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Abstract

The central objective of this thesis is to design a system that allows control over
the spatial intensity distribution of an ultrashort light pulse in a target plane, as a
useful tool in researching non-linear light-matter interactions. We will use a blazed
digital micromirror device as a binary spatial light modulator (SLM). In Section
2 we present exploratory beamshaping results where smooth shaping of the third
diffraction order of the SLM is achieved using a 4f setup and a spatial filter placed
in the Fourier plane. To generate the correction pattern on the SLM we use a simple
intensity-shaping algorithm which assigns a probability to each micromirror to be
switched off. In Section 3 we adopt a new setup, using a cylindrical lens to image
in one direction and focus in the other. By so collapsing approximately a thousand
binary degrees of freedom into a section of about 0.12 mm2, we increase the precision
of our method and create a flattop with 4.3% rms-flatness. Section 4 concerns the
spatial dispersion of the linefocus that is observed for broad input spectra. To
simulate the broad spectrum that belongs to an ultrashort pulse, we use a laser
diode below its lasing threshold. We find that the orientation of the cylindrical lens
can be used to compensate for this dispersion, and we report succesful (flattop)
beamshaping using broad spectrum light.
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Introduction

1 Introduction

1.1 Motivation

In current physics, fundamental discoveries are being made by investigating the inter-
action of light and matter at high intensities, where effects depending on non-linear
powers of the field strength (e.g. multiphoton absorption) become measurable. The
high intensities necessary to access this physics are reached by tightly focusing a laser
beam in space, e.g. by using a high NA microscope objective, and by compressing it
in time, creating tightly focused pulses whose peak intensity increases with decreasing
pulse duration. Sub-picosecond pulse durations are routinely achieved in this manner,
and are an essential tool in the study of non-linear optics.

In this thesis we will develop a method to control the spatial distribution of pulsed
light using a spatial light modulator (SLM). A flexible and easily applicable method
to precisely control the spatial distribution of fluence1 on a sample would certainly be
a useful tool in researching non-linear light-matter interactions. One could change the
(radial) intensity profile of the spot from a quasi-gaussian to a more perfect gaussian, or
to any other target shape (see Fig.1.1). The central objective of this thesis is to design
a system that allows control over the spatial intensity distribution of an ultrashort light
pulse in a target plane.

After a very brief look at previous work on beamshaping ultrashort pulses, we will
provide a detailed description of the SLM used in this project and explain its principle
of operation.

1.2 Existing beamshaping methods

Previous work on beamshaping ultrashort pulses, while not as extensive as the work done
on temporal pulse shaping, already contains impressive results. In 2002 a liquid crystal
phase mask was employed to elongate the depth of focus of an ultrashort pulse to the
centimeter range [14], this method has been perfected in later work by the same research
group. It was later employed by their co-workers [10] to also shape the beam profile in
the focal plane. Others used a diffraction grating to separate optical frequencies and an
optically addressed liquid crystal mask to apply phase delays. By spatially varying the
phase delay applied by the mask, spatial shaping of the temporal waveform could be
achieved [13]. Himmer et al. [4] pioneered the use of micro-electromechanical technology
to create a deformable mirror, which also allowed shaping of the phase of a light-pulse.
As will be explained below, our approach differs from these methods in that we will
shape the intensity of the pulse directly, rather than through its phase.

1Fluence is the intensity of a pulse integrated over its duration in time.
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Figure 1.1: Left Schematic overview of beamshaping explaining the use of a spatial light modulator (SLM).
The target variable is the spatial intensity profile of the cross-section of a beam of light. The input is

typically gaussian, the target shape can be chosen at will (a flattop is shown here). Right The SLM used in
this thesis (TI DLP4500NIR Digital Micromirror Device).

1.3 Spatial light modulation

The SLM we chose to use is a digital micromirror device (DMD). In this section we pro-
vide a detailed description of it and explain its principle of operation. A DMD is an array
of mirrors whose dimensions are on the order of the wavelength of visible light (about
a factor of ten larger, in practice). DMDs were invented in the 1970’s for use in digital
projectors, but have been applied more recently in scientific settings [3, 5, 16]. Their
rapid switching time and programmability are usually considered their main advantage
over other SLMs. Our main reason to use a DMD, however, is that it is a reflective
device, so that the overlap between the DMD and the beam-intensity is minimal. This
is important since we intend to beamshape ultrashort (ablation) pulses and we want to
avoid non-linear optical effects which the very high peak intensity of these pulses would
cause when they propagate through, for instance, dielectric layers. The Ti:Sapph laser
available in our lab has a center frequency of 800 nm so we choose the Texas Instruments
DLP4500NIR DMD, which is intended for use in that spectral range.

1.3.1 Optical characteristics of the DLP4500NIR

The DLP4500NIR is an array of square micromirrors arranged in a square lattice that
is rotated by 45◦ w.r.t the sides of the DMD-chip. It is coated to have upwards of 95%
reflection in the 700− 2300 nm wavelength range (for perpendicular incidence). Within
16µs, the micromirrors can be electronically rotated around their vertical diagonal,
placing the micromirror-plane at an angle of ±12◦ ± 1◦ with the plane of the DMD (see
Fig.1.3). Since the mirrors can only be placed in two positions, DMDs are binary mod-
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ulators. In Fig.1.2 a schematic representation of the mirror array of the DLP4500NIR
is shown. There are 1140 addressable rows and 912 addressable columns, surrounded
by a border of 10 micromirrors which are continuously in the ’on’ state (as defined by
Fig.1.3). Note that the columns are zig-zagged, making them effectively broader than
the rows. Due to this, the vertical side of the active area of the DMD is 6.16 mm and the
horizontal side is 9.85 mm, even though there are 30% more mirrors in a column than in
a row. The DMD has just over a million binary degrees of freedom on less than a square
centimeter.

For some applications, smoother shaping can be attempted by quickly flipping mirrors
to produce an average intensity that is a fraction of the on-state intensity. That option
is not available to us, however, because the pulses we intend to shape are much shorter
than the mirror switching time.

Since the micromirrors are periodically placed, the DMD acts as a 2D diffraction grat-
ing. A diffraction grating is an optical instrument that imposes a periodic variation of
phase and/or intensity on a beam of light. An excellent derivation, which we will take
for granted, of the relation between the periodicity of the grating profile and resulting
periodicity of the reflected light field is given in Ref. [7]. We can categorize the diffrac-
tion orders produced by the DMD by finding the reciprocal lattice. To do so, we first
define the lattice vectors a and b as

a = ddiag

(
î + ĵ√

2

)
, b = ddiag

(
î− ĵ√

2

)
.

Here ddiag = 7.637µm is the side of a micromirror and the unit vectors î and ĵ are defined

in Fig.1.2 (the auxiliary unit vector k̂ points out of the page). There are lattice sites at
every position Rmn = na +mb (where n,mεZ). The angles w.r.t the surface normal at
which the diffraction orders leave the lattice depend on the reciprocal lattice vectors a′

and b′, which are calculated to be

a′ =
2π

ddiag

(
î + ĵ√

2

)
, b′ =

2π

ddiag

(
î− ĵ√

2

)
.

At any distance from the DMD, the position of the diffraction orders in a plane parallel
to the lattice is R′nm ∝ na′ +mb′. There are orders in both diagonal directions of the
micromirror lattice at angles corresponding to the pitch ddiag. We use the DMD in a
horizontal configuration, meaning we only consider orders for which R′mm ∝ m(a′ +
b′) = 2π

ddiag

√
2 î. The spacing between those orders corresponds to a real space pitch of

d ≡ ddiag/
√

2 = 5.4µm, i.e. half the diagonal of a micromirror. When a visible laser is
used, over sixty diffraction orders can be seen with the naked eye.

3



Introduction

Figure 1.2: Tiling of the DMD and the definition of a row and column. Taken from Ref. [12].
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Figure 1.3: Schematic showing the on- and off-states of a single micromirror; α = 12◦ and β = 1◦. Taken
from Ref. [12].

1.3.2 Blazing the DMD

Having determined the directions in which diffraction orders propagate, we next discuss
their relative intensities. The distribution of the incident intensity over the diffraction
orders hard to determine generally because the shape of the repeating unit of a diffraction
grating influences it in a non-trivial way. For slanted planar repeating units, like the
micromirrors of the DMD, the distribution of intensity between diffraction orders can
be understood through the concept of blazing. A grating is said to be blazed when a
diffraction order aligns with the specular reflection from a micromirror (θa = −θb in
Fig.1.4); blazed orders receive a much larger portion of the incident intensity. Blazing
is a familiar phenomenon in the optics industry and is used to increase the efficiency of
diffraction gratings (see Ref. [9]).

Due to blazing, the intensity distribution and diffraction efficiency can be controlled by
the incident angle, so we must choose it well. The angle at which we operate the DMD
is dictated by three requirements. First, the outgoing angle of the diffraction orders
must obey the grating equation, so we have mλ = d(sin(θin) + sin(θm)) (see Fig.1.4 for
definitions). Second, we want to meet the blazing condition for mirrors in the on-state,
meaning θa = −θb, or equivalently −θm = θin − 2α. Finally, we want the used order to
depart perpendicularly to the DMD plane, meaning θm = 0, because our intention is to
image the DMD’s surface. Fig.1.4a shows plots of the grating equation for d = 5.4µm
and λ = 800 nm and several values of m. From the figure we see that no diffraction order
satisfies all three requirements exactly, but that the m = +3 order is most convenient
because it allows a beam going out perpendicularly when θin = 26.4◦, which is only 1.4◦

away from the blazing condition.

It is easy to measure the power in the m = +3 order as a function of θin to determine
how much efficiency we lose by not satisfying the blazing condition exactly. A HeNe laser
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m as dictated by the grating equation. Here, d = 5.4µm and
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vertical black line. The black (red) sloped line is the blazing
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(b) Power of the blazed diffraction
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of incidence.

(λ = 632.4 nm) is used to illuminate the DMD with a beam much smaller than the size
of the active array with a total power of 2.70 mW. The resulting power in the m = +3
order as a function of θin is shown in Fig.1.4b. In a range of three degrees centered
around θin = 24◦, the maximum diffraction efficiency recorded is 1.49/2.70 = 55.2%.

and the spread

√
var(I)

〈I〉 is 4.6%. The second brightest order is the zeroth order, which

contains 1.0% of the incident power. Since deviations of θin up to a few degrees do not
affect the diffraction efficiency by more than a few percent we conclude that the blazing
condition does not need to be met exactly. We used a laser with a wavelength of 632 nm
for these measurements, but the same behavior is expected in the near infrared.

Blazing is not only responsible for the high diffraction efficiency of the DMD, but also for
the fact that intensity can be removed from a diffraction order by flipping micromirrors at
all. When a mirror is flipped to the off-state, its blaze condition becomes −θm = θin+2α,
and we see in Fig.1.4a that the m = −2 order is then close to its blazing condition. The
m = +3 order is very far from the blaze condition for off-state micromirrors and thus
receives almost no intensity from them - they are indeed ’off’.
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Figure 1.4: This schematic defines the angles used in the text. All angles are positive for clockwise rotation
and are shown for the m = 1 order.

1.3.3 Image mode and Fourier mode

For later reference, Figure 1.5 illustrates two ways in which DMDs are typically arranged
in optical setups. The first is Fourier mode, where the DMD is placed in the back focal
plane of a spherical lens and the target plane is in the front focal plane of the same lens.
The name is explained by the fact that light fields in the back and front focal plane of
a lens are related by a spatial Fourier transform (see Appendix A). The second is image
mode, in which a second spherical lens is placed in the beam path and the target plane
is chosen in its back focal plane. For an ideal imaging system, the light fields at the
DMD and target plane are related by a simple magnification factor.

1.4 Summary

In this thesis we will investigate how to design a system that is able to spatially shape
ultrashort pulses in a target plane using a the DLP4500NIR DMD as a binary, pro-
grammable SLM.

In Section 2, we use a 4f -setup to image the DMD and attempt to create a flattop beam
profile in image mode, using a spatial filter to smoothen the profile. In Section 3, we
employ a cylindrical lens to create a hybrid plane, where the field at the DMD is Fourier
transformed in one direction and imaged in the other. In Section 4, we show that the

7
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Figure 1.5

hybrid plane setup is able to counteract the significant dispersion that occurs when an
ultrashort pulse is passed over a diffraction grating. In the discussion we touch upon
some technical aspects of the setup and its operation.
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Beamshaping in an image plane

2 Beamshaping in an image plane

For the reasons detailed in Section 1.1 our objective is to create a flat-top beam profile
from the (quasi-)gaussian beam profile emitted by our laser diode. In this section we
present exploratory beamshaping results where the DMD is imaged using a 4f setup and
a spatial filter is placed in the Fourier plane. To generate the correction pattern on the
DMD we use a simple algorithm which assigns a probability to each pixel to be switched
off. The data show that this simple algorithm allows smooth shaping of a beam profile
with a binary modulator (see also Ref. [5]) using only intensity modulation.

2.1 Definitions

In accordance with literature the pattern displayed on the spatial light modulator will
be called a kinoform. Our kinoforms are always binary 2-bit arrays2 of 1140 rows by
912 columns. A beam profile is the intensity of the light field as a function of position
and time in a plane perpendicular to the beam propagation direction. For a beam
propagating in the z direction I(x, y, z0, t) = 1

2ε0cE(x, y, z0, t) · E∗(x, y, z0, t), where I
is the beam profile at position z0. Usually, the signal we analyze is the output of a
CCD-camera placed in the target plane, which we will call S(x, y). Finally, we define
the shaping strength η as the fraction of the DMD pixels that are in the off-state. By
this definition, η = 0 when all mirrors are in the on-state and η = 1 when all mirrors
are in the off-state.

2.2 Beamshaping scheme

2.2.1 Strategy

Our strategy for beamshaping is simple. We define a target plane in the beampath after
the DMD, measure Itarget(x, y, t) there, and turn off pixels on the DMD in areas where
the measured intensity is above the target value. Since the target plane and the surface
of the DMD do not coincide, this approach requires a mapping from the intensity at
the target plane to the DMD. This mapping is relatively easy to obtain in a so-called
4f -setup (see Fig. 2.1). Two lenses are placed a distance f1 + f2 apart, thus performing
two consecutive spatial Fourier transformations of the light field at a distance f1 before
the first lens3. By the invertibility of the Fourier transform the field in the front focal
plane of the second lens is identical to the field in the back focal plane of the first lens,
up to a magnification factor and the point spread function of the optical system. The

2When displaying an 8-bit bitmap only AD-units of 0 and 255 are used.
3Appendix A containes a derivation of the result that lenses perform Fourier transformations between

their back and front focal planes.
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Beamshaping in an image plane

exact mapping between CCD pixels and ’DMD pixels’ (i.e. the micromirrors) will be
determined in Sec.2.2.3.

Smooth shaping with a binary modulator requires more than a standard 4f -setup, be-
cause turning off a DMD pixel introduces sharp edges (in image mode). The trick is to
use the Fourier plane that is created between the two lenses to our advantage. Since
sharp edges correspond to high spatial frequencies4, they pass through the Fourier plane
far from the optical axis (k = 0) and can be blocked by a circular aperture centered on
that axis. The aperture is used as a low-pass spatial filter, broadening the point spread
function of the imaging system. Qualitatively, the image is blurred when the aperture
is closed.

2.2.2 Setup

A CCD-camera is positioned in the image plane, perpendicularly to the optical axis so
that it records the beam profile in the target plane. The auto-adjust features of the
camera, a simple 480× 640 Logitech C270 webcam, could not be switched off, but since
the relative flatness of the measured intensity distribution is not influenced by these auto-
adjustments this is not problematic. We work with a large beam waist (2w0 ∼ 1 cm),
overfilling the DMD. The power loss due to overfilling (Iinηoverfilling) is traded off to the
reduction in power loss due to the shaping itself (Iin(1− η)). The total efficiency of the
beamshaping procedure can be factorized as ηtotal = ηoverfilling×ηdiffraction×(1−η), where
ηdiffraction = 55% (see Sec. 1.3). Special care is taken to ensure that the DMD surface
is perpendicular to the optical axis and that the (blazed) diffraction order propagates
parallel to the DMD-surface normal, so that the entire DMD is imaged at the camera.

2.2.3 Calibration

We now describe how to find the mapping between CCD pixels and DMD pixels. We
use functions from the python cv2 package, which is dedicated to image processing, to
implement a standard method in camera calibration that achieves sub-pixel accuracy.
The trick is to display a chessboard pattern on the DMD (see Fig.2.2), whose lines are
straight and whose surfaces are square, and determine the transformation needed on the
recorded image to make sure the recorded chessboard is straight and square.

Our calibration script is based on the following functions:

� cv2.cornerSubPix() is used for contrast-based corner detection. It is applied to
both the recorded image and the kinoform to obtain two sets of corner coordinates,
which are supposed to be the corners of the checkerboard. It is crucial that the

4In other words, high order terms in a Fourier expansion to accurately represent sharp edges.
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0th order

26.4°

90°
f1 f1 f2f2

777±0.7nm laser diode 

DMD Circular 
aperture

CCD camera

Object plane Fourier plane Image plane

Figure 2.1: Schematic of the 4f image-mode beamshaping setup, f1 = 150 mm and f2 = 50 mm. The
target plane is the surface of the CCD camera (Logitech C270), where a magnified image of the DMD

surface is created. The spherical aperture is placed in the Fourier plane (w.r.t. the object plane), so the
aperture acts as a low-pass spatial filter. Some elements have not been depicted: a telescope right after the

laser diode which enlarges the beam, a second mirror which aids in aligning the DMD and some neutral
density filters.
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Beamshaping in an image plane

entire displayed checkerboard is visible on the camera so that all corners can be
found. The resulting corner coordinates are drawn in Fig.2.2.

� cv2.calibrateCamera() and cv2.undistort(); the first function analyzes the
corners found by cv2.cornerSubPix() and determines distortion parameters, needed
if the detected chessboard does not have straight lines. The second function applies
the distortion transformation. These functions together generate an image that is
free of all distortions except those that are due to perspective transformations.

� cv2.getPerspectiveTransform(). Uses the (outermost) undistorted corners to
calculate an affine transformation. This means that only distortions due to rescal-
ing and 2D projections of rotations are calculated.

The final output of these functions are two 3x3 matrices and five distortion parame-
ters which serve as input for cv2.warpPerspective(), together with the image to be
transformed. The warpPerspective function then outputs the same image mapped
onto the DMD pixels. Corners are more easily detected if the input image is divided by
a checkerboard image before analysis because that division cancels the quasi-gaussian
beam profile.

2.2.4 Procedure

The recipe for beamshaping in image mode is as follows:

� Determine the calibration transformation by displaying a chessboard pattern and
running the calibration script.

� Establish a region of interest (ROI) and a target intensity, which has to be lower
than or equal to the lowest intensity in the ROI.

� Turn off all pixels outside the ROI and record S(x, y) with the aperture open.

� Apply the calibration transformation to the recorded figure to map it on the DMD
pixels.

� Give each pixel a probability to be switched off, where that probability increases
with the difference between the target and measured intensity in that region. Gen-
erate a beamshaping kinoform.

� Display the shaped kinoform on the DMD; the recorded image is now beamshaped.

� To smoothen the beamshape, filter out high spatial frequencies from the object
plane by closing the aperture.

12



Beamshaping in an image plane

Figure 2.2: Left The checkerboard kinoform (1140× 912 pixels). Right Camera recording corresponding to
the kinoform (480× 640), both images are to scale in units of their respective pixel dimensions. The corners

found by the calibration script in each image are drawn in color. The pattern is inverted, due to the
direction from which the laser beam is incident on the DMD in this example. The aspect ratio of the

pattern is changed because the diamond configuration of the DMD pixel array (see Sec. 1.3).
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(a) Unshaped, unfiltered.
√

var(SROI(x, y)) = 16.6, 〈SROI(x, y)〉 = 135.4,ηROI = 0.

(b) Shaped, unfiltered.
√

var(SROI(x, y)) = 23.9, 〈SROI(x, y)〉 = 133.9,ηROI = 0.519.

(c) Shaped, filtered.
√

var(SROI(x, y)) = 9.57, 〈SROI(x, y)〉 = 123.3,ηROI = 0.519.

Figure 2.3: These figures qualitatively explain the flow of the beamshaping procedure. (a) shows the signal
S(x, y) before beamshaping. On the left the camera recording is shown and on the right a color plot of the
region of interest (ROI), which was a rectangle with (88, 102) and (380, 538) (row, column) as corners. The
standard deviations and means reported are calculated for within this ROI. In (b) a beamshaped image was
displayed on the DMD. In (c) the aperture was closed. The horizontal bars on the top and bottom are due

to a rim of 10 inactive pixels which frame the active area of the DMD.



Beamshaping in an image plane

Figure 2.4: For comparison to Figure 2.3a, this picture shows the effect of spatial filtering without
beamshaping.

√
var(SROI(x, y)) = 14.5, 〈SROI(x, y)〉 = 123.5,ηROI = 0.

In this scheme we use the DMD to shape the amplitude of the light field non-iteratively,
distributing off-pixels probabilistically in proportion to the excess intensity. Figs.2.3
and 2.4 show examples of S(x, y) before and after beamshaping with open and closed
apertures.

For these trials, we only shaped within a rectangle in the center of the DMD to reduce
the necessary shaping strength. No effort was made to produce a neat beam-profile prior
to the DMD, as the beamshaping procedure should be able to clean up the beam.

2.3 Results

In Figure 2.5 the results of eleven beamshaping routines at various shaping strengths are
plotted for four settings of the spatial filter aperture. Prior to beamshaping, all pixels
within the ROI are on and all pixels outside the ROI are off (ηROI = 0). Regrettably,
the aperture settings could not be made quantitative with the available equipment but
care was taken to reproduce the same settings in every iteration of the routine. Setting
3 is open (aperture diameter > 1 cm), setting 0 is closed (aperture diameter ∼ 1 mm)
and settings 2 and 1 are intermediate aperture sizes.

We are interested in creating a flattop, meaning that we the standard deviation (sd) of
SROI(x, y) to be as small as possible. Since we are only interested in relative flatness
of the shaped image, a power calibration of the signal is unnecessary and we use uncal-
ibrated Analog-to-Digital Units (ADU). Since we used an 8-bit camera the ADU take
integer values between 0 and 255 (28).

Fig.2.5a highlights the effect of varying the beamshaping strength on the flatness of the
flattop. Indeed, the lowest sd is achieved for the strongest beamshaping, although the
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(a) Standard deviation within ROI vs. ηROI. The aperture setting is indicated in the
legend. Setting 3 is open (aperture diameter> 1 cm), setting 0 is closed (aperture

diameter ∼ 1 mm).
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(b) Standard deviation vs. aperture setting (large aperture to the right) for six
selected beamshaping strengths. The y-axis measures the flatness of the flattop and

the x-axis the amount of spatial filtering (strongest filtering on the left). ηROI is given
in the legend.

Figure 2.5: Two different representations of the same data. The yellow line in the bottom plot is the
unshaped reference, corresponding to the left-most points in the top plot.
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figure shows that the effect improves only marginally when ηROI > 0.2.

Fig.2.5b highlights the effect of closing the aperture. The yellow line is a reference, which
shows the effect of spatial filtering for ηROI = 0. Observe that strong shaping increases
the sd of the flattop if there is no spatial filtering, but that the introduced error is all
filtered out when the aperture is closed. A direct look at the images shows that the
increase in sd that found for several values of η when going from aperture setting 2 to
3 (Fig. 2.5b) is due to the aperture cutting into the side of the ROI, adding low spatial
frequency deviations from the target flattop intensity.

Fig.2.6 shows spatial Fourier transforms of SROI(x, y), illustrating the operating principle
of binary beamshaping in image mode. The beamshaping procedure shifts the standard
deviation within the ROI from low spatial frequencies to high spatial frequencies. In real
space, this means that the sd due to the quasi-gaussian beam profile is transferred to
sharp dark spots caused by off-state micromirrors, which can subsequentaly be filtered
out by the aperture, leaving a beamshape that is closer to a flattop.

The lowest rms-flatness (the standard deviation divided by the mean value) achieved
within the ROI in image mode is 7.5%. The remaining error is mainly due to phase effects
occuring after the DMD in the beampath, which cause interference bands such as the
diagonal ones seen in Fig.2.3 and the Fourier transforms in Fig.2.6. Optical interference
patterns due to, for instance, dust specks on the optics between the DMD and the CCD
or Fabry-Perot like interferences in the glass covering the CCD limit the flatness because
they disrupt the point-to-point mapping on which our method relies. Since we operate
the DMD in image mode, we cannot influence the phase profile directly, but we can
reduce the background in regions where the interference is constructive. However, the
whole ROI then has to be lowered to the deepest interference fringe, meaning that power
efficiency goes down radically. This effect may explain the small decrease in sd observed
for ηROI > 0.25.

2.4 Discussion

Two points related to the data presented in this chapter merit a short discussion, namely,
Moiré interference and time variation of S(x, y).

In the imaging setup, Moiré effects can be observed when a diagonal grating with a
pitch of 3 or more pixels is displayed on the DMD, but not for smaller pitches. Moiré
patterns are basic interferences due to the overlap of two periodic structures, for instance
between the DMD array and the CCD array. They can be distinguished from optical
interference effects because Moiré patterns are very sensitive to the relative orientation
of the grids. The observed Moiré patterns disappeared upon spatial filtering. Moiré
interference between the DMD and CCD lattice is clearly beyond the resolution of our
imaging setup and does not contribute significantly to the remaining spatial variation of
the flattop.
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Figure 2.6: 2D Fourier transforms (FFT-algorithm) of the ROI for increasing ηROI. On the left, the
aperture is open (setting 3) while on the right it is closed (setting 0). The color bar is logarithmic and low
spatial frequencies are at the center of the plot. Observe how the beamshaping procedure adds high spatial

frequency noise, but also narrows the peak at the center.
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In the above, we have assumed that S(x, y) is time independent. Since our algorithm
allows several seconds to pass between the recording of the unshaped and the shaped
images, time variation of S(x, y) can compromise our method. Curiously, the camera
image was observed to fluctuate periodically over time, but only in regions where 0 .
η . 1. The camera shutter time was adjusted to integrate those fluctuations over an
integer number of periods, so all data reported in this chapter should in fact be regarded
as a time average of a periodically varying signal. The reason for this periodic fluctuation
is explained in detail in Section 5.3.

2.5 Conclusion

We conclude that, although proof of principle is established beyond doubt, intensity
control is insufficient to generate patterns from an arbitrary beam in the image plane to
the accuracy we desire. To improve the results without changing the approach, additional
effort would have to be put into cleaning up the beam before passing it over the DMD,
but that would defy its purpose, since we want to use the device itself to clean up the
beam.
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3 Beamshaping behind a cylindrical lens

In this chapter we aim to improve the rms-error of the flattop by increasing the number
of controllable degrees of freedom per area in the target plane. This is achieved by
focusing the beam in one direction, using a cylindrical lens. The result is a strongly
elongated focus measuring a few microns by a few centimeters (see Fig.3.2 and Table
3.1).

This chapter will show that a linefocus setup allows the control of the intensity profile
that we need along its elongated direction. The rms error of the peak intensity is reduced
to 4.3% (compared to an rms error of 7.5% in the previous chapter).

3.1 Linefocus setup

Compared to the image mode setup used in the previous chapter we made the following
general improvements:

� To reduce vibrations, the micro-mirror array is glued to an optical mount and
fixated separately from its control board.

� A scientific camera (Pointgrey Chameleon CMLN-13S2M-CS, 1280×960 px, 3.75µm
pitch) is installed which allowed full control of its settings (shutter time, gain etc.).
All gain and auto-adjust features are disabled. We first removed two sheets of glass
that were in front of the camera, which were found to cause Fabry-Perot like in-
terferences with the infrared wavelength of our laser.

� An infrared (777 nm) laser diode is pigtailed to a single-mode optical fiber (Thor-
labs LPS-785-FC) which is directly connected to a collimation lens (Thorlabs
F810FC-780) to produce a wide, collimated beam (∼ 0.75 cm beam diameter).
Passing the laser through a single-mode optical fiber creates a more gaussian beam-
profile compared to the direct output of the laser diode. The beam waist is, again,
intentionally made larger than the DMD active array, to reduce the intensity vari-
ation of the input beam to be shaped.

The optical setup in Fig.3.1 shows the optics of the hybrid mode setup. The beam is
incident on the DMD under an angle of 26.4◦ so that a blazed diffraction order exits
perpendicularly from its surface. A spherical lens (f = 15 cm) is placed in the beam,
the DMD is positioned in the back focal plane of this lens and the camera in its front
focal plane. A cylindrical lens (f = 12.5 cm) is placed 2.5 cm behind the positive lens so
that the back focal planes of the cylindrical and the spherical lenses coincide, completing
the setup. A cylindrical lens has an infinite radius of curvature in its inactive direction
and a finite one, corresponding to its focal length, in the orthogonal direction. The
active direction of the cylindrical lens images the DMD, while the inactive direction of
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Beamshaping behind a cylindrical lens

the cylindrical lens allows the spherical lens to create a focus (i.e. a Fourier transform).
Nota bene: it is not the cylindrical lens that focuses the beam in this setup, but the
spherical lens. If different focal distances are chosen, the order of the spherical and
cylindrical lenses could be reversed.

Ray optics shows that two consecutive, positive lenses create an image of the back focal
plane of the first lens in the front focal plane of the second lens regardless of the distance
between the lenses and that the magnification of the image is, in this case, 12.5/15. This
means one row of the DMD is imaged on ∼ 2.1 rows of camera pixels.

We align the linefocus setup using the following steps:

� Place the DMD in the back focal plane of the spherical lens by using a ruler to
measure the distance.

� Position the camera in the front focal plane by adding a mirror between the DMD
and the spherical lens and imaging a scene at a large distance. This method is
preferable to the obvious alternative -finding the smallest beam waist of a colli-
mated beam passing over the DMD and through the lens- because a slight curvature
of the DMD’s surface produces fringes around the DMD’s Fourier plane. This cur-
vature makes it impossible to determine the position of the front focal plane with
sufficient precision by using a coherent light source that passes the DMD.

� Insert the cylindrical lens.

� Move back the camera to account for the fact that the inactive direction of the
cylindrical lens has a different refractive index than the surrounding air. This
causes a slight increase of the focal distance of the spherical lens. Using gaussian
optics, the necessary adjustment is calculated to be 0.3 mm.

� Finally, adjust the position of the cylindrical lens until the camera is in the imaging
plane. The imaging plane is recognized by creating a sharp edge on the DMD and
making its image as sharp as possible.

Besides the proper placement of the optical elements along the optical axis, proper
imaging of the DMD’s rows requires that the active direction of the cylindrical lens and
the side of the DMD are parallel. To that end, the cylindrical lens was mounted on a
stage that allowed it to rotate around the optical axis of the system.

In the transverse direction, all ∼ 1000 pixels of a DMD-column are focused together,
allowing smooth shaping of the intensity. In the longitudinal direction, each DMD row
is imaged separately, so that the intensity of longitudinal sections of width ∼ 8 µm can
be adjusted separately. We have turned the target plane into a hybrid of image plane in
the longitudinal direction and Fourier plane in the transverse direction.
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Figure 3.1: The hybrid mode setup. Because the beam is now focused in one direction, attenuators are
placed immediately after the laser diode to avoid camera saturation, but these are not depicted. (a) Top

view of the setup, showing the active direction of the cylindrical lens creating the longitudinal dimension of
the linefocus. (b) Side view, showing the inactive direction of the cylindrical lens and the transverse

dimension of the linefocus.

3.2 Method of preparation of a beamshaped linefocus

To shape the beamprofile, a calibration map between rows of the CCD and columns of
the DMD5 is needed. A convenient way to create this mapping is to switch on a single
column on the DMD and let it walk off both edges of the CCD. When the maximum
intensity of the entire image coincides with the edge of the CCD, the DMD-column
turned on at that time corresponds to the edge of the CCD. After finding the positions
of the edges this way, a linear interpolation specifies the rest of the mapping.

The signal used to determine the beamshaped kinoform is SBS, defined as

SBS(y) =

xmax∑
xmin

S(x, y).

Where S(x, y) is the recorded image and xmax and xmin are the boundaries of a rect-
angular region of interest (±20 px) around the linefocus. SBS is a convenient target
variable, because it can be calculated quickly, and it is insensitive to both discretization
errors and small fluctuations of the position of the linefocus, if xmax and xmin are chosen
far enough apart. The number of pixels to be turned off in each CCD row is determined
by the following formula

Noff(y) = x
1140

1.80
× (1− Itarget/SBS(y))y.

5Practicalities of our setup requires the camera to be rotated by 90◦, so that a row on the camera
corresponds to a column on the DMD.
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Where Noff(y) is the number of pixels to be turned off in the DMD-column corresponding
to CCD-row y (maximum 1140) and Itarget is the target intensity. Surprisingly, the
constant of proportionality between Noff and the measured laser power was not 1, but
1/1.80. Its value depended on the details of the setup, in particular the magnification
factor. This factor is probably related to the DMD-addressing issues discussed in Sec.5.3.

When Noff is known for all DMD-columns, the beamshaping kinoform is generated and
displayed on the DMD. It is important to note that the locations of the off-pixels within
each DMD-column were randomized. Fourteen seconds elapsed between the recording
of the unshaped and the shaped image in Section 3.3.

Fig.3.2 shows the camera images recorded before and after shaping. These images are
analyzed in detail in the next section.

Figure 3.2: The figure shows the data analyzed in this section. On the left, the prepared linefocus before
beamshaping - all DMD mirrors are in their ’on’ position. On the right, the linefocus after beamshaping,
where some mirrors have been flipped. The dashed line indicates the region of interest (730× 40 pixels),

which is identical in both images.

3.3 Results and analysis of a beamshaped linefocus

We are primarily interested in how the rms-flatness (the standard deviation divided by
the mean value) of the peak intensity (Ipeak) of the shaped light field compares to that
of the unshaped light field. To obtain Ipeak with sub-pixel accuracy, we perform a least-
squares fit for each row of the recorded image using Python’s orthogonal linear regression
package (the module scipy.odr). Since the linefocus is only a few camera pixels wide, the
discretization of the signal by CCD-pixels has a large effect on the maximum intensity
recorded within a row. Performing fits is therefore crucial to find realistic values for
the peak intensity. In this section we first report and interpret the results of these fits
for a single linefocus before and after beamshaping. Next we compare the temporal
variation of the fit parameters to their spatial variation, to determine whether temporal
fluctuation of the signal limits the rms-flatness. Finally we investigate the variation of
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the flatness between different beamshaping trials.
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Figure 3.3: This simple simulation shows, from top to bottom, Fourier transforms of a gaussian with high
spatial frequency noise, a block wave, and their product. The bottom figure shows the most accurate

expectation of the transverse intensity profile before beamshaping. The Fourier transforms were calculated
with the FFT-algorithm (N = 1000).

To choose an appropriate fit function, recall that the recorded transverse intensity profile
is the Fourier transform of the transverse intensity profile at the DMD. The functions
plotted in Fig.3.3 illustrate the transverse intensity profile that we expect to find, given
that the gaussian input beam is noisy and overfills the DMD,.

The top figure shows that adding (high frequency) noise to a gaussian leads to symmetric
fluctuations in the Fourier transform at high |k|. The middle figure shows that the effect
of sharp edges, i.e. clipping the gaussian wings, leads to additional symmetric, high-
|k| components separated by nodes. The Fourier transform of a block wave is known
as a sinc-squared function (see Eq.3.2). The bottom figure shows the product of both
functions and its Fourier transform. Of the three figures, the bottom one shows the most
accurate expectation of the transverse profile.

24



Beamshaping behind a cylindrical lens

The simulations shown in Fig.3.3 suggest that both a gaussian and a sinc-squared func-
tion may fit the data. Indeed, both fitting functions are found to have comparably
small fitting errors (see Tables 3.1 and 3.2) and were in qualitative agreement for all
parameters except Ibg.

The following definitions are used for the gaussian

f(x, y) = Ipeak(y) exp(−(x− µ(y))2/2σ(y)2
gauss)) + Ibg(y), (3.1)

and sinc-squared function

f(x, y) = Ipeak(y)

(
sin((x− µ(y))/σ(y)sinc)

(x− µ(y))/σ(y)sinc

)2

+ Ibg(y). (3.2)

Here x is the transverse position, i.e. the column index of the CCD, y is the longitudinal
position, i.e. the row index of the CCD, and f(x, y) is the fit function. For both fit
functions, four fit parameters are used: Ipeak is the maximum intensity, µ is the mean
position of the central maximum, σ determines the width of the central maximum and
Ibg is the background intensity. Every row of the CCD is fitted separately. To be able
to compare the widths found by both fitting functions, we relate σ to the full width half
maximum (FWHM). For the definitions given above, FWHMsinc = 2.718×σsinc whereas
FWHMgauss = 2×

√
2× ln 2× σgauss = 2.355× σgauss.

Some debris was left on the CCD-array when the protective glass covers were removed.
Since the linefocus is very narrow (∼ 4 pixels wide) the debris’ shadows disturbed the
measured properties of the linefocus, especially Ipeak and its variance. We solved this
problem by applying a data-mask, i.e. by excluding data-points from the analysis using
a pre-specified criterion. This mask is constructed by illuminating the CCD with white
light and dividing the resulting image by a 2D gaussian fit of its intensity. All pixels
below a threshold value of 0.85 do not follow the intensity profile of the total image and
are masked. In our case this amounted to 0.68% of all pixels. If any pixel in row y′

within the region of interest was masked, row y′ was entirely discarded from the fitting
results. Since the region within which we fit is but 40 px wide, only ∼ 3.5% of rows have
to be discarded. No masks were employed in the beamshaping procedure itself, only in
the analysis.

Although our target variable is Ipeak, the other fit parameters give important insights
into the effects that the DMD has on the beam. Therefore, the results for all four
gaussian fit parameters are shown before and after shaping in Figs.3.4 - 3.9 as a function
of longitudinal position. These data were taken 14 seconds apart during which time the
kinoform on the DMD was adjusted. Positions are shown in micrometers with the origin
chosen at the center of the region of interest. A summary of the means and standard
deviations of the parameters are listed for both fit functions in tables 3.1 and 3.2. The
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parameters reported in these tables were calculated using only the data points within
the vertical dashed lines, to negate edge effects. The error bars in these figures are the
standard least-square fitting errors as reported by the odr fitting package6. For all data
reported in Sec.3.3, an 18 ms camera shutter time was used.

3.3.1 Results of intensity fits
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Figure 3.4: In blue are the gaussian fit values of the peak intensity when all mirrors are turned on, red when
the beamshaping kinoform is displayed. From this figure one may calculate that 49% of the power in the

used diffraction order is discarded to create this flattop. See Table 3.1 for further details.

Fig.3.4 shows that the longitudinal intensity profile is succesfully flattened. All mirrors
outside the region of interest are turned off and the target intensity is 55 ADU. This
shaped flattop has rms error = 4.2%. The average rms fitting error is lower, namely 1.2%,
indicating that there may be room for improvement of the flatness. We will investigate
in sections 3.4 and 3.5 what causes the residual variance in the shaped flattop. To create
this flattop, 49% of the power in the used diffraction order is discarded.

6These fitting errors are the output of scipy.odr.run().sd beta
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3.3.2 Results of FWHM fits

1500 1000 500 0 500 1000 1500
y ( m)

0

5

10

15

20

FW
HM

 (
m

)

Full width half max vs. distance from linefocus center
before shaping
after shaping

Figure 3.5: Full width half maximum fit values for the gaussian fits. See Table 3.1 for further details.

Fig.3.5 shows that the width of the unshaped linefocus is uniform to a small rms-error of
1.6%, indicating that the image plane of the DMD is properly parallel to the CCD-array.
The average width of the linefocus prior to beamshaping was 15.8 µm - for comparison,
the diffraction limit for a 1-inch lens with f = 0.15 m is about 4.6 µm.

It is interesting that the width decreases noticeably after beamshaping, especially to-
ward the right of the figure. To investigate whether this effect is in fact due to the
beamshaping itself, we plot it against the shaping strength η(y) = (Ipeak,unshaped(y) −
Ipeak,shaped(y))/Ipeak,unshaped(y). The parameter η takes values between zero (no mirrors
switched off) and one (all mirrors switched off). Fig.3.6a shows η(y) for the kinoform dis-
played in this section. Due to the roughly linear intensity profile prior to beamshaping,
the shaping strength correlates almost linearly with position.

Fig.3.6b shows the difference of the data in Fig.3.5 (i.e. FWHMshaped(y)− FWHMunshaped(y))
plotted against η(y). The linear fit in this figure shows that the width of the linefocus
decreases linearly (to a good approximation) with shaping strength, so we conclude that
turning off mirrors in a DMD column makes the linefocus narrower in the corresponding
camera rows. The same behavior is found for the sinc-squared fits.
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(b) FWHMshaped − FWHMunshaped is shown as a function of η. A linear fit of the form aη + b is shown as
well. We found a = −1.54± 0.08, b = −0.04± 0.04. This figure shows that the decrease of the width of the

linefocus after shaping, observed in Fig.3.5, is indeed due to the beamshaping itself.
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3.3.3 Results of mean position fits
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Figure 3.7: The gaussian-fitted transverse mean position of the peak intensity as a function of the
longitudinal position. See Table 3.1 for further details.

Fig.3.7 shows µ, the mean transverse position of the linefocus, as a function of y. The
linear slope of these data is the result of a difference in orientation (0.636◦ ± 0.006◦)
between the DMD and the camera. The constant offset between the DMD before and
after beamshaping is the result of time variation of the mean of µ. The curvature of µ is
isolated in Fig.3.8a, where a linear fit to µ(y) has been subtracted. It is a notable effect
because it increases when additional lenses are placed between the DMD and the target
plane - it must be accounted for when designing more complicated setups involving lasers
and the DMD.

In Fig.3.8b, the DMD is replaced by a mirror that had the same outline as the DMDs
mirror array (to within 1 mm) and the same analysis as in Fig.3.8a is performed. Com-
paring Figs.3.8a and 3.8b we see that the curvature is actually due to the DMD, since
the quadratic fitted curvature of µ(y) is an order of magnitude lower for the mirror
(−1.3 ∗ 10−7 ± 0.3 ∗ 10−7µm−1) than for the DMD (2.5 ∗ 10−6 ± 0.1 ∗ 10−6µm−1). We
therefore speculate that the curvature of µ is caused by a physical curvature of the DMD
surface.
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(a) Mean positions after subtracting a linear fit from the data in Fig.3.7. The error bars are the sum of the
error bars in Fig.3.7 and the fitting error on the constant offset of the linear fit. The slope of both data sets

was 0.0111± 0.0001, making the inclination of the linefocus 0.636◦ ± 0.006◦ w.r.t. the CCD array. A
quadratic fit to this figure showed that the curvature of both linefoci was also identical and equal to

2.5 ∗ 10−6 ± 0.1 ∗ 10−6µm−1.
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(b) Mean positions after subtracting a linear fit from the position data when the DMD is replaced by a mirror
with an aperture. To obtain this figure an identical analysis was performed as for Fig.3.8a. Here, the slope of
both data sets was 0.00934± 0.00009. So the inclination of this linefocus was 0.535◦ ± 0.005◦. A quadratic
fit to this figure shows that the curvature of the linefoci was −1.3 ∗ 10−7 ± 0.3 ∗ 10−7µm−1, opposite in sign

and about twenty times smaller than the curvature of the mean position in the presence of the DMD.

Figure 3.8
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3.3.4 Background fits

The most important thing to notice in Fig.3.9, which shows the (gaussian) fitted values
for Ibg, is that Ibg was small. We have an excellent signal to noise ratio. Toward the right
side of the figure the gaussian fitting algorithm raised the background to compensate
for fringes that were observed next to the linefocus. The sinc-squared function was able
to fit the fringes and did not show a similar increase of the background, which should
therefore be regarded as mere sfitting artefact.
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Figure 3.9: The gaussian-fitted background of the peak intensity as a function of the longitudinal position.
See Table 3.1 for further details.

An overview of the averages of all fit parameters can be found in Tables 3.1 and 3.2.
Comparison of the two tables shows that both fitting functions yield approximately the
same results. The sinc-width is slightly larger and the sinc-intensity somewhat lower.
The sinc-squared fit is better able to fit fringes, which were most pronounced in regions
of high Ipeak. Compared to Ref. [5] we can create a homogeneous flattop over a much
longer range using our hybrid mode setup. The rms-flatness is improved from 30.1% to
4.4%. However, since the standard deviation of Ipeak after beamshaping is still three
times larger than the fitting error, there is room for improvement of the flatness.
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Parameter Before beamshaping After beamshaping

Intensity Ipeak (ADU) 116±35±1.0 57±2.5±0.7

FWHM (µm) 15.8±0.3±0.17 15.0±0.5±0.22

Mean position µ (µm) 1.27±8.88±0.070 3.64±8.89±0.09

Background Ibg (ADU) 0.5±0.2±0.24 0.5±0.2±0.16

Table 3.1: Average values of the gaussian fit parameters. Numbers are calculated for the data between the
vertical lines in Figs.3.4 - 3.9. The unit of intensity and background is 8-bit ADU. The first number

indicates the average of the fit parameter, the second its (spatial) standard deviation and the third its
average fitting error.

Parameter Before beamshaping After beamshaping

Intensity Ipeak (ADU) 114±34±1.0 56±2.4±0.6

FWHM (µm) 16.5±0.2±0.15 15.7±0.4±0.16

Mean position µ (µm) 1.25±8.87±0.070 3.63±8.87±0.080

Background Ibg (ADU) -0.2±0.2±0.24 0.3±0.1±0.14

Table 3.2: Average values of the sinc-squared fit parameters. Numbers are, again, calculated for the data
between the vertical lines in Figs.3.4 - 3.9. The unit of intensity and background is 8-bit ADU. The first

number indicates the average of the fit parameter, the second its (spatial) standard deviation and the third
its average fitting error.

3.4 Time variation of the linefocus

The shaped linefocus reported in 3.3 is only flat to within a few percent, mostly because
of noise components with high spatial frequency. Because we have a thousand degrees of
freedom to shape a segment of the linefocus ∼ 2 camera pixels wide, one would expect
higher accuracy. However, if there is significant time fluctuation of S(x, y) during the
fourteen seconds that elapse between the recording of the reference and the beamshaped
image, the generated kinoform does not correctly shape the field that is present when
the kinoform is displayed. To determine whether the linefocus can be made flatter by
speeding up the shaping procedure, we investigate its time variation.

Time variation may occur on short or long timescales compared to the integration time of
the camera. With four runs of fifty images we characterize the linefocus under different
circumstances: shaped or unshaped and with 18 ms or 78 ms camera integration time.
The magnitude of time variation is quantified by the standard deviation of these data
sets. Recording fifty images over twenty seconds will expose any relevant slow drift in
the signal. A random waiting time 0s < twait < 1s is inserted between each shot. When
increasing the shutter time, ND-filters must be added to avoid camera saturation.

For each shot we performed the same transverse gaussian fits as in Sec.3.3, so that we
obtain the fit parameters as a function of space (y) and time (t). The fitting errors in
each run were comparable to those reported in Table 3.1.
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Figure 3.10: Each data point represents the peak intensity of one image averaged over the entire length of
the linefocus (820 pixel rows). The average intensities fluctuate strongly over time only for shaped images

and only for certain integration times (shutter times). See Table 3.3, first row, for the standard deviations of
these distributions. The error bars are smaller than the points representing the data.

Fig.3.10 shows the average over y of Ipeak(y, t) as a function of time. The time variation
of the unshaped linefoci is in the order of only a few percent and is similar for both
shutter times (see also the top row of Table 3.3). The time variation of the shaped
linefoci, however, is eight times larger when recorded with a 78 ms shutter time com-
pared to an 18 ms shutter time - it appears that the beamshaping procedure introduces
time variation. Note that since the time variations in Fig.3.10 remain even after spatial
averaging, they must be in phase over wide regions of the linefocus. If the time varia-
tion were due to noise, it should be averaged out for longer camera integration times.
However, the shortest integration time gives the most constant signal, which shows that
the time variation is not random. In contrast to random noise, periodic signals will
appear constant if the camera integration time is an integer multiple of their period, but
will fluctuate when a different integration time is chosen. Therefore 〈Ipeak(y, t)〉y must

fluctuate periodically with a period (in ms) that is approximately a divisor of 18 but not
of 78. This finding is confirmed with photodiode measurements in Sec.5.3.

33



Beamshaping behind a cylindrical lens

Parameter Before
beamshaping

After beamshaping

18ms 78ms 18ms 78ms not
shuffled

shuffled√
vart(〈Ipeak(y, t)〉y)

Time variation of
average intensity

0.3425 0.5219 0.2059 1.613 0.5427 0.4077

〈√
vart(Ipeak(y, t))

〉
y

Average time
variation per row

1.144 1.349 0.6208 1.945 1.073 1.021

〈
〈Ipeak(y, t)〉y

〉
t

Intensity averaged
over time and space

93.04 93.36 23.85 35.67 50.47 49.91

〈√
vary(Ipeak(y, t))

〉
t

Flatness averaged
over time

16.96 15.89 1.185 3.103 3.949 3.961

Table 3.3: The quantities in this table are chosen to characterize the stability of the linefocus. All values
are in 8-bit ADU. Fifty consecutive shots represent the time dimension. The region of interest spans

820× 40 camera rows, representing the space dimension. The interpretation of the first and second row is
discussed in the text. The ratio of the fourth and third rows gives the time average of the rms-flatness of
the linefoci. The two rightmost columns show the data from Section 3.5, which is recorded with an 18 ms

integration time.

Fig.3.11a plots the time variation per row (
√
vart(Ipeak(y, t))) as a function of y, showing

which rows of each linefocus are responsible for the time variation of the mean shown in
Fig.3.10 (corresponding to the second row of Table 3.3). We see maxima in time variation
around y ∼ 400 µm for all linefoci except the shaped 18 ms one, indicating that not
rows in that vicinity fluctuate more strongly. Fig.3.11b shows that the beamshaping
procedure itself causes the time variation, since

√
vart(Ipeak(y, t)) correlates η, most

strongly so for the 78 ms case.

In summary, from the figures in this section we draw the conclusion that there is time
variation, which is caused by the beamshaping itself and dominated by a periodic con-
tribution, and that the shutter time of the camera may be adjusted to compensate for
the effect.

These findings are confirmed by further investigations in section 5.3. The average time
variation of Ipeak(y), for a well-adjusted shutter time, is equal to 0.62ADU. Since this
is on the same order as the average fitting error of Ipeak in the previous section (which
was 0.6ADU), we may conclude that the time variation can be suppressed sufficiently
to give a dependable reference for calculating a shaped kinoform and does not limit the
achievable flatness. However, we hereafter keep in mind that all reported linefocus data
are integrations over an integer number of periods of a periodic signal.
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vart(Ipeak(y, t))) is plotted as a function of longitudinal position y. The data

used is the same as in Fig.3.10. The behavior of the shaped linefocus recorded with 78 ms is anomalous.
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(b) For each row the standard deviation over time is plotted against shaping strength, the data are the same
as in Fig.3.10. The time variation of the beamshaped signal significantly increases with shaping strength if

the integration time is 78 ms, but does not change if the integration time is 18 ms.

Figure 3.11
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3.5 Shuffling

When determining beamshaping kinoforms, we have not accounted for the quasi-gaussian
transverse intensity profile at the DMD. Ideally, each DMD pixel would be weighed for
the local intensity when calculating the kinoform. This information, however, is not
directly accessible in the hybrid mode so the probability to be switched off was simply
made equal for each pixel. In addition to the transverse variation in intensity, light
originating from different DMD-pixels also arrives to the image plane with a different
phase. This might affect the linefocus in ways that are not immediately obvious.

Light fields can be simulated to figure out the effect of the placement of off-pixels, but
a quick experiment suffices to determine whether the particular random pattern of off-
pixels influences the achievable flatness. To that end, we shuffled the pixels, meaning that
the distribution of off-pixels was re-randomized separately for each row, while keeping
the total Noff(y) constant.

We perform two runs of 50 images, with random time intervals interjected, using an
18 ms shutter time to minimize time variation. In one run, the kinoform is shuffled
between each image, in the other run only one kinoform is displayed. The results are
shown in Fig.3.12 and Table 3.3. The figure shows that Ipeak(y, t) does not fluctuate
more in the shuffled run than can be explained by the time variation. No significant
differences between the ’shuffled’ and ’not shuffled’ runs were found for the other three
fit parameters either. Since all 50 random distributions of the off pixels appear to be
equivalent, we may conclude that the flatness of the linefocus can not be improved by
shuffling.
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Figure 3.12: Each data point represents the standard deviation of Ipeak in one row over 50 shots. In the
shuffled run, a new kinoform is generated between each shot. For numbers characterizing the linefoci, see

Table 3.3.

3.6 Conclusion

We have improved the rms-flatness of a linefocus from 34.87/115.84 = 30% to 2.46/56.94 =
4.3% over a length of 3 mm in the target plane, without strongly affecting its width or
mean position. To achieve this, 49% of the power within the region of interest is shaped
away. Our beamshaping procedure causes a periodic variation of the intensity over time,
but this effect can be integrated out by choosing a camera shutter time of 18 ms. This
solution is sufficient to shape a CW-laser, but the time variation will need to be un-
derstood and counteracted if the DMD is applied to shape femtosecond pulses. The
minimum measured time variations of a beamshaped linefocus are 0.628/23.85 = 2.6%,
and 1.073/50.47 = 2.1%. The shuffling experiment shows that it does not matter where
pixels in a DMD column are turned off, as long as their distribution is random and
the right number are turned off. If a linefocus of this quality can also be created us-
ing a femtosecond pulse laser and a microscope objective, it would be sufficient for our
purposes.
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4 Beamshaping broad spectrum light

In the previous chapter we have described a simple method and setup that can produce
a satisfactory flattop using CW-light from an infrared laser diode. Before refining the
beamshaping method, we need to see whether our method is applicable to (ultrashort)
pulses.

The defining property of a pulse is that its intensity I(x, t) is time-dependent even when
an optical cycle is averaged out. Since I(x, t) and its spectrum I(x, ω(λ)) are related
by Fourier transformation, pulses must have broader spectra than CW fields - since the
latter transform to the δ-function in frequency space. For a pulse with gaussian temporal
profile of 100 fs duration and a center wavelength of 800 nm this relation dictates that it
has a minimum spectral width of 18.6 nm7. Such a broad spectrum is a potential problem
because the DMD operates as a diffraction grating, meaning that the diffraction angle
of its orders is sensitive to wavelength (see Eq.4.1, the grating equation). In the Fourier
(back focal) plane of the DMD, the variation of diffraction angle turns into a variation in
position, which complicates experiments with beamshaped pulses. The grating equation
can be used to calculate that, for our optical system (see Fig.3.1), a spectral shift ∆λ
of 20 nm leads to a position shift ∆x of about 1.7 mm in the back focal plane - over
a hundred times the width of the linefocus found in the previous chapter. Clearly,
broad spectra are a fundamental property of short pulses that may interfere with our
beamshaping scheme.

To investigate the effect of a pulse’s broad spectrum on our beamshaping method more
precisely, we use a model system to isolate it from the effect of other differences between
pulse- and CW-lasers. Our model system is a subthreshold CW laser diode with a
linewidth of about 16.6 nm. Besides practical advantages, this model system offers the
benefit that CW-light averages over vibrations of the DMD. It is important to keep in
mind, though, that the results in this chapter were not obtained with an actual 100 fs
pulse laser, but with a CW-laser of a similar spectral width.

In Section 4.1, the spectrum of the laser diode is characterized as a function of the
applied current. In Section 4.2 we look at the spatial dispersion of the linefocus caused
by the broad spectrum in both the transverse and longitudinal direction. In Section 4.3
we report succesful beamshaping of broad spectrum light with a DMD. In Section 4.4
we shed more light on the differences that are to be expected between linefoci created
with CW and pulsed light. We will find that the orientation of the cylindrical lens in our
beamshaping setup can compensate for the dispersion of the focus caused by the broad
spectrum.

7From Fourier transformation: σ−1
t = 2πσf . Error propagation formula: σλ = σf |∂λ/∂f| with c = λf

yields σλ = σ−1
t λ2/c.
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Figure 4.1: This figure shows the full width half maximum of the spectrum of the laser diode versus
applied current as obtained from spectrometer data. The vertical line indicates the lasing threshold current
as reported by the manufacturer (25.0 mA). The three red data points indicate currents at which multimode

lasing is observed (see for examples Fig. 4.2). Five measurements taken at ILD = 18.2 mA allow us to
estimate the error of ∆λFWHM there.

4.1 Characterization of the laser diode

For diode lasers population inversion between the upper and lower levels of the lasing
transition, which is required to induce lasing, is achieved by applying a sufficient electrical
current to the diode. The applied current can therefore be used to control whether
the diode emits dominantly via lasing (narrow spectrum) or other processes (broad
spectrum). In this section we characterize the spectrum of the diode laser used in
our model system as a function of the applied current ILD, focusing on the full width
half maximum ∆λFWHM of the laser diode spectrum. ∆λFWHM is determined visually
from spectrometer data, after background correction. This approach works well for the
narrow, peaked spectra above threshold, but introduces a sizeable error for the broad,
noisy spectra below threshold. For the points at ILD = 18.2 mA, which is the current we
will use in our model system, four spectra are averaged before determining the FWHM.

Fig.4.1 shows ∆λFWHM as a function of ILD as measured with an OceanOptics HR2000CG-
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(a) Example of a singlemode spectrum
(ILD = 27.3 mA).
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(b) Example of a multimode spectrum
(ILD = 27.5 mA). The dotted lines indicate the full
width half maximum and average background level.

Figure 4.2: The horizontal axis shows the wavelength in nanometers. The vertical axis shows intensity in
ADU of the spectrometer. In Fig. 4.2b a short integration time of 5µm is used compared Fig. 4.2a. The

peak observed at 800 nm in Fig. 4.2a is due to a systematic error in the spectrometer which causes
background noise accumulation for long exposure times.

UV-NIR spectrometer (with a resolution of 2.27 px/nm). Between the data points at
24.4 mA and 25.2 mA the linewidth decreases by a factor four, indicating that the lasing
threshold lies between these two data points. This is consistent with the lasing thresh-
old of 25 mA reported by the manufacturer. As expected, the output power of the laser
diode increases by several orders of magnitude concurrently with the decrease in ∆λ.
Above threshold, the laser emits at a center wavelength of 776.8 ± 0.44 nm,8 which is
also within the bounds (785± 10 nm) provided in the data sheet.

Above threshold, two types of spectra can be observed, namely singlemode (Fig.4.2a) and
multimode (Fig.4.2b). In the multimode spectrum the diode lases in two cavity modes
which have slightly different resonant frequencies leading to two peaks in the output
spectrum. Obviously, multimode lasing leads to higher recorded values of ∆λFWHM.
Multimode lasing was observed at 27.5 mA, 30.3 mA and 51.2 mA, and ∆λFWHM is
indeed larger at those currents (indicated in red in Fig.4.1). Note that the laser can
jump between ordinary and multimode lasing when ILD is varied by as little as 0.2 mA.
Multimode spectra are not stable over time.

The relevant parameters of the model system can be calculated from the data shown in
Fig.4.1. Taking all points above lasing threshold, we find an average linewidth of 1.4±
0.41 nm. If points at which multimode lasing occurs are removed, we find 1.26±0.13 nm.
Below the lasing threshold we identify ILD = 18.2 mA as a suitable current for our model

8Here the error is the standard deviation of the center wavelength for ILD > 25mA, not to be confused
with the linewidth of the laser.
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system. The spectrum there is broadened by about a factor of ten to 12.8 ± 1.4 nm,
which is the same order of magnitude as the spectral width of a 100 fs pulse. When we
determine ∆λFWHM by fitting a gaussian to the spectrum at ILD = 18.2 mA, we find a
somewhat higher spectral width of ∆λFWHM = 16.6 nm.

4.2 Dispersion due to a broad spectrum

Having described the spectrum of our model system we return to the question how broad
spectra affect a linefocus and our beamshaping method.

A qualitative answer to this question is given by Fig.4.3, which shows camera images
of horizontal and vertical linefoci below and above lasing threshold. In all figures, the
vertical direction is perpendicular to the plane of the beampath so that the diffraction
of the beam by the DMD occurs in the horizontal direction. The orientation of the
linefocus is changed by rotating the cylindrical lens by 90◦ around the optical axis (for
details of the setup see Fig. 3.1).

Comparing the left- to the right-hand figures we see that, both above and below thresh-
old, the transverse profile is broadest if the transverse direction x is horizontal (i.e. in
plane with the beam path). If the input beam has a broad spectrum (Fig.4.3b), the
vertical linefocus is broadened much more strongly than when the input beam has a
narrow spectrum (Fig.4.3d). Comparing Figs.4.3a and 4.3c one can observe that the
horizontal linefocus is relatively unaffected by spectral broadening. Clearly, the width of
the linefocus is positively correlated with the spectral width of the laser, and this effect
is much stronger for vertical linefoci than for horizontal linefoci.

As mentioned, the explanation of these observations is found in the grating equation.
Ray-tracing the path of the third diffraction order from the DMD, we find that the
transverse position x (in the Fourier plane) and the spectrum λ are related by

x(λ) = l ∗ arctan(
mλ

d
− sin(θin)). (4.1)

Here l = 15 cm is the distance to the spherical lens, m = +3 is the diffraction order,
d = 5.4 µm is the grating pitch and θin = 24◦ is the angle of incidence. For ∆λFWHM =
16.6 nm, this equation gives a large transverse dispersion of ∆x = 1.4 mm. Considering
that the active area of the CCD is about 4.8× 3.6 mm large, the broadening in Fig.4.3b
is indeed of the expected order of magnitude. A ray-tracing analysis for the longitudinal
position y shows that it is unaffected by the input spectrum - no longitudinal dispersion
occurs because imaging is independent of the angle under which a ray in the object plane
travels. This property of imaging systems only holds strictly in the idealized context of
ray optics. In Fourier optics, any imaging system introduces a non-trivial point spread
function, except when lenses of infinite radius are used. It turns out that the point-spread
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(d) Vertical linefocus, with transverse dispersion.

Figure 4.3: (a) and (b) show linefoci below lasing threshold (ILD = 18.2 mA) for two orthogonal
orientations of the cylindrical lens; (c) and (d) show linefoci above lasing threshold (ILD = 51.2 mA). The

situation studied in Section 3 is analogous to Fig.(c).
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function of the imaging system determines the effect of broad spectra on longitudinal
dispersion (see Sec.4.2.2).

4.2.1 Transverse dispersion

To ascertain whether spectral width indeed fully explains the transverse width observed
for vertical linefoci, we describe it quantitatively in this section by averaging the trans-
verse profile of the linefocus in the longitudinal direction (i.e. calculating 〈S(x(λ), y)〉y).
A simple simulation of the expected transverse profile has already been performed in the
previous chapter and can be found in Fig.3.3.

Figs.4.4b and 4.4a show these average transverse profile for the horizontal and vertical
linefoci above and below threshold. To facilitate comparison of the transverse profiles to
the spectra measured with the spectrometer, Eq. 4.1 is used in these figures to rescale
the transverse position x to λ.

From these figures we find that the FWHM of the vertical linefocus follows the FWHM of
the spectrum quite closely. Below threshold they are 14.6 nm and 16.6 nm respectively.
Above threshold we find 0.92 nm and 1.27 nm respectively. The FWHM of the horizontal
linefocus, on the other hand, only increases from 0.196 nm to 0.38 nm when the spectrum
is broadened by a factor 10, it is clearly not very sensitive to the spectral content. Not
only the widths are congruent, the overall similarity between the spectrometer data and
the vertical profile is striking below threshold and even above threshold, where we push
the limits of the resolution of the spectrometer, the asymmetry of the spectrometer data
is reproduced in the vertical profile.

Above threshold, however, the difference between the spectrum and the vertical profile is
not within the error margins. The DMD data fall short on the left hand side. Also, the
average width of the linefocus below threshold is 1.193±0.008 mm (see Table 4.2) which
is slightly below the expected 1.31 mm. In fact, multimode lasing partially compensated
for this effect in Fig. 4.4b, which can be seen when comparing the profiles in Figs.4.4a
and 4.4b, recorded for singlemode spectra above threshold. So, although the transverse
width of a linefocus with transverse dispersion is certainly dominated by the spectrum
of the incident beam, spectral broadening is not the only effect at play.

A few notes about the analysis necessary to produce Figs.4.4b and 4.4a are in order. To
account for the fact that y is not exactly parallel to the CCD grid, the transverse profile
of each row/column is shifted, using interpolation, by a distance µ (the gaussian fitted
mean position) before calculating the average transverse profile. In principle, shifting
may broaden the profile by an amount on the order of the fitting error of µ, but since that
fitting error is only 0.8µm (see Table 4.2), corresponding to ∆λ = 0.01 nm, broadening
of the profile by fitting artefacts is negligible. Furthermore, the maxima of the DMD
data are translated by −23.0 to −27.7 nm to overlap with the center wavelength of the
spectrometer, since the latter is calibrated to find the correct center wavelength. Each
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(a) In blue (green): the transverse profile of a vertical (horizontal) linefocus averaged over y at
ILD = 18.2 mA, data has been shifted to match the center wavelength of the laser diode (dotted line). In
red: the laser diode spectrum at the same current, measured with a spectrometer. For the blue data, only

one in five points is shown to reduce cluttering. A gaussian fit to the average transverse profile yields
∆λFWHM = 16.6± 0.3 nm for the spectrometer data. From the average FWHM (Table 4.2) we find

∆λFWHM = 14.62± 0.06 nm for the vertical and ∆λFWHM = 0.38± 0.010 nm for the horizontal linefocus.
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(b) In blue (green): the transverse profile of a vertical (horizontal) linefocus averaged over y for
ILD = 51.2 mA, data has been shifted to match the center wavelength of the laser diode (dotted line). In
red: the laser diode spectrum at the same current, measured with a spectrometer. A gaussian fit to the

average transverse profile yields ∆λFWHM = 1.27± 0.02 nm for the spectrometer data. From the average
FWHM (Table 4.2) we find ∆λFWHM = 0.92± 0.08 nm for the vertical and 0.196± 0.002 nm for the

horizontal linefocus.
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Figure 4.4: In blue: the transverse profile of a vertical linefocus above threshold averaged over y. The
transverse position x has been scaled to wavelength λ using Eq. 4.1. In red: the laser diode spectrum at the

same current, measured with a spectrometer.

set is shown normalized to its own maximum value after having its own background
subtracted, because the data are recorded with different devices. For the linefocus data,
Ibg(y) is used as a background estimate; for the spectrometer data the average reading
between 870.5 nm and 1092.3 nm is used. The errorbars show the variation along y

relative to the peak intensity at that longitudinal position (i.e.
√

vary( S(x,y)
Ipeak(y))) and

are therefore indicative of the consistency of the shown profile along the length of the
linefocus. The errors of the spectrometer data are not known.

4.2.2 Longitudinal dispersion

In this section we investigate horizontal linefoci and quantify the dependence of the
longitudinal dispersion on ∆λFWHM. To that end, we use the DMD to create sharp edges
in the longitudinal direction. We use the width of these edges, ∆yedge, as a measure of
the longitudinal dispersion caused by spectral broadening. We expect ∆yedge to increase
below threshold when the dispersion is longitudinal, just as the FWHM increases below
threshold when the dispersion is transverse.

To find ∆yedge we sum the intensity in the transverse direction over a region of interest
(150 pixels wide) that contains the entire horizontal linefocus9. The resulting data are
visually divided into three regions. One region containing the data points that comprise
the edge, a second region containing the 200 data points to the left of the edge and a
third region containing the 100 points to the right of the edge. Subsequently we perform
a separate linear fit to the data in each region. The intersections of these three linear fits

9This approach is preferable to the transverse gaussian fits used so far, because those fits become
inaccurate at the low end of an edge and we are interested in the change in total intensity anyway.
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Figure 4.5: In this figure the data and linear fits used to calculate longitudinal dispersion above and below
threshold are shown. The thick black dots indicate the intersections of the linear fits, the edge width is

defined as the horizontal distance between two intersections. Below threshold we find
∆yedge = 31± 1.7µm, above threshold we find ∆yedge = 15± 1.3µm. Both figures are shown on the same

scale. See text for further explanation.

are good estimates of the leftmost and the rightmost borders of the edge and so ∆yedge

can be found from the distance parallel to the horizontal axis between the intersections.
The error on ∆yedge can be obtained straightforwardly from error propagation of the
errors of the linear fits, we assumed their covariance matrix to be diagonal.

The results of this analysis are shown in Fig.4.5, for horizontal linefoci above threshold
(ILD = 51.2 mA) and below threshold (ILD = 18.2 mA). The intersections of the linear
fits are shown as big black dots. We find ∆yedge = 31 ± 1.7µm below threshold and
∆yedge = 15 ± 1.3µm above threshold. This means that when the spectrum broadens
by a factor of 10, the longitudinal dispersion only doubles. By comparison, we found in
the previous section that the transverse dispersion increases 15-fold. Comparing ∆yedge

above and below threshold to the transverse FHWMs of the horizontal linefoci (see
Table 4.2), which are 31.9 ± 0.8µm and 16.4 ± 0.2µm respectively, we find remarkably
good agreement. This agreement indicates that the minimum edge width of the vertical
linefocus is limited by the same factors as its transverse FWHM, namely the (wavelength-
dependent) pointspread function of the optical system. We conclude that, within the
accuracy of our measurement, the pointspread function of the imaging system is not
affected by the angular dispersion caused by the DMD, meaning that the imaging system
can compensate for the dispersion that would be found in an ultrashort pulse.

Since the slope of the linear fit in the edge region depends on the value at the upper
edge, the ∆yedge we find by this method depends on it as well. To check whether this
dependence is significant, we recalculate ∆yedge after first normalizing both data sets
to their own maximum value, which yields 31.9µm below threshold and 15.0µm above.
Alternatively, if we rescale the data below threshold so that it has the same maximum
as the data above threshold we find 14.9µm above threshold and 30.9µm below. So
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although an effect is present, it falls well within the error margin.

4.3 Beamshaping spectrally broadened light

In this section we show that, in our model system, beamshaping is possible below thresh-
old and achieves comparable rms-flatness as shaping above threshold. It is shown above
that the horizontal orientation compensates dispersion much better than the vertical
orientation does. That makes the horizontal linefocus the most feasible candidate for
use with ultrashort pulses, so we only report beamshaping for that configuration.

Figs.4.6 and 4.7 show the results of transverse gaussian fits (see Eq. 3.1) of a vertical
linefocus at ILD = 18.2 mA for the parameters Ipeak(y), 2.355 × σ(y), µ(y) and Ibg(y)
before and after beamshaping. The values shown are time averages and the errorbars
are the standard deviation of the data at that position over time, where the time axis
consists of 50 images of the same linefocus taken at random time intervals smaller than
one second. The average fitting errors are given for each parameter in Table 4.1.

The Ipeak figure shows that a flattop is produced succesfully: the rms-flatness within
the region of interest is reduced from 21% to 6%. As desired, the other fitparameters
are virtually unchanged by the beamshaping procedure, as is shown in Table 4.1. The
average error bar, representing time variation, of the shaped (unshaped) data is 0.63ADU
(1.11ADU).

The mean positions are curved below threshold, just as they are above threshold. Per-
forming the same quadratic fits as in Fig. 3.8a we find similar curvatures of 3.24 ∗
10−6±0.01∗10−6 µm−1 and 3.20∗10−6±0.01∗10−6 µm−1 for the unshaped and shaped
data respectively. The average error bar, representing time fluctuation, of the shaped
(unshaped) data is 1.21µm (1.07µm).

We find no significant difference below threshold in the FWHM before and after beamshap-
ing. This shows that the dependence of the FHWM on the shaping strength, which is
present above threshold (see Fig. 3.6b), only occurs for coherent light. The average error
bar, representing time fluctuation, of the shaped (unshaped) data is 0.59µm (0.26µm).

The average error bar, representing time fluctuation, of the shaped (unshaped) Ibg data
is 0.14ADU (0.030ADU).

It is remarkable that our beamshaping method, using kinoforms randomized per column,
does not seem to suffer significantly from the broadening of the point spread function
below threshold. This is probably because we shape the large features of the beampro-
file. So as long as light from a DMD column ends up on the correct average position
any broadening of the pointspread function is approximately compensated by the neigh-
bouring columns, so that, on average, the shaping strength ends up where it is supposed
tox.
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Figure 4.6: The gaussian fit values of Ipeakand the FWHM (see Eqn. 3.1) for the horizontal linefocus
(longitudinal dispersion), red for the vertical linefocus (transverse dispersion). See Table 4.1 for further

details. In both cases the transverse fits were made over 200 pixels. To reduce cluttering, each point here
represents two adjacent data points. The error bar shown is the standard deviation of the fitted value at
that position over 50 consecutive shots. For both linefoci, 4% of the rows were discarded in the masking

procedure.
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dispersion), red for the vertical linefocus (transverse dispersion). See Table 4.1 for further details. In both
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adjacent data points. The error bar shown is the standard deviation of the fitted value at that position over
50 consecutive shots. For both linefoci, 4% of the rows were discarded in the masking procedure.
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Parameter
Horizontal below lasing threshold Horizontal above lasing threshold

Before

beamshaping

After

beamshaping

Before

beamshaping

After

beamshaping

Intensity

Ipeak (ADU)

89.3±18.3±0.5 23.7±1.4±0.3 116±35±1.0 57±2.5±0.7

FWHM (µm) 23.0±0.6±0.2 23.0±0.6±0.3 15.8±0.3±0.17 15.0±0.5±0.2

Mean position

µ (µm)

82.8±3.0±0.07 82.7±2.5±0.1 1.27±8.88±0.07 3.64±8.89±0.09

Background

Ibg (ADU)

0.34±0.06±0.06 0.37±0.08±0.04 0.5±0.2±0.24 0.5±0.2±0.16

Table 4.1: Average values of the gaussian fit-parameters for the linefoci shown in Fig.4.6. To negate edge
effects, these numbers are calculated for the data between the vertical lines of the appropriate color. The
first number indicates the average of the fit-parameter (e.g. 〈〈FWHM(y, t)〉t〉y), the second its standard

deviation (e.g.
√

vary(〈µ(y, t)〉t)), and the third its average fitting error. For easy reference, the data above
threshold from Table 3.1 is reproduced in the rightmost columns. In all cases, fits are calculated from a ROI

200 pixels wide.

4.4 Gaussian fits for vertical and horizontal linefoci above and below
threshold

For reference, we list in this section the properties of horizontal and vertical linefoci
above (ILD = 51.2mA) and below (ILD = 18.2mA) the lasing threshold, for η = 0.

4.4.1 Parameter plots

Figs.4.8 and 4.9 show the mean values over time of the four gaussian fitparameters in
these four situations as a function of longitudinal position. The error bars show the
standard deviation over time, the average fitting errors are shown in Table 4.2. To
reduce cluttering, each data point represents 6 adjacent data points binned together.

Regarding Ipeak, we must first note that the the relative intensities of the linefoci above
and below threshold are not meaningful because different ND-filters are used to record
them. The relative intensities of the horizontal and vertical orientations at the same
current are comparable however. We find that Ipeak is lower in the vertical cases, which
is primarily because the linefocus is wider and total power is conserved. The Ipeak profile
changes when the cylindrical lens is reoriented because the gaussian input beam is not
fully symmetric around the optical axis.

The increase of the FWHM below threshold has already been described in Sec.4.2.1.
Fig.4.8 shows, additionally, that the FWHM of the horizontal linefoci is far more constant
in space and time than the FWHM of the vertical linefoci. The FWHM for a vertical
linefocus below threshold, which is over an order of magnitude larger than the others, is
shown separately in Fig.4.10.

50



2000 1000 0 1000 2000
y ( m)

0

50

100

150

200

I p
ea

k
 (8

-b
it 

AD
U)

Max intensity vs. distance from linefocus center below lasing threshold
vertical, below threshold
horizontal, below threshold
horizontal, above threshold
vertical, above threshold

2000 1000 0 1000 2000
y ( m)

0

20

40

60

80

100

F
W
H
M

 (
m

)

Full width half max vs. distance from linefocus center below lasing threshold
vertical, below threshold
horizontal, below threshold
horizontal, above threshold
vertical, above threshold

Figure 4.8: The gaussian fit values ofIpeakand the FWHM. See Fig.4.10 for all FWHMs and Fig. 4.9 for
further details.
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Figure 4.9: The gaussian fit values of µ and Ibg (see Eq. 3.1) for the horizontal and vertical linefocus above
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horizontal linefocus, 4% of the rows were discarded in the masking procedure versus 16% of the columns for
the vertical linefocus. Below threshold we set ILD = 18.2mA and above threshold ILD = 51.2mA.
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Parameter
Above lasing threshold Below lasing threshold

Horizontal Vertical Horizontal Vertical

Intensity Ipeak

(ADU)

159.8±34.0±0.8 32.5±9.3±0.7 43.3±9.6±0.4 21.0±3.3±0.1

FWHM (µm) 16.4±0.2±0.1 77±7±2 31.9±0.8±0.4 1193±8±7

Mean position

µ (µm)

26.42±8.05±0.04 0.51±15.5±0.8 7.0±3.0±0.1 -13±26±3

Background

Ibg (ADU)

1.16±0.06±0.08 1.8±0.2±0.17 1.12±0.12±0.06 0.98±0.0±0.0

Table 4.2: Average values of the gaussian fit-parameters for the linefoci shown in Figs.4.8 and 4.9. To
negate edge effects, these numbers are calculated for the data between the vertical lines of the appropriate

color. The first number indicates the average of the fit-parameter (e.g. 〈〈Ipeak(y, t)〉t〉y), the second its
standard deviation in space (e.g.

√
vary(〈Ipeak(y, t)〉t)), and the third its average fitting error. The

horizontal situation above threshold is comparable to the data reported in 3.1.

The mean positions µ are shifted in Fig.4.9a to make them cross around the middle of
the linefocus. We observe that µ(y) is curved for the horizontal linefocus but not for
the vertical linefocus, for which it is roughly straight instead. The curvatures found by
quadratic fits are: vertical, below threshold 2.11∗10−6±0.08∗10−6µm−1; vertical above
threshold 0.02∗10−6±0.029∗10−6µm−1 ; horizontal, below threshold 1.73∗10−6±0.02∗
10−6µm−1 and horizontal above threshold 1.84 ∗ 10−6± 0.03 ∗ 10−6µm−1. This confirms
the idea that the curvature of µ(y) is related to the curvature of the DMD’s surface, as
is also found in Fig. 3.8b, but further indicates that the curvature is relevant only in
the DMDs long dimension. The curvature of horizontal linefoci is not dependent on the
coherent properties of the beam, because it occurs above and below threshold.

Concerning Ibg we only note that, since a full fit for the vertical linefocus below threshold
is prohibited because the linefocus is broader than the CCD, we set Ibg equal to the
average intensity of an empty region of the relevant image. For that reason the light
blue data for Ibg varies in time but not in space.

4.4.2 Variation over time

As shown in Table 4.2, the fitting error of µ, although it increases with the FWHM, is
much smaller than the time-variation represented by its error bar: over time, .

We conclude this section by investigating the stability over time of Ipeak, µ and FWHM.
We compare the horizontal and vertical orientations, broad and narrow spectra and
shaped and unshaped intensities. The stability over time is characterized by preparing a
linefocus and then recording and fitting 50 consecutive images at random time intervals
smaller than a second.

Two quantities are calculated from those data and are shown in Table 4.3. First,
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√
vart(〈p(y, t)〉y), the standard deviation over time of the average value of each pa-

rameter - i.e. the variation of the mean, which is interpreted as the global time variation
of the parameter. Second, 〈

√
vart(p(y, t))〉y, the average over space of the standard

deviation over time of the values of each parameter - i.e. the mean variation, which is
interpreted as the (average) local time variation of the parameter. Since we found that
the values of Ipeak change when the cylindrical lens is rotated and the time fluctuation
of Ipeak is expected to scale with its value, we report the relative time fluctuation for
Ipeak, i.e.

√
vart(〈Ipeak(y, t)/〈Ipeak(y, t)〉t〉y) and 〈

√
vart(Ipeak(y, t)/〈Ipeak(y, t)〉t)〉y.

Note that the variations of µ show the influence of the orientation, spectral width and
beamshaping on the pointing uncertainty of the test setup. The observation that the
global and local variation of µ is almost identical, indicates that the linefocus’ position
varies as a whole, possibly due to vibrations in the setup. The fact that the time
fluctuation does not increase more than two-fold due to our beamshaping procedure -
even for a spectrally broadened beam - gives confidence that the shaped linefocus will
be stable in the ultrashort pulse setup.

Both the global and local variation are reported because their difference shows the effect
of fitting errors on the calculated time variation. The fitting errors have nothing to do
with time variation per se, but will increase the reported local time variation because
the fitting errors statistically distribute the fitvalues. The fitting errors10 average out for

10And other variations that are compensated by neighbouring pixels.
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Parameter
Above lasing

threshold
Below lasing threshold

Hor Ver Hor Ver Hor,
Shaped

Hor,

Unshaped

relative global
variation of Ipeak

1.24% 1.49% 0.60% 0.064% 0.89% 0.39%

relative local
variation of Ipeak

1.62% 2.16% 1.45% 0.31% 2.84% 1.28%

global variation µ
(µm)

1.09 1.52 0.95 1.02 1.18 1.05

local variation µ
(µm)

1.10 1.75 0.97 1.71 1.21 1.07

global variation
FWHM (µm)

0.14 1.33 0.73 2.00 0.12 0.082

local variation of
FWHM (µm)

0.20 2.09 0.74 4.21 0.54 0.25

Table 4.3: As in Table 3.3, the quantities presented characterize the stability of the linefocus over time.
Listed are both orientations above laser threshold (laser diode current: 51.2 mA) and below laser threshold
(laser diode current: 18.2 mA). The first four columns from the left are calculated for the data in Fig.4.8,
the two rightmost columns concern the data shown in Fig.4.6. All data is recorded with an 18 ms camera
integration time. Fifty consecutive shots with random time intervals represent the time dimension. In the
two rightmost columns 200 pixels are used to fit the parameters, versus 960 pixels in the other columns.

the global variation but not for the local variation. In the table, we indeed consistently
find that the global time variation is smaller than the average local time variation. The
observation that the difference between the global variation and the local variation is
generally larger for vertical than for horizontal linefoci is thus explained by the fact that
the vertical linefocus generally has a higher fitting error than the horizontal linefocus.

4.5 Depth of focus and depth of image

To confirm the applicability of the hybrid mode to an ultrashort pulse setup, we measure
the depth of focus (Rayleigh range) of a horizontal linefocus produced by the hybrid
mode setup in this final section. To make alignment of a the hybrid mode with a
microscope objective feasible, not only the depth of focus but also the ’depth of image’
- i.e. the thickness of the image plane - must not be too small. While the depth of
focus is expected to increase when the spectrum is broadened, the depth of imaging is
expected to decrease. The relevance of knowing the depth of image is further illustrated
by the Ipeak(y, z) data in Fig.4.11b, which show that edge-fringes can develop into strong
intensity peaks for misalignments of less than 0.5 mm.

By recording the beamprofile along the optical axis (z-direction), we find the beam
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Parameter FWHM(z) ∆yedge(z)

w0(µm) 6.0± 0.65 18.5± 1.5

zR(µm) 513± 56 1750± 99

z0(µm) 1306± 45 1472± 315

a −0.0012± 0.0002 −0.002± 0.001

Table 4.4

waist as a function of z from FWHM fits for a range of about 1 cm. . The depth of
image is found from the same data by calculating the width of a longitudinal edge,
∆yedge, as a function of z, using the method described in Sec.4.2.2. The results of these
measurements are shown in Fig.4.11a, performed at ILD = 44.95 mA (at this current
no multimode lasing was observed). The target plane that was used throughout this
chapter, which is determined as the position where ∆yedge is minimal, is at z = 0.

As a fit function we use w0

√
1 + ((z − z0)/zR)2 +az, for both FWHM(z) and ∆yedge(z).

This function is adapted from the beam waist of a gaussian beam, given by w(z) =

w0

√
1 + (z/zR)2, where z is the position along the optical axis, zR =

πw2
0

λ is the Rayleigh
range and w0 is the minimum beam waist. The dimensionless parameter a is included to
account for the different slopes in Fig.4.11a to the left and right of the minimum waist11.
For an ideal gaussian beam, assuming the spot size on the lens has approximately the
same dimension as the DMD array, we have w(z = −15 cm) = 6.16 mm/2 and, with f =
15 cm and λ = 777 nm we find zR = 0.22 mm and w0 = 7.42µm. Fitting the FWHM(z)
we find zR = 0.51± 0.06 mm so the linefocus’ Rayleigh range is about twice as large as
that of a comparable ideal gaussian beam. Fitting ∆yedge(z) we find zR = 1.7± 0.1 mm.
So we conclude that, since the depth of image is larger than the depth of focus, no
alignment issues are expected when a microscope objective is used. For the values of all
fit parameters see Table 4.4.

The fitted values of z0 show that, in our test setup, the image and Fourier planes coincide
to an accuracy within their fitting error. The effect of the spectral width on the depth
of focus can be determined by performing the same measurement again below the lasing
threshold.

4.6 Conclusion

In this chapter we have found that spectral broadening by a factor 10 leads to longitudinal
dispersion in a horizontal linefocus by a factor 2 and to transverse dispersion in a vertical
linefocus by a factor 15. So the hybrid mode setup can largely compensate for broad
spectra if the dispersed direction is imaged. Beamshaping works as well with spectrally
broadened light as it does for light with narrow spectral width, and the resulting linefocus

11if a ≡ 0, we find a Rayleigh range that is about 10% larger and a worse χ2 fitting error
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is stable in time. The curvature of the horizontal linefocus persists for non-coherent light,
indicating that it is due to the curvature of the DMD. Sharp edges in kinoforms should be
avoided to make precise alignment less critical. Since the depth of imaging is on the order
of the depth of focus, no serious alignment issues are expected, so it is recommended to
perform similar experiments with an actual pulse laser.
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Figure 5.1: In this figure the DMD is replaced with a mirror and a removable mirror block is installed on
the surface of the mirror, which has roughly the same dimensions as the DMD. Average transverse profiles

calculated for linefoci with and without mirror block. The mirror block used is shown on the right.

5 Discussion

In this section we discuss questions that remained unanswered in previous chapters. We
also provide an outlook to further experiments with beamshaped ultrashort pulses using
the hybrid mode setup.

5.1 Effects of overfilling the DMD

We have not commented on the effect that overfilling the DMD has on the beam-profile.
To find out what the effect is of the aperture shape of the DMD’s active array, we place
a removable mirror block with a hole that has approximately the same dimensions as the
DMD on top of a mirror. The result is given as the average transverse profile in Fig.5.1
(see Sec.4.2.1 for the details off this analysis method). Due to diffraction, apertures
normally produce fringes but Fig.5.1 shows that the profile of our quasi-gaussian beam
gets more gaussian when the aperture effects are included. This is quantified by the
average χ2 fitting error, which is 73.1 with mirror block, and 161.4 without mirror
block. However, without the mirror block, the linefocus is 13.1 µm wide, versus 16.2 µm
with mirror block. Ipeak is of course lower when the mirror block is placed due to the
cutting of the tails in the transverse direction (see Table 5.1 for numbers). By comparing
summed intensities, we find that 89% of the incident power remains after clipping.
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Parameter With mirror block Without mirror block

Intensity Ipeak (ADU) 83.5±8.2±0.4 115.9±11.7±0.7

FWHM (µm) 16.2±0.5±0.1 13.1±0.89±0.09

Mean position µ (µm) 0.2±10.37±0.04 0.0±10.29±0.04

Background Ibg (ADU) 0.24±0.05±0.05 0.37±0.06±0.07

Table 5.1: Averages of transverse gaussian fits of linefoci. The DMD is replaced with a mirror. The first
number gives the average value (e.g. 〈Ipeak(y)〉), the second number the variation in space (e.g.√

varyµ(y)) and the final number the fitting error.

5.2 Power efficiency and phase control

Our shaping method would increase its uses if it were capable of phase control, besides
the intensity control that has already been displayed. Schemes granting phase control
in the target plane using a DMD have been devised [3,16], but rely on using orders that
are created by using (quasi-)periodic kinoforms. We found a total efficiency of less than
1% when reproducing this phase-control scheme, which is a loss of usable laser power
that we cannot afford in our intended setup. In our hybrid mode setup, it is in principle
possible to use a DMD-column as a ’superpixel’ and bias the probability distribution by
which pixels are turned off in order to correct a phase profile. Iterative algorithms exist
to calculate such phase profiles [2].

We can estimate the total power efficiency of our beamshaping method ηtotal = ηclipping×
ηdiffraction × (1− η) ∼ 24% to 44%. Where we use ηclipping = 89%, ηdiffraction = 55% (see
Sec. 1.3) and recall that η is the shaping strength, which typically ranges from 0.1 to
0.5.

5.3 Time variation due to periodic mirror flipping patterns

Some standard features of the DMD are not optimal for our purposes. We trace back
the periodic variation of Ipeak (see Sec.3.4) to the script we wrote to address the DMD,
which has been used throughout this thesis. Although the script was based on the
programmer’s guide for the DLP series (Ref. [11]) it produces images that are not truly
static. The documentation provided at the time we undertook our project was insufficient
to resolve this issue. The manufacturer’s intended setup for the DLP4500NIR DMD
involves three colored LEDs which are sequentially blazed by flipping micromirrors. To
bypass these color functionalities and obtain static images, the Pattern Display mode
must be used. Even in Pattern Display mode, only 24-bit images containing only (0, 0, 0)
or (255, 255, 255) as entries avoid the color sequencing functionality. The manufacturer
provides a graphical user interface (GUI), going by the name Lightcrafter, through which
these settings can be accessed. In this section we report the difference between kinoforms
loaded using the Lightcrafter GUI and using our script.
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First, we record the previously observed time variation with high temporal resolution, we
set up a photodiode (PD) in the focus of a spherical 15 cm-lens and display kinoforms
with varying shaping strength12 on the DMD, using our own script. All light in the
blazed order is collected on the receptor of the PD. The PD-signal is displayed on an
oscilloscope (Tektronix TDS2022B) yielding images such as Fig.5.2a, showing that the
intensity can fluctuate strongly on millisecond timescales. For any kinoform, the signal
varies with a period of 17.8ms, explaining why we can surpress the time variation by
using a camera integration time of 18 ms. The average PD-signal and the peak-to-peak
variation are plotted in Fig.5.2b as a function of the shaping strength η for various
kinoforms. It is striking that the peak-to-peak value actually increases when the mean
value decreases, which shows that the peak-to-peak variation is not due to noise. When
all pixels are turned on, the signal varies by less than 0.5%, meaning that unshaped
kinoforms can be displayed by our script with no time variation beyond noise.

To show that it is possible to display shaped kinoforms without time variation, we
replace the photodiode with a camera and load a shaped kinoform with the script and
with the GUI. We use our beamshaping algorithm (see Sec.3.2) to create a kinoform and
obtain the shaping strength η(y) by counting the number of off-pixels per column. The
gaussian-fitted Ipeak(y) values of a shaped horizontal linefocus above lasing threshold
(ILD = 43.9mA) are shown as a function of shaping strength η(y) in Fig.5.2a. We stress
the fact that the kinoforms loaded to the DMD are identical in both cases. The figure
shows that the GUI-loaded kinoform removes less intensity per off-pixel than the script-
loaded kinoform. Linear fits find dI

dη = −62.3 ± 0.47 ADU and dI
dη = −39.5 ± 0.86 ADU

for the script-loaded and GUI-loaded kinoforms respectively. This behavior indicates
that, when addressed by the script, the DMD displays pixels that should be fully on as
’partially’ off. At η = 1 the intensity should of course go to zero, but the linear fits find
Ipeak(η = 1) = 9.6±0.57 ADU (GUI) and Ipeak(η = 1) = −15.2±0.47 ADU (script). We
conclude that Ipeak(η) is not linear, regardless of how kinoforms are loaded. The other
fitparameters did not exhibit relevant differences between the two situations, see Table
5.2.

Not only the value of Ipeak is affected by the periodic flipping of mirrors, but also its
time variation. Fig.5.2b shows that the time variation of Ipeak decreases with η for the
GUI loaded images , but increases with η for the script-loaded images. Linear fits find
dvar(I)
dη = −0.72± 0.033 ADU and var(I(η = 1)) = 0.39± 0.022 ADU for the GUI-loaded

images but dvar(I)
dη = 1.67 ± 0.055 ADU var(I(η = 1)) = 2.74 ± 0.036 ADU for script-

loaded images. This positive slope is consistent with the increased peak-to-peak variation
found in Fig. 5.2b. As usual, the time variation is average the standard deviation of
each pixel over 50 shots recorded over ∼ 25s. The camera integration time is 12 ms.

Note that, for η ≈ 0, both Ipeak and its time variation are approximately the same for
both ways of loading kinoforms.

12Recall that we defined shaping strength η(y) as the fraction of pixels turned off (in a DMD-row or
-column).
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(a) An example of the fluctuation of the PD-signal
when a horizontal grating with pitch of 25 pixels and
linewidth of 1 off-pixel (η = 0.040) is shown on the
DMD using our script. The period of this periodic

signal is 17.8ms, recorded with a Tektronix
TDS2022B digital oscilloscope.
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(b) This figure shows the peak-to-peak and mean
PD-voltages as a function of shaping strength for
horizontal and vertical gratings with a linewidth of
one pixel but a varying pitch. The PD-voltage is

proportional to the total power emitted in the blazed
order of the DMD and ILD = 43.9mA. The

kinoforms are horizontal and vertical gratings with a
linewidth of 1 pixel and varying pitches and are

displayed using our own script.

We conclude this section by specifying the procedure that we use to load static images
with the GUI:

� Prepare a beamshaped kinoform (as described in Sec. 3.2), save it as a 24-bit
bitmap (three 8-bit color channels) where all colors are either fully black (0,0,0)
or fully white (255,255,255).

� Use a Windows operating system to start the Lightcrafter GUI and create a new
firmware set which includes the beamshaped kinoform, compile it and load it to
the DMD.

� Now use the Pattern Sequence mode to load the image from the firmware to the
pattern sequence, making sure to flip it both horizontally and vertically.

� To prevent the DMD from refreshing the image, set ’Pattern Exp = Trigger’ and
set the Pattern Exposure Time to a value larger than the Internal Trigger Time.

� Hit the Display button and record the GUI loaded image.
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(b) The time variation of the data in Fig. 5.2a, plotted against shaping strength. The error bars give the
average fitting error of Ipeak at the appropriate position. The black lines are linear fits of the form

a(η − 1) + b, see text for values. The camera integration time is 12ms. To reduce cluttering five camera
pixels and their errors are binned into a single data point .
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Parameter
Horizontal above lasing threshold

Script loaded GUI loaded

Intensity Ipeak (ADU) 25.9±1.7±0.3 35.6±0.9±0.4

FWHM (µm) 16.6±0.4±0.3 16.5±0.4±0.2

Mean position µ (µm) -42.8±1.0±0.1 -54.46±1.9±0.08

Background Ibg (ADU) 0.24±0.02±0.04 0.25±0.03±0.04

Table 5.2: Average values of the gaussian fit-parameters for linefoci recorded with a camera integration
time of 12ms. The first number indicates the average of the fit-parameter (e.g. 〈〈FWHM(y, t)〉t〉y), the

second its time variation (e.g.〈
√

vart(µ(y, t))〉y), and the third its average fitting error. In both cases, fits
are calculated from a ROI 200 pixels wide.

5.4 Alignment of the hybrid mode setup

For the benefit of the reader, the requirements that should be satisfied to succesfully
operate the DMD in hybrid mode are summed up in Table 5.3.

Requirement Consequence if not satisfied

Blazed order departs DMD-surface
perpendicularly (θin ∼ 26.4◦)

Variation in y of FWHM, only partial
imaging

Camera parallel to DMD surface Variation in y of FWHM, only partial
imaging

Beam incident from the right (when facing
DMD)

Outer 10 px are permanently ’on’.

Through center of spherical and
cylindrical lens

Aberrations, wiggly linefocus

Precise placement of lenses along optical
axis

Image- and Fourier planes do not coincide

Collimated incident beam Image- and Fourier planes do not coincide

Cylindrical lens oriented parallel to a
DMD-edge

Variation in y of FWHM due y-dependent
clipping

for pulses: y in plane with diffraction angle (extreme) increase of the FWHM

Table 5.3

5.5 Outlook

The objective of this thesis is to beamshape ultrashort pulses, so in this outlook we will
first sum up the steps that remain to achieve this goal. Secondly we will list some minor
improvements that could be made.

� Improve our script so that it loads truly static kinoforms to the DMD.
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� To check the effect of high magnification and high NA, reproduce the CW shaping
results using the microscope objective. One may also check whether the best results
are obtained when the target plane is in the front or the back focal plane of the
objective.

� Try to beamshape ultrashort pulses.

� Instead of shuffling randomly, use a non-trivial probability function to distribute
off-pixels within a kinoform-column. In principle, this allows phase control, allow-
ing the focus to be shaped in the transverse direction.

Minor improvements:

� Since the peak intensity is the most relevant parameter in non-linear optics experi-
ments, it is better to beamshape a linefocus using Ipeak as a target variable, rather
than the (quicker) summed intensity SBS.

� Improve the accuracy of the CCD-DMD mapping by recording the pointspread
function of each (visible) column and fitting its mean position, instead of assuming
a linear map between the end-points.

� Measure Ipeak as a function of η all the way to η = 1 to see if it is truly non-linear.
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6 Conclusion

In this thesis we have developed a setup which combines the strengths of image- and
Fourier-mode setups and have shaped the intensity of infrared CW-light in a target
plane, using a DMD as a spatial light modulator. Our beamshaping method allows
us to create a flattop with 4.3 rms-error and approximate translational symmetry over
3 mm. The estimated total power efficiency of our method is 34± 10%. For CW-light at
λ = 777±8.3 nm, the dispersion of the linefocus that occurs when passing broad spectra
over a diffraction grating was solved by orienting the cylindrical lens so that it images the
dispersion. The only source of broadening left in the longitudinal (imaged) direction is
the λ-dependence of the point spread function of the imaging system. The main source of
time variation of the shaped intensity is understood, enabling more precise beamshaping
in future experiments. The technique is ready to be attempted with ultrashort pulses.
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Appendix A The paraxial approximation leads to Fourier
optics

We have used the term ’Fourier plane’ to designate the back focal plane of a lens, and
we have used the result that the electric fields in the back and front focal plane of a
spherical lens are related by Fourier transformation. In this appendix we will back up
this statement with a derivation.

For an arbitrary initial field in a source plane z′ = constant, the scalar Kirchhoff diffrac-
tion integral [8] gives the field in the parallel target plane z = constant:

E(x, y, z) =
1

iλ

+∞¨

−∞

E′(x′, y′, z′)
cos(θn,r)

r(x, y, z, x′, y′, z′)
exp(ikr(x, y, z, x′, y′, z′))dx′dy′. (A.1)

Here E′, x′, y′, z′and E, x, y, z are the scalar electric fields and the coordinates in the
source and target planes respectively, k = (kx, ky, kz) is the wavenumber (|k| = 2π/λ),
θn,r is the angle between r and the unit vector normal to either plane, and r is the
vector connecting point and(x′, y′, z′)and (x, y, z). In what follows, primed coordinates
are always used for the source plane and unprimed coordinates for the target plane.

Heuristically, this integral can be understood by Huygens’ principle, which states that
every point on the wavefront of a light wave acts as a spherical source and that all
these sources are in phase. The field of a spherical wave emitted by a point source at
x′
0 is E exp(ikr(x′

0,x)) 1
r(x′

0,x)
, and the integral over dx′dy′ sums over a continuum of

point sources in the source plane. Note that kr here is a scalar, because k and r always
align for a spherical wave. By starting with this scalar form of the Kirchhoff diffraction
integral we work in the approximation that the polarization of the electric field changes
only negligibly for the k-vectors that significantly contribute to the integral. Recall
that, in homogeneous media, the Maxwell equations always require the polarization of
plane waves to be perpendicular to k. In this approximation we can therefore ignore
the vectorial nature of the electric field and simply write scalar electric fields that are
understood to have some polarization in the x, y plane.

This integral cannot generally be solved except by computationally expensive numerical
methods. However, for beams of light we can make some approximations that lead to
the so-called Fraunhofer limit, where the relation between E′ and E reduces to little
more than a Fourier transformation, which is quickly computed using the Fast Fourier
Transform algorithm. This limit will be derived next, following the derivation in Ref. [6].
From the field in the Fraunhofer limit it will be easy to show why lenses perform Fourier
transformations between their back and front focal plane.

We consider the limit z � x, y, which is valid for electric fields that decline rapidly with
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x and y but not with z, such as narrow beams of light propagating in the z-direction.
The same requirement holds for the primed coordinates. Then

cos(θn,r) ≈ 1,

1

r
≈ 1

z
+O(1/z2),

and, placing the source plane at z′ = 0 without loss of generality,

exp(ikr) = exp(ikz

√
1 +

(x′ − x)2

z2
+

(y′ − y)2

z2
) ≈ exp(ikz(1+

(x′ − x)2

2z2
+

(y′ − y)2

2z2
)+O(1/z3)).

Where we have Taylor expanded in the small parameter 1/z. Note that we include
quadratic terms in the Taylor expansion of r in the exponential but not in the fraction.
This is done because the phase factor is much more sensitive to change in r than the 1/r
factor is. Inserting these approximations, Eq.A.1 can be rearranged to:

E(x, y, z) =
1

iλz
exp(ik(z+

x² + y²

2z
))

+∞¨

−∞

E′(x′, y′, 0)exp(
ik

2z
(x′2+y′2−2xx′−2yy′)dx′dy′.

Now, only the quadratic terms in x′2 and y′2 stand in the way of reducing this integral
to a 2D Fourier transform. Therefore we introduce the final approximation: 2z �
k(x′2 +y′2), which leads us to the Fraunhofer limit13. We did not need to make a similar
approximation for x2 and y2 because they could be taken out of the integral. The final
result is

E(x, y, z) =
1

iλz
exp(ik(z +

x² + y²

2z
))

+∞¨

−∞

E′(x′, y′, 0)exp(
−ikx
z

x′)exp(
−iky
z

y′)dx′dy′,

so that we have the relation

E(x, y, z) =
1

iλz
exp(ik(z +

x² + y²

2z
))F2D{E′(x′, y′, 0)}( kx

2πz
,
ky

2πz
). (A.2)

13For our infrared laser k ≈ 8 · 106m and x, y ∼ 0.5 · 10−2m (we use a relatively large beam), this
means that the Fraunhofer limit accurately describes the field only for z � 200m. This estimate shows
why the Fraunhofer limit is said to describe the far field.
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It is important to realize that the source field is Fourier transformed with respect to the
spatial coordinates of the target plane (times the factor k

z ), not with respect to more
common variables like time or momentum. The far field therefore displays the spatial
frequencies of the source field, where low spatial frequencies are close to the optical axis
and high spatial frequencies are furthest away. The Fraunhofer limit shows why even
a beam with a gaussian beam profile, which is the only function that retains its form
under Fourier transformation, cannot be collimated perfectly.

Somewhat confusingly, all approximations applied above are considered versions of the
paraxial approximation.

Since a lens reproduces the field at infinity in its focal plane, the Fraunhofer limit shows
that the E-fields in the front focal plane and the back focal plane of a lens are related
by the (Fourier) transform Eq. A.2, thus motivating the name Fourier plane to indicate
the back focal plane in this context.

In practice the field in the front focal plane of a lens is not an exact Fourier transform of
the field in its back focal plane because non-idealized optics always has a so-called point
spread function, due to the finite dimensions of the lenses. The point spread function
between the plane z′ = 0 and the plane z = constant is found by computing I(x, y, z)
using Eq. A.1 for an input field E(x′, y′, 0) = E0δ(x

′ − x′0)δ(y′ − y′0) and a given optical
system through which it propagates. The optical system is incorporated into the integral
by letting the wavenumber depend on space in a specific way.
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