
Bardiche: An Interactive Online Narrative Generator
Bachelor Thesis AI, University of Utrecht

Geerten Vink, 3471233
g.j.a.vink@students.uu.nl

26-06-2015

Introduction

Bardiche is an interactive online narrative generator.
That means it’s a system to make narratives, it in-
teracts with a user to collaborate in creating these
narratives, and it plans and replans fast enough for
the user to wait while it is doing so. Of course, a bard
is a storyteller. The algorithm is based on the Glaive
system (Ware & Young, 2014), and a bardiche is a
type of glaive, so the name is a nod to the algorithm
at its base.

Definition 1. Narrative is “the recounting of one
or more real or fictitious events communicated by one,
two, or several narrators to one, two, or several nar-
ratees” (Prince, 2003).

Narrative can be separated into story, which is the
sequence of events recounted in the narrative, and
discourse: the way in which the story is presented.
Bardiche focuses exclusively on the story and makes
no special effort at the presentation, although it is
somewhat human-readable and a user only slightly
familiar with the system will be able to understand
what’s going on in the story.

An example from the “door” domain which is
used for examples throughout the text would be
that (give princess key knight hallway) is gen-
erated. This is an event where the princess gives a
key to the knight in the hallway. Discourse for this
action might go something like: With a flourish,
princess Amarinth presented an ornate key. Sir Ge-
offrey knew this was the key to the outer gate, which
was guarded by the evil knight Lorain. Although the
villain might still stop him, at least now he had a way
to open the gate and escape from Castle Dread if he
got the chance.

Although at some point in the future it may be in-
teresting for narrative planners to generate their own
domains and what kinds of objects, agents and ac-

tions are possible as such, Bardiche does not attempt
this, and simply uses pre-made domains in which sto-
ries can take place. It aims to create suspenseful
stories in any reasonable domain provided to it, in
cooperation with a user who controls one of the char-
acters. It does so online, i.e. in real time as a user is
interfacing with it, without making the user wait for
response overly long.

Bardiche is not a game (although it could be part of
one.) It generates a story based in part on the actions
of the user, but it’s aim is to create a good story, not
necessarily a fun or challenging experience. A good
analogy for Bardiche’s function is an improvisational
theater group, with the user as a guest who gets to
contribute to a play with a specific theme. No theater
group can make a good play out of it if the guest is
uncooperative, but it should be able to adapt to make
the story interesting if the guest is not a great actor
but cooperating to the best of his ability.

This thesis seeks to answer if this aim can be ac-
complished by dynamically choosing story endings to
plan towards considering user actions. Bardiche uses
the Glaive intentional narrative generation algorithm
to determine a possible story flow, then replan if the
user takes actions which don’t follow this story. For
example, if the system assumes the character will ac-
cept princess Amarinth’s key from the earlier exam-
ple, but he refuses to take it, it may replan for her
to “lose” it, so the knight may pick it up, or for the
knight to retrieve an axe from the armory and break
down the door that way.

Related Work

Narrative generation systems can be divided into sim-
ulative and deliberative categories (Roberts, Riedl, &
Isbell, 2009). Simulative systems generate a story
world and the characters in them, and let the char-
acters take actions which are appropriate to their

1



surroundings. Deliberative systems “solve” a story
by picking appropriate actions for the characters to
reach a goal, within certain constraints (Riedl &
Young, 2010). Since a deliberative system plans out
the actions of all the characters that figure in its nar-
ratives, the characters tend to not have true agency,
since the planner determines all their actions.

Although Simulative approaches, with characters
that are individual agents, seem interesting because
we ascribe a certain agency to any character we en-
counter in a story, the problem with such systems is
that there is no good way to ensure character actions
are chosen with global story structure in mind. On
the other hand, a system in which the characters are
simply pawns to move towards a goal does not strike
us as particularly attractive either.

The Glaive (Ware & Young, 2014) system is a good
middle road. It is a deliberative system, but plans
according to the intentions of its characters. It is
based on Hoffman and Nebel’s Fast-Forward plan-
ner (Hoffmann & Nebel, 2001), and on the IPOCL
(Riedl & Young, 2010) and CPOCL (Ware, 2011) al-
gorithms. IPOCL and CPOCL solve the same inten-
tional planning problems as Glaive, but do so with
partial order planning in plan space and are much
slower. Speed is important in the creation of an online
interactive narrative generator, which makes Glaive
excellently suited to serve as a base for Bardiche. It
will be extensively explained in the next section.

Glaive itself is not an interactive system though,
unlike Façade (Mateas & Stern, 2003), Scheherazade
(Li & Riedl, 2015), or a recent adaptation of the IRIS
system (Fendt & Young, 2014) by Matthew William
Fendt. We believe Bardiche will have advantages over
all of these systems.

Façade (Mateas & Stern, 2003) tries to bridge
the gap between the simulative and deliberative ap-
proaches. The user plays him- or herself, visiting
a couple for a pleasant evening. Unfortunately, the
marriage is dissolving, and both Trip and Grace, the
hosts, try to pull the user into their quarrels. Al-
though Façade offers a large amount of freedom to
the user, the dialogue of Trip and Grace has been
authored completely by hand. In effect, the user is
interfacing with two very highly scripted agents be-
hind a natural language interface, which react differ-
ently based on the “beat” the drama is currently in,
as determined by a hidden drama manager agent. Al-
though we don’t feel some authorial direction is a bad
thing, Façade feels more like a directly authored story
with a lot of branching than as a narration generator.

In addition to this, we feel that although Façade can
generate many different versions of this one story, in
the end it only tells this one story, with a fixed start-
ing point and fixed ending (Trip and Grace fight, pull
you in, and one of them kicks you out of the apart-
ment).

Scheherazade (Li & Riedl, 2015) uses specialized
domain knowledge to generate plot graphs, which are
generalized models of the topic domain. For example,
in a plot graph about bank robberies, there may be
a node “robber pulls out a gun” with edges to “rob-
ber points the gun at teller”, ”teller screams” and
”robber gives teller a bag” to signify which events
would be appropriate to follow the pulling of the gun.
Scheherazade parses these plot graphs from short sto-
ries about its topic written by human authors. We see
two problems with this approach. First of all: A plot
graph is too restrictive. Only those events the authors
thought of in advance are possible, while plan-based
systems will generally allow any character to take any
action in the domain, generating plots the authors
may not have thought of in advance. The second
problem is that Scheherazade essentially mixes to-
gether some human-authored stories and claims that
it is now original content. We are not sure we agree
with that sentiment. The program did not generate
a story, it generalized over existing stories authored
by humans.

IRIS (Fendt & Young, 2011) is an intentional nar-
ration generator which has characters revise their in-
tentions based on the state of the world, their be-
liefs, and their desires. In itself, that is an advantage
over Glaive, since in Glaive the intentions of charac-
ters are static unless changes are explicitly defined in
the domain (for example, we may create a covet ac-
tion which makes an agent intend to take an item).
However, Glaive is much faster in complex domains.
IRIS is not interactive, but an interactive adaptation
has been constructed in 2014 (Fendt & Young, 2014).
This adaptation tries to create suspense in its stories,
but does so by limiting the actions the user can take
to ensure he or she experiences the suspense the gen-
erator tries to create. We don’t feel this approach is
to be favored. The user should be free to take any ac-
tion his character might take in the domain, the gen-
erator should adapt and attempt to create a “good”
story no matter which actions the user chooses. This
is the type of system we developed. We do, however,
limit actions to those which can be explained by the
intentions of the user’s character.

2



The Bardiche Interactive Narra-
tion Generator

Bardiche is a high level interactive narration gener-
ator which uses Glaive to work out details for it’s
stories.

Although there are many possible narrative struc-
tures, Bardiche creates stories with a single plot, fo-
cused on the protagonist controlled by the user. It
attempts to create a story where the protagonist
reaches his goal despite interference by other char-
acters. In a game context, we would want to create
suspense for the user, that is not what Bardiche does.
The user has full knowledge of the state of the world,
and is working in cooperation with the program to
create an interesting, and suspenseful, story. This
suspense should be inherent to the story, not to the
experience of the user during its creation.

The intention of Bardiche is to create interesting,
or ‘tellable’ stories that end well for the protago-
nist. Narratologists agree that conflict is an essen-
tial part of interesting stories (Abbott, 2008; Egri,
1960; Brooks & Warren, 1959). Conflict has been de-
scribed as the thwarting of plans of intentional agents
(Herman, Manfred, & Marie-Laure, 2010), so we con-
sider a story to contain conflict when the different
characters interfere with each other’s plans. In addi-
tion to this, suspense contributes significantly to the
enjoyment of stories (Brewer & Lichtenstein, 1982).

According to the Routledge Encyclopedia of Nar-
rative Theory (Herman et al., 2010), suspense is in-
versely related to the number of reasonably com-
putable outcomes. It comes to a climax when the
outcomes become binary. Success or failure, life or
death, win or lose. There is no suspense in a sit-
uation where only one outcome is possible. In the
“door” example given before, we start with several
options: the knight may just get the key and walk
out of the castle unimpeded. The knight may try as
hard as he wants, but not manage to escape. The
knight may be foiled at first, but succeed in the end.
There are multiple options, several possible ways for
the story to end.

Our limited definition of what makes a good story,
which Bardiche strives to create, is:

Definition 2. A good story is a suspenseful story
in which some possible good endings for the protago-
nist are made impossible through conflict with other
agents.

Bardiche should generate good stories whenever

possible.

Glaive

Glaive is an intentional narrative generator. A valid
Glaive plan is a plan which achieves the author’s
goals, but in which each step is explained by the in-
tentions of the characters in the story. It is based
on the IPOCL (Riedl & Young, 2010) and CPOCL
(Ware, 2011) algorithms which solve the same type
of problem, but are very slow. Glaive is based
on the fast-forward planner by Hoffman and Nebel
(Hoffmann & Nebel, 2001) and combines its speed
with the intentional planning paradigm introduced
by IPOCL and CPOCL.

Problem and Domain

Glaive takes an intentional planning domain and an
intentional planning problem as its inputs. A domain
consists of sets of types, constants, parameterized ac-
tions, and axioms. A problem gives the tokens of each
type in the world, the initial state, and the authorial
goal which the planner will attempt to achieve. The
difference between a regular domain and an inten-
tional domain lies in the fact that each action has a
set of agents which must consent to the action for it
to be executed. An intentional problem may contain
intentions for the characters defined by it.

Figure 1 gives a small example of an intentional do-
main, which will be used for most of the explanations
of concepts in the rest of the thesis. Except for give,
the actions have been abbreviated to keep the size of
the figure manageable. By default, Glaive takes these
inputs as text files in the Planning Domain Definition
Language.

Combined, the “door” domain and problem de-
scribe a situation where a knight is trapped in a castle
by an evil knight. A door blocks his way out, which
he can either unlock with a key or break down with
an axe. The evil knight intends for the knight to not
have the key or axe while the door is still closed. The
knight intends to open the door. The princess who
lives in the castle has the key, and intends for the
knight to have it. We would like to ensure success for
the knight after some conflict, so the author goal is
for the door to be open but with the evil knight in
possession of either the key or the axe.

Looking at the domain, we can see there are three
types of entity in this domain: items, characters, and
rooms. There are three constants, which are tokens
of the entity types which exist in every instance of

3



types: item, character, room actions: (move ?char ?from ?to) ...

(pickup ?char ?item ?room) ...

constants: key, axe - item (give ?giver ?item ?receiver ?room)

gatehouse - room precondition: (and(not (= ?giver ?receiver))

(at ?giver ?room)

predicates: (has ?char ?item) (at ?receiver ?room)

(at ?char ?room) (has ?giver ?item)

(in ?item ?room) (not (had ?receiver ?item))

(adjacent ?room ?room) effect: (and(not (has ?giver ?item))

(doorOpen) (has ?receiver ?item))

(had ?char ?item) agents: (?giver ?receiver)

(take ?taker ?item ?victim ?room) ...

(open ?char) ...

axiom: context: (has ?char ?item) axiom: context: (adjacent ?room ?neighbor)

implies: (had ?char ?item) implies: (adjacent ?neighbor ?room)

Figure 1: GLAIVE: The door domain

objects: knight evil_knight princess - character

bedroom armory hallway cell - room

init: (at knight cell) (adjacent hallway cell)

(at evil_knight gatehouse) (adjacent hallway gatehouse)

(at princess bedroom) (adjacent hallway bedroom)

(has princess key) (adjacent gatehouse armory)

(intends knight (doorOpen)) (in axe armory)

(intends evil_knight (and (not (doorOpen))

(not (has knight key))

(not (has knight axe))))

(intends princess (has knight key))

goal: (and (doorOpen) (or (has evil_knight key) (has evil_knight axe)))

Figure 2: GLAIVE: A door problem

1. (move princess bedroom hallway) The princess moves into the hallway

2. (move knight cell hallway) The knight meets her there

3. (give princess key knight hallway) The princess gives the key to the knight

4. (move knight hallway gatehouse) The knight moves to the gatehouse

5. (non-executed (open knight)) The knight planned to open the door

6. (take evil_knight key knight gatehouse) But the evil knight takes his key away

7. (move knight gatehouse armory) The knight moves to the armory

8. (pickup knight axe armory) And picks up an axe

9. (move knight armory gatehouse) He moves back to the gatehouse

10. (open knight) And breaks down the door to escape

Figure 3: GLAIVE: A solution for the door problem in Figure 2

4



the domain. The key and axe to open the door exist
in every instance of this domain, although there is
no guarantee they will be reachable. The gatehouse
also exists in every “door” domain. Six predicates
with typed arguments describe qualities of charac-
ters, rooms, and items. For example, the has predi-
cate has a character and item argument, and denotes
possession of an item in this domain. Some predicates
exist in every domain, like the = predicate to test for
equality, and the intends predicate which denotes an
agent’s goals.

Actions are parameterized with preconditions, ef-
fects and agents. For example, the give action has as
its preconditions that the giver and receiver are not
the same character, that the giver and receiver are
in the same place, that the giver has an item to give
and that the receiver has not had the item before.
The effect is that the giver no longer has the item,
and that the receiver has the item. The agents which
need to consent to the action for it to succeed are
both giver and receiver. The take action is similar,
but only needs consent from one character, while a
hypothetical lose action would move an item to the
ground without consent from any agent.

Finally we have axioms. In this case: adjacency
is symmetric, and if someone has an item he’s had
it. Axioms are simply implications with a trigger-
ing condition and an effect implied by that condition.
These axioms are simple, but universal and existen-
tial quantors, conjunctions, and disjunctions can be
used to form complex implications. For example, we
may have an axiom which states that if no other char-
acter is in the same room as a character, he or she is
alone.

The problem defines tokens for the types. In this
case, the knight, evil knight and princess are char-
acters. The bedroom, armory, hallway and cell are
rooms. No items other than the constants defined in
the domain exist in this specific problem. The initial
state is a set of propositions. Most of the propositions
speak for themselves, some special attention should
be given to the intends predicates which denote goals
for the three actors. A character goal is a tuple of
a character and a proposition which represents the
character intends to make the proposition true in the
current state. Finally, we have an author goal, which
represents the goal state the planner works towards.

Both the evil knight’s character goal and the au-
thor goal are fairly convoluted in order to get a story
with conflicts. The author goal would seem to ensure
conflict, but would be satisfied if the knight opened

the door, and then politely handed his axe to the evil
knight guarding it. We avoid that by giving the evil
knight no intention to have key or axe after the door
is already open, so he will not consent to take those
items after the door has been opened. It is the expe-
rience of the author that regardless of the domain, a
good story in Glaive is made by very specific tailoring
of character and author goals.

Planning and Plan Graphs

A valid intentional plan in Glaive is a sequence of
actions such that each actions preconditions are true
when the step is taken, the author goal is true after
the last step, and every character who consents to a
step has a reason to agree to that step. This agree-
ment follows from the intentions of the characters and
if there is a possible world in which this step would
be on a path to fulfill the agent’s intentions. For ex-
ample, in the “door” scenario, consider the solution
in Figure 3. In step 4 the knight moves to the gate-
house, with the intention to open the door using the
key. This series of actions would lead to him reaching
his goal. Although the plan fails, the knight had a
good reason to take all the steps leading up to that
point.

Glaive manages to do this very fast, using fast-
forward planning with a tailored heuristic and an
early selection on the possible actions that charac-
ters may consent to. This selection is made using
goal graphs. This is a graph which contains those
actions that may make a character goal true at the
lowest level, and then those actions that satisfy a pre-
condition of an action on the level below it at each
higher level. An action can only be in the graph once,
and is not added again if it already exists at a lower
level. Since characters will only take actions on a
path leading to the completion of one of their goals,
and all steps leading to goals are on the goal graph,
the algorithm can ignore any step that’s not on a goal
graph.

In addition to that, Glaive uses plan graphs which
are an extension of those used by Fast-Forward. A
plan graph has layers containing propositions and ac-
tions. The first layer has those steps which are true in
the current state. The second layer is made by select-
ing those actions whose preconditions can be satisfied
by the propositions in the first layer, and adding those
propositions which may now be true. Only actions to
which an agent may consent (and actions which re-
quire no consent) are used for this graph. This pro-
cess is repeated until a layer is reached where all goal

5



propositions may be true. Once this is so, a relaxed
plan can be extracted, which ignores delete lists but
gives a fair estimate of the length of a solution to
the problem. Also important for Bardiche is that if
no such relaxed plan can be found, a solution is not
possible.

Creating Good Stories

Changes in Domain and Problem

Bardiche’s input is slightly different from the input
Glaive takes. In addition to precondition, effect, and
agents the actions in the domain now also take an
initiator. When we query the user for an action, we
do not want to give him the option to take actions
in which he is an agent, but not the initiator. For
example, it would be strange if the protagonist could
take an action to have the princess give the key to
him, but in the domain used by Glaive, the agents are
not in a determined order. The only change to the
domain of ‘door’ to convert it to a Bardiche domain
is to add an initiator to each action, which follow
reasonably easily from the semantics.

The problem (see Figure 4) has a new field identi-
fying the protagonist, and the author goal is replaced
by a set of good endings and a set of bad endings,
which are represented by an expression. In the case
of the ‘door’ problem, there are two good endings:
the door is open and the knight has the key, or the
door is open and the knight has the axe. There is one
bad ending: the evil knight has both the key and the
axe.

Endings

An ending is not simply a final state. Let’s assume
we add another princess to our example. We’ll call
the princess that was already in the domain Princess
Anna, and the new one is called Princess Belle. Both
have a key to the gate, both want to help the knight,
and the knight has no attachment to either one.
Whether our story goes (princess Anna gives her

key to the knight [...] the knight escapes

from the castle) or (princess Belle gives her

key to the knight [...] the knight escapes

from the castle) does not change the ending, even
though in the first version princess Belle still has a
key, and in the second version Anna does.

An ending is also not ‘the final action’. If we
change our story in such a way that the knight
wants to escape with the princess, we could conceive

of a version where the knight escorts the princess
out of the castle but is intercepted by the evil
knight at the gate. Two possible endings are:
(the princess runs out of the gate while

the knight fights his opponent, and in the

end he defeats him.) and (the evil knight

kills the princess as she attempts to flee,

but in the end the knight defeats him.). In
both cases the final action is the same, but the
ending is radically different.

In our opinion Bardiche would need to have a se-
mantic understanding of the domain to determine
which different states constitute different endings,
and this is not in the scope of the thesis. Therefor, we
explicitly define good and bad endings as logical ex-
pressions in the problem file. Bardiche then converts
these endings to a suspense goal.

Suspense Goal

To create Bardiche suspense goal expressions, we
need to define two logical operators:

Definition 3. select is an n-ary boolean operator
which is true if and only if exactly one of its argu-
ments is true.

Definition 4. possible is a modal operator which
is true when its argument can be satisfied in a plan
graph from the current state, but is not true in the
current state.

Since it’s based on a heuristic, possible may return
true when it is not, in fact, possible to generate a plan
which will make its argument true. This is, however,
relatively rare. The only way to guarantee that an ex-
pression can be satisfied in the domain is to generate
a full plan which satisfies the expression. That is not
acceptable because it will slow the program down too
much, so we accept the occasional failure to generate
a story in order to keep the program fast.

Given a set of good and bad endings given as logical
expressions in a problem file, Bardiche generates a
goal expression. Let g0...gn denote the set of good
endings, and b0...bn the set of bad endings. ♦ will
denote the possibility-operator, Sel1 denotes ‘select’.

Definition 5. suspense goal = Sel1(♦g0, ...,♦gn)∧
(♦b0 ∨ ... ∨ ♦bn) ∧ ¬(g0 ∨ ... ∨ gn) ∧ ¬(b0 ∨ ... ∨ bn)

In words: The suspense goal is a state in which
exactly one good ending is possible, at least one bad
ending is possible, and no good or bad ending is true.

6



objects: knight evil_knight princess - character

bedroom armory hallway cell - room

protagonist: knight

init: (at knight cell) (adjacent hallway cell)

(at evil_knight gatehouse) (adjacent hallway gatehouse)

(at princess bedroom) (adjacent hallway bedroom)

(has princess key) (adjacent gatehouse armory)

(intends knight (doorOpen)) (in axe armory)

(intends evil_knight (not (doorOpen)

(intends evil_knight (has evil_knight key))

(intends evil_knight (has evil_knight axe))

(intends princess (has knight key))

bardicheGoal:

(good (and (has knight key) (doorOpen))

(and (has knight axe) (doorOpen)))

(bad (and (has evil_knight key) (has evil_knight axe)))

Figure 4: BARDICHE: A door problem

1. (princess (move princess bedroom hallway))

2. (knight (move knight cell hallway))

3. (knight (take knight key princess hallway))

4. (knight (move knight hallway gatehouse))

5. (evil_knight (take evil_knight key knight gatehouse))

6. (knight (move knight gatehouse armory))

7. (knight (pickup knight axe armory))

8. (knight (move knight armory gatehouse))

9. (knight (open knight))

1. (princess (move princess bedroom hallway))

2. (knight (move knight cell hallway))

3. (knight (move knight hallway gatehouse))

4. (princess (move princess hallway gatehouse))

5. (knight (move knight gatehouse armory))

6. (knight (pickup knight axe armory))

7. (knight (move knight armory gatehouse))

8. (evil_knight (take evil_knight axe knight gatehouse))

9. (princess (give princess key knight gatehouse))

10. (knight (open knight))

Figure 5: BARDICHE: two solutions to the ‘door’ problem

7



Assuming the domain and problem have been set up
in such a way that all the good endings are possible at
the start, this guarantees that all other good endings
will be made impossible during the story. In this
way we build suspension to a climax where one more
setback will make all good endings impossible.

Algorithm 1 The Bardiche Algorithm

1: Let L be the list of steps in the story.
2: D ← domain from file.
3: P ← problem from file.
4: generate a suspense goal G from the good and

bad endings in P.
5: set G as the goal of P.
6: buildingSuspense ← true
7: while (!complete) do
8: GlaivePlan ← generate(P, D)
9: if (GlaivePlan != null) then

10: complete ← GlaivePlan is fully executed.
11: else
12: break (“unfortunately, Bardiche was unable

to generate a story.”)
13: end if
14: ExecutedPlan ← The executed portion of

GlaivePlan
15: if (!complete ∨ buildingSuspense) then
16: if (!complete) then
17: step ← let the user pick an intentional

step initiated by the protagonist which has
valid preconditions in the state at the end
of ExecutedPlan.

18: add step to ExecutedPlan
19: complete ← G is true in the state at the

end of ExecutedPlan
20: end if
21: if (complete) then
22: buildingSuspense ← false
23: complete ← false
24: set goal G to the only possible good ending
25: end if
26: create new problem p with the initial state

corresponding to the state of ExecutedPlan
with goal G.

27: P ← p
28: end if
29: add all steps of ExecutedPlan to L.
30: end while
31: output L

Goal Resolution

Once Bardiche has generated a story which satisfies
the suspense goal, by definition only one good ending
is still possible. This is the climax point for the sus-
pense in the story. After this point, we want to work
towards resolution.

Definition 6. The final goal is the only good end-
ing which is still possible once the suspense goal has
been satisfied.

At this point we set the goal for the planner to the
final goal. If the endings have been picked in such a
way that the character can not make all but one of
the good endings impossible for him or herself, this
guarantees conflict and suspense, thus guaranteeing
the generation of a good story.

Interactivity in Bardiche

Bardiche does not just generate good stories, it does
so interactively. A user controls the agent marked as
the protagonist in the problem file.

Algorithm 2 generate(problem, domain)

1: let G be the goal of the problem.
2: if (goal G is new) then
3: create a plan graph for goal G (which is used

for the ‘possible’ operator).
4: end if
5: generate GlaivePlan using Glaive with the cur-

rent problem and domain.
6: if (GlaivePlan != null) then
7: repeat
8: doContinue ← false
9: output those steps of GlaivePlan that have

been executed.
10: if (!GlaivePlan is fully executed) then
11: suggestedStep ← first non-approved step

in GlaivePlan in which the protagonist is
an agent or initiator.

12: doContinue ← query if the user wants to
execute suggestedStep

13: end if
14: if (doContinue) then
15: approve the suggested step.
16: end if
17: until (!doContinue)
18: end if
19: return GlaivePlan

8



Process of Interaction

Bardiche Plans consist of Intentional Steps.

Definition 7. An intentional step is an action
which is potentially motivated.

Definition 8. A step s which requires the consent
of characters C is potentially motivated if and only
if for each character c in C, there exists some goal
g such that c intends g in the current state, and s
appears somewhere in the goal graph for c intends g.

Steps may be executed or suggested.

Definition 9. A suggested step is the first step
which has the protagonist as an agent or as its initia-
tor which is not approved, or any step after that step.

Definition 10. An executed step is any step which
is not a suggested step.

Bardiche lets Glaive generate a plan to the current
goal, which is either the suspense goal or the final
goal.

If the plan consists solely of executed steps, it is
complete. If the current goal was the suspense goal,
we set the final goal to be the current goal and gen-
erate a new plan. If the final goal was the current
goal, we are done and output the entire story.

If the plan does not consist solely of executed steps,
we ask the user to approve the first suggested step. If
he does, we check if the plan is now complete. If
not, we repeatedly ask the user to approve additional
steps.

If the user does not approve a step, we ask him
to pick an intentional step which the protagonist can
initiate in the current state. We then create a new
problem with the state after the execution of this new
step as its initial state, and generate a new plan.

We repeat this routine until we have a completed
story.

Dynamic Goal Selection

Assuming the endings defined in the domain are de-
pendent on the actions of the protagonist, the user
can exert a strong influence on the ending of the story.
For an example, look at Figure 5. The first story is
generated by approving every action suggested by the
planner. It leads to the ending (and (has knight

axe) (doorOpen)).

To see how the second story is generated, look at
Figure 6. The user decides not to take the key from
the princess, but instead to walk to the armory to get
the axe right away. It’s still possible for the knight
to get the key, though, and taking it away from the
princess would not make it impossible for the knight
to get it (since he has not “had” the key, and thus
could take it away from the evil knight). Taking the
axe away from the knight will make it impossible for
him to get it back, though, since in this domain losing
an object means it’s irrecoverable. Thus, this is the
fastest way for the planner to eliminate one of the
good endings, which makes it switch the ending to
(and (has knight key) (doorOpen)).

In general, the planner will find the plan which
leads to the elimination of all but one goal g in the
lowest amount of steps, but the user does not have
to follow this plan. If the actions of the user make it
easier to eliminate all but one goal which is not g, the
planner will work towards this new goal. In this way
the final goal is dynamically selected from the good
endings in the suspense goal.

Further Work

Creating domains and problems for Bardiche requires
less effort than for Glaive, because the stories gener-
ated are semi-automatically forced to be “good sto-
ries”, whereas Glaive has a tendency to generate sto-
ries that beeline for resolution without conflict if goals
are not very specifically set to induce it. It is still
nontrivial to get them right, though.

The main problem is that it is not possible to de-
termine if a goal that is possible in the current state
will become impossible in another state, except by
finding a state in which it is impossible. If all goals
are always possible at the same time, Bardiche will
keep searching for a plan in which only one of them is
true, never terminating. If, for example, we remove
the condition that a character may not have had an
item before from the ‘door’ domain, it is always pos-
sible for the knight to get the key and the axe. Since
the planner does not “know” this, it will attempt to
find a plan in which it’s impossible for the knight to
get one or the other. Some sort of logical analysis of
domain and problem should be devised to find out
if it’s possible for goals to be impossible. We reckon
this is doable, and would warrant a look.

It would also be interesting to see if good and bad
endings could be parsed from the domain and initial
state, but we believe this is a very difficult problem

9



to solve. As discussed before, an ending is not a state
or a final action, but a nebulous quality which is hard
to formalize. It would require the program to analyze
the semantics of the constants, predicates and actions
in order to say which conditions have to be met for
a state to be a good or bad ending. Considering the
previous issue mentioned, it also has to be able to
devise sets of endings which can be planned towards.

Finally, we would like to create some sort of do-
main/problem maker, which would make it easier to
create larger domains and problems than typing them
by hand.

Conclusion

Bardiche is an interactive online narrative gener-
ator which generates good stories with dynamic
goals based on the problem and the user’s actions.
Bardiche uses the Glaive system to generate inten-
tional plans in any domain, although some domains
and problems are more suited to the system than oth-
ers. It is fast enough to be used online for smaller
problems. It is untested on large problems because
they are too hard to make without bugs.

We believe Bardiche is an improvement over similar
systems in that it allows the user a large degree of
freedom in the actions his character takes, while the
generator adapts quickly and manages to come up
with new suggested story flows rapidly. In addition
to that, Bardiche works for any domain given to it,
and always creates “good stories” if possible.

Software

Bardiche has been implemented in Java 8. It is avail-
able on request.

It requires the Glaive Narrative Planner, which
is implemented in Java 7 and available at
http://stephengware.com/projects/glaive/

Acknowledgements

We would like to thank Stephen G. Ware and Michael
Young for authoring Glaive and confirming to us by
email that we are “welcome and encouraged” to use
it in this project.

References

Abbott, H. P. (2008). The cambridge introduction to
narrative. Cambridge University Press.

Brewer, W. F., & Lichtenstein, E. H. (1982). Stories
are to entertain: A structural-affect theory of
stories. Journal of Pragmatics, 6 (5), 473–486.

Brooks, C., & Warren, R. P. (1959). Understanding
fiction (Vol. 5). Appleton-Century-Crofts New
York.

Egri, L. (1960). The art of dramatic writing: Its basis
in the creative interpretation of human motives.
Simon and Schuster.

Fendt, M. W., & Young, R. M. (2011). The case for
intention revision in stories and its incorpora-
tion into iris, a story-based planning system. In
Intelligent narrative technologies.

Fendt, M. W., & Young, R. M. (2014). Adapting iris,
a non-interactive narrative generation system,
to an interactive text adventure game. In The
twenty-seventh international flairs conference.

Herman, D., Manfred, J., & Marie-Laure, R. (2010).
Routledge encyclopedia of narrative theory.
Routledge.

Hoffmann, J., & Nebel, B. (2001, May). The ff
planning system: Fast plan generation through
heuristic search. J. Artif. Int. Res., 14 (1), 253–
302.

Li, B., & Riedl, M. O. (2015). Scheherazade: Crowd-
powered interactive narrative generation.

Mateas, M., & Stern, A. (2003). Façade: An ex-
periment in building a fully-realized interactive
drama. In Game developers conference (Vol. 2).

Prince, G. (2003). A dictionary of narratology. Uni-
versity of Nebraska Press.

Riedl, M. O., & Young, R. M. (2010, September).
Narrative planning: Balancing plot and char-
acter. J. Artif. Int. Res., 39 (1), 217–268.

Roberts, D. L., Riedl, M. O., & Isbell, C. L. (2009,
September). Beyond adversarial: The case for
game ai as storytelling. In Breaking new ground:
Innovation in games, play, practice and theory.
Brunel University.

Ware, S. G. (2011). A computational model of nar-
rative conflict. In Proceedings of the 6th in-
ternational conference on foundations of digital
games (pp. 247–249). New York, NY, USA:
ACM. doi: 10.1145/2159365.2159401

Ware, S. G., & Young, R. M. (2014). Glaive: A
state-space narrative planner supporting inten-
tionality and conflict. In I. Horswill & A. Jhala
(Eds.), Proceedings of the tenth AAAI confer-

10



ence on artificial intelligence and interactive
digital entertainment, AIIDE 2014, october 3-
7, 2014, north carolina state university, raleigh,
nc, USA. AAAI.

11



(:executed (princess (move princess bedroom hallway)))

(:suggested (knight (move knight cell hallway)))

take action ((move knight cell hallway))? (y/n)

y

(:suggested (knight (take knight key princess hallway)))

take action ((take knight key princess hallway))? (y/n)

n

0) (move knight hallway gatehouse)

1) (move knight hallway cell)

2) (move knight hallway bedroom)

3) (take knight key princess hallway)

0

(:executed (princess (move princess hallway gatehouse)))

(:suggested (princess (give princess key knight gatehouse)))

allow action ((give princess key knight gatehouse))? (y/n)

n

0) (move knight gatehouse hallway)

1) (move knight gatehouse armory)

2) (take knight key princess gatehouse)

1

(:suggested (knight (pickup knight axe armory)))

take action ((pickup knight axe armory))? (y/n)

y

(:suggested (knight (move knight armory gatehouse))))

take action ((move knight armory gatehouse))? (y/n)

y

(:executed (evil_knight (take evil_knight axe knight gatehouse)))

Suspense building complete

(:suggested (princess (give princess key knight gatehouse))))

allow action ((give princess key knight gatehouse))? (y/n)

y

(:suggested (knight (open knight))))

take action ((open knight))? (y/n)

y

Story Complete

Figure 6: BARDICHE: generating the second story of Figure 5.

12


