarized_work\results\Reflection_orders_s -
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polarized_dm_de_r_ ’;

%string = ’C:\Users \310209797\ Documents\MATLAB\ROD_2000nm\
Transmission_orders_p -polarized_work\Transmission_orders_p -
polarized_dm_de_t_ ’;

%string = ’C:\Users \310209797\ Documents\MATLAB\ROD_2000nm\
Transmission_orders_s_polarized_work\
Transmission_orders_s_polarized_dm_de_t_ ’;

%string = ’C:\Users \310209797\ Documents\MATLAB\ROD_2000nm\
Reflection_orders_p_polarized_work\
Reflection_orders_p_polarized_dm_de_r_ ’;

string = ’C:\ Users \310209797\ Documents\MATLAB\ROD_2000nm\
Reflection_orders_s_polarized_work\
Reflection_orders_s_polarized_dm_de_r_ ’;

stringm = [string ’m’];

for i=0:M;
for j=0:M;
if and(i==0, j==0)
data= getdata ([ string ’0_0_vs_phi.dat’]);
elseif i==0
data1= getdata ([ string num2str(i) ’_’ num2str(j) ’_vs_phi.dat’])

;
data2= getdata ([ string num2str(i) ’_m’ num2str(j) ’_vs_phi.dat’

]);
data = data + data1 + data2;
elseif j==0
data1= getdata ([ string num2str(i) ’_’ num2str(j) ’_vs_phi.dat’])

;
data2= getdata ([ stringm num2str(i) ’_’ num2str(j) ’_vs_phi.dat’])

;
data = data + data1 + data2;

else
data1=getdata ([ string num2str(i) ’_’ num2str(j) ’_vs_phi.dat’])

;
data2=getdata ([ stringm num2str(i) ’_’ num2str(j) ’_vs_phi.dat’])

;
data3=getdata ([ string num2str(i) ’_m’ num2str(j) ’_vs_phi.dat’

]);
data4=getdata ([ stringm num2str(i) ’_m’ num2str(j) ’_vs_phi.dat’

]);
data= data+data1+data2+data3+data4;
end
end
end

dataRs=hoekselectie(data);
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data=viervoudigen(data);

%dataTs=data;

figure (4)
s = sprintf(’90%c’, char (176));
theta = -87:3:87;
pcolor(theta ,theta ,data)
%caxis ([0 3])
shading flat
colorbar
%title(’Total transmission of a s-polarized plane wave through a

500nm pyramid structured grating ’)
xlabel ([’-’ s ’< \theta < ’ s]) % x-axis label
%ylabel([’-’ s ’< \theta < ’ s]) % y-axis label
%legend(’y = sin(x)’,’y = cos(x) ’)

figure (5)
surf(theta , theta , data)
%title(’Graph of angle -filtered data ’)
xlabel ([’-’ s ’< \theta < ’ s]) % x-axis label
%ylabel([’-’ s ’< \theta <’ s]) % y-axis label
%legend(’y = sin(x)’,’y = cos(x) ’)

%datah=Hoekfilter(data);

%s = sprintf (’57%c’, char (176));
%thetah= -57:3:57;

%figure (6)
%pcolor(thetah ,thetah ,datah)
%caxis ([0 3])
%shading flat
%colorbar
%xlabel([’-’ s ’< \theta < ’ s]) % x-axis label

%figure (7)
%surf(thetah ,thetah ,datah)
%title(’Graph of angle -filtered data ’)
%xlabel([’-’ s ’< \theta <’ s]) % x-axis label
%ylabel([’-’ s ’< \theta <’ s]) % y-axis label
%legend(’y = sin(x)’,’y = cos(x) ’)

7.1.3 Angle selection

function y = hoekselectie(x)
%input must be a not manipulated data matrix of the total intensity (i.e.

all orders added up)
ruwtransmissionp = transpose(x);
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sintheta=transpose(sin ([0:3:87]* pi /180));

for i=21:30 %theta =[0:3:87] and theta (20) =57 degrees so theta (21)
to theta (30) is 0

sintheta(i,1) =0;
end

M=ruwtransmissionp*sintheta;

totaal = 0;
lengthM = size(M);
for i=1: lengthM (1) %summing over all phi
i;
totaal= totaal + M(i,1);
end

y=totaal

7.1.4 Adding

% Calculating the total intensity
transmissionp = viervoudigen(getdata ([’C:\ Users \310209797\ Documents

\MATLAB\ROD 500nm\Totaal\’ ’
Transmission_total_p_polarized_dm_de_t_total_vs_phi.dat’]));

transmissions = viervoudigen(getdata ([’C:\ Users \310209797\ Documents
\MATLAB\ROD 500nm\Totaal\’ ’
Transmission_total_s_polarized_dm_de_t_total_vs_phi.dat’]));

reflectionp = viervoudigen(getdata ([’C:\Users \310209797\ Documents\
MATLAB\ROD 500nm\Totaal\’ ’
Reflection_total_p_polarized_dm_de_r_total_vs_phi.dat’]));

reflections = viervoudigen(getdata ([’C:\Users \310209797\ Documents\
MATLAB\ROD 500nm\Totaal\’ ’
Reflection_total_s_polarized_dm_de_r_total_vs_phi.dat’]));

%datatot = reflections + reflectionp +transmissionp + transmissions
;

datatot = dataTs + dataTp + dataRs + dataRp;
%datatot = dataTp + dataRp;
%datatot = dataTs + dataRs;

figure (4)
surf(datatot)

lengtht= size(datatot);
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totaal = 0;

for i=1: lengtht (1)
for j=1: lengtht (2)
totaal= totaal + datatot(i,j);
end
end

totaal

%Calculating the relevant intensity
%data = transmissionp + transmissions;
data = dataTs + dataTs;

length= size(data);
intensiteit = 0;

for i=1: length (1)
for j=1: length (2)
intensiteit= intensiteit + data(i,j);
end
end

intensiteit

ratio= intensiteit/totaal

7.1.5 Read data

function y = getdata(x)

fid = fopen(x, ’r’) ; % Open source file.
fgetl(fid) ; % Read/discard line.
fgetl(fid) ; % Read/discard line.
fgetl(fid) ; % Read/discard line.
fgetl(fid) ; % Read/discard line.
buffer = fread(fid , Inf) ; % Read rest of the file.
fclose(fid)

x = x(1:end -4); % delete .txt

fid = fopen ([x,’’,’\_new.dat’], ’w’) ; % Open destination file.
fwrite(fid , buffer) ; % Save to file.
fclose(fid) ;

y=importdata ([x,’’,’\_new.dat’]);

end
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7.1.6 Contour figure

function Vervolg_figuur(x)
close all
figure (20)
%title(’0 < \phi < 360’)
%xlabel(’0 < \phi < 360’) % x-axis label
%hex = data;
hex = x;
LW=1; % linewidth
FS=16 ;% fontsize
thetaticks =[0 20 40 60 80]; % polar plot equidistant in angle with

0 in the middle , grid lines at 30, 60, 90
phiticks =[0:30:330]; % phi labels and grid lines every 30

degrees

%% plot results
%hex=xlsread(’hex ’) %% square dataset , apparently from -80 to +

80 degrees in 0.5 degree steps
hexrange =80; %% to avoid white square , will clip all

points outside evaluated range (70 deg) to 70 deg.

%% x y coordinates
sizehex=size(hex)
x= -3/2*( sizehex (1) -1):3:3/2*( sizehex (1) -1);
[azimuth yy]= meshgrid(x,x);

%% clipping
r=sqrt(azimuth .^2+yy.^2);
polhoek=angle(azimuth +1i*yy);
idx=find((r>= hexrange));
azimuth(idx)=hexrange*cos(polhoek(idx));
yy(idx)=hexrange*sin(polhoek(idx));

%% plot
pcolor(azimuth ,yy ,hex);
axis image;
axis off;
shading flat
colormap jet (256)
a=colormap;
%% white for out of range at lower end of caxis
a(1,:)=[1 1 1];
colormap(a)

%% c-axis range
%caxis ([0 3])

%% hide x and y axis
%set(gca ,’visible ’,’off ’)
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hold on

%% over plot polar diagram axis

%% circles at minor ticks
azimuth =[0:0.01:2]* pi;
for q=1: max(size(thetaticks)) -1,
r=thetaticks(q);
rc=r*cos(azimuth);
rs=r*sin(azimuth);
plot(rc,rs,’k:’,’LineWidth ’,LW)
end

%% outside circle not dotted
r=thetaticks(q+1);
rc=r*cos(azimuth);
rs=r*sin(azimuth);
plot(rc,rs,’k’,’LineWidth ’,LW)

%% radial lines at fixed phi
r=[0:0.1: max(thetaticks)];
rmax=max(thetaticks);

for q=1: max(size(phiticks)),
plot(r*cos(phiticks(q)*pi/180) ,r*sin(phiticks(q)*pi/180),’k:’,’

LineWidth ’,LW)
text(rmax *1.13* cos(phiticks(q)*pi /180),rmax *1.13* sin(phiticks(q)*pi

/180),num2str(phiticks(q)),’FontSize ’,FS,’HorizontalAlignment ’,’
center ’,’VerticalAlignment ’,’middle ’)

end

%% make a bit of space on the right so the zero does not fall
behind the colorbar

xlim([-rmax ,1.3* rmax]);

%% colorbar
colorbar(’fontsize ’,FS);

s=sprintf(’0%c’, char (176));
l=sprintf(’360%c’, char (176));
n=sprintf(’90%c’, char (176));
title([’ ’ s ’ < \phi < ’ l ’ and -’ n ’ < \theta < ’ n])
end
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