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Abstract—The RISM A/II database is filled with the musical
notations of the beginnings of more than a million melodies. The
Monochord search engine can retrieve melodies that are similar
to a query melody using several search methods, amongst which
pitch raters, weight-based raters and duration-based raters. The
performance of all 27 search methods is evaluated using mean
average precision metrics and the TREC framework that is
suited for retrieval performance analysis. The difference in exact
pitch between melodies turns out to be the best factor to search
with for musical similarity retrieval. All melodies have meta-
data such as a composer name, but a portion of the database
is labelled as Anonymus. A k-Nearest Neighbours algorithm is
optimised for the purpose of deanonymisation and used to classify
several Anonymus songs to test the applicability of this classifier
for composer labelling. Using a classifier for deanonymisation
purposes turns out to be viable with human correction.

Keywords—music similarity retrieval, RISM, Monochord,
MIREX, ground truth, deanonymisation, k-NN.

I. INTRODUCTION

The RISM A/II database is a collection of melodies that
are stored as incipits, excerpts from the beginnings of notated
music in manuscripts collected from libraries, archives, clois-
ters and schools [1], [2]. This database is not only a useful
tool for information look-up on one song, but also to collect
similar melodies that give a broader context of the researched
melody. As over a million melodies have been stored in this
database, having an effective search engine is crucial. While
the RISM website1 has a search function for both titles and
music notation, the quality of the results is limited. This is
where an alternative search engine, Monochord2, employing
more advanced and possibly more accurate search techniques,
enters the frame.

Monochord is a music retrieval system that is able to find
melodies in the RISM A/II database [3]. Monochord compares
two melodies by aligning them and calculating a similarity
score. The higher this score is, the better the match between
the melodies. This search engine has several retrieval methods
at its disposal. The performances of these methods have not
been researched previously, yet these have to be known before
any claims about the performance relative to RISM’s search
engine can be made.

1The RISM database can be queried on: http://www.rism.info/
2As an alternative to the RISM search engine, Monochord can be queried

on: http://www.projects.science.uu.nl/monochord/rism/#/query

The goal of this research is twofold. Our first problem
is finding a good combination of settings that finds similar
melodies. After having determined this combination of set-
tings, we use it to deanonymise a part of the RISM database.

We begin with an evaluation of the search methods pro-
vided by the Monochord search engine. In testing the workings
of this engine, we not only understand the capabilities and
limits of the music similarity retriever, but also gain insights
in how to improve the search methods. This part is based on
previous research conducted by Typke [2], who used similar
techniques to create a ground truth set and evaluate the retrieval
results.

Of the 1.148.478 melodies currently stored in the Mono-
chord database, 214.162 have an unknown composer, these are
labelled Anonymus. Some of these melodies might actually be
composed by a person or group whose name is impossible
for us to retrieve. Others are similar to melodies of which the
composer is known. It is desirable to know the true composer
of a melody to give credit to the musician, but also to place
the works in their context, which may lead to new insights in
musical history. Using the meta-data of similar melodies, we
create a classification procedure to determine the composer of
the anonymous incipits.

The structure of this experiment has a preparation phase
and an analytical phase. First off, it is important to understand
the mechanisms behind Monochord, how it uses alignment of
melodies and several raters to determine melodic similarity,
and which aspects differ from the RISM search engine. The
retrieval results have to be compared to a ground truth set,
which is an expanded version of the one created by Typke [2].
This comparison is made based on precision-recall curves re-
sulting from retrieval evaluation tools. The Monochord engine
resembles the top k selection used by a k-Nearest Neighbours
algorithm. A k-NN is thus prepared to suggest composer labels
for Anonymus melodies.

Next, a quantitative comparison of the methods results
in the best retrieval method in this experiment. All methods
are used in determining which method is best suited for
the purpose of deanonymising melodies using a k-NN. After
a quantitative analysis, the best deanonymisation method is
qualitatively evaluated by manually checking the plausibility
of the composer labels given to Anonymus incipits.

This research fits within the field of artificial intelligence,
as validating results is an important part of development.



Besides, machine learning techniques are applied to guess
composers of melodies.

II. METHODS

A. Pairwise alignment of melodies

Before melodies can be matched for melodic similarity,
they need to be aligned and transposed. Two notes can only
be checked if they are pairwise aligned. Several types of
methods for aligning melodies are n-gram methods [4] and
geometric methods [5], each with their merits and disadvan-
tages. Alignment of melodies has been implemented before by
Kranenburg et al. [6]. Their method compares two sequences
x and y by taking two elements from each sequence. These
elements can either be aligned, or there is a gap between
the two. Using a substitution score and a gap score, the
total alignment score of the two sequences is calculated. This
alignment score is to be minimised, as the two most aligned
sequences have the least difference in notes and the smallest
gaps between two elements of the sequences.

The melodies are transposed using a histogram approach
where the pitch shift that maximises overlap in histogram bins
is chosen [3]. The Monochord search engine employs these
techniques to retrieve similar melodies [3]. All melodies are
represented in the base40 representation.

B. Querying with the Monochord engine

After two melodies have been aligned and transposed, their
similarity score can be calculated. The similarity score denotes
how well two melodies match, where a higher score is a
better match. This will then be the criterion by which to rank
potential matches. A search method in the Monochord search
engine consists of three types of raters that calculate a subscore
by deciding how well the melodies match in the area the rater
is specialised in. The sum of these subscores is the overall
score that is used for the ranking of the results. The melodies
with the highest matching score will be placed at the top of
the list.

Monochord works with search methods that are a combi-
nation of three factors with three settings each. First, there is
the category of pitch raters that return a value between −1.0
and 1.0. The settings are exact pitch (pi2), zigzag pitch (pi3)
and Kranenburg pitch (pi1). The simplest one is exact pitch,
which returns a score of 1.0 if aligned notes have an equal
pitch, or a score of −1.0 if they differ. A difference of one or
more octaves is rewarded with a score of 0.5. The zigzag pitch
rewards notes that are close to each other and punishes notes
that differ more. Notes of equal pitch return a score of 1.0.
This score decreases linearly to −1.0 when the notes are most
different at a distance of 20 in the base40 representation and
then increase to 1.0 where the notes differ by an octave at a
distance of 40. The Kranenburg pitch is described by Peter
van Kranenburg [6], [7]. The rater compares the difference in
pitch and rates large intervals as having a low score. Graphs
of the score assignment for each difference in pitch is shown
for these raters in Figure 1 [3].

Secondly, there is the category of weight-based raters.
The settings are no raters (mw0), ima weighted (mw1) and
ima combined (mw2). The metric weight for these raters are

Fig. 1: Graphs showing the score assigned to a difference in
pitch in base40 representation for the exact pitch (pi2), zigzag
pitch (pi3) and Kranenburg pitch (pi1) raters.

computed with the inner metric analysis (ima) method by Volk
[8]. With the ima weighted method, the influence of a note
depends on its metric weight. The weights of the notes of each
melody are scaled such that the average weight is 1. The value
computed by the pitch rater is multiplied by the average of the
weights of the two notes that are compared. The ima combined
method the metric weight has a more independent character
than in the previous method. The absolute difference between
the two metric weight values is considered and multiplied by
the value produced by the pitch rater.

Thirdly, there is the category of duration-based raters. The
settings are no raters (dur0), fixed duration (dur1) and
scaled duration (dur2). With fixed duration, the difference
in duration is taken as notated per incipit without any scaling.
The scaled duration method uses a histogram approach that
maximises the overlap of the histogram bins containing the
note duration multiplied by the duration values [3].

Each search method produces a result file containing the
first 50 ranked search results per query in the ground truth file.
A search request consists of a search method and a query ID.
Monochord aligns the query melody with all other melodies
in the database and calculates the similarity score between the
two melodies in a pair based on the search method. A higher
score means more similarity to the query and thus a more
relevant search result. The resulting melodies are ranked based
on their similarity score. All of this is done automatically with
a script. A perfect retrieval system will include all the result
documents from the ground truth file as the highest ranked



retrieved melodies [9]. In practice, we’ll see melodies that are
ranked lower, or melodies that do not appear in the result file at
all. Misranking or missing a document affects the performance
of a retrieval system.

C. Creating a ground truth

The 27 query methods are analysed with a ground truth
set [10]. This set contains all relevant result melody signatures
per query signature. The retrieval results should show pairs
that correspond with the ground truth, meaning the employed
strategy is a good retrieval system. The 2005 MIREX eval-
uation set of Typke [2] is used for this purpose. Human
experts on music were asked to find matches in the 2002
RISM database for a given melody. The participants didn’t
sift through the whole old database of half a million incipits.
Some selective filtering excluded all but 300 incipits per
query melody. This filtering was based on for instance large
differences in pitch range, duration of the shortest versus the
longest note, maximum interval between subsequent notes and
editing distance between rhythm strings. This number was
brought down to 50 by manually excluding the remaining
incipits that were perceived as too different. The human experts
ranked the 50 incipits based on their similarity to the query
melody.

This ground truth data set contains 11 queries with about
10 resulting signatures per query. At the time of construction
of Typke’s data set, the RISM database contained about half a
million melody incipits. The database that powers Monochord
has doubled in size since the original ground truth research.
It is reasonable to assume that some of the additions are
truly relevant to a query, but they are not included in Typke’s
ground truth because they were later added to the database.
This ground truth set needs to be updated before a meaningful
analysis of the query methods can be conducted. We update the
set by manually checking all query-result pairs that appear in
the ranked search results, but not in the original ground truth.
These pairs are potential ground truth candidates, because
they can be a match that is added after Typke’s research was
conducted. The pairs that appear in both sets are assumed
to remain correct, as the incipit database still contains the
original melodies. If two melodies were a match then, they
will continue to be similar now. This cross-checking gives 6006
ground truth candidates that have to be tested for similarity by
hand.

For this purpose, we create a comparison procedure for the
query-result pairs. A computer program splits the candidates
in batches of 1001 pairs and shows one pair at a time. The
query is shown in musical notation on top, with the result
below it. A human evaluator can press one of three buttons
to confirm its comparison. The Similar button marks the pair
as relevant (a line ending in a 1) and adds it to the ground
truth file, then the pair is removed from the program’s queue.
Figure 2 shows a situation in which the Similar button must be
pressed. The Not-similar button stores the pair as not relevant
(a line ending in a 0) and removes the pair from the queue. The
Unsure button is pressed whenever the evaluator can’t make a
decision at the moment, for whatever reason, and would like
to go on with another pair. The pair is then added to the end
of the queue and will return after all other pairs have been
checked. The evaluator is shown a new pair after pressing

Fig. 2: These two melodies are similar and the Similar button
should be pressed in this case. Note how the query melody is
the beginning of the result melody which has four additional
notes.

one of these three buttons. Not all images of the musical
notation are available on the RISM website, and thus they
are unavailable in Monochord. Whenever such a pair comes
by, it is handled as Not similar. All pairs without a definitive
conclusion are handled as Not similar as well.

Completing one batch takes around 15-30 minutes and is
less prone to learning effects that Typke described as possible
shortcomings of the experiment [2]. Sequence effects might
still occur, as all queries in sorted order. Filtering the pairs
as Typke did is not necessary, because checking 6006 pairs
manually is feasible. Yet some of the filtering techniques are
subconsciously applied, such as rejecting absurdly long incipits
or incipits with a greater pitch range instantly.

The ground truth is expanded by adding 117 new relevant
pairs. The new ground truth that is based on the original
queries, but with revised results, are published and available
for other research3.

D. Search method analysis

In evaluating the search methods, we are interested in
the mean average precision or area under curve. The search
method with the most area under curve is designated as the
best search method for this incipit database [9], [11], [12]. The
methods are not only compared amongst each other, but also
relative to an approximation of RISM’s innate search engine. A
reasonable approximation of RISM’s retrieval method is using
method pi2mw0dur0, as this uses only exact pitch in rating
the melodies. This method can be seen as the baseline with
which the other methods are compared.

Every search method is tested for precision and recall,
which are plotted in the precision-recall curves. An important
feature of our TREC files is the ranking of results. This ranking
must be used in the evaluation of the search method. Several
TREC evaluation tools have been made that utilise ranking
(trec eval [13], trec eval online [14], [15], pytrec eval [16]).
We use the Python library pytrec eval because the previously
written scripts can be transferred to this task.

3The revised ground truth is available here:
http://www.projects.science.uu.nl/music/resources/



This evaluation tool requires two types of input: one file
containing the expected results (the ground truth) and one
file containing the retrieved results. The ground truth file and
the result files are stored in the conventional TREC format.
The TREC version of the ground truth file is filled with tab-
separated lines that contain the RISM signature of the queried
document, an iteration number Q0, its result signature and a
relevance rating [17]. One line has the following format:

squery Q0 sresult relevance

with squery ∈ RISMSignatures, Q0 = 0, sresult ∈
RISMSignatures and relevance ∈ {0, 1}. The result file is
similar to the ground truth file, but instead of a relevance rating,
it returns a ranking for the document found. Additionally, a line
contains a score, representing how good the result matches to
the query, and a constant Exp. Both the score and Exp are
ignored in this experiment by setting them to zero. A line in
the result file has the following format:

squery Q0 sresult rank score Exp

with squery ∈ RISMSignatures, Q0 = 0, sresult ∈
RISMSignatures, rank ∈ N, score = 0, Exp = 0.

The evaluation tool uses TREC files, thus we need to
transpose the information stored in Typke’s HTML files to
this format. The ranking is not taken into account, all incipits
ranked as relevant are used as is. Every melody is referred to
with its RISM signature, which is precisely the format needed
for our TREC files. For every incipit perceived as relevant with
signature sresult in a file for a query with signature squery, we
create a line

squery 0 sresult 1

where the 1 at the end signifies this pair of query and result
is a relevant pair, or a match.

E. Deanonymisation of melodies

Once a search method for retrieval based on melodic
similarity has been determined, we can use this method to
create data for the deanonymisation classification algorithm.
We use a k-Nearest Neighbours algorithm to classify the
anonymous melodies. A k-NN finds the classification for the
k elements that are most similar to the element that is to
be classified. The most occurring classification is said to be
the classification of the unknown element. In the case of
deanonymisation of melodies, the classifications are composer
names. As the search results provided by Monochord are
ranked from most similar to least similar, we can simply take
the top k results as the neighbours and use their meta-data to
get their composers.

The composer names are available in the RISM database as
meta-data of the melodies. This forms a mapping between all
RISM signatures and their composers or an Anonymus label.
The correct classifications are thus easily generated: it consists
of looking up the melody signature in the mapping and then
returning the composer-part in the meta-data. If none of the
neighbours have a composer label, the classification of the
melody will simply be Anonymus.

Training and test data for the classification algorithm is
widely available. Of the 1.2 million melodies, about a million

have a known composer. We randomly sample an amount of
incipits with known composer and split the sample 50%-50%
in a training and test set.

During the training phase, we use cross-validation to
get the best value for k. Here, we use a smaller set of
40 incipits, which is split in a training and test set. The
cross-validation consists of testing a k-NN with a certain k
on the provided training data. We perform hyperparameter
optimisation for k by using a grid search to test all values
k ∈ {1, 2, 5, 10, 20, 50, 100} and all n = 27 search methods
[11], [18]. This takes O(k × n) trials and the computation
is quite costly, thus we would like to minimise the amount
of trials. We first test the k-values only on the best retrieval
method and find a good value for k. Then, we use this k to
trial all the search methods. Only O(k + n) trials have to be
completed in this manner. The performance of all such k-NNs
are compared, after which the combination of k and search
method of the best k-NN is selected.

These best k-NN settings are used to initialise the final
classifier. A full set of 100 incipits, split in a training and test
set, is used for this phase of the experiment. The performance
of the classifier is determined using the test data set. It is
important to test on a set different than the training set, as
overfitting could occur. Overfitting is visible whenever there
is great performance on the training set, but poor performance
on the new test data. The classifier is stable whenever the
performance of the training and test sets is similar.

This trained classifier can in principle now be used to
determine the composer of an anonymous song. This could be
done for the 200,000 occurrences, but we randomly sample 100
melodies and evaluate some of the generated labels manually.

III. RESULTS

A. Search method analysis

Each of the 27 search methods produces a precision-recall
curve from which the mean average precision is calculated.
The mean average precision ranges from 0.03 − 0.42 in the
plots. The best method seems to be pi2mw2dur1 (exact pitch,
ima combined, fixed duration) with an area under curve of
0.42. The results are plotted in Figure 3.

Using exact pitch (pi2) gives the best results, with an
average AUC of 0.38 in a range of 0.31−0.42. The Kranenburg
pitch (pi1) is the worst performer with an average AUC of
0.21 in a range of 0.03 − 0.32. The exact pitch curves are
plotted in Figure 6(b) in the Appendix, and the Kranenburg
pitch as a comparison is shown in Figure 6(a) in the Appendix.

The best duration to use is fixed duration (dur1) with an
average AUC of 0.33 (see Figure 8(b) in the Appendix). The
best use of weight-based raters is by using none (mw0) with
an average AUC of 0.35 (see Figure 7(a) in the Appendix).

These findings correspond with the best overall method,
except for the weight-based rater factor. After a closer look,
the method pi2mw0dur1 seems to be a close runner-up with
an AUC of 0.41 (see Figure 4). The overall performance of
the ima combined (mw2) methods is not that different from
mw0 either, with an average AUC of 0.33.



Fig. 3: The precision-recall curve for retrieval method
pi2mw2dur1. The area under curve, or mean average precision
is 0.42, the highest in the series.

Fig. 4: The precision-recall curve for retrieval method
pi2mw0dur1. The area under curve, or mean average precision
is 0.41, the runner-up in the series.

The baseline approximation of the RISM search engine by
using pi2mw0dur0 results in an AUC of 0.35. Many of the
search methods produced worse results than the baseline, but
most of the exact pitch family produced equal or better results.

B. Deanonymisation of melodies

Using 40 melodies as training set, we test the seven
different values for k ∈ {1, 2, 5, 10, 20, 50, 100} with the best
retrieval method pi2mw2dur1 to gain insight in the effect of
the k-value on composer classification accuracy. The existing
set of known Anonymus songs is not complete and there are
still a few melodies with the Anonymus label hidden in the
known data set. After filtering these out of the 40 melodies,
we are left with 38 incipits.

Fig. 5: The accuracy of a k-NN for different values of k. The
accuracy decreases with an increase in k.

The accuracy curve in Figure 5 shows that the accuracy
decreases as k increases. This seems to have an intuitive
reason, as with an increasing k, the share of wrong neighbours
also increases. As the most similar songs are placed on
the top, a low k will more likely consist of melodies with
the wanted composer. The algorithm with a higher k will
desperately try to come up with matches at the bottom, even
when all the matching pairs have already been found. These
bottom suggestions are more likely to be uninteresting, or even
counterproductive, for composer classification. And yet the
voting power of all these incipits is equal in a k-NN. If some
composer turns up in the bottom results often enough, it will
overthrow the correct decision made by the top results.

The best retrieval method might not be the best method for
composer classification. Therefore another run is performed
using k = 1 for all 27 search methods.

Method Accuracy Method Accuracy Method Accuracy
pi1mw0dur0 0.211 pi2mw0dur0 0.263 pi3mw0dur0 0.263
pi1mw0dur1 0.158 pi2mw0dur1 0.158 pi3mw0dur1 0.158
pi1mw0dur2 0.211 pi2mw0dur2 0.211 pi3mw0dur2 0.158
pi1mw1dur0 0.053 pi2mw1dur0 0.263 pi3mw1dur0 0.158
pi1mw1dur1 0.000 pi2mw1dur1 0.263 pi3mw1dur1 0.053
pi1mw1dur2 0.000 pi2mw1dur2 0.316 pi3mw1dur2 0.106
pi1mw2dur0 0.211 pi2mw2dur0 0.316 pi3mw2dur0 0.263
pi1mw2dur1 0.158 pi2mw2dur1 0.263 pi3mw2dur1 0.211
pi1mw2dur2 0.158 pi2mw2dur2 0.316 pi3mw2dur2 0.316

TABLE I: Table of accuracies per method, trained on the
smaller set of 40 items. Bold numbers signify the highest
accuracy.

The methods with the highest accuracy are pi2mw1dur2,
pi2mw2dur0, pi2mw2dur2 and pi3mw3dur2 (see Ta-
ble I). The best retrieval method pi2mw2dur1 has the
second-highest accuracy, which will therefore also be consid-
ered in the possible parameters.

The k-NN is now trained on values for k ∈ {1, 2, 5} and on
the methods pi2mw2dur1, pi2mw1dur2, pi2mw2dur0,
pi2mw2dur2 and pi3mw3dur2. The data consists of 100



incipits randomly selected from the known melodies. These
items are split in a 50% training set and a 50% test set.

The best classifier parameters turned out to be k = 1
with the pi2mw2dur1 method (see Table II). These settings
resulted in an accuracy of 0.375 on the test set.

k=1 k=2 k=5
pi2mw1dur2 0.354 0.292 0.271
pi2mw2dur0 0.354 0.313 0.271
pi2mw2dur1 0.375 0.354 0.313
pi2mw2dur2 0.354 0.316 0.271
pi3mw2dur2 0.354 0.333 0.271

TABLE II: Table of accuracies per parameter setting, trained
on the full set of 100 items. Bold numbers signify the highest
accuracy.

Of the 100 melodies, 58 were given a non-Anonymus label.
The guessed composers of the first eight such entries are given
below in Table III.

Signature Composer
450.202.307-1.1.1 Sperger, Johannes
851.002.964-1.1.1 Werner, C.
702.020.071-1.1.1 Simonis, Ferdinando
240.006.107-1.1.1 Spohr, Louis
650.007.101-1.1.2 Meyerbeer, Giacomo
500.195.253-1.2.1 Paisiello, Giovanni
150.204.949-1.1.1 Gräfe, Johann Friedrich
454.013.591-1.1.1 Kluger, Johann Florian

TABLE III: Table of deanonymised incipits and their composer
labels.

Using RISM’s search engine [1], we find that incipit
450.202.307-1.1.1 classified as Sperger, Johannes indeed con-
tains that name in the list of previous owners of the manuscript.
The manuscript was put together by Joseph Michael Zink. This
label seems plausible.

Incipit 851.002.964-1.1.1 classified as Werner, C. contains
limited information besides the musical notation, thus a check
is impossible.

Incipit 702.020.071-1.1.1 classified as Simonis, Ferdinando
is called Les noces? and is part of a collection of French
and Italian songs produced during Simonis’ lifespan. The
incipit is said to be arranged by the Frenchman André Jean
Baptiste Bonaventure Dupont, and its manuscript is stored in
Saint Omer’s (France) public library. It seems more likely that
Dupont is the composer of this song. The label of this incipit
is questionable.

Incipit 240.006.107-1.1.1 classified as Spohr, Louis is
called Da wir uns niemals wieder finden in B-Dur and is
part of a collection of principally German melodies. The
collection originated in 1808, which is during the German
Spohr’s lifespan. No hard evidence of the correctness of the
suggestion could be found, but it is possible that Spohr is
indeed the composer of this piece.

Incipit 650.007.101-1.1.2 classified as Meyerbeer, Giacomo
is called Falsibordoni in Phrygian mode and is part of a
homonymous collection of the same melody in different
modes. This collection was put together in 1880, while Meyer-
beer died in 1864. Still, it is possible that a piece Meyerbeer

wrote was transposed in all modes after his death. Meyerbeer
started studying music in Italy in 1816 [19], which explains the
Italian name and the collection is stored in the Italian Archivio
diocesano. It is plausible that Meyerbeer indeed composed this
melody.

Incipit 500.195.253-1.2.1 classified as Paisiello, Giovanni
is called Tenebre e pianto siamo in F-Dur and is part of a
collection of two other Italian melodies, produced in 1770.
This is halfway through the Italian Paisiello’s life, which makes
this attribution plausible.

Incipit 150.204.949-1.1.1 classified as Gräfe, Johann
Friedrich titled Ich hab’ es oft gesagt in G-Dur is part of a
collection that was produced during Friedrich’s life, and his
name appears next to one other melody in this collection:
Getrost mein Sinn erheitre dich in F-Dur. Furthermore, the
University of California owns another collection [20] that
includes melodies of Friedrich, along with one called Ich hatt’
es oft gesagt in B-Dur. The RISM ID of this collection is
000.114.155, which indeed gives us the melody with signature
000.114.246-1.1.1 that is an identical, but transposed, copy of
our original incipit. This is a confirmed label.

Incipit 454.013.591-1.1.1 classified as Kluger, Johann Flo-
rian contains limited information besides being a part of a
collection with dances exclusively written by Friedrich Joseph
Kirmair and Josef Gellert. This collection contains solely
German titles and storage locations, while all of the collections
in the RISM database including Kluger’s works are located in
Czech libraries. The only information in favour of this label
is the overlap in timespan of the three composer’s lives and
the 1800-1824 timestamp of the collection. The correctness of
this label is questionable.

Five out of eight labels turned out to be quite plausible
guesses. It took a fair amount of time to manually check
these labels, but it takes significantly less time than having to
come up with an initial guess via human effort. An effective
strategy proved to consist of three stages. First, the collection
the incipit is from can be scanned for similarities in composers
or titles. Next, the timespans of the composer’s lives and song
publications should correspond. Another strategy is to compare
languages, storage locations of the manuscripts, and country
of birth or other important locations in the life of a composer.
A good amount of music historical knowledge is necessary for
this manual effort of label checking.

IV. CONCLUSION

The search method pi2mw2dur1 gives the best melodic
similarity retrieval results. The method pi2mw0dur1 is a
good second choice, and might even be preferred when com-
putation cost is factored in, as the ignored factor doesn’t need
to be calculated. Using exact pitch seems to be much more
accurate than any other pitch rater, while the other settings do
not matter as much and can be toggled off for an increase in
speed.

Whether the best scoring methods are truly nearly equal in
results is an interesting topic for further research. We assumed
the RISM search engine uses a search method that is equal to
pi2mw0dur0, it only uses exact pitch, and used that method
as a baseline for the other search methods. To provide a true



comparison with RISM’s search engine, we would have to
request the results for our ground truth queries and use this
as the baseline. This is an opportunity to make our findings
more reliable, yet under our assumption we expect that our
claims will remain the same. Another point of improvement
would be to look at the complementarity of search methods.
Whereas the search methods are analysed in isolation, it might
be possible that certain methods are suitable for one type of
melody, while another method covers other types. Together, the
range of accurate retrievals might be greater than they would
be in isolated methods.

The deanonymisation process with a k-NN as described
above has an acceptable accuracy (five out of eight plausible
labels in the manual check), but the procedure is not accurate
enough to become automatised. A suggestion for further re-
search would be to check the resulting labels more vigorously,
and to do this for more classifications than the eight offered
in this paper.

A potential flaw of the deanonymisation process is whether
all melodies can be truly deanonymised. It is not questionable
whether all the composers in the non-anonymous set are
labelled correctly, as they have been through a careful process
of manual labelling. The anonymous set, however, contains
both incipits labelled as truly anonymous (because the piece
is a collective effort, or was improved upon by several people)
and labelled as anonymous because of a lack of evidence for
a composer as of yet. The last case we can solve with a
deanonymisation algorithm, but the former cannot be given
a composer label. This difference in Anonymus-types can be
built in the classification algorithm by taking the confidence in
the correctness of the label into account. The classifier builds
confidence for a label by calculating how many of the inquired
neighbours return that label. If the confidence exceeds a
predetermined threshold, the predicted label is used as the new
composer label for the anonymous song. Otherwise, the song
remains classified as Anonymus. Using a k-Nearest Neighbours
algorithm seemed to be the intuitive choice here given the
mechanisms behind Monochord. Other classifiers might be
interesting to research for the purpose of deanonymisation as
well.

The accuracy of a stand-alone program for deanonymisa-
tion of incipits is questionable, but we’ve shown that using
computerised suggestions from classification algorithms can
help reduce the manual labour of labelling the songs. The
most cost-efficient approach seems to be a combined effort
of a computer scientist reducing the search space and offering
composer suggestions to a music historian who analyses only
a handful of possible composers, instead of the thousands the
problem originally started with. For the purpose of giving
suggestions, or narrowing the possible composers down to
merely a few names, interesting follow-up research would be
to test the accuracy of a k-NN that returns multiple labels.
Instead of returning the best label, such a k-NN could return
the top N composer suggestions. Whenever the true label is in
this set of N labels, it is marked as correct. This will result in
an equal or higher accuracy as the original k-NN used in this
paper (a multiple label k-NN with N = 1), as the first result
is always the same, with the multiple label k-NN having the
benefit of having additional guesses. Such a classifier could
conceivably achieve an accuracy that is worth automatising,

whose result would be a set of possible composers that the
music historian has to inspect for each incipit.

This is an interesting border between a perfect artificial
intelligence that is able to make decisions on its own, and
the practical reality where human effort is still necessary to
verify the results. Points for further research include using
the manual verifying strategies as features in machine learning
applications. Perhaps using the collection an incipit is in, the
title and composer’s language, and the timespans to make a la-
belling decision can increase the accuracy of deanonymisation
classifiers.

This research suggests that improving RISM’s innate
search engine is worthwhile, as the performance of alternative
search techniques was found to be better than the baseline.
Computerised suggestions for composer labels are found to be
a promising topic with room for improvement.
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APPENDIX
PRECISION-RECALL CURVES PER SETTING

(a) All retrieval methods using Kranenburg pitch. The average AUC of the
methods is 0.21.

(b) All retrieval methods using exact pitch. The average AUC of the methods
is 0.38.

(c) All retrieval methods using zigzag pitch. The average AUC of the methods
is 0.31.

Fig. 6: The precision-recall curve for all methods from the
pitch rater family. The average AUC of the methods is shown
in the titles.



(a) All retrieval methods using no weight-based rater. The average AUC of the
methods is 0.35.

(b) All retrieval methods using the ima weighted rater. The average AUC of
the methods is 0.23.

(c) All retrieval methods using the ima combined rater. The average AUC of
the methods is 0.32.

Fig. 7: The precision-recall curve for all methods from the
weight-based rater family. The average AUC of the methods
is shown in the titles.

(a) All retrieval methods using no duration rater. The average AUC of the
methods is 0.28.

(b) All retrieval methods using the fixed duration rater. The average AUC of
the methods is 0.33.

(c) All retrieval methods using the scaled duration rater. The average AUC of
the methods is 0.30.

Fig. 8: The precision-recall curve for all methods from the
duration rater family. The average AUC of the methods is
shown in the titles.


