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Abstract

As a means of working towards solving the information paradox, we discuss conformal diagrams
of evaporating black holes. We generalize the Schwarzschild solution to the asymptotically flat
Bondi-metric and give a derivation of its asymptotic symmetry algebra, the BMS algebra. We
discuss the interpretation as a charge algebra of zero-energy currents. Finally, we establish the
centrally extended BMS-algebra as the semi-simple product of the Virasoro algebra acting on a
representation.
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1. Introduction

1.1 Introduction

One of the first non-trivial examples of a metric in General Relativity is the Schwarzschild metric.
It models the behaviour of the gravitational field of massive bodies, such as planet earth, or the
sun. For example, the metric describing planet earth is equal to the Schwarzschild metric with
Schwarzschild radius rS “ 2GM‘, outside of earth’s matter radius.

The matter radius of astronomical objects is maintained by outward force due to interaction of
the matter that composes it. If the gravity is stronger than this outward force, the matter radius
decreases. If this matter radius decreases beyond the Schwarzschild radius, a black hole is formed.

As a result of the Unruh effect and the equivalence principle, Stephen Hawking and Jacob Beken-
stein discovered an evaporation process of black holes, which applies in particular for the Schwarzschild
solution. By emitting radiation, its mass and radius decrease. The discovery of this process has
led to a number of interesting questions. One of them concerns black hole information.

We briefly discuss the problem below. In the next chapters, we take on a strategy to solve it.
Though not finished, some important progress has been made recently. The goal of this thesis is
to understand what has been done so far, and what should be done to finish the work.

1.1.1 Black hole information

For the Schwarzschild solution, and its stationary generalizations (Kerr, Reissner-Nordstrom,
Kerr–Newman), it has been shown that the only conserved quantities of are the mass M , the
charge Q, and the angular momentum J . This is known as the no-hair theorem. It has been
conjectured to be true for more general black holes.

The no-hair seems to infer that information about anything that is absorbed by the black hole
is lost; for how can one possibly keep track of whatever comes in using just these three parameters?

Black hole evaporation, discovered by Hawking in 1974, [1], poses a problem in this context. How
are incoming material and evaporative radiation related if the black hole ‘forgets’ the information
of what came in?

At the time of the discovery of black hole evaporation, there were no ideas as to how to maintain
the information of incoming radiation or matter on the Schwarzschild horizon, in conflict with the
law of preserved information; which is classically due to Liouville’s theorem, and in quantum me-
chanics equivalent to quantum unitarity. This problem is commonly referred to as the information
paradox.

1.1.2 Lumpy black holes

In order to give a better description of black holes that evaporate, we should relax the condition of
stationarity; we need a time-dependent metric to describe evolving black holes. Due to Birkhoff’s
Theorem such a metric cannot solve Einstein’s equations for the vacuum, if it is spherically sym-
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Universiteit Utrecht 1.1. INTRODUCTION

Figure 1.1: A small object has fallen into a black hole. The radial size increment traverses the
black hole horizon, (left, center). It turns out in section 4.3, that classically a black hole with
propagating waves does not in general become spherical again, (right).

metric. So simultaneously we need to relax this condition. In 1962, Bondi, van der Burg, and
Metzner in [2] have generalized black hole solutions, to a class of axially symmetric, asymptotically
flat metrics. These metrics describe to a multitude (i.e., possibly more than one) of ‘lumpy’ black
holes that evolve over time. A metric that satisfies said conditions goes by the name of Bondi
metic. The Minkowski and Schwarzschild metrics are both Bondi metrics.

The relaxation of spherical symmetry seems very reasonable, from a physical point of view. Imag-
ine a small object being thrown into a black hole. Then surely the far end does not ‘know’ straight
away that the radius should increase; the increment in size can only travel at the speed of light,
so at least for a while, the black hole has a lump. It turns out in section 4.3, that black holes can
be (classically) excited with waves that do not die out.

1.1.3 Asymptotic Symmetries

The group of vector fields that leave the Bondi metric asymptotically invariant, (i.e., the new
metric which is the result of flowing the old along the vector field is again a Bondi metric), is the
BMS group. It consists of rotations and supertranslations, an infinite class of transformations that
is generated similar to the translations.

In 2010, Barnich and Troessaert have made the case in [7], that the BMS group should be ex-
panded so as to contain the local conformal transformations of the sphere, which will be part of
the studies in this thesis. These local conformal transformations are called superrotations.

Recently, in [5], Strominger showed that the BMS group is a symmetry group of classical gravita-
tional scattering, and of the S-matrix in quantum gravity. He argues that in a finite neighbourhood
of the Minkowski vacuum, classical gravitational scattering is BMS-invariant. Furthermore the S-
matrix of asymptotically Minkowskian quantum gravity, has the symmetry

X`ε S “ SX´ε ,

where X˘ε are infinitesimal generators of BMS˘.

One of the key results of this article is the conservation law of local energy, which is defined
by the Bondi mass aspect mBpu, x

Aq, at each angle xA. (The Bondi mass for a Schwarzschild
black hole is GM .)

Proposition 1.1 (Strominger). The total incoming energy flux integrated along any null gen-
erator on I ´ equals the total outgoing energy flux integrated along the continuation of this null
generator on I `.

Global energy conservation is due to a global time translation, which is a supertranslation that
does not depend on the angle. Conversely, an angle dependent supertranslation which acts only
on one angle, will lead to a conservation law at that one angle; i.e., conservation of local energy.

- 5 -
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For a scattering in Minkowski spacetime of particles propagating from I ´ to I `, this angu-
lar energy is maintained by soft gravitons. They have localized energy contributions which insure
that at each angle the local energy is conserved, whilst having zero total energy. In [19], these soft
particles have been used to construct conserved currents. They have zero total energy, and there-
fore they are dubbed soft hairs, as a contraction of ‘hairs’ in the no-theorem and ‘soft particles’.
The BMS vector fields are established at null infinity I ` or I ´, rather than at spatial infinity
i0, which is the main reason that these modes have remained undiscovered as an ADM-charge.

The asymptotic symmetry algebra shall be the main subject of this thesis. The associated soft
hair (or perhaps ‘follicle’) is found to be a means of storing information. Before deriving the
Bondi metric, and the BMS-algebra, we discuss some consequences of black hole evaporation, and
we develop some necessary machinery. After having derived the explicit vector fields inducing
the supertranslations and superrotations, we investigate central extensions of the BMS algebra,
necessary to move from the classical to the quantum picture.

- 6 -



2. Black holes and evaporation

In this chapter we discuss some consequences of the evaporation of black holes. This should help
understand the information problem, and where we should look to solve it.

2.1 Black hole evaporation

Under the right circumstances a black hole is formed by a collapsing star. For simplicity, we assume
that a black hole of mass M0 has been formed at time t0, by a massive spherical object, with little
or no outward pressure due to interaction, of mass M0. We know that the matter sphere exterior
has the Schwarzschild metric, and that the black hole starts to evaporate at time t0.

2.1.1 Evaporation

We use the Stefan-Boltzmann law for black body radiation as an estimate for the radiated power
P :

P “ AσT 4. (2.1)

Here A “ 16πG2M2 is the area of a Schwarzschild black hole, and σ is the Stefan-Boltzmann
constant, given by

σ “
π2k4

B

60~3
.

For the temperature we use the Hawking temperature

TH “
~

8πGMkB
.

Substituting the Schwarzschild area and the Hawking temperature into (2.1), we obtain

P “
~

15360πG2

1

M2
“
Kev

M2
,

where we have defined evaporation constant

K “
~

15360πG2
.

But the radiation gives rise to a decrease in mass, via P “ ´dE{dt “ ´dM{dt, (c “ 1). This gives
rise to the differential equation

´
dM

dt
“
Kev

M2
.

Under the boundary conditions set above, this gives rise to the time-dependent mass function mptq:

mptq “

$

’

’

&

’

’

%

M0, t´ t0 ď 0
`

M3
0 ´ 3Kevpt´ t0q

˘1{3
0 ă t´ t0 ă tev “

M3
0

3Kev

0, tev ď t´ t0

(2.2)
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CHAPTER 2. BLACK HOLES AND EVAPORATION Han van der Ven

Let us consider as a first example the emission of a single photon out of a Schwarzschild black
hole. Let the emission occur at time tem (em for emission), and let the radius decrease from r0 to
r0 ´ η. We now define an adjusted tortoise coordinate

r˚ “ r ` pr0 ´ ηq ln

ˇ

ˇ

ˇ

ˇ

r

r0 ´ η
´ 1

ˇ

ˇ

ˇ

ˇ

,

valid for the emitted photon, and any light-like trajectories that are beyond its light-cone. The
photon itself carries the ‘news’ that the black hole has decreased in size. Since the photon must
start at r0 “ tem, the photon trajectory is defined by

t´ r˚ “ u0, u0 “ tem ´ r
˚
em “ tem ´ r0 ´ pr0 ´ ηq ln

ˇ

ˇ

ˇ

ˇ

η

r0 ´ η

ˇ

ˇ

ˇ

ˇ

.

Note that u0 is finite for non-zero η, so we have a well-defined photon trajectory

t´ tem “ r ´ r0 ` pr0 ´ ηq ln

ˇ

ˇ

ˇ

ˇ

r ´ pr0 ´ ηq

η

ˇ

ˇ

ˇ

ˇ

.

It coincides with the trajectory of a photon through empty space if η “ r0, i.e., if the black hole
has completely evaporated.

Consider a collapsing star, with some strictly decreasing matter radius rptq, such that rpt0q “
2GM0. Based on the observation above, we wish to extend the idea to a black hole with the hori-
zon evolution (2.2). Here we propose an adjusted Eddington-Finkelstein diagram, with the added
null lines are obtained by interpolation between the Schwarzschild metric with mass M0 before the
star collapses, and the Minkowski metric, after the black hole has evaporated. The diagram should
look like this, with the dotted lines depicting null curves.

r

2GM0t

2.2 Conformal diagrams

Based on the discussion in the previous section, light does escape the black hole as it shrinks, and
that points on the evolving horizon have different u0 coordinates.

Proposition 2.1. The horizon of a homogeneously shrinking black hole is timelike.

This should be no surprise, for if we wait for a black hole of radius r0 to evaporate to, say, half
the size, then the radial point r0 lies well outside the black hole. Based on this, we propose the
conformal diagram of a collapsing star, forming a black hole, that eventually evaporates.

Next, we propose that the associated conformal diagram be as in 2.1. It is essentially obtained by
‘straightening out’ the light lines in the adjusted Eddington-Finkelstein diagram above.

- 8 -
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i´

i0

i`

r
“

2G
M

0

r " GM0

r ą 2GM0

r ă 2GM0

r “ 0

r
“

0

I `

I ´

Figure 2.1: Conformal diagram of a confguration of matter (blue) of total mass M0 collapsing into
a black hole (yellow) which evaporates into radiation (green). Dotted lines are of equal radius.

Near past infinity i0 we have a spherical configuration of matter, confined to a finite region.
Outside that region, spacetime is well described by the Schwarzschild metric, with the matter
centre of mass as its origin. Due to gravitational interaction, the matter will be attracted inwards.
As the massive body shrinks in size, line of equal radius pass out of the outer edge in the diagram.

Eventually, all of the matter will pass beyond the Schwarzschild radius, thus forming a black
hole (yellow). It evaporates at a rate (2.2). Similar to the matter sphere before, as the black hole
decreases in size, lines of equal radius emanate from the black hole. Note that as these line pass
through the horizon, they should approach a 450 angle. In addition, different lines cannot touch in
the interior of the diagram (i.e., strictly between the horizon, I ` and I ´). This is yet another
reason not to draw the evolving black hole horizon as a null line in this diagram.

Since the black hole horizon evolves in a timelike fashion, lines of equal radius come out, and
the radiation constitutes a region, rather than a point, at null infinity I `. Using the appropriate
retarded time coordinate u “ t´ r˚, the stress-energy tensor Tµνpuq will increase, starting at u0,
and becoming constant from uf onwards.

After the black hole has completely evaporated, the metric should describe Minkowski spacetime,
as reflected in the top part of the diagram. Similarly, for sufficiently large r, the digaram should
look just like the conformal diagram of Minkowski spacetime. In fact, the far right of the diagram
should be (almost) indistinguishable from the far right part of the Minkowski spacetime conformal
diagram.

- 9 -
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t
Ñ

r Ñ

uf

u0

v0 vf

p

Ø

i´

i0

i`

r “ 0

v0

vf

uf

u0

r
“

0

I `

I ´

pv

pu

Figure 2.2: Conformal diagram (right) and pr, tq-diagram (left) of radiation ‘active’ between ad-
vanced time v0 and vf (blue) forming a black hole (yellow) which evaporates into radiation (green)
observed between retarded time u0 and uf . Dotted lines are of equal advanced (retarded) null
coordinate u (v). The point p is drawn to illustrate that the black hole origin and the white hole
origin should be identified (i.e., pu should be folded pv to obtain the left diagram from the right)

Similarly, we consider a black hole formed by incoming radiation, based on the consideration
that the shrinkage allows for null lines to come out of the black hole. The radiation is ‘active’
between v0 and vf . The precise distribution over time of the radiation is not important. What
is important is that the black hole increases in size, until the incoming radiation stops (or is less
intense than the outgoing radiation). After that the black hole still needs some time to evaporate.

Since a conformal diagram is obtained by ‘straightening out’ null lines, (and confining infinity
conformally to a box), the pr, tq-diagram of such a black hole tells us how to draw the conformal
diagram, as seen in . This conceptually proofs the following proposition.

Proposition 2.2. The black hole origin r “ 0 and the white hole origin, in the conformal
diagram of a black hole, are two copies of the origin of the same object. The black (white) hole
origin is well-defined in terms of retarded (advanced) time coordinate u (v), i.e., the appropriate
Eddington-Finkelstein coordinate. In order to obtain the pr, tq-diagram, they should be folded over
one another, as seen in 2.2.

- 10 -
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2.2.1 Time direction

As a final exercise, we aim our attention at the black hole interior in the conformal diagram in 2.2.
Proposition 2.2, infers a time direction close to the two copies of the origin:

r “ 0

r “ 0

t

t

pv

pu

Let us consider the limit of an evaporating black hole that corresponds to the Schwarzschild
solution. In physical terms, that is either a black hole created at past infinity i´, and which only
starts to (significantly) evaporate at future infinity i`, or a black hole kept at fixed radius 2GM
by matching the incoming and outgoing radiation. Its Penrose diagram is

III

III

IV

i`

i´

i0
r
“

2G
M I `

I ´

r “ 0

r “ 0

Excluding region II, it should be seen as the limit of diagram 2.2. If we do extend the diagram,
it should be clear that Proposition 2.2 implies that the time direction in region II actually is
downwards.

Corollary 2.2.A. The time direction in region II is opposite to the time direction in region I.

This corollary also arose in [20] by Gerard ‘t Hooft, where it was derived using unitarity of near-
horizon wave-functions.

- 11 -



3. Introduction to asymptotic symmetry

In this chapter we develop some notions and machinery that are relevant to understanding the
main body of this thesis: the asymptotic symmetry algebra.

3.1 Asymptotic Symmetries of the plane

Asymptotic flatness conditions ensure that a manifold behaves like flat space far away from some
interior region. This is something that is reasonable to require from a metric describing one or
more black holes; far away their gravity should be negligible. The 4 dimensional spacetime case is
attended to in the next chapter. Here we consider a 2 dimensional manifold M with a Riemannian
metric gij . It can always be cast in the polar form

ds2 “ dr2 ` fpr, θqdθ2

by solving the system of equations:

gij “ g̃ĩj̃
dx̃ĩ

dxi
dx̃j̃

dxj
, pg̃11 “ 1, g̃12 “ 0q.

for the three functions x̃1 ” r, x̃2 ” θ, g̃22 ” fpr, θq. Here θ is an angular coordinate, i.e.,
θ “ θ ` 2π.

Definition 3.1. A metric of the above form is asymptotically flat if
(A1) There exists a bounded region U ĂM outside of which the coordinates r, θ are valid.
(A2) In MzU the function f goes like

fpr, θq “ r2 ` apr, θq,

where apr, θq P O8pr1q.

The second condition is equivalent to the fall-off conditions:

Brfpr, θq P O8pr1q, Bθfpr, θq P O8pr1q.

Consider an asymptotically flat metric. Let apr, θq “ fpr, θq ´ r2 so as to obtain:

ds2 “ dr2 `
`

r2 ` apr, θq
˘

dθ2.

Then the inverse metric is

gij “

¨

˝

1 0

0
`

r2 ` apr, θq
˘´1

˛

‚.

The nonvanishing Christoffel symbols are

Γrθθ “ ´
Brfpr, θq

2
Γθrθ “

Brfpr, θq

2fpr, θq
, Γθθθ “

Bθapr, θq

2fpr, θq
.

12
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Definition 3.2. Asymptotic isometries are transformations that send the metric g to a metric
g̃ that is again asymptotically flat. They are induced by vector fields that maintain the asymptotic
form of the metric.

In our case, this gives rise to the equations

LXgrr “ 0, LXgrθ “ LXgθr “ 0, LXgθθ “ 0`O8pr1q.

Note that these are a weak version of the Killing equations, where LXgij “ 0 for all i, j. I will
therefore refer to these vector fields as asymptotic Killing vectors

Calculation: Asymptotic Killing vectors By metric compatibility the set of equations
becomes

BrX
rgrr “ 0, (3.1)

BrX
θgθθ ` BθX

rgrr “ ΓθrθX
θgθθ ` ΓrθθX

θgrr,

BθX
θgθθ “ ΓθθθX

θgθθ ` ΓθrθX
rgθθ `O8pr1

q,

First of all, by (3.1), Xr
“ T pθq for some function T : S1

Ñ R. Substituting this, along with
the metric entries and Christoffel symbols, we obtain the reduced set of equations:

fpr, θqBrX
θ
` T 1pθq “ 0, (3.2)

2fpr, θqBθX
θ
` pBθapr, θqqX

θ
` Brfpr, θqT pθq “ 0`O8pr1

q, (3.3)

Equation (3.2) is resolved by setting

Xθ
“ Qpθq ` T 1pθq

ż 8

r

dr̃

fpr̃, θq
, (3.4)

where Qpθq is again an arbitrary function of θ. This is the point where we apply asymptotic
flatness of gij ; since apr, θq P O8pr1

q, we have the geometric series expansion of the integral
in (3.4):

ż 8

r

dr̃

r̃2 ` apr̃, θq
“

ż 8

r

dr̃
`

r̃´2
´ apr̃, θqr̃´4

` a2
pr̃, θqr̃´6

´ . . .
˘

.

The terms in the expansion of ever decreasing order in r. The first term of the integral can
actually be evaluated

ż 8

r

dr̃

r̃2 ` apr̃, θq
“ r´1

`

ż 8

r

dr̃
apr̃, θq

r̃2fpr̃, θq
“ r´1

`O8pr´2
q.

In order to solve the last remaining constraint equation (3.3), we wish to decompose the left
hand side of (3.3) into orders of r. First note, that in order rr2

s we have constraint

2r2Q1pθq “ 0.

So Qpθq ” R is constant. The rest of the constraint equations is contained in the allowed
asymptotic fall-off O8pr1

q. So the general solution is

Xr
“ T pθq

Xθ
“ R` T 1pθq

ż 8

r

dr̃

fpr̃, θq
.

Note that to first order, the vector field is independent of fpr, θq:

Xθ
“ R`

T 1pθq

r
`O8pr´2

q.

The solutions we have obtained are infinitely generated, by arbitrary periodic functions T pθq.
These asymptotic Killing vectors will be referred to as supertranslations. The relation to normal
translations will become clear in the next section, see e.g. figure 3.1. The R-generated part is just
a normal rotation.
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Different fall-off conditions The choice of fall-off in the definition for asymptotic flatness, is
somewhat arbitrary. In literature sometimes a fall-off apr, θq “ r2`O8pr3{2q. The choice of fall-off
in Definition 3.1 leads to a Ricci scalar R “ O8pr´4q. A weaker fall-off condition would result
in an extra constraint in the asymptotic Killing equations, due to (3.3). As a result the Killing
vectors and asymptotic Killing vectors then coincide.

Asymptotic flatness in Cartesian coordinates By setting x “ r cos θ, y “ r sin θ we obtain
an expression for the metric in terms of Cartesian coordinates:

gijpx, yq “

¨

˝

1` y2 apr,θq
r4 ´xy apr,θqr4

´xy apr,θqr4 1` x2 apr,θq
r4

˛

‚.

Note that this can be written quite nicely to

gijpx, yq “ ηij ` εikx
kεjlx

lppx, yq,

where ηij is the Minkowski metric, εĩi is the 2-dimensional Levi-Civita tensor, and ppx, yq “

apr, θq{r4. A metric of this form is asymptotically flat, if ppx, yq P O8
´

`

x2 ` y2
˘´3{2

¯

. This is

true for terms xmyn if m` n ď ´3.

3.2 The BMS group

The BMS group the transformation group associated to the algebra of asymptotic Killing vectors.
Writing Ω for the spherical part of the metric, xA for the angular coordinate, and u “ t ´ r˚ for
the retarded time coordinate at I `, the BMS group is defined as follows.

Definitions 3.3. The BMS group in any dimension consist of transformations

uÑ KpxAqru´ T pxAqs, (3.5a)

Ω Ñ Ω1pxAq, (3.5b)

where T pxAq is an arbitrary function of the sphere, and KpxAq is a conformal scaling function,
i.e., pdΩ1q2 “ K2dΩ2. A transformations for which T ” 0 is a superotation. A transformations
for which Ω1 “ Ω is a supertranslation. A general transformation is called a supertransfor-
mation.

The conformal transformations (3.5b) consist of rotations and boosts. The rotations have confor-
mal factor 1. The boosts deform the sphere, whilst keeping the spacetime separation s constant.
This is reason for the conformal factor in front of the u transformation in (3.5a).

Note that in the definition of the BMS group, the radial coordinate r is not taken into account.
This is because the BMS group is fully determined by its action on I `, and the BMS group has
the same action there for any metric. In a sense, the above action of the BMS group is a limit
r Ñ8 of the action on the whole of spacetime. In the next chapter, we will derive the r-component
of the vector fields inducing the transformation of the interior.

3.2.1 BMS in three dimensions

A rotation or boost of S1, (i.e., an automorphism a P AutS1), is an arbitrary invertible function
S1 Ñ S1 constrained by periodicity. Hence it is of the form

θ Ñ σθ ` a0 ` ar cos θ ` ai sin θ,

- 14 -
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for arbitrary scalars a0, ar, ai P R, and where σ “ 1 for an orientation-preserving transformation,
and σ “ ´1 for an orientation-reversing transformation. We will restrict to the orientation-
preserving case. Similarly, a general orientation-preserving superrotation of S1 (i.e., a diffeomor-
phism α P Diff` S1), is an arbitrary (periodic) function of the form

θ Ñ θ ` a0 ` ar,1 cos θ ` ai,1 sin θ ` ...` ar,n cosnθ ` ai,n sinnθ ` ....

The difference between the automorphism and diffeomorphism groups is discussed further in section
3.4. The variation of such a transformation is equivalent to the complex Fourier series

δθ “
8
ÿ

n“´8

αne
inθ, (3.6)

for complex valued αn with reality condition α´n “ αn, where ¨ denotes complex conjugation.
The complex valued scalars tαnunPZ are related to the real scalars tar,n, ai,nun P N via

`

αne
inθ ` α´ne

´inθ
˘

“ preαn ` i imαnqe
inθ ` pre fn ´ i im fnqe

´inθ

“ 2 reαn cosnθ ´ 2 imαn sinnθ.

So we have

ar,n “ 2 reαn, ai,n “ ´2 imαn,

α˘n “
1

2
par,n ¯ iai,nq.

The conformal factor Kpθq of a superrotation θ Ñ θ1 “ θ ` apθq is defined by pdθ1q2 “ K2pθqdθ2,
so

Kpθq “
dθ1

dθ
“ 1` a1pθq “ 1`

8
ÿ

n“´8

αnine
inθ.

Similar to the superrotations, any supertranslation has expansion

T pθq “
8
ÿ

k“´8

Tke
ikθ,

for arbitrary tTkuk, and satisfying reality condition T´k “ T k. A rendition of an arbitrary super-
translation is given in figure 3.1.

3.2.2 The BMS algebra in three dimensions

Let z :“ eiθ. Then we have tlnun, defined by

ln :“ ´zn`1 d

dz
“ ieinθ

d

dθ
,

serving as a basis for VectS1, the space of arbitrary smooth vector fields of the unit circle. The
commutator bracket for these generators (see proof below) is

rlm, lns “ pm´ nqlm`n. (3.7)

The algebra of these vector fields is called the Witt algebra witt ” vectS1.

The BMS algebra consists of the vector fields tangent to the group action near the identity,
(which is why we exclude the orientation-reversing action). Ignoring the reality condition, the
(orientation-preserving) supertranslation group generators have tangent vector field

tn :“ einθBu “ znBu.
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I `

i0

i`

xA

uu “ const.

δu

i0

i`

i0

i`

Figure 3.1: Rendition of the future null infinity cone I ` ˆ S1, null infinity times one of the
angular coordinates. Fixing u defines a circle about the cone, which is the r Ñ 8 limit of a
future lightcone of some event. An arbitrary supertranslation transforms these circles (left). For
example, the supertranslation T pxAq “ cos θ (center) shifts the lightcone endpoints in a way
that is equivalent to the translation of the the event from which the lightcone originates. For an
arbitrary supertranslation (right) the interior is transformed in such a way that the resulting curve
on I ` ˆ S1 is the limit of a future lightcone. Note that superrotations also transform the sphere
itself, resulting in a deformed cone, i.e., stretched/compressed/skewed.

It is immediately clear that these commute. The algebra of supertranslations is denoted vectab S1,
since they form an Abelian algebra which, as a vector space, is isomporphic to vect S1. Similarly,
the (orientation-preserving) superrotation group generators have tangent vector field

rn :“ einθpBθ ` inBuq “ izn`1Bz ` nz
nBu,

where Bµ is shorthand for d{dxµ. Note that ln and rn are related by basis transformation ln “
iprn ´ tnq.

Proposition 3.4. The BMS algebra in three dimensions bms3 is generated by tlnun, ttkuk, with
bracket

rlm, lns “ pm´ nqlm`n,

rlm, tks “ ´ktm`k,

rtj , tks “ 0.

Proof The commutator of the Witt algebra generators is

rlm, lns “
`

pzm`1
Bz ` imz

m
Buqp´z

n`1
Bz ` inz

n
Bu
˘

´ pmØ nq

“
`

nzm`n`1
Bz ` z

m`n`2
B

2
z ´ in

2zm`nBu ´ ipn`mqz
n`m`1

BzBu ´mnz
m`n

Bu
˘

´ pmØ nq

“ pn´mqzm`n`1
Bz ´ ipn

2
´m2

qzm`nBu

“ pm´ nqp´zm`n`1
Bz ` ipn`mqz

m`n
Buq

“ pm´ nqln`m.

The commutator of a superrotation and a supertranslation is

rlm, tks “ p´z
m`1

Bz ` imz
m
Buqpz

k
Buq ´ pz

k
Buqp´z

m`1
Bz ` imz

m
Buq

“ p´kzm`nBu ´ z
m`k`1

BzBu ` imz
m`n

B
2
uq ´ p´z

k`m`1
BuBz ` imz

k`m
B

2
uq

“ ´kzk`mBu

“ ´ktm`k.

Note that the result of this bracket is again a supertranslation. Thus we can decompose
the BMS algebra into a semisimple sum witt i vectab S1, (see 3.6.2). Finally, since the
supertranslations are independent of u, their commutator is trivial:

rtj , tks “ pz
j
Buz

k
Buq ´ pz

k
Buz

j
Buq “ 0.
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3.2.3 BMS in higher dimensions

The same construction can be used to find the higher dimensional BMS groups and algebras. The
S2 analogue of the Fourier series uses an expansion in terms of spherical harmonics Y ml pθ, φq, which
is historically how bms4 was expanded. However, we shall make use of a stereographic projection
onto the complex plane (plus a point added at infinity), similar to the mapping einθ Ñ z, which is
much less cumbersome.

Rather than postulating the four dimensional BMS group, and deriving the algebra from there, we
shall explicitly derive the BMS algebra as an asymptotic vector field algebra, in the next chapter.
The advantage is that we can keep track of the r-component, i.e., the BMS-action on the interior
of spacetime.

3.3 Spherical Metrics and Conformal Killing vectors

In this section we study conformal Killing vectors of the 2-sphere. They turn up in the 4 dimension
BMS algebra, as hinted at in the previous section.

3.3.1 Riemann sphere

The metric of the sphere S2 in polar angles is

dΩ2 “ dθ2 ` sin2 θdφ2

We make a change of coordinates, to the pair pz, zq of complex coordinates, via the stereographic
projection

z :“ eiφ cot θ2 . (3.8)

The second coordinate z is its complex conjugate, (hence the notation). The following term will
occur many times, so often that we give it a name:

P ” P pz, zq :“ 1
2 p1` zzq

In terms of θ and φ, it has expression

1

2P
“

1

1` zz
“

1

1` cot2 θ
2

“
sin2 θ

2

sin2 θ
2 ` cos2 θ

2

“ sin2 θ
2 . (3.9)

Proposition 3.5. The unit sphere is isomorphic to the complex plane, plus a point at infinity,
Ĉ :“ CY t8u. This space is known as the Riemann sphere. It has metric

dΩ2 “ P´2dzdz. (3.10)

Proof The isomorphism is the stereographic projection (3.8). The differential dz has expres-
sion

dz “ d
´

eiφ cot θ
2

¯

“ eiφ
`

i cot θ
2
dφ´ 1

2
csc2 θ

2
dθ
˘

, (3.11)
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and similarly for dz. Then, using (3.9), we find

dzdz “

˜

i cot
θ

2
dφ´

1

2 sin2 θ
2

dθ

¸˜

´i cot
θ

2
dφ´

1

2 sin2 θ
2

dθ

¸

“
1

4 sin4 θ
2

dθ2
` cot2 θ

2
dφ2

“

˜

1

4 sin4 θ
2

¸

ˆ

dθ2
` 4 cos2 θ

2
sin2 θ

2
dφ2

˙

“

˜

cos2 θ
2
` sin2 θ

2

2 sin2 θ
2

¸2
`

dθ2
` sin2 θdφ2

˘

“
pcot2 θ

2
` 1q2

4

`

dθ2
` sin2 θdφ2

˘

“
pzz ` 1q2

4

`

dθ2
` sin2 θdφ2

˘

. ˝

Coordinate transformations For future reference, we provide here the coordinate transforma-
tion functions back the usual spherical coordinates:

θ “ 2 arccot
?
zz, φ “ arccos

z ` z

2
?
zz

ˆ

“
i

2
ln
z

z

˙

(3.12)

Using the chain rule, we have

d

dz
“
dθ

dz

d

dθ
`
dφ

dz

d

dφ
“ ´

a

z{z

1` zz

d

dθ
´

i

2z

d

dφ
“ ´e´iφ

ˆ

sin2 θ
2

d

dθ
`
i

2
tan θ

2

d

dφ

˙

, (3.13)

and similar for z.

3.3.2 Conformal transformations

Later on, we will be interested in transformations that leave the metric gµν invariant up to a scaling

function λ̃ ” λ̃pxµq. The resulting metric g1µν “ λ̃gµν is equal to gµν at each point, up to a scaling
factor. As a result, angles are preserved by this class of transformations, (which motivates their
name: ‘conformal’).

Definition 3.6. Vector fields Y satisfying

LY gµν “ λ̃gµν

are called conformal Killing vectors.

The trace of this equation reveals a necessary relation between λ̃ and Y , (called the trace condition),

2∇µY
µ “ gµν2∇pµYνq “ gµνLY gµν “ gµνωgµν “ nλ̃,

where n is the dimension of the manifold pdimM, gq. Hence

λ̃ “
2

n
∇µY

µ. (3.14)

Conformal transformations of the Riemann sphere

Arbitrary angular coordinates are denoted xA, e.g., the Riemann sphere has coordinates xA “ pz, zq
and metric

γAB “
1
2P

´2p1´ δABq ds2 “
4dzdz

p1` zzq2
.
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We are interested in metrics that are conformal to the spherical metric. Let ϕ̃ “ ϕ´ lnP , for some
function ϕpxAq. So we define the metric of the conformally rescaled Riemann sphere

γAB :“ 1
2e

2ϕ̃p1´ δABq ds2 “
4e2φdzdz

p1` zzq2
. (3.15)

Note that it coincides with γAB for ϕ “ 0. The inverse metric is γAB “ 2e´2ϕ̃p1´ δABq. We shall

denote its associated Christoffel symbols Γ
A

BC , and its covariant derivative DA. The non-vanishing
Christoffel symbols are

Γ
z

zz “ 2Bzϕ̃, Γ
z

zz “ 2Bzϕ̃. (3.16)

Hence, the Christoffel symbol is conviniently written

Γ
A

BC “ 2δABδ
C
ABC ϕ̃.

As a result, the ofter occuring contraction with a (1,0) tensor, XA, is

DAX
A “ BAX

A ` Γ
A

ABX
B “ BAX

A ` 2XABAϕ̃ (3.17)

We solve the conformal Killing equation below.

Calculation of conformal Killing vectors From the trace condition (3.14), we have λ̃ “
DAY

A. Then the conformal Killing equation is

γCBDAY
C
` γACDBY

C
“ DCY

CγAB . (3.18)

suppose that A ‰ B. Then (3.18) becomes

0 “ γCzDzY
C
` γzCDzY

C
´DCY

Cγzz

“ γzzDzY
z
` γzzDzY

z
´ pDzY

z
`DzY

z
qγzz,

which is vacuously true. Next, suppose that A “ B “ z. Then the right hand side vanishes,
and (3.18) becomes

0 “ γCzDzY
C
` γzCDzY

C

“ DzYz `DzYz

“ 2BzYz ´ 2Γ
σ
zzYσ

“ 2BzYz ´ 4Bzϕ̃,

so Yz “
1
2
e2ϕ̃fpzq, for some function fpzq. As a result Y z “ γzzYz “ fpzq. Analogously we

find Y z.

So the conformal Killing vectors are arbitrary functions

Y z ” Y zpzq, Y z ” Y zpzq. (3.19)

They have conformal factor

λ̃ “ DAY
A “ BAY

A ` 2Y ABAϕ̃

3.4 Local vs Global transformations

At this point, it is relevant to make the distinction between the local (infinitesimal) and the global
version of the conformal group. The global version consist of globally well-defined transformations.
In the local version, we allow for any holomorphic (not necessarily invertible) function of the Rie-
mann sphere. We discuss the two classes below. In general, the local symmetry group of a space
corresponds to its diffeomorphism group, and the global symmetry group of a space corresponds
to its automorphism group.

As advocated by Barnich and Troessaert in [7], choosing to work with the global transforma-
tions, results in a much more flexible algebra, and is desirable from a mathematical point of view.
We discuss both cases below.
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3.4.1 Global transformations: Lorentz group

The global transformations are those that are automorphisms of the Riemann-sphere AutpĈq. Re-
calling that the coordinates of the Riemann sphere are established by stereographically projecting
a unit sphere. Geometrically, the image Y pCq of a global transformation Y P AutpĈq, is again a
stereographic projection of a unit sphere, as though the original sphere has been moved and rotated.

Since the transformation has to be an automorphism of the Riemann sphere, the image must
contain t0u and t8u. Thus the holomorphic function should have a simple zero and a simple pole.
Thus, it has to be a rational function of the form

fpzq “
az ` b

cz ` d
, ad´ bc ‰ 0, (3.20)

for some a, b, c, d P C, and with the zero at ´b{a and the pole at ´d{c. These transformations are
known as the Möbius transformations. If ad “ bc the above function is constant, so this case
has to be disregarded. In addition, note that the functions generated this way, provide a double
cover of the transformations of the Riemann-sphere, since the elements generated by a, b, c, d and
´a,´b,´c,´d give rise to the same transformation. We will utilize this fact in the following
propositions.
First we calculate the composition of two such transformations:

f 1 ˝ fpzq “
paa1 ` b1cqz ` a1b` b1d

pac1 ` cd1qz ` bc1 ` dd1
, (3.21)

which is again a Möbius transformation. The group of these transformations is also referred to as
the Möbius group.

Using the metric (3.15) and adopting the notation from section 3.2, the sphere Ω is transformed
into

dΩ12 “
4dz1dz1

p1` z1z1q2

“ 4

ˆ

|cz ` d|2

|cz ` d|2 ` |az ` b|2

˙2ˇ
ˇ

ˇ

ˇ

´ad` bc

pcz ´ dq2

ˇ

ˇ

ˇ

ˇ

2

dzdz

“

ˆ

1` zz

|cz ` d|2 ` |az ` b|2

˙2
4dzdz

p1` zzq2

“ K2pz, zqdΩ2,

so that the conformal factor of a Möbius transformation is given by

Kpz, zq “
p1` zzq

|az ` b|2 ` |cz ` d|2
. (3.22)

Proposition 3.7. The global transformation group AutpĈq is isomorphic to the projective linear
group PGLp2,Cq.

Proof From (3.21) note that

φ : GLp2,Cq Ñ AutpĈq;

¨

˝

a b

c d

˛

‚ ÞÑ f

is a group homomorphism. Any two matrices which differ by a global factor λ have the same
image, so Kerφ “ CˆI. By the first isomorphism theorem; AutpĈq – GLp2,Cq{pCˆIq “
PGLp2,Cq.
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Proposition 3.8. The global tranformation group AutpĈq is isomorphic to the projective special
linear group PSLp2,Cq.

Proof The group homomorphism φ, when restricted to matrices with unit determinant 1, is
still surjective onto Aut Ĉ. The kernel is ˘I, and so AutpĈq – SLp2,Cq{p˘Iq “ PSLp2,Cq.

Corollary 3.8.A. The group of global transformations of the Riemann sphere is isormophic to the
proper, orthochronous Lorentz group SLÒp1, 3q.

3.4.2 Infinitesimal Möbius transformations and the Lorentz algebra

To obtain the algebra associated to the Möbius group, we consider the infinitesimal group action.
An arbitrary infinitesimal transformation of z is of the form

z ` ε0 ` ε1z ` ε2z
2 ` ....

Here εi P C˚ are complex infinitesimals, i.e., @i,j : εiεj “ 0. It is clear that b „ ε0, and that a
must be of the form a “ 1` ε for some infinititesimal ε. It turns out that a, b, c, and d are related
to the infinitesimals via

a “ 1`
ε1

2
, b “ ε0, c “ ´ε2, d “ 1´

ε1

2
.

Substituting these solutions into an arbitrary Möbius transformation then gives:

z Ñ
p1` ε1

2 qz ` ε0

1´ ε1
2 ´ ε2z

“
`

p1` ε1
2 qz ` ε0

˘`

1` ε1
2 ` ε2z

˘

“ z ` ε0 ` ε1z ` ε2z
2, (3.23)

and similar for z. Note that a general Möbius transformation has three complex degrees of free-
dom, from which it should be clear that (3.23) indeed gives the most general infinitesimal Möbius
transformation.

The associated conformal factor is

Kpz, zq “ 1`
1´ zz

1` zz
re ε1 ´

2

1` zz
reppε0 ´ ε2qzq, (3.24)

or, in terms of θ, φ,

Kpθ, φq “ 1` cos θ re ε1 ´ 2 sin2 θ
2 reppε0 ´ ε2qzq (3.25)

In particular, the conformal factor is 1 if re ε1 “ 0 and ε0 “ ε2. It follows from (3.23) that the
complex Lorentz algebra is (isomorphic to) the algebra generated by

z0Bz, z1Bz, z2Bz, z0Bz, z1Bz, z2Bz.

Writing lm “ zm`1Bz, and lm “ zm`1Bz the commutators are

rlm, lns “ pm´ nqlm`n, rlm, lns “ pm´ nqlm`n, rlm, lns “ 0.

For a proof, see the proof of Proposition 3.4. Below, we give an example of an infinitesimal Möbius
transformation in terms of the more familiar θ, φ.

Example Consider the transformation z Ñ z1 “ z`ηz, z Ñ z`ηz, for a complex infinitesimal
η. Note that for infinitesimals ei im η

“ 1` i im η. As a result, we have

z Ñ z1 “ zp1` ηq

“ cot
θ

2
eiφp1` re η ` i im ηq

“ p1` re ηq cot
θ

2
eipφ`im ηq

“ cot arccot

ˆ

p1` re ηq cot
θ

2

˙

eipφ`im ηq

“ cot

˜

arccot

ˆ

cot
θ

2

˙

´
cot θ

2
re η

1` cot2 θ
2

¸

eipφ`im ηq

“ cot

ˆ

θ ´ sin θ re η

2

˙

eipφ`im ηq,
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where we have used the series expansion arccotx` a “ arccotx´ a{p1` x2
q ` .... So we have

correspondence

z Ñ zp1` ηq, z Ñ zp1` ηq; ô φÑ φ` im η, θ Ñ θ ´ sin θ re η.

3.4.3 Local transformations: Witt algebra

If we choose our conformal Killing vectors to only be locally well-defined, the resulting functions
are arbitrary (holomorphic) functions, Y z ” Y zpzq, Y z ” Y zpzq. Hence the conformal Killing
vectors admit Laurent expansion

Y “
8
ÿ

n“´8

`

αnz
n`1Bz, αnz

n`1Bz
˘

with arbitrary parameters αn, αn. Define ln :“ ´zn`1Bz, and ln :“ ´zn`1Bζ . The Lie algebra of
Killing vectors is generated by the basis plnqn, plnqn. The elements have commutation relations

rlm, lns “ pm´ nqlm`n, rlm, lns “ pm´ nqlm`n, rlm, lns “ 0.

The conformal Killing algebra is isomorphic to two (independent) copies of the Witt algebra, (see
(3.7)). It was seen in section 3.2.2 that the local conformal transformations of the circle give rise
to a single copy the Witt algebra.

The restriction plm, lnq|n,m“´1,0,1, establishes the Lorentz algebra as a subalgebra, which is imme-
diately clear upon comparing the generators.

3.5 Vector Field preliminaries

In this section we study some relevant properties of vector fields. The definitions throughout this
section are taken from [15].

3.5.1 Vector fields as operators

An integral curve of a vector field X is a differentiable map γ : I Ñ M with the property that
our vector field X is its derivative at all points in some open U . This translates to the condition

γ : I ÑM, Bτγpτq ” 9γpτq “ Xγpτq.

In covariant notation, this just means that we have the differential equations:

Bτγ
µpτq “ Xµpγσpτqq

Its value in zero (if it is in the domain), γp0q P M , is called it starting point. Suppose that for
each point p PM the vector field X P XpMq has a unique integral curve starting at p, and defined
for all τ P R. Denote the collection of these ingegral curves ϕppq : R Ñ M . Then we define the
flow of the vector field X as

ϕτ : M ÑM ; ϕτ ppq :“ ϕppqpτq.

A particularly important example is the exponential map:

exp : TpM ÑM ; exppXq “ ϕ1ppq

Example Consider the vector field X “ ´xBy ` yBx on the manifold R2. Then its integral
curve is the solution of the equations

Bτγ
x
pτq “ ´γypτq, Bτγ

y
pτq “ γxpτq,
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solved by

γpτq “ pa cos τ ´ b sin τ, a sin τ ` b cos τq.

Note that γp0q “ pa, bq, so that the flow of X is given by

ϕτ px, yq “ px cos τ ´ y sin τ, x sin τ ` y cos τq.

Finally, the exponent of X at p “ px, yq is

exppXq “ px cos 1´ y sin 1, x sin 1` y cos 1q.

Action of a vector field on a tensor We define the action of a vector field on a covariant
tensor:

X.T |p “ ϕ˚τ pT ppqq “ pTµ1...µk ˝ ϕτ qppqdpx
µ1 ˝ ϕτ q b ...b dpx

µk ˝ ϕτ q

For instance, the action on the metric gµνdx
µdxν is

X.pgµν |pdx
µdxνq “ gµν |ϕτ ppqdpϕ

µ
τ qdpϕ

ν
τ q “

ˆ

gµ̃ν̃ |ϕτ ppq
Bϕµ̃τ
Bxµ

Bϕν̃τ
Bxν

˙

dxµdxν .

Note that this coincides with the familiar transformation law for metrics.

3.5.2 Vector field algebra

X(f) to be the element of C8(M) whose value at a point p is the directional derivative of f at p in
the direction X(p)

3.6 Algebra preliminaries

3.6.1 Lie group - Lie algebra correspondence

In this subsection we recall some important features of Lie groups and their corresponding algebras.
Lie groups are denoted by capital letters (e.g., G,H, ...) and Lie algebras by their lower case Fraktur
counterpart (e.g., g, h, ...). The Lie algebra is the linearization of the Lie group, in the tangent
space at the identity. That is, elements X P g are identified to the derivative of the exponential

g Q X ”
d

dt
etX

ˇ

ˇ

ˇ

ˇ

t“0

P TeG

and given a t these correspond to some element in the group G:

etX „ g P G

Proposition 3.9. If g is the Lie algebra of a Lie group G, then adXpY q “ rX,Y s.

Proof The (left) adjoint action is defined as the conjugation:

Ad :GˆGÑ G; pa, gq ÞÑ a ¨ g ¨ a´1

Ada ” LaRa´1 :GÑ G; g ÞÑ a ¨ g ¨ a´1

Here Lg, Rg denote the left and right action of the Lie group element g, respectively. Since
Ada e “ e, its differential at the unit is an action on the Lie algebra,

9Ada :“ pdAdaqe : gÑ g;

We identify X P g with the speed of its associated flow (writing expptXq :“ φtXLpeq):

g Q X ”
d

dt
expptXq

ˇ

ˇ

ˇ

ˇ

t“0

P TeG.
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And thus, by the (differential of the) adjoint action, it is sent to

9AdgpXq “
d

dt

`

g ¨ expptXq ¨ g´1
˘

ˇ

ˇ

ˇ

ˇ

t“0

P TeG,

“
d

dt

`

expptgXg´1
q
˘

ˇ

ˇ

ˇ

ˇ

t“0

P TeG,

” gXg´1
P g,

where we used expptaXq “ a expptXq and expptXbq “ expptXbq. Now, we introduce the
adjoint representation of the Lie group G, along with its associated representation of the Lie
algebra g:

Ad :GÑ GLpgq; g ÞÑ 9Adg

ad : gÑ glpgq; X ÞÑ adX

The adjoint action then acts on an arbitrary element Y P g via:

adpXqpY q ” adXpY q P g

” pd 9Ad d
dt

expptXq|t“0
Y qe P TeG

“ pdRexpp´tXqqpdLexpptXqqpYeq

“ pdRexpp´tXqqpYexpptXqq

“
d

dt

´

dφ´t
XL
pYφt

XL
peqq

¯

ˇ

ˇ

ˇ

ˇ

t“0

“ pLXY qe
“ rX,Y se

” rX,Y s P g .

Here we used that expptXq´1
“ expp´tXq, and the correspondence between the flow and the

left and right action. We see that indeed ad : gÑ glpgq is a representation of the Lie algebra
g on itself, and that adX Y “ rX,Y s. ˝

From group to algebra

Let V be a vector space of dimension n over a field k. The general linear group GLpV q is the group
of bijective linear transformations of the vector space V . The group operation is composition.
Given a basis pejq1ďjďn for V a transformation T is the map

Tek “
n
ÿ

j“1

a j
k ej .

This shows that GLpV q is isomorphic to the space of pnˆ nq-matrices excluding non-invertibles,

GLn –Mˆ
nˆn “ tA PMnˆn|detA ‰ 0u.

In this form, the group operation is just matrix multiplication. Note that it is isomorphic (the
isomorphism being picking a basis) to the group of n dimensional GLn. Subgroups of GLn are
called linear groups.

Now we move from the group to the algebra, where we follow [16, § 2.14]. The tangent space
of GLn is canonically denoted in lower case Fraktur, i.e., TI GLn “: gln. Any element X P gln is
identified with the speed at t “ 0 of t ÞÑ I ` tX. Note that for small enough t, the determinant is
nonzero, so that gln –Mnˆn. Now, X gives rise to left-invariant vector field

XLpAq “
d

dt
ApI ` tXq

ˇ

ˇ

ˇ

ˇ

t“0

P TA GLn

for allA P GLn. LetX,Y P gln, and rX,Y sg the bracket in g defined via rX,Y sLg “ rX
L, Y LsXpGLnq,

where the last bracket is the bracket of vector fields on GLn. We compute

LrXL,Y Lspfq “ LXLLY Lpfq ´ LY LLXLpfq, @f : GLn Ñ k.
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Write u i
j : gln Ñ k for the coordinate functions on gln. Then we have

LXLpfqpAq “
d

dt
fpApI ` tXqq “

ÿ

i,j,k

dfpAq

du i
j

A i
k X

k
j .

In particular
LXLpu i

j qpAq “
ÿ

k

A i
k X

k
j .

So we have
LY LLXLpu i

j q “
ÿ

k

LY Lpu i
k qX

k
j “

ÿ

k,l

u u
l Y

l
k X k

j “ LpY XqLpu i
j q.

It follows that rX,Y sg “ XY ´ Y X, i.e., the Lie-bracket for linear algebras is the commutator.

Other linear groups

For other linear groups, we move to the algebra by ‘taking the derivative’ of the extra condition,
i.e.,

On “ tA P GLn |AA
T “ Iu

Consider the map

f : GLn ÑMnˆn; fpAq “ A ¨AT

Then On “ f´1ptIuq Ă GLn can be seen as the preimage of the identity of f . It has the tangent
map

pdfqA : gln Ñ gln; X ÞÑ
d

dt
fpA` tXq

ˇ

ˇ

ˇ

ˇ

t“0

“ AXT `ATX.

As a Lie algebra, on “ TI On, (so A “ I) is just the restriction

tX P gln |X
T `X “ 0u – pdfq´1p0q Ă gln .

Example: The Lorentz group The Lorentz group can be defined as follows: We define
η “ diagp´1, 1, 1, ..., 1q PMnˆn to be the metric matrix (of Minkowski space-time). Then the
(general) Lorentz group consists of transformations satisfying

Op1, n´ 1q :“ tΛ P GLn |Λ
tηΛ “ ηu,

i.e., coordinate transformations that leave the metric invariant. (Physically this condition
means that ‘the laws of physics’ should look the same in any frame of reference). Let us split
time and space components of xµ. Then we write

Λ “

¨

˝

a ~vt1

~v2 S

˛

‚, x “

¨

˝

x0

~x

˛

‚

where a is a scalar, ~vi are n´1-vectors, and S is an pnˆnq-matrix. A Lorentz transformation
xÑ Λx gives

x0
Ñ ax0

` ~v1 ¨ ~x, ~xÑ ~v2x
0
` St~x.

In this form, the condition ΛtηΛ “ η (and as a consequence ΛηΛt “ η), is just

¨

˝

a ~vt2

~v1 St

˛

‚

¨

˝

´1 ~0t

~0 I

˛

‚

¨

˝

a ~vt1

~v2 S

˛

‚“

¨

˝

´a2
` |~v2|

2
´a~vt1 ` ~v

t
2S

´a~v1 ` S
t~v2 ´~v1 b ~v

t
1 ` S

tS

˛

‚

!
“

¨

˝

´1 ~0t

~0 I

˛

‚.

So we have conditions

|~v2|
2
´ a2

“ ´1, ´a~v1 ` S
t~v2 “ ~0, ´~v1 b ~v

t
1 ` S

tS “ I,

|~v1|
2
´ a2

“ ´1, ´a~v2 ` S
t~v1 “ ~0, ´~v2 b ~v

t
2 ` S

tS “ I.
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Note that matrices of the form

tΛ P Op1, n´ 1q|a “ 1, ~vi “ ~0u – Opn´ 1q,

form a subgroup. Algebra Passing on to the algebra we get the ‘derivative’ of the conditions

op1, n´ 1q :“ tΛ P gln |Λ
tη ` ηΛ “ 0u.

In the above form, this is just

a “ 0, ~v1 “ ~v2, S “ ´St

Again, we have the subalgebra

tΛ P op1, n´ 1q|~vi “ ~0u – opn´ 1q.

The Lorentz algebra acts on the space Rn via

xÑ Λx.

Note that since the general Lorentz group consists of 4 disconnected components, the algebras
of the general/ proper/orthochronous/proper orthochronous Lorentz groups coincide.

Unitarity

Let g be a real, (or complex), Lie algebra. An operation ω : g Ñ g is called an anti-linear
anti-involution on g if for all X,Y P g and λ P R, (or C), it satisfies

ωpλXq “ λωpXq, ωprX,Y sq “ rωpXq, ωpY qs.

Let pV, x¨|¨yq be a representation of g, equipped with a positive-definite Hermitian form x¨|¨y, com-
patible [is dit altijd waar?] with the algebra in the sense

xXu|vy “ ´xu|Xvy.

The Hermitian form is called contravariant if

xXu|vy “ xu|ωpXqvy.

If it is non-degenerate this means

X: “ ωpXq, for all X P g .

Here X: denotes the Hermitian conjugate of X.

A representation is called unitary if in addition

xv|vy ą 0, for allv P V, v ‰ 0.

3.6.2 Semi-direct product of groups

Construction

Let G be a group, with subgroups H,N ă G. We denote the identity element teu. Then G is a
semi-direct product of H acting on N , denoted

G “ H ˙N

if the following conditions are met:
(s1) N is a normal subgroup1 N CG
(s2) G “ NH, (i.e., @gPGDnPN,hPhg “ nh)
(s3) N XH “ teu.

1N CG is a normal subgroup precisely if @nPN@gPGgng
´1 P N
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Proposition 3.10. Let G “ H ˙ N be a semidirect product. Any g P G admits a unique
expression in terms of elements in H and N .

Proof Suppose n, n1 P N,h, h1 P H satisfying g “ nh “ n1h1, (existence by (s2)). Then
n1n´1

“ h1´1h. But n1´1n P N,h1h´1
P H, and by (s3) since the coincide they must equal the

identiy, i.e., n1n´1
“ e “ h1h´1. It follows that n1 “ n, h1 “ h. ˝

Note that we have the natural isomorphism pH, eN q – H. Given an element h P H we shall write

ĥ for the inclusion ĥ “ ιH�H˙N phq “ ph, eN q. Similarly, for elements n P N we write n̂ “ peH , nq.

Note that this semi-direct product given H and N is not unique, for example,

Z{6 “ Z{3¸ Z{2, S3 “ Z{3¸ Z{2.

In order for H ˙N uniquely determine G, we need to specify how H acts on the normal subgroup
N , (proven below). So we have the extra condition (making the semi-direct product unique):

(s4’) There is a homomorphism σ : H Ñ AutpNq;h ÞÑ σh, such that ĥn̂ĥ´1 “ σ̂hpnq.

We denote the semi-direct product of H acting on N by σ as G “ H ˙σ N . Taking this a step
further, we write Adĥpn̂q “ ĥn̂ĥ´1 ” peH , σhpnqq

Proposition 3.11. Let H,N be two groups. Conjugation by h is a homomorphism: φ : H Ñ

AutpNq with assignment φphqp¨q ” φhp¨q “ h ¨ h´1.

Proof For any h, h1 P H,n P N we have

φhφh1pnq “ hph1nh1´1
qh´1

“ phh1qnphh1q´1
“ φhh1pnq. ˝

Proposition 3.12. Given two groups H,N and a homomorphism σ : H Ñ AutpNq, there exists
a unique semi-direct product, G “ H ˙σ N , satisfying (s1),(s2),(s3),(s4’).

Proof Write elements of G as the Cartesian product ph, nq, and endow it with multiplication

ph, nqph1, n1q “ phh1, nσhpn
1
qq.

First, we show that this multiplication is associative:
“

ph, nqph1, n1q
‰

ph2, n2q “
`

hh1, nσhpn
1
q
˘

ph2, n2q

“
`

hh1h2, nσhpn
1
qσhh1pn

2
q
˘

“
`

hh1h2, nσhpn
1σh1pn

2
qq
˘

“ pn, hq
`

h1h2, n1σh1pn
2
q
˘

“ pn, hq
“

ph1, n1qph2, n2q
‰

.

The identity is eG “ peH , eN q, which is quickly verified by noting that σeH pnq “ n and
σhpeN q “ eN by the homomorphism properties of σ. Element ph, nq has inverse

ph, nq´1
“ ph´1, σh´1pn

´1
qq.

We give a quick verification:

ph, nqph´1, σh´1pn
´1
qq “ phh´1, nσhpσn´1ph

´1
qq “ phh´1, nσeH pn

´1
qq “ peH , eN q.

We conclude that G is a group, with subgroups pH, eN q – H, peH , Nq – N . Note that the
multiplication has been chosen so as to satisfy (s4’): hnh´1

“ σhpnq, i.e.,

ph, eN qpeH , nqph
´1, eN q “ ph, σhpnqqph

´1, eN q “ phh
´1, σhpnqσhpeN qq “ peH , nq.

Next, we show that G is the semi-direct product of H acting on N (by σ).

(s1) By the above calculation hnh´1
“ peH , σhpnqq, we know that N is the kernel of the

homomorphism φ : G Ñ AutpNq, assigning ph, nq ÞÑ σh, i.e., φpeH , nq “ σeH . Hence it
is normal in G.

(s2) HN – pH, eN qpeH , Nq “ pH,Nq – G.
(s3) The intersection is H XN – pH, eN q X peH , Nq “ tpeH , eN qu.

We conclude that G “ H ˙σ N . ˝
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Examples

We provide a few examples of semi-direct products. Note that for our purposes, the normal group
is usually Abelian, in which case we shall denote its multiplication by a `.

Cyclic group Cn ˙ Cm Consider the cyclic groups Cn “ xa|a
n
“ ey, xb|bm “ ey. Then they

admit a range of semi-direct products, uniquely determined by the relation aba´1
“ bk, (with

k, n coprime).

Linear group GLn Claim: Given a field k, we have GLpn, kq – SLpn, kq ¸ kˆ.

Euclidean group SOn˙Rn The special orthogonal group SOn is canonically represented
by the orthogonal nˆ n-matrices with determinant 1. So the semi-direct product consists of
pairs pM, vq, where SOn acts via matrix multiplication: pM, vqpM 1, v1q “ pMM 1, v `Mv1q

Lorentz group The general Lorentz group consists of 4 disconnected components. It can
be written as the semi-direct product of the proper orthochronous Lorentz group, and the
discrete group tI, P, T, PT u:

Op1, n´ 1q – SOp1, n´ 1qÒ ¸ tI, P, T, PT u.

via

pΛ, XqpΛ1, X 1q “ pΛXΛ1, XX 1q.

Poincaré group SOpn ´ 1, nqÒ ˙ Rn SOpn ´ 1, nqÒ is the group of proper orthochronous
Lorentz transformations, acting on the translations:

pΛµν , x
µ
qpΛµν , x̃

µ
q “ pΛµλΛλν , x

µ
` Λµν x̃

ν
q.

3.6.3 Semi-direct sum of algebras

In the case where H,N are Lie groups, the semi-direct product G “ H ˙σ N is naturally carried
over to the semi-direct sum of Lie-algbras: g “ hiΣ n. Moreover, if the normal group is an Abelian
Lie-group A, it is isomorphic to its algebra, a – A.

Definition

We first propose a definition and then show that it is indeed the Lie-algebra counterpart. Let h, n
be two Lie-algebras, and a Lie-algebra homomorphism2 Σ : h Ñ Derpnq;H ÞÑ ΣH . Here Derp¨q
denotes the space of derivations3. We define a Lie-bracket on g :“ hiΣ n by

rpX, vq, pY,wqsg :“ prX,Y sh, rv, wsn ` ΣXpwq ´ ΣY pvqq, (@X,Y P h; v, w P n.)

Some remarks on the notation So as to avoid confusion between elements of Lie algebras,
and the Lie groups, we write X,Y, Z for elements of h, and v, w, u for elements in n. (This, as
opposed to the usual upper case letter H P h).

Note that we have the isomorphism ph, 0nq – h. Given an element X P h we shall write X̂
for the inclusion X̂ “ ιh�hi npXq “ pX, 0nq P hi n. Similarly, for elements v P n we write
v̂ “ ιn�hi npvq “ p0h, vq P hi n.

We shall omit subscripts of commutators whenever this wouldn’t cause confusion.

Proposition 3.13. The above commutator gives rise to a Lie-algebra.

2A map f : gÑ h is a Lie-algebra homomorphism if fprX,Y sq “ rfpXq, fpY qs for all X,Y P g.
3 A derivation D P DerpAq on an algebra A, (over k) is a (k-)linear map D : A Ñ A satisfying the Leibniz rule

Dpabq “ Dpaqb` aDpbq. Note that the ‘product’ in the Lie-algebra is denoted r¨, ¨s, so that we rather should write
Dpra, bsq “ rDpaq, bs ` ra,Dpbqs.
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Proof As a space g “ hˆ n is just the Cartesian product, so clearly it is a vector space. Note
that the brackets r¨, ¨sh, r¨, ¨sn satisfy all desired properties, so we only need to check them for
the assignment rpX, vq, pY,wqs Ø ΣXpwq ´ ΣY pvq.

• Bilinearity:

rapX, vq ` bpX 1, v1q, pX2, v2qs Ø ΣaX`bX1pv
2
q ´ ΣX2pav ` bv

1
q

“ aΣXpv
2
q ` bΣX1pv

2
q ´ aΣX2pvq ´ bΣX2pv

1
q

“ apΣXpv
2
q ´ ΣX2pvqq ` bpΣX1pv

2
q ´ ΣX2pv

1
qq

Ø arpX, vq, pX2, v2qs ` brpX 1, v1q, pX2, v2qs,

and similar for the second argument of the bracket.
• Anticommutativity:

rpX, vq, pY,wqs Ø ΣXpwqΣY pvq

“ ´pΣY pvq ´ ΣXpwqq

Ø ´rpY,wq, pX, vqs.

• Jacobi identity; Since we take consecutive brackets, we need to be more careful, i.e., we
shall have to get dirty hands. First we calculate one of the three brackets:

rpX, vq, rpX 1, v1q, pX2, v2qss “
“

pX, vq,
`

rX 1, X2sh, rv
1, v2sn ` ΣX1pv

2
q ´ ΣX2pv

1
q
˘‰

Call w “ ΣX1pv
2
q ´ ΣX2pv

1
q, so that we obtain

rpX, vq, rpX 1, v1q, pX2, v2qss “

“
“

pX, vq,
`

rX 1, X2sh, rv
1, v2sn ` w

˘‰

“

´

rXrX 1, X2shsh, rv, rv
1, v2snsn ` rv, wsn ` ΣXprv

1, v2snq ` ΣXpwq ´ ΣrX1,X2shpvq
¯

Now, we check the Jacobi identity in pieces. Note that rXrX 1, X2shsh and rv, rv1, v2snsn
satisfy it already. As for the other pieces, consider first:

rv, wsn ` ΣXprv
1, v2snq “ rv,ΣX1pv

2
qsn ´ rv,ΣX2pv

1
qsn ´ rv

2,ΣXpv
1
qsn ` rv

1,ΣXpv
2
qsn

Here we used the fact that for a given Y , ΣY is derivation on n. Now, we shall perform
different cyclic permutations on the other terms, that is, exchanging terms from the
written part with terms in the ‘`cyclic permutations’ part:

rv, wsn ` ΣXprv
1, v2snq ` cyclic permutations “

“ rv,ΣX1pv
2
qsn ´ rv,ΣX2pv

1
qsn ´ rv

2,ΣXpv
1
qsn ` rv

1,ΣXpv
2
qsn

` cyclic permutations

“ rv,ΣX1pv
2
qsn ´ rv,ΣX2pv

1
qsn ´ rv,ΣX1pv

2
qsn ` rv,ΣX2pv

1
qsn

` cyclic permutations

“ 0

For the last piece, we have

ΣXpwq ´ ΣrX1,X2shpvq ` cyclic permutations “

“ ΣXpΣX1pv
2
q ´ ΣX2pv

1
qq ´ ΣrX1,X2shpvq ` cyclic permutations

“ ΣXpΣX1pv
2
qq ´ ΣXpΣX2pv

1
qq ´ ΣrX1,X2shpvq ` cyclic permutations

“ ΣX1pΣX2pvqq ´ ΣX2pΣX1pvqq ´ ΣrX1,X2shpvq ` cyclic permutations

“ ΣrX1,X2shpvq ´ ΣrX1,X2shpvq ` cyclic permutations

Here we once more performed some cyclic permutations, and we used the fact that
Y Ñ ΣY is a Lie algebra homomorphism.

ΣXpwq ´ ΣrX1,X2shpvq ` cyclic permutations “

“ ΣXpΣX1pv
2
q ´ ΣX2pv

1
qq ´ ΣrX1,X2shpvq ` cyclic permutations

˝
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Proposition 3.14. Let H,N be two linear Lie groups, σ : H Ñ AutpNq a Lie group ho-
momorphism, and let G “ H ˙σ N be the semi-direct product. Let g, h, n be the Lie-algebras
corresponding to G,H,N , respectively, and Σ : hÑ Der n the differential of σ (at the origin of H),
that is

ΣXpvq “
d

dt

d

ds
σetX̂ pe

sv̂q

ˇ

ˇ

ˇ

ˇ

t“0,v“0

.

Then g “ hiΣ n.

Proof We calculate the commutator rpX, 0q, p0, vqsg, and infer the other commutators from
this one. Via the exponential map, we move to the Lie-group, (see 3.6.1).

rX̂, v̂sg “ adX̂ v̂ “
d

dt
Ad

etX̂
v̂

ˇ

ˇ

ˇ

ˇ

t“0

. “
d

dt

d

ds
Ad

etX̂
esv̂

ˇ

ˇ

ˇ

ˇ

t“0,s“0

.

Note that by definition of the semi-direct product Adĥ n̂ “ σhn, so we now know

rX̂, v̂sg “
d

dt

d

ds
σetX e

sv

ˇ

ˇ

ˇ

ˇ

t“0,s“0

“ ΣXpvq.

By anticommutativty then rû, Ŷ sg “ ´ΣY puq. Finally, by noting that pH, eN q – H, and
peH , Nq – N , we know from 3.6.1 that rX̂, Ŷ s “ rX,Y sh, and rû, v̂s “ ru, vsn. We conclude
that

rpX,uq, pY, vqsg “ prX,Y sh, ru, vsn ` ΣXpvq ´ ΣY puqq.

So the Lie-bracket of g corresponds to the Lie-bracket of hiΣ n. ˝

Poincaré Algebra

We proceed to calculate the Poincaré Algebra. We start with the group SOpn ´ 1, 1q ˙ Rn, with
elements pΛ, xq. Note that the Lie-algebra of Rn is just Rn with the trivial commutator; we shall
write Pµ for the algebra elements. The Lorentz algebra consists of matrices

Λ “

¨

˝

0 ~vt

~v S

˛

‚, S “ ´St.

with the commutator as Lie-bracket. Since the translations have a trivial bracket we have

rpΛ, xq, pΛ, x1qs “ pΛΛ1 ´ Λ1Λ,Λx1 ´ Λ1xq.

BMS algebra

The BMS algebra turns out to be bmsn “ vectpSn´2q iad vectpSn´2qab, (ab denotes the abelian-
isation, i.e., treat the algebra as a vector space with addition/trivial bracket). Since as vector
spaces, the algebras coincide, the superrotation action can be taken to be the adjoint action, the
commutator of vector fields.

rpY1, f1q, pY2, f2qs “ prY1, Y2s, f1 ` adXpf2q ´ adY pf1qq “ pY1Y2 ´ Y2Y1, Y1pf2q ´ Y2pf1qq.
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4. Asymptotically flat spacetimes and supertrans-

formations

4.1 Bondi Metric

In this section we will consider a class of metrics of the 4-dimensional space-time, that are asymptot-
ically flat, axially symmetric, and reflection symmetric. An important example is the Schwarzschild
metric. After casting it in a canonical form, due to [2], we will derive the algebra of vector fields
that leave this class invariant.

4.1.1 Canonical Bondi metric

We will use coordinates pu, r, θ, φq, where θ and φ are the usual radial coordinates. Since the metric
is assumed to be axially symmetric, we readily have guφ “ grφ “ gθφ “ 0.

Next, we define time-like coordinate u, and the angles, in such a way, that they are constant
along light rays. For light-like separation (ds2 “ 0), this means that du “ dθ “ dφ “ 0. In
particular, this implies that grrdr

2 “ ds2 “ 0, so grr “ 0.

Remark In the case of the Schwarzschild metric, the coordinates are the well-known outgoing
Eddington-Finkelstein coordinates: u “ t´ r˚ and r ” r˚.

Finally, we show that grθ necessarily vanishes.

Calculation The (preliminary) inverse metric is

gµν “
1

det g

¨

˚

˚

˚

˚

˚

˚

˝

´g2
rθgφφ pgrθguθ ´ gurgθθqgφφ grθgurgφφ 0

˚ guugθθgφφ ´ g
2
uθgφφ gurguθgφφ ´ grθguugφφ 0

˚ ˚ ´g2
urgφφ 0

0 0 0 2gurguθgrθ ´ g
2
rθguu ´ g

2
urgθθ

˛

‹

‹

‹

‹

‹

‹

‚

(4.1)

Since u, θ and φ are constant along light rays, the geodesic equations for light-like geodesics
are

d2xµ

dλ2
` Γµrr

dxr

dλ

dxr

dλ
“ 0. (4.2)

Note that

Γµrr “ gµλBrgrλ, (4.3)

because grr “ 0. Since dxµ{dλ “ 0 for µ “ u, θ, φ, the Christoffel symbols Γµrr must vanish for
those µ. Note that Γφrr is automatically zero. From (4.2) and (4.3) we obtain the necessary
conditions:

guλBrgrλ “ 0, gθλBrgrλ “ 0. (4.4)

Using the inverse metric, the constraints (4.4) become

gφφ
det g

pgrθgurBrgrθ ´ g
2
rθBrgurq “ 0,

gφφ
det g

pgrθgurBrgur ´ g
2
urBrgrθq “ 0. (4.5)
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Both gφφ and det g must be finite, otherwise the metric would be degenerate. Rearranging the
terms in the brackets among each other, the constraints are equivalent to

grθpgrθBrgur ´ gurBrgrθq “ 0, gurpgrθBrgur ´ gurBrgrθq “ 0. (4.6)

The equations are solved by

piq : gur “ 0, or piiq : grθ “ 0, or piiiq : grθBrgur “ gurBrgrθ. (4.7)

First we consider case piq. Suppose gur is zero. Consider an infinitesimal separation, in such
a way that dθ “ dφ “ 0. Then ds2

“ guudu
2. Now for time-like, and space-like separations,

this must have the opposite signature, which is a contradiction. So we disregard piq.
Next, note that:

Br
grθ
gur

“
gurBrgrθ ´ grθBrgur

pgurq2
,

so piiiq is equivalent to the condition that grθ{gur is independent of r. In this case, then, there
exist ũpu, θq, λpu, θq defined by

λdũ “

ˆ

du`
grθ
gur

dθ

˙

.

In terms of the new coordinate, the metric is

ds2
“ guudu

2
` 2gurdudr ` 2guθdudθ ` 2grθdrdθ ` gθθdθ

2
` gφφdφ

2

“ λ2guudũ
2
´ 2λ

guugrθ
gur

dũdθ `
guug

2
rθ

g2
ur

dθ2
`

` 2pgurdr ` guθdθq

ˆ

λdũ´
grθ
gur

dθ

˙

` 2grθdrdθ ` gθθdθ
2
` gφφdφ

2

“ λ2guudũ
2
` 2λ

ˆ

guθ ´
guugrθ
gur

˙

dũdθ ` 2λgurdũdr`

` p2grθ ´ 2grθqdrdθ `

ˆ

guug
2
rθ

g2
ur

´ 2
guθgrθ
gur

` gθθ

˙

dθ2
` gφφdφ

2.

In these coordinates we have grθpũ, r, θq “ 0, so that conditions piiq and piiiq actually coincide.
Hence the metric is characterized by

grr “ grθ “ 0.

The Bondi metric is of the general form

ds2 “ guudu
2 ` 2gurdudr ` 2guθdudθ ` gθθdθ

2 ` gφφdφ
2 (4.8)

4.1.2 Einstein’s equations

In this setup, we wish the metric to satisfy the Einstein equations for the vacuum. That is, Gµν “ 0.
Because we cannot hope to solve the equation in full generality, we solve it up to the relevant order
of r. We will actually go about it in steps, adding parameters and solving, until we have reached
the most general form (4.8). We will start off assuming that the metric is asymptotically flat, and
that we are in the flat limit (r Ñ8).

Conformal rescaling

First, consider a conformal rescaling of the angular part, by e2ϕγAB . (See also 3.3.2). At this
point, we assume Brϕ “ 0. Any lower order corrections (of order O8pr1q) to the angular part of
the metric will be allowed later on.1 It turns out that the only metric is

ds2 “ guudu
2 ´ 2dudr2 ` r2e2ϕγABdx

AdxB , (4.9)

1Alternatively, one could introduce with an r-dependency to ϕ and observe that it must be r-dependent for Grr
to vanish, for any asymptotic metric.
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where xA denotes the angular coordinate, and γAB is the metric of the (flat) 2-sphere. Then the
non-zero Einstein tensor components are Guu, Gur, GuA and GAB . Without showing the calcula-
tion, I present the relevant tensor components in a convenient order:

GAB “ ´
1
2rγABe

2ϕ
`

2Brguu ` rB
2
rguu ` 4Buϕ

˘

. (4.10)

Equation (4.10) is solved by

guu “ ´2rBuφ` f0 `
f1

r
,

where f0 and f1 are arbitrary functions of u, xA. Next, by

GuA “ ´
BAf1

2r2
, (4.11)

f1 must be independent of r. Next, by choosing (temporarily) gAB “
1
2r

2e2ϕ̃p1´ δABq, we find

Gur “
1

r2
pf0 ´∆ϕ̃q,

where ∆ “ D
A
DA is the Laplacian of the conformally rescaled metric of the Riemann sphere γAB .

Note that ∆p´ lnP q “ ´1, so that we indeed recover the Minkowski metric if we conformally
rescale the angular part of the metric by 1. Thus we have

guu “ ´2rBuϕ̃`∆ϕ̃`
f1

r
,

Here we have changed Buϕ to Buϕ̃, since Bupϕ̃´ϕq “ 0. Finally, we need to solve Guu “ 0. It turns
out, that this cannot be achieved, for any ϕ. We will not go into the details of the most general ϕ̃
that satisfies Einstein’s equations. A large class of functions that satisfy the equation consists of
functions of the form

ϕ̃ “ ppuq ` qpxAq, (4.12)

where p, and q are arbitrary functions of u and xA. In this case

Guu “
f 11puq

r2
,

so f1 has to be a constant. In fact, the constant f1 gives rise to a black hole mass. By setting
f1 “ 2GM one retrieves the Schwarzschild solution. Summarizing: In accordance with literature,
let

V

r
“ ´2rBuϕ̃`∆ϕ̃`

f1

r
, (4.13)

ϕ̃ :“ ϕ´ lnP “ αpuq ` βpxAq ´ lnP,

γAB “
1
2e

2ϕ̃p1´ δABq,

for f1 a constant. Then

ds2 “
V

r
du2 ´ 2dudr ` r2γABdx

AdxB ,

satisfies Gµν “ 0, and it equal to the Schwarzschild metric for ϕ “ 0, f1 “ 2GM .
Note that a change of ϕÑ ϕ` ω̃ induces a conformal rescaling of the angular part of the metric,
i.e.,

δgAB “ 2ω̃gABδϕ̃.

So the conformal factor is λ “ 2ω̃. Coincidentally, guu has variation

δguu “ δp´2rBuϕ̃`∆ϕ̃q

“ ´2rBuω̃δϕ̃` δγ
ABpDABBBC ϕ̃q

“ ´2rBuω̃δϕ̃´ 2ω̃γABpDABBϕ̃qδϕ̃` γ
ABδpDABBϕ̃q

“ ´2rBuω̃δϕ̃´ 2ω̃∆ϕ̃δϕ̃`∆ω̃δϕ̃. (4.14)

In the last step, we used equation (3.16), to see that γABΓ
C

AB “ 0.
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Non-flat interior

At this point, we introduce functions that have the appropriate limit as r Ñ 8, i.e., the metric
becomes the Minkowski metric for sufficiently large r. First off, note that gur must be strictly
negative, (see case piq of (4.7)), so let gur “ e2β . In addition, let guA “ UA. We leave guu arbitrary
for now. A priory, we have asymptotic flatness, if

guu “ ´1`O8pr´1q, gur “ ´1`O8pr´1q, guA “ O8pr0q, gAB “ r2γAB `O8pr1q,

(Recall that the metric components scale with a factor r for each angular index.) Because we use
Bondi coordinates, grr and grA remain zero for all r. It turns out, that rr´1sgur needs to be zero
in order to solve Einstein’s equations for the vacuum, and guu “ e2β V

r ` UAU
A. Of course, the

functions UA, β, gAB are constrained by the Einstein equations, but since at this point we are only
interested in the asymptotic part of the metric, assessing their orders is sufficient for now. Thus
we have rewritten the metric to

ds2 “ e2β V

r
du2 ´ 2e2βdudr ` gABpdx

A ` UAduqpdxB ` UBduq,

where

gAB “ r2γAB `O8pr1q

“ 1
2r

2e2ϕ̃p1´ δABq `O8pr1q

UA, β “ O8pr´2q,

V

r
“ ´2rBuϕ̃`∆ϕ̃`O8pr´1q. (4.15)

In our calculation of the supertransformations later on (in order to simplify (4.34)), we will further
assume det gAB “

1
4r

4e4ϕ̃. The metric component guu has expansion

guu “ ´2rBuϕ̃`∆ϕ̃`
2mB

r
`O8pr´2q

Although the term mB ” mBpu, x
Aq is subordinate to the asymptotic fall-off, it is worth men-

tioning. It is referred to as the Bondi mass, because it gives rise to the (possibly u-dependent)
ADM-mass of the metric. The Schwarzschild metric is established as a Bondi metric by setting

UA “ β “ 0, gAB “ r2γAB , ϕ̃ “ ´ lnP, mB “ GM.

With this choice V {r is fixed by Einstein’s equation to be V {r “ ´1` 2GM , (cf. (4.13)).

4.2 Supertransformations

The asymptotic Killing vectors and conformal rescalings of the angular part of the metric, are
simultaneously found, by solving the equations

LXgrr “ LξgrA “ 0 (4.16a)

LXgur “ O8pr´2q (4.16b)

LXguu “ ´2rBuω̃ ´ 2ω̃∆ϕ̃`∆ω̃ `O8pr´1q (4.16c)

LXguA “ O8pr0q (4.16d)

LXgAB “ 2ω̃gAB `O8pr1q. (4.16e)

The conformal scaling function 2ω̃ is constrained by the trace condition gABLXgAB “ 4ω̃. Note
that generally it is different from the conformal factor λ̃ of the conformal rescaling LY γAB “ λ̃γAB ,
i.e., 2ω̃ ‰ λ̃ “ DAY

A. Although ω̃ may depend on u, it is assumed to be independent of r, (for
otherwise it would meddle with the asymptotic flatness).
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Definition 4.1. The vector fields satisfying equations (4.16) are called the supertransforma-
tions. The asymptotic Killing vectors, the supertranslations, are those satisfying ω̃ “ 0. The
conformal rescalings of the angular part of the metric, the superrotations, are the supertrans-
formations modulo the supertranslations.

Calculation of supertransformations We start by (exactly) solving the equations that
allow no falloff, (4.16a). By

LXgrr “ ´2e2β
BrX

u
“ 0, (4.17)

Xu is independent of r, i.e,. Xu
“ f for some function f satisfying

Brf “ 0. (4.18)

Then, the other exact condition becomes

LXgrA “ ´e2β
BAf ` gABBrX

B
“ 0.

It is solved by imposing

XA
“ Y A ` IA, IA “ ´BBf

ż 8

r

dr1
´

e2βgAB
¯

. (4.19)

The function Y A depends only on the angular coordinates, i.e., Y A ” Y ApxAq. The resulting
vector component has r-expansion

XA
“ Y A ´

γABBBf

r
`O8pr2

q. (4.20)

The rest of the equations (apart from the trace condition) need only be solved up to the
appropriate order of r. It is useful at this point to assess the maximal orders of r of all
elements of the vector field. Let us take a look at the condition LXgAB “ O8pr1

q. From the
falloff conditions (4.15), in addition with (4.18) and (4.19) we know

Xu
„ r0, XA

“ O8pr0
q, gAB “ O8pr2

q, UA ” gABU
B
“ O8pr0

q. (4.21)

Using (4.19) and guA “ 0, the Lie derivative of the angular part of the metric is asymptotically

LXgAB “ Xu
BugAB `X

r
BrgAB `X

C
BCgAB ` pUABB ` UBBAqX

u
` pgACBB ` gBCBAqX

C

“ Xu
BugAB `X

r
BrgAB ` pBCgAB ` gACBB ` gBCBAqX

C
`O8pr1

q. (4.22)

So (4.16e), is resolved if

rrě2
s

´

Xu
BugAB `X

r
BrgAB `X

C
BCgAB ` pgACBB ` gBCBAqX

C
´ 2ω̃gAB

¯

“ 0. (4.23)

Using the order assesment (4.21), this implies the order of Xr to be at most rr1
s.

Xr
P O8pr1

q. (4.24)

As a result, the often occuring contraction Xσ
Bσ is of order O8pr0

q. Before we solve (4.23),
we resolve (4.16b). We have

LXgur “ Xσ
Bσgur ` gσrBuX

σ
` guσBrX

σ

“ gurBuX
u
` guuBrX

u
` gurBrX

r
` guABrX

A
`O8pr´2

q

“ Buf ´ BrX
r
` UABrX

A
`O8pr´2

q, (4.25)

where we have used Bσgur “ O8pr´2
q, and the fall-off (4.21). In addition, note that BrX

A
“

BrI
A
“ O8pr´2

q.. Hence equation (4.16b) is solved if rr1
sXr

“ ´Bufr. It follows

Xr
“ ´rBuf `O8pr0

q, (4.26)

With this information, consider (4.16d). Using BuY
A
“ 0 and (4.20), we have

LXguA “ gABBuX
B
` guuBAX

u
` gurBAX

r
`O8pr0

q

“ ´rγABBupγ
BC
BCfq ´ 2rpBuϕ̃qBAf ` rBABuf `O8pr0

q

“ ´rγABrγ
BC
BuBCf ´ 2γBCpBuϕ̃qBCf s ´ 2rpBuϕ̃qBAf ` rBABuf `O8pr0

q

“ O8pr0
q.
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So it is automatically resolved. Using (4.26), equation (4.23) gives the condition

0 “ rr2
s

´

Xu
BugAB `X

r
BrgAB `X

C
BCgAB ` pgACBB ` gBCBAqX

C
´ 2ω̃gAB

¯

“ Xu
BuγAB ` 2rr1

sXrγAB ` Y
C
BCγAB ` pγACBB ` γBCBAqY

C
´ 2ω̃γAB

“ 2γABrfpBuϕ̃q ´ Buf ´ ω̃s ` pγACBBY
C
` γBCBAY

C
` 2γABY

C
BC ϕ̃q (4.27)

Let A “ B in (4.27). Since γzz “ γzz “ 0, we have constraint

0 “ γACBBY
C
` γBCBAY

C

So we require

BzY
z
“ BzY

z
“ 0. (4.28)

Comparing with (3.19), we see that imposing (4.28) is equivalent to having Y A be a conformal
Killing vector of the Riemann sphere. The final three terms in (4.27) vanish for A “ B. For
A ‰ B, they are

pγACBBY
C
` γBCBAY

C
` 2γABY

C
BC ϕ̃qA‰B

“ γzzpBzY
z
` BzY

z
` 2Y CBC ϕ̃q

“ γzzpDCY
C
q,

where we have used (3.17) in the last step. Equation (4.27) is then conveniently rewritten

0 “ 2γAB

”

fpBuϕ̃q ´ Buf ´ ω̃ `
1
2
DCY

C
ı

. (4.29)

So now we know

fpBuϕ̃q ´ Buf ´ ω̃ `
1
2
DCY

C
“ 0 (4.30)

Solved by

Buf “ fBuϕ̃`
1
2
DCY

C
´ ω̃ (4.31)

or, equivalently

f “ eϕ̃
„

T pxAq `

ż u

0

du1e´ϕ̃p 1
2
DCY

C
´ ω̃q



,

for some function T pxAq. Summarizing, the remaining constraint equations are (4.16c) and
the trace condition, and the thus far obtained solutions are of the form

$

’

&

’

%

Xu
“ f, f “ eϕ̃

“

T `
şu

0
du1e´ϕ̃p 1

2
DCY

C
´ ω̃q

‰

,

Xr
“ ´rBuf `O8pr0

q, Buf “ fBuϕ̃`
1
2
DCY

C
´ ω̃

XA
“ Y A ` IA, IA “ ´BBf

ş8

r
dr1e2βgAB .

(4.32)

for arbitrary function T ” T pxAq, and where Y A ” Y ApxAq is a conformal Killing vector
of the Riemann sphere. Using the general form of the solutions (4.32), along with (4.30) to
substitute ω̃, the trace condition becomes

0 “ gABrXσ
BσgAB ` pUABB ` UBBAqX

u
` pgACBB ` gBCBAqX

C
s ´ 4ω̃

“ XσgABBσgAB ` 2UCBCf ` 2BCpX
C
q ´ 4ω̃. (4.33)

At this point our life is made much easier by the assumption det gAB “
1
4
r4e4ϕ̃. This implies

that gABBσgAB “ Bσ ln 1
4
r4e4ϕ̃, and so (4.34) becomes

0 “ 4Xu
Buϕ̃`

4
r
Xr

` 4XC
BC ϕ̃` 2UCBCf ` 2BCpY

C
` ICq ´ 4ω̃. (4.34)

And so we arrive at an exact solution for Xr:

Xr
“ ´r

„

Xu
Buϕ̃`

1

2
UCBCf `

1

2
pBCpX

C
q ` 2XC

BC ϕ̃q ´ ω̃



“ ´r

„

fBuϕ̃`
1

2
UCBCf `

1

2
DCX

C
´ ω̃



.
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The highest order terms of Xr are

rr1
sXr

“ ´rBuf “ ´r

ˆ

fBuϕ̃`
1

2
DCY

C
´ ω̃

˙

, (4.35)

as a result of (4.26) and (4.31). The final constraint is (4.16c). Using (4.20) the r0-order part
of Xr is

rr0
sXr

“
´r

2

´

rr´1
sDCX

C
¯

“
1

2
DCγ

CB
BBf “

1

2
γCBDCBBf “

1

2
γCBBCBBf. (4.36)

In the last step we have used that γCB is anti-symmetric in BC, while the Christoffel symbol

Γ
A
BC is symmetric in BC. To somewhat reduce clutter let us denote h :“ rr0

sXr in the
remaining of the calculation. Note that

Buh “
1

2
Bue

´2ϕ̃γCBBCBBf

“ ´2hBuϕ̃`
1

2
γCBBCBBBuf. (4.37)

For the same symmetry reason, γCBBCBBλ “ ∆λ for any scalar λ. In preparation for solving
the last constraint equation, note that from (4.31) it follows

´2phBuϕ̃` Buhq “ 2hBuϕ̃´∆Buf

“ p∆fqϕ̃´∆pfBuϕ̃`
1
2
DCY

C
´ ω̃q

“ ´fBu∆ϕ̃´ 1
2
∆DCY

C
`∆ω̃ (4.38)

The final constraint is (4.16c). The Lie derivative of guu is

LXguu “ Xσ
Bσguu ` 2guσBuX

σ

“ Xσ
Bσguu ` 2guuBuX

u
´ 2BuX

r
`O8pr´1

q. (4.39)

Using the previous order assessments, the derivatives of V {r have expansion

Xσ
Bσguu “ Xσ

Bσ

ˆ

e2β V

r
` UAU

A

˙

“ Xσ

ˆ

pBσβqe
2β V

r
` e2β

Bσ
V

r
` BσUAU

A

˙

“ Xσ
Bσ
V

r
`O8pr´1

q

“ Xσ
Bσ

`

´2rBuϕ̃`∆ϕ̃
˘

`O8pr´1
q

“ ´2rXu
B

2
uϕ̃`X

u
pBu∆ϕ̃q ´ 2Xr

Buϕ̃´ 2rXA
pBABuϕ̃q `X

A
BA∆ϕ̃`O8pr´1

q

“ ´2r
”

fB2
uϕ̃´ pBufqBuϕ̃` Y

A
pBABuϕ̃q

ı

`

”

fpBu∆ϕ̃q ´ 2hBuϕ̃´ 2rIApBABuϕ̃q ` Y
A
BA∆ϕ̃

ı

`O8pr´1
q (4.40)

The other two terms in (4.39) have expansion

guuBuX
u
´ BuX

r
“

`

´2rBuϕ̃`∆ϕ̃
˘

pBufq ´ Bup´rBuf ` hq `O8pr´1
q

“ ´r
“

2Buϕ̃Buf ´ B
2
uf

‰

`
“

p∆ϕ̃qBuf ´ Buh
‰

`O8pr´1
q (4.41)

Using (4.41) and (4.40), equation (4.39) becomes

LXguu “ ´2r
”

fB2
uϕ̃´ pBufqBuϕ̃` Y

A
pBABuϕ̃q ` 2Buϕ̃Buf ´ B

2
uf

ı

`

”

fpBu∆ϕ̃q ´ 2hBuϕ̃´ 2rIApBABuϕ̃q ` Y
A
BA∆ϕ̃` 2p∆ϕ̃qBuf ´ 2Buh

ı

`O8pr´1
q.
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And so, by (4.16c), we have constraints

fB2
uϕ̃´ pBufqBuϕ̃` Y

A
pBABuϕ̃q ` 2Buϕ̃Buf ´ B

2
uf “ Buω̃ (4.42a)

fpBu∆ϕ̃q ´ 2hBuϕ̃´ 2rIApBABuϕ̃q ` Y
A
BA∆ϕ̃` 2p∆ϕ̃qBuf ´ 2Buh “ ´2ω̃∆ϕ̃`∆ω̃ (4.42b)

The left hand side of, (4.42a), using (4.31) to write out the derivatives of f ,

fB2
uϕ̃` Y

A
pBABuϕ̃q ` Buϕ̃Buf ´ BurfBuϕ̃`

1
2
DCY

C
´ ω̃s

“ Y ApBABuϕ̃q ´
1
2
BupBCY

C
` 2Y CBC ϕ̃q ` Buω̃

“ Buω̃.

where we used that BuY
A
“ 0, and (3.17). So (4.42a) is automatically satisfied. As for

(4.42b), we have left hand side

´ 2phBuϕ̃` Buhq ` fpBu∆ϕ̃q ´ 2rIApBABuϕ̃q ` Y
A
BA∆ϕ̃` 2p∆ϕ̃qBuf

“ ´ 1
2
∆DCY

C
`∆ω̃ ` Y ABA∆ϕ̃` 2p∆ϕ̃qBuf

“ ´ 1
2
∆pBCY

C
` 2Y CBC ϕ̃q ` Y

A
BA∆ϕ̃` 2p∆ϕ̃qpfBuϕ̃`

1
2
DCY

C
´ ω̃q `∆ω̃

“ ∆ω ´ 2ω̃∆ϕ̃, (4.43)

after substituting h using (4.38), applying the assumption (4.12) that BuBAϕ̃ “ 0. This
expression, (4.43) coincides with the right hand side of (4.42b). Thus all of the constraints
have been met.

The solutions are
$

’

&

’

%

Xu “ f, f “ eϕ̃
“

T `
şu

0
du1e´ϕ̃p 1

2DCY
C ´ ω̃q

‰

,

Xr “ ´r
“

fBuϕ̃`
1
2U

CBCf `
1
2DCX

C ´ ω̃
‰

,

XA “ Y A ` IA, IA “ ´BBf
ş8

r
dr1e2βgAB .

for arbitrary functions T ” T pxAq, and where Y A ” Y ApxAq is a conformal Killing vector of γAB .
Although the full description of the vector fields does depend on the choice of the parameters in
the metric (β, UA, etc.), the fact that the solutions are generated by T and Y A does not.

Remark The algebra of vector fields obtained is this way is established using retarded time
coordinate u “ t´r, i.e., the vector fields live on I `. Therefore the associated transformation
group is denoted BMS`, and its algebra bms`. Completely analogous, one might choose to
solve the same equations, using advanced time coordinate v “ t ` r, to find the vector fields
on I ´, with group BMS´, and algebra bms´.

4.3 The action of supertransformations

Infinitesimally, the action of a supertransformation is

X.g “ g ` εLXg.

The resulting action on the Schwarzschild metric is

Example: supertranslation of the Schwarzschild metric The Schwarzschild metric, in
the coordinates as above, is

ds2
“ ´

ˆ

1´
2mB

r

˙

´ 2dudr ` r2 dzdz

P 2
.

In this case gAB “ r2γAB , so ω̃ “ 1
2
DCY

C ; in addition, β “ UA “ 0, and V {r “ ´1`2mB{r.
So the supertransformations of the Schwarzschild metric, generated by T, Y A, are of the form

Xu
“ f, Xr

“ ´
r

2
DAI

A, XA
“ Y A ` IA,

f “
T

P
IA “ ´

1

r
γABBBf.
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In fact, using ϕ̃ “ ´ lnP , and the the derivative of the Riemann sphere D, we can simplify

DAI
A
“ ´

1

r
DAγ

AB
BB

T

P

“ ´
1

r

ˆ

BAγ
AB
BB

T

P
´ 2pBA lnP qγABBB

T

P

˙

(4.44)

The first term in (4.44) simplifies to

BAγ
AB
BB

T

P
“ 2BzP

2
Bz
T

P
` 2BzP

2
Bz
T

P

“ 2pBzP
2
qBz

T

P
` 2pBzP

2
qBz

T

P
` 4P 2

BzBz
T

P

“ 4

„

pBzP qpBzT q ` pBzP qpBzT ´ 2T
pBzP qpBzP q

P

`PBzBzT ´ pBzT qpBzP q ´ pBzT qpBzP q ´ T pBzBzP q ` 2T
pBzP qpBzP q

P



(4.45)

“ 4PBzBzT ´ 4TBzBzP.

Similarly, the second term in (4.44) simplifies to

´2pBA lnP qγABBB
T

P
“ ´4P 2

ˆ

pBz lnP qBz
T

P
` pBz lnP qBz

T

P

˙

“ 4

ˆ

´pBzP qpBzT q ´ pBzP qpBzT q ` 2T
pBzP qpBzP q

P
q

˙

. (4.46)

Combining (4.45) and (4.46), we obtain

DAI
A
“ ´

4

r

ˆ

PBzBzT ´ TBzBzP ´ pBzP qpBzT q ´ pBzP qpBzT q ` 2T
pBzP qpBzP q

P
q.

˙

For T “ zmzn, and P “ 1
2
p1` zzq then

´
2

1` zz

`

zmzn ´ ppmzm´1
` pm´ 1qzmzqpnzn´1

` pn´ 1qzznqq
˘

The infinitesimal supertranslations, i.e., Y A “ 0 have (non-zero) Lie derivatives

LXguu “
2mB

r2

ˆ

p1´ zzq

2P
T ` zBzT ` zBzT ´ 2PBzBzT

˙

LXguz “ zB2
zT ´ 2PBzB

2
zT `

2mB

r

ˆ

BzT

P
´

zT

2P 2

˙

,

LXgzz “ ´
2rB2

zT

P
,

and similar for z.

For a general metric, we calculate the an example superrotation in terms of the angular coordinates
θ, φ.

Example: Y zpzq “ az2 Let Y zpzq “ az2 for some complex scalar a P C. Then Y zpzq “ az2.
The resulting Asymptotic Killing vector field is

Xpu, r, z, zq “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

´
upaz ` azq

1` zz
pr ` uqpaz ` azq

1` zz
au` az2

p2r ´ uq

2r
au` az2

p2r ´ uq

2r

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

.
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Using (3.12), the factor paz ` azq is written in terms of θ, φ

paz ` azq “ cot θ
2

´

aeiφ ` ae´iφ
¯

cot θ
2

´

re apeiφ ` e´iφq ` i im apeiφ ´ e´iφq
¯

“ 2 cot θ
2
pre a cosφ´ im a sinφq.

Then, using the transformation rules for vector fiels, (3.11), and (3.13), it is a straightforward
calculation to find

Xpu, r, θ, φq “

¨

˚

˚

˚

˚

˚

˚

˝

´u sin θpre a cosφ´ im a sinφq

pr ` uq sin θpre a cosφ´ im a sinφq

´p1`p1´ u
r
qcos θqpre a cosφ´ im a sinφq

`

1´ u
r
` cos θ

˘

csc θpim a cosφ´ re a sinφq

˛

‹

‹

‹

‹

‹

‹

‚

.

4.4 Commutators

In this section, we calculate the commutators of the supertransformations. To calculate the algebra,
we may safely ignore the r-component of the vector fields, because Brf “ BrY

A “ 0, i.e., it has no
implications on the determining functions T, Y . So we let X ” XmBm, where the index m runs
over u, xA. First, consider two supertranslations

rXT1 , XT2s “
“

eϕ̃T1Bu, e
ϕ̃T2Bu

‰

“ 0

because BuTi “ 0. Two superroations give rise to the bracket

rXY1
, XY2

s “
“

f1Bu ` Y
A
1 BA, f2Bu ` Y

A
2 BA

‰

“ pf1Bu ` Y
B
1 BBqpf2Bu ` Y

A
2 BAq ´ pf2Bu ` Y

B
2 BBqpf1Bu ` Y

A
1 BAq

“ pY B1 BBY
A
2 ´ Y B2 BBY

A
1 qBA

Next, consider a superrotation and a superrotation, i.e., X1 determined by Y1 “ 0, and X2 deter-
mined by Y A2 “ 0. Then we have

XY1
:“ Xm

1 Bm “ f1Bu ` Y
A
1 BA,

XT2
:“ Xm

2 Bm “ eϕ̃T2Bu,

where f1 is determined by Y1 as above. The commutation relation is

rXY1
, XT2

s “
“

f1Bu ` Y
A
1 BA, e

ϕ̃T2Bu
‰

“ f1Bue
ϕ̃T2Bu ` Y

A
1 BAe

ϕ̃T2Bu ´ e
ϕ̃T2Buf1Bu ´ e

ϕ̃T2BuY
A
1 BA

“ Y A1 eϕ̃pBAT2qBu ´ e
ϕ̃T2

`

pBuf1q ´ f1pBuϕ̃q ´ Y
A
1 pBAϕ̃q

˘

Bu

“ Y A1 eϕ̃pBAT2qBu

However, in order for the Lie-bracket to be faithful, it needs to account for the change induced in
the metric by conformal vector fields (those containing nonzero Y A), i.e., the variation induced by
the transformation ϕ̃Ñ ϕ̃` ω̃, which we denote δω̃. In the above notation:

δω̃1
X2 “ δω̃1

eϕ̃T2Bu “ ω̃1e
ϕ̃T2Bu,

δω̃2
X1 “ 0.

Thus we modify the Lie-bracket to be the sum of the commutator and the variations.

rX1, X2sM “ rX1, X2s ` δω̃2X1 ´ δω̃1X2

“ Y A1 eϕ̃pBAT2qBu ´
1
2 pBAY

A
1 qe

ϕ̃T2Bu

“ eϕ̃
`

Y A1 pBAT2qBu ´
1
2 pBAY

A
1 qT2

˘

Bu
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Now the bracket introduced above is established as a semi-direct sum

vectS2 iΣ vectS2
ab

with elements pY A, T q and bracket

rpY A1 , T1q, pY
B
2 , T2qs “ prY

A
1 , Y B2 s,ΣY A1 T2 ´ ΣY B2 T1q

where ΣY AT “ ´ω̃T .

As seen in 3.4.3, the functions Y are conveniently expanded in terms of

Y “ pαmz
m`1Bz, αnz

n`1Bzq “ pαmlm, αnlnq.

It will turn out in 5.1.A, that if one chooses basis

lm “ ´z
m`1Bz, ln “ ´z

n`1Bz

for the superrotations, (Y z “
ř

αmlm, etc.) and

Tj,k “ zj`
1
2 zk`

1
2 pdzdzq´1{2,

for the supertranslations, the commutator algebra of Y and T , has is isomorphic to the vector field
algebra with the modified bracket.
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5. Central extension of the BMS-algebra

In this chapter, we study algebraic properties of a slightly generalized version of the BMS-algebra.
Our purpose is to give a full description of possible central extensions.

Centrally extended algebras show up in physics as a result of a quantization process. The central
charge c then, is an anomaly which occurs when the Weyl symmetry of a quantum theory is broken.

5.1 Representations of the Witt algebra

We have noted before, in 3.6.3, that the BMS-algebra is a semi-direct sum bms3 “ witt i vectab S1,
splitting over the Abelian algebra of supertranslations. Similarly, as seen in 4.4, bms4 “ pwitt i vectab S1qˆ

pwitt i vectab S1q, i.e., the four dimensional BMS-algebra consists of two independent copies of
the Witt algebra acting on an Abelian algebra.

The Abelian normal subalgebra of the semi-direct sum, is isomorphic to a vector space V with triv-
ial bracket, which will be established as a representation of witt in the following section. Thus we
generalize our study to (independent copies of) witt i V, where V is an arbitrary representation
of witt, as suggested by Barnich and Oblak in [3]. In studying the algebra, we closely follow Kac
and Raina’s lectures [17], where they study similar properties of the Witt (and Virasoro) algebra,
without the semi-direct Abelian term. This motivates the following lemma.

Lemma 5.1. Let Vα,β denote the space of ‘densities’ of the form P pzqzαpdzqβ , with α, β P C, and
P pzq some Laurent polynomial in Crz, z´1s. It is spanned by elements of the form

νk “ zk`αpdzqβ , k P Z.

Then the action of ln P vectpS1q ” witt on vk P Vα,β is given by

lnpνkq “ ´pk ` α` β ` βnqνn`k. (5.1)

Proof Let infinitesimal group elements γ P Diff` S1 act on functions fpzq via

ργfpzq “ fpγ´1
pzqq,

Note that it has an expansion in terms of infinitesimals εn, i.e., γ : z ÞÑ z `
ř

n εnz
n, and so

ργfpzq “ fpz ´
ÿ

n

εnz
n
q “ fpzq `

ÿ

n

εnz
n`1

Bzfpzq “ p1` εnl
n
qfpzq.

So we see that the action of γpzq “ z ` εnz
n (no summation) corresponds to the (action of

the) Lie algebra generator ln. Then we find how infinitesimal elements act on this basis:

ργνk “ pγ
´1
pzqqk ` αpdγ´1

pzqqβ

“

˜

z ´
ÿ

n

εnz
n`1

¸k`α˜˜

1´
ÿ

n

εnpn` 1qzn
¸

dz

¸β

“

˜

z ´ pk ` αq
ÿ

n

εnz
n

¸˜

1´ β
ÿ

n

εnpn` 1qzn
¸

zk`αpdzqβ

“

˜

z ´
ÿ

n

pk ` α` βn` βqεnz
n

¸

zk`αpdzqβ
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so that

lnpνkq “ ´pk ` α` β ` βnqνn`k.

The proof above uses the infinitesimal group action, rather than a direct calculation. Based on
integration by parts, we derive the calculation rules for tensor densities below. If y “ ypxq we have

dy “
dy

dx
dx,

ż

u1pxqvpxqdx`

ż

upxqv1pxqdx “ upxqvpxq,

ż

vdu`

ż

udv “ uv,

where the latter is just short hand notation for the second identity. Dropping the integral signs
from our notation, the density pdxqyBx acts on an arbitrary test function f “ fpxq as

ppdxqyBxqf “ ydf “ yf ´ fdy “ py ´ y1pdxqqf, (5.2)

where we used that Bzdz “ dzBz “ 1. Using the rule (5.2) for arbitrary tensor densities pdzqβ , we
have, in accordance with Lemma 5.1,

r´zm`1Bz, z
k`αpdzqβs “ ´zm`1Bzz

k`αpdzqβ ` zk`αpdzqβzm`1Bz

“ ´pk ` αqzm`k`αpdzqβ ´ zk`αβpdzqβ´1pdzm`1q

“ ´pk ` αqzm`k`αpdzqβ ´ zk`α`mβpm` 1qpdzqβ

“ ´pk ` α` βpm` 1qqpdzqβ .

The Lemma, applied to the BMS algebra in four dimensions, leads to the following corollary:

Corollary 5.1.A. In the four dimensional BMS-algebra bms4, if the superrotations are gener-
ated by lm “ ´zm`1Bz, and l

n
“ ´zn`1 , and the supertranslation by vj “ zj`

1
2 pdzq´

1
2 , and

vkz
k` 1

2 pdzq´
1
2 , then the superrotations have the adjoint action on the supertranslations:

bms4 “ pwitt iad V 1
2 ,´

1
2
q ˆ pwitt iad V 1

2 ,´
1
2
q.

5.2 Central Extensions

5.2.1 Quantum anomalies

Central extensions to an algebra are naturally in physics, when quantizing a classical symmetry
algebra to an algebra of operators. In quantization the Poisson brackets are promoted to a bracket,
i.e.,

tA,Bu Ñ
1

i~
rA,Bs.

Consider, for example an algebra of classical transformations that admit an expansion
ř

n αne
inθ,

with Fourier modes αn, (e.g., supertranslations (3.6)). In canonical quantization, these modes are
promoted to quantum operators an, with commutation relation

ram, ans “ mδm`n.

The operators act on quantum states, denoted |ψy, increasing the energy a:n (for n ą 0), or de-
creasing the energy an, (for n ą 0). The Hermitian conjugation relation a:n “ a´n “ an is due
to the reality condition on the Fourier expansion. In particular, the vacuum state, which has the
lowest possible energy, is destroyed by the annihilation operators: an |0y “ 0.

Let L̃0 be the operator

L̃0 “
1

2

ÿ

nPZ
a´nan “

a2
0

2
`

1

2

ÿ

ną0

a:nan `
1

2

ÿ

ną0

ana
:
n.
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Acting on the vacuum will pose a problem; there are either infinitely many excitations, by the
infinite sum over ana

:
n. A way around this problem is by moving all the annihilation operators to

the right, known as normal ordering. Doing so will lead to

L̃0 “
1

2
a2

0 `
ÿ

ną0

a:nan `
1

2

ÿ

ną0

ran, a´ns

“
1

2
a2

0 `
ÿ

ną0

a:nan `
1

2

ÿ

ną0

n.

The infinite sum is shown to give
ř

ną0 n “ ´
1
12 , for instance by analytical continuation of the

Riemann zeta function. See e.g., [23]. Such a non-zero added constant, e.g. ´ 1
24 , is referred to as

a quantum anomaly. The redefinition of L̃0 to the normal ordered

L0 :“
1

2
a2

0 `
ÿ

ną0

a:nan

gets rid of this anomaly. However, with the redefinition of the operator, the algebra changes too.
As will become clear in 5.3, the algebra is effectively centrally extended by cancelling out the
quantum anomaly.

Anticipating such a procedure for the BMS algebra, this section is dedicated to finding all possible
central extensions of witt i Vα,β .

5.2.2 Central extension of the Witt algebra

First we consider the Witt algebra. We will extend the algebra g to ĝ by a 1-dimensional centre
cC. A priori we have the new relations

rlm, lns “ pm´ nqlm`n ` fpm,nqc rlm, cs “ 0. (5.3)

We will consecutively impose the Jacobi identity for l0, lm, ln, antisymmetry of the bracket, and
the Jacobi identity for general generators. Note first that, after a change of basis

l0 Ñ l0, ln Ñ ln ´
fp0, nq

n
c pn ‰ 0q

we obtain from (5.3), that

“

l0, ln
‰

“ ´n

ˆ

ln ´
fp0, nq

n
c

˙

` fp0, nqc “ ´nln. (5.4)

Then, form the Jacobi identity we obtain

rl0, rlm, lnss “ rrl0, lms, lns ` rlm, rl0, lnss

“ ´pm` nqrlm, lns. (5.5)

Combining p5.3, 5.4, 5.5q, we obtain

´pm` nqpm´ nqlm`n “ rl0, pm´ nqlm`n ` fpm,nqcs

“ rl0, rlm, lnss

“ ´pm` nqpm´ nqlm`n ` pm` nqfpm,nqc

So pm ` nqfpm,nqc “ 0, implying fpm,nq “ δm,´nfpmq. Here δm,´n ” δm`n denotes the Kro-
necker delta. Then (5.3) becomes

rlm, lns “ pm´ nqlm`n ` δm,´nfpmqc, (5.6)
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where, by anticommutativity fp´mq “ ´fpmq. Now consider for lk, lm, ln

rlk, rlm, lnss “ pm´ nqrlk, lm`ns ` rlk, δm,´nfpmqcs

“ pm´ nqpk ´ pm´ nqqlk`m`n ` pm´ nqδk,´pm`nqfpkqc p`0q

“ pm´ nqpk ´m` nqlk`m`n ` pm´ nqδk`m`nfpkqc

By the Jacobi identity the sum of cyclic permutations of these brackets must vanish. Note first
that for any k,m, n:

pm´ nqpk ´m` nq ` pn´ kqpm´ n` kq ` pk ´mqpn´ k `mq “ 0

So f must satisfy

δk`m`nrpm´ nqfpkq ` pn´ kqfpmq ` pk ´mqfpnqs “ 0.

This is vacuously true unless k `m` n, in which case

pn´mqfpm` nq ` pm` 2nqfpmq ´ pn` 2mqfpnq “ 0. (5.7)

In particular, for n “ 1;

p1´mqfpm` 1q “ p1` 2mqfp1q ´ pm` 2qfpmq. (5.8)

We have arrived at a linear recursion relation, determined in full by fp1q, fp2q, so the solution
space of (5.7) is at most 2-dimensional. (Recall fp0q “ 0 and fp´mq “ ´fpmq.) Note that
fpmq “ c1m, fpmq “ c3m

3, satisfy (5.7), for any c1, c3 P C. So any central extension of the Witt
algebra is given by

fpm,nqc “ δm`npc1m` c3m
3qc.

The Virasoro algebra

The centrally extended Witt algebra (with c3 “ ´c2 “
1
12 ) is called the Virasoro algebra:

vir :“ Cc`
ÿ

nPZ
Cln,

rln, cs “ 0,

rlm, lns “ pm´ nqlm`n ` δm`n
m3 ´m

12
c.

Proposition 5.2. Every non-trivial central extension of the Witt algebra by a 1-dimensional
centre is isomorphic to the Virasoso algebra vir.

Proof Consider a central extension where c3 “ 0, i.e., fpmq “ c1m. Now consider the change
of basis

pfor all k ‰ 0q, l1k “ lk, l10 “ l0 `
c1
2
.

As a result

pm´ nqlm`n “ pm´ nq
´

l1m`n ´ δm`n
c1
2

¯

“ pm´ nqlm`n ` δm`nc1mc.

So the bracket reduces to the non-centrally extended case

rl1m, l1ns “ pm´ nql1m`n.

We will refer to any such extension fpmq “ c1m as a trivial central extension. The above
calculation shows in particular that the value c1 can be modified arbitrarily by a basis trans-
formation. This means that we can always put c1 “ ´c3, so that fpmq “ c3pm

3
´mq. Finally,

we can fix c3 to be 1
12

by scaling c.

Corollary 5.2.A. If rlm, lns “ pm ´ nqlm`n ` δm`nfpmqc defines a Lie algebra, then fpmq “
c1m` c3m

3, for some c1, c3 P C.
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5.2.3 BMS algebra and other representations of the Witt algebra

In this section we consider the algebra the Witt algebra action on the representation Vα,β , via the
adjoint action. So we have g “ pln, vkq P Witt˙adVα,β , with commutation relations

rlm, lns “ pm´ nqlm`n

rln, vks “ ´pk ` α` βpn` 1qqvk`n

rvk, vls “ 0.

We will extend the algebra g to ĝ by a 1-dimensional center cC. A priori we have the new relations

rlm, lns “ pm´ nqlm`n ` fpm,nqc

rln, vks “ ´pk ` α` βpn` 1qqvk`n ` gpn, kqc (5.9)

rvj , vks “ hpk, lqc (5.10)

Now we need conditions such that the three 2-parameter functions f, g, h obey the Lie algebra
axioms. Note that f is just as in the previous paragraph, i.e., fpm,nq “ δm`npm

3 ´mq{12.

Proposition 5.3. For a general α, β, the central extension gpm, kqc (of the Witt algebra acting
on the representation Vα,β) must satisfy relation

pn´mqgpn`mq “ pnpβ ´ 1q ´mqgpmq ´ pmpβ ´ 1q ´ nqgpnq, (5.11)

where gpnq “ δn`k`α`βgpn, kq.

Note that gpmq “ m satifies (5.11), for any α, β. We will call this the trivial solution.

Proof First note that, as before, we make a basis transformation (for all k ‰ ´pα` βq):

v1k “ vk ´
gp0, kq

pk ` α` βq
c, v1´pα`βq “ v´pα`βq.

So then we have

rl0, v1ks “ ´pk ` α` βq

ˆ

vk ´
gp0, kq

pk ` α` βq
c

˙

“ ´pk ` α` βqv1k. (5.12)

From the Jacobi identity we obtain (using equations (5.4,5.9,5.12))

rl0, rln, vkss “ rrl
0, lns, vks ` rl

n, rl0, vkss

“ ´pn` k ` α` βqrln, vks

“ pn` k ` α` βqppk ` α` βpn` 1qqvk`n ´ gpn, kqcq (5.13)

Combing (5.9,5.12,5.13) we obtain

pk ` n` α` βqpk ` α` βpn` 1qqvk`n “

“ rl0,´pk ` α` βpn` 1qqvk`n ` gpn, kqcs

“ rl0, rln, vkss

“ pk ` n` α` βqpk ` α` βpn` 1qqvk`n ´ pn` k ` α` βqgpn, kqc

So pn ` k ` α ` βqgpn, kqc “ 0, inferring g is zero for n ` k ` α ` β ‰ 0, and that g is fully
determined by the first argument otherwise, i.e.,

gpn, kq “ δn`k`α`βgpnq,

so that (5.9) becomes

rln, vks “ ´pk ` α` βpn` 1qqvk`n ` δn`k`α`βgpnqc (5.14)

The Jacobi identity can be written

rlm, rln, vkss “ rrl
m, lns, vks ` rl

n, rlm, vkss (5.15)
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The c-dependent part of the left hand side of (5.15) reads

r„ csrlm, rln, vkss “ ´pk ` α` βpn` 1qqr„ csrlm, vk`ns

“ ´δm`n`k`α`βpk ` α` βpn` 1qqgpmqc.

The c-dependent part of the right hand side of (5.15) reads

r„ csrrlm, lns, vks ` rl
n, rlm, vkss “ r„ cspm´ nqrlm`n, vks ´ r„ cspk ` α` βpm` 1qqrln, vk`ms

“ δm`n`k`α`βppm´ nqgpm` nqc´ pk ` α` βpm` 1qqgpnqcq

The vk`m`n-terms cancel by virtue of the Jacobi identity. For the central extension to satisfy
the Jacobi identity as well, the c-dependent must obey

´δm`n`k`α`βpk ` α` βpn` 1qqgpmqc “ δm`n`k`α`βpm´ nqgpm` nqc

´ δn`m`k`α`βpk ` α` βpm` 1qqgpnqc

For k `m ` n ` α ` β ‰ 0 this is vacuously true. So let k `m ` n ` α ` β “ 0. Then the
constraint equation becomes

pn´mqgpm` nq “ pnpβ ´ 1q ´mqgpmq ´ pmpβ ´ 1q ´ nqgpnq.

Note in particular the coincidence with (5.7), when β “ ´1.

Corollary 5.3.A. Let α arbitrary. Then we have

gp0q “ 0, pfor any β ‰ 1q

gp´mq “ ´gpmq, pfor any β ‰ 0, 1q

2gpmq “ gp2mq, pfor any β ‰ ´1, 0, 1q

In particular this implies there are no nontrivial solutions for β ‰ ´1, 0, 1.

Proof Substitute n “ 0 in (5.11) to obtain mpβ ´ 1qgp0q “ 0. Now, substitute n “ ´m
in (5.11) to obtain 2mgp0q “ mβgpmq ` mβgp´mq. Finally, substituting n “ ´2m, (5.11)
becomes

´3mgp´mq “ mp1´ 2βqgpmq ´mpβ ` 1qgp´2mq.

Now we apply gp´mq “ ´gpmq for any β ‰ 0, 1. It follows

mp1` βqgp2mq “ 2mp1` βqgpmq.

Corollary 5.3.B. The central extensions are of the form

gpmq “ g1m` g0, pfor β “ 1q,

gpmq “ g1m` g2m
2, pfor β “ 0q,

gpmq “ g1m` g3m
3, pfor β “ ´1q,

gpmq “ g1m pfor any β ‰ ´1, 0, 1q.

for arbitrary constants gi P C.

Proof Plug the solutions into (5.11) to see that the satisfy the relation. The solutions must
obey the recursion, (obtained by setting n “ 1 in (5.11)),

p1´mqgpm` 1q “ ppβ ´ 1q ´mqgpmq ´ pmpβ ´ 1q ´ 1qgp1q,

which fully characterizes gpmq by gp1q, gp2q for m ě 2. For β ‰ 0, 1 the relation gp´mq “
´gpmq fixes the negative values also. For β “ 0, 1 plug in m “ ˘1, n “ ¯2 to obtain

p2β ´ 1qgp¯1q “ pβ ` 1qgp˘2q ´ 3gp˘1q

fixing gpmq for m ď ´1. Finally, for β “ ´1, the value of gp0q is determined by plugging in
m “ 1, n “ ´1:

2gp0q “ gp1q ` gp´1q.

If follows that for all β the solution space for g is at most 2-dimensional. For β ‰ ´1, 0, 1, by
corollary 5.3.A, the solution must be linear.
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Central Extension of the Abelian bracket

Finally, we look for hpj, kq as in (5.10). Consider first l0 acting on arbitrary bracket. By the Jacobi
identity:

rl0, rvj , vkss “ rrl
0, vjs, vks ` rvj , rl

0, vkss (5.16)

The left hand side of (5.16) gives, using that c commutes with everything,

rl0, rvj , vkss “ rl
0, hpj, kqcs “ 0.

The right hand side of (5.16) gives, applying (5.12),

rrl0, vjs, vks ` rvj , rl
0, vkss “ ´pj ` k ` 2pα` βqqrvj , vks “ ´pj ` k ` 2α` 2βqhpj, kq.

So hpj, kq must vanish for j ` k ` 2pα` βq ‰ 0. So the central extension becomes

rvj , vks “ δj`k`2pα`βqhpjqc,

where have intruduced hpjq :“ hpj,´jq. Note that by antisymmetry of the bracket, hp´jq “ ´hpjq.
Any such function must be a polynomial in odd powers h1j`h3j

3`...`hpj
p. In particular, by basis

transformation vj Ñ h1vj{ph1 ` h3j
2 ` ...` hpj

p´1q it can always be cast in the form hpjq “ h1j.
Next, we act with lm, yielding once again by the Jacobi identity

rlm, rvj , vkss “ rrl
m, vjs, vks ` rvj , rl

m, vkss (5.17)

The left hand side of (5.17) gives 0, again using that c commutes with everything. The right hand
side of (5.17) reads

rrlm, vjs, vks ` rvj , rl
m, vkss “ ´pj ` k ` 2pα` βpm` 1qqqrvj , vks

“ ´pj ` k ` 2pα` βpm` 1qqqδj`k`2pα`βqhpjqc. (5.18)

In the first line we ignored the central extension terms inside the bracket, as they vanish. Combining
(5.17,5.18), and assuming j ` k ` 2pα` βq “ 0, we obtain constraint equation for hpjq:

´2βmhpjqc “ 0. (5.19)

This implies that for β ‰ 0 no central extension hpj, kqc exists. For β “ 0, the central extension is

hpj, kqc “ δj`k`2αh1jc,

where hpjq “ h1j up to a basis transformation. Note in particular that it is only non-trivial if
α P 1

2Z.

5.2.4 Conculsion

For convenience, we summarize the result obtained in this section. The Witt algebra acting on
Vα,β has central extension:

rlm, lns “ pm´ nqlm`n ` δm`nfmc1

rlm, vks “ ´pk ` α` βpm` 1qqvk`m ` δm`k`α`βgpmqc2

rvj , vks “ δj`k`2αhpjqc3, (5.20)

where

fpmq “ f1m` f3m
3

gpmq “

$

’

’

’

&

’

’

’

%

g1m` g0, if β “ 1,

g1m` g2m
2, if β “ 0,

g1m` g3m
3, if β “ ´1,

g1m if β ‰ ´1, 0, 1

hpjq “

#

h1j, if β “ 0,

0, if β ‰ 0,
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5.3 Oscillator algebra

5.3.1 Oscillators

Let a be the oscillator, or Heisenberg algbra, with basis tan|n P Zu Y t~u. and commutation
relations

r~̂, ans “ 0, pfor all n P Zq,
ram, ans “ mδm`n~, pfor all m,n P Zq. (5.21)

Since ra0, ans “ 0, we know a0 is a central element (or zero mode) . We define an antilinear
anti-involution ¨: on a:

a:n “ an, ~̂: “ ~̂.

For n ą 0, we will refer to an as annihilation operators and a:n as creation operators.

5.3.2 Oscillators acting on the Fock space

Let F “ Crx1, x2, ...s be the Fock space, the space of polynomials in infinite variables. Let
µ, ~ P R be arbitrary. Then we define a representation of a on F by

a:n “
n~
εn
xn, an “ εnBn, pn P Nq

a0 “ µ, ~̂ “ ~.

Here Bn “
B
Bxn

denotes derivation with respect to the n-th variable. The εn denote arbitrary (real)
scale factors. Note that the lower two operation are just multiplication by the given constants µ, ~.
Since δm`n is not an operator acting on the a’s, they mutually commute. It follows that powers
of an commute as

rapm, ans “ apman ´ ana
p

“ ap´1
m ram, ans ` a

p´2
m ram, ansam ` ...` ram, ansa

p´1
m

“ pram, ansa
p´1
m (5.22)

Lemma 5.4. If ~ ‰ 0 the above representation of a is irreducible.

Proof Any polynomial in F can be reduced to the constant polynomial, by repeated an-
nihilation. Then any other polynomial can be obtained via repeated creation, as long as
~ ą 0.

5.3.3 Fock space gradation and entropy

The degree of a monomial in F is defined to be

deg xn1
1 ...xnkk :“ n1 ` 2n2 ` ...` knk.

In physical applications, the monomial xn1
1 ...xnkk represents n1 oscillators in state 1, n2 in state 2,

etc. The powers nj of a monomial in F are displayed in the form of a ‘ket’:

xn1
1 ...xnkk ” |n1, ..., nk, 0, 0...y P F .

Often the zeroes at the end are omitted. The constant polynomial is often abbreviated

|0, 0...y ” |Ωy ” |0y.
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A number nj at the j-th place is to be interpreted as ‘nj particles having energy j’. So the degree
of a Fock state corresponds to its energy. The degeneracy W pnq of a state with total energy (or
degree) n corresponds to the entropy via Spnq “ kB lnW pnq.

Let Fn be the subspace of F spanned by monomials of degree n. Then dimFn “ Pn, where
Pn denotes the number of (unlabelled) partitions of n P Zě0 into sums of positive integers. (0 is
defined to have 1 partition). For example, the 5 partitions of 4, and their corresponding monomials,
are:

4, 1` 3, 2` 2, 1` 1` 2, 1` 1` 1` 1,

x4
1, x1x3, x2

2, x2
1x2, x4

1.

The principal gradation of F is the decomposition

F “
à

ně0

Fn.

The z-dimension is of F is defined as

dimz F :“
ÿ

ně0

pdimFnqzn.

But the dimension of the subspace Fn is Pn, so that

dimz F “
ÿ

ně0

Pnz
n “

ź

nPN

1

1´ zn
.

By using a saddle point method for combinatorial classes, (see for instance [21, p.574]), one finds
the large n-limit

Pn „
1

4n
?

3
exp

˜

π

c

2n

3

¸

.

Then, using W pnq “ Pn, the entropy has large n expression

Spnq „ k

˜

c

2n

3
π ´ ln

´

4
?

3n
¯

¸

.

J. Cardy has calculated the same quantity in [22], S „ 2π
b

c
6

`

L0 ´
c
24

˘

, known as the Cardy

formula, where c is the central charge and L0 the energy.

5.4 Oscillator representations of vir

We define normal ordering, : ¨ :, of a pair aiaj as

: aiaj :“

#

aiaj , if i ď j,

ajai, if i ą j,

and similar for higher numbers. So we effectively ‘sort’ the elements in increasing order of index,
thus putting the creation operator to the left of the annihilation operators. For all k P Z we define
operator

Lm “
1

2

ÿ

jPZ
: a´jaj`m : . (5.23)
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Due to the normal ordering, when applied to any polynomial in F , only a finite number of terms
contribute. (Those for which the polynomial ‘survives’ the annihilation, before the creation oper-
ator has its turn). For example, when action on the mononial xpi :

Lkx
p
i “ ak´iaix

p
i “ ak´iεix

p´1
i “

$

’

’

&

’

’

%

~
εi
εk´i

xk´ix
p´1
i , if k ´ i ă 0,

µεix
p´1
i , if k ´ i “ 0,

0, if k ´ i ą 0

(5.24)

Due to the commutation relation of the oscillators an, the normal ordering is only relevant when
m “ 0. So without normal ordering notation, the operators Lm can be written as

Lm “
ηm
2
a2
m{2 `

ÿ

ją´m{2

a´jaj`m, ηm “

#

0, if m is odd

1, if m is even

In particular the energy operater is given by

L0 “
µ2

2
`

ÿ

ją0

a´jaj .

In the remaining of this chapter, we will no longer distinguish the operators a0 and ~̂ from the
scalars µ and ~ in our notation.

Proposition 5.5. Lm acts on an oscillator as

rLm, aks “ ´kam`k. (5.25)

Proof First, let m “ 0. Then we have (using (5.22))

rL0, aks “
1

2
ra2

0, aks `
ÿ

ją0

ra´jaj , aks

“ 0δka0 `
ÿ

ją0

´jδk´jaj ` jδk`ja´j

“
ÿ

jPZ
jδk`ja´j

“ ´kak

Next, let m ‰ 0. Then normal ordering doesn’t matter and we simply have

rLm, aks “
1

2

ÿ

jPZ
ra´jaj`m, aks

“
1

2

ÿ

jPZ
pa´jraj`m, aks ` ra´j , aksaj`mq

“
1

2

ÿ

jPZ
p´kδj`m`ka´j ´ kδk´jaj`mq

“ ´kam`k

where we have used distributivity law rAB,Cs “ ArB,Cs` rA,CsB for the Lie bracket in the
second line.

Proposition 5.6. The operators tLmum satisfy commutation relations

rLm, Lns “ pm´ nqLm`n ` δm`n
m3 ´m

12
~. (5.26)

Thus, they provide a representation of the Virasoro algebra, with central charge c1 “ ~.
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Proof By making the transformation Lk Ñ ~Lk we can reduce to the case ~ “ 1. So let
~ “ 1. Then, using distributivity law rA,BCs “ rA,BsC `BrA,Cs, and (5.25), we have

rLm, Lns “
ηn
2
rLm, a

2
n{2s `

ÿ

ją´n{2

rLm, a´jaj`ns

“
ηn
2

`

rLm, an{2san{2 ` an{2rLm, an{2s
˘

`
ÿ

ją´n{2

rLm, a´jsaj`n `
ÿ

ją´n{2

a´jrLm, aj`ns

“ ´
nηn

4

`

an{2`man{2 ` an{2an{2`m
˘

`
ÿ

ją´n{2

jam´jaj`n ´
ÿ

ją´n{2

pj ` nqa´jaj`m`n

“
1

2

ÿ

j`mą´n{2

pj `mqa´jaj`m`n `
1

2

ÿ

j`mě´n{2

pj `mqa´jaj`m`n

´
1

2

ÿ

ją´n{2

pj ` nqa´jaj`m`n ´
1

2

ÿ

jě´n{2

pj ` nqa´jaj`m`n

“
1

2

ÿ

kăn{2`m

pm´ kqakam`n´k `
1

2

ÿ

jě´n{2´m

pj `mqa´jaj`m`n (5.27a)

´
1

2

ÿ

kăn{2

pn´ kqakam`n´k ´
1

2

ÿ

jě´n{2

pj ` nqa´jaj`m`n. (5.27b)

In the fourth step, we have absorbed the odd center terms into the summation; the prefactors
pose no problem here, because the factors j and ´pj`nq both have value ´n{2 for j “ ´n{2.
Additionally we have shifted the summation index j Ñ j ` m in the first two summations,
allowing to collect the sums later.
The sums in equation (5.27) that run over k are normal ordered if k ď pm` nq{2. Similarly,
the sums that run over j are normal ordered if j ě ´pm` nq{2. In all other terms, the order
is reversed, yielding commutators:

rLm, Lns “
1

2

ÿ

kăn{2`m

pm´ kq : akam`n´k : `
1

2

ÿ

jě´n{2´m

pj `mq : a´jaj`m`n :

`
1

2

ÿ

pn`mq{2ăkăn{2`m

pm´ kqrak, am`n´ks `
1

2

ÿ

´pm`nq{2ąjě´n{2´m

pj `mqra´j , aj`m`ns

´
1

2

ÿ

kăn{2

pn´ kq : akam`n´k : ´
1

2

ÿ

jě´n{2

pj ` nq : a´jaj`m`n :

´
1

2

ÿ

pn`mq{2ăkăn{2

pn´ kqrak, am`n´ks ´
1

2

ÿ

´pn`mq{2ąjě´n{2

pj ` nqra´j , aj`m`ns

“ pm´ nq
ÿ

jPZ
: a´jaj`m`n :

´
δm`n

2

ÿ

pn`mq{2ăkăn{2`m

kpm´ kq `
δm`n

2

ÿ

´pm`nq{2ąjě´n{2´m

jpj `mq

`
δm`n

2

ÿ

pn`mq{2ăkăn{2

kpn´ kq ´
δm`n

2

ÿ

´pn`mq{2ąjě´n{2

jpj ` nq

“ pm´ nq
ÿ

jPZ
: a´jaj`m`n :

´
δm`n

2

ÿ

0ăkăm{2

kpm´ kq `
δm`n

2

ÿ

0ąjě´m{2

jpj `mq

`
δm`n

2

ÿ

0ăkă´m{2

kp´m´ kq ´
δm`n

2

ÿ

0ąjěm{2

jpj ´mq

“ pm´ nq
ÿ

jPZ
: a´jaj`m`n : `

m3
´m

12
.
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5.4.1 Oscillator representation of vir˙V̂0,0

In this section, we consider once again the Heisenberg operators am, where we have set ~ “ 1, and
a0 “ µ. Next, we consider the operators

L̃0 :“
pµ2 ` λ2q

2
`

ÿ

ją0

a´jaj

L̃m :“
1

2

ÿ

jPZ
a´jaj ` iλmam, pm ‰ 0q

Ṽk :“ ak

In terms of the previous operators Lm, they have expression

L̃0 “ L0 `
λ2

2

L̃m “ Lm ` iλmαm. pm ‰ 0q

or, useful for some calculations

L̃m “ Lm ` iλmαm ` δm
λ2

2
(5.28)

Proposition 5.7. The above operators satisfy the commutation relations

rL̃m, L̃ns “ pm´ nqL̃m`n ` δm`n
m3 ´m

12
p1` 12λ2q,

rL̃m, Ṽks “ ´kṼm`k ´ iλk
2δm`k, (5.29)

rṼj , Ṽks “ ´kδj`k

Proof For rL̃m, L̃ns Using equations (5.21,5.26,5.28), we have

rL̃m, L̃ns “ rLm, Lns ` iλnrLm, αns ` iλmrαm, Lns ´ λ
2mnrαm, αns

[stap te doen]. Next, we calcuate rL̃m, Ṽks. First, let m “ 0. Then

rL̃0, Ṽks “ rL0, aks `
µ2
` λ2

2
r1, aks “ ´kṼk,

coinciding with (5.29), for m “ 0. Next, let m ‰ 0. Then

rL̃m, Ṽks “ rLm, aks ` iλmram, aks “ ´kṼk ´ iλk
2δm`k.

This too coincides with (5.29) (again for m ‰ 0). Finally, it follows directly that rṼj , Ṽks “
jδj`k, by definition of the oscillators (5.21).

Corollary 5.7.A. The algebra is isomorphic to the centrally extended algebra ŵitt˙ V̂0,0,

rlm, lns “ pm´ nqlm`n ` δm`n
m3 ´m

12
c1

rlm, vks “ ´kvm`k ` δm`km
2c2

rvj , vks “ δj`kjc3

with central charges c1 “ 1` 12λ2, c2 “ ´iλ, c3 “ 1.
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5.5 Grassmann variables

For δ “ 0 (the Ramond sector) or δ “ 1
2 (the Neveu-Schwarz sector) we define the space of

Grassmann variables

Gδ :“ Λptθm|m P Zě0 ` δuq

as the exterior algebra generated by the ‘Grassmann numbers’ θi. Wedges are (almost always)
omitted from the notation. They satisfy

θmθn “ ´θnθm (5.30)

for all m,n. As a result

θ2
m “ 0,

B2

Bθ2
m

“ 0

From here, we introduce fermionic oscillators

ψm :“
B

Bθm
, for m ą 0

ψ´m :“ θm, for m ą 0

ψ0 :“
1
?

2

ˆ

θ0 `
B

Bθ0

˙

,

the last of which occurs in the Ramon sector only. To see what it squares to, we let it act on a
test function a` bθ0:

ψ2
0 “

1

2

ˆ

B

Bθ0
θ0 ` θ0

B

Bθ0

˙

pa` bθ0q “
1

2

ˆ

Baθ0

Bθ0
` θ0

B

Bθ0
bθ0

˙

“
1

2
pa` bθ0q (5.31)

So ψ2
0 “

1
2 . In the case m ą 0, n ą 0 we have

tψm, ψ´nu ” θm
d

dθn
`

d

dθn
θm “ θm

d

dθn
`
dθm
dθn

´ θm
d

dθn
“ δm`n. (5.32)

As a direct consequence of (5.30), (5.31), and (5.32), the fermionic operators satisfy the anticom-
mutation relations

tψm, ψnu ” ψmψn ` ψnψm “ δm`n.

Define operators Lk in Vδ:

Lm “ δm
1´ 2δ

16
`

1

2

ÿ

jPZ`δ
j : ψ´jψj`m : . (5.33)

Since the operators ψi anticommute, the normal ordering is defined by

: ψjψk :“

#

ψjψk j ď k,

´ψkψj k ă j.

Proposition 5.8. They satisfy commutation relations

rLm, Lns “ pm´ nqLm`n ` δm`n
m3 ´m

24

rLm, ψks “ ´
´

k `
m

2

¯

ψm`k

rψj , ψks “ 2ψjψk ´ δjk.

The proof is similiar to the harmonic oscillator case.
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Representations of V0,0 and V´ 1
2 ,

1
2

By a simple modification by a Grassmann variable ϑ, i.e., ϑ2 “ 0, the previously found algebras
are modified to match (5.20). Let Lm be such that it has the Virasoro algebra bracket, e.g., as in
(5.23). Let Vk :“ Lkϑ. Then

rLm, Vks “ rLm, Lksϑ “ pm´ kqVm`k ` δm`k
m3 ´m

12
ϑc1,

rVj , Vks “ rLj , Lksϑ
2 “ 0.

The resulting algebra represents vir i V1,´1, with c2 “ ϑc1.

Similarly, let Lm be as in (5.33). Let Vk “ ψkϑ, where ϑ is a Grassmann variable. Then the
bracket becomes

rLm, Lns “ pm´ nqLm`n ` δm`n
m3 ´m

24

rLm, Vks “ ´
´

k `
m

2

¯

Vm`k

rVj , Vks “ 0

This algebra coincides with vir i V̂´ 1
2 ,

1
2
, with central charge c1 “

1
2 .
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6. Conclusions and Outlook

In this thesis we have constructed the asymptotic symmetry group of spacetimes that are described
by a Bondi metric, the BMS group. They classically give rise to waves propagating over the black
hole horizon. The supertranslation currents give room to store information. The remaining problem
is to match the Hawking-Bekenstein entropy S “ A{4, which will likely be achieved by a cut-off
procedure.
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