
University of Utrecht

Bachelor Thesis

Matching Theory and the
Allocation of Kidney

Transplantations

Kim de Bakker

Supervised by
Dr. M. Ruijgrok

14 June 2016

Introduction

Matching Theory has been around for many years. It was usually applied in
the labour markets. Since the early 2000s it has also been applied to other
problems for example paired kidney transplantations.

The study into matching theory started in 1962 with the article ’College
Admission and the Stability of Marriage’ by D. Gale and L.S. Shapley. This
is the first appearance of matching theory in literature but matching theory
was already being applied in hospitals. The hospitals were using an algo-
rithm which matched interns with hospital programs. They did this without
knowing that they were using matching theory.

It was only until the early 2000s that people saw a connection between
matching theory and paired kidney transplantations. Alvin E. Roth, Tayfun
Sönmez and M. Utku Ünver wrote the article ’Pairwise Kidney Exchange’ in
2004. In this article they explained how matching theory could be applied
and they talked about the possible restrictions.

In this thesis we start with explaining the basics of matching theory. We
do this by starting with one-to-one matching in section 1. Here we use the
most common example of one-to-one matching namely matching men and
women. This is the type of matching which was first explained by Gale and
Shapley in ’College Admission and the Stability of Marriage’. To explain this
part of matching theory we used information from [2, Part I, p. 15-122],[3,
Chapter 1, p. 1-36;55-66] and [4].

Next we discuss many-to-one matching in section 2. In this section we
use hospitals and interns as the example of many-to-one matching. This is
the most common example because it has been used in reality. We used
information from [2, Part II, p. 123-186],[3, Chapter 1, p. 37-54] and [4].

These two types of matching theory are the most basic types of matching.
There are other types, for example many-to-many matching or one-to-one
matching with money as a continuous variable, but they aren’t important
for understanding the application of matching theory with paired kidney
transplantations.

Section 3 is the part of the thesis which discusses the matching process
of paired kidney transplantations. This kind of kidney transplantation is
relatively new which means there isn’t a huge amount of information about
it. But it also means there is room for improvement which we’ll talk about in
the discussion. We used [5], [7] and [8] as the sources of the current matching
process of paired kidney transplantations. We also used another article [6]
which discusses a potential alternative matching process.

1

Contents

1 One-to-one matching 3
1.1 Matching men and women . 3
1.2 Gale-Shapley Algorithm . 4
1.3 Extended Gale-Shapley Algorithm 10
1.4 Number of stable matchings 13
1.5 Groups of unequal sizes and other variations 17
1.6 Strategy and other problems 20

2 Many-to-one matching 23
2.1 Hospitals and interns . 23

2.1.1 The NIMP Algorithm 24
2.1.2 The Hospital-Oriented Algorithm 26
2.1.3 The Intern-Oriented Algorithm 27

3 Paired Kidney Transplantations 31
3.1 Two Donors and Two Recipient 33
3.2 Many Donors and Many Recipient 35
3.3 Successes and Problems . 37

3.3.1 Problems . 37
3.3.2 Successes and Improvements 38

4 Conclusion 39

5 Discussion 39

2

1 One-to-one matching

1.1 Matching men and women

One-to-one matching is the most basic matching where you match one person
or group from a certain set S1 with another person or group from a certain
set S2. If a group is matched then they are looked at as one entity otherwise
it would be many-to-one matching or many-to-many matching.

Definition 1.1.1 A matching M is a bijection between the elements of
S1 and S2

The most common application of one-to-one matching is the marriage model.
In this model, there is one set (S1) which is called ’men’ and another set (S2)
which is called ’women’. One-to-one matching isn’t only applicable for the
groups men and woman. The groups could have been called firms and workers
or something else. But the most common one to explain one-to-one matching
is the one with men and women.

In this model the groups ’men’ and ’women’ are of equal size. Each
person has a preference list which ranks all the members of the other sex.
The men and women are matched together based on these preference list.
These matchings can either be stable or unstable.

Definition 1.1.2 A matching M is stable if all matches in the matching
are stable. A match (w1,m1) is stable when either w1 (m1) ranks nobody
higher than m1 (w1) or if w1 (m1) ranks someone higher (for example m2

(w2)) than their current match then m2 (w2) should prefer their current
match to w1 (m1).

If m2 preferred w1 to their current match then m2 and w1 should match
together. Below is an example which will make everything clearer.

Example There are two groups of size n = 5. The preference lists of the
men and women are in table 1 and 2.

An example of a stable matching is {(w1,m1), (w2,m3), (w3,m2), (w4,m5),
(w5,m4)}. An example of an unstable matching is {(w1,m2), (w2,m3), (w3,m4),
(w4,m1), (w5,m5)}. This is unstable for multiple reasons. w1 would rather
want m1 and m1 would rather want w1. w5 would rather want m4 and m4

would rather want w5.

3

Table 1: Women’s Preferences
1 2 3 4 5

w1 : m1 m2 m3 m4 m5

w2 : m3 m1 m4 m5 m2

w3 : m2 m3 m5 m1 m4

w4 : m1 m4 m2 m5 m3

w5 : m4 m5 m1 m3 m2

Table 2: Men’s Preferences
1 2 3 4 5

m1 : w1 w3 w5 w4 w2

m2 : w5 w1 w3 w2 w4

m3 : w1 w2 w4 w5 w3

m4 : w5 w3 w1 w2 w4

m5 : w3 w5 w4 w2 w1

1.2 Gale-Shapley Algorithm

D. Gale and L.S. Shapley were the first people to find an algorithm which
finds stable matchings. Later it was deducted that the same principle was
applied in the 19th century for matching hospitals and interns. But in the
19th century they didn’t know they were creating stable matches by applying
matching theory. More on this in section 2.1.

The algorithm from Gale and Shapley which they found is a man-oriented
algorithm.

Definition 1.2.1 The man-oriented algorithm is an algorithm which fo-
cusses on the preferences of the men and only looks at the preference of the
women when there are multiple men who want one woman.

The algorithm goes as follows:
Initial stage:
There is a group of women and a group of men and they are both size n.
Each woman is single and at her own house. The men are outside and single.
First stage part 1:
The men stand in front of the houses of the women who are at the top of
their preference list.
First stage part 2:
If there are multiple men at one woman’s door, she gets engaged to the one
highest on her preference list and she dismisses the rest. If there is only one

4

man at her door, she gets engaged to him. If there is no one at her door, she
stays single.
Second stage part 1:
The men who are dismissed go to their next preferred woman on their list.
Second stage part 2:
If there are multiple men at one woman’s door, she chooses the one high-
est on her preference list. If this isn’t the man she was already engaged to
then she’ll terminate the old engagement and gets engaged to the one who
is higher on her list. She dismisses the rest. If there is only one man at her
door, she get engaged to him. If there is no one at her door, she stays single.
Stage three and onward:
Stage two is repeated until there is one man at each house.

The matching which results from the man-oriented algorithm is stable. To
prove this we’ll first need to prove theorem 1 and 2.

Theorem 1. There are a finite number of stages in the man-oriented algo-
rithm.

Proof. There are n women and n men. A man never goes to the same house
because when a man is dismissed he goes to the next woman on his preference
list. This means a woman can dismiss n−1 men. So every woman can dismiss
at most n− 1 men which mean there can be as many as n(n− 1) = n2 − n
stages which dismisses men. This means that the maximum stage where
there isn’t any dismisses is at stage n2 − n + 1. This is a finite number of
stages.

We can now use theorem 1 to prove the following theorem.

Theorem 2. The man-oriented algorithm can’t end with a man being dis-
missed by all the women.

Proof. To prove this it should be known that once a woman is engaged she
will always be engaged because she can only get a better partner. It’s isn’t
possible to choose to be single over being engaged because the women think
that being engaged is always better than being single. So if a man (m1) is
dismissed, it is because the woman has found someone better. So if m1 is
dismissed by every woman that means every woman has someone else. If
every woman has someone else and if there are n woman, that means that
there are n other men besides m1. This is impossible because there is a total
of n men which means a man can’t be dismissed by all women. The rule of
equal sizes of groups is important for this. So no man is dismissed by every

5

woman and there aren’t multiple men at one woman’s house which means
that there is one man at each house.

Now we can finally prove that the resulted matching is stable.

Theorem 3. The matching which results from the man-oriented algorithm
is stable.

Proof. We can prove this with a contradiction. Suppose the algorithm gives
the following unstable matching {(w1,m1), (w2,m2), (w3,m3)}. It is unstable
because w1 prefers m2 over m1 and m2 prefers w1 over w2. If m2 prefers
w1 over w2 then m2 would have been at the house of w1 before he was at
the house of w2. If w1 prefers m2 over m1, she would have dismissed m1

instead of m2. This is not what happened which means that you can’t find
a man who prefers another woman who prefers him. So in conclusion the
Gale-Shapley algorithm will always end (theorem 1) and when it ends it finds
a stable matching.

Example There are two groups of size n = 4. The preference lists of the
men and women are in table 3 and 4.

Table 3: Women’s Preferences
1 2 3 4

w1 : m4 m3 m2 m1

w2 : m2 m1 m4 m3

w3 : m2 m4 m1 m3

w4 : m4 m2 m3 m1

Table 4: Men’s Preferences
1 2 3 4

m1 : w3 w1 w2 w4

m2 : w1 w4 w3 w2

m3 : w1 w2 w4 w3

m4 : w3 w4 w1 w2

6

The matching by the Gale-Shapley algorithm is described in table 5.

Table 5: Example Gale-Shapley Algorithm
Stage w1 w2 w3 w4 Dismissed/Single

0 m1 m2 m3 m4

1 part 1 m2 m3 m1 m4

1 part 2 m3 m4 m1 m2

2 part 1 m1 m3 m4 m2

2 part 2 m3 m4 m2 m1

3 part 1 m3 m1 m4 m2

The matching which results from the Gale-Shapley algorithm is {(w1,m3),
(w2,m1), (w3,m4), (w4,m2)}. This is a stable matching.

The original Gale-Shapley algorithm resulted in a man-oriented stable match-
ing. You could also reverse the roles and find a woman-oriented matching.

Definition 1.2.2 The woman-oriented algorithm is a algorithm which
focussed on the preferences of the women and only looks at the preference of
the women when there are multiple women who want one man.

In the woman-oriented algorithm the men get approached by the women.
This matching would also be stable because it works the same as the man-
oriented matching which finds a stable matching. They will both find stable
matchings but these matching aren’t necessarily the same. This can be shown
with the same example as in table 5 but with the roles reversed. The match-

Table 6: Example Woman-Oriented Algorithm
Stage m1 m2 m3 m4 Dismissed/Single

0 w1 w2 w3 w4

1 part 1 w2 w3 w1 w4

1 part 2 w3 w4 w1 w2

2 part 1 w2 w3 w1 w4

ing which follows from the woman-oriented algorithm is {(w1,m3), (w2,m1),
(w3,m2), (w4,m4)}. If we compare this to the man-oriented algorithm, we see
that m2 and m4 have switched positions. So they have resulted in different
matchings but the matchings are both stable. We also see that some people
might prefer one matching over the other matching. We can look at which

7

position on the preference list the match of someone is. It would be in the
best interest for the women to do the woman-oriented algorithm. w3 and w4

both end up with their first choice. While with the man-oriented algorithm
w3 and w4 would have both ended up with their second choice. The men
prefer the man-oriented algorithm. m2 end up with his second choice and m4

end up with his first choice. While with the woman-oriented algorithm m2

ends up with his third choice and m4 ends up with his second choice. This
leads to theorem 4. We use the following definition in the theorem.

Definition 1.2.3 For two stable matchings A and B, A�mB (A�wB) if
all men (women) prefer matching A to matching B or they are indifferent
between A and B.

Theorem 4. The man-oriented matching Mm is the best possible stable
matching for the men. So Mm�mM ′ for M ′ ∈ M\{Mm} where M is a
set containing every possible stable matching.

Proof. Suppose, in matching Mm, mi is matched with wi. Now suppose there
is another stable matching Mx where mi is matched with wj and mi prefers
wj to wi. This means that during the man-oriented algorithm wj rejected
mi in favour of someone else (named mj) because mi started at the top of
his preference list. mj also prefers wj because he was at her house when wj

rejected mi. They both prefer each other compared to the matching they
got in Mx. So Mx isn’t a stable matching which means that Mm is the best
outcome in a stable matching for every man. This means that Mm�mM ′ for
every possible stable matching M ′ other then Mm.

The same can be said for the women in the woman-oriented algorithm
because it is just reversing the roles. Now that we know what the best
outcome for the men/women is, we can also say something about the worst
outcome.

Theorem 5. The man-oriented matching Mm is the worst outcome in a
stable matching for the women. So M ′�wMm for M ′ ∈ M\{Mm} where M
is a set containing every possible stable matching.

Proof. wk is matched with mk in the man-oriented matching Mm. Suppose
there is a stable matching My where wk is matched with ml and wk prefers
ml less than mk. The matching My can only be stable if mk prefers his
matching in My which he can’t because all men prefer the matching in the
man-oriented algorithm. So mk prefers wk and wk prefers mk which means
My can’t exist. So Mm is the worst possible stable matching for all women.
This means that M ′�wMm for every possible stable matching M ′ other then
Mm.

8

We can again reverse the roles and say that the woman-oriented algorithm
is the worst outcome in a stable matching for the men.
The man-oriented stable matchings and the woman-oriented stable matchings
can also be seen as extremes. They are the ones that one of the groups likes
the most and the other dislikes the most. There are also other stable matching
which aren’t as extreme.

Example There are two groups of size n = 3. The preference lists of the
men and women are in table 7 and 8.

Table 7: Women’s Preferences
1 2 3

w1 : m2 m3 m1

w2 : m3 m1 m2

w3 : m1 m2 m3

Table 8: Men’s Preferences
1 2 3

m1 : w1 w2 w3

m2 : w2 w3 w1

m3 : w3 w1 w2

The man-oriented matching is given by {(w1,m1), (w2,m2), (w3,m3)}. The
woman-oriented matching is given by {(w1,m2), (w2,m3), (w3,m1)}. There is
another stable matching which is given by {(w1,m3), (w2,m1), (w3,m2)}. This
is a stable matching which lies between the two extreme stable matchings.
All the stable matchings form a lattice structure.

1, 2, 3

2, 3, 1

3, 2, 1

This is a small structure because this model doesn’t have many stable match-
ings. The top one is the man-oriented matching and the bottom one is the
woman-oriented matching. The numbers are the numbers of the women
where m1, m2, and m3 are matched with respectively. The structure gets
more complex when there are more stable matchings.

9

Example [2, chapter 1, p. 22] There is a marriage problem with n = 4 and
preference lists like table 9 and 10. This model has 10 stable matchings. It

Table 9: Women’s Preferences
1 2 3 4

w1 : m4 m3 m2 m1

w2 : m3 m4 m1 m2

w3 : m2 m1 m4 m3

w4 : m1 m2 m3 m4

Table 10: Men’s Preferences
1 2 3 4

m1 : w1 w2 w3 w4

m2 : w2 w1 w4 w3

m3 : w3 w4 w1 w2

m4 : w4 w3 w2 w1

has the man-oriented matching, the woman-oriented matching and 8 other
matchings in between. Those matchings make the lattice structure which is
displayed in figure 1. The top matching is the man-oriented matching. Below
that are two matchings which matches 2 men with their first choice and 2
men with their second choice. After that is a matching which matches all the
men with their second choice. This goes on until the bottom one which is the
woman-oriented matching which matches the men with their least preferred
women and the women with their most preferred men. So when you’re a man
you’d rather want a matching at the top of the structure because a higher
matching is either as well as a lower matching or it is better. When you’re a
woman you’d want the opposite.

1.3 Extended Gale-Shapley Algorithm

There is also an extended Gale-Shapley algorithm. It is called the extended
algorithm because it doesn’t just find one stable matching, it finds a list with
all possible stable matches. The algorithm gives more information than the
regular Gale-Shapley algorithm. It shortens the preference lists by taking
out pairs which could never exist in a stable matching.

Again there is a man-oriented extended Gale-Shapley algorithm and a
woman-oriented extended Gale-Shapley algorithm. These algorithms result
in a man-oriented list and a woman-oriented list respectively. The overlap

10

Figure 1: Lattice Structure

1, 2, 3, 4

2, 1, 3, 4 1, 2, 4, 3

2, 1, 4, 3

2, 4, 1, 3 3, 1, 4, 2

3, 4, 1, 2

4, 3, 1, 2 3, 4, 2, 1

4, 3, 2, 1

11

between these two lists is the Gale-Shapley list which contains all the stable
matches.

What the extended Gale-Shapley algorithm essentially does is it deletes
all the women (men) on the men’s (women’s) preference list that are lower
than the woman-oriented (man-oriented) matching because this was the
worst possible outcome in a stable matching (theorem 5). It also deletes all
the women (men) who are better than the men-oriented (women-oriented)
matching because this was the best possible outcome in a stable matching
(theorem 4).

The man-oriented algorithm gives the men their most preferred women
from the Gale-Shapley list and the women their least preferred men. The
women-oriented algorithm does the opposite. Below is the extended Gale-
Shapley algorithm with i is a man and j is a woman in the man-oriented
version and i is a woman and j is a man in the woman-oriented version.
Initial stage:
There is a group of women and a group of men and they are both size n.
Everyone is not matched.
Stage 1:
i is the first person on j′s list. If i is already engaged (for example to j1)
then stop the engagement and engage i to j. If there is anyone worse (for
example j2) than j on i’s list, delete i from j2’s list and delete j2 from i’s list.
Stage 2:
Repeat the first stage until every i is matched.

This can be explain better with an example.

Example There are 4 women and 4 men with preference lists displayed in
table 11. The woman-oriented extended Gale-Shapley algorithm is applied

Table 11: Women’s Preferences (left) and Men’s Preferences (right)
1 2 3 4 1 2 3 4

w1 : m4 m3 m2 m1 m1 : w1 w2 w3 w4

w2 : m1 m4 m3 m2 m2 : w3 w1 w4 w2

w3 : m4 m1 m2 m3 m3 : w1 w4 w2 w3

w4 : m1 m2 m4 m3 m4 : w3 w4 w1 w2

in table 12.
The new woman-oriented preference list of the men and the women is

displayed in table 13. Some impossible stable matchings were removed. The
man-oriented extended algorithm is the same as the woman-oriented algo-
rithm with the roles reversed. The man-oriented preference lists are displayed

12

Table 12: Example extended Gale-Shapley algorithm
Stage m1 m2 m3 m4 Dismissed/Single

0 w1 w2 w3 w4

1 w2 w4 w1 w3

1 w2 w3 w1 w4

Delete pairs (m1, w
′) with w′ ≺ w2 and pairs (m4, w

′′) with w′′ ≺ w3.
Stage m1 m2 m3 m4 Dismissed/Single

1 w2 w4 w1 w3

Delete pairs (m2, w
′) with w′ ≺ w4 and pairs (m3, w

′′) with w′′ ≺ w1.

Table 13: Women’s Preferences (left) and Men’s Preferences (right)
1 2 3 4 1 2 3 4

w1 : m3 m2 m1 m1 : w1 w2

w2 : m1 m2 : w3 w1 w4

w3 : m4 m2 m3 : w1 m4

w4 : m2 m3 m4 : w3

in table 14. The Gale-Shapley list can be given by the overlap between table

Table 14: Women’s Preferences (left) and Men’s Preferences (right)
1 2 3 4 1 2 3 4

w1 : m4 m3 m1 : w2 w4

w2 : m1 m2 : w4

w3 : m4 m3 : w1

w4 : m1 m2 m4 : w3 w1

13 and table 14. This is displayed in table 15.
Everyone has only one person on their Gale-Shapley preference list. This

is because there is only one stable matching. The man-oriented algorithm
and the woman-oriented algorithm result in the same stable matching namely
{(w1,m3), (w2,m1), (w3,m4), (w4,m3)}.

1.4 Number of stable matchings

In section 1.2 we saw that there could be multiply stable matchings in a
certain marriage problem. The question which could be asked now is: what
is the maximum number of stable matchings for a certain instance n? This
instance n is a marriage problem with n men and n women. This is a problem
which still hasn’t been solved. But it is possible to give a lower bound

13

Table 15: The Gale-Shapley Preference Lists
1 2 3 4 1 2 3 4

w1 : m3 m1 : w2

w2 : m1 m2 : w4

w3 : m4 m3 : w1

w4 : m2 m4 : w3

to this maximum. When n rises the number of stable matching increases
exponentially. If you want to find all the stable matchings by hand it might
take a while. There are different ways to calculate the lower bound depending
on what n is. These ways are discussed in theorem 6, 7 and 8.

Theorem 6. If you have two stable marriage problems, one of size n and
one of size m and with g(n) and g(m) stable matchings respectively then there
is also a stable marriage problem of size nm with at least max(g(n)g(m)n,
g(m)g(n)m) stable matchings.

Proof. Suppose there are two instances, one of size n and one of size m.
The men in instance n are labelled p1, ..., pn and the women are labelled
t1, ..., tn. The men in instance m are labelled q1, ..., qm and the women are
labelled s1, ..., sm. There is an instance nm with men labelled (pi, qj) and
with women labelled (ti, sj) with i = 1, ..., n and j = 1, ...,m.

A man (pi, qj) from instance nm prefers woman (tk, sl) to (tk′ , sl′) if qj
prefers sl to sl′ or if l = l′ and pi prefers tk to tk′ . This is the same for the
women but with the roles reversed. So a woman (ti, sj) from instance nm
prefers man (pk, ql) to (pk′ , ql′) if sj prefers ql to ql′ or if l = l′ and ti prefers
pk to pk′ .

Now we call M equal to any stable matching in the marriage problem of
size m and M1, ...,Mm is a sequence of stable matchings of the marriage prob-
lem of size n. M can be any matching of g(m) and the sequence M1, ...,Mm

can be g(n) to the power of m. So the combination of M and M1, ...,Mm is
g(m) ∗ g(n)m.

Suppose we’ve got the following matching ((pi, qj), (M(pi),Mi(qj))) where
M and Mi are matchings. Now we need to prove that this is a stable match-
ing. We can prove this by a contradiction. Suppose it isn’t stable. This
means that there is another matching ((p, q), (t, s)) which is better. If this
is better, one of the following preferences should be correct. Either (1) q
prefers s to Mi(q) or (2) s = Mi(q) and p prefers t to M(p). With one of
these two, one of the following preferences should also be true. Either (3)
s prefers q to Mi(s) or (4) q = Mi(s) and t prefers p to M(t). 1 and 3
can’t both be true because Mi is stable. 2 and 4 can’t both be true because

14

M is stable. The other combinations aren’t true because it impossible for
those combinations to happen together. This means that that the matching
((pi, qj), (M(pi),Mi(qj)) is a stable matching. This means the stable marriage
problem has at least g(m)g(n)m stable matchings. This can also be done with
the roles of n and m reversed. This will result in at least g(n)g(m)n stable
matchings. This means that the lower bound of the maximum number of
stable matchings is max(g(m)g(n)m, g(n)g(m)n).

Theorem 7. If there is a marriage problem with n men, n women and g(n)
stable matchings then there also is a marriage problem with 2n men, 2n
women and at least 2[g(n]2 stable matchings.

Proof. Suppose there is an instance of size n. The men are labelled as mi and
the women as wi with i = 1, ..., n. So we have M = {m1, ...,mn} and W =
{w1, ..., wn}. Create a instance of size n with the men labelled mj and the
women labelled wj with j = n + 1, ..., 2n. So we have M ′ = {mn+1, ...,m2n}
and W ′ = {wn+1, ..., w2n}. Create this instant so that if mi prefers wk to wl

for i ≤ n then mi+n prefers wk+n to wl+n and if wi prefers mk to ml for i ≤ n
then wi+n prefers mk+n to ml+n. This way both instances will have the same
number of stable matchings.

Now we need to create another instance but of size 2n with the men
labelled ma and the women labelled wa with a = 1, ..., 2n. This way we’ll
have M ′′ = {m1, ...,m2n} and W ′′ = {w1, ..., w2n}. The preference list of the
last n people can be determine by the first n people and the preference list
of the first n people can be determine by the last n people for either the men
or the women.

Let’s say z is a stable matching for the instance with M men and W
women and z′ is a stable matching for the instance with M ′ men and W ′

women. Now also have a matching z′′1 for the instance with M ′′ men and W ′′

women. This matching z′′1 (m) has the following definition.

z′′1 (m) = z(m) if m is from M

and
z′′1 (m) = z′(m) if m is from M’

This means that z′′1 is a stable matching because both z and z′ are stable
matchings. There can also be a stable matching z′′2 for the instance with M ′′

men and W ′′ women which has the following definition.

z′′2 (wi) = z′(wi+n) if i ≤ n

and
z′′2 (wi) = z(wi−n) if i ≥ n.

15

The matchings z and z′ can each be g(n) stable matchings (because both
instances are of size n) which means the instance of size 2n can have at least
2g(n)2 stable matchings.

Theorem 8.

The maximum number of stable matchings is at least 2n−1 when n = 2k with
k ≥ 0.

Proof. This can be done by induction. The theorem is correct for k = 0. If
k = 0 then n = 20 = 1 and 2n−1 = 20 = 1. This means if there is only one
man and one woman then there is only one stable matching which is obvious.
Now we say that the theorem is correct for n = 2i. We need to prove that it is
correct for n = 2i+1 with 2n−1 = 22i+1−1 stable matchings. To prove this we’ll
need what we proved in theorem 6. We have n = 2i and g(n) = 22i−1 and
we’ll use m = 2 with preference lists in table 16 and 17. This instance has

Table 16: Women’s Preferences
1 2

w1 : m2 m1

w2 : m1 m2

Table 17: Men’s Preferences
1 2

m1 : w1 w2

m2 : w2 w1

two stable matchings {(w1,m2), (w2,m1)} and {(w1,m1), (w2,m2)}. This
means that g(m) = 2. We have proven in theorem 6 that there should
also be another stable marriage problem with size nm = 2i ∗ 2 = 2i+1 and
with at least max(g(n)g(m)n, g(m)g(n)m) = max(22i−1 ∗ 22i , 2 ∗ (22i−1)2) =
max(22i+1−1, 22i+1−1) = 22i+1−1 stable matchings. So there exists a stable
marriage problem with size 2i ∗ 2 = 2i+1 and with at least 22i+1−1 stable
matchings.

In table 18 are the lower bounds from theorem 8 for a few examples of n.
Here we can see that the lower bound grows exponentially when n rises. The
actual maximum can be much higher than the values shown in the tables
because they are lower bounds.

16

Table 18: Theorem 8
i n = 2i 2n−1

0 1 1
1 2 2
2 4 8
3 8 128
4 16 32768
5 32 2147483648

1.5 Groups of unequal sizes and other variations

In this section we will discuss different variations of the marriage model from
section 1.1. It isn’t always the case that you’re matching people from groups
of equal sizes. It could be possible that there are more men than women or
the other way around. Some people won’t get matched and will stay single.
We will still assume that people would rather be married than to be single.
The Gale-Shapley algorithm from section 1.2 can still be applied here but it is
slightly altered. The definition of a stable matching is also slightly different.

Definition 1.5.1 A match (wx,mx) is stable if for each m (w) that wx

(mx) prefers to their current match, m (w) prefers their own match to wx

(mx). Also if someone is single that means nobody prefers them to their
current partner.

So if there are more women than men, the Gale-Shapley algorithm (which
is the man-oriented algorithm) will stop when all men are engaged to different
women. The difference between the number of men and the number of women
is the number of single women. This matching is still stable and it is the best
matching for the men and the worst matching for the women. The women-
oriented algorithm will also stop when all the men are engaged. There will
still be single women but the stable matching is the best outcome in a stable
matching for the women. If a woman is single after the woman-oriented
algorithm then she is single in every stable matching. When there are more
men than women then the algorithms will stop when all the women are
engaged and there will be single men left.

Example Suppose there is a marriage problem with 3 women and 5 men.
Their preference lists are shown in table 19 and 20. This marriage problem
has only one stable matching namely {(w1,m5), (w2,m1), (w3,m2)}. This is
the only stable matching because the men-oriented and the women-oriented

17

Table 19: Women’s Preferences
1 2 3 4 5

w1 : m5 m4 m1 m2 m3

w2 : m1 m5 m3 m4 m2

w3 : m5 m2 m4 m1 m3

Table 20: Men’s Preferences
1 2 3

m1 : w1 w2 w3

m2 : w2 w1 w3

m3 : w3 w2 w1

m4 : w1 w3 w2

m5 : w2 w1 w3

algorithm result in the same matching. The men m3 and m4 are single.

Another variation of the stable marriage problem is when people would
rather be single than to be married to certain people. This makes the problem
a bit more realistic because you might not like everyone who is available. This
scenario might end up having both a group of single men and a group of single
women no matter how many men and women there are. This problem again
has a slightly different definition of a stable matching.

Definition 1.5.2 A match (wx,mx) is stable if for each m (w) that wx

(mx) prefers to their current match, m (w) prefers their own match to wx

(mx) or m (w) prefers being single. If someone is single then everyone they
prefer to being single likes their current partner more or likes being single
more.

The man-oriented algorithm and the women-oriented algorithm change
because the preference lists of the men and women change. The preference
lists get an extra element named x-single (with x is the name of the person
who is single). When w is above the element m-single on the preference list
of m that means m prefers w to being single. When w is below the element
m-single on the preference list of m that means m prefers to be single to
being with w.

The algorithm will stay the same but for it to work a fake person should
be added for each person that can be single. This will become clearer with
the help of the following example.

18

Example There is a marriage problem with 2 women and 3 men. They
have preference lists which are displayed in table 21 and 22. The Gale-

Table 21: Women’s Preferences
1 2 3 4 5

w1 : m1 m2 w1-single m3 w2-single
w2 : m2 m3 w2-single m1 w1-single

m1-single: m1 m2 m3 w1-single w2-single
m2-single: m2 m1 m3 w1-single w2-single
m3-single: m3 m1 m2 w1-single w2-single

Table 22: Men’s Preferences
1 2 3 4 5

m1 : w2 w1 m1-single m2-single m3-single
m2 : w1 m2-single w2 m1-single m3-single
m3 : w1 w2 m3-single m1-single m2-single

w1-single: w1 w2 m1-single m2-single m3-single
w2-single: w2 w1 m1-single m2-single m3-single

Shapley algorithm is applied in table 23. The resulted stable matching is
{(w1,m1), (w2,m3), (m2-single,m2)}. This means that m2 stays single. He
could have had w2 but he liked staying single more than getting engaged
to w2. This result is already clear after step 3 part 1 of the Gale-Shapley
algorithm but the algorithm goes until everyone is matched with someone
else. This doesn’t change the outcome.

It is also impossible for someone to be in a stable matching with the single
version of someone else. This is because i-single always has i at the top of
its preference list and i prefers i-single to every other x-single. The order of
the preference list from x-single doesn’t matter as long as x is on the top of
the list.

The last variation of the marriage model that we will discuss is the case
of indifference. Someone is indifferent when they don’t prefer one over the
other. So m is indifferent between w and w′ if he doesn’t want w more (or
less) than w′. It can also be that someone is indifferent between someone
else and being single.

With indifference there are different types of stability depending on how
strict you want to be. The first type of stable matching is super-stable
matchings. The matching is unstable if you like someone else at least as

19

Table 23: Example Gale-Shapley algorithm with single people
Stage w1 w2 m1-s m2-s m3-s Dismissed

0 m1 m2 m3

w1-s w2-s
1 part 1 m2 m3 w1-s m1 w2-s
1 part 2 m2 w2-s m1 m3 w1-s
2 part 1 m1 m2 m3 w1-s w2-s
2 part 2 m1 m3 m2 w1-s w2-s
3 part 1 m1 w2-s m3 w1-s m2

3 part 2 m1 m3 m2 w1-s w2-s
4 part 1 m1 m3 w1-s w2-s m2

4 part 2 m1 m3 w1-s m2 w2-s
5 part 1 m1 m3 w1-s m2 w2-s

much as your current partner and if they like you at least as much as their
current partner. When you have this type of stability it is possible to have
no stable matchings. An example of this is when everyone is indifferent to
each other.

The second type of stability is one called strongly-stable matchings. The
matchings are unstable if you like someone more than your current partner
and they like you at least as much as their current partner. It is again possible
with this type of stability to have no stable matchings.

The third kind of stability is a weaker kind of stability which is easier
to achieve. The matchings are unstable if you like someone strictly more
than your current partner and they like you strictly more than their current
partner.

Stable matchings with indifference can be found by choosing randomly if
one is better than the other when someone is indifferent and then applying
a certain algorithm. Each time you choose someone else in a situation with
indifference it might result in a different stable matching.

1.6 Strategy and other problems

A question which could arise from one-to-one matching is: are there any
strategies which you could apply to improve your outcome? Is there anything
you could do which results in a more preferred partner? The answer to this
is ”yes” depending on your situation. It all depends on if you’re a man or
a woman in the man-oriented or the woman-oriented situation. If you’re
a woman in the man-oriented situation or if you’re a man in the woman-
oriented situation you can get a better partner if you apply a strategy. This

20

strategy is lying about your preference list. This way you might have to
dismiss someone for someone else who you like less. But when you do this
you might end up with someone better. It is not possible for a man in a
man-oriented situation or for a woman in a woman-oriented situation to do
this. For example if they were single without a strategy then they can’t apply
a strategy to suddenly get married with someone that they like. There is an
example below which makes it a bit clearer.

Example There are 4 men and 3 women. The preference list of the women
is described in table 24 and that of the men is in table 25. Some men and
some women prefer being single to being with some people. This is explained
in section 1.5. A stable matching is {(w1,m2), (w2,m1), (w3, w3-single),

Table 24: Women’s Preferences
1 2 3 4 5 6 7

w1 : m1 m2 m3 m4 w1-s w2-s w3-s
w2 : m2 m1 m3 m4 w2-s w1-s w3-s
w3 : m3 m1 w3-s m4 m2 w1-s w2-s
m1-s: m1 m2 m3 m4 w1-s w2-s w3-s
m2-s: m2 m1 m3 m4 w1-s w2-s w3-s
m3-s: m3 m1 m2 m4 w1-s w2-s w3-s
m4-s: m4 m1 m2 m3 w1-s w2-s w3-s

Table 25: Men’s Preferences
1 2 3 4 5 6 7

m1 : w2 w1 w3 m1-s m2-s m3-s m4-s
m2 : w3 w1 w2 m2-s m1-s m3-s m4-s
m3 : w2 m3-s w1 w3 m1-s m2-s m4-s
m4 : w1 w2 w3 m4-s m1-s m2-s m3-s
w1-s: w1 w2 w3 m1-s m2-s m3-s m4-s
w2-s: w2 w1 w3 m1-s m2-s m3-s m4-s
w3-s: w3 w1 w2 m1-s m2-s m3-s m4-s

(m3-single,m3), (m4-single,m4)} when we apply the Gale-Shapley algorithm.
Both w1 and w2 are matched with their second choice partners and m1 and
m2 are matched with their first and second choice respectively. w3, m3 and
m4 are all single.

w2 could get a better partner if she acts like she has a different preference
list. A preference list she can use is (m2(1), m3(2), m4(3), m1(4), w2-s(5),

21

w1-s(6), w3-s(7)). So she changes it by moving m1 to a lower spot on her
list. This will cause w1 to get m1 and to dismiss m2. m2 will then move
to w2. This is a way for w2 to get her first choice. The resulted matching
is {(w1,m1), (w2,m2), (w3, w3-single), (m3-single,m3), (m4-single,m4)}. This
matching is still a stable matching even with the original preference list from
w2. Nobody can get a better partner than their current partner because the
people they like more than their current partner don’t like them more. This
is because the Gale-Shapley algorithm only stops when a stable matching is
made.

The question we are left with is: is there a way to avoid this strategy?

Theorem 9. There is no algorithm which avoids the strategy to lie.

Proof. Suppose there is a marriage problem with 2 men and 2 women. We
can show that for every stable matching process a man or a woman can
do better by lying about their preference list. The women and the men
have the preferences lists displayed in table 26 and table 27 respectively.

Table 26: Women’s Preferences
1 2

w1 : m2 m1

w2 : m1 m2

Table 27: Men’s Preferences
1 2

m1 : w1 w2

m2 : w2 w1

This marriage problem has two stable matchings. The stable matchings are
M1 = {(w1,m1), (w2,m2)} and M2 = {(w1,m2), (w2,m1)}. This means that
each algorithm which produces a stable matching must result in one of these
matchings.

Suppose an algorithm results in M1. This would be bad for w1 and w2.
Now what if w2 changed her preference list and says she would rather be
single than be with m2. The only possible stable matching which could
result from this changed preference is M2. The same could be said for m2

instead of w2 if an algorithm choose M2. We can also assume without loss of
generality that this is true for a larger instance n. In conclusion there is not
an algorithm where it is the best for everyone to be honest.

22

Another problem which can arise with one-to-one matching is when the
people that get matched together are in the same group. For example when
you want to match 2 people together to work on a project. If this is the case
then there is one group (with men and/or women) and each person has a
preference list which contains all other people from the group. This model
can cause problems because it isn’t certain that there is always a stable
matching. This will be shown in the next example.

Example There are 4 people (it doesn’t matter if they’re men or women)
who will be matched together. Their preference list is displayed in table 28.
There are no stable matchings. There are 3 possible matchings. The first
one is {(p1, p2), (p3, p4)}. This matching isn’t stable because p2 prefers p4 to
p1 and p4 prefers p2 to p3. The next matching is {(p1, p3), (p2, p4)}. This
matching isn’t stable because p3 prefers p2 to p1 and p2 prefers p3 to p4. The
last matching is {(p1, p4), (p2, p3)}. This isn’t a stable matching because p4
prefers p3 to p1 and p3 prefers p4 to p2.

Table 28: People’s Preferences
1 2 3

p1 : p2 p3 p4
p2 : p3 p4 p1
p3 : p4 p2 p1
p4 : p2 p3 p1

2 Many-to-one matching

2.1 Hospitals and interns

The algorithm that Gale and Shapley invented was already being applied in
some way before they thought of it. It was mostly being applied to match
interns and hospital programs. This wasn’t exactly the same as the Gale and
Shapley method because this is many-to-one matching instead of one-to-one
matching.

There are still two sets, one finite set of interns (I) and one finite set
of hospital programs (H), which are matched together. Now it’s the case
that many intern can be matched to one hospital program. Each intern has
a preference over the hospital programs and each hospital program has a
preference over the interns. It is also possible that an intern would rather
wait a year (or do something else) than to join some program. A hospital

23

can also keep some intern positions empty instead of hiring someone they
don’t like. This resembles wanting to be single in the marriage problem from
section 1.5.

Definition 2.1.1 A matching is stable when item 1 is true combined with
either item 2, 3 or 4.

1. Intern i is not matched with hospital program h

2. If intern i prefers h to their current situation then h either has all their
spots filled with more acceptable interns or would rather have an empty
spot than have intern i.

3. If hospital program h prefers i to their current situation then i either
is matched with a more acceptable hospital program or would rather
be with no hospital program than to be with h.

4. Intern i does not prefer h to their current situation and h does not
prefer i to their current situation.

Just like the marriage problem there are different algorithms to find stable
matchings. Again there are two extreme matchings. There is the hospital-
oriented algorithm and the intern-oriented algorithm. The hospital-oriented
algorithm works almost the same as the Gale-Shapley (man-oriented) algo-
rithm with the interns as the women and the hospitals as the men. The
interns reject every hospital program except the one they prefer the most.
The intern-oriented algorithm works almost the same as the woman-oriented
algorithm. The Hospital programs starts to reject people when the amount
of applications surpass the amount of places. There is also another algorithm
which is called the NIMP algorithm. This is an algorithm which was actually
used to match interns and hospital programs.

2.1.1 The NIMP Algorithm

First we’ll discuss the NIMP algorithm. This is an algorithm which was
applied in 1951 before the existence of the Gale-Shapley algorithm. NIMP
stands for ’National Intern Matching Program’. This is an algorithm which
was actually used to match interns with hospital programs. This algorithm
worked as follows:
Initial Phase
The interns and the hospitals sent their preference list to the central clearing-
house where their preference list is altered. If an intern i didn’t see a certain
hospital program h as an acceptable option then i would be removed from

24

h’s preference list. The same would be done to the interns’ preference lists if
a hospital program didn’t think they were an acceptable option. Begin with
the matching phase.
Matching Phase
Stage 1
Look at all the hospital programs’ first choices. If there is any hospital pro-
gram that is also the first choice of the intern then assign them together and
start with the tentative-assignment-and-update phase. If there is no hospital
program which is also the first choice of the intern then go to the next stage.
Stage 2
Look at all the hospital programs’ first choices. If there is any hospital pro-
gram that is the second choice of the intern then assign them together and
start with the tentative-assignment-and-update phase. If there is no hospital
program which is the second choice of the intern then go to the next stage.
...
Stage m
Look at all the hospital programs’ first choices. If there is any hospital pro-
gram that is the mth (with m is the maximum number of hospitals of an
intern’s preference list) choice of the intern then assign them together and
start with the tentative-assignment-and-update phase. If there is no hospital
program which is the mth choice of the intern then stop the algorithm. Each
intern is matched with the hospital which is at the bottom of their updated
preference list.
Tentative-Assignment-and-Update Phase
Look at all the assignment you’ve just made. If the interns have any hospital
programs on their preference list that they prefer less than their assigned
hospital program then those programs should be removed from the interns’
preference lists. Also remove all the assigned interns from all the other hospi-
tal programs’ preference lists if the interns list these hospital programs lower
than their current hospital program. Restart the matching phase with the
updated preference lists when this phase is finished.

Theorem 10. The NIMP algorithm will produce a stable matching no matter
what the preference lists are.

Proof. When the algorithm stops, every hospital program hk is matched with
ck (for capacity) interns who are all at the top of the updated preference lists
of the hospital programs. The algorithm couldn’t have ended if this isn’t true
because there could have been another match. What if there was a hospital
program ha which preferred intern ib. This means ib was removed from ha

preference list because ib was assigned to a hospital program which they
preferred more that ha. This means that there aren’t any interns who are

25

more preferred than their assigned interns who also prefer them more than
their assigned hospital program. This means that the matching is stable.

2.1.2 The Hospital-Oriented Algorithm

The hospital-oriented algorithm is the same as the man-oriented algorithm
from section 1.2 but then with many-to-one matching instead of one-to-one
matching. The hospital programs represent the men and the interns rep-
resent the women. The intern can get conditionally accepted to a hospital
program instead of getting engaged. If an intern isn’t assigned to any pro-
gram then they aren’t single but they are free and the hospital programs can
be undersubscribed.

Before the algorithm is started, the unacceptable matches are deleted
from the preference lists. This means if a hospital h would rather have an
empty spot than to hire intern i, h should be removed from i’s list and i
should be removed from h’s list. The algorithm goes as follows.
Initial stage:
There is a group of interns and a group of hospital programs. Everyone is
not matched. This means that all the interns are free and all the hospital
programs are undersubscribed. Begin stage 1 for each hospital program h.
Stage 1:
Intern i is the first person on hospital program h’s list. If i is already con-
ditionally assigned (to h1) then break the bond between i and h1 and condi-
tionally assign i to h. If there is anyone worse (for example h2) than h on i’s
list, delete i from h2’s list and delete h2 from i’s list. Go to stage 2.
Stage 2:
Repeat the first stage until one of the following statement isn’t true anymore.
(1) A hospital program h is undersubscribed. (2) There exist a intern i on
h’s preference list who is not conditionally assigned to h.

This algorithm results in a hospital-oriented list where the hospital (with
c spots) has assigned the top c interns of their list. If an intern i isn’t on
hospital program h’s list and h isn’t on i’s list, that can mean multiple thing.

Lemma 11. (i) (i, h) is an unstable match. (ii) The intern i prefers the
hospital programs on their preference list to h. (iii) The matching (i, h)
doesn’t cause the other matchings on the reduced list to be unstable.

Proof. (i) Assume the match (i, h) was the first stable match to be removed.
The match (i, h) was removed from the list which means i was assigned
to someone (for example h1) who they prefer more than h. The hospital
program h1 has ch1 spots. The number of interns i1 who are matched with

26

h1 and that are more preferred than i should be less than the capacity of h1

because we assumed (i, h) was the first stable matching to be removed. So
the hospital program h1 either has some place left or it has an intern who
they prefer less than i. We also said that i preferred h1 to h. This means
that (i, h) is unstable because (i, h1) is better. So (i, h) can’t be stable.

(ii) The intern i only removes hospital programs from their list when those
programs are less preferred than the program that they are conditionally
assigned to. This means that h is always less preferred than the hospital
programs on the new preference list.

(iii) This can be proven with statement (ii). We know that intern i prefers
the hospital program on their new list to h. This means that (i, h) can’t cause
any matching from the new list to be unstable. That can only happen when
i prefers h to their current situation and when h prefers i to their current
situation.

From lemma 11 and because the intern are matched with the last hospital
program on their hospital-oriented list we can also conclude that the intern
is matched with their worst possible stable matching. This means that, just
like the man-oriented algorithm from section 1.2, the hospital gets their best
possible stable match and the interns get their worst possible stable match.

2.1.3 The Intern-Oriented Algorithm

The resident-oriented algorithm isn’t just the hospital-oriented algorithm
with the roles reversed. The hospital programs only start to reject interns
when the number of interns that apply exceeds the number of available places.
This is because the interns who were not good enough were already removed
from the preference list. This means that everyone who applies is acceptable
and only when there are too many interns then the least preferred ones will
be denied. The intern-oriented algorithm goes as followed.
Initial stage:
There is a group of interns and a group of hospital programs. Everyone is
not matched. This means that all the interns are free and all the hospital
programs are undersubscribed. Begin stage 1 for each intern i.
Stage 1:
Hospital program h is the first program on intern i’s list. If h is undersub-
scribed, go to stage 2. If h doesn’t have any empty places, go to stage 3.
Stage 2:
Conditionally assign i to h. If h doesn’t have any empty places left, go to
stage 4. If there are no free interns or an intern has an empty list, stop the
algorithm. Otherwise begin stage 1 for the next intern.
Stage 3:

27

Look at the interns who are conditionally assigned to h. Intern i1 is the least
preferred intern who is conditionally assigned to h. Reassign i1 to be free.
Conditionally assign i to h. Go to stage 4.
Stage 4:
Intern i2 is the worst intern from the interns who are conditionally assigned
to h. This can be i or another intern. If there is any intern who is less
preferred (for example i3) than i2 on h’s preference list, remove i3 from h’s
preference list and remove h from i3’s preference list. If there are no free
interns or an intern has an empty list, stop the algorithm. Otherwise go to
stage 1 for the next intern.

Theorem 12. (i) All the conditionally assignments, which still exist after
the algorithm stops, are stable. (ii) The interns are matched with their best
possible stable match.

Proof. (i) This can be proven by a contradiction. Suppose there is an intern i
who is conditionally assigned to h at the end of the algorithm. Now suppose
that this match is unstable. This would mean that there is another hospital
program h1 which is more preferred than h and h1 is either undersubscribed
or h1 prefers i to their worst intern. But if this was true, i would have tried
to apply to h1 before applying to h and h1 would have conditionally accepted
i. This means that all the conditionally assignment, which result from the
algorithm, are stable.

(ii) The interns go down their preference list when the algorithm is ap-
plied. This means that if a intern isn’t matched with their first choice, it
is because someone else was better. This would also be impossible for any
other algorithm because you can’t get a better result than to start at the top
of the preference list. This means that the interns are matched with their
best possible stable matching.

It can be concluded from this second statement that an intern will always
be free if that intern is free at the end of the intern-oriented algorithm.
This is because interns can’t do better than the result of the intern-oriented
algorithm.

It isn’t necessarily true that the hospital programs are matched with the
worst possible stable matches. There are two different possibilities either the
hospital program end up undersubscribed or it doesn’t have any available
places left. If the hospital program ends up undersubscribed after an algo-
rithm then it will have the same set of interns after every stable algorithm.
In this case, one result won’t be worst than another result. If the hospital
program ends up without any open places after the intern-oriented algorithm
then it doesn’t necessarily consist of the worst possible stable matchings. The
first case is shown in theorem 13 and the second case is shown in an example.

28

Theorem 13. (i) The hospital program h has the same interns in stable
matching M2 as in intern-oriented stable matching M1 if h is undersubscribed
in M2 and (ii) every hospital program has the same number of interns in each
stable matching.

Proof. (i) Suppose M1 is the stable matching after the intern-oriented algo-
rithm and M2 is any stable matching. Hospital program h is undersubscribed
in M2. If intern i is matched with h in M1 but not with h in M2 that would
make M2 unstable. This is because h is undersubscribed and i prefers h to
every other stable matching partner because it is the result of the intern-
oriented algorithm. So if h is undersubscribed in M2 then it should have the
same interns as in M1.

(ii) M1 is the matching which is the result of the intern-oriented algorithm
and M2 is another stable matching. The number of interns matched with
hospital programs in M2 can’t be larger than the number of interns matched
with hospital programs in M1. This is because if a intern is free in M1

then they should always be free because they can’t get a better result than
the intern-oriented result. The number of interns matched with hospital
programs in M2 also can’t be smaller than the number of interns matched
with hospital programs in M1. We already proved in part (i) that every
intern who is matched with h in M1 should also be matched with h in M2

when h is undersubscribed in M2. This means that the number of intern
matched with hospital programs in M2 can’t be smaller than that of M1. So
it can’t be smaller or larger which means it is the same.

Statement (i) and (ii) can be combined to conclude that if a hospital
program is undersubscribed in any stable matching then it is matched with
the same interns in every stable matching. This also means they won’t prefer
one stable matching over another because the result is the same. Now we’ll
look at an example which will look at the preference of the hospital program
between stable matchings when the hospital program isn’t undersubscribed.

Example [2, chapter 1, p. 50] There are 3 hospital programs and 7 interns.
The preference lists are displayed in table 29 and 30.

These preference lists can be used to find the intern-oriented matching
and the hospital-oriented matching. This can be done with the algorithms
from section 2.1.2 and 2.1.3. The matching which results from the intern-
oriented algorithm is: {(h1,{i2, i5, i8, i10}), (h2, i7), (h3, {i1, i4, i6}), (h4,
{i3, i9}), (h5, i11)} The matching which results from the hospital-oriented
algorithm is: {(h1,{i4, i5, i9, i11}), (h2, i7), (h3, {i3, i6, i8}), (h4, {i1, i2}),
(h5, i10)}. Hospital program 2 always gets intern 7 because h2 is undersub-
scribed. This was proven in theorem 13. This model also has other stable

29

Table 29: Interns’ Preferences
1 2 3 4 5

i1 : h3 h1 h5 h4

i2 : h1 h3 h4 h2 h5

i3 : h4 h5 h3 h1 h2

i4 : h3 h4 h1 h5

i5 : h1 h4 h2

i6 : h4 h3 h2 h1 h5

i7 : h2 h5 h1 h3

i8 : h1 h3 h2 h5 h4

i9 : h4 h1 h5

i10 : h3 h1 h5 h2 h4

i11 : h5 h4 h1 h3 h2

Table 30: Hospital Programs’ Preferences
1 2 3 4 5 6 7 8 9 10 11 # Places

h1 : i3 i7 i9 i11 i5 i4 i10 i8 i6 i1 i2 4
h2 : i5 i7 i10 i6 i8 i2 i3 i11 3
h3 : i11 i6 i8 i3 i2 i4 i7 i1 i10 3
h4 : i10 i1 i2 i11 i4 i9 i5 i3 i6 i8 2
h5 : i2 i4 i10 i7 i6 i1 i8 i3 i11 i9 1

30

matchings which aren’t the intern-oriented matching or the hospital-oriented
matching. All the stable matchings are displayed in table 31 with M1 the
intern-oriented matching and M7 the hospital-oriented matching. The intern-

Table 31: All Stable Matchings
Matching i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11

M1 : h3 h1 h4 h3 h1 h3 h2 h1 h4 h1 h5

M2 : h1 h3 h4 h3 h1 h3 h2 h1 h4 h1 h5

M3 : h3 h1 h5 h3 h1 h3 h2 h1 h4 h1 h4

M4 : h1 h3 h5 h3 h1 h3 h2 h1 h4 h1 h4

M5 : h5 h3 h3 h4 h1 h3 h2 h1 h1 h1 h4

M6 : h5 h4 h3 h1 h1 h3 h2 h3 h1 h1 h4

M7 : h4 h4 h3 h1 h1 h3 h2 h3 h1 h5 h1

oriented matching (M1) doesn’t match the hospital programs with their least
preferred interns. For example h1 is matched with {i2, i5, i8, i10} not with
{i1, i2, i6, i8}. The hospital programs do have a certain preference between
matchings. For example h1 is matched with {i2, i5, i8, i10} in M1 and with
{i1, i5, i8, i10} in M2. The only difference between these two matchings is
that they either have i1 or i2. The hospital program h ranks i1 higher than
i2. This means that h prefers matching M2 over M1. The matching for h in
M1 is the same as in M3 and the matching in M2 is the same as in M4. So h
doesn’t mind if they are in M1 (M2) or M3 (M4). This isn’t the case for all
the hospital programs. For example h5 is indifference between M1 and M2;
M3 and M4; M5 and M6.

3 Paired Kidney Transplantations

Matching theory has also been applied to kidney transplantations. The idea
of using matching theory with kidney transplantations started in the 80’s
but it started getting popular in 2004-2005 with the start of kidney exchange
programs. Matching with paired kidney transplantations works as follows:

Each recipient has one or more donors who is incompatible with the
recipient. This can be a family member who wants to donate or someone
else the recipient knows. This recipient and incompatible donor form a pair.
A recipient can also have no donor who they know and who is willing to
donate. There are also some donor who donate to strangers without knowing
a recipient.

Paired kidney transplantations is a kind of one-to-one matching. Each
pair of recipient and incompatible donor is seen as one and they are matched

31

with another pair or person. Each recipient has a preference list with all
donors on it. The recipients can either have a 0-1 preference, this is the
’American’ way, or a continuous preference, this is the ’European’ way. In
the ’American’ way a kidney can either be compatible (1) or incompatible (0).
There isn’t a difference between compatible kidneys. In the ’European’ way
there can be a difference between compatible kidneys. Here the preference
increases depending on the tissue type match. Both kinds of preferences were
used in practice but surgeons preferred to use the American way.

The preference of kidneys can depend on multiple factors. First there
is blood type. Someone is either blood type A, B, AB or O. If someone is
blood type O then they can donate a kidney to everyone no matter the blood
type but they can only receive a kidney from someone with blood type O.
If someone is blood type A or B then they can donate a kidney to someone
with the same blood type or with blood type AB. They can receive a kidney
from someone with blood type O or from someone with the same blood type.
If someone is blood type AB then they can only donate a kidney to someone
with the same blood type. They can receive a kidney from every blood type.
This means that people, who are blood type O, are the best donor and people,
who are blood type AB, are the best recipients.

The recipient always prefers their own incompatible donor to another
donor who is also incompatible. Another reason for the incompatibility of a
kidney is a defect in someone’s gene. A recipient can have certain antibodies
which make a kidney incompatible even though it is from someone with a
compatible blood type.

Sometimes surgeons name a maximum that the number of kidney alloca-
tions at the same time can’t exceed. This is because if you match 20 donors
with 20 recipients then you’ll have to perform 40 surgeries at the same time.
If you do them at different times then a donor might choose not to do the
surgery after their recipient received their kidney.

It is also possible for someone to have a incompatible donor and to be
matched with a kidney from someone who has passed away. This match
can either be allowed or not allowed. Recipients with blood type O and
without a incompatible donor might not get a match because of this. These
people already have a small chance of getting a kidney and this might de-
crease this chance even more. This is the reason why surgeons prefer to not
include matches between a recipient who knows an incompatible donor (a
friend/family member) and a kidney from someone who has passed away.

There usually is a priority list with all the recipients. This list ranks all
the recipients in order of who needs a kidney the most. If someone is at the
top of the list then it can mean that are the most likely to die. But it can
also be that someone is higher on the priority list because they have a small

32

change of finding a compatible kidney. The person with the highest priority
will be matched before anyone else. When that person is matched the next
person on the priority list is matched and this is repeated until everyone
is matched. This way of matching is called the Simple Serial Dictatorship
(SSD).

If someone has multiple incompatible donors who would like to help then
there can be a priority list between the donors. For example if you need
a donor and your parents and siblings would like to donate but they are
incompatible then they might prefer that every option with the parent as
donor is considered before the option with the sibling as donor is considered.
This might cause them to withheld a possible donor (the sibling) until it
is absolutely necessary. It is better to reveal all the possible incompatible
donors because it gives you a better chance to be match with a compatible
donor.

3.1 Two Donors and Two Recipient

Example There needs to be a few assumptions made before we start an
example.

• We’ll use the 0-1 preference of the ’American’ way. This is the most
preferred way by surgeons.

• There can only be a match between at most two donors and two recipi-
ents. This way the maximum number of surgeries that need to happen
at the same time is 4.

• There can be no match between a recipient and incompatible donor
pair and a donor who has passed away. This is to increase the chances
of a recipient with blood type O and without a incompatible donor.

There are five people who need a kidney. From these five recipients there are
four recipients who have one or more incompatible donors and there is one
recipient who has no-one who is willing to donate. There is one person who
has passed away and wanted to donate their organs. There is no-one who
wants to just donate a kidney to a stranger without knowing someone who
needs one.

The donors and the recipients have the blood types which are displayed
in table 32. Some people could be a match when you look at the blood type
but sometimes they can’t be a match because of a defect. This defect would
reject the kidney if it were transferred.

The preference list of the recipients is displayed in table 33. The paren-
theses indicate indifference. The donors can be divided into three groups.

33

Table 32: Blood Types of the Donors and the Recipients
Recipient/Donor Blood Type

r1 O
d11 A
d21 B
r2 A
d12 B
r3 B
d13 A
d23 AB
d33 O
r4 AB
d14 A
r5 O
d6 O

The first group is the group who in compatible with the recipient. This is the
most preferred group. Next are the donors who participate because of the
specific recipient. These donors are more preferred than other incompatible
donors. The last group, who is least preferred, consists of the other donors.

Table 33: Recipients’ Preferences
1 2 3 4 5 6 7 8

r1 : d33 (d11 d21) (d12 d13 d23 d14 d6)
r2 : (d11 d13 d33 d14) d12 (d21 d23 d6)
r3 : (d21 d12) (d13 d23 d33) (d11 d14 d6)
r4 : (d21 d13 d23 d33) d14 (d11 d12 d6)
r5 : d6 (d11 d21 d12 d13 d23 d33 d14)

Some recipients have a higher priority than others of getting a kidney.
This can be because they have a smaller chance of getting a kidney (for
example a recipient who has blood type O) or because they have a higher
chance of dying. This priority list is displayed in table 34. The recipient
r5 has the highest priority of getting a kidney. If we use the Simple Serial
Dictatorship method then that means that r5 is the first person to possibly
get a kidney. They can be matched with donor d6 who isn’t connected
with any recipient. The next person on the priority list is r1. They are only
compatible with d33. This can only work if one of the donor of r1 is compatible
with r3. The donor d21 is compatible with r3. So recipient r1 gets a kidney
from donor d33 and recipient r3 get a kidney from d21. The next person on

34

Table 34: Priority List
1 : r5
2 : r1
3 : r3
4 : r2
5 : r4

the priority list is r2. They are compatible with donors from one, three and
four. Recipients one and three are already match which leaves r4 as the only
option. The problem is that r2 doesn’t have a donor who is compatible with
r4. This means that they can’t be matched and they have to wait until more
kidneys gets available. The final stable matching is {(r1, d33), (r2, ∅), (r3, d

2
1),

(r4, ∅), (r5, d6)}.

3.2 Many Donors and Many Recipient

Example In this example we’ll look at a different situation which allows
a match to exist between more than two recipients and two donors. If there
is someone in a match who donates a kidney without knowing someone who
needs a kidney then all surgeries won’t necessarily need to happen at the
same time. This is because the match is a chain which start with one donor
and not a closed loop of donations. The following assumptions are made.

• We’ll use the 0-1 preference of the American way. This is the most
preferred way by surgeons.

• There can be a match between more than two donors and two recipients.

• There can be no match between a recipient who has an incompatible
donor and a donor who has passed away. This is to increase the chances
of a recipient with blood type O and without a incompatible donor.

There are four recipients who need a kidney. Each recipient has one or more
incompatible donors. These donors are incompatible because of their blood
type or because there is another reason that increases the chance of rejection.
There is also another donor who is willing to donate their kidney without
wanting anything in return. There is no donor who has passed away which
means there are only donors who are alive. The blood types of the donors
and the recipients are displayed in table 35.

These blood types combined with a compatibility test results in the pref-
erence list in table 36. We assume that a recipient won’t reject a compatible
kidney.

35

Table 35: Blood Types of the Donors and the Recipients
Recipient/Donor Blood Type

r1 B
d11 A
d21 AB
r2 A
d12 B
r3 A
d13 AB
d23 A
r4 AB
d14 B
d5 O

Table 36: Recipients’ Preferences
1 2 3 4 5 6 7

r1 : (d14 d5) (d11 d21) (d12 d13 d23)
r2 : (d11 d23 d5) d12 (d21 d13 d14)
r3 : (d11 d5) (d13 d23) (d21 d12 d14)
r4 : (d12 d13 d23 d5) d14 (d11 d21)

36

There is also a priority list (table 37) which decides who the first person
should be to get a kidney. Recipient r3 has the highest priority in this
exercise. If we assumed that there could only be a maximum of two recipients

Table 37: Priority List
1 : r3
2 : r2
3 : r4
4 : r1

and donors matched together then r3 would get a kidney from d5 and the
other recipients wouldn’t get a kidney. But this isn’t the case if we don’t
restrict the maximal number of people in one match. Again recipient r3 gets
the first choice. They get a kidney from d5. The next recipient r2 gets a
kidney from the incompatible donor d23 from r3. Then recipient r4 will get a
kidney from d12 and lastly r1 gets a kidney from d14. This is a stable matching
because nobody objects to the matching.

This chain was made possible by the donor d5 who decided to give his
kidney away to a stranger without expecting anything back. If donor d5 was
connected to a recipient who needed a donor then it would be a lot more
difficult. All the surgeries would have to be perform at the same time to
prevent anyone from backing out. But there is someone who donates without
wanting anything in return. First d5, r3 and d23 would be operated on. Then
r2 and d12 followed by r4 and d14 and lastly r1. The donor of r1 would only
need to donate if there were more recipients who they could donate to. This
would also make the chain longer.

3.3 Successes and Problems

3.3.1 Problems

Before the start of the kidney exchange programs there were a few problems
which needed to be solved. The main problem was: is it Legal? It isn’t legal
to buy organs with money. At least it isn’t legal in the countries where they
were developing kidney exchange programs. It isn’t legal because it gives
the wealthy an unfair advantage with respect to the less wealthy. This is
essentially the same as what happens with the kidney exchange programs.
You’re chances of getting a kidney is increased if you know someone who is
willing to donate but is incompatible with you. This means you have a higher
chance of getting a kidney compared to someone who is alone. In 2007 the
U.S. Senate declared kidney exchange to be legal. In some countries it is still

37

illegal to exchange kidneys because they believe a recipient should have some
kind of emotional connection with a donor if the recipient gets a kidney from
a donor who is alive.

In section 3.2 we saw that it was possible for a longer exchange chain to
exist. The reason why this was possible, was because someone donated their
kidney out of kindness without expecting anything back. This is a problem
because there aren’t many people who do this. That’s why kidney exchanges
usually consists out of two recipients and two donors.

3.3.2 Successes and Improvements

The use of kidney exchanges has a positive influence on a lot of factors.
It doesn’t just result in more kidney transplants but it also decreases the
medical costs. This is because the recipients won’t need dialysis anymore.
The wait time has also decreased because the chance of getting a kidney has
increased.

The kidney exchange programs have had multiple success cases. For
example in 2015 there was a kidney exchange chain in America which existed
of 34 donors and 34 donors. This chain started with a donor who gave their
kidney to a stranger and it ended 3 months later when a 77-year-old woman
got the last kidney. There were a lot of people in the chain who had a genetic
defect which made it difficult to get a kidney via the regular transplant list.
The kidney exchange program made it possible for them to get a kidney.

In section 3.1 and 3.2 we discussed two examples which uses the priory
list to find a match. The one with the highest priority gets the first chance
at a kidney. The article ’Kidney Paired Donation and Optimizing the Use of
Live Donor Organs’ [6] show a different way which results in a better match.
They used an optimized algorithm which looks at all possible combination
of recipients and donors and chooses the best one. This experiment shows a
few things. First it shows that a larger percentage of the group is matched.
If also shows that the people, who are matched, have a smaller chance of
rejecting the kidney. It also takes travel time into account and it shows a
decrease in travel time. Finally it shows an even greater decrease in medical
cost compared to the previous method. Even though it is just a theoretical
experiment it shows that there could be improvements made to the current
kidney matching programs which will improve the results from the program.

38

4 Conclusion

We’ve seen the basics of matching theory. We now know how matching works,
when a matching is stable and some variations of the standard matching mod-
els. We have shown that in some cases it isn’t always possible to get a stable
matching and in some cases there is always at least one stable matching.

These basic matching problems led to the use of matching theory with
paired kidney transplantations. First it caused a lot of discussion about le-
gitimacy of kidney exchanges and about the restriction which should be in
place. Now that matching theory has been applied during kidney exchange
programs, the programs have shown very positive result. A lot of transplan-
tations have been made possible because of the programs. The programs also
show room for improvement and for further research.

5 Discussion

There are a few improvements which can be made to either paired kidney
transplantations or matching theory in general. In section 1.4 we constructed
a lower bound for the maximum numbers of stable matchings in one-to-one
matching. There isn’t a formula for the actual maximum number of stable
matchings. This is still a problem which could possibly be solved.

In section 1 we saw a man-oriented and a woman-oriented algorithm. The
algorithm is positive for one of the groups while it is negative for the other
group. A question which could be asked is: ’Is there a algorithm which gives
both groups the same kind of result’? This result would be the most fair
towards both groups. This algorithm hasn’t been found yet.

The last improvement which we are going to discuss is the improvement
in the matching process used with paired kidney transplantations. At the
end of section 3.3.2 we mentioned a article [6] which discusses a possible
improvement for the kidney exchange programs. This is a theoretical exper-
iment which means it might be different in reality but it does show room for
improvement. It shows that there might be a better way to match paired
kidney transplantations which also results in a stable matching. This is a
study which can be looked into further.

39

References

[1] Gale, D. and L.S. Shapley, (1962), ’College Admission and the Stability
of Marriage’, The American Mathematical Monthly, 69(1), pp. 9-15.

[2] Gusfield, Dan and Robert G. Irving, (1989), The Stable Marriage Prob-
lem: Structure and Algorithm, The MIT Press.

[3] Maschler, Michael, Eilon Solan and Shmuel Zamir, (2013), Stable match-
ing, Game Theory (pp. 884-915), Cambridge University Press

[4] Roth, Alvin E. and Marilda A. Oliveira Sotomayor, (1990), Two-sided
matching: A study in game-theoretic modeling and analysis, Cambridge
University Press.

[5] Roth, Alvin E., Tayfun Sönmez and M. Utku Ünver, (2004), ’Pairwise
Kidney Exchange’, Journal of Economic Theory, 125(2), pp. 151-188.
[Online] DOI:10.1016/j.jet.2005.04.004 (Accessed: 19 May 2016)

[6] Segev, Dorry L., Sommer E. Gentry, Daniel S. Warren, Brigitte Reeb,
Robert A. Montgomery, (2005), ’Kidney Paired Donation and Optimizing
the Use of Live Donor Organs’, JAMA, 293(15), pp. 1883-1890. [Online]
DOI:10.1001/jama.293.15.1883 (Accessed: 23 May 2016)

[7] Sönmez, Tayfun, (2013), How Does Matching Theory Improve Our
Lives?, Presentation, Arne Ryde Mini-Course on Economic Design. Avail-
able at: https://www2.bc.edu/tayfun-sonmez/MatchingApplications-
Lund.pdf (Accessed: 25 May 2016)

[8] Longest Kidney Chain Ever Completed Wraps up at UW Hospital and
Clinics, (2015) Available at: http://www.uwhealth.org/news/longest-
kidney-chain-ever-completed-wraps-up-at-uw-hospital-and-clinics/45549
(Accessed: 23 May 2016).

40

