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Abstract

As a means of working towards solving the information paradox, we discuss conformal diagrams
of evaporating black holes. We generalize the Schwarzschild solution to the asymptotically flat
Bondi-metric and give a derivation of its asymptotic symmetry algebra, the BMS algebra. We
discuss the interpretation as a charge algebra of zero-energy currents. Finally, we establish the
centrally extended BMS-algebra as the semi-simple product of the Virasoro algebra acting on a
representation.
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1. Introduction

1.1 Introduction

One of the first non-trivial examples of a metric in General Relativity is the Schwarzschild metric.
It models the behaviour of the gravitational field of massive bodies, such as planet earth, or the
sun. For example, the metric describing planet earth is equal to the Schwarzschild metric with
Schwarzschild radius g = 2G' Mg, outside of earth’s matter radius.

The matter radius of astronomical objects is maintained by outward force due to interaction of
the matter that composes it. If the gravity is stronger than this outward force, the matter radius
decreases. If this matter radius decreases beyond the Schwarzschild radius, a black hole is formed.

As a result of the Unruh effect and the equivalence principle, Stephen Hawking and Jacob Beken-
stein discovered an evaporation process of black holes, which applies in particular for the Schwarzschild
solution. By emitting radiation, its mass and radius decrease. The discovery of this process has
led to a number of interesting questions. One of them concerns black hole information.

We briefly discuss the problem below. In the next chapters, we take on a strategy to solve it.
Though not finished, some important progress has been made recently. The goal of this thesis is
to understand what has been done so far, and what should be done to finish the work.

1.1.1 Black hole information

For the Schwarzschild solution, and its stationary generalizations (Kerr, Reissner-Nordstrom,
Kerr-Newman), it has been shown that the only conserved quantities of are the mass M, the
charge @, and the angular momentum J. This is known as the no-hair theorem. It has been
conjectured to be true for more general black holes.

The no-hair seems to infer that information about anything that is absorbed by the black hole
is lost; for how can one possibly keep track of whatever comes in using just these three parameters?

Black hole evaporation, discovered by Hawking in 1974, [I], poses a problem in this context. How
are incoming material and evaporative radiation related if the black hole ‘forgets’ the information
of what came in?

At the time of the discovery of black hole evaporation, there were no ideas as to how to maintain
the information of incoming radiation or matter on the Schwarzschild horizon, in conflict with the
law of preserved information; which is classically due to Liouville’s theorem, and in quantum me-
chanics equivalent to quantum unitarity. This problem is commonly referred to as the information
paradot.

1.1.2 Lumpy black holes

In order to give a better description of black holes that evaporate, we should relax the condition of
stationarity; we need a time-dependent metric to describe evolving black holes. Due to Birkhoff’s
Theorem such a metric cannot solve Einstein’s equations for the vacuum, if it is spherically sym-



Universiteit Utrecht 1.1. INTRODUCTION

/) /)

Figure 1.1: A small object has fallen into a black hole. The radial size increment traverses the
black hole horizon, (left, center). It turns out in section that classically a black hole with
propagating waves does not in general become spherical again, (right).

metric. So simultaneously we need to relax this condition. In 1962, Bondi, van der Burg, and
Metzner in [2] have generalized black hole solutions, to a class of axially symmetric, asymptotically
flat metrics. These metrics describe to a multitude (i.e., possibly more than one) of ‘lumpy’ black
holes that evolve over time. A metric that satisfies said conditions goes by the name of Bondi
metic. The Minkowski and Schwarzschild metrics are both Bondi metrics.

The relaxation of spherical symmetry seems very reasonable, from a physical point of view. Imag-
ine a small object being thrown into a black hole. Then surely the far end does not ‘know’ straight
away that the radius should increase; the increment in size can only travel at the speed of light,
so at least for a while, the black hole has a lump. It turns out in section that black holes can
be (classically) excited with waves that do not die out.

1.1.3 Asymptotic Symmetries

The group of vector fields that leave the Bondi metric asymptotically invariant, (i.e., the new
metric which is the result of flowing the old along the vector field is again a Bondi metric), is the
BMS group. It consists of rotations and supertranslations, an infinite class of transformations that
is generated similar to the translations.

In 2010, Barnich and Troessaert have made the case in [7], that the BMS group should be ex-
panded so as to contain the local conformal transformations of the sphere, which will be part of
the studies in this thesis. These local conformal transformations are called superrotations.

Recently, in [5], Strominger showed that the BMS group is a symmetry group of classical gravita-
tional scattering, and of the S-matrix in quantum gravity. He argues that in a finite neighbourhood
of the Minkowski vacuum, classical gravitational scattering is BMS-invariant. Furthermore the S-
matrix of asymptotically Minkowskian quantum gravity, has the symmetry

Xrs=8X_,
where X* are infinitesimal generators of BMS™.

One of the key results of this article is the conservation law of local energy, which is defined
by the Bondi mass aspect mp(u,z?), at each angle 4. (The Bondi mass for a Schwarzschild
black hole is GM.)

Proposition 1.1 (Strominger). The total incoming energy flux integrated along any null gen-
erator on ¥~ equals the total outgoing energy flux integrated along the continuation of this null
generator on ¥+,

Global energy conservation is due to a global time translation, which is a supertranslation that
does not depend on the angle. Conversely, an angle dependent supertranslation which acts only
on one angle, will lead to a conservation law at that one angle; i.e., conservation of local energy.
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For a scattering in Minkowski spacetime of particles propagating from .#~ to .# %, this angu-
lar energy is maintained by soft gravitons. They have localized energy contributions which insure
that at each angle the local energy is conserved, whilst having zero total energy. In [19], these soft
particles have been used to construct conserved currents. They have zero total energy, and there-
fore they are dubbed soft hairs, as a contraction of ‘hairs’ in the no-theorem and ‘soft particles’.
The BMS vector fields are established at null infinity #* or .#~, rather than at spatial infinity
i°, which is the main reason that these modes have remained undiscovered as an ADM-charge.

The asymptotic symmetry algebra shall be the main subject of this thesis. The associated soft
hair (or perhaps ‘follicle’) is found to be a means of storing information. Before deriving the
Bondi metric, and the BMS-algebra, we discuss some consequences of black hole evaporation, and
we develop some necessary machinery. After having derived the explicit vector fields inducing
the supertranslations and superrotations, we investigate central extensions of the BMS algebra,
necessary to move from the classical to the quantum picture.



2. Black holes and evaporation

In this chapter we discuss some consequences of the evaporation of black holes. This should help
understand the information problem, and where we should look to solve it.

2.1 Black hole evaporation

Under the right circumstances a black hole is formed by a collapsing star. For simplicity, we assume
that a black hole of mass My has been formed at time ¢y, by a massive spherical object, with little
or no outward pressure due to interaction, of mass My. We know that the matter sphere exterior
has the Schwarzschild metric, and that the black hole starts to evaporate at time tg.

2.1.1 Evaporation

We use the Stefan-Boltzmann law for black body radiation as an estimate for the radiated power
P:

P = AoT*. (2.1)

Here A = 167G?M? is the area of a Schwarzschild black hole, and ¢ is the Stefan-Boltzmann
constant, given by

274
o T kB.
60h3
For the temperature we use the Hawking temperature
h
Ty = ————.
T 8xrGMkp

Substituting the Schwarzschild area and the Hawking temperature into (2.1)), we obtain
h 1 K.,

~ 153607GZ M2 M2’

where we have defined evaporation constant

P

h
K=_——.
153607 G?

But the radiation gives rise to a decrease in mass, via P = —dE/dt = —dM /dt, (¢ = 1). This gives
rise to the differential equation

dM K,

dt M2’

Under the boundary conditions set above, this gives rise to the time-dependent mass function m(t):

M, t—1ty <0
1/3 M3
m(t) = (M§ 3K (t—10)'"* 0<t—tg <te, = o2 (2.2)
0, tew <t —1p
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Let us consider as a first example the emission of a single photon out of a Schwarzschild black
hole. Let the emission occur at time t.,, (em for emission), and let the radius decrease from rg to
ro — 1. We now define an adjusted tortoise coordinate

r

ro—n

-1

r*=r+(rg—n)ln

)

valid for the emitted photon, and any light-like trajectories that are beyond its light-cone. The
photon itself carries the ‘news’ that the black hole has decreased in size. Since the photon must
start at rog = te,,, the photon trajectory is defined by

t—T*=U0, Uo=tem—7’fm=tem—7“o—(7"0—77>1ﬂ

=
To—"n

Note that ug is finite for non-zero 7, so we have a well-defined photon trajectory

t—tem=7"—ro+(7"0—77)ln

= o)

It coincides with the trajectory of a photon through empty space if n = rg, i.e., if the black hole
has completely evaporated.

Consider a collapsing star, with some strictly decreasing matter radius r(t), such that r(ty) =
2G My. Based on the observation above, we wish to extend the idea to a black hole with the hori-
zon evolution . Here we propose an adjusted Eddington-Finkelstein diagram, with the added
null lines are obtained by interpolation between the Schwarzschild metric with mass M, before the
star collapses, and the Minkowski metric, after the black hole has evaporated. The diagram should
look like this, with the dotted lines depicting null curves.

t 2GMO

2.2 Conformal diagrams

Based on the discussion in the previous section, light does escape the black hole as it shrinks, and
that points on the evolving horizon have different ug coordinates.

Proposition 2.1. The horizon of a homogeneously shrinking black hole is timelike.

This should be no surprise, for if we wait for a black hole of radius ry to evaporate to, say, half
the size, then the radial point ry lies well outside the black hole. Based on this, we propose the
conformal diagram of a collapsing star, forming a black hole, that eventually evaporates.

Next, we propose that the associated conformal diagram be as in It is essentially obtained by
‘straightening out’ the light lines in the adjusted Eddington-Finkelstein diagram above.

- 8-
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Figure 2.1: Conformal diagram of a confguration of matter (blue) of total mass My collapsing into
a black hole (yellow) which evaporates into radiation (green). Dotted lines are of equal radius.

Near past infinity i we have a spherical configuration of matter, confined to a finite region.
Outside that region, spacetime is well described by the Schwarzschild metric, with the matter
centre of mass as its origin. Due to gravitational interaction, the matter will be attracted inwards.
As the massive body shrinks in size, line of equal radius pass out of the outer edge in the diagram.

Eventually, all of the matter will pass beyond the Schwarzschild radius, thus forming a black
hole (yellow). It evaporates at a rate . Similar to the matter sphere before, as the black hole
decreases in size, lines of equal radius emanate from the black hole. Note that as these line pass
through the horizon, they should approach a 450 angle. In addition, different lines cannot touch in
the interior of the diagram (i.e., strictly between the horizon, #* and .#). This is yet another
reason not to draw the evolving black hole horizon as a null line in this diagram.

Since the black hole horizon evolves in a timelike fashion, lines of equal radius come out, and
the radiation constitutes a region, rather than a point, at null infinity .#*. Using the appropriate
retarded time coordinate u = t — r*, the stress-energy tensor T}, (u) will increase, starting at ug,
and becoming constant from u; onwards.

After the black hole has completely evaporated, the metric should describe Minkowski spacetime,
as reflected in the top part of the diagram. Similarly, for sufficiently large r, the digaram should
look just like the conformal diagram of Minkowski spacetime. In fact, the far right of the diagram
should be (almost) indistinguishable from the far right part of the Minkowski spacetime conformal
diagram.
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N

v r— i

Figure 2.2: Conformal diagram (right) and (r,t)-diagram (left) of radiation ‘active’ between ad-
vanced time vy and vy (blue) forming a black hole (yellow) which evaporates into radiation (green)
observed between retarded time wy and wuy. Dotted lines are of equal advanced (retarded) null
coordinate u (v). The point p is drawn to illustrate that the black hole origin and the white hole
origin should be identified (i.e., p,, should be folded p, to obtain the left diagram from the right)

Similarly, we consider a black hole formed by incoming radiation, based on the consideration
that the shrinkage allows for null lines to come out of the black hole. The radiation is ‘active’
between vy and vy. The precise distribution over time of the radiation is not important. What
is important is that the black hole increases in size, until the incoming radiation stops (or is less
intense than the outgoing radiation). After that the black hole still needs some time to evaporate.

Since a conformal diagram is obtained by ‘straightening out’ null lines, (and confining infinity
conformally to a box), the (r,t)-diagram of such a black hole tells us how to draw the conformal
diagram, as seen in . This conceptually proofs the following proposition.

Proposition 2.2. The black hole origin r = 0 and the white hole origin, in the conformal
diagram of a black hole, are two copies of the origin of the same object. The black (white) hole
origin is well-defined in terms of retarded (advanced) time coordinate u (v), i.e., the appropriate
Eddington-Finkelstein coordinate. In order to obtain the (r,t)-diagram, they should be folded over
one another, as seen in

- 10 -
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2.2.1 Time direction

As a final exercise, we aim our attention at the black hole interior in the conformal diagram in
Proposition infers a time direction close to the two copies of the origin:

Let us consider the limit of an evaporating black hole that corresponds to the Schwarzschild
solution. In physical terms, that is either a black hole created at past infinity ¢~, and which only
starts to (significantly) evaporate at future infinity %, or a black hole kept at fixed radius 2GM
by matching the incoming and outgoing radiation. Its Penrose diagram is

r=20 it

j+

r=20 )

Excluding region II, it should be seen as the limit of diagram If we do extend the diagram,
it should be clear that Proposition [2.2] implies that the time direction in region II actually is
downwards.

Corollary 2.2.A The time direction in region Il is opposite to the time direction in region 1.

This corollary also arose in [20] by Gerard ‘t Hooft, where it was derived using unitarity of near-
horizon wave-functions.

11 -



3. Introduction to asymptotic symmetry

In this chapter we develop some notions and machinery that are relevant to understanding the
main body of this thesis: the asymptotic symmetry algebra.

3.1 Asymptotic Symmetries of the plane

Asymptotic flatness conditions ensure that a manifold behaves like flat space far away from some
interior region. This is something that is reasonable to require from a metric describing one or
more black holes; far away their gravity should be negligible. The 4 dimensional spacetime case is
attended to in the next chapter. Here we consider a 2 dimensional manifold M with a Riemannian
metric g;;. It can always be cast in the polar form

ds* = dr* + f(r,0)d6*

by solving the system of equations:

_ di di N _
9ii = 955 i g (911 =1,G12 = 0).
for the three functions &' = r,#% = 0, goo = f(r,0). Here 6 is an angular coordinate, i.e.,

0 =0+ 2r.

Definition 3.1. A metric of the above form is asymptotically flat if
(A1) There exists a bounded region U ¢ M outside of which the coordinates r,6 are valid.
(A2) In M\U the function f goes like

f(r,0) =% +a(r,0),

where a(r,0) € Op(r!).

The second condition is equivalent to the fall-off conditions:
Orf(r,0) € Oy (rt), o f(r,0) € Op(r1).
Consider an asymptotically flat metric. Let a(r,0) = f(r,0) — r? so as to obtain:
ds® = dr* + (r® + a(r, 0))do>.

Then the inverse metric is

The nonvanishing Christoffel symbols are

. Onf(r,0)

0 _ arf(r> 0) T

_ o _ o _ Opa(r,0)
v 2 " 2f(n0)’

99 2f(r,0) "

12
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Definition 3.2. Asymptotic isometries are transformations that send the metric g to a metric
g that is again asymptotically flat. They are induced by vector fields that maintain the asymptotic
form of the metric.

In our case, this gives rise to the equations
Lxgrr =0, Lxgro = Lxgor =0, Lxgos =0+ Ogp(r').

Note that these are a weak version of the Killing equations, where Lxg;; = 0 for all 4,5. I will
therefore refer to these vector fields as asymptotic Killing vectors

Calculation: Asymptotic Killing vectors By metric compatibility the set of equations
becomes

0 X" gre = 0, (3.1)
0, X900 + 00 X" grr = T2 X goo + To0. X’ grr,
20X goo = Th9 X% goo + T2 X" goo + O (1),

First of all, by (3.1)), X" = T(6) for some function T : S* — R. Substituting this, along with
the metric entries and Christoffel symbols, we obtain the reduced set of equations:

f(r,0)0,X° +T'(6) =0, (3.2)
2f(r,0)00X° + (oa(r,0)) X’ + 8- f(r,0)T(0) = 0 + Ous(r'),

Equation (3.2)) is resolved by setting
© dr
X7 = 9+T’9J — 3.4
QO +T0) | 5 (3.4)

where Q(6) is again an arbitrary function of 6. This is the point where we apply asymptotic
fatness of gi;; since a(r,0) € O (r'), we have the geometric series expansion of the integral

in :
o0 fod o0
f L — f di (7% — a(7,0)F " + a®(7,0)7 % —...).

- T2 +a(F,0) -

The terms in the expansion of ever decreasing order in r. The first term of the integral can
actually be evaluated

Jw dr J di -0 L 0, (r )
. r2+a(r9 7‘2f1“(9 =T « '

In order to solve the last remaining constraint equation (3.3), we wish to decompose the left
hand side of (3.3) into orders of r. First note, that in order [r*] we have constraint

2r°Q'(0) = 0

So Q(0) = R is constant. The rest of the constraint equations is contained in the allowed
asymptotic fall-off O (r). So the general solution is

X" =1T(0)

X9=R+T'(0)JOO o)

Note that to first order, the vector field is independent of f(r,6):

X' =R+ + O (r7?).

T'(6)
—
The solutions we have obtained are infinitely generated, by arbitrary periodic functions T'(6).
These asymptotic Killing vectors will be referred to as supertranslations. The relation to normal
translations will become clear in the next section, see e.g. figure The R-generated part is just
a normal rotation.

- 13-
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Different fall-off conditions The choice of fall-off in the definition for asymptotic flatness, is
somewhat arbitrary. In literature sometimes a fall-off a(r, 6) = r2 4+ Oy (r%?). The choice of fall-off
in Definition leads to a Ricci scalar R = Oy (r~*). A weaker fall-off condition would result
in an extra constraint in the asymptotic Killing equations, due to . As a result the Killing
vectors and asymptotic Killing vectors then coincide.

Asymptotic flatness in Cartesian coordinates By setting z = rcosf,y = rsinf we obtain
an expression for the metric in terms of Cartesian coordinates:

1+ y2 a(:f) —xy“(:f)
gij(l‘,y) = (r,0) a(r,0)

7:17ya774 1 +I2T

Note that this can be written quite nicely to

gij(z,y) = nij + Gikxkﬁjll‘lp(%y)a

where n;; is the Minkowski metric, €; is the 2-dimensional Levi-Civita tensor, and p(z,y) =
a(r,0)/r*. A metric of this form is asymptotically flat, if p(x,y) € O@((xz + y2)_3/2). This is

true for terms z™y" if m +n < —3.

3.2 The BMS group

The BMS group the transformation group associated to the algebra of asymptotic Killing vectors.
Writing € for the spherical part of the metric, 4 for the angular coordinate, and v = t — r* for
the retarded time coordinate at .# ™, the BMS group is defined as follows.

Definitions 3.3. The BMS group in any dimension consist of transformations

u— K(z)[u—T(z*)], (3.5a)
Q- Uz, (3.5b)

where T(z*) is an arbitrary function of the sphere, and K (x*) is a conformal scaling function,
ie., (d)? = K2dQ?. A transformations for which T = 0 is a superotation. A transformations
for which Q' = Q is a supertranslation. A general transformation is called a supertransfor-
mation.

The conformal transformations (3.5b)) consist of rotations and boosts. The rotations have confor-
mal factor 1. The boosts deform the sphere, whilst keeping the spacetime separation s constant.
This is reason for the conformal factor in front of the u transformation in (3.5al).

Note that in the definition of the BMS group, the radial coordinate r is not taken into account.
This is because the BMS group is fully determined by its action on .#*, and the BMS group has
the same action there for any metric. In a sense, the above action of the BMS group is a limit
r — o0 of the action on the whole of spacetime. In the next chapter, we will derive the r-component
of the vector fields inducing the transformation of the interior.

3.2.1 BMS in three dimensions

A rotation or boost of S!, (i.e., an automorphism a € AutS?'), is an arbitrary invertible function
S! — S! constrained by periodicity. Hence it is of the form

0 — 00 + ag + a,cosf + a;sin b,

14 -
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for arbitrary scalars ag, a,,a; € R, and where ¢ = 1 for an orientation-preserving transformation,
and ¢ = —1 for an orientation-reversing transformation. We will restrict to the orientation-
preserving case. Similarly, a general orientation-preserving superrotation of St (i.e., a diffeomor-
phism « € Diff " St), is an arbitrary (periodic) function of the form

0 —0+ay+aricosf+a;isind+ ...+ ap,cosnd + a;,sinnd + ...
The difference between the automorphism and diffeomorphism groups is discussed further in section
[B:4] The variation of such a transformation is equivalent to the complex Fourier series
* .
06 = Z ane™, (3.6)
n=—0o0

for complex valued a,, with reality condition a_,, = @,, where - denotes complex conjugation.
The complex valued scalars {a, }nez are related to the real scalars {a, n, i n}tn € N via

(anei"‘g + a,ne_me) = (rea, + iim an)ei"‘g + (re f, —iim fn)e_me

= 2re o, cos nf — 2im o, sin nb.

So we have
Qr.n = 2T€ Oy, a;p = —2imay,
1 .
Oty = §(a7','rL + Zai,n)~

The conformal factor K () of a superrotation § — 6’ = 6 + a(f) is defined by (d#')? = K2(0)d6?,
$0

o’ & ,
K(0) = i 1+d(0) =1+ Z anine’™?.

n=—0o0
Similar to the superrotations, any supertranslation has expansion
w .
TO)= ), Tie™’,
k=—o0

for arbitrary {T}}x, and satisfying reality condition T_j = T. A rendition of an arbitrary super-
translation is given in figure [3.1

3.2.2 The BMS algebra in three dimensions
Let z := €. Then we have {l,,},,, defined by

d . in9i

="t — e

bn 1= dz de’

serving as a basis for Vect S!, the space of arbitrary smooth vector fields of the unit circle. The
commutator bracket for these generators (see proof below) is

[y ln] = (M = n)lpmin. (3.7)
The algebra of these vector fields is called the Witt algebra twitt = vect S?.

The BMS algebra consists of the vector fields tangent to the group action near the identity,
(which is why we exclude the orientation-reversing action). Ignoring the reality condition, the
(orientation-preserving) supertranslation group generators have tangent vector field

ty = €0, = 2"0,.
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Figure 3.1: Rendition of the future null infinity cone .#* x S!, null infinity times one of the
angular coordinates. Fixing u defines a circle about the cone, which is the r — o0 limit of a
future lightcone of some event. An arbitrary supertranslation transforms these circles (left). For
example, the supertranslation T'(z4) = cosf (center) shifts the lightcone endpoints in a way
that is equivalent to the translation of the the event from which the lightcone originates. For an
arbitrary supertranslation (right) the interior is transformed in such a way that the resulting curve
on £+ x S! is the limit of a future lightcone. Note that superrotations also transform the sphere
itself, resulting in a deformed cone, i.e., stretched/compressed/skewed.

It is immediately clear that these commute. The algebra of supertranslations is denoted vectq, S',
since they form an Abelian algebra which, as a vector space, is isomporphic to vectS!. Similarly,
the (orientation-preserving) superrotation group generators have tangent vector field

T i= (g + indu) = iz" 10, + n2"d,,
where 0, is shorthand for d/da*. Note that [,, and r, are related by basis transformation I, =
i(rn —tn).

Proposition 3.4. The BMS algebra in three dimensions bmsg is generated by {ln}n, {tx}r, with
bracket

[lm7 ln] = (m - n)lm+n7
[lm7tk] = _ktm+k7
[t,tx] = 0.

Proof The commutator of the Witt algebra generators is
Uy ln] = ((2"710: +imz"0,)(—2" 710, + in2"du) — (m < n)
= (nzm+"+laz 4 mAnT2g2 _ p2ming, — i(n + m)zn+m+16z8u — mnzm+"8u)
—(m < mn)
= (n—m)z"""a, —i(n® —m?)2z""a,
= (m —n)(=2"""10, +i(n +m)2"T"d,)
= (m —n)lptm.
The commutator of a superrotation and a supertranslation is
[l ] = (=210, + im2"0,)(270.) — (280.)(=2™ 110, + imz"0.,)
= (—kz™1 "0, — 20,0, + imz2"TO2) — (=M 0,0, + im2 TTE2)
= —kz*t™o,

= —ktm+k

Note that the result of this bracket is again a supertranslation. Thus we can decompose
the BMS algebra into a semisimple sum titt B vects, S*, (see . Finally, since the
supertranslations are independent of u, their commutator is trivial:

[t t5] = (270u2"0,) — (2%0,270,) = 0.
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3.2.3 BMS in higher dimensions

The same construction can be used to find the higher dimensional BMS groups and algebras. The
S? analogue of the Fourier series uses an expansion in terms of spherical harmonics Y0, ¢), which
is historically how bms, was expanded. However, we shall make use of a stereographic projection
onto the complex plane (plus a point added at infinity), similar to the mapping e’ — z, which is
much less cumbersome.

Rather than postulating the four dimensional BMS group, and deriving the algebra from there, we
shall explicitly derive the BMS algebra as an asymptotic vector field algebra, in the next chapter.

The advantage is that we can keep track of the r-component, i.e., the BMS-action on the interior
of spacetime.

3.3 Spherical Metrics and Conformal Killing vectors

In this section we study conformal Killing vectors of the 2-sphere. They turn up in the 4 dimension
BMS algebra, as hinted at in the previous section.

3.3.1 Riemann sphere
The metric of the sphere S? in polar angles is
dQ? = db? + sin” d¢>

We make a change of coordinates, to the pair (z,%) of complex coordinates, via the stereographic
projection

z 1= €' cot §. (3.8)

The second coordinate Z is its complex conjugate, (hence the notation). The following term will
occur many times, so often that we give it a name:

P=P(z,7%) = 1(1+22)
In terms of # and ¢, it has expression

1 1 1 sin? ¢ _
— = — = = 5 2 = SlIl2
2P 142z 1+ cot? % sin g + cos? %

N[

—
0
e

N

Proposition 3.5. The unit sphere is isomorphic to the complex plane, plus a point at infinity,
C := C v {oo}. This space is known as the Riemann sphere. It has metric

dQ? = P7%dzdz. (3.10)

Proof The isomorphism is the stereographic projection (3.8). The differential dz has expres-
sion

dz = d(eid’ cot g) =¢'?(icot $dg — L csc® 2dh), (3.11)
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and similarly for dz. Then, using (3.9), we find

dzdz = | icot gdqﬁ— edG —icot Qdd)—
2 2sin? ¢ 2 2 sin?

2

=

N\%

do* + cot® d¢2

46

2

i
((9

) df® + 4 cos’ gsm d¢2>

7_1'_ =z
cos si 2) (d02+sin29d¢2)

2 sin

s+ 1) (d6” + sin® 0d¢”)

- %(d# + sin® 0d¢?). :

Coordinate transformations For future reference, we provide here the coordinate transforma-
tion functions back the usual spherical coordinates:

0 = 2 arccot v 2z, ¢ = arccos 2TE(= %111 Z) (3.12)

Using the chain rule, we have

L4 dod  NIEA G oot fagd)

dz dzdf  dzdo 1+22d0 2zdo

and similar for Z.

3.3.2 Conformal transformations

Later on, we will be interested in transformations that leave the metric g, invariant up to a scaling
function \ = S\(x“) The resulting metric g:“, = S\gw is equal to g,,,, at each point, up to a scaling
factor. As a result, angles are preserved by this class of transformations, (which motivates their
name: ‘conformal’).

Definition 3.6. Vector fields Y satisfying
»CYg,uu = :\g,uu
are called conformal Killing vectors.

The trace of this equation reveals a necessary relation between Aand Y, (called the trace condition),
QVHYM = gMUQV(uYV) = gHV‘CYg/JV = guyw.g;w = nj\,

where n is the dimension of the manifold (dim M, g). Hence

-2
A=V (3.14)

Conformal transformations of the Riemann sphere

Arbitrary angular coordinates are denoted 24, e.g., the Riemann sphere has coordinates 24 = (z, %)
and metric

_ 4dzdz

YAB = %P 2(1 - 6AB) dsz = (1 + 25)2'
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We are interested in metrics that are conformal to the spherical metric. Let ¢ = ¢ —In P, for some
function p(z4). So we define the metric of the conformally rescaled Riemann sphere

_ 5 4e*?dzdz
YAB ‘= %62“7(1 — (SAB) d82 = m (315)

Note that it coincides with y4p5 for ¢ = 0. The inverse metric is WAB = 26_2‘7’(1 —dap). We shall

. . . =A . . U c o
denote its associated Christoffel symbols I' 5, and its covariant derivative D 4. The non-vanishing
Christoffel symbols are

T, =205, T, = 20:¢. (3.16)
Hence, the Christoffel symbol is conviniently written
e = 20465 00¢.
As a result, the ofter occuring contraction with a (1,0) tensor, X4, is
DaXA = 04XA + T X5 = 04XA + 2X40,4¢ (3.17)

We solve the conformal Killing equation below.

Calculation of conformal Killing vectors From the trace condition (3.14)), we have A=
D AYA. Then the conformal Killing equation is

FopDaYS +7,DpYC = DY 5. (3.18)
suppose that A # B. Then becomes
0= Wczﬁzyc + Vzcﬁ?yc - ﬁcycﬁzz
=7.:D:Y" +7.:D=Y" — (D:Y" + D=Y7)7.,
which is vacuously true. Next, suppose that A = B = z. Then the right hand side vanishes,
and becomes
0=90.D-Y" +7.:D-Y°

=D.Y. + D.Y.

=20.Y, — 2T Y,

=20,Y. — 40:¢,

soY, = 1e*?f(z), for some function f(%). As a result Y* = 57°Y. = f(z). Analogously we
find Y”*.

So the conformal Killing vectors are arbitrary functions
Y*=Y?(2), Y?=Y*(2). (3.19)
They have conformal factor

5\ = ﬁAYA = &AYA + 2YA6A<5

3.4 Local vs Global transformations

At this point, it is relevant to make the distinction between the local (infinitesimal) and the global
version of the conformal group. The global version consist of globally well-defined transformations.
In the local version, we allow for any holomorphic (not necessarily invertible) function of the Rie-
mann sphere. We discuss the two classes below. In general, the local symmetry group of a space
corresponds to its diffeomorphism group, and the global symmetry group of a space corresponds
to its automorphism group.

As advocated by Barnich and Troessaert in [7], choosing to work with the global transforma-

tions, results in a much more flexible algebra, and is desirable from a mathematical point of view.
We discuss both cases below.
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3.4.1 Global transformations: Lorentz group

The global transformations are those that are automorphisms of the Riemann-sphere Aut(C). Re-
calling that the coordinates of the Riemann sphere are established by stereographically projecting
a unit sphere. Geometrically, the image Y (C) of a global transformation Y € Aut(C), is again a
stereographic projection of a unit sphere, as though the original sphere has been moved and rotated.

Since the transformation has to be an automorphism of the Riemann sphere, the image must
contain {0} and {c0}. Thus the holomorphic function should have a simple zero and a simple pole.
Thus, it has to be a rational function of the form

az+b
= — d—0b .2
f(2) o d a c # 0, (3.20)

for some a, b, c,d € C, and with the zero at —b/a and the pole at —d/c. These transformations are
known as the Mobius transformations. If ad = bc the above function is constant, so this case
has to be disregarded. In addition, note that the functions generated this way, provide a double
cover of the transformations of the Riemann-sphere, since the elements generated by a, b, ¢, d and
—a,—b,—c,—d give rise to the same transformation. We will utilize this fact in the following
propositions.

First we calculate the composition of two such transformations:

(ad' +Vc)z+a'b+Vd
(ac + cd')z + b’ +dd"’

frof(z) = (3.21)

which is again a Mobius transformation. The group of these transformations is also referred to as
the Mobius group.

Using the metric (3.15) and adopting the notation from section the sphere 2 is transformed
into
4dz' dz’
(14 2'7')?
—ad + bc

_4 lcz + d|? 2

ez +d)? +]az +b2) |(cz — d)?
7 1427 > ddzdz

C \Jez+d]2+]az +b2) (1+ 22)2
= K?(2,2)d0?,

aQ” =

2
dzdz

so that the conformal factor of a Mobius transformation is given by

B (1+ 22)
Jaz + b2 + Jez + d|2

K(z,7) (3.22)

Proposition 3.7. The global transformation group Aut(@) is isomorphic to the projective linear
group PGL(2,C).

Proof From (3.21) note that

. a b
¢ : GL(2,C) — Aut(C); ( ) — f
c d

is a group homomorphism. Any two matrices which differ by a global factor A\ have the same

image, so Ker¢ = C*I. By the first isomorphism theorem; Aut(C) =~ GL(2,C)/(C*I) =
PGL(2,C).
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Proposition 3.8. The global tranformation group Aut(@) is isomorphic to the projective special
linear group PSL(2,C).

Proof The group homqmorphism ¢, when restricted to matrices with unit determinant 1, is
still surjective onto Aut C. The kernel is +1, and so Aut(C) ~ SL(2,C)/(+I) = PSL(2,C).

Corollary 3.8.A The group of global transformations of the Riemann sphere is isormophic to the
proper, orthochronous Lorentz group SL'(1,3).

3.4.2 Infinitesimal Mo6bius transformations and the Lorentz algebra

To obtain the algebra associated to the Mobius group, we consider the infinitesimal group action.
An arbitrary infinitesimal transformation of z is of the form

Z+¢egterz+ 8222 + ...

Here ¢; € *C are complex infinitesimals, i.e., V; ; : €,6; = 0. It is clear that b ~ €9, and that a
must be of the form a = 1 + € for some infinititesimal . It turns out that a, b, ¢, and d are related
to the infinitesimals via

€1 €1
a=1+ —, b= ey, c= —¢og, d=1—-—.
2 0 : 2
Substituting these solutions into an arbitrary Mobius transformation then gives:
(1 + E—l)z + €0
g 1_%—_522 = ((1+%)Z+50)(1+%+522) :Z+50+€1Z+€222, (323)

and similar for Z. Note that a general Md&bius transformation has three complex degrees of free-
dom, from which it should be clear that (3.23]) indeed gives the most general infinitesimal Mo6bius
transformation.

The associated conformal factor is

1—-22z 2
K(z,z)=1+ T Z L Rl e re((2g — €2)2), (3.24)
or, in terms of 4, ¢,
K(0,¢) =1+ cosOrecy — 2sin® & ve((5o — €2)2) (3.25)

In particular, the conformal factor is 1 if ree; = 0 and ¢ = &2. It follows from (3.23) that the
complex Lorentz algebra is (isomorphic to) the algebra generated by

ZO&Z? Zlaza 22627 EO&E; 21627 2262
Writing [,, = 2™ *10,, and l,, = 2""105 the commutators are

[lma ln] = (m - n)lm+n7 [imain] = (m - n)lm-‘rna [lmain] =0.

For a proof, see the proof of Proposition [3.:4 Below, we give an example of an infinitesimal M6bius
transformation in terms of the more familiar 6, ¢.

Example Consider the transformation z — z' = z+nz,zZ — Z+7z, for a complex infinitesimal
n. Note that for infinitesimals e'™" = 1 + ¢imn. As a result, we have

z— 2 =z2(1+n)
= cot gew(l +ren+iimmn)

0 .\
= (1 +ren)cot §€Z(¢+lm m

0 i im
= cot arccot ((1 + ren) cot 5)@ (¢+immn)

0 cot 2 re ) .
= cot | arccot| cot = | — 277; gl(o+imn)
2 1+ cot? g

0 —sin0 % im
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where we have used the series expansion arccot z 4+ a = arccot z — a/(1 + x2) + .... So we have
correspondence

z—z(1+mn), z—zZ(1+7); < ¢ — ¢ +imm, 60 — 6 —sinfren.

3.4.3 Local transformations: Witt algebra

If we choose our conformal Killing vectors to only be locally well-defined, the resulting functions
are arbitrary (holomorphic) functions, Y* = Y?#(2),Y? = YZ#(z). Hence the conformal Killing
vectors admit Laurent expansion

0
Y = Z (anz"'HGZ, anzn-‘rla?)

n=—0o

with arbitrary parameters a,,, @,. Define [, :zi—z"“az, and [, := —§”+15<. The Lie algebra of
Killing vectors is generated by the basis (I,,)n, (In)n. The elements have commutation relations

[lma ln] = (m - n)lm+na [Zma ln] = (m - n)lm-‘rna [lm’ ln] =0.

The conformal Killing algebra is isomorphic to two (independent) copies of the Witt algebra, (see
(3-7)). It was seen in section that the local conformal transformations of the circle give rise
to a single copy the Witt algebra.

The restriction (I, Zn)|n7m:_170,1, establishes the Lorentz algebra as a subalgebra, which is imme-
diately clear upon comparing the generators.

3.5 Vector Field preliminaries

In this section we study some relevant properties of vector fields. The definitions throughout this
section are taken from [I5].

3.5.1 Vector fields as operators

An integral curve of a vector field X is a differentiable map v : I — M with the property that
our vector field X is its derivative at all points in some open U. This translates to the condition

v:I— M, 0-(1) =(1) = Xy(r)-
In covariant notation, this just means that we have the differential equations:
0 (7) = X*(77(7))

Tts value in zero (if it is in the domain), v(0) € M, is called it starting point. Suppose that for
each point p € M the vector field X € X(M) has a unique integral curve starting at p, and defined
for all 7 € R. Denote the collection of these ingegral curves p® : R — M. Then we define the
flow of the vector field X as

or: M — M; @T(p) = (p(p)(T)'
A particularly important example is the exponential map:
exp : Tp,M — M; exp(X) = »1(p)

Example Consider the vector field X = —xd, + y0, on the manifold R?. Then its integral
curve is the solution of the equations

07" (r) = (1), 04 () = 7 (7),
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solved by
v(7) = (acosT — bsinT,asinT + bcosT).
Note that v(0) = (a,b), so that the flow of X is given by
or(z,y) = (xcosT —ysinT,xsinT + ycos 7).
Finally, the exponent of X at p = (x,y) is
exp(X) = (zcosl —ysinl,zsinl + ycos1).

Action of a vector field on a tensor We define the action of a vector field on a covariant
tensor:

X-T‘p = (pf(T(p)) = (T/u.../tk o ‘P‘r)(p)d(gjm © <,07—) & ... ®d(xﬂk © 907')

For instance, the action on the metric g, dx"dz" is

X dadz”) = d(oMd(o?) = ( gas 008 09T o
'(g;uj‘p €z € )_gul/ltpr(p) ((pr> (SDT) - gul/‘sﬁ-r(p) axu amy €T L.

Note that this coincides with the familiar transformation law for metrics.

3.5.2 Vector field algebra

X(f) to be the element of Coo(M) whose value at a point p is the directional derivative of f at p in
the direction X(p)

3.6 Algebra preliminaries

3.6.1 Lie group - Lie algebra correspondence

In this subsection we recall some important features of Lie groups and their corresponding algebras.
Lie groups are denoted by capital letters (e.g., G, H, ...) and Lie algebras by their lower case Fraktur
counterpart (e.g., g,0,...). The Lie algebra is the linearization of the Lie group, in the tangent
space at the identity. That is, elements X € g are identified to the derivative of the exponential

d
g3 X = —e¥| eT.G
dt o

and given a t these correspond to some element in the group G:

X ~ged

Proposition 3.9. Ifg is the Lie algebra of a Lie group G, then adx(Y) = [X,Y].

Proof The (left) adjoint action is defined as the conjugation:
Ad:G x G — G, (a,9) —a-g-a '
Ad, = L.,R,-1 :G — G; gn—>a-g-a71

Here Ly, Ry denote the left and right action of the Lie group element g, respectively. Since
Ad, e = e, its differential at the unit is an action on the Lie algebra,

Ady := (dAda)e 19 — g;

We identify X € g with the speed of its associated flow (writing exp(tX) := ¢’ 1 (€)):

g3 X = iexp(tX) e T.G.
dt t=0
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And thus, by the (differential of the) adjoint action, it is sent to

. d _
Ady(X) = a(g -exp(tX)-g 1) e T.G,
t=0
= %(exp(thg_l)) e TG,
t=0
=g9Xg' €,

where we used exp(taX) = aexp(tX) and exp(tXb) = exp(tXb). Now, we introduce the
adjoint representation of the Lie group G, along with its associated representation of the Lie
algebra g:

Ad :G — GL(g); g— Ad,
ad : g — gl(g); X — adx

The adjoint action then acts on an arbitrary element Y € g via:

ad(X)(Y)

adx (V) €g
= (dAd 4 Y)e eT.G

4t exp(tX)[t=o0
= (dRexp(—tX))(dLeXP(iX))(Ye)
= (dRexp(ftX))(Y—exp(tX))

€g.

Here we used that exp(tX)™' = exp(—tX), and the correspondence between the flow and the
left and right action. We see that indeed ad : g — gl(g) is a representation of the Lie algebra
g on itself, and that adx Y = [X,Y]. o

From group to algebra

Let V be a vector space of dimension n over a field k. The general linear group GL(V) is the group
of bijective linear transformations of the vector space V. The group operation is composition.
Given a basis (e;)1<j<n for V a transformation T" is the map

Tey = Z akjej.
j=1
This shows that GL(V') is isomorphic to the space of (n x n)-matrices excluding non-invertibles,
GL, = M), = {A e M,«,|det A # 0}.

In this form, the group operation is just matrix multiplication. Note that it is isomorphic (the
isomorphism being picking a basis) to the group of n dimensional GL,,. Subgroups of GL,, are
called linear groups.

Now we move from the group to the algebra, where we follow [I6, § 2.14]. The tangent space
of GL,, is canonically denoted in lower case Fraktur, i.e., Ty GL,, =: gl,,. Any element X € gl,, is
identified with the speed at t = 0 of ¢t — I + tX. Note that for small enough ¢, the determinant is
nonzero, so that gl, = M,,«,. Now, X gives rise to left-invariant vector field

XE(A) = %A(I +tX)| eTaGL,
t=0

forall A € GL,. Let X,Y € gl,,, and [X, Y], the bracket in g defined via [X, Y]l = [X*, Y "] L.,
where the last bracket is the bracket of vector fields on GL,,. We compute

,C[XL’YL](f) = [:XLﬁyL (f) - £yL£XL(f), Vf : GLn — k.
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Write uji : gl,, — k for the coordinate functions on gl,,. Then we have

L) = S pa vy = 3 T4 e
igk %

In particular

Lxi(u ZA X
So we have
[/yLﬁxL Z[,yL U’k Zu qu lX = £(YX)L( )
k,l

It follows that [X,Y]; = XY — Y X, i.e., the Lie-bracket for linear algebras is the commutator.

Other linear groups

For other linear groups, we move to the algebra by ‘taking the derivative’ of the extra condition,
ie.,

0, ={AeCGL, |AAT =TI}

Consider the map
f:GL, = Mpn; f(A)=A-A"
Then O,, = f~1({I}) = GL,, can be seen as the preimage of the identity of f. It has the tangent
map
d
(df)a:gl, — gl,; X - af(A +tX) =AxT 4+ ATXx.
t=0
As a Lie algebra, 0, = Ty Oy, (so A = I) is just the restriction
{(Xegl, | X"+ X =0} = (df)""(0) = gl, .

Example: The Lorentz group The Lorentz group can be defined as follows: We define
n = diag(—1,1,1,...,1) € Myxn to be the metric matrix (of Minkowski space-time). Then the
(general) Lorentz group consists of transformations satisfying

O(1,n —1) := {A € GL, |[A'nA = 7},

i.e., coordinate transformations that leave the metric invariant. (Physically this condition
means that ‘the laws of physics’ should look the same in any frame of reference). Let us split
time and space components of x*. Then we write

a U z°
A= , T =
vy S z

where a is a scalar, U; are n — 1-vectors, and S is an (n X n)-matrix. A Lorentz transformation
r — Az gives

0 0, » = . 0 t
T —ar + U1 -7, T — oz + S'Z.

In this form, the condition A‘nA = n (and as a consequence AnA* = n), is just

a H\[-1 0\[a T —a® + | |? —att + V55 . [-1 0
o StJ\Nd 1)\t S —ath + Sty —T1 Ut + StS 0 1

So we have conditions

|Ta]® — a® = —1, —aty + 8%, =0, -7 @ +5'S =1,
|71)? — a® = —1, —aty + S0, =0, —T @ U5+ S'S = 1.
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Note that matrices of the form
{AeO(1,n—1)|a=1,7 =0} ~O0(n—1),
form a subgroup. Algebra Passing on to the algebra we get the ‘derivative’ of the conditions
o(l,n—1) := {A e gl [A'n 4+ nA = 0}.

In the above form, this is just

1

S=-5"

H
Il
St

a =0,
Again, we have the subalgebra
{Aeo(l,n—1)|5; = 0} = o(n — 1).
The Lorentz algebra acts on the space R" via
T — Az.

Note that since the general Lorentz group consists of 4 disconnected components, the algebras
of the general/ proper/orthochronous/proper orthochronous Lorentz groups coincide.

Unitarity

Let g be a real, (or complex), Lie algebra. An operation w : g — g is called an anti-linear
anti-involution on g if for all X,Y € g and A € R, (or C), it satisfies

wAX) = dw(X), w([X,Y]) = [w(X),w(Y)].

Let (V,{:|-)) be a representation of g, equipped with a positive-definite Hermitian form {:|-), com-
patible [is dit altijd waar?] with the algebra in the sense

(Xu|v) = —(u|Xv).
The Hermitian form is called contravariant if
(Xulv) = (ulw(X)v).
If it is non-degenerate this means
X1 = w(X), forall X eg.
Here XT denotes the Hermitian conjugate of X.

A representation is called unitary if in addition

(wlvy > 0, for allv e Vv # 0.

3.6.2 Semi-direct product of groups

Construction

Let G be a group, with subgroups H, N < G. We denote the identity element {e}. Then G is a
semi-direct product of H acting on N, denoted

G=HxN

if the following conditions are met:

(s1) N is a normal subgroulﬂ NaG
(s2) G=NH, (i.e., YVgegInen,heng = nh)
(s3) N n H = {e}.

IN < G is a normal subgroup precisely if VneNVgeggng’1 eN
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Proposition 3.10. Let G = H x N be a semidirect product. Any g € G admits a unique
expression in terms of elements in H and N.

Proof Suppose n,n’ € N,h,h' € H satisfying g = nh = n'h’, (existence by (s2)). Then
n'n™' = h'~'h. Butn/~'ne N,h'h™' € H, and by (s3) since the coincide they must equal the
identiy, i.e., n”’'n~' = e = K'h1. It follows that n’ = n,h’ = h. o

Note that we have the natural isomorphism (H,ex) = H. Given an element h € H we shall write
h for the inclusion h = tg, . gxn(h) = (h,en). Similarly, for elements n € N we write i = (eg,n).

Note that this semi-direct product given H and N is not unique, for example,
Z/6 =Z/3 x7/2, S3 =7Z/3 xZ)2.

In order for H x N uniquely determine G, we need to specify how H acts on the normal subgroup
N, (proven below). So we have the extra condition (making the semi-direct product unique):

(s4’) There is a homomorphism o : H — Aut(N); h — oy, such that hih™' = &5(n).

We denote the semi-direct product of H acting on N by o as G = H x, N. Taking this a step
further, we write Ad;, (n) = hah™' = (ey, on(n))

Proposition 3.11. Let H, N be two groups. Conjugation by h is a homomorphism: ¢ : H —
Aut(N) with assignment ¢(h)(-) = ¢p(-) = h-h~L.
Proof For any h,h' € H,n € N we have
Prndn (n) = h(K'nh'~")h™" = (hh')n(hh') ™" = ¢pu (n). o

Proposition 3.12. Given two groups H, N and a homomorphism o : H — Aut(N), there exists
a unique semi-direct product, G = H x, N, satisfying (s1),(s2),(s3),(s4’).

Proof Write elements of G as the Cartesian product (h,n), and endow it with multiplication
(h,n)(R',n') = (hh',non(n")).
First, we show that this multiplication is associative:
[(h7 n)(h/,n/)](h",n”) = (hh/,nah(n/))(h”,n")
= (hh/h”7 non (n/)ahhf(n”))
= (hR'R" ,now(n/on (n”)))
= (n,h)(K'R",n on (n"))
= (n, h)[ (W', n")(R",n")].
The identity is e¢ = (em,en), which is quickly verified by noting that oe,(n) = n and
on(en) = en by the homomorphism properties of o. Element (h,n) has inverse
(hyn)™ = (b s (7).
We give a quick verification:
(h,n)(h ', -1 (n™ 1) = (hh™ ", non(o,-1 (K1) = (hhil,naeH (n™") = (em, en).
We conclude that G is a group, with subgroups (H,en) =~ H,(ex,N) =~ N. Note that the
multiplication has been chosen so as to satisfy (s4’): hnh™" = oy, (n), i.e.,
(hyen)(em,n)(h™ " en) = (hyon(n))(h™ ' en) = (hh™ ", on(n)onlen)) = (em,n).
Next, we show that G is the semi-direct product of H acting on N (by o).

(s1) By the above calculation hnh™' = (em,on(n)), we know that N is the kernel of the
homomorphism ¢ : G — Aut(N), assigning (h,n) — oy, i.e., ¢(em,n) = ey . Hence it
is normal in G.

(s2) HN =~ (H,en)(eu,N) = (H,N) = G.

(s3) The intersection is H n N = (H,en) n (eq,N) = {(em,en)}.

We conclude that G = H x5 N. O
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Examples

We provide a few examples of semi-direct products. Note that for our purposes, the normal group
is usually Abelian, in which case we shall denote its multiplication by a +.

Cyclic group C,, x C,, Consider the cyclic groups Cy, = {ala™ = €),{b|b™ = e). Then they
admit a range of semi-direct products, uniquely determined by the relation aba™* = b*, (with
k,n coprime).

Linear group GL,, Claim: Given a field k, we have GL(n,k) ~ SL(n,k) x k*.

Euclidean group SO, xR"™ The special orthogonal group SO,, is canonically represented
by the orthogonal n x m-matrices with determinant 1. So the semi-direct product consists of
pairs (M,v), where SO,, acts via matrix multiplication: (M,v)(M',v") = (MM',v + Mv')

Lorentz group The general Lorentz group consists of 4 disconnected components. It can
be written as the semi-direct product of the proper orthochronous Lorentz group, and the
discrete group {I, P,T, PT}:

O(1,n—1) =SO(1,n—1)" x {I, P, T, PT}.
via

(A, X)(A, X') = (AXA, XX).

Poincaré group SO(n — 1,n)' x R* SO(n — 1,n)" is the group of proper orthochronous
Lorentz transformations, acting on the translations:

(A", ") (A", ) = (A AN, 2" + A*,3Y).

3.6.3 Semi-direct sum of algebras

In the case where H, N are Lie groups, the semi-direct product G = H x, N is naturally carried
over to the semi-direct sum of Lie-algbras: g = h Bx n. Moreover, if the normal group is an Abelian
Lie-group A, it is isomorphic to its algebra, a =~ A.

Definition

We first propose a definition and then show that it is indeed the Lie-algebra counterpart. Let h,n
be two Lie-algebras, and a Lie-algebra homomorphisnﬂ Y : h - Der(n); H — Xpy. Here Der(+)
denotes the space of derivationsﬂ We define a Lie-bracket on g := h®s n by

[(X,v), Y w)]g := ([X, Y]y, [v,w]n + Xx(w) — Xy (v)), (VX,Y € bh;v,wen.)

Some remarks on the notation So as to avoid confusion between elements of Lie algebras,
and the Lie groups, we write X,Y, Z for elements of §, and v, w,u for elements in n. (This, as
opposed to the usual upper case letter H € b).

Note that we have the isomorphism (h,0,) = b. Given an element X € h we shall write X
for the inclusion X = 15 p@n(X) = (X,0,) € h®n. Similarly, for elements v € n we write
U= tnoppn(v) = (0h,v) € hGN.

We shall omit subscripts of commutators whenever this wouldn’t cause confusion.

Proposition 3.13. The above commutator gives rise to a Lie-algebra.

2A map f: g — b is a Lie-algebra homomorphism if f([X,Y]) = [f(X), f(Y)] for all X,Y € g.

3 A derivation D € Der(A) on an algebra A, (over k) is a (k-)linear map D : A — A satisfying the Leibniz rule
D(ab) = D(a)b + aD(b). Note that the ‘product’ in the Lie-algebra is denoted [-,], so that we rather should write
D([a,b]) = [D(a), b] + [a, D(b)]-
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Proof As aspace g = bh x n is just the Cartesian product, so clearly it is a vector space. Note
that the brackets [, ]u, [, -]n satisfy all desired properties, so we only need to check them for
the assignment [(X,v), (Y, w)] < Xx(w) — Xy (v).

e Bilinearity:
[a(X,v) + b(X',0"), (X", 0v")] © Zaxiox: (V") — Zxn(av + bv')
=aXx (11”) + bZX/( ”) —aXxn (’U) — bEX//( /)
= a(Sx(0") = By () + B(Ex (0") — Exr (v))
al(X,v), (X", v")] + b[(X", ), (X", 0")],

and similar for the second argument of the bracket.
e Anticommutativity:

[(X,0), (Y, w)] & Xx (w)Ey (v)
— —(Sy (v) - Bx (w))
_[(Y7 IU), (X, U)]

e Jacobi identity; Since we take consecutive brackets, we need to be more careful, i.e., we
shall have to get dirty hands. First we calculate one of the three brackets:

[(X,0), [(X",0"), (X", 0")]] = [(X,0), ([X", X" 5, [V, 0" ]n + Exs (v") = Exn (v'))]
Call w = Tx/(v") — Lx»(v'), so that we obtain

[(X7 U)v [(X/’ U/)v (X”’ U”)]] =
= [(X, v), ([X',X”]h, [v,v"]n + w)]

= (IXTX, X" To]o, [0, [0 Tl + [0, w]a + Sx ([0, 0"10) + B (w) = Spxr 0, (0))

<

Now, we check the Jacobi identity in pieces. Note that [X[X', X" ]yl and [v,[v",v"]a]n
satisfy it already. As for the other pieces, consider first:

[0, wla + S ([, 0"]a) = [0, Zx0 (0")]s = [0, S0 ()] = [0", Ex ()] + [V, B ("]

Here we used the fact that for a given Y, ¥y is derivation on n. Now, we shall perform
different cyclic permutations on the other terms, that is, exchanging terms from the
written part with terms in the ‘+cyclic permutations’ part:
[v,w]n + Ex([v,v"]a) + cyclic permutations =
= [v,3x/(v")]n = [, Bxr (V)]n = 0", Bx (V)]a + [V, x (") ]n
+ cyclic permutations
= [v,Bx/(v")]n = [0, Bxr (V)]0 = [0, Dx/ (v")]n + [0, B (V)]
+ cyclic permutations
=0
For the last piece, we have
Yx(w) = Bpxr,xm, (v) + cyclic permutations =
=Yx(Zx/ (") = Bxn(v)) — Eixr,xn), (v) + cyclic permutations
= Yx(Zx/(v")) = Ex (Tx# (v)) = Spxv,x77, (v) + cyclic permutations
= Yx/(Bxn(v) = Xxr(Bx:(v)) — Xpxr, xn, (v) + cyclic permutations
= Yxr xr, (v) — ixr,xm, (v) + cyclic permutations

Here we once more performed some cyclic permutations, and we used the fact that
Y — Yy is a Lie algebra homomorphism.

Yx (w) — Bixr xn, (v) + cyclic permutations =
=Ix(Ex (") = Bxr(v') = Bixr,x7), (v) + cyclic permutations
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Proposition 3.14. Let H,N be two linear Lie groups, o : H — Aut(N) a Lie group ho-
momorphism, and let G = H x, N be the semi-direct product. Let g,h,n be the Lie-algebras
corresponding to G, H, N, respectively, and ¥ : h — Dern the differential of o (at the origin of H),
that is

Then g = hBx n.
Proof We calculate the commutator [(X,0), (0,v)]y, and infer the other commutators from
this one. Via the exponential map, we move to the Lie-group, (see m

L)
dt

N . N d d s
[X,0]g =adg 0 = Ad_z 0] .= &%Ade”&e

t=0 t=0,5=0

Note that by definition of the semi-direct product Ad; 7 = oxn, so we now know

A d d sv
[X,0]q = T s = Yx(v).

t=0,5=0

By anticommutativty then [4 Y], = 72}/(;&). Finally, by noting that (H,en) =~ H, and
(err, N) @ N, we know from that [X,Y] = [X,Y]s, and [4,0] = [u,v]s. We conclude
that

(X, u), (Y v)]g = ([X, Y], [w, v]a + Ex (v) — By (u)).

So the Lie-bracket of g corresponds to the Lie-bracket of h (Bs n. ad

Poincaré Algebra

We proceed to calculate the Poincaré Algebra. We start with the group SO(n — 1,1) x R™, with
elements (A, x). Note that the Lie-algebra of R™ is just R™ with the trivial commutator; we shall
write P, for the algebra elements. The Lorentz algebra consists of matrices

A= , S =St

with the commutator as Lie-bracket. Since the translations have a trivial bracket we have

[(A,z), (A, 2")] = (AN — AN Ax’ — N'z).

BMS algebra

The BMS algebra turns out to be bms, = vect(S" ) Baq bect(S"2)4p, (ab denotes the abelian-
isation, i.e., treat the algebra as a vector space with addition/trivial bracket). Since as vector
spaces, the algebras coincide, the superrotation action can be taken to be the adjoint action, the
commutator of vector fields.

[(Y1, f1), (Y2, f2)] = ([Y1,Y2], f1 + adx(f2) —ady (f1)) = (V1Yo — Y21, Yi(f2) — Ya(f1))-
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4. Asymptotically flat spacetimes and supertrans-
formations

4.1 Bondi Metric

In this section we will consider a class of metrics of the 4-dimensional space-time, that are asymptot-
ically flat, axially symmetric, and reflection symmetric. An important example is the Schwarzschild
metric. After casting it in a canonical form, due to [2], we will derive the algebra of vector fields
that leave this class invariant.

4.1.1 Canonical Bondi metric
We will use coordinates (u, 7,6, ¢), where 6 and ¢ are the usual radial coordinates. Since the metric

is assumed to be axially symmetric, we readily have g,4 = gr¢ = ggp = 0.

Next, we define time-like coordinate u, and the angles, in such a way, that they are constant
along light rays. For light-like separation (ds? = 0), this means that du = df = d¢ = 0. In
particular, this implies that ¢,..dr? = ds?> = 0, so ¢, = 0.

Remark In the case of the Schwarzschild metric, the coordinates are the well-known outgoing
Eddington-Finkelstein coordinates: u =t — r* and r = r*.

Finally, we show that g,¢9 necessarily vanishes.

Calculation The (preliminary) inverse metric is

—9r0966  (9r09u0 — Gurgo0)gss 9roGurJos 0
w 1 * Guugo69pp — giegw GurJuo9oep — GroJuugse 0
detg * * —Gurgss 0
0 0 0 2gurgu997"9 - gfeguu - 972“«990
(4.1)
Since u, 0 and ¢ are constant along light rays, the geodesic equations for light-like geodesics
are
d?zt dx” dz”
o =0. 4.2
dX? tle dx d\ (4.2)
Note that
. = gw\argrh (4'3)

because gr» = 0. Since dz" /d\ = 0 for p = u, 0, ¢, the Christoffel symbols T'},. must vanish for
those u. Note that T'¢, is automatically zero. From ({#.2) and (4.3) we obtain the necessary
conditions:

g 0rgrr =0, ¢"0rgrx = 0. (4.4)

Using the inverse metric, the constraints (4.4) become

9é¢
det g

9ee
det g

(9r09urOrgro — groOrgur) = 0, (9r0GurOrGur — gorOrgre) = 0. (4.5)
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Both g4 and det g must be finite, otherwise the metric would be degenerate. Rearranging the
terms in the brackets among each other, the constraints are equivalent to

9r6(9r60r Gur — Gurfrgre) = 0, Gur (9roOrGur — GurOrgre) = 0. (4.6)
The equations are solved by
(1) : gur =0, or (i) : gro =0, or (#9%) : groOrGur = GurOrgro. (4.7)

First we consider case (). Suppose gur is zero. Consider an infinitesimal separation, in such
a way that d0 = d¢ = 0. Then ds® = gyudu®. Now for time-like, and space-like separations,
this must have the opposite signature, which is a contradiction. So we disregard ().

Next, note that:

gro _ gurargre - greargur
Gur (gur)2 ’

Or

so (i14) is equivalent to the condition that gre/gur is independent of r. In this case, then, there
exist u(u, 8), A\(u, 0) defined by

Adii = (du T gﬁde).

Gur
In terms of the new coordinate, the metric is

ds® = guudu® + 2gu,dudr + 2guedudd + 2g,9drdd + goeedd® + gssdd’

2
= Nguudi® — 22290 gqp 4 Seudre gg2 o

Gur Gur

2 gurdr + guodb) (Ada - ﬁd@ - 2gr0drd0 + good6? + goud’

Gur

= Nguudi® + 2\ <gu9 - M)dad& + 2\gurdidr+

ur

ur Gur

2
+ (29,0 — 2g,0)drdo + (97“‘729’"9 — g Juodre geg) d6 + goodd”.
In these coordinates we have gr¢(@,r,0) = 0, so that conditions (it) and (iii) actually coincide.

Hence the metric is characterized by

Grr = gro = 0.
The Bondi metric is of the general form

ds® = guudu® + 2g,,dudr + 2g,0dudd + gegdf* + gpedd? (4.8)

4.1.2 Einstein’s equations

In this setup, we wish the metric to satisfy the Einstein equations for the vacuum. That is, G, = 0.
Because we cannot hope to solve the equation in full generality, we solve it up to the relevant order
of r. We will actually go about it in steps, adding parameters and solving, until we have reached
the most general form . We will start off assuming that the metric is asymptotically flat, and
that we are in the flat limit (r — o0).

Conformal rescaling

First, consider a conformal rescaling of the angular part, by e*?y45. (See also [3.3.2)). At this
point, we assume 0,¢p = 0. Any lower order corrections (of order O (r!)) to the angular part of
the metric will be allowed later onE| It turns out that the only metric is

ds? = guudu® — 2dudr® + r?e*?y pdztdz®, (4.9)

L Alternatively, one could introduce with an r-dependency to ¢ and observe that it must be r-dependent for Gy
to vanish, for any asymptotic metric.
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where 4 denotes the angular coordinate, and y4p is the metric of the (flat) 2-sphere. Then the
non-zero Finstein tensor components are Gy, Gyur, Gua and Gap. Without showing the calcula-
tion, I present the relevant tensor components in a convenient order:

Gap = —%r’yABem'o (287.guu + r@?guu + 46u4p). (4.10)

Equation (4.10)) is solved by
fi

Guu = —210,¢ + fo + P

where fy and f; are arbitrary functions of u,z?. Next, by

_dah
2r2 "’

f1 must be independent of 7. Next, by choosing (temporarily) gap = 372¢*?(1 — d4), we find

GuA =

(4.11)

1 — -
Gu'r = ﬁ(fO - A(p),

. —A—
where A = DD 4 is the Laplacian of the conformally rescaled metric of the Riemann sphere 7 4 .
Note that A(—InP) = —1, so that we indeed recover the Minkowski metric if we conformally
rescale the angular part of the metric by 1. Thus we have

Guu = —2r0up + AP + %,

Here we have changed ¢ to 0,, since 0, (¢ — ) = 0. Finally, we need to solve Gy, = 0. It turns
out, that this cannot be achieved, for any ¢. We will not go into the details of the most general ¢
that satisfies Einstein’s equations. A large class of functions that satisfy the equation consists of
functions of the form

3 = plu) + qla?), (4.12)

where p, and ¢ are arbitrary functions of v and 2. In this case

fi(u)

r2

Guu =

)

so f1 has to be a constant. In fact, the constant f; gives rise to a black hole mass. By setting
f1 = 2G M one retrieves the Schwarzschild solution. Summarizing: In accordance with literature,
let

% = —2rd,g + Ag + % (4.13)
Pi=p—InP=au)+ B(xA) —InP,

0%
YaB = %€2¢(1 —0AB),

for f1 a constant. Then
v
ds? = —du® — 2dudr + r*7 4 gda?da®?
T

satisfies G, = 0, and it equal to the Schwarzschild metric for ¢ = 0, f; = 2GM.
Note that a change of ¢ — ¢ + @ induces a conformal rescaling of the angular part of the metric,
ie.,
0gaB = 20gapop.
So the conformal factor is A = 2w. Coincidentally, g, has variation
§(—=2rd,p + Ag)
—2r 0,005 + 67 B (D 400 )
—270,00p — 2057 B (D 40 p)0@ + 7ABS(DA0BY)
—2r0,00( — 20APP + ADIP. (4.14)

OGuu

In the last step, we used equation (3.16)), to see that WABFZB =0.
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Non-flat interior

At this point, we introduce functions that have the appropriate limit as » — o0, i.e., the metric
becomes the Minkowski metric for sufficiently large r. First off, note that g,, must be strictly
negative, (see case (¢) of ), so let g, = €. In addition, let g,a = Ua. We leave gy, arbitrary
for now. A priory, we have asymptotic flatness, if

Guu = -1+ 000(7"71), Gur = -1+ Ow(ril)a JuA = OOO(TO)a gAB = 7“27143 + Ow(rl)7

(Recall that the metric components scale with a factor r for each angular index.) Because we use
Bondi coordinates, g, and g4 remain zero for all r. It turns out, that [T_l]gur needs to be zero
in order to solve Einstein’s equations for the vacuum, and g, = 62[3% + U UA. Of course, the
functions Uy, B, gap are constrained by the Einstein equations, but since at this point we are only
interested in the asymptotic part of the metric, assessing their orders is sufficient for now. Thus
we have rewritten the metric to

1%
ds? = P —du® — 2¢*P dudr + gap(dz® + UAdu)(dz? + UPdu),
T
where

gaB =17 p + Ox (1)
= 3r%¢?(1 = 6aB) + Ox(r")

U4, B = Ox(r™2),

— = 20,0 + AP + Op(r™1). (4.15)

In our calculation of the supertransformations later on (in order to simplify (4.34))), we will further

assume det gap = ir‘le‘l‘ﬁ. The metric component g,,,, has expansion

L s, 2m _
Juu = —210,0 + AQ + TB + O (r™2)
Although the term mp = mp(u,2z4) is subordinate to the asymptotic fall-off, it is worth men-
tioning. It is referred to as the Bondi mass, because it gives rise to the (possibly u-dependent)
ADM-mass of the metric. The Schwarzschild metric is established as a Bondi metric by setting
Ut =p=0, 9aB =17 ap; ¢=-InP, mp = GM.

With this choice V/r is fixed by Einstein’s equation to be V/r = —1 + 2GM, (cf. (4.13)).

4.2 Supertransformations

The asymptotic Killing vectors and conformal rescalings of the angular part of the metric, are
simultaneously found, by solving the equations

Lxgrr = Legra =0 (4.16a)
LxGur = O (r™?) (4.16b)
LxGuu = 270,00 — 20A¢ + Ad + O (r™1) (4.16¢)
Lxgua = Oup(r”) (4.16d)
Lxgap = 20gan + Oup(r?). (4.16e)

The conformal scaling function 2@ is constrained by the trace condition 9B Lxgan = 4. Note
that generally it is different from the conformal factor A of the conformal rescaling Ly ¥ 45 = AV 4,
ie., 20 # A = D,YA. Although & may depend on w, it is assumed to be independent of r, (for
otherwise it would meddle with the asymptotic flatness).
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Definition 4.1. The vector fields satisfying equations (4.16) are called the supertransforma-
tions. The asymptotic Killing vectors, the supertranslations, are those satisfying @ = 0. The
conformal rescalings of the angular part of the metric, the superrotations, are the supertrans-
formations modulo the supertranslations.

Calculation of supertransformations We start by (exactly) solving the equations that

allow no falloff, (4.16a)). By
Lxgrr = =220, X" =0, (4.17)
X" is independent of r, i.e,. X* = f for some function f satisfying
orf =0. (4.18)
Then, the other exact condition becomes
Lxgra=—ePaf +gapdr X" =0.

It is solved by imposing
o0
XA =v4 414, I = —asff dr'(engB). (4.19)

The function Y* depends only on the angular coordinates, i.e., yA=yvy4 (mA). The resulting
vector component has r-expansion

—AB
XA =y % + O (r?). (4.20)

The rest of the equations (apart from the trace condition) need only be solved up to the
appropriate order of r. It is useful at this point to assess the maximal orders of r of all
elements of the vector field. Let us take a look at the condition Lxgap = Ooo(rl). From the

falloff conditions , in addition with and (4.19) we know
X"~ 70, X4 = 0, (), gas = O (r?), Ua = gapU® = 00 (r°). (4.21)
Using (4.19) and gua = 0, the Lie derivative of the angular part of the metric is asymptotically
Lxgap = X“0ugan + X 0rgan + XC0cgap + (Uadp + Upda) X" + (gacds + gpcda) X
= X"“0ugan + X 0rgan + (0cgan + gacin + gpcda) X + Ox(rh). (4.22)
So , is resolved if
[r=?] (XuaugAB + X"0rgap + X 0cgap + (9acdB + gBcda) XS — 2&19,413) =0. (4.23)

Using the order assesment ([#.21)), this implies the order of X" to be at most [r'].
X" € Oxp(rh). (4.24)

As a result, the often occuring contraction X° 0, is of order O (r°). Before we solve ([.23),
we resolve (4.16bf). We have

£Xgur = Xaaogur + gorauXU + guaarXa
= GurPu X" + guulr X" + gurdr X" + guadr X" + O (r™?)
=0uf — 0 X"+ Ua0 X" + O (r7?), (4.25)

where we have used 0y gur = O (T72), and the fall-off (4.21)). In addition, note that 0, X4 =
01 = Oy (r~?).. Hence equation ([A.16b) is solved if [r7]X" = —0ufr. It follows

X" = —10uf + Ox(r?), (4.26)
With this information, consider . Using 8, Y = 0 and , we have
Lxgua = gap0uX” + guuda X" + gurda X" + O (1)
= 1Y 450u(T7C0cf) — 2r(0up)oaf + 10aduLf + O (r°)
= Va7 0udc f — 277 (0up)oc f] — 2r(0u@)Oaf + 10aduf + Ou(r)
= Oy (7“0).
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So it is automatically resolved. Using (4.26)), equation (4.23)) gives the condition

0=[r’] (X“@ugAB + X"0rgan + X0cgan + (9acds + gpoda) X — 2&)gAB)
= X" 0¥ ap +2[r' )X W ap + Y 0T ap + (Vac0B +Tpc0a)YS — 207,45
= W aplf(0up) — 0uf — &) + Fac@8Y +7pc0aY + 27,45 0c @) (4.27)
Let A= B in . Since % ,, = ¥z = 0, we have constraint
0="F400BY +Tpc0aY°
So we require
0.Y? =0:Y" = 0. (4.28)

Comparing with ([3.19)), we see that imposing (4.28) is equivalent to having Y be a conformal
Killing vector of the Riemann sphere. The final three terms in (4.27|) vanish for A = B. For
A # B, they are
(Vac0BY S +FpcdaY + 27,5Y 00 3) axn
=7,.(0:Y7 +0.Y* +2Y%00¢)
= Wzé(ﬁcyc)v

where we have used (3.17) in the last step. Equation (4.27)) is then conveniently rewritten

0=29,p [f(au¢) —ouf -+ %ﬁcyc]. (4.29)
So now we know
F(0up) — 0uf —@+ tDcY? =0 (4.30)
Solved by
Ouf = fOup + DY — & (4.31)

or, equivalently
f=e® [T(xA) + J du/ef"a(%ﬁcYc - )|,
0

for some function T'(z*). Summarizing, the remaining constraint equations are (#.16d) and
the trace condition, and the thus far obtained solutions are of the form

XY= f:e‘ﬁ[T—i-Sgdzie_‘;(%ﬁcYc—cD)],
X" = —10uf + Ox(r°), Ouf = foup+ iDcY" -0 (4.32)
XA =yA 414, I = —0pf§) dr'e® g*".

for arbitrary function T = T(z*), and where Y# = Y*(z?) is a conformal Killing vector
of the Riemann sphere. Using the general form of the solutions (4.32)), along with (4.30) to
substitute @, the trace condition becomes

0=g*P[X0,g48 + (Uadp + Upda)X" + (9acds + gpcda) X ] — 4&
= X7g*P 0,948 + 2000 f + 200(XC) — 4. (4.33)

At this point our life is made much easier by the assumption det gap = ir‘lew. This implies
that gABﬁggAB =0, 1n ir‘le‘w, and so (4.34]) becomes

0=4X"0up + 2X" +4X0cp +2U0c f +20c(YC +I°) — 4@ (4.34)
And so we arrive at an exact solution for X":

X" = —r[x“au¢; + %Ucacf + %(ac(xc) +2X%0c3) — w]

—r[f@ucﬁ + %Ucacf + %ECXC - ]
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The highest order terms of X" are

1—

[r'X" = —rduf = —r (f(?ucﬁ + §DCYC - w) (4.35)
as a result of ([4.26) and ({@.31). The final constraint is ({#.16d). Using (4.20) the r°-order part
of X" is

T e 1— 1 cp— 1
[rO]1X" = 77”([1" 1]DCXC) = 5De7 P08 f = 577" Dedsf = ;77 oconf.  (4:36)

In the last step we have used that ¢ is anti-symmetric in BC, while the Christoffel symbol

=A . . .
T'pe is symmetric in BC. To somewhat reduce clutter let us denote h := [r°]X" in the
remaining of the calculation. Note that

Ouh — %aue—z%CBacaB f

—2h0up + %VCBacaBau f. (4.37)

For the same symmetry reason, 7°20c0p\ = A for any scalar A. In preparation for solving
the last constraint equation, note that from (4.31)) it follows

—2(houp + Ouh) = 2h0, @ — Adu f
(AN —A(foup + DY — @)
= —f0uAp — IADCYC + Aw (4.38)

The final constraint is (4.16c). The Lie derivative of gy is

Z:Xguu = Xo-ao-guu + 2gug(9qu
= X700 guu + 20uu0u X" — 20, X" + O (r™ ). (4.39)

Using the previous order assessments, the derivatives of V /r have expansion
o o 23 |4 A
X70sGuu = X705 € ?-I—UAU
- X° <(aa/8)625¥ + ewagg + agUAUA)

= X"(%g + Op(r™)
= X705 (—2roup + AP) + O (r™")
= —2rX"02p + X" (0uAP) — 2X"0up — 2r X (040uB) + X 04DP + Oup(r™ 1)
— —2r[ 825 — (0uf)u + Y (240u5)
+ [ FOuBG) — 2h0u® — 21T (000u@) + YAaA&a]
+ Oup(r™) (4.40)
The other two terms in have expansion
Guulu X" — 0uX" = (=2r0u@ + AP) (Ouf) — Ou(—10uf + h) + O (r")
= —r[20.p0uf — 0% f]
+ [(A@)0uf — duh]
+ O(r ™) (4.41)

Using and , equation becomes
Lxgun = =2 [F85 — (0uf)0up + Y (0405) + 20,50, f — 3L f |
+ [ F(OuDP) — 2h0u@ — 2rT(040u@) + YA 04RG + 2(AF) 00 f — 2auh]
+ Ox(r™h).
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And so, by , we have constraints
F020 — (0uf)0u@ + Y 040u@) + 20u@0uf — O2f = 0ud (4.42a)
F(OuDP) — 2h0u@ — 2P (040u@) + YA 04AP + 2(A@)0uf — 20uh = —20A% + Ad (4.42b)
The left hand side of, (4.42a), using ([4.31) to write out the derivatives of f,
FORP+ Y™ (040uP) + 0u@luf — 0u[fOup + DY — 3]
=Y (040up) — 10u(0cY +2YC0c @) + du

= Ou@.

where we used that 8,Y* = 0, and ([3.17). So (4.42a) is automatically satisfied. As for
(4.42b), we have left hand side

— 2(hu@ + Ouh) + f(OuAP) — 20T (040u@) + Y OADNE + 2(AF)0uf
= —LADcY + A0 + Y4 04Dp + 2(A¢)0u f
= LAY +2Y0c@) + YA0aRE + 2(AQ)(foup + tDcYC — &) + A

= Aw — 20Ap, (4.43)
after substituting h using (4.38), applying the assumption (4.12)) that 0,0ap = 0. This
expression, (4.43) coincides with the right hand side of (4.42b)). Thus all of the constraints

have been met.

The solutions are

X =1, B f=e?[T+§;du'e?(3DcYC —@)],
X" = —r[foup + 3U%cf + 5Dc X — &),
XA =yA+ 14, IA = —0pf§” dr'e?PgAB.

for arbitrary functions T' = T'(z?), and where Y4 = Y4(z4) is a conformal Killing vector of 7 4 5.
Although the full description of the vector fields does depend on the choice of the parameters in

the metric (3, U4, etc.), the fact that the solutions are generated by T' and Y does not.

Remark The algebra of vector fields obtained is this way is established using retarded time
coordinate u = t—r, i.e., the vector fields live on .# ©. Therefore the associated transformation
group is denoted BMS™, and its algebra bms™. Completely analogous, one might choose to
solve the same equations, using advanced time coordinate v = t + r, to find the vector fields
on %, with group BMS™, and algebra bms™.

4.3 The action of supertransformations
Infinitesimally, the action of a supertransformation is
X.g=g+elxy.

The resulting action on the Schwarzschild metric is

Example: supertranslation of the Schwarzschild metric The Schwarzschild metric, in
the coordinates as above, is

ds> = —(1- 2ms — 2dudr + 12 dZdE.
r P2

In this case gap = r*F o, 50 @& = %503’0; in addition, 8 = U* = 0, and V/r=—-142mp/r.
So the supertransformations of the Schwarzschild metric, generated by T, Y, are of the form
- r

X" =, X" = —5Dal”, x4 =v* 4+ 17,

1
f= 1" = —5"Popf.

N
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In fact, using p = —In P, and the the derivative of the Riemann sphere D, we can simplify

— 1— T
DAIA = 77DA7ABaB*
r P

1y amy T apy, T
= ((?A'y 63P 2(0aln P)y aBP) (4.44)
The first term in (4.44) simplifies to

(%WAB@B% = QGZPQGg% + 2@%}?2@%

= 2((92132)55Z + 2(55132)62% +4P%0,0:—

P
(0:P)(0=P)
P

IS

= 4|(3.P)(6sT) + (6P)(0.T — 2T

+P0.0=T — (3.T)(0=P) — (0=T)(0-P) — T(8.0-P) + 2T (4.45)

(0-P)(6=P)
P
=4P0,0sT — 4T0.0=P.

Similarly, the second term in (4.44)) simplifies to

T T T

—2(0aln PWABaBF —4P? ((&zm P)o: 5 + (0:1n P)(%ZF>

—4 (—(@P)(é%T) —(0-P)(0.T) + 2T%P(OL2P))) . (4.46)
Combining (4.45)) and (4.46|), we obtain

Dar* = -1 (PazolzT ~T0.0:P — (0.P)(2:T) — (6:P)(2.7) + 27 PN ).)

For T = 2™%", and P = (1 + 2Z) then
2 (™ (= D2 (02 4 (- 1)22"))
1+ 22z

The infinitesimal supertranslations, i.e., Y = 0 have (non-zero) Lie derivatives

LxGuy = 2B (L= 22) 1o\ 0.7 + 20T — 2P0.0-T
r2 2P
_ 2 A2 2mp [ 0.T _ zT
Lxgu: = 20,T —2P0z0,;T + " ( 2 72P2)’
2r 02T
Lngz = - TP 5

and similar for Z.

For a general metric, we calculate the an example superrotation in terms of the angular coordinates

0, 6.
2

Example: Y*(z) = az> Let Y?(2) = a2 for some complex scalar a € C. Then Y*(z) = az>.
The resulting Asymptotic Killing vector field is

2

u(az + az)
1427z
(r + u)(az + az)

) — 1422z
X(u,r,2,%) = au +az’(2r —u) |

3r
au + az”(2r — u)
2r
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Using (3.12)), the factor (az + @z) is written in terms of 6, ¢
(az +@z) = cot § (aew + Eeﬂ'¢>
cot % (re a(eid’ + e_w) + 4im a(eid) — e_i¢))
= 2cot & (reacos ¢ — imasin ¢).

Then, using the transformation rules for vector fiels, (3.11)), and (3.13)), it is a straightforward
calculation to find

—usinf(reacos ® — imasin ¢)
X(u,r.0.6) = (r+ u)sinf(reacos ¢ — imasin ¢)
—(1+(1 — %)cos ) (reacos ¢ — imasin ¢)

(1 — %+ cosf) cscH(imacos ¢ — reasin ¢)

4.4 Commutators

In this section, we calculate the commutators of the supertransformations. To calculate the algebra,
we may safely ignore the r-component of the vector fields, because 0, f = 8,Y4 = 0, i.e., it has no
implications on the determining functions 7,Y. So we let X = X™0,,, where the index m runs
over u, z”. First, consider two supertranslations

[XTUXTQ] = [6¢Tlauve¢T26u] =0
because 0, T; = 0. Two superroations give rise to the bracket

[Xvy, Xy, ] = [f10u + Y{*0a, f20u + Y5 04]
= (f10u + YiP0B)(f20u + Y5 0a) — (f20u + YL 0p)(f10, + Y 0a)
= (YPopYs —YV.PopYt)oa

Next, consider a superrotation and a superrotation, i.e., X; determined by Y; = 0, and X5 deter-
mined by Y5 = 0. Then we have

Xy; = X{"0n = f10u + Y/ 04,
)(T2 = X;”&m = €¢T26u,
where f; is determined by Y7 as above. The commutation relation is
[(Xvy, X7,] = [f10u + Y{* 04,120, ]
= [10,ePTo0y + Y{104ePT50, — ePTo0y f10y — €PT50,Y{ 0
= Y{*e?(0aT2)0u — e*To((0uf1) — f1(0u) — Yi*(0a$))0u
= YlAe“Z(&ATg)&u
However, in order for the Lie-bracket to be faithful, it needs to account for the change induced in

the metric by conformal vector fields (those containing nonzero Y4), i.e., the variation induced by
the transformation ¢ — ¢ + @, which we denote J;. In the above notation:

55,1 X2 = 55,1 e“Z’T2(3u = @16¢T26u,
(5@2X1 =0.
Thus we modify the Lie-bracket to be the sum of the commutator and the variations.
[Xl,XQ]M = [Xl,XQ] + 5@2X1 — 5@1X2
=Y1e?(04T2)0, — (041 )e?To0,
= e?(Y*(0aT2) 0 — 2(04Y")T2) 00
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Now the bracket introduced above is established as a semi-direct sum
vect S? Py vect S?,
with elements (Y4, T) and bracket
(V4 T0), (Y2, To)] = ([Yi*, V3P, Sya T — Sy 5Th)
where Xy aT = —&T.

As seen in [3.4.3] the functions Y are conveniently expanded in terms of
Y = (2™ 0., @, 2" 02) = (nlm, Qnly).
It will turn out in that if one chooses basis
L = —2"*10,, I, =-2""os
for the superrotations, (Y* = >’ cunlm, etc.) and

bl kel
Tj = 2272753 (dzdz) "2,

for the supertranslations, the commutator algebra of Y and T', has is isomorphic to the vector field
algebra with the modified bracket.
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5. Central extension of the BMS-algebra

In this chapter, we study algebraic properties of a slightly generalized version of the BMS-algebra.
Our purpose is to give a full description of possible central extensions.

Centrally extended algebras show up in physics as a result of a quantization process. The central
charge ¢ then, is an anomaly which occurs when the Weyl symmetry of a quantum theory is broken.

5.1 Representations of the Witt algebra

We have noted before, in that the BMS-algebra is a semi-direct sum bmss = toitt B vecty, S',
splitting over the Abelian algebra of supertranslations. Similarly, as seen in bms, = (roitt ® vecty, St)x
(witt ® vect,, S, i.e., the four dimensional BMS-algebra consists of two independent copies of

the Witt algebra acting on an Abelian algebra.

The Abelian normal subalgebra of the semi-direct sum, is isomorphic to a vector space V' with triv-
ial bracket, which will be established as a representation of tvitt in the following section. Thus we
generalize our study to (independent copies of) toitt ® V, where V is an arbitrary representation
of witt, as suggested by Barnich and Oblak in [3]. In studying the algebra, we closely follow Kac
and Raina’s lectures [I7], where they study similar properties of the Witt (and Virasoro) algebra,
without the semi-direct Abelian term. This motivates the following lemma.

Lemma 5.1. Let V,, 5 denote the space of ‘densities’ of the form P(z)z%(dz)?, with o, 8 € C, and
P(2) some Laurent polynomial in C[z,27!]. It is spanned by elements of the form

Ve = 28 (dz)P, keZ.
Then the action of l,, € vect(S') = witt on vy, € V,, 5 is given by
(k) = —(k+ o+ B+ Bn)vnik. (5.1)

Proof Let infinitesimal group elements v € Diff* S' act on functions f(z) via

prf(2) = F(7H(2)),

Note that it has an expansion in terms of infinitesimals €y, i.e., vy : z+— z+ 2, €,2", and so
oy f(z z—Zen = f(z)—i—Zenz"H&zf(z) = (1+eld™)f(2).

So we see that the action of y(z) = z 4+ €,2" (no summation) corresponds to the (action of
the) Lie algebra generator [". Then we find how infinitesimal elements act on this basis:

prvi = (v (2)" +aldy ' (2))”

k+o B8
= (2 Zenz"H) ((1 *Zﬁn(n+ 1)2") dz)

(z —(k+a Zﬁn ) (1 —ﬁZen(n—l— 1)2">zk+a(dz)ﬁ

k +a+fn+ ,B)enz"> 2T (dz)?
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so that

"(vk) = —(k + o+ B+ An)vnik.

The proof above uses the infinitesimal group action, rather than a direct calculation. Based on
integration by parts, we derive the calculation rules for tensor densities below. If y = y(z) we have

dy = Z—idw, Ju’(m)v(m)dm + Ju(m)v'(m)dm = u(z)v(z), fvdu + Judv = uw,

where the latter is just short hand notation for the second identity. Dropping the integral signs
from our notation, the density (dz)yd, acts on an arbitrary test function f = f(z) as

(da)yo.) f = ydf =yf — fdy = (y —y/(dx))f, (5.2)

where we used that 0,dz = dz0, = 1. Using the rule for arbitrary tensor densities (dz)?, we
have, in accordance with Lemma [5.1]
[—2mH10,, 2P (d2)P] = —2m 1o, 2 (d2)P + 2P (dz)P2m e,
—(k + a)z™ R (dz)P — ZFrep(dz) P (d2m )
= —(k 4 a)zm T (dz)P — ETetmBm 1 1)(dz)?
—(k+ a+ B(m +1))(dz)".

The Lemma, applied to the BMS algebra in four dimensions, leads to the following corollary:

Corollary 5.1.A In the four dimensional BMS-algebra bmsy, if the superrotations are gener-
— . 1 1
ated by I™ = —z™%19,, and "= —zntl , and the supertranslation by v; = z/*2(dz)"2, and

T2"2 (dZ)2, then the superrotations have the adjoint action on the supertranslations:

bms, = (toitt Buq V;_ ) x (itt B V%)_%).

1
2

5.2 Central Extensions

5.2.1 Quantum anomalies

Central extensions to an algebra are naturally in physics, when quantizing a classical symmetry
algebra to an algebra of operators. In quantization the Poisson brackets are promoted to a bracket,
ie.,

(A, B} — %[A,B].

Consider, for example an algebra of classical transformations that admit an expansion ane,

with Fourier modes ay,, (e.g., supertranslations (3.6))). In canonical quantization, these modes are
promoted to quantum operators a,, with commutation relation

[am,an] = MO tn.

The operators act on quantum states, denoted |¢)), increasing the energy al, (for n > 0), or de-
creasing the energy a,,, (for n > 0). The Hermitian conjugation relation a}, = a_,, = @, is due
to the reality condition on the Fourier expansion. In particular, the vacuum state, which has the
lowest possible energy, is destroyed by the annihilation operators: a, |0) = 0.

Let Ly be the operator

- 1 ag 1 1
Ly = 3 Z Qply = 50 + 5;0(1;&“ + 3 Z anal.

nez n>0
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Acting on the vacuum will pose a problem; there are either infinitely many excitations, by the
infinite sum over anaIL. A way around this problem is by moving all the annihilation operators to
the right, known as normal ordering. Doing so will lead to

~ 1
Lo=-a2 + Z ala, + = [an,G—n]
2
n>0 n>0
2
=§a +Zala”+ Zn
n>0 n>0
The infinite sum is shown to give > _ n = —%, for instance by analytical continuation of the

Riemann zeta function. See e.g., [23]. Such a non-zero added constant, e.g. *iv is referred to as

a quantum anomaly. The redefinition of Lo to the normal ordered

gets rid of this anomaly. However, with the redefinition of the operator, the algebra changes too.
As will become clear in the algebra is effectively centrally extended by cancelling out the
quantum anomaly.

Anticipating such a procedure for the BMS algebra, this section is dedicated to finding all possible
central extensions of witt @ V, 3.

5.2.2 Central extension of the Witt algebra

First we consider the Witt algebra. We will extend the algebra g to g by a 1-dimensional centre
¢C. A priori we have the new relations

[, 1" = (m — )™ + f(m,n)c [I™,c] =0. (5.3)

We will consecutively impose the Jacobi identity for {°,1™, 1", antisymmetry of the bracket, and
the Jacobi identity for general generators. Note first that, after a change of basis

lO_)lO7 ln_)ln_f(ovn)c (TL?&O)

we obtain from (5.3]), that

[1°0"] = —n(l" — f((i;n) c) + f(0,n)c = —nl". (5.4)

Then, form the Jacobi identity we obtain

[0, [, 0] = (10,0 ]+ s 10, 0]

—(m + n)[I™, 1. (5.5)

Combining (5.3)15.4)15.5)), we obtain
—(m +n)(m —n)I™ = [1° (m — )™ + f(m,n)c]
[1°, [, 171
= —(m+n)(m—n)""" + (m +n)f(m,n)c

So (m + n)f(m,n)c = 0, implying f(m,n) = §p,—nf(m). Here §,,,_p, = 6ptn denotes the Kro-
necker delta. Then (5.3)) becomes

[, 0" = (m =)™ + 6y —n f(m)c, (5.6)
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where, by anticommutativity f(—m) = —f(m). Now consider for I*, 1™, ["
[F, (17, 1"]] = (m = n)[1%, 0]+ (1%, 6 f ()]
— (m = m)(k = (m — )T 4 (= )y SR)e (+0)
= (m—n)(k—m+n)"™" 1 (m = 1)k minf(k)c

By the Jacobi identity the sum of cyclic permutations of these brackets must vanish. Note first
that for any k, m,n:

m—n)k—m+n)+(n—k)(m-n+k)+(k—-—m)(n—k+m)=0
So f must satisfy
Ok4minl(m —n)f(k) + (n— k) f(m) + (k —m)f(n)] = 0.
This is vacuously true unless k + m + n, in which case
(n—=m)f(m+n)+ (m+2n)f(m) — (n+2m)f(n) =0. (5.7)
In particular, for n = 1;
(I—=m)f(m+1)=1+2m)f(1) — (m+2)f(m). (5.8)

We have arrived at a linear recursion relation, determined in full by f(1), f(2), so the solution
space of is at most 2-dimensional. (Recall f(0) = 0 and f(—m) = —f(m).) Note that
f(m) = cym, f(m) = c3m?, satisfy , for any c1,c3 € C. So any central extension of the Witt
algebra is given by

f(m,n)c = 6pinlcim + csm?®)c.

The Virasoro algebra

The centrally extended Witt algebra (with ¢z = —cg = %) is called the Virasoro algebra:
vit := Cc + Z Cci™,
nez
[lnv C] =0,
m3 —m

m Jn] _ _ m+n
[, 1" = (m —n)l +5m+n712 c.

Proposition 5.2. Every non-trivial central extension of the Witt algebra by a 1-dimensional
centre is isomorphic to the Virasoso algebra vit.

Proof Consider a central extension where c3 = 0, i.e., f(m) = cim. Now consider the change
of basis
(for all k + 0), P =1k, =104+ 2

As a result

(m =)™ = (m —n) (l/er" - 6m+n%> = (m —n)I"™*" + pmyncime.

So the bracket reduces to the non-centrally extended case
[ "] = (m—n)l™*".

We will refer to any such extension f(m) = cim as a trivial central extension. The above
calculation shows in particular that the value ¢1 can be modified arbitrarily by a basis trans-
formation. This means that we can always put ¢c; = —cs, so that f(m) = c3(m* —m). Finally,
we can fix cs to be % by scaling c.

Corollary 5.2.A If [I",1"] = (m — n)I"™*™ + §,,1nf(m)c defines a Lie algebra, then f(m) =
cim + csm?, for some ¢y, cs € C.
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5.2.3 BMS algebra and other representations of the Witt algebra

In this section we consider the algebra the Witt algebra action on the representation V,, g, via the
adjoint action. So we have g = (I",vy) € Witt x4V, g, with commutation relations

[(™,1"] = (m —n)m*™
(" vk] = —(k+a+ B(n+1))vksn
[’Uk/()l] = 0

We will extend the algebra g to g by a 1-dimensional center ¢C. A priori we have the new relations

[, 01" = (m — )™ + f(m,n)c

(1" vk] = —(k+ a+ B(n+1))vksn + g(n, k)c (5.9)

[vj,vk] = h(k,l)c (5.10)
Now we need conditions such that the three 2-parameter functions f, g, h obey the Lie algebra
axioms. Note that f is just as in the previous paragraph, i.e., f(m,n) = 8y in(m® —m)/12.

Proposition 5.3. For a general o, 3, the central extension g(m,k)c (of the Witt algebra acting
on the representation V, g) must satisty relation

(n—m)g(n+m) = (n(B—1) —m)g(m) — (m(B — 1) —n)g(n), (5.11)
where g(n) = dnik+a+s9(ns k).
Note that g(m) = m satifies (5.11)), for any a, 5. We will call this the trivial solution.

Proof First note that, as before, we make a basis transformation (for all k # —(a + 3)):

WO | (UL.) N v —
TR T kta+B) —(a+p) = V=(a+8)-

So then we have

9(0, k)
(k+a+p)

From the Jacobi identity we obtain (using equations (5.445.915.12))

[loa [lnavk]] = [[loa ln]vvk] + [ln7 [lovvk]]
=—(n+k+a+8)[", vkl
=(n+k+a+B)((k+a+B(n+1))vken —g(n,k)c) (5.13)

[°v;] = —(k+a+B) (uk — c) = —(k+a+ B (5.12)

Combing (5.905.12)5.13) we obtain

(k+n+a+pB)(k+a+B(n+1))Vkin =
=[I° —(k + a+ B(n + 1) vgsn + g(n, k)c]
= [l07[lnvvk]]
=(k+n+a+B)(k+a+pn+1)vern —(n+k+a+B)g(n, k)

So (n+k+ a+ B)g(n,k)c = 0, inferring g is zero for n + k + o + B8 # 0, and that g is fully
determined by the first argument otherwise, i.e.,

9(n, k) = Ontktatpg(n),
so that (5.9) becomes
(" vk] = —(k+ a+ B(n+ 1)) Vktn + Sntr+atrsg(n)c (5.14)

The Jacobi identity can be written

[ 1" ve]]l = [0™, 7], ve] + [ 17, vi]] (5.15)
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The c-dependent part of the left hand side of (5.15|) reads
[~ cli™, 1" ]l = —(k+ a+ B(n+ 1)) [~ c][I™, vitn]
= —Omintktats(k +a+ B(n+1))g(m)c.
The c-dependent part of the right hand side of (5.15)) reads
[~ elll™, 1" oe] + [, [0 ok]] = [~ el (m = )™, k] = [~ el (k + o + B(m + D))", vk+m]
= Omtntkrats((m —n)g(m +n)c— (k+ a+ f(m +1))g(n)c)

The Vi 4+m+n-terms cancel by virtue of the Jacobi identity. For the central extension to satisfy
the Jacobi identity as well, the c-dependent must obey

_6m+n+k+a+6 (k +a+ B(n + 1))g(m)c = 5m+n+k+a+5 (m - n)g(m + n)c
- 5n+m+k+o¢+ﬁ (k +a+ 6(771 + 1))g(n)c

For k+ m+n+ a + B # 0 this is vacuously true. So let k +m +n + a+ 8 = 0. Then the
constraint equation becomes

(n—=m)g(m +n) = (n(f = 1) =m)g(m) — (m(8 — 1) = n)g(n).

Note in particular the coincidence with (5.7), when 8 = —1.
Corollary 5.3.A Let « arbitrary. Then we have

9(0) = 0, (for any f # 1)
g(—m) = —g(m), (for any 8 # 0,1)
2g(m) = g(2m), (for any 8 # —1,0,1)

In particular this implies there are no nontrivial solutions for 5 # —1,0,1.

Proof Substitute n = 0 in (5.11) to obtain m(8 — 1)g(0) = 0. Now, substitute n = —m
in (5.11) to obtain 2mg(0) = mpBg(m) + mBg(—m). Finally, substituting n = —2m, (5.11))

becomes
—=3mg(—m) = m(1 = 2B)g(m) — m(B + 1)g(—2m).
Now we apply g(—m) = —g(m) for any B # 0,1. It follows

m(1 + B)g(2m) = 2m(1 + B)g(m).

Corollary 5.3.B The central extensions are of the form

g(m) = gim + go, (for 8 =1),

g(m) = gim + gom?, (for 8 =0),

g(m) = gim + gsm?, (for B = —1),
g(m) =gim (for any 8 # —1,0,1).

for arbitrary constants g; € C.

Proof Plug the solutions into (5.11) to see that the satisfy the relation. The solutions must
obey the recursion, (obtained by setting n = 1 in (5.11))),

(L=m)g(m +1) = ((6 = 1) —=m)g(m) — (m(f — 1) = 1)g(1),

which fully characterizes g(m) by g(1),¢(2) for m > 2. For  # 0,1 the relation g(—m) =
—g(m) fixes the negative values also. For = 0,1 plug in m = +1,n = F2 to obtain

(28 = 1)g(F1) = (B + 1)g(£2) — 3g(£1)

fixing g(m) for m < —1. Finally, for § = —1, the value of ¢(0) is determined by plugging in

2g(0) = g(1) + g(-1).

If follows that for all B the solution space for g is at most 2-dimensional. For 8 # —1,0,1, by
corollary [5.3-4] the solution must be linear.
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Central Extension of the Abelian bracket
Finally, we look for h(j, k) as in . Consider first [° acting on arbitrary bracket. By the Jacobi
identity:

[, Tvg o] = (12 v5] o] + [vj, 1%, wi]] (5.16)
The left hand side of gives, using that ¢ commutes with everything,

[1%, [oj, o] = [1°, 14, k)e] = 0.
The right hand side of gives, applying ,
(0%, v, ok] + [vg, [1° k) = = (5 + K + 2(a + B)[vg, v6] = —( + & + 20+ 2B)h(j, k).
So h(j, k) must vanish for j + k + 2(a + 8) # 0. So the central extension becomes
['Ujvvk] = 5j+k+2(a+6)h(j)ca

where have intruduced h(j) := h(j, —j). Note that by antisymmetry of the bracket, h(—j) = —h(j).
Any such function must be a polynomial in odd powers hyj+hsj®+...4+h,j?. In particular, by basis
transformation v; — hyvj/(hy + hsj? + ... + hyjP71) it can always be cast in the form h(j) = hyj.
Next, we act with (", yielding once again by the Jacobi identity

[lmv [Uj7 Uk]] = [[va 'Uj]’ vk] + [Uj’ [lm7 Uk]] (5'17)
The left hand side of (5.17)) gives 0, again using that ¢ commutes with everything. The right hand
side of (5.17) reads
(0™, w51, vk] + [vg, (17 ve]] = = (G + k + 2(e + B(m + 1)))[v;, vi]
=—(j+k+2a+B(m+1)))0jkr2(a+p h(i)e (5.18)

In the first line we ignored the central extension terms inside the bracket, as they vanish. Combining
(5.17l5.18)), and assuming j + k + 2(a + 8) = 0, we obtain constraint equation for h(j):

—28mh(j)c = 0. (5.19)
This implies that for 5 # 0 no central extension h(j, k)c exists. For g = 0, the central extension is
h(j,k)c = 0j1k+2ah1]cC,
where h(j) = h1j up to a basis transformation. Note in particular that it is only non-trivial if
o€ il
5.2.4 Conculsion

For convenience, we summarize the result obtained in this section. The Witt algebra acting on
Va,p has central extension:

[lma ln] = (m - n)lm+n + 6m+n mC1
(" k] = —(k +a+ B(m + 1))Vkim + Smtkratpg(m)c
[vj, vk] = dj1k+2aR(5)cs, (5.20)

where

f(m) = fim+ fsm®

gim + go, lfﬂ = 17
gim + meza if 6 = Oa

g(m) B gim +g3m37 lfﬁ = _17
gim if 6#—1,0,1
. hyg, it B =0,
) =4
0, if 8#0,
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5.3 Oscillator algebra

5.3.1 Oscillators

Let a be the oscillator, or Heisenberg algbra, with basis {a,|n € Z} U {h}. and commutation
relations

(A, an] = 0, (for all n € Z),
[am,an] = MO inh, (for all m,n € 7). (5.21)

Since [ag,an] = 0, we know ag is a central element (or zero mode) . We define an antilinear
anti-involution -7 on a:

al, = ay, At = h.

n

For n > 0, we will refer to a,, as annihilation operators and a/ as creation operators.

5.3.2 Oscillators acting on the Fock space

Let F = C[x1,2,...] be the Fock space, the space of polynomials in infinite variables. Let
1, h € R be arbitrary. Then we define a representation of a on F by

nh

aL = —xn, Up = €,0n, (neN)
n

ag = (4, h = h.

Here 0,, = % denotes derivation with respect to the n-th variable. The ¢, denote arbitrary (real)
scale factors. Note that the lower two operation are just multiplication by the given constants p, h.
Since d,,4+y IS not an operator acting on the a’s, they mutually commute. It follows that powers
of a,, commute as

lah,, an] = alan — ana?
= b am, an] + a2 % [am, anlam + ... + [am, an]al;?
plam, an]ab, ! 522

Lemma 5.4. If h # 0 the above representation of a is irreducible.

Proof Any polynomial in F can be reduced to the constant polynomial, by repeated an-
nihilation. Then any other polynomial can be obtained via repeated creation, as long as
h > 0.

5.3.3 Fock space gradation and entropy

The degree of a monomial in F is defined to be
deg (' ..a* 1= ny 4+ 2ng + ... + kny,.

In physical applications, the monomial z7*...z}* represents n; oscillators in state 1, ny in state 2,

etc. The powers n; of a monomial in F are displayed in the form of a ‘ket’:
ztayt = |ny, ..., n,0,0..) € F.
Often the zeroes at the end are omitted. The constant polynomial is often abbreviated

[0,0...) = |2) = |0).
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A number n; at the j-th place is to be interpreted as ‘n; particles having energy j’. So the degree
of a Fock state corresponds to its energy. The degeneracy W(n) of a state with total energy (or
degree) n corresponds to the entropy via S(n) = kg Iln W(n).

Let F, be the subspace of F spanned by monomials of degree n. Then dim F,, = P,, where
P,, denotes the number of (unlabelled) partitions of n € Zxg into sums of positive integers. (0 is
defined to have 1 partition). For example, the 5 partitions of 4, and their corresponding monomials,
are:

4, 1+ 3, 242, 1+1+2, 1+1+1+1,
.’L‘éll, T1xs3, J]g, CIL‘%Z‘Q, .’1?411

The principal gradation of F is the decomposition

F=@ Fu

n=0

The z-dimension is of F is defined as

dim, F := > (dim F,,)2".

n=0

But the dimension of the subspace F,, is P,, so that

dim, F = ) P,2" =[] 1_12n.

n=0 neN

By using a saddle point method for combinatorial classes, (see for instance [2I, p.574]), one finds

the large n-limit
1 [2n
P, ~ ——exp|m/— |.
4n\/3 p( 3 )

Then, using W(n) = P, the entropy has large n expression

S(n) ~k (\/?77 - 1n<4\/§n)> .

J. Cardy has calculated the same quantity in [22], S ~ 2my/<(Lo — 55), known as the Cardy
formula, where c is the central charge and Ly the energy.
5.4 Oscillator representations of vit

We define normal ordering, : - :, of a pair a;a; as

CL“Ij, le < j,
L4y =

a;a;, if i > j,

and similar for higher numbers. So we effectively ‘sort’ the elements in increasing order of index,
thus putting the creation operator to the left of the annihilation operators. For all k € Z we define
operator

1
L, = 3 Z CA— i - (5.23)
jeZ
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Due to the normal ordering, when applied to any polynomial in F, only a finite number of terms
contribute. (Those for which the polynomial ‘survives’ the annihilation, before the creation oper-
ator has its turn). For example, when action on the mononial z?:

€ _ ) .
he k Tp_ixh 1, if k—14 <0,
k—i
D _ P oap—1 _ . .
Lyl = ap—ja;xf = ap—iex; = pe;a? L itk —i=0, (5.24)

0, ifk—1i>0

Due to the commutation relation of the oscillators a,,, the normal ordering is only relevant when
m = 0. So without normal ordering notation, the operators L,, can be written as

N o 0, if mis odd
Ly, = —aZ 5+ A—jQjtm, m = ; .
2 m/2 Z I K {1, if m is even

j>—m/2

In particular the energy operater is given by

12
Ly = 7 + Z a_;a;.

7>0

In the remaining of this chapter, we will no longer distinguish the operators ay and 7 from the
scalars 4 and A in our notation.

Proposition 5.5. L,, acts on an oscillator as

[Lm,ak] = 7kam+k. (525)
Proof First, let m = 0. Then we have (using (5.22)))

1
[Lo,ar] = 5 [as, ax] + ) [a—ja;,ax]
2 -
>0
= 00kao + Y —jOk—;ja; + jou+ja—;
7>0
= Zj5k+ja—j
jEZ

= —kak

Next, let m # 0. Then normal ordering doesn’t matter and we simply have
1
[Lm, ax] = 5 D la—sasim, ax]
JEL
1
=3 Yiajlasim, ax] + [a—j, aklajim)
JEL
1
=3 D (—kSjpmira—; — kdk—ja;1m)
JEL
= _kam+k

where we have used distributivity law [AB,C| = A[B, C]+ [A, C]B for the Lie bracket in the
second line.

Proposition 5.6. The operators {L.,} satisfy commutation relations

m3—m

Thus, they provide a representation of the Virasoro algebra, with central charge ¢y = h.

-51-



CHAPTER 5. CENTRAL EXTENSION OF THE BMS-ALGEBRA Han van der Ven

Proof By making the transformation L — hLj; we can reduce to the case h = 1. So let
h = 1. Then, using distributivity law [A, BC| = [A, B]C + B[A, C], and (5.25)), we have

[Lum, Ln] [Lomsanse] + Y [Lmsa—jajin]

j>—n/2

([Lmvan/Q]an/Q + an/Q[Lmvan/Q]) + 2 [Lmaa*j]ajJﬁn + Z a*j[Lmaaj+n]

j>—n/2 j>—n/2

M
2
M
2

nNn

- (Anj2tmn/2 + Qnj2anj24m) + Z JUm—j@j4n — Z (7 +n)a—j@jtmen
j>—n/2 j>—n/2

N =

. 1 .
Z (] + m)a,jaj+m+n + 3 Z (] + m)a,jaj+m+n
jt+m>—n/2 jtm=-—n/2

1 . 1 .
5 Z (J +n)a—ja;imin — B Z (J+mn)a—ja;imin

j>—n/2 jz—n/2

1 1 .

5 Z (m — k)akamin—k + 3 Z (J+m)a—jajtmin (5.27a)
k<n/2+m j=z—n/2—m
1 1 .

~3 Z (n—k)artmin—k — > Z (J+n)a—jaj+min. (5.27b)

k<n/2 j=—n/2

In the fourth step, we have absorbed the odd center terms into the summation; the prefactors
pose no problem here, because the factors j and —(j +n) both have value —n/2 for j = —n/2.
Additionally we have shifted the summation index j — j + m in the first two summations,
allowing to collect the sums later.

The sums in equation that run over k are normal ordered if k < (m + n)/2. Similarly,
the sums that run over j are normal ordered if j = —(m + n)/2. In all other terms, the order
is reversed, yielding commutators:

1 1 .
[Lon, Ln] = 5 D (m—k): aramin-s +3 D7 G+m) a5 emen

k<n/24+m j=—n/2—m
1 1 .
D) Z (m - k) [ak’ am+n—k] +35 Z (] + m) [CL_]', aj+m+n]
(n+m)/2<k<n/2+m —(m+n)/2>j=—n/2—m
1 1 .
-5 Z (n—k): ar@min—rk : ~3 Z (J+n):a—jaj4min :
k<n/2 j=—n/2
1 1 .
3 Z (n —k)[ar, amin—r] — 5 Z (J+n)laj, ajrmin]
(n+m)/2<k<n/2 —(n+m)/2>j=—n/2
=(m—n) 2 FA—jAj+min -
JEL
57774 n 57774 n . .
- k(m — k) + = > (3 +m)
(n+m)/2<k<n/24+m —(m+n)/2>j=—n/2—m
57774 n 5m n . .
+ k(n — k) — =7F 3G +n)
(n+m)/2<k<n/2 —(n+m)/2>j=—n/2
=(m—n) Z DO pman
JEL
5m+n 6m+n s
- Z k(m — k) + 5 Z Jj(G +m)
O<k<m/2 0>j5=—m/2
6'm+n 6m+n Ry
+ = > kem—k) == Y GG —m)
O<k<—m/2 0>j=m/2
m3 —m

= (m=n)Y 0 japment +
JEL

12
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5.4.1 Oscillator representation of vit MA/O’O

In this section, we consider once again the Heisenberg operators a,,, where we have set h = 1, and
ao = . Next, we consider the operators

2 (PN
Lo := 5 + 2 a_;a;
7>0
8 1
L, := 5 Z a—ja; + IAMGyy,, (m #0)
JEZ

Vk = ag

In terms of the previous operators L,,, they have expression

- 22
Lo = Lo + ?
Ly, = Ly, + iAmag,. (m #0)
or, useful for some calculations
. )2
L,, = L,, + i ma,, + 5m? (5.28)

Proposition 5.7. The above operators satisfy the commutation relations

- - - 3 _

[Lvan] = (m - n)Lm-HL + 6m+n¥(1 + 12/\2)7

[-Z/m7 Nk] = _kaJrk - i)\k26m+k7 (529)
[~J’ Nk] = _k5j+k

Proof For [Lm, L,] Using equations (5.215.2615.28), we have

[Lon, L] = [Liny Ln] + iA0[Lin, o] + iAoy L] — Nmnfoam, o]
[stap te doen]. Next, we calcuate [Lu, Vi]. First, let m = 0. Then

M2+)\2

[Lo, Vi] = [Lo, ax] + 5

[1, ak] = —ka,

coinciding with (5.29)), for m = 0. Next, let m # 0. Then
[Lin, Vi] = [Lim, ar] + idm[am, ax] = —kVi, — iAk> S
This too coincides with (5.29) (again for m # 0). Finally, it follows directly that [V;,Vi] =
Jd;+k, by definition of the oscillators (5.21)).
Corollary 5.7.A The algebra is isomorphic to the centrally extended algebra ritt i IA/O,O,
3

m- —m

2 9

(™ 0] = (m — )™ + Sman
(1™, vk) = —kVmik + Omprm?es
[vj, k] = 0j4rjcs

with central charges c; = 1 4+ 12)X2,¢cy = —i\, c3 = 1.

- 53 -



CHAPTER 5. CENTRAL EXTENSION OF THE BMS-ALGEBRA Han van der Ven

5.5 Grassmann variables

For 6 = 0 (the Ramond sector) or § = 1 (the Neveu-Schwarz sector) we define the space of
Grassmann variables

Gs = A({Op|m € Zso + 6})

as the exterior algebra generated by the ‘Grassmann numbers’ 6;. Wedges are (almost always)
omitted from the notation. They satisfy

for all m,n. As a result

82
02, =0, —— =0
m 002,
From here, we introduce fermionic oscillators

0
¢m = @a

w—m = em; for m >0

1 0
1;[}0 :\/§<90+690)’

the last of which occurs in the Ramon sector only. To see what it squares to, we let it act on a
test function a + bfy:

for m >0

1/ 0 0 1( dab 0 1
2 _ 1 _ = 0 i
"l/)o 5 <690 00 + 00 690> ((Z + b@o) 5 ( 690 + 00 (990 b@o) 5 (a + boo) (531)
So Y2 = % In the case m > 0,n > 0 we have
d d d db,, d
o tnd = Oy g, O = O, ap, O, O 032

As a direct consequence of (5.30)), (5.31]), and (5.32]), the fermionic operators satisfy the anticom-
mutation relations

{¢ma wn} = wmwn + wnwm = 6m+n-

Define operators Ly in Vj:

1—-26 1 .
L = 0m—5— + 5 Z Fi i Wiem (5.33)
JELA+S

Since the operators v; anticommute, the normal ordering is defined by

Vi §<k,

it = {—W%‘ k< j.

Proposition 5.8. They satisfy commutation relations

[Lim, Ln] = (m = n) L in + Smin——o7—

[Lmvwk] = _<k + %)merk
[V, Y] = 2950k — O

The proof is similiar to the harmonic oscillator case.
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Representations of 5, and V—%,%

By a simple modification by a Grassmann variable ¥, i.e., 92 = 0, the previously found algebras
are modified to match (5.20). Let L,, be such that it has the Virasoro algebra bracket, e.g., as in
(5.23). Let Vi := Liv. Then

3 _
[Lons Vil = (L, L]0 = (m — &) Vi, + Sy e,

12
[Vi, Vil = [Lj, L]9* = 0.
The resulting algebra represents vit ® Vi, _1, with ¢z = YJe;.

Similarly, let L,, be as in (5.33)). Let Vj = 9, where ¢ is a Grassmann variable. Then the
bracket becomes

3 _
[Lons Ln] = (m — 1) Lyngn + 5m+n%

m
[Lm,Vk] = —<k + E)Vm+k
[Vjvvk] =0

, with central charge ¢; = 1

This algebra coincides with vit ® v 5

11
272

- 55 -



6. Conclusions and Outlook

In this thesis we have constructed the asymptotic symmetry group of spacetimes that are described
by a Bondi metric, the BMS group. They classically give rise to waves propagating over the black
hole horizon. The supertranslation currents give room to store information. The remaining problem
is to match the Hawking-Bekenstein entropy S = A/4, which will likely be achieved by a cut-off
procedure.
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