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Chapter 1

Introduction

It was 2012, the world was still recovering from the credit crisis of 2008, during which
it became clear that most banks are too big to fail. Some of these banks were still
receiving massive support from governments, when the Libor scandal was discovered.
For the sole purpose of making more money, financial ethics were thrown overboard,
and parameters that are used to determine the Libor rates were manipulated.

Now, in 2016, most of the banks that committed fraud have reached a settlement for
about a billion pounds. Submitters and CEO’s have been let go, but does that mean
the real problem has been tackled? This question is the main motive for writing this
thesis.

Since this is a thesis in mathematics, we cannot give an answer to this question right
away. In chapter 2 mathematical preliminaries of financial mathematics are covered,
after which the models of financial markets in general (chapter 3) and the Libor
market in specific (chapter 4) will come to light. Chapter 5 covers the calibration of
the Libor market model to actual market data.

After chapter 5 the reader will have enough mathematical background to understand
(a simplification of) the fraud in the Libor market, which will be simulated in chapter
6. We will conclude with a discussion.
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Chapter 2

Preliminaries

This section will provide the mathematical background that is needed to understand
the formulas of Black and Scholes, the transformations in interest rate formulas and
the derivation of the final formula for the Libor rates.

For readers that are having their first experience in the world of financial mathemat-
ics, it is important to clarify the assumption of no-arbitrage.

Theorem 2.1. Under the assumption of no-arbitrage, the price of a financial product
equals the expected profit.

This assumption is a crucial one, and basically means that one can not make any
money on the money market without any risk. We define the risk-neutral measure
Ẽ as the expectation under the no-arbitrage assumption. 1

Wiener processes, often called Brownian motions, are used in di↵erential equations
for bonds and interest rates.

Definition 2.1. A one-dimensional Brownian motion W (t) is a process in time that
satisfies the following conditions:

• W (0) = 0,

• W (t) is continous,

1
For more info, see (Brigo, 2007) [3]
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• W (t) has independent increments, with W (t)�W (s) ⇠ N (0, t� s),

where N (µ, �2) is the cumulative normal distribution with mean µ and variance �

2.

Definition 2.2. A d-dimensional Brownian motion W (t) is a process in which, for
all j = 1, . . . , d, Wj(t) is a one-dimensional Brownian motion. Furthermore, if i is
not j, Wi and Wj are independent.

The following di↵erential equations di↵er from standard di↵erential equations, since
a stochastic factor W (t) comes in. They are called geometric Brownian motions.

Theorem 2.2. A geometric Brownian motion follows the equation

dX(t) = µdt+ � · dW (t),

in which W (t) is a d-dimensional Brownian motion, � is d-dimensional vector, µ a
scalar and the dot denotes the dot-product.

Itô’s formula, in specific a corollary that follows from it, will be of major influence
in this thesis.2

Theorem 2.3 (Corollary of Ito’s Lemma). If X and Y are two independent Brow-
nian motions with µX , �X , µY and �Y , then

d(X/Y )(t)

(X/Y )(t)
= (µX(t)� µY (t)� (�X(t)� �Y (t)) · �Y (t)) dt+ (�X(t)� �Y (t)) · dW (t).

2
For now, one can su�ce with this corollary, the Lemma itself can be found in Appendix A of

(Pietersz, 2003) [7]
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Chapter 3

Financial markets and

Black-Scholes

In this thesis, the mathematical Libor Market Model will be introduced. Before
digging too deep into it, it is wise to start by sketching the bigger picture in which
the Libor interest rates are a very important instrument. In order to do so, the
Black-Scholes model will be discussed, with special attention for volatilities.

3.1 The Stock Market

Before 1973, there was no su�cient pricing-formula for options and interest rates,
which basically meant, that empirical research was used to predict prices for these
financial products. All of this changed, when Fischer Black and Myron Scholes
published their paper ”The Pricing of Options and Corporate Liabilities” (Black &
Scholes, 1973) [2]. Within days, the formulas the gentlemen had introduced were
applied in financial institutions. Since it is the basis of the Libor Market as well, it
is worthwhile reviewing the model.

The Black-Scholes model prices put- and call-options at time t = 0, or, in other
words, determines how much you would want to pay for such an option. Let us first
start o↵ with a definition of both products: a call-option lets you buy a specified
amount of stock at maturity T for price K, whereas a put-option lets you sell a
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specified amount of stock at maturity T for price K. We will be focussing on the
call-option.

Characteristic about the Black-Scholes model is the assumption of fixed interest
rates. The risk-free interest rate r equals the rate one gets when depositing money
at a bank. It is also used to value prices: when an amount P is guaranteed at time
t

1

, the present value (at t

0

) of such an amount equals PR
t

1

t

0

e�rtdt
(comparable with

inflation).

If we suppose we have a stock valued S

0

at time t

0

, a European call-option with
exercise price K at t = T , a risk-free interest rate r and a volatility �, then the
following formula for the fair price, which is arbitrage-free, of the option holds:

C

0

= S

0

N (d
1

)�Ke

�rTN (d
2

), (3.1)

with d

1

, d

2

defined as

d

1

=
ln(S0

K ) + (r + �2

2

)T

�

p
T

d

2

=
ln(S0

K ) + (r � �2

2

)T

�

p
T

,

and N as the cumulative standard normal distribution.

Observe that whenever the volatility � grows, thus the market becomes more unpre-
dictable, the value of the option rises. This seems natural, since one would be willing
to ensure the possibility of buying for a specified price K if the stock is more likely
to rise far beyond this value.

3.1.1 Implied volatility

Without digging too deep into the mathematics of Black and Scholes, it is important
to observe our main characters. Most are deterministic, such as S

0

, K, T and, as
assumed, r. If we are able to calculate or estimate a value for volatility �, equation
(3.1) can be used to value any kind of call- or put-option.

The problem here is, that the volatility is a parameter that represents the stability of
the specific stock market at a given time. This stability is subject to lots of factors,
where one could think of examples such as oil prices, exchange rates and other stock
markets. Since there are numerous other factors, which might all have more (or less)
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influence on day 1 than on day 2, it speaks for itself that there exists no such thing
as a general formula for volatilities.

If we are unable to calculate these volatilities, the Black-Scholes formula will not do
us any good. Sometimes historical data is used to estimate the volatility of today,
but this may turn out to be unsatisfactory since markets are extremely dynamic and
there is no reason to assume that todays market will operate in the same way it did
last year. The solution is implied volatility, which determines the volatility looking
at todays market.

Since, while we are unable to determine the volatilities and thus calculate the price of
our option, we can determine prices for similar call-options, because these are being
traded throughout the day. This means, that if we compare similar looking call-
options that are being traded for an average price of CA

0

, we are able to approximate
the value of C

0

.

This means there is just one variable left, namely �. The Black-Scholes formula will
now supply us with an implied volatility �, where the calculation comes down to
trying various values of � until the price of the caplet equals CA

0

.

3.2 Interest rate markets

In contrast to Black and Scholes in 1973, we are now focussing on the interest rate
market. Within a model of such a market, we are not interested in the development
of the value of a certain stock, but in the value of a certain interest rate. The interest
rate market has a prominent role in inter-bank trading, a recent study (Steinrücke,
Zagst & Swishchuck, 2013 [8]) stated that is is good for 78-percent of the entire
amount traded in 2012.

There are lots of financial products on these interest rate markets. However, in this
thesis the focus will be on the caplets and floorlets, that are quite similar to European
call- and put-options. These products protect its buyers against interest rates that
are either too high or too low. A caplet will pay you the di↵erence between the real
interest rate and a prefixed interest rate K as soon as the interest rate exceeds K,
while a floorlet pays you the di↵erence between both when the interest rate drops
below K.
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3.2.1 Caplets and floorlets

In this paragraph, we will derive formulas for the value of caplets and floorlets at time
t, without paying attention to the actual formula of interest rate Li. This in order to
make sure the bigger picture is clear, before we dive into the technical instruments
the Libor rates are.

We introduce a time series T
0

< T

1

< .. < Ti < .. < TN+1

, with � = Ti+1

� Ti being
constant. Now, we have a capleti(t) for all T0

< t < TN , with prefixed rate K. Let
Bt denote the value of a zero-coupon bond, a risk-free bond that returns nothing but
interest, at time t. In contrast to the stock market, the interest rate is not assumed
to be constant over time, just Li is constant on interval [Ti, Ti+1

]. Therefore, we will
from now on denote the expectation (at time t) of the interest rate during interval
[Ti, Ti+1

] by Li(t).

If the interest rate Li increases above a certain level K, you will receive a payment of
(Li �K)�, since � is the time during which Li > K. This would then be the payo↵
of one caplet. If Li < K, it is equal to 0.

Now, the value of capleti at time 0, (capleti(0)), is equal to the discounted value of
the expected payo↵ multiplied by the borrowed amount M , thus

capleti = M

Ẽ[�(Li(Ti)�K)+]

BT
i

+1

(3.2)

Note that Ẽ is the risk-neutral measure defined in chapter 2 and that we need to
divide by BT

i

+1

(and not BT
i

), since Li is constant for [Ti, Ti+1

] and the pay-o↵ takes
place at Ti+1

.

Black-Scholes formulas for caplets and floorlets

Note that when we expand the above to a value of a caplet at time t, it is still equal
to the expected di↵erence between Libor rate Li(Ti) and K, multiplied by period �

and the borrowed amount M . Now capleti(t) equals

M�

Bt

BT
i

+1

Ẽ[�(Li(Ti)�K)+|Ft], for t < Ti,

since the discounting factor becomes B
t

B
T

i

+1

. Note that (3.2) is a specific example of

this formula, since B
0

= 1. If one is not familiar with F -measurability, it might help
to look at Ẽ[X(Ti)|Ft] as the expectation of X(Ti) when X(t) is known. 1

1
For more on F-measurability, see (Brigo, 2007) [3]
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Now, let B(t, Ti+1

) denote B
t

B
T

i+1

. Then the formulas for caplets and floorlets, which

are an extension of the pricing of future contracts, introduced by Fischer Black
(Black, 1976)[1], that look a lot like those for the European call- and put-options,
give us the following time-t prices for Caplets and Floorlets in the Libor Market:

capleti(t) = M�B(t, Ti+1

)[Li(t)N (d
1

)�KN (d
2

)] (3.3)

floorleti(t) = M�B(t, Ti+1

)[KN (�d

2

)]� Li(t)N (�d

1

)] (3.4)

with

d

1

=
ln(Ln

(0)

K ) + �2

2

Tn

�

p
Tn

d

2

=
ln(Ln

(0)

K )� �2

2

)Tn

�

p
Tn

, (3.5)

and N (x) as the cumulative normal distribution of the standard normal distribution.
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Chapter 4

The Libor rates

It is time to take a closer look at interest rates in general, and the Libor-rate in
specific. Now that we know how these rates have a major influence on today’s
trading in financial markets, we will focus on how Libor rates are calculated.

Consider B(t,T
i

)

B(t,T
i+1

)

, and notice this represents the relative growth of a zero-coupon

bond during the interval [Ti, Ti+1

], or at least the one expected at time t. Now, if we
borrow 1 euro, or any other currency, at time Ti, the expected debt at Ti+1

equals
1(1 + �Li(t)), recalling Li(t) is the expected interest rate for interval [Ti, Ti+1

]. This
leads us to the following formula for Li:

1 + �Li(t) =
B(t, Ti)

B(t, Ti+1

)
, 8t : T

0

 t  TN . (4.1)

Observe that this formula generatesN+1 di↵erent interest rates Li (for i = 0, . . . , N).

4.1 Wiener processes

From (4.1) it follows that, in order to determine the Libor rates, it is crucial to deter-
mine the price of zero-coupon bonds. These are defined by the geometric Brownian
motion (as defined in chapter 2)
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dBi(t)

Bi(t)
= µi(t) + �i(t) · dW (t),

in which W (t) is a d-dimensional Brownian motion, �i is a d⇥ 1-vector and the dot
denotes the dot product. Calculating the dot product, we can rewrite the previous
equation to

dBi(t)

Bi(t)
= µi(t) +

dX

j=1

�ij(t)Wj(t). (4.2)

In order to understand the use ofWj(t) in the following paragraphs, it might be useful
to look at them as factors that influence the bond prices. These factors may have
more, less, positive or negative influence on the di↵erence in bond prices, depending
on �ij.

The Wiener-process of the Libor Market Model.

Now we have obtained formulas for Bi(t) for 0  t  TN we can use dLi(t) =
1

�d

⇣
B

i

(t)
B

i+1

(t)

⌘
together with Theorem 2.3, to transform (4.1) into the di↵erential equa-

tion

dLi(t) =
1

�

Bi(t)

Bi+1

(t)
[((µi(t)� µi+1

(t)� (�i(t)� �i+1

(t)) �i+1

(t)) dt

+(�i(t)� �i+1

(t)) · dW (t)], 0  t  Ti, i = 1, . . . , N.

1 (4.3)

Now, we would like to define the derivatives of the Libor rates as functions of the
factors Wj. In other words, we would like to obtain a function for dL

i

(t)
L
i

(t) that is of

the form dL
i

(t)
L
i

(t) = . . .+ �i · dW (t), in which �i is a d-dimensional vector.

This is desirable, since we can then write our Libor rates Li(t) as a function of our
factors of uncertainty, Wj. This way, we can determine the e↵ect of one of these
factors by looking at �ij. By doing so, we can predict consequences of changes in
other markets, if they are a factor in Brownian motion W , for the Libor market.

12



Observe that, when

Li(t)�i(t) =
1

�i

Bi(t)

Bi+1

(t)
(�i(t)� �i+1

(t)) , (4.4)

this is achieved.

4.2 Change of measure

In chapter 5 the calibration of the Libor Market Model to actual data sets will
be covered. Looking at (4.3) and (4.4), this would mean having to estimate the
parameters µ, � and �.

In order to ease the method of calibration, it is useful to take a closer look at these
parameters. Can one or more of them be excluded from the model by a change of
measure?

Theorem 4.1. If there exists a risk-neutral measure Q

B, in other words X/B is
a martingale for any (combination of) asset(s) X, then for each other measure N

there exists a measure Q

N ⇠ Q

B, such that X is a martingale under Q

N .

As we did in the stock market, we will assume that our Libor market model is free
of arbitrage as well. Observe that the price of bond i is, fluctuations due to the
volatilities aside, expected to increase with µi(t) at time t. This value is, under the
assumption of no arbitrage, the price of the risks that one takes investing in a bond.
These risks can come from di↵erent factors, Wij, with di↵erent weight �ij. This
would mean µi(t) can be written as a function of �ij and some process that expresses
the price of each factor Wij.

Definition 4.1 (No arbitrage assumption). There exists a d-dimensional process
�

RNM such that
µi(t) = �i(t) · �RNM(t),

for 0  t  Ti+1

and 1  i  N + 1.

Now, each component �RNM
j (t) can be looked at as the market price of risk compo-

nent Wj. Notice that �RNM
j (t) does not depend on i, which means the market price

of component Wj at time t is the same for all Li.
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The process �RNM(t) denotes the market prices of risk under the standard measure,
W (t). Now, by expressing a new �

N , for some measure N , in terms of �RNM , we will
be able to rewrite equation (4.3) to equations more suitable for calibration.

In the next sections, we will do so for the Spot Libor measure and the Terminal
measure.

4.2.1 Spot Libor measure

Consider the following investment strategy: at time 0, the price of a bond is B(0).
Invest 1 of any currency by buying 1

B
1

(0)

bonds. This will return 1

B(0)

of currency at

time T

1

, which you again invest in bonds (which now have price B
2

(T
1

)). Thus, you
will be able to buy 1

B
1

(0)

/B

2

(T
1

) = 1

B
1

(0)B
2

(T
1

)

bonds.

Extending the above to the general case, we conclude that during the interval
[Ti, Ti+1

], the portfolio holds 1/⇧i+1

j=1

Bj(Tj�1

) bonds. This leads us to the conclu-
sion that at time t the portfolio has value

X(t) =
Bi+1

(t)

⇧i+1

j=1

Bj(Tj�1

)
, for Ti  t  Ti+1

.

The stochastic di↵erential equation of the spot Libor measure, recalling that i(t) is
the unique integer satisfying Ti < t  Ti+1

, equals

dX(t)

X(t)
= µi(t)(t)dt+ �i(t)(t) · dW (t), for 0  t  Ti+1

.

Then, by Ito’s Lemma, the geometrical Brownian motion of bond price Bi(t) in terms
of portfolio X(t) becomes

d

✓
B(t)

X(t)

◆
= [

�
(µi(t)� µi(t)(t)�

�
�i(t)� �i(t)(t)

�
�i(t)(t)

�
dt

+
�
�i(t)� �i(t)(t)

�
· dW (t)], for for 0  t  Ti, i = 1, . . . , N(4.5)

If we define �

spot as the d-dimensional process that satisfies

�

spot = �

RNM � �i(t)(t), for 0  t  Tn+1

,
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multiplication with (�i(t)� �j(t)), where i, j can be any indices between 0 and n,
then, using �i · �RNM = µi, gives us:

µi(t)� µj(t)� (�i(t)� �j(t)) · �i(t)(t) = (�i(t)� �j(t)) · �spot(t) (4.6)

It can now be shown that the measure W

Q
spot follows a martingale under the risk-

neutral measure2, when it is defined as

W

Q
spot(t) = W (t) +

Z t

0

�

spot(s)ds.

Then, observing that then dW (t) equals dWQ
spot(t)��

spot(t)dt and recalling equation
(4.6), we rewrite the price of a bond in equation (4.5):

d

✓
B(t)

X(t)

◆
=

�
(µi(t)� µi(t)(t)�

�
�i(t)� �i(t)(t)

�
�i(t)(t)

�
dt

+
�
�i(t)� �i(t)(t)

�
· (dWQ

spot(t)� �

spot(t)dt),

=
�
�i(t)� �i(t)(t)

�
· dWQ

spot(t) (4.7)

Now, the same substitution for W (t) in equation (4.3), again recalling equation (4.6)
gives us

dLi(t) =
1 + �Li(t)

�

��
(�i(t)� �i+1

(t)) ·
�
�i(t)(t)� �i+1

(t)
��

dt

+ (�i(t)� �i+1

(t)) · dWQ
spot(t)

�

Now, observe that (4.1) implies that

1 + �Li(t)

�

=
Bi(t)

Bi+1

(t)
. (4.8)

We then conclude that, in terms of the measure W

Q
spot , Li(t) is defined by the

geometrical Brownian motion

dLi(t)

Li(t)
=

iX

j=i(t)

�Lj(t)�j(t) · �i(t)

1 + �Lj(t)
dt+ �i(t) · dWQ

spot

. (4.9)

2
As shown in (Pietersz, 2003) [7]
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4.2.2 Terminal measure

Instead of introducing a new portfolio to revalue financial products, one could also
choose one of the bonds Bi, for example Bn+1

. If we do so, the value of Bi, measured
in terms of BT

n+1

, at time t becomes B
i

(t)
B

n+1

(t) . The di↵erential equation for B
i

(t)
B

n+1

(t)
equals

d

✓
(Bi(t)/Bn+1

(t))

(Bi(t)/Bn+1

(t))

◆
= (µi(t)� µn+1

(t)� (�i(t)� �n+1

(t)) · �n+1

(t)) dt

+(�i(t)� �n+1

(t)) · dW (t)

The derivation of the Libor rates formula in terms of bond Bn+1

, numéraire W

T
n+1 ,

is quite similar to that of the Libor rates in terms of the Spot libor measure, where

�

T
n+1 = �

RNM � �n+1

and dW (t) = dW T
n+1 � �

T
n+1dt.

With analogical calculations we conclude that, under the terminal Libor measure,
the following geometrical Brownian motion defines the Libor rate:

dLi(t)

Li(t)
=

8
><

>:

�
Pk

j=i+1

�
j

L
j

(t)�
j

(t)·�
i

(t)
1+�

j

L
j

(t) dt+ �i(t) · dWQ
T

n+1 if j < k

�i(t) · dWQ
T

n+1 (t) if j = k

Pk
j=i+1

�
j

L
j

(t)�
j

(t)·�
i

(t)
1+�

j

L
j

(t) dt+ �i(t) · dWQ
T

n+1 if j > k.

(4.10)
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Chapter 5

Calibration

There are several methods to calibrate mathematical models to reality. Like volatil-
ities in the formula of Black and Scholes, the entire Libor market model used to
be calibrated considering historical data. This has the disadvantage that there is
no reason to assume that todays market was similar to yesterdays market. An-
other method, which is used in this thesis, is calibrating to market prices of financial
products. In this section, we will do so with caplet prices.

5.1 Theoretical calibration

When calibrating the Libor market model, we try to find estimates for �i. In order
to do so, we will derive the model prices C

model

i for a chosen financial product and
compare it with market prices. We will do so for caplets, recalling equation (3.3), in
particular the Black-Scholes price of caplet i, which we will from now on denote by
C

Black

i .

Since the value of capleti at time t only depends on Li(t), we will use the terminal
measure to derive Cmodel

i . This means the di↵erential equation of Ln(t) is the second
from (4.10), which has solution

Ln(t) = e

R
t

0

�
n

(s)dW
Q

T

n+1

(s)� 1

2

R
t

0

||�
n

(s)||2ds
, 0  t  Tn.

1

1
Which follows from Itô’s Lemma
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Under Q

T
n+1 , Ln(Tn) can be written as Ln(0)eZ , where Z is an F(Tn)-measurable

function, normally distributed (under the measure QT
n+1) with Z ⇠ N (�1

2

⌧

2

, ⌧

2), in
which

⌧

2 =

Z T
n

0

||�n(s)||2ds.

Now, we want to calculate the price C

model

i (Tn, K). Recalling (3.2), we observe that
it equals

C

model

i (Tn, K) = M�Bn+1

(0)EQ
T

n+1


(Ln(Tn)�K)

+

Bn+1

(Tn+1

)

�

= M�Bn+1

(0)EQ
T

n+1

⇥
(Ln(Tn)�K)

+

⇤
,

because Bn+1

(Tn+1

) = 1.

To simplify EQ
T

n+1

⇥
(Ln(Tn)�K)

+

⇤
, we must first introduce a new lemma.

Lemma 1. If Z : ⌦ ! R is normally distributed (Z ⇠ N (↵, �2)) and f is an
integrable function, then

E
⇥
e

Z
f(Z)

⇤
= e

↵+ 1

2

�2E
⇥
f(Z + �

2)
⇤
.

Then the price of caplet i at time Tn equals

C

model

i (Tn, K) = M�Bn+1

(0)(Ln(0)N (d
1

)�KN (d
2

)), (5.1)

where

d

1

=
ln(Ln

(0)

K ) + ⌧2

2

⌧

d

2

=
ln(Ln

(0)

K )� ⌧2

2

)

⌧

. (5.2)

Comparing (5.2) and (3.5), we conclude the following relation between the implied
volatility of the Black Scholes model and the one of the Libor market holds:

�

Black
n =

s
1

Tn

Z T
n

0

||�n(s)||2ds. (5.3)

This concludes our mathematical calibration of the Libor market model.
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5.1.1 Calculation of implied caplet price

Now that it is clear how C

Black

i influences the �i in the Libor market, it is worthy
discussing how it is calculated, which is comparable with the method of implied
volatility as in section 3.1.1. Some of the biggest banks, so-called panel banks, have
to provide their prices C

Panel

j

i , which is the price they, bank j, would be willing to
pay for a specified caplet i (in our case, could be any financial product to which the
market is calibrated).

The lowest 25% as well as the highest 25% of each C

Panel

j

i are filtered out, after which
the mean of the remaining 50%, which makes CPanel

i , is calculated. Now, this CPanel

i

is used to approximate the value of CBlack

i .

5.2 Characters in calibration

Now that it is clear how to determine the �i, let us take a look at the calibration
in practice. Assume �i is constant and one-dimensional, thus depends on just one
source of uncertainty. Now, let

C

Panel

j =

0

B@
C

Panel

j

1

...

C

Panel

j

n

1

CA

be the n ⇥ 1-vector that consists of the submitted caplet prices from bank j for
maturities T

2

up until Tn+1

. Now, taking the mean of the mid-50% will provide us
with

C

Panel =

0

B@
C

Panel

1

...
C

Panel

n

1

CA =

0

B@
C

Black

1

...
C

Black

n

1

CA = C

Black

where, as explained in section 5.1.1, CPanel is used to estimate C

Black of the specific
caplet the market is calibrated with.
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Next the Black-Scholes model can be used to determine the implied volatilities �Black

i ,
for 1  i  n. Now, when

�

Black =

0

B@
�

Black

1

...
�

Black

n

1

CA ,

equation (5.3) will give us the implied �i for the Libor market model, which we take
together in vector

� =

0

B@
�

1

...
�n

1

CA .

5.3 Example of calibration

Consider a two year cap-option with K = 1.3% that is divided into caplets of three
months. Then the interval of capleti is [Ti, Ti+1

] = [ i�1

4

,

i
4

], with Ti in years and
1  i  8. Assume the initial interest rate L

0

is constant and equals 1.1%.

The markets caplet-prices C

Panel
i and maturities Ti+1

that are used to determine
�

Black

i are given in the following table. 2

i Maturity (Ti+1

) C

Panel

i Li(0)
1 1

4

0.5 1.1
2 1

2

0.9 1.1
3 3

4

1.3 1.1
4 1 1.8 1.1
5 5

4

2.4 1.1
6 3

2

3 1.1
7 7

4

3.3 1.1
8 2 3.8 1.1

Table 5.1: Maturities, market prices and libor rates of capleti.

Now, under our assumptions, from equation (5.3) the computed implied volatilities
�

Black

i equal the �i’s of the Libor market.

2
These are made-up numbers, but are based on real-life rent rates, maturities and values of

options
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i �

Black

i = �i

1 0.5268
2 0.5115
3 0.5252
4 0.5692
5 0.6316
6 0.69
7 0.6921
8 0.7321

Table 5.2: Implied volatilities �Black

i .

Observe that when i increases, �i increases as well. This is what we would expect
intuitively, since it seems natural that we would be better at approximating a certain
value for a few months from now, than that we would for a year (or two) from now.
Thus, the insecurity about the approximated value for Li(Ti) increases whenever the
maturity Ti lies further in the future. This corresponds with an increase in �i.
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Chapter 6

Fraud in the Libor market

Considering the Libor market model of chapter 4 and the calibration of chapter 5,
we will now focus on possible fraud in the Libor market.

6.1 The weak spot

When the Libor market parameters are calibrated using the Black-Scholes formula,
the estimated market prices C

Panel

j

i of panel bank j play an important role. These
prices are submitted by so-called ”submitters” from the panel banks, who are just a
few floors away from the traders that are trying to make money on the same market.

In a bonus-based culture where you can get fired every five minutes, according to
Joris Luyendijk (Luyendijk, 2015 [4]), the temptation to submit slightly di↵erent
numbers, which will make your friend more on his deal of the week, can get huge.

Although one could argue about (possible remedies for) these temptations, the weak-

est spot of the Libor market model and its calibration would remain C

Panel

j

i , since
this is the part were some guessing comes in. In order to determine � and use our
model to calculate Libor rates, we must somehow estimate CBlack

i . In a world without
any fraud, there would still be human errors that lead to false estimations of market
prices of caplets.
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6.2 Simulation of fraud

When an employee of bank A commits fraud on the Libor market, he or she tries to
manipulate volatility �i by submitting a false CPanel

A

i . For now, we will be looking at
possible motives to influence the price of caplets. It would be tempting to manipulate
the volatility in such a way that �Fraud

i is lower than �i, if one is planning on buying
a caplet, since then the price of the option, looking at (3.3), would be cheaper than
in the original situation. Equivalently, a fraud would want to increase �i if his or her
bank is planning on selling a caplet, since then the price of the option would increase
as well.

Let us assume that the market is calibrated to prices of caplets with maturities of
every three months and strike value K = 1.3%, as in Table 5.1. Then the panel
banks submit C

Panel

j

i , thus the price they (bank j) would be willing to pay for each
caplet i with K = 1.3%. Now, according to section 5.1.1, if the submitted price of
bank A for capleti, C

Panel

A

i , is within 25 percent of the median, its submitter is able
to influence C

Panel

i (and thus �i).

Suppose this is the case for all i and that his colleague, a trader, is planning to buy
a cap1 with volume M , strike rate K = 1.4% and maturities Ti = i

4

, 1  i  8.

Then, the fraud would want to manipulate C

Panel

A

i in such a way that the mean of
all submitted prices, CPanel

i , and �i decrease, since then the price of capleti of the
cap his colleague is buying, would be cheaper than the original market price.

Let C

Fraud

i denote the approximated price of the caplet to which the Libor market
is calibrated, in the case the market is manipulated. Now, let Vi be the value of
capleti of the above described option with K = 1.4% without any fraud, and V

Fraud

i

the value with as much fraud such that C

Fraud

i = C

Panel

i � 0.1 for all i. Then the
following tables display the outcome of a minor fraud.

1
Which should not be confused with the cap the Libor market is calibrated with.
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i C

Panel

i �i Vi

1 0.5 0.5268 0.0031M
2 0.9 0.5115 0.0067M
3 1.3 0.5252 0.0105M
4 1.8 0.5692 0.0154M
5 2.4 0.6316 0.0213M
6 3 0.69 0.0274M
7 3.3 0.6921 0.0305M
8 3.8 0.7321 0.0356M

i C

Fraud

i �

Fraud

i V

Fraud

i

1 0.4 0.4740 0.0023M
2 0.8 0.4777 0.0058M
3 1.2 0.4986 0.0095M
4 1.7 0.5464 0.014M
5 2.3 0.6111 0.020M
6 2.9 0.6709 0.026M
7 3.2 0.6742 0.029M
8 3.7 0.7150 0.034M

Table 6.1: Implied volatilities and caplet-prices for markets with and without fraud.

Observe that the table confirms our intuition: the fraud has, by submitting false
C

Panel

A

i , been able to manipulate the (fair) price C

Panel

i , in such a way that the
approximated prices of all capleti have decreased to C

Fraud

i . Since the market is
calibrated using the prices of this specific caplet, the implied volatilities following
from 3.3 have decreased as well. It has already been noticed that these equals the
volatilities of the Libor market, �i.

Since �i has dropped, the price Vi of capleti with K = 1.4% has dropped to V

Fraud

i .
The value V of a cap equals the sum of all capleti’s, thus the non-fraud price equals

V =
8X

i=1

Ci = 0.1505M,

and the price V

Fraud equals

V

Fraud =
8X

i=1

C

Fraud

i = 0.1406M.

We conclude the fraud has reached his goal, namely to manipulate the Libor market
such that the bank was able to buy a caplet for a price lower than its market price.

The consequenses.

The fraud led to a 6.5% decrease in price with just a minor action, numerically
speaking, of fraud. This may not seem like too big of a deal, but it is important
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to bear in mind that M typically is a number in millions or billions and financial
products like these are being traded on a large scale all day.

Further on, the implied volatilities �Fraud

i are used in equations like ( 4.10 ) to deter-
mine Libor rates LFraud

i (t), which will in their turn also di↵er from Li(t). Libor rates
are an important instrument throughout the entire financial sector. They influence
rent rates on deposits and mortgages and influence the Stock market as well2. Due to
the fraud of one submitter of bank A, these financial products will all be misvalued.

In the recent credit crisis of 2008, we have seen what kind of consequences mis-
valuation of financial products can have.

6.3 The solution?

As discussed in section 6.2, the weakest spots of the Libor market are the submitted
prices. Calibrated the right way, these are the only external variables the Libor
market model. It is argued that the financial sector needs to be rebooted, which
would be excluding all formulas that are sensible from the market, since it triggers
frauds like these in the Libor market.

However, the Libor market, like the banks in chapter 1, has become ”too big to fail”.
Rebooting the system will have disastrous consequences compared to the relatively
small ones the fraud has, and there are no models for financial products that can
be completely exempted from fraud, since there will always have to be some kind of
calibration to market data.

This does not mean that better regulations, such as a bigger physical distance be-
tween traders and submitters, more compliance etc., could not reduce the chance
that fraud like the one in 2012 will take place.

2
As can be deduced from the Black-Scholes formula in equation (3.1)
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Chapter 7

Discussion

In this thesis, the mathematical dynamics of the Libor market came to light. Start-
ing from the price of bonds B(t) and d sources of uncertainty brought together in
Brownian motion W (t), the mathematical model of the Libor market was described.
We were able to calibrate the model to reality with estimated prices of caplets and
the Black-Scholes formula.

Some assumptions had to be made along the way. The first, which is a general one
in financial mathematics, was that markets were arbitrage-free. Although it is a
desirable assumption to make in this field, it is false by definition. If the prices of
financial products equalled the expected value, one would think that the expected
profits of huge financial institutions are around zero1. It needs no further explanation
to state that this surely is not the case, and thus this assumption is false.

Further on, it was assumed in section 5.2 that �i was one-dimensional and constant
over time, which meant that W (t) had to be one-dimensional as well. This does
not coincide with the theory of �i, but was a desired simplification looking at (5.3).
If we had not made this assumption, we would not have been able to simulate the
calibration of section 5.3, neither the fraud of section 6.2.

It is worthwhile discussing an extension to the Libor market, which is suggested
by Steinrücke, Zagst and Swishchuk. In their paper of 2013 (Steinrücke, Zagst &
Swishchuk, 2013 [8]) they extend the Libor market in a way such that it is possible

1
Since they trade in these financial products on such a large scale, one could assume so according

to the Law of large numbers
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to implement ”structural breaks and changes in the overall economic climate”. They
also cover possible changes in dynamics in case of a change of measure. Although
the practice of this paper is beyond the scope of this thesis, it is a fine example of
how up-to-date the field of financial mathematics in general and the Libor market
model in specific are.

Now that the assumptions have once more been stressed, it is time to draw our
conclusion. Sadly, we must conclude that the Libor market model and our financial
climate still invite to commit fraud. This may seem inevitable, since in all financial
models a calibration to market data has to be used, otherwise we would not be able
to work with the model. However, one might argue that there is still progress to
be made by better regulation and a greater sense of responsibility from the biggest
banks in the world, which could be subject to other fields of study.
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