
Utrecht University

Master thesis
Mathematical Sciences

Second order velocity reconstruction
on unstructured grids

Eveline Visee

Supervised by
Prof. dr. J.E. Frank (UU)
F.W. Platzek (Deltares)
M. Borsboom (Deltares)

May 31, 2016

Abstract

The new shallow water solver D-Flow FM is being developed at the Deltares research in-
stitute. It employs a discretization method on unstructured staggered grids, which requires
reconstructing a velocity vector in the center of the cell. The currently employed first order
method as developed by Perot forces the use of fine and/or regular grids for the modelling of
advection and diffusion. To take full advantage of unstructured grids, a second order velocity
vector reconstruction method is required. In this thesis, I will derive several second order meth-
ods: corrections for Perot, explicit least squares and a hybrid method. We derive discretization
methods for advection and diffusion, study all methods in a simplified model in Matlab and
determine their convergence behaviour. One of the second order velocity reconstruction meth-
ods is also studied in the shallow water solver D-Flow FM. Second order velocity reconstruction
turns out to be better than Perot’s method but it needs a second order advection method for
the best results.

1

Contents

1 Introduction 5
1.1 Background . 5
1.2 Motivation and aim . 5

2 Governing equations 7
2.1 The Navier Stokes equations . 7
2.2 Shallow water equations . 8

3 Unstructured staggered grids 11
3.1 Finite Volume Discretization . 11
3.2 Staggered grids . 11
3.3 Determining the circumcenter . 12
3.4 Grid structure . 12
3.5 Orthogonality . 12
3.6 Discrete operators for mimetic schemes . 13

4 Discretizing the SWE in time and space 14
4.1 Semi-implicit solution approach . 14
4.2 Discretizing the advection operator . 15
4.3 Discretizing the diffusion operator . 16
4.4 Velocity vector reconstruction with Perot’s method 17
4.5 Momentum conservation . 17
4.6 Time step limitations . 19

5 Accuracy of the velocity reconstruction 20
5.1 Analysis of Perot’s reconstruction . 20
5.2 Second order corrections for Perot . 21

5.2.1 Integration over the dual volume . 21
5.2.2 Integration over the cell itself . 23

5.3 Least Squares solution . 24
5.4 Hybrid method . 25
5.5 Other options for velocity reconstruction and alignment index 25
5.6 Boundary conditions . 25

6 Experiments with a simplified model 27
6.1 The model . 27

6.1.1 First-order upwind advection . 27
6.1.2 Second-order upwind advection . 27
6.1.3 α-weighted method for advection . 28
6.1.4 Central method for advection . 28
6.1.5 Face-integrated method (Simpson rule) for advection 28
6.1.6 Discrete advection: difficulties . 28
6.1.7 Analytical advection using Gauss quadrature 29
6.1.8 Diffusion . 30

3

6.2 Test description . 30
6.3 Results . 31
6.4 Convergence for advection methods . 34

6.4.1 Test description . 34
6.4.2 Constant velocity field . 36
6.4.3 Linear velocity field: results . 36
6.4.4 Quadratic velocity field: results . 36

7 Numerical tests with the shallow water model 46
7.1 Constant velocity profile: uniform channel flow without wall friction 48

7.1.1 Test description . 48
7.1.2 Analytical solution . 48
7.1.3 Results . 48

7.2 Linear velocity profile: Couette moving plates flow 51
7.2.1 Test description . 51
7.2.2 Analytical solution . 51
7.2.3 Results . 52

7.3 Quadratic velocity profile: Poiseuille Flow . 55
7.3.1 Test description . 55
7.3.2 Analytical solution . 55
7.3.3 Convergence on a square grid . 55
7.3.4 Convergence results on non-uniform grids . 58

8 Discussion 61

9 Conclusion 63

10 Recommendations for further research 64

4

1 Introduction

1.1 Background

The Shallow Water Equations have numerous applications: if they are used to simulate rivers and
seas, it becomes possible to predict floods, study sedimentation and the distribution of nutrients
and other chemicals, and, together with atmospheric equations, they are a part of climate models.
Accurate simulation software can contribute to the safety of the Netherlands and other coastal
plains, river deltas and millions of people. Multiple software packages have been developed to
simulate hydrological systems, such as

unTRIM: a semi-implicit finite difference model for the shallow water equations developed by
Casulli et al.[5], which is an unstructured-grid version of TRIM (Tidal, Residual, Intertidal
Mudflat), developed for modelling in coastal areas. It does not use Perot’s reconstruction,
but rather the formulation from [6], and the advection term is in Eulerian-Lagrangian form.

SUNTANS (Stanford Unstructured Nonhydrostatic Terrain-following Adaptive Navier-Stokes Sim-
ulator), as developed by Fringer [8] et al., is a finite volume solver for coastal oceans. It
employs Perot’s reconstruction on a Delaunay triangulation and a structured vertical dis-
cretization (z-level). Since it works on the Navier Stokes equations rather than the Shallow
Water Equations, it is not easy to compare with the current work.

Adcirc: (advanced circulation: adcirc.org) is a package using a finite element method, both avail-
able in full-3D version and depth-integrated 2D.

Delft3D: The current shallow water flow solver by the Deltares research institute (Delft, the
Netherlands) is the Delft3D software package. It uses curvilinear orthogonal structured grids,
a staggered discretization scheme and an implicit time integration scheme. The structured
grids cause problems when discretization irregular boundaries and obtaining local grid refine-
ments. Though it uses domain decomposition, the lack of grid flexibility is the main reason
for the development of D-Flow FM.

D-Flow FM: Most important for this research is D-Flow Flexible Mesh, which is a successor
for Delft3D and uses unstructured grids [13]. It solves the depth-integrated two-dimensional
Shallow Water Equations. The workings of D-Flow FM are explained in detail in the following
chapters, but the essence is that it solves the Shallow Water Equations on an orthogonal
staggered grid with a semi-implicit discretization that can be regulated with the θ-method.
The advection term, which is non-linear in the velocity, makes use of a reconstruction at
the cell center (Perot’s method), which is first-order accurate (but second order accurate on
regular grids).

1.2 Motivation and aim

Partial Differential Equation solvers working on square or rectangular grids have been around for a
long time, but problems arise if the domain boundary does not align with the grid. Staggered grids
are used to decouple the pressure and velocity components, while curvilinear and unstructured
grids allow for a domain (especially on the boundary) to be discretized more accurately and add
refinements more easily. However, unstructured grids come with their own problems, such as low-
order accuracy of many numerical methods, and it is these problems I will address in this thesis.

5

The choice of the particular discretization in D-Flow FM means we need to reconstruct the
velocity vector in the cell center from the normal component of the velocity at the faces of the
cell. This is straightforward for rectangular grids but unstructured grids call for more sophisticated
methods of velocity reconstruction. Perot’s method does well as long as the grid is fairly regular
(orthogonal, and the distance between the centroid and the circumcenter is small). Perot’s method
is, in general, first order accurate, but second order on regular grids. Finding second-order methods,
either as correction for Perot or independently, may improve the simulations significantly. We will
derive the second order velocity reconstructions, discuss their mathematical properties, and assess
their performance (accuracy of water level, discharge, velocity and its gradient, and advection and
diffusion), first in a simplified model and later in D-Flow FM.

Second order methods are considered by Vidovic [20], in the form of least squares approxima-
tions, Peixoto and Barros [15], who compare different methods, and Boscheri [3].

Vidovic’s least squares algorithm reconstructs the velocity at the nodes of triangles, while we
will later discuss reconstruction at the circumcenters of triangles. The idea, however, is the same.

Peixoto and Barros [15] consider a velocity reconstruction method with radial basis functions, a
method with finite elements and discuss Perot’s method (using either normal or tangential velocity
components) and least squares methods. They then map several grids to a sphere, analyzing the
errors from the velocity reconstruction methods and the mapping on top of it. They conclude that
Perot’s scheme has the highest L∞ errors but is comparable to the other methods in L2 error,
though it is still the least accurate.

Boscheri [3] uses a Taylor expansion around the circumcenter of a polygon, using the known
velocity on the edges of the polygon to find the velocity in the circumcenter. This expression is
normalized and preconditioned using singular value decomposition, and then the overdetermined
method is solved using a least squares algorithm. Then the Navier Stokes equations are integrated
with a semi-implicit staggered finite volume scheme.

The purpose of this thesis will be to find a general second order velocity reconstruction method
that is more accurate than Perot’s velocity reconstruction, and does not have a negative effect
on the kinetic energy (the energy is dissipated due to the upwind parts in the discretization, but
a velocity reconstruction can negate that, causing instabilities. This is outside the scope of this
thesis).

6

2 Governing equations

Fluid dynamics is governed by conservation of mass, momentum and energy. Assuming that the
fluid is a continuous medium, physical properties such as velocity and density can be described in
a time-dependent fashion. In the Lagrangian formulation, each particle has its physical properties
specified as a function of time. In Eulerian formulation, the history of physical properties at each
fixed point of the domain is specified.

The Navier-Stokes equations form the basis of computational fluid dynamics. Derived from
Newton’s laws of motion and the conservation laws of mass and momentum, they describe the
movement of a body of water [22].

2.1 The Navier Stokes equations

The mass conservation law states that within a system, the total amount of fluid (water) in a control
volume stays the same. The total mass in a control volume Ω can be computed by integrating the
density ρ = mass

volume over the volume, and the rate of change can be computed by taking its time
derivative. This has to be equal to the net flux integrated over the boundary ∂Ω, hence we get

d

dt

ˆ
Ω
ρ dV = −

ˆ
∂Ω
ρ~u · ~n dA (1)

with n the outward normal of the boundary. We use ~u = (u, v, w) for the velocity of the flow in the
(x, y, z)-directions. Applying Gauss’ theorem to rewrite the right hand side and assuming that the
density is a smooth function over Ω we get −

´
∂Ω ρ~u · ~n dA = −

´
Ω∇ · ρ~u dV and we can swap the

derivative and integral to obtain the continuity equation in its most general form:ˆ
Ω

∂ρ

∂t
+∇ · ρ~u dV = 0 (2)

Since Ω was arbitrary, and assuming there are no shocks or discontinuities, we can drop the integral
sign and get the continuity equation ∂ρ

∂t + ∇ · ρ~u = 0. For incompressible flows, the density will
remain the same throughout time and the continuity equation simplifies to ∇ · ~u = 0.

Momentum is the product of mass and velocity, so for a volume Ω this is
´

Ω ρ~u dV . To conserve
momentum, we need to balance the momentum flux over ∂Ω with the body forces (such as gravity)
and the external stresses like wind. The gravity is given by the gravity acceleration g = 9.81m/s2

times the density, and other body forces such as the Coriolis forces can be introduced at the same
part in the equations. The external forces are made up of wind stress, bottom friction and pressure,
which we will write as pI3 + T , where the matrix T contains the stress terms we use later and I3

the 3× 3 identity matrix. This gives the momentum balance

d

dt

ˆ
Ω
ρ~u dV = −

ˆ
∂Ω

(ρ~u)~u · ~n dA+

ˆ
Ω
ρg(0, 0, 1)T dV +

ˆ
∂Ω

(pI3 + T)~n dV (3)

Again, Ω is arbitrary so we can drop the integral sign if there are no shocks or discontinuities. We
divide by ρ and we get the momentum equation

d

dt

uv
w

+

∇ · u~u∇ · v~u
∇ · w~u

 = −1

ρ
∇ ·
(
pI3 + T

)
+

0
0
g

 (4)

Assuming incompressibility, constant temperature and constant salinity, ρ is constant.

7

2.2 Shallow water equations

We can derive the shallow water equations (SWE) by depth-integrating the Navier-Stokes equations.
The free surface is denoted by ζ, which is the z-coordinate of the water surface dependent on x, y
and t. The free surface equation is

ζt + usζx + vsζy = ws (5)

since vertical flow depends on horizontal flow and change rate of the height (the superscript s is
for “surface”).

At the bottom z = −b (the total height of the water column becomes h = ζ + b) we assume no
movement at the bottom u = v = 0 and no pressure at the surface: p = 0. We write the bottom
shear stress as

(τbx, τby) = (τxx
∂b

∂x
+ τxy

∂b

∂y
+ τxz, τyx

∂b

∂x
+ τyy

∂b

∂y
+ τyz)

and the surface shear stress (this includes wind) as

(τsx, τsy) = (−τxx
∂ζ

∂x
− τxy

∂ζ

∂y
+ τxz,−τyx

∂ζ

∂x
− τyy

∂ζ

∂y
+ τyz).

There is no normal flow at the bottom, hence the bottom boundary equation is

ubbx + vbby + wb = 0 (6)

as the bathymetry does not depend on time, and the vertical flow depends only on horizontal flow,
bathymetry and height changes (the superscript b is for “bottom”). The free surface equation and
bottom boundary equation form the kinematic boundary conditions:

u

∣∣∣∣
b

∂b

∂x
+ v

∣∣∣∣
b

∂b

∂y
+ w

∣∣∣∣
b

= 0,
∂ζ

∂t
+ u

∣∣∣∣
ζ

∂ζ

∂x
+ v

∣∣∣∣
ζ

∂ζ

∂y
− w

∣∣∣∣
ζ

= 0. (7)

Note that we assume that the bottom topography of the water body (such as the river bed, sea
floor or ocean floor: the bathymetry) does not change in time, which implies

∂h

∂t
=
∂(b+ ζ)

∂t
=
∂b

∂t
+
∂ζ

∂t
= 0 +

∂ζ

∂t
=
∂ζ

∂t
. (8)

Now we can integrate the continuity equation (eq. 2) from z = −b to z = ζ, using depth-averaged
velocities

ū =
1

h

ˆ ζ

−b
u dz, v̄ =

1

h

ˆ ζ

−b
v dz

and applying the kinematic boundary conditions gives (note that the w and z components of ~u
and ~x get integrated out, so ~u, ~x and the operator ∇ are three-dimensional, while the subscript
H denotes their two-dimensional horizontal versions). We use Leibniz’ integral rule to change the

8

order of differentiation and integration:

0 =

ˆ ζ

−b
∇ · ~u dz (9)

= ∇ ·
ˆ ζ

−b
~u dz −

(
u

∣∣∣∣
ζ

∂ζ

∂x
+ u

∣∣∣∣
−b

∂b

∂x

)
−
(
v

∣∣∣∣
ζ

∂ζ

∂y
+ v

∣∣∣∣
−b

∂b

∂y

)
+ w

∣∣∣∣
ζ

− w
∣∣∣∣
−b

(10)

= ∇H ·
(
hū+ hv̄)−

(
u

∣∣∣∣
ζ

∂ζ

∂x
+ u

∣∣∣∣
−b

∂b

∂x

)
−
(
v

∣∣∣∣
ζ

∂ζ

∂y
+ v

∣∣∣∣
−b

∂b

∂y

)
+
∂ζ

∂t
+ u

∣∣∣∣
ζ

∂ζ

∂x
+ v

∣∣∣∣
ζ

∂ζ

∂y
− u
∣∣∣∣
−b

∂b

∂x
− v
∣∣∣∣
−b

∂b

∂y
(11)

=
∂

∂x
(hū) +

∂

∂y
(hv̄) +

∂ζ

∂t
(12)

The momentum equation (eq. 4) in vertical direction collapses to ∂p
∂z = ρg, as the vertical

motion scales are small with respect to the horizontal motion scales, and integrating this over z
gives the hydrostatic pressure term p = ρg(ζ − z). Then ∂p

∂x = ρg ∂ζ∂x and ∂p
∂y = ρg ∂ζ∂y and we can use

this when integrating the x− and y− momentum equations over depth. The left hand side of the
x-momentum equation becomes

ˆ ζ

−b

∂u

∂t
+∇u~u dz =

∂

∂t
(hū) +

∂

∂x
(hū2) +

∂

∂y
(hūv̄) + differential advection terms (13)

and analogous for y. The differential advection terms (abbreviated DAT) originate from the fact
that the average of a product of two functions is generally not the same as the product of the
averages. For the right hand side of the x-momentum equation, we have
ˆ ζ

−b
−1

ρ

∂

∂x

(
p+ T

)
dz =

ˆ ζ

−b
−1

ρ

(
ρgh

∂ζ

∂x
+
∂T

∂x

)
dz = −gh∂ζ

∂x
− h

ρ

(
∂T

∂x

∣∣∣∣
ζ

− ∂T

∂x

∣∣∣∣
−b

+ Fx

)
(14)

and analogous for y. Here Fx, Fy can include external forces such as the Coriolis force sin(φ)hΩ×~u
where φ indicates the latitude, Ω the earth rotational speed, and only the third coordinate is
non-zero. Hence we get the two-dimensional Shallow Water equations

∂ζ

∂t
+

∂

∂x
(hū) +

∂

∂y
(hv̄) = 0 (15)

∂

∂t
(hū) +

∂

∂x
(hū2) +

∂

∂y
(hūv̄) + DAT = −gh∂ζ

∂x
− h

ρ

(
∂T

∂x

∣∣∣∣
ζ

− ∂T

∂x

∣∣∣∣
−b

+ Fx

)
(16)

∂

∂t
(hv̄) +

∂

∂x
(hūv̄) +

∂

∂y
(hv̄2) + DAT = −gh∂ζ

∂y
− h

ρ

(
∂T

∂y

∣∣∣∣
ζ

− ∂T

∂y

∣∣∣∣
−b

+ Fy

)
(17)

The stress term h
ρ

(
∂

∂(x,y)T

∣∣∣∣
ζ

− ∂
∂(x,y)T

∣∣∣∣
−b

+ ~F

)
will be equal to g |~u|~u

C2 , which represents bottom

shear stress. Wind and other stresses will be modeled separately where needed. The term C is
the Chézy coefficient in

√
m/s, which describes the roughness of the bottom, we drop the averages

again, and get

∂ζ

∂t
+∇H · (h~̄uH) = 0,

∂

∂t
(h~uH) +∇H · (h~uH~uH) = −gh∇HζH + g

|~u|~u
C2

. (18)

9

From here on, all vectors will be two-dimensional, so we drop the subscript H.
Sometimes we will use the momentum equation in non-conservative form (as this form is the

one discretized in D-Flow FM [18]); first expand the time derivative

∂hu

∂t
= h

∂u

∂t
+ u

∂h

∂t
⇒ ∂u

∂t
=

1

h

∂hu

∂t
− 1

h
u
∂h

∂t

(and analogous for v) and substitute in the momentum equation to get

∂~u

∂t
+

1

h

(
∇ · (h~u~u)− ~u∇ · (h~u)

)
+

1

h
DAT = −g∇ζ + g

|~u|~u
hC2

. (19)

The term∇·(h~u~u) = (∂huu∂x + ∂hvu
∂y , ∂huv∂x + ∂hvv

∂y) in the momentum equation represents advection,
which indicates the rate with which a certain property (in this case: momentum) is transported by
the flow.

10

3 Unstructured staggered grids

This chapter will deal with the necessary properties of the spatial grid before we move on to the
discretization of the Shallow Water Equations.

3.1 Finite Volume Discretization

The general idea of the FVD is to integrate the continuity equation over the cell boundary, using
Gauss’ divergence theorem ˚

V
∇ · ~F dV =

‹
S

~F · ~n dS (20)

for some field ~F . This means that the flow leaving one cell is gained by the adjoining cell, leading to
conservation of mass in the inner cells of the domain, and mass can only change via the boundary
conditions. Conservation of momentum and kinetic energy are difficult to prove on irregular grids,
but this should be considered from case to case.

In a finite volume discretization, the domain Ω is covered with disjoint polygonal cells, often
triangles and quadrilaterals:

Ω =
⋃
j

Ωj , Ωi ∩ Ωj = ∅, i 6= j. (21)

Throughout this thesis we will assume convex cells. Non-convex cells add the need for more
correction terms as in [10] and the circumcenter might be outside of the cell, causing more problems.
The boundaries between the cells are referred to as edges or faces, while the word boundary is
reserved for the domain boundary. The grid nodes (“cell corners”) are at the endpoints of the
faces, a node cannot be on a face. Using the divergence theorem, we can integrate the continuity
equation over the cell, and calculate the conserved variables in the center of the cell as an average
over the volume.

3.2 Staggered grids

For a staggered grid, we distinguish between values computed at the cell nodes (corners), cell
centers, and edges/faces. Staggered grids were introduced by Harlow and Welch in 1965 for the
Navier Stokes equations [12]. They compute the pressure in the cell center, but the normal com-
ponents of the velocity at the middle of the cell faces. The alternative, where all variables are
calculated at the nodes, is a collocated scheme. Staggered grids can be motivated by a simple
thought: if a function is interpolated from its known values at a few points, the interpolation will
be most accurate at the point exactly in between those values; as the continuity equation contains
a waterlevel time-derivative and the momentum equation contains a velocity time-derivative, while
the velocity space-derivative is in in the continuity equation and the waterlevel space-derivative
in the momentum equation, it makes sense to discretize the equations half a step away from each
other. This eliminates the checkerboard patterns that collocated grids tend to have, as there is no
pressure-velocity decoupling.

For the center in the cell, many definitions are possible, such as the circumcenter (the point
equidistant from all nodes) or the centroid (center of gravity/mass). Some polygons may not have
a circumcenter (though it coincides with the centroid if it is a regular polygon), but, if it exists, it
is the intersection of the perpendicular bisectors of the faces and this makes the grid orthogonal.

11

3.3 Determining the circumcenter

For triangles with vertices (x1, y1), (x2, y2), (x3, y3), the circumcenter is calculated using the exact
formula(

xc
yc

)
=

1

2

(
(x1 + x2) + a(y1 − y2)
(y1 + y2)− a(x1 − x2)

)
, a =

(x2 − x3)(x3 − x1) + (y2 − y3)(y3 − y1)

(x1 − x2)(y3 − y1)− (y1 − y2)(x3 − x1)
(22)

Note that if the triangle has an obtuse angle, the circumcenter is outside of the triangle, and if
the triangle has a right angle, the circumcenter is in the middle of the longest edge.

For triangles, cycle quadrilaterals and regular polygons, the circumcenter exists, but for irregular
polygons with more than three vertices, this is not always the case. Then we can use the iterative
formula [23]

~xc = ~xc + γ
∑
edges

(~xe1 − ~xe2
‖~xe1 − ~xe2‖2

(~xc − ~xf)
)
· ~xe1 − ~xe2
‖~xe1 − ~xe2‖2

(23)

with ~xe the endpoints of edge e, hence ~xe1−~xe2
‖~xe1−~xe2‖2 is a unit vector along the edge. Noting the

similarity to the Gram-Schmidt method, we see why every vector ~xc−~xf computed by this algorithm
should be orthogonal to the corresponding face. This is not exact, but the convergence is rapid
[23]. In D-Flow FM, the parameter γ is set to 0.1 and the first estimate for the circumcenter
is the centroid, which is calculated as the average of the polygon corners. For regular polygons,
convergence is trivial as the circumcenter and centroid coincide.

3.4 Grid structure

Meandering rivers can be efficiently modeled with curvilinear grids that are aligned with the main
flow direction [13]. Since flow gradients in the direction of the main flow are smaller than those
orthogonal to the flow, we need a higher resolution in the cross direction than in the main flow
direction, but the cells can be long in the main flow direction, such that the grid needs fewer cells
than a triangular grid.

However, curvilinear grids have some drawbacks. In the inner bends of meandering rivers, grid
lines become focused and cells become very small and the opposite problem happens for outer
bends. Staircase representations of coastlines need to be corrected as well.

Curvilinear and triangular grids can be combined successfully [13] in a mixed grid model. When
channels are discretized with curvilinear grids, we can use triangles to form a transition to local
refinement, or to other water bodies such as the sea or another channel.

In curvilinear grids, orthogonality is hard to achieve, therefore the iteratively defined circum-
centers are moved in D-Flow FM to achieve better orthogonality.

3.5 Orthogonality

Reconstructing the flow gradient at the faces causes cross-diffusion in non-orthogonal grids. Let e
be the normalized vector between two circumcenters: e = xc1−xc2

‖xc1−xc2‖ . In an orthogonal grid, e passes
through xf , and in this case e and the face-normal vector n are scalar multiples of each other.
Then, the gradient along a normal vector is

(∇u · n)f = (∇u · e)f =
uf − uc
‖xf − xc‖

(24)

12

On a non-orthogonal grid, e does not pass through xf , and the normal vector n is a sum of e and
a tangential vector t. Then

(∇u)f · n = (∇u)f · e+ (∇u)f · t. (25)

and to compute the gradient along a normal vector in a non-orthogonal grid we need to take into
account not only the gradient along e, but also the term t in the discretization.

However, Ham et al. [10] work with a non-orthogonal grid, based on Casulli’s work with
orthogonal grids, designing an algorithm where the water levels are not corrected with a tangential
component, but with a correction term computed from the water levels ζc from the surrounding
cells. This has mostly influence on the discretization of the waterlevel gradients ∇ζ, which need
to be corrected. While the orthogonal scheme of Casulli [6] yields a symmetric positive definite
matrix which is easy to solve with the conjugate gradient method, the non-orthogonal scheme of
Ham et al. gives a perturbed symmetric matrix. Still, the authors of [10] claim to encounter no
problems with convergence and only a slightly longer running time.

An example of an orthogonal staggered grid (used by Perot in [16]) is the Delaunay mesh (con-
sisting of triangles and quadrilaterals) and its dual, the Voronoi tessellation. A Voronoi tessellation
of a plane with given nodes is obtained by partitioning the plane such that each cell consists of one
of the nodes (the center) and the points in the plane that are closer to that node than to any other
node. The cell faces in the Voronoi tessellation are orthogonal to the faces in the Delaunay mesh.
The Delaunay triangles then form cells, and the vertices of the Voronoi cells are the circumcenters
of the cells.

3.6 Discrete operators for mimetic schemes

The goal of mimetic schemes is to construct a discretization that mimics the mathematical prop-
erties of the original PDE.

The mimetic discretization methods are designed to leave the vector integral and differential
identities intact on a discrete level. This often implies conservation properties. The name “mimetic”
is chosen because a mimetic scheme accurately mimics the physical properties of the system: con-
servation of mass, momentum and energy. The scheme employed in D-Flow FM is not mimetic,
since the bottom stress, wall friction and other mechanisms decrease the momentum and kinetic
energy of the system, and the numerical energy loss only needs to be negligible with respect to
the physical energy loss. The main mechanism to build mimetic schemes is to have discretizations
of the inner product, divergence, gradient and curl conform to the same vector identites as their
continuous analogs.

13

4 Discretizing the SWE in time and space

This section describes the discretization of the Shallow Water Equations as used in D-Flow FM
[1, 13, 18].

4.1 Semi-implicit solution approach

We use an irregular staggered two-dimensional grid with the water level ζc in the cell circumcenter
~xc (all quantities at the circumcenter will have a subscript c) and the face-normal velocities uf at
the midpoints of the faces of the cell (all quantities discretized at the face midpoints ~xf will have
the subscript f , except for lf which is the (one-dimensional) length of face f). The total water
depth h = ζ + b is discretized both in ~xf and ~xc, and in the fluxes it is taken in some upwind
manner. We will assume a fixed time step ∆t and discretize the continuity equation (eq. 15) as
integrals over the cell:

ζn+1
c − ζnc

∆t
Vc = −

∑
f

sfclfh
n
fu

n+1
f (26)

where Vc is the horizontal cell area [14] and n, n+1 are time indices. The parameter sfc ∈ {−1, 0, 1}
ensures the correct (counterclockwise) orientation of the integral. If face f belongs to the boundary
of cell c, then sfc~nf is the outward normal vector for the cell through the face.

location near cell center (xc)

grid point (xg)

face center (xf) with normal

velocity component (uf)

centroid or center of gravity (xG)

circumcenter (xC)

cell face length (lf)

distance from face center

to cell center (wfc)

xc1 wfc1lf

xg

xg
xg

xg

xf
xf

xf

xfxf

xc2
wfc2Wf

xG1

xG2

xC1

xC2

Figure 1: Two grid cells. Courtesy Mart Borsboom [1]

Let hf be some approximation of the total water depth at the faces, the different choices will
be discussed later. We proceed to discretize the momentum equation.

For now, we write Adv(~un) for the discretization of 1
h

(
∇·(h~u~u)−~u∇·(h~u)

)
. The non-conservative

momentum equation (eq. 19) at the faces is discretized as

un+1
f − unf

∆t
+ Adv(~un) + g

ζn+1
cR − ζn+1

cL

||~xcR − ~xcL||
+ g
||ũnf ||u

n+1
f

hnf C
2

= 0 (27)

where ||ũnf || =
√

(unf)2 + (αfvcL + (1− αf)vcR)2 and h in 1
hC2 originates from the depth-averaging

and division by the depth.

14

We can extract un+1
f :

un+1
f =

(
1 + ∆t

g‖ũnf‖
hnf C

2

)−1
·
(
unf − g∆t

ζn+1
cR − ζn+1

cL

‖~xcR − ~xcL‖
−∆tAdv(~un)

)
(28)

and substitute it in the continuity equation, allowing us to solve for ζn+1
c :

ζn+1
c = ζnc −

∆t

Vc

∑
f

sfclfh
n
f

(
unf − g∆t

ζn+1
cR − ζn+1

cL

‖~xcR − ~xcL‖
−∆tAdv(~un)

)(
1 + ∆t

g‖ũnf‖
hnf C

2

)−1
(29)

This equation (eq. 29) forms a symmetric positive definite system of equations for the unknown
water levels at the new time level n+ 1. This can be solved efficiently by the Conjugate Gradient
method [13]. Having ζn+1

c , we can substitute and directly calculate un+1
f , which necessarily conserve

mass since this is forced by the implicit coupling of the momentum and continuity equation. Note
that the momentum and kinetic energy are not necessarily conserved, since they are dependent on
the discretization of Adv(~un).

The discretization in D-Flow FM then uses the θ-method [18]. The parameter θ needs to be in
[1
2 , 1] for stability [4]. Then ζn+1

c is replaced by θζn+1+(1−θ)ζn and hnfu
n+1
f by θhnfu

n+1
f +(1−θ)hnfunf

to obtain a semi-implicit discretization. The discretization is second-order accurate for θ = 1
2

(Crank-Nicholson method), and first-order accurate for 1
2 < θ < 1. When θ is close to 1, the first

order accuracy in time may lead to excessive damping of running waves. For θ = 1, the pressure
gradient is implicit in the momentum equation and the fluxes are implicit in the continuity equation.
The advection is always explicit, hence the discretization of the system is semi-implicit.

4.2 Discretizing the advection operator

In [1] it is shown that we need to use h̃f in the time derivative of the momentum equation for energy
conservation, but h̄f in the pressure gradient term to ensure momentum and energy conservation,
where:

(Choices for) discretization of h :


Hf = max(0, df + 1

2(ζcR + ζcL)) (Casulli [7, eq.41])

h̃f = 1
2(ζcR + ζcL) + αfdcL + (1− αf)dcR (Kramer, Stelling [14])

h̄f = αfhcL + (1− αf)hcR (Borsboom [1])

Let ~u∗f be the full velocity vector at the faces reconstructed from the cell center velocities ~uc,
which are computed (from uf) by Perot’s velocity vector reconstruction or any other method (see

paragraph 4.4 and chapter 5). Then define αf =
‖~xcL−~xf‖
‖~xcL−~xcR‖ , where cL is the upwind cell from f and

it is important that the line ~xcL − ~xcR passes through ~xf (this happens automatically if the grid is
orthogonal). Then αf is a dimensionless distance expression and can be used as a weighing factor.
Kramer discusses the approaches of Perot and Wenneker in the discretization of the advection term
∇ · h~u~u for the conservative momentum equation. Discretize ~q = h~u as

~qc =
1

Vc

∑
f

lf (~xcL − ~xcR)~qf~nfsfc (30)

15

where ~nf are normal vectors at the faces. This expression forms a balance since VcI =
∑

f lf (~xcL−
~xcR)~nf~n

T
f . Then [14, eq.21] we can write

ˆ
Ω
∇ · ~q~u dV =

ˆ
∂Ω
~q · ~n~u dS =

∑
f

ˆ
face f

~q · ~nf~u ≈
∑
f

Qf~uf = Vc~qc (31)

where Qf is the flux through face f . Kramer and Stelling [14] then use h̃f to get the discretization
of the momentum equation

dqf
dt

+ (αf~qcL + (1− α)~qcR) · ~nf + gh̃f
ζcR − ζcL
‖~xcR − ~xcL‖

= 0. (32)

and they claims conservation, supported by [16]. The advection term is integrated explicitly in
D-Flow FM [13].

Kramer and Stelling also present Wenneker’s scheme without a proof of conservation, though
both their article and Wenneker’s [21] claim conservative behaviour in numerical test cases. Where
Perot uses just small rectangles (between the circumcenters) as control volume, Wenneker’s scheme
makes use of the entire cells belonging to a face. For a face f0 and its two cells cR, cL, take the faces
f1, f2, . . . belonging to the cells but not the face f0 itself, and discretize the momentum equation
on f0 as

d(h~u)f0
dt

+
(∑
k:k 6=0

Qfk~u
∗
f

)
· ~nf0 + gh̃f0

ζcR − ζcL
‖~xcR − ~xcL‖

= 0 (33)

Here Qf = ~qf · ~nf integrated along face f , i.e. hf (~u∗f · sfc~nf)lf .
Perot’s advection discretization is the one used in D-Flow FM with the numerical experiments.

The main problem now is to find an appropriate approximation of ~u∗f . To find the normal compo-
nent, we need the entire vector. In order to find this, we first construct the velocity vector for a
cell (at the cell circumcenter, as described in section 4.4 and chapter 5) and then reconstruct the
velocity vector at the face. The reconstructed ~uc, and, when available, its gradient, can then be
used in the different types of advection and diffusion discretizations as described below.

4.3 Discretizing the diffusion operator

In D-Flow FM, the diffusion tensor Diff(un) is discretized per cell, then averaged to the faces and
multiplied by the face-normal vector to obtain the diffusion of the momentum equation normal to
the faces. For each face f , we consider the other faces of the cells cL, cR , where ufx is the difference
of u with respect to x at the face along ~xcR − ~xcL, i.e. ucR−ucL

‖~xcL−~xcR‖2 (and similar for ufy, vfx, vfy)

and ul is shorthand for the directional derivative of u along a face f : ul = 1
lf

(~un1 − ~un2).

Diff(xf , yf) =
∑

neighbour faces

−
αf

hcLVcL
lf

(
ufx(1 + n2

x)− nxnyul ufynxny − n2
yul

vfxnxny + n2
xvl vfy(1 + n2

y) + nxnyvl

)
· ~nf

−
1− αf
hcRVcR

lf

(
ufx(1 + n2

x)− nxnyul ufynxny − n2
yul

vfxnxny + n2
xvl vfy(1 + n2

y) + nxnyfvl

)
· ~nf (34)

where ~nf = (nx, ny).

16

4.4 Velocity vector reconstruction with Perot’s method

For use in the advection and diffusion, we need a vector ~unc in each circumcenter, derived from the
scalar unf (face-normal values) on the faces. D-Flow FM uses Perot’s velocity vector reconstruction

method. The ~unc is then used to compute un+1
f , i.e. explicitly. Perot developed this reconstruction

as part of a fully implicit scheme for the Navier-Stokes equations [16, section 5.4].
The total flow through the cell can be computed by the following integral, using the divergence

theorem, and discretized by assuming the cell boundary to consist of straight lines.

ˆ
V
∇ · ~u(~x− ~xc) dV =

˛
∂V
~u · ~n(~x− ~xc) ds = Vc

∑
f∈∂Ω

sfcuf lf (~xf − ~xc) (35)

For a point ~x0 inside the cell, we can then compute the average velocity:

~u0 =
1

Vc

ˆ
∂Ωc

(~u · ~n)(~x− ~x0) dA. (36)

Assuming the scalar velocities normal to the cell faces uf are known, we can reconstruct (u, v)c
with Perot’s formula

~uPc =
1

Vc

∑
f∈∂Ωc:cell faces

sfclfuf (~xf − ~xc). (37)

4.5 Momentum conservation

It is not always possible to prove local momentum conservation, but we prove global momentum
conservation according to [1]. We write the momentum equation at each face, using M = ∇ ·
(huu) − 2 sinφhΩ × ~u, as dh~u

dt + ~M + gh∇ζ = 0. Analogous to [16], we then multiply with the
normal of the face and integrate over the control volume Ωf which is determined by the face length
lf and the distances from the face center to the cell centers W = wfcL + wfcR, where wfc is the
distance between the cell center and the face midpoint.

ˆ
Ωf

(
dh~u

dt
+ ~M + gh∇ζ) · ~nfcL =

ˆ
Ωf

(dh~u · ~nfcL
dt

+ ~M · ~nfcL + gh
dζ

d~n

)
dV (38)

≈ sfcLlfW
dhfuf
dt

+ lf (wfcL ~McL + wfcR ~McR) · ~nfcL
+lfghf (ζcR − ζcL) = 0 (39)

where hf = 1
W (wfcLhcL + wfcRhcR) = h̃f . The time derivatives can be rewritten as (substituting

~uc = 1
h̃cVc

∑
cell faces sfclf h̃fuf (~xf − ~xc))

∑
all inner faces

sfclfW
dhfuf
dt

(~xf − ~xc) =
∑

all inner cells

dVch̃c~uc
dt

, (40)

with h̃c some average of the h̃f belonging to its cell (the fact that this definition is not important
also implies that the hf in the time derivative in the momentum equation does not play a role in

17

momentum conservation), using that Vc, lf and sfc are fixed properties of the grid. We can sum
the discretization over all inner faces (and multiply by W for convenience):∑

all inner faces

sfcLlfW
dhfuf
dt

(~xf − ~xcL) + lf (wfcL ~McL + wfcR ~McR) · ~nfcL(~xf − ~xcL)

+lfghf (ζcR − ζcL)(~xf − ~xcL)

+sfcRlfW
dhfuf
dt

(~xf − ~xcR) + lf (wfcL ~McL + wfcR ~McR) · ~nfcR(~xf − ~xcR)

+lfghf (ζcR − ζcL)(~xf − ~xcR) = 0 (41)

Now, if ~xcR − ~xcL = (~xcR − ~xf) + (~xf − ~xcL), (the orthogonality criterion, otherwise the ζ-
slope has a component tangential to the faces, which can be solved using ζc from surrounding
cells [10], but then the matrix that solves ζ is not symmetric positive definite anymore), we write
~xcR − ~xcL = W~nfcL = −W~nfcR we get that the gradients ζ/W are normal to the faces, and also
~nfcL = −~nfcR, the discretization reduces to∑

all inner faces

sfcLlf
dhfuf
dt

(~xf − ~xcL) + lfwfcL ~McL · ~nfcL~nfcL + lfghf (ζcR − ζcL)~nfcL

+sfcRlf
dhfuf
dt

(~xf − ~xcR) + lfwfcR ~McR · ~nfcR~nfcR (42)

=
∑

all inner faces

sfcLlf
dhfuf
dt

(~xf − ~xcL) + lfwfcL ~McL · ~nfcL~nfcL + lfghf (ζcR − ζcL)~nfcL

−sfcLlf
dhfuf
dt

(~xf − ~xcL)− lfwfcL ~McL · ~nfcL~nfcL (43)

= 0 (44)

Since VcI =
∑

cell faces lf~nfc(~xf − ~xc) =
∑

cell faces lfwfc~nfc~nfc and we can rewrite∑
all inner faces

lfwfc ~Mc · ~nfc~nfc =
∑

all inner cells

Vc ~Mc (45)

Furthermore, we have, for h̄f = 1
2(hcL + hcR):∑

all inner faces

lfgh̄f (ζcR − ζcL)~nfcL =
∑

all inner faces

lfg(
1

2
(h2
cR − h2

cL)− h̄f (bcR − bcL)~nfc1 (46)

=
∑

all inner cells

g
h2
c

2

∑
cell faces

lf~nfc − g
∑

all inner cells

∑
cell faces

lfwfch̄f
bcR − bcL

W
(47)

Writing ζc = hc− bc, and using that each inner cell has a closed surface, hence
∑

cell faces lf~nfc = 0,
all terms in the discretization of the momentum equation, except the Coriolis terms, cancel out,
and hence we have proven global momentum conservation.

Kinetic and potential energy can be shown to be conservative in most terms of the SWE, but
the time derivative does not conserve energy. This means that energy conservation errors are small
for solutions that vary slowly in time, but not zero. However, for slowly varying flow and for
steady-state solutions, the energy is well conserved [1, Section 5].

18

Though conservation is important, there are other considerations. The two different choices
for hf which are necessary for conservation: h̃f in the time derivative for energy conservation [19]
and h̄f is used in the ζ-slope term for momentum and energy conservation [1, section 3.2], are
not consistent with each other and may have an overall negative effect on the accuracy. After all,
conservation does not guarantee accuracy, but an accurate discretization necessarily gives a certain
amount of conservation.

For details on the specific discretization in D-Flow FM, we study [13], which formulates Adv(~u)
in a not entirely momentum-conserving way, but since all other terms are in finite volume formu-
lation, most of the discretization in D-Flow FM is conservative. Advection is evaluated explicitly
(i.e. using Adv(unf)) The conservative discretization of dζ

dt implies volume conservation. We study

the volumetric flow rate Q = ∂V
∂t . Approximate

∂V

∂t

∣∣∣∣
total

=
∑

Qin −Qout (48)

Define the momentum control volume Vcf for a face f and a cell c as the volume spanned by the
two endpoints of the face and the circumcenter of the cell and let uin = ~u · ~nf . Then the control
volume for the entire cell is Vf = αVcL + (1− α)VcR and we look at the momentum conservation

∂Vfu

∂t
= Vf

∂u

∂t
+ u

∂Vf
∂t

= Vf
∂u

∂t
+ u

∑
Qin −Qout. (49)

Then

∂u

∂t
=

1

Vf

(∑
in

Quin−
∑
out

Quout−u(
∑

Qin−Qout)
)

=
1

Vf

(∑
in

Q(uin−u)−
∑
out

Q(uout−u)
)

(50)

Now compute uin, uout = uc using Perot’s velocity reconstruction technique, then

∂u

∂t
=

1

Vf

(
α
(∑
inL

Q(uinL−u)−
∑
outL

Q(uoutL−u)
)

+ (1−α)
(∑
inR

Q(uinR−u)−
∑
outR

Q(uoutR−u)
))

(51)
and analogous for ∂v

∂t . Taking uout = u, hence treating this as an upwind scheme, the second and
fourth term drop out and we have a finite volume discretization formulation for the momentum
equation. This is not conservative because of the choice of Vf , and this means there is no strict
momentum conservation in D-Flow FM.

4.6 Time step limitations

If the velocity per timestep is larger than the grid spacing, the information would propagate through
more than one cell in a time step. This is why we consider the Courant number (u +

√
gh) ∆t

∆x +
ν ∆t

(∆x)2
< (1 + bottom friction). The celerity

√
gh is the speed of a surface gravity wave in shallow

water with depth h. Since the wave part of the equations (this gives the equations for ζ that are
solved in every timestep) are implicit, the wave Courant number Cwave =

√
gh∆t

∆x has no influence,
and we only have to consider the Courant numbers for flow (advection) and diffusion. The Courant
number reduces to u∆t

∆x + ν ∆t
(∆x)2

< (1 + bottom friction). For a 2D flow that is skewed to the grid,

streamlines can cross cell boundaries earlier and it can be shown that a Courant number of 0.7
is necessary for maintaining stability. This is the standard maximum Courant number in D-Flow
FM, where the Courant number is fixed, ∆x depends on the cell geometry and ∆t is then chosen
to satisfy the Courant criterion.

19

5 Accuracy of the velocity reconstruction

5.1 Analysis of Perot’s reconstruction

Peixoto and Barros [15] prove that Perot’s velocity vector reconstruction (section 4.4) is second-
order accurate on regular grids (for example squares, equilateral triangles or hexagons). In other
cases, it is only first-order accurate. Consider a linear flow velocity field ~u = ~u0 +∇~u(~r) in some
point ~x0 in the cell Ωc, where ∇~u is a matrix with the (constant) derivatives and ~r = ~x − ~x0.
Parametrize ∂Ω = ∪faces(~xf + a~tf), a ∈ [−lf/2, lf/2], ~tf is a unit vector at the point ~xf along face
f . ˆ

Ω
~u+ (~xf − ~x0)∇ · u dS =

∑
f

ˆ
~xf+a~tf ,a∈[−lf/2,lf/2]

(~xf − ~x0)(u · sfc~nf) ds (52)

Then, using ~rf = ~xf + a~tf − ~x0:

Vc~u0 =
∑
faces

ˆ ~xf+
lf
2
~tf

~xf−
lf
2
~tf

(~xf + a~tf − ~x0)(~u0 +∇~u0 · (~xf + a~tf − ~x0)) · ~nfsfc ds (53)

=
∑
faces

ˆ ~xf+
lf
2
~tf

~xf−
lf
2
~tf

~rf (~uf · ~nfsfc) + a~tf~uf · ~nfsfc + a~rf (∇~u0 · ~tf · ~nfsfc)

+a2~tf (∇~u0 · (~tf) · ~nfsfc) ds (54)

=
∑
faces

~rf~uf lf + ~tf (∇~u0 · (~tf) · ~nfsfc)
l3f
12

(55)

=
∑
faces

(~xf − ~x0)~uf lf + VcE1 (56)

where (∇~u)0 =

(
ux uy
vx vy

)
. We see that we get the error term E1 = 1

Vc
~tf (∇~u0 · (~tf) · ~nfsfc)

l3f
12 . If Ω

is an aligned polygon (opposite edges are parallel and of the same length), we let f̄ be the opposite
face of f , then sfc~nf = −sf̄ c~nf̄ , ~tf = −~tf̄ , lf = lf̄ , and we let ~x0 be the centroid

VcE1 =
∑
faces

~tf (∇~u · ~tf · sfc~nf)
l3f
12

(57)

=
∑

half of the faces

~tf (∇~u · ~tf · sfc~nf)
l3f
12

+ ~tf̄ (∇~u · ~tf̄ · sf̄ c~nf̄)
l3
f̄

12
(58)

=
∑

half of the faces

~tf (∇~u · ~tf · sfc~nf)
l3f
12
− ~tf (∇~u · ~tf · sfc~nf)

l3f
12

= 0 (59)

so E1 vanishes on regular grids.
Perot [16] proves that this method conserves momentum for the divergence form of the Navier-

Stokes equations, and conserves kinetic energy for both the divergence and the rotational form, but
he does not consider the behaviour on the Shallow Water Equations.

20

5.2 Second order corrections for Perot

5.2.1 Integration over the dual volume

Perot reconstructs the velocity vector in the cell center ~xc (eq. 37) as

Vc~u
P
c =

ˆ
∂Ω

(~u · ~n)(~xc − ~xf) dA ≈
∑
faces

sfclf~uf (~xc − ~xf) (60)

Now we rewrite the integral to get a closer approximation, analogous to [17]:

ˆ
∂Ω

(~u · ~n)(~x− ~xc) dA =

ˆ
Ω
∇ · (~u(~x− ~xc)) dV =

ˆ
Ω

(∇ · ~u)(~x− ~xc) + (~u · ∇)(~x− ~xc) dV (61)

Then (~u · ∇)(~x− ~xc) = ~u gives us

ˆ
Ω
~u dV =

ˆ
∂Ω

(~u · ~n)(~x− ~xc) dA−
ˆ

Ω
(∇ · ~u)(~x− ~xc) dV (62)

If we substitute ~u = ~uc + (~x − ~xc) · (∇~u)c + 1
2((~x − ~xc)2 : (∇∇)~u)c + ... in the left hand side and

rearrange, where we use Vc =
´

Ω dV and ~xG = 1
Vc

´
Ω ~x dV (the centroid), we get a corrected velocity

reconstruction

Vc~uc =

ˆ
f∈∂Ω

(~u · ~n)(~x− ~xc)dA− Vc
(

(∇ · ~u)c(~xG − ~xc)− (~xG − ~xc) · (∇~u)c

)
+ lfO(∆2

xy) (63)

We use the error term E1 = 1
Vc

l3f
12sfc

~tf (∇~u(~tf)·~nf) as computed in the previous paragraph. However,
since this was only computed for a linear field, the second part of the error was disregarded. Since
it is of the form lfO(∆2

xy) it gets absorbed in the last term of the equation above. Then

Vc~uc =
∑
faces

sfclfuf (~xf−~xc)+
l3f
12
sfc~tf (∇~u(~tf)·~nf)−Vc

(
(∇·~u)c(~xG−~xc)−(~xG−~xc)·(∇~u)c

)
+lfO(∆2

xy)

(64)
forms the corrected velocity reconstruction, where ~tf is a unit vector tangential to the face and

sfc ∈ {−1, 0, 1} ensures correct (counter-clockwise) orientation of the integral. Define the error
term by writing uc = uPc + E + O(∆2

xy), so E = E1 + (∇ · ~uc(~xG − ~xc) − (~xG − ~xc) · (∇~u)c. Then

define lf~nf = (ycR − ycL, xcL − xcR)T and lf~tf = (xcR − xcL, ycR − ycL)T =: (∆x,∆y)T . Here cL
denotes the circumcenter of the cell upstream of the face and cR denotes the circumcenter of the cell

downstream of the face under consideration. For ease of notation, we re-define (∇~u)c :=

(
ũcx ṽcx
ũcy ṽcy

)
in the circumcenter (as opposed to ∇~u0 above, which was transposed and defined in an arbitrary
point ~x0) in order to be able to interchange ~nf and ~tf and write E1 as follows:

1

12Vc

∑
faces

(((∇~u)c · lf~nf) · lf~tf)lf~tf =
1

12Vc

∑
faces

(
ũcx∆x2∆y − ṽcx∆y3 + ũcy∆x∆y2 − ṽcy∆x2∆y
ũcx∆x∆y2 − ṽcx∆x2∆y + ũcy∆y

3 − ṽcy∆x∆y2

)
(65)

21

and for each cell we get

E =
1

12Vc

∑
faces

(
ũcx∆x2∆y − ṽcx∆y3 + ũcy∆x∆y2 − ṽcy∆x2∆y
ũcx∆x∆y2 − ṽcx∆x2∆y + ũcy∆y

3 − ṽcy∆x∆y2

)
−
(
−2ũcx(xG − xc) + ũcy(yG − yc) + ṽcy(xG − xc)
2ṽcy(yG − yc) + ũcx(yG − yc) + ṽcx(xG − xc)

)
. (66)

We rewrite this as E =

(
aux1ũcx + auy1ũcy + avx1ṽcx + avy1ṽcy
aux2ũcx + auy2ũcy + avx2ṽcx + avy2ṽcy

)
with

aux1 =
1

12Vc

∑
cell faces

∆x2∆y − 2(xG − xc) (67)

avx1 = − 1

12Vc

∑
cell faces

∆x3 (68)

auy1 =
1

12Vc

∑
cell faces

∆x∆y2 − (yG − yc) (69)

avy1 = − 1

12Vc

∑
cell faces

∆x2∆y − (xG − xc) (70)

aux2 =
1

12Vc

∑
cell faces

∆x∆y2 − (yG − yc) (71)

avx2 = − 1

12Vc

∑
cell faces

∆x2∆y − (xG − xc) (72)

auy2 =
1

12Vc

∑
cell faces

∆y3 (73)

avy2 = − 1

12Vc

∑
cell faces

∆x∆y2 − 2(yG − yc) (74)

ũcx =
1

2Anb

∑
l∈Sl

(uc(1,l) + uc(2,l))(yn(2,l) − yn(1,l)) (75)

ũcy = − 1

2Anb

∑
l∈Sl

(uc(1,l) + uc(2,l))(xn(2,l) − xn(1,l)) (76)

ṽcx =
1

2Anb

∑
l∈Sl

(vc(1,l) + vc(2,l))(yn(2,l) − yn(1,l)) (77)

ṽcy = − 1

2Anb

∑
l∈Sl

(vc(1,l) + vc(2,l))(xn(2,l) − xn(1,l)) (78)

where Sl forms the connection between two neighbouring circumcenters of the cell under con-
sideration. Anb is the area spanned by the neighbouring circumcenters, as seen in figure 2. Now,
each neighbour in the link l can be considered clockwise or counterclockwise relative to the cell
under consideration, and in the above expressions, the counterclockwise (ccw) neighbour in each
calculation provides a positive contribution, while the clockwise (cw) neighbour gives a negative

22

Figure 2: Integration area for second order velocity reconstruction over the dual volume. The point
k is the circumcenter of cell c, and Anb is spanned by the points ni(k). Courtesy Frank Platzek [17]

contribution, and we can rewrite uc(1,l) + uc(2,l) =: ul, rename the xn(1,l), ... to xcw, xccw, ycw, yccw,
E becomes

1

2Anb

(
aux1

∑
l ul(yccw − ycw)− auy1

∑
l ul(xccw − xcw) + avx1

∑
l ul(yccw − ycw)− avy1

∑
l ul(xccw − xcw)

aux2
∑

l ul(yccw − ycw)− auy2
∑

l ul(xccw − xcw) + avx2
∑

l ul(yccw − ycw)− avy2
∑

l ul(xccw − xcw)

)
(79)

Collecting the calculations for E into a matrix A, we solve Auc = uPc +Cu(boundary conditions) using
BiCGstab. Note that the matrix A only needs to be computed once since it only uses the geometry
of the grid, and if ~xc = ~xG, it becomes the identity matrix. Since we need to compute the Perot-
velocities in every time step as well as the corrections, it is useful to find out when Perot’s method
suffices, and when we need to correct it.

As this method will be referenced a lot of times throughout this thesis, and it integrates over
the dual volume of a cell, it will from here on be known as “the dual method”.

5.2.2 Integration over the cell itself

Instead of using the dual volume defined by neighbouring circumcenters, it seems logical to use
the cell itself as the integration volume for the second-order correction. Define the approximation
to the faces to be the weighted average of the velocities in the neighbouring circumcenters, i.e.

ũf = (1 − αf)uc(i) + αfuc(nb). Remember αf =
||xcL−xf ||
||xcL−xcR|| , where cL is the upwind cell from

f . Then we write, using Green’s theorem, while keeping the coefficients aux1, . . . the same, a new

23

expression for E (~xn1, ~xn2 are the two nodes of face f):

ũcx =
1

Vc

∑
f

((1− αf)uc(i) + αfuc(nb))(yn1 − yn2) (80)

ũcy = − 1

Vc

∑
f

((1− αf)uc(i) + αfuc(nb))(xn1 − xn2) (81)

ṽcx =
1

Vc

∑
f

((1− αf)uc(i) + αfuc(nb))(yn1 − yn2) (82)

ṽcy = − 1

Vc

∑
f

((1− αf)uc(i) + αfuc(nb))(xn1 − xn2) (83)

taking care that the integral is performed counterclockwise. The cell gets this contribution from
itself and from each of its neighbours. The matrix formed is slightly different from the matrix A
from the integration over the dual volume, but the rest of the algorithm is the same.

Looking ahead at the experiments in chapter 6, we see that it performs almost the same as
the second order method that integrates over the dual volume. This justifies not programming the
method in D-Flow FM and leaving it out of discussion after the Matlab experiments.

5.3 Least Squares solution

This method is, in contrast to the previous section, not a correction for Perot but an alto-
gether different method. The least squares (LSQ) method works by minimizing the L2-error√∑

c
Vc∑
c Vc

(~uLSQc − ~uexact
c)2. For each cell the algorithm selects the faces belonging to the cell

and the faces adjacent to the cell’s own faces, record their uf , the normal vector (nx, ny)
T , for

which we can just take the cosine and sine of the face, and the distance (∆x,∆y) of the face center
to the cell circumcenter. Each face gets a row in the following matrix, then the algorithm solves
the system (this system is constructed and solved for each cell; it is possible to put it all in a big
matrix but this may take more time and certainly takes a lot more memory) [20] to compute the
velocity vector and its gradient.


...

...
...

...
...

...
nx ny nx∆x ny∆x nx∆y ny∆y
...

...
...

...
...

...
...

...
...

...
...

...





u
v
∂u
∂x
∂v
∂x
∂u
∂y
∂v
∂y


= ~uf (84)

For the advection vector add the columns n2
x∆x+ nynx∆y and nxny∆x+ n2

y∆y to the matrix,
while the second derivatives can be computed with the columns

∂2u

∂x2
← nx∆x∆x,

∂2u

∂y2
← nx∆y∆y,

∂2v

∂x2
← ny∆x∆x,

∂2v

∂y2
← ny∆y∆y,

∂2u

∂x∂y
← nx∆x∆y,

∂2v

∂x∂y
← ny∆x∆y (85)

24

and the diffusion can be computed from the second derivatives: (∂
2u
∂x2

+ ∂2u
∂y2

, ∂
2v
∂x2

+ ∂2v
∂y2

). Of course
we assume here that the field is smooth enough, so we have equality of mixed partials. Since we
need the system to be over-determined (more rows than columns, so more faces than columns), we
do not want too many columns, hence we need to find out which quantities we want to compute
in this matrix. The mixed partials help stabilize [20], but the advection and non-mixed second
derivatives are not very accurate and have a negative influence on the accuracy of the velocity
and gradient. Both advection and diffusion computed by this method are less accurate than the
interpolated methods described above, which is why we will only use this method to find the velocity
and gradients.

Note that, if the grid is close to regular, the normal vectors of different faces will be aligned
with each other, and some rows in the matrix are multiples of each other, causing the matrix to be
singular, and the system might not have a unique solution. Hence, in contrast to the other methods
described, the least squares interpolation performs best on highly irregular grids.

5.4 Hybrid method

We can combine the derivations of the implicit method with the least squares method. Comput-
ing the velocities and first-order derivatives with a least squares method as described above, we
can discard the velocities and substitute the derivatives in the expression E and get a corrected
approximation for (u, v)c:

~ucorrected
c = ~uPerot

c + ELSQ. (86)

where ELSQ is just E as in section 5.2.1 but with the least squares derivatives. This is computa-
tionally less expensive than the implicit dual method, which needs to solve a larger matrix in each
step, but a little more expensive than using Perot or computing everything with the least squares
method. However, it might combine the best of both worlds and is hence worth investigating.

5.5 Other options for velocity reconstruction and alignment index

Other ways to design hybrid methods would be to use Perot’s reconstruction on aligned cells and
a least squares reconstruction on irregular pieces of the grid. For this it is necessary to define an
alignment index [15, eqn. 28]. This index sums the differences in x- and y-coordinates of two faces
opposite each other and divides them by the face length for all faces of a cell. Peixoto and Barros
call a cell badly aligned if this index is bigger than 0.01, which is cause for them to use the least
squares solution. They characterize their implementation of a hybrid scheme as ’effective’.

5.6 Boundary conditions

The second-order correction methods use, for each cell, the Perot-reconstructed ~uc from neighbour-
ing cells. Since those are not always available at the domain boundaries, we construct a layer of
extra cells around the boundary called ghost cells, where we can prescribe the boundary conditions.
Ghost cells are only defined by their circumcenter, which is defined by mirroring the circumcen-
ter of the boundary cell in the domain wall. More precisely, the face coordinates are halfway
between the two circumcenters, i.e. ~xf = 1

2(~xc(i) + ~xc(g)), and halfway between the cell corners:

~xf = 1
2(~xn1 +~xn2), where c(i) is the interior cell and c(g) the ghost cell. Therefore we can compute

~xc(g) = ~xn1 + ~xn2 − ~xc(i). (87)

25

At a water-water boundary, we can just prescribe a velocity or water level for the ghost cells.
At a land-water boundary, we need to take care of slip conditions. For a no-slip wall, the water in
contact with the wall is not moving, and we can prescribe that ~uc(g) = −~uc(i), for a full-slip wall,
there is no shear stress and we can prescribe ~uc(g) = ~uc(i). For a partial slip wall, we apply the
logarithmic law of the wall. This can all be programmed to be solved implicitly. More formally, we
can look at the tangential velocity at the domain wall ~uW and consider turbulence.

In a fully developed flow, the velocity has a logarithmic profile horizontally. In the fluid adjacent
to the wall, the flow will be laminar (a viscous sublayer). Write the law of the wall as

ū =
~u∗ · ~n
κ

ln(1 +
δxy
δ0

) (88)

where κ ≈ 0.4 is the von Karman constant, δxy is the distance from the wall and δ0 is the thickness
of the viscous sublayer, and we only look relatively close to the wall.

Since an extremely fine discretization in order to discretize the logarithm would be unwieldy,
we define ~u∗ as a cut-off point of the logarithmic function (at some point, use a tangent to the
velocity profile and see where it intersects with δxy = 0, this is ~u∗) and use ~uW = ~u∗ (~uW is the
velocity at the wall). Now consider the equation

λ~uW + L(1− λ)
∂~uW
∂~n

= 0, λ ∈ [0, 1] (89)

Then define the constant wp = κ

ln(1+
δxy
δ0

)
as the partial slip coefficient and solve ~uc(boundary) =

(1 − 2wp)~uc(interior). We do not actually compute ~uc(·) here, but this expression appears as a
diagonal element in the matrix A for cells which are adjacent to the boundary. In summary, we
define a general slip coefficient c to deal with all boundary conditions at the same time and compute
the diagonal element in A for a cell adjacent to a closed boundary:

c =


−1 no slip (water at wall not moving)
2wp − 1 partial slip
1 free slip (no shear stress at wall)

(90)

A(i, i) =
∑

nbcw,nbccw

−aux1 · c · (ynbccw − ynbcw) + auy1 · c · (xnbccw − xnbcw)

−avx1 · c · (ynbccw − ynbcw) + avy1 · c · (xnbccw − xnbcw)

−aux2 · c · (ynbccw − ynbcw) + auy2 · c · (xnbccw − xnbcw)

−avx2 · c · (ynbccw − ynbcw) + avy2 · c · (xnbccw − xnbcw) (91)

where xnbccw is the circumcenter of the counterclockwise neighbour to cell i and xnbcw is the
circumcenter of the clockwise neighbour to cell i. The sum is taken over all pairs of neigbours of
cell i that have each other as neighbour as well.

26

6 Experiments with a simplified model

6.1 The model

These tests make use of a simplified model of the Shallow Water Equations implemented in Matlab;
the model takes files that describe a grid as input, an analytical velocity function which is applied
to the uf , and allows the user to choose a computational method for velocity vector reconstruction
(Perot’s method, the dual- and cell-integrated method, the least squares method LSQ and the
hybrid method) and advection (the first order upwind FOU, second order upwind SOU, central
method, α-weighted method and face-integrated using Simpson’s rule FIS) are used. Then it
reconstructs the velocity, its gradients, the advection and diffusion for the entire grid, but it does
not take into account the time integration, water depth, the discretization of the bottom or the
boundary conditions. As the stencil of the second order methods needs some boundary conditions,
there are ghost cells introduced which consist only of a circumcenter. However, the velocities in
the ghost cells are not reconstructed, but are all zero. Each velocity field is scaled with the length
of the grid in x-direction xmax − xmin and the length of the grid in y-direction ymax − ymin, which
are both just the difference between the largest and smallest x− resp. y-coordinate.

The matrix solver BiCGstab is chosen because it is stable for asymmetric sparse matrices, (the
matrix A is not symmetric, not skew-symmetric and the sparsity pattern is not symmetric either),
converges fast (in iterations; not necessarily in computing time) even when the matrix has a large
bandwidth (this is of course dependent on the indexing of the cells, so we might be able to choose
a faster solver / have BiCGstab converge faster if we permute the matrix entries such that the u
and v are interlaced).

First we will discuss the various discretizations for advection and diffusion in the Matlab scripts,
then proceed to the experiments.

6.1.1 First-order upwind advection

Assume cell 1 is upwind from cell 2, that is, there is flow from cell 1 entering cell 2. The cells then
contribute to each others advection with the amount of hfuc1 · uf · lfsfc, which is added to the
advection of cell 1 but subtracted from the advection of cell 2. For each cell, a summation over all
neighbouring cells is performed, resulting in

Adv(~xc) =
∑

faces of cell

uc1 · uf · lfsfc (92)

and similar for the v-component.

6.1.2 Second-order upwind advection

In inner cells, the advection is computed as the sum over all faces of a first order Taylor approxi-
mation:

Adv(~xc) =
∑

faces of cell

(uc + (xf − xc)
du

dx

∣∣∣∣
c

+ (yf − yc)
du

dy

∣∣∣∣
c

)lfufsfc (93)

and analogously for the v component. In boundary/ghost cells it is changed to second order
downwind. An alternative would be using the gradients from the neighbouring interior cell with
the uc of the ghost cell, but the downwind choice is more consistent.

27

6.1.3 α-weighted method for advection

The weighing factor α is computed for each face by the formula α = Area(n1, n2, c1)
Area(n1, n2, c1, c2) , in other words:

the area spanned by the circumcenter of the cell that has outflow through that face and the vertices
of the volume divided by the area of both circumcenters and vertices belonging to that face. In
well-behaved grids, α ∈ (0, 1) for all faces. However, if cells have an obtuse angle, the circumcenter
may be outside of the cell, and α for the face opposite the biggest angle will be negative. In the
α-method, cell 1 obtains advection in the amount of

Adv(~xc) =
∑

faces of cell

(α · uc1 + (1− α) · uc2) · uf · lfsfc, (94)

while the same amount is subtracted from the advection of the neighbouring cells, resp. for each
face. Again, this is summed over all neighbouring cells and the calculation for the v-component is
similar.

6.1.4 Central method for advection

The central method is obtained by setting each α equal to 1
2 in the previous method. When the

grid consists of squares, rectangles or equilateral triangles, this is exactly the same, but as the grid
becomes more irregular, the central method deteriorates compared to the α method.

6.1.5 Face-integrated method (Simpson rule) for advection

This method uses a three-point numerical integration method on each face. The contributions in
the endpoints n1 and n2 of the face are reconstructed using a first order Taylor polynomial (same
for the v component)

un = uc + (xn − xc) ·
du

dx

∣∣∣∣
c

+ (yn − yc) ·
du

dy

∣∣∣∣
c

(95)

while the contribution in the face center is given by

ũf = uc + (xf − xc) ·
du

dx

∣∣∣∣
c

+ (yf − yc) ·
du

dy

∣∣∣∣
c

(96)

and again for the v component. The integral over the face is 1
6(un1 + 4ũf + un2). The advection

of the cell is then the sum of the integrals over the faces, each multiplied with uf lf , hence the
computation becomes

Adv(~xc) =
∑

faces of cell

uf lf
1

6
(un1 + 4ũf + un2). (97)

If the cell is a virtual cell, the gradients from the neighbouring inner cell are used.

6.1.6 Discrete advection: difficulties

Every one of these methods has its own advantages and drawbacks, though some are common to
all methods. When we take the face values and integrate to get cell values, these can be seen as one
point Gaussian quadrature, which has second order accuracy. If the face values are second order
as well, we get a product of second order errors in the circumcenter, which has a cumulative effect

28

and the result is that, with a linear velocity field, we do not get exact results anymore. Also, we
take the value uf = u(~xf) · nf , i.e. a point value. For linear velocity fields, the velocity actually
varies along a face so this gives us a second order error (the first order error gets integrated out
with the circle integral). This also assumes that the advection does not change sign within the cell.
Taking the velocity along the entire face, though, would not be compatible with the discretization
of the continuity equation. This means that we can use the gradients in xc, but not those in xf .

6.1.7 Analytical advection using Gauss quadrature

In the Matlab experiments we can specify a formula for the velocity field, allowing us to com-
pare the reconstructed velocities and their gradients to the analytical value. This gives us several
methods to compute the analytical advection: as point values, as integral over the cell, or as
integral over the faces interpolated to the cell. Matlab can evaluate symbolic expressions and
differentiate them, so if (u(x, y), v(x, y)) is given, Matlab can symbolically differentiate and then
evaluate Adv(~xc) =

(
u∂u∂x + v ∂u∂y , u

∂v
∂x + v ∂v∂y

)
c

in the point ~xc.
Another method is using Gauss quadrature over the faces. First we write, using the divergence

theorem (and a unit vector ~n = (cos f, sin f) (where the sine and cosine are of the angle between
the face f and the x-axis) normal to the face f), that

VcAdv(~xc) =

¨
Ωc

(∇ · ~u~u) dΩc =

ˆ
∂Ωc

~u~u · ~n ds =
∑

faces of Ω

ˆ
face

(
u
v

)(
u cos f + v sin f

)
ds. (98)

If the face has endpoints (a1, b1) and (a2, b2), we parametrize it with the curve

~c(t) =
1

2

(
a1 + a2

b1 + b2

)
+
t

2

(
a2 − a1

b2 − b1

)
, −1 ≤ t ≤ 1. (99)

Note that the point 1
2(a1 + a2, b1 + b2) is the midpoint ~xf of the face. We then use the change of

coordinates formula where |~c′(t)| = 1
2

√
(a2 − a1)2 + (b2 − b1)2 = 1

2 lf and the integral becomes∑
faces of Ω

|~c′(t)|
ˆ

face

(
u(~c(t))
v(~c(t))

)(
u(~c(t)) cos f + v(~c(t)) sin f

)
ds. (100)

We will approximate this last expression with a quadrature rule. An n-point Gaussian quadrature
yields an exact result for polynomials of degree 2n − 1 or less. The 3-point Gaussian quadrature

over [−1, 1] is defined on the points 0,±
√

3
5 with weights 8

9 ,
5
9 , respectively. The integral of the

polynomial g(x) with degree 5 or less is then equal to

ˆ
g(x) dx =

ˆ 1

−1
g(x) dx =

5

9
g(−

√
3

5
) +

8

9
g(0) +

5

9
g(

√
3

5
). (101)

Applying this to the advection integral gives

VcAdv(~xc) =
∑

faces of cell

lf
2

(
8

9

(
u(xf)
v(yf)

)(
u(xf) cos f, v(yf) sin f

)
(102)

+
5

9

u(1
2(a1 + a2)± 1

2

√
3
5(a2 − a1))

v(1
2(b1 + b2)± 1

2

√
3
5(b2 − b1))

u(1
2(a1 + a2)± 1

2

√
3
5(a2 − a1)

)
cos f + ...

...+ v
(

1
2(b1 + b2)± 1

2

√
3
5(b2 − b1)

)
sin f

)

29

Now the right hand side is fifth order accurate, but dividing by the cell surface costs two orders,
hence Adv(xc) is third order accurate.

A third possible approximation is using a Gaussian quadrature in two dimensions, hence over
the entire cell. An n-simplex Sn has n + 1 vertices xi (so for a triangle, n = 2). First find the
centroid G =

∑n+1
i=1

xi
n+1 and let V be the volume of Sn. Then define the points yi = 2

n+3xi + n+1
n+3G

and compute the coefficients an = (n+3)2

4(n+1)(n+2)V and cn = −(n+1)2

4(n+2) V . For a cubic polynomial g, the

following quadrature rule is exact [11]:

ˆ
Sn

g dV = cng(G) + an

n+1∑
i=1

g(yi). (103)

The second method (3-point method on the faces) is the one that was used in the Matlab
experiments of chapter 6 in order to find the analytical values of the advection and determine the
errors in the different advection discretizations.

6.1.8 Diffusion

The diffusion is given by the Laplacian ∇2~u = ∇ · (∇~u) = (∂
∂x ,

∂
∂y)(∂u∂x ,

∂v
∂y)T = ∂2u

dx2
+ ∂2u

dy2
. In inner

cells, the net flux through the boundary is zero and we get, using Green’s thm,

ˆ
∂V
∇~u · ~n ds = 0 ⇔

ˆ
V
∇2~u dV = 0 (104)

Since diffusion spreads out equally in all directions, we can use a central approximation for inner
cells if the gradients of u are available. Then the diffusion is the sum over all faces:

1

2

∑
faces of cell

sfc

(
∂u

∂x

∣∣∣∣
c

+
∂u

∂x

∣∣∣∣
nb

+
∂u

∂y

∣∣∣∣
c

+
∂u

∂y

∣∣∣∣
nb

)
lf (105)

and similar for the v-component. The sign indicates that what is added to the diffusion of one cell
via face f , will be subtracted from the cell neighbouring at face f , because the cells have opposite
orientations (not because of mass conservation, which is the mechanism behind the same result at
the advection calculation). This discretization will be employed in the Matlab experiments.

6.2 Test description

We run experiments on two small grids (see figure 3), trying all velocity reconstruction methods:
Perot, second order over the dual volume, second order over the cell itself, least squares reconstruc-
tion and the hybrid method. We can compute the gradients for Perot’s method in the exact same
way as ũx etc in the dual method. The least squares method computes only uc, vc, ucx, vcx, ucy, vcy,
but not advection or second derivatives, as this requires adding extra columns to the matrix,
which decreases accuracy. The velocity fields are the constant field (u, v) = (2, 3), the lin-
ear field (u, v) = −2(y − ymin)/(ymax − ymin), 3(x − xmin)/(xmax − xmin) and the quadratic field
u = −3((y− ymin)2)/((ymax− ymin)2), v = 2(x−xmin)/(xmax−xmin), on a fully triangular grid and
a grid consisting of triangles and rectangles (named “mixed” in the table).

All matrix equations are solved by the BiCGStab method with a tolerance of 10−12. For least
squares, it needs to be mentioned that the method cannot reconstruct the velocities in the four

30

corner cells of the triangular grid: the matrix-vector equation does not have a solution and these
cells are left out of the error calculation. This is due to the matrix being row-deficient, which may
be caused by the corner cells having a right angle.

Table 1: Matlab L∞ errors for three fields on two maps

Triangular grid Mixed grid

Constant velocities: Constant velocities:
Perot Dual Cell LSQ Hybrid Perot Dual Cell LSQ Hybrid

uc 8·10−15 3·10−11 2·10−10 5·10−11 8·10−15 uc 1·10−1 4·10−2 1·10−1 4·10−10 1·10−1

vc 8·10−15 2·10−11 8·10−10 1·10−10 8·10−15 vc 2·10−1 2·10−1 2·10−1 2·10−10 2·10−1

∂u
∂x 8·10−17 4·10−13 1.5·10−12 9·10−14 0 ∂u

∂x 4·10−3 4·10−3 4·10−3 1·10−11 0
∂v
∂x 1·10−16 2.5·10−13 8·10−12 1·10−12 0 ∂v

∂x 6·10−3 6·10−3 6·10−3 1·10−10 0
∂u
∂y 6·10−17 3·10−13 2·10−12 6·10−13 0 ∂u

∂y 4·10−3 3·10−3 3·10−3 1·10−11 0
∂v
∂y 8·10−17 2·10−13 6·10−12 3·10−13 0 ∂v

∂y 5·10−3 5·10−3 5·10−3 4·10−12 0

Linear velocities: Linear velocities:
Perot Dual Cell LSQ Hybrid Perot Dual Cell LSQ Hybrid

uc 2·10−2 2·10−12 10·10−11 2·10−11 2·10−2 uc 3·10−2 2·10−2 3·10−2 1·10−11 3·10−2

vc 4·10−3 2·10−12 4·10−10 8·10−11 4·10−3 vc 4·10−2 4·10−2 6·10−2 2·10−11 4·10−2

∂u
∂x 1.5·10−4 2·10−14 8·10−13 7·10−14 0 ∂u

∂x 3·10−3 3·10−3 3·10−3 1·10−13 0
∂v
∂x 3·10−5 2.5·10−14 4·10−12 1·10−12 0 ∂v

∂x 1·10−3 1·10−3 1·10−3 6·10−13 0
∂u
∂y 2·10−4 2·10−14 1·10−12 1·10−12 0 ∂u

∂y 3·10−3 3·10−3 3·10−3 6·10−13 0
∂v
∂y 3·10−5 3·10−14 3·10−12 8·10−14 0 ∂v

∂y 1.5·10−3 2·10−3 2·10−3 4·10−13 0

Quadratic velocities: Quadratic velocities:
Perot Dual Cell LSQ Hybrid Perot Dual Cell LSQ Hybrid

uc 4·10−2 9·10−3 7·10−3 4·10−3 6·10−2 uc 8·10−2 8·10−2 8·10−2 1·10−3 8·10−2

vc 1.5·10−2 8·10−4 3·10−3 7·10−3 1.5·10−2 vc 6·10−2 6·10−2 7·10−2 2·10−3 6·10−2

∂u
∂x 4·10−4 1·10−4 1·10−4 6·10−5 0 ∂u

∂x 2.5·10−3 3·10−3 3·10−3 1·10−4 0
∂v
∂x 1·10−4 6·10−6 3·10−5 1·10−4 0 ∂v

∂x 1.5·10−3 2·10−3 2·10−3 1·10−3 0
∂u
∂y 6·10−4 3·10−4 3·10−4 4·10−3 6·10−3 ∂u

∂y 3·10−3 3·10−3 3·10−3 5·10−4 12·10−3

∂v
∂y 1·10−4 6·10−6 3·10−5 5·10−5 0 ∂v

∂y 2·10−3 2·10−3 2·10−3 1·10−4 0

The table 1 gives the largest numerical error L∞ for each test case. The advection and diffusion
will be deferred to section 6.4.

If we interpolate uf back from uc again (constructing the uf for the next timestep, but without
accounting for ζ and other quantities), using the formula ũf = (αuc1 +(1−α)uc2) ·~n, we expect the
difference with the original uf to be small. For a linear velocity field, this difference is near machine
precision for Perot’s method, but the higher-order reconstructions do not form a conservative field.
In contrast to the uf , the ũf do not form a conservative field. In figure 4, the difference between
uf and ũf is plotted for the linear field on the mixed grid.

6.3 Results

We can see from the table 1 that any higher-order reconstruction is an improvement on Perot’s
velocity reconstruction. For a constant or linear field on the fully triangular grid, the dual and cell-

31

(a) Triangular grid (137 cells) (b) Mixed grid (329 cells)

Figure 3: Grids for the Matlab experiments, black dots represent cell circumcenters ~xc, cyan crosses
represent face centers ~xf

centered methods come close to the tolerance for the matrix solver, while Perot still has errors of
O(10−2). For the mixed grid, the differences are not as spectacular, but the second order methods
still improve on Perot. As the velocity field is of order 1, the maximum error in table 1 is 0.2 for
uc for the constant field with Perot’s reconstruction, where u = 2, which means that the error is
around 10%. However, most errors are only fractions of percentages.

Comparing the errors over the whole grid, it is clear that the methods that integrate over
the dual volume and the cell itself are almost the same, and smaller than solver precision. This
justifies programming only one of them in Fortran for the tests in D-Flow FM. The least squares
reconstruction seems to be the best choice for a constant or linear field, though its quality declines
when choosing a higher order field. It also becomes unstable when time-stepping is used in D-
Flow FM, see section 7. Furthermore, all methods seem to perform best when only triangles
are involved, this may be caused by the fact that the circumcenter is not uniquely defined for
quadrilaterals (though it is unique for rectangles). It is also possible that the transition between
two kinds of cells causes an extra disturbance. It is noteworthy that the gradients for the second
order methods are more accurate than the velocity field; a possible explanation for this is the fact
that the BiCGStab method, while it is only employed to solve for (uc, vc), it uses in its algorithm
the residual which is based on a gradient.

Since the second order methods are meant to improve the velocity, advection and diffusion
discretization, we will proceed with a convergence study. As the dual- and cell-integrated methods
perform equally well, only one of these needs to be included. The full least squares method is also
added, as it performs better than the hybrid method where the velocities are concerned.

32

(a) Dual (b) Cell

(c) Least squares
(d) Hybrid (note that the line for hybrid method
coincides with the line for Perot)

Figure 4: Error in ũf ; interpolated from uc for the mixed grid with linear velocity field.

33

6.4 Convergence for advection methods

In this section the convergence of the five advection methods (first-order upwind FOU, second-order
upwind SOU, Central, α-weighted and integrated over the face using Simpson’s rule FIS) and the
diffusion is studied over grids of different sizes and related to the convergence of the velocity and
the velocity gradient.

6.4.1 Test description

For this test, we have three grids of triangular cells, one with 15 cells, one with 60 cells (the 15 cells
split in 4), and one with 240 cells that is again a refinement of the 60-cell grid (see figure 5). A
triangle is split in four triangles by connecting the midpoints of the faces. The grids are not regular
since the center of mass of each triangle does not coincide with the circumcenter, hence Perot’s
velocity reconstruction is not second order accurate. As the circumcenter is uniquely defined for
all triangles, but not for all quadrilaterals, only triangles are studied.

Both the dual correction method and the least squares are computed with BiCGstab with a
tolerance of 1·10−12.

Note that the velocity field is divergence free, which may also have a positive effect on the
results. This is, however, necessary for mass conservation.

We expect linear convergence for the first order advection methods: first order upwind, central
and alpha and quadratic convergence for the second order advection methods: second order upwind
and Simpson’s rule over the faces, but in the methods we assume uf to be constant, while it varies
over the face. When making the integral over ∂Ω, we get rid of the first order error but not of
the second order error in uf . This error gets multiplied with the velocity and gradient, hence the
convergence of these methods should, for second order upwind and Simpson’s rule, be better than
linear but probably not quadratic.

To determine the convergence, the errors

L∞ = max
1≤i≤#cells

(yi − f(xi)) (106)

L1
w =

1∑#cells
i=1 Vc(i)

#cells∑
i=1

|yi − f(xi)|Vc(i) (107)

L2
w =

√√√√ 1∑#cells
i=1 Vc(i)

#cells∑
i=1

(yi − f(xi))2Vc(i) (108)

where yi are the measured values in the circumcenter of cell i and f(xi) are the analytical velocities
in the point xc are computed and recorded in tables.

We can find convergence rates (using some error L ∈
{
L∞, L1

w, L
2
w

}
) by solving the equation

L(coarse grid) = 2rL(fine grid) (109)

for r, where the fine grid is one step refined with respect to the coarse grid; i.e. the convergence rate
between the 15-cell grid and the 60-cell grid, and the rate between the 60-cell grid and the 240-cell
grid are computed. This gives r = log(L(coarse grid)/L(fine grid))/ log(2), where the logarithm is
the natural logarithm.

34

Figure 5: Grids for the advection convergence tests

(a) 15 cells

(b) 60 cells

(c) 240 cells

35

Negative values imply no convergence, if the convergence rate r is 1, we have found first order
convergence, if r = 2 we have second order convergence, and so forth. This method assumes that
the error does not change sign within the cell.

The tolerance of BiCGStab is 10−12, hence all errors of that size or smaller can be considered
machine precision. For machine precision errors, convergence is not possible, which will be indicated
in the convergence tables using the marker “s.p.” (for solver precision). When the rate is negative,
there is no convergence, which will be indicated with the marker “ no conv.”.

6.4.2 Constant velocity field

A constant velocity field gives solver-precision errors for all velocity reconstruction methods and
all computed quantities on a triangular grid (see table 1), hence a convergence study would not be
interesting and we proceed directly to the linear velocity field.

6.4.3 Linear velocity field: results

For the linear velocity field (u, v) = −2(y − ymin)/(ymax − ymin), 3(x − xmin)/(xmax − xmin). with
Perot’s reconstruction, assuming that the grid is not regular, the first order error term E exists,
but the second order error term does not. Since we compute the gradient for Perot’s velocity
reconstruction using ũPcx = 1

V

∑
f (uPcw + uPccw)(yccw − ycw), the gradient may have a zeroth order

error. We know uf has a first order error, which drops out when we take the sum, but the overall
error in the first order upwind will still be first order. In second order upwind, we may get zeroth
order, the α and central will have first order, and the face-integrated method may have zeroth order
errors.

For second order reconstruction, ~uc = ~uPc +E is exact, but the gradients have a first order error,
allowing a better performance for the second-order upwind and the face-integrated method.

Table 2 shows the L∞ error, table 3 gives the L1 error, table 4 gives the L2 error and table 5
gives the convergence rates in L1 and L∞. The tables show solver precision errors for the second
order velocities and their gradients, and first order convergence for Perot’s velocity reconstruction
(but sublinear in L1 for the gradients). The first order upwind advection method does not seem to
converge, the second order upwind converges for the dual and least squares velocity reconstruction
in both L1 and L∞. The central and α-weighted advection methods converge sublinearly in L1

for Perot and the dual method but not for the least squares velocity method and not in L∞. The
face-integrated method using Simpson’s rule, which gives the same advection field as the second
order upwind method for Perot’s and the dual reconstruction method, only converges for the dual
method. The diffusion calculation has solver precision in the second order methods for the L1 error,
it converges sublinearly in L∞ for Perot’s velocity reconstruction and linearly in L∞ for the second
order methods.

In conclusion, table 5 shows that using two second order methods on top of each other (i.e.
dual velocity reconstruction together with second order upwind advection) gives only first order
convergence.

6.4.4 Quadratic velocity field: results

For a quadratic field, we cannot reasonably expect solver precision errors, but we can expect
convergence. Table 6 shows the L∞ error, table 7 gives the L1 error, table 8 gives the L2 error and

36

table 9 gives the convergence rates in L1 and L∞. The velocity field is u = −3((y−ymin)2)/((ymax−
ymin)2), v = 2(x− xmin)/(xmax − xmin).

The tables show almost linear (sometimes sublinear, but occassionally better than linear) con-
vergence for Perot’s velocities and almost quadratic convergence for second order velocities. The
gradients for Perot converge sublinearly in L1 but not in L∞. The gradients for the second order
methods show almost linear behaviour.

First order upwind advection does not show convergence, while second order upwind advection
shows almost linear convergence in L1 for the second order methods, and in L∞ for the dual method.
The central and α advection methods show sublinear convergence for L1 but not for L∞. The face-
integrated method using Simpson’s rule shows sublinear convergence for L∞ and the diffusion has
sublinear convergence for L∞, sublinear convergence for the L1 error in the second order velocity
methods but no L1-convergence for Perot’s velocity reconstruction method.

None of the advection methods is particularly good here but the α-method seems to work best
for Perot’s velocity reconstruction, and the second order upwind advection should probably be used
for the second order velocity methods.

37

Table 2: Advection convergence for a linear field on three grids: L∞ error:

Perot Dual least squares
15 cells 60 cells 240 cells 15 cells 60 cells 240 cells 15 cells 60 cells 240 cells

uc 2.8·10−2 1.4·10−2 7.2·10−3 2.1·10−12 9.5·10−12 1.6·10−11 6.6·10−16 1.8·10−11 2.0·10−11

vc 1.8·10−2 1.2·10−2 6.2·10−3 1.0·10−12 7.1·10−12 1.7·10−11 1.1·10−15 6.1·10−11 2.2·10−11

∂u
∂x 5.4·10−5 6.3·10−5 6.4·10−5 3.6·10−15 3.6·10−14 1.6·10−13 5.6·10−18 4.7·10−14 7.3·10−14

∂u
∂y 6.5·10−5 1.1·10−4 1.1·10−4 5.7·10−15 7.5·10−14 2.3·10−13 2.2·10−18 6.3·10−14 2.4·10−13

∂v
∂x 6.0·10−5 6.4·10−5 6.4·10−5 2.4·10−15 3.7·10−14 2.3·10−13 1.5·10−18 4.2·10−13 1.2·10−13

∂v
∂y 4.0·10−5 5.1·10−5 5.9·10−5 1.7·10−15 5.8·10−14 2.0·10−13 1.2·10−18 8.5·10−14 2.1·10−13

FOU-adv(x) 2.9·10−3 3.2·10−3 3.4·10−3 3.0·10−3 3.3·10−3 3.4·10−3 3.5·10−3 1.1·10−2 2.9·10−2

FOU-adv(y) 2.2·10−3 2.6·10−3 2.7·10−2 2.4·10−3 2.8·10−3 2.9·10−3 2.5·10−2 6.1·10−2 1.3·10−1

SOU-adv(x) 5.4·10−4 7.8·10−4 8.6·10−4 2.0·10−4 1.0·10−4 5.0·10−5 2.0·10−4 1.0·10−4 5.0·10−5

SOU-adv(y) 7.4·10−4 8.2·10−4 9.6·10−4 2.9·10−4 1.5·10−4 7.4·10−5 2.9·10−4 1.5·10−4 7.4·10−5

Central adv(x) 1.6·10−3 1.8·10−3 1.9·10−3 1.6·10−3 1.8·10−3 1.9·10−3 1.1·10−2 2.6·10−2 5.6·10−2

Central adv(y) 1.2·10−3 1.1·10−3 1.1·10−3 1.1·10−3 1.1·10−3 1.1·10−3 1.3·10−2 3.1·10−2 6.7·10−2

α-adv(x) 3.2·10−3 3.6·10−3 3.8·10−3 3.2·10−3 3.5·10−3 3.8·10−3 1.1·10−2 2.7·10−2 5.6·10−2

α-adv(y) 2.2·10−3 2.1·10−3 2.2·10−3 2.1·10−3 2.1·10−3 2.2·10−3 1.3·10−2 3.1·10−2 6.7·10−2

FIS-adv(x) 5.4·10−4 7.8·10−4 8.6·10−4 2.0·10−4 1.0·10−4 5.0·10−5 4.6·10−3 1.3·10−2 3.0·10−2

FIS-adv(y) 7.4·10−4 8.1·10−4 9.5·10−4 3.0·10−4 1.4·10−4 7.4·10−5 2.8·10−2 6.4·10−2 1.3·10−1

diff(x) 1.09 0.57 0.29 1.10 0.55 0.27 1.10 0.55 0.27
diff(y) 0.91 0.45 0.23 0.90 0.45 0.22 0.90 0.45 0.22

38

Table 3: Advection convergence for a linear field on three grids: weighted L1 error:

Perot Dual least squares
15 cells 60 cells 240 cells 15 cells 60 cells 240 cells 15 cells 60 cells 240 cells

uc 1.1·10−2 5.9·10−3 2.9·10−3 7.8·10−12 9.8·10−11 5.1·10−10 1.6·10−14 9.2·10−11 2.9·10−10

vc 1.1·10−2 5.3·10−3 2.6·10−3 5.9·10−12 1.1·10−10 5.6·10−10 8.4·10−15 1.9·10−10 5.1·10−10

∂u
∂x 2.3·10−5 1.6·10−5 9.9·10−6 2.3·10−14 5.8·10−13 6.2·10−12 1.2·10−17 2.1·10−13 1.1·10−12

∂u
∂y 2.3·10−5 1.8·10−5 1.2·10−5 2.5·10−14 6.3·10−13 6.9·10−12 4.6·10−17 1.6·10−13 1.8·10−12

∂v
∂x 2.7·10−5 1.5·10−5 8.5·10−6 1.7·10−14 7.5·10−13 6.7·10−12 1.7·10−17 5.9·10−13 1.6·10−12

∂v
∂y 1.6·10−5 1.3·10−5 8.2·10−6 1.6·10−14 7.0·10−13 7.8·10−12 1.5·10−17 3.2·10−13 1.4·10−12

FOU-adv(x) 1.1·10−3 1.2·10−3 1.2·10−3 1.0·10−3 1.1·10−3 1.2·10−3 1.2·10−3 1.5·10−3 1.7·10−3

FOU-adv(y) 8.1·10−4 8.7·10−4 9.1·10−4 8.6·10−4 9.1·10−4 9.4·10−4 4.7·10−3 4/9·10−3 5·10−3

SOU-adv(x) 2.1·10−4 1.9·10−4 2.0·10−4 8.8·10−5 4.4·10−5 2.2·10−5 8.8·10−5 4.4·10−5 2.2·10−5

SOU-adv(y) 2.0·10−4 2.2·10−4 2.2·10−4 1.2·10−4 6.1·10−5 3.1·10−5 1.2·10−4 6.1·10−5 3.1·10−5

Central adv(x) 4.9·10−4 2.7·10−4 1.5·10−4 4.5·10−4 2.5·10−4 1.3·10−4 2.2·10−3 2.1·10−3 2.0·10−3

Central adv(y) 3.8·10−4 2.3·10−4 1.3·10−4 3.6·10−4 2.2·10−4 1.3·10−4 3.2·10−3 3.3·10−3 3.3·10−3

α-adv(x) 9.1·10−4 5.0·10−4 2.8·10−4 8.6·10−4 4.7·10−4 2.6·10−4 2.6·10−3 2.3·10−3 2.1·10−3

α-adv(y) 7.3·10−4 4.3·10−4 2.4·10−4 7.0·10−4 4.2·10−4 2.4·10−4 3.3·10−3 3.5·10−3 3.4·10−3

FIS-adv(x) 2.0·10−4 1.9·10−4 2.0·10−4 8.8·10−5 4.4·10−5 2.2·10−5 5.4·10−4 5.6·10−4 6.0·10−4

FIS-adv(y) 2.1·10−4 2.3·10−4 2.2·10−4 1.2·10−4 6.1·10−5 3.1·10−5 4.3·10−3 4.3·10−3 4.3·10−3

diff(x) 1.2·10−7 2.2·10−7 3.1·10−7 1.1·10−17 1.5·10−16 7.8·10−16 1.9·10−20 4.2·10−17 1.4·10−16

diff(y) 1.3·10−7 1.7·10−7 2.3·10−7 7.5·10−18 1.7·10−16 8.5·10−16 4.6·10−21 1.0·10−16 1.3·10−16

39

Table 4: Advection convergence for a linear field on three grids: weighted L2 error:

Perot Dual least squares
15 cells 60 cells 240 cells 15 cells 60 cells 240 cells 15 cells 60 cells 240 cells

uc 2.1·10−4 5.3·10−5 1.3·10−5 1.1·10−23 3.9·10−22 3.1·10−21 1.3·10−28 1.1·10−21 1.8·10−21

vc 1.5·10−4 3.7·10−5 9.3·10−6 3.5·10−24 3.9·10−22 3.1·10−21 7.6·10−30 6.7·10−21 7.2·10−21

∂u
∂x 7.8·10−10 5.6·10−10 3.5·10−10 7.2·10−29 1.0·10−26 4.2·10−25 3.6·10−35 6.9·10−27 2.7·10−26

∂u
∂y 1.0·10−9 8.9·10−10 5.3·10−10 9.5·10−29 1.9·10−26 5.8·10−25 1.4·10−33 5.2·10−27 1.3·10−25

∂v
∂x 1.1·10−9 4.9·10−10 2.3·10−10 3.2·10−29 1.3·10−26 4.6·10−25 4.3·10−35 1.8·10−25 8.9·10−26

∂v
∂y 4.3·10−10 3.5·10−10 2.1·10−10 2.3·10−29 1.7·10−26 5.4·10−25 6.6·10−35 2.2·10−26 7.7·10−26

FOU-adv(x) 1.6·10−6 1.9·10−6 2.2·10−6 1.6·10−6 1.9·10−6 2.1·10−6 2.4·10−6 5.6·10−6 1.2·10−5

FOU-adv(y) 1.0·10−6 1.1·10−6 1.2·10−6 1.1·10−6 1.2·10−6 1.3·10−6 8.3·10−5 1.7·10−4 3.4·10−4

SOU-adv(x) 6.7·10−8 6.6·10−8 6.9·10−8 1.2·10−8 2.9·10−9 7.4·10−10 1.2·10−8 2.9·10−9 7.5·10−10

SOU-adv(y) 7.6·10−8 7.6·10−8 7.6·10−8 2.5·10−8 6.3·10−9 1.6·10−9 2.5·10−8 6.3·10−9 1.6·10−9

Central adv(x) 3.5·10−7 1.8·10−7 8.8·10−8 3.5·10−7 1.6·10−7 7.6·10−8 1.5·10−5 2.9·10−5 5.7·10−5

Central adv(y) 2.2·10−7 1.1·10−7 4.8·10−8 2.2·10−7 9.4·10−8 4.3·10−8 2.9·10−5 6.3·10−5 1.3·10−4

α-adv(x) 1.4·10−6 6.7·10−7 3.2·10−7 1.4·10−6 6.3·10−7 3.0·10−7 1.7·10−5 3.0·10−5 5.8·10−5

α-adv(y) 8.5·10−7 3.8·10−7 1.7·10−7 7.8·10−7 3.6·10−7 1.7·10−7 2.8·10−5 6.2·10−5 1.3·10−4

FIS-adv(x) 6.3·10−8 6.6·10−8 6.9·10−8 1.2·10−8 2.9·10−9 7.4·10−10 1.5·10−6 4.2·10−6 1.0·10−5

FIS-adv(y) 8.3·10−8 7.9·10−8 7.8·10−8 2.5·10−8 6.3·10−9 1.6·10−9 9.1·10−5 1.7·10−4 3.5·10−4

diff(x) 2.9·10−14 1.0·10−13 2.2·10−13 2.6·10−34 4.9·10−32 1.7·10−30 1.6·10−39 6.8·10−33 7.9·10−32

diff(y) 2.8·10−14 5.6·10−14 1.0·10−13 8.3·10−35 4.9·10−32 1.6·10−30 4.8·10−41 9.7·10−32 7.1·10−32

40

Table 5: Convergence rate r for linear field on three grids

Convergence rates based on L1
w:

Perot Dual Least squares

uc 1 1 s.p. s.p. s.p. s.p.
vc 1 1 s.p. s.p. s.p. s.p.
∂u
∂x 0.525 0.712 s.p. s.p. s.p. s.p.
∂u
∂y 0.325 0.619 s.p. s.p. s.p. s.p.
∂v
∂x 0.834 0.830 s.p. s.p. s.p. s.p.
∂v
∂y 0.319 0.686 s.p. s.p. s.p. s.p.

FOU-adv(x) no conv. no conv. no conv. no conv. no conv. no conv.
FOU-adv(y) no conv. no conv. no conv. no conv. no conv. no conv.
SOU-adv(x) 0.135 no conv. 1 1 1 1
SOU-adv(y) no conv. 0.0088 1 1 1 1
Central adv(x) 0.843 0.849 0.874 0.877 0.083 0.047
Central adv(y) 0.712 0.823 0.702 0.812 no conv. 0.014
α-adv(x) 0.852 0.866 0.867 0.87 0.155 0.092
α-adv(y) 0.748 0.858 0.731 0.847 no conv. 0.028
FIS-adv(x) 0.049 no conv. 1 1 no conv. no conv.
FIS-adv(y) no conv. 0.032 1 1 0.017 0.015
diff(x) no conv. no conv. s.p. s.p. s.p. s.p.
diff(y) no conv. no conv. s.p. s.p. s.p. s.p.

Convergence rates based on L∞:
Perot Dual LSQ

uc 1 1 s.p. s.p. s.p. s.p.
vc 1 1 s.p. s.p. s.p. s.p.
∂u
∂x no conv. no conv. s.p. s.p. s.p. s.p.
∂u
∂y no conv. no conv. s.p. s.p. s.p. s.p.
∂v
∂x no conv. no conv. s.p. s.p. s.p. s.p.
∂v
∂y no conv. no conv. s.p. s.p. s.p. s.p.

FOU-adv(x) no conv. no conv. -no conv. no conv. no conv. no conv.
FOU-adv(y) no conv. no conv. no conv. no conv. no conv. no conv.
SOU-adv(x) no conv. no conv. 1 1 1 1
SOU-adv(y) no conv. no conv. 1 1 1 1
Central adv(x) no conv. no conv. no conv. no conv. no conv. no conv.
Central adv(y) no conv. no conv. 0.099 no conv. no conv. no conv.
α-adv(x) no conv. no conv. no conv. no conv. no conv. no conv.
α-adv(y) 0.093 no conv. 0.013 no conv. no conv. no conv.
FIS-adv(x) no conv. no conv. 1 1 no conv. no conv.
FIS-adv(y) no conv. no conv. 1 1 no conv. no conv.
diff(x) 0.935 0.985 1 1 1 1
diff(y) 0.998 1 1 1 1 1

41

Table 6: Advection convergence for a quadratic field on three grids: L∞ error:

Perot Dual least squares
15 cells 60 cells 240 cells 15 cells 60 cells 240 cells 15 cells 60 cells 240 cells

uc 4.2·10−1 2.3·10−1 1.2·10−1 9.0·10−2 7.1·10−4 4.7·10−4 1.3·10−1 4.2·10−2 1.0·10−2

vc 2.9·10−1 1.8·10−1 1.0·10−1 2.0·10−2 1.2·10−2 3.3·10−3 5.7·10−2 1.2·10−2 3.0·10−3

∂u
∂x 5.3·10−4 9.2·10−4 1.1·10−3 4.3·10−4 2.0·10−4 1.3·10−4 4.0·10−4 2.3·10−4 1.3·10−4

∂u
∂y 1.2·10−3 1.3·10−3 1.5·10−3 5.8·10−4 4.0·10−4 2.0·10−4 1.3·10−3 7.9·10−4 3.9·10−4

∂v
∂x 8.0·10−4 7.5·10−4 8.2·10−4 7.6·10−5 6.6·10−5 2.8·10−5 2.1·10−4 9.8·10−5 4.9·10−5

∂v
∂y 4.5·10−4 5.9·10−4 7.2·10−4 4.9·10−5 4.6·10−5 2.2·10−5 4.6·10−4 2.5·10−4 1.3·10−4

FOU-adv(x) 4.7·10−3 8.0·10−3 9.3·10−3 5.7·10−3 9.3·10−3 1.1·10−2 5.7·10−3 2.8·10−2 7.0·10−2

FOU-adv(y) 6.1·10−3 9.1·10−3 1.1·10−2 1.3·10−3 1.5·10−3 1.6·10−3 1.1·10−2 2.6·10−2 5.6·10−2

SOU-adv(x) 3.4·10−3 1.1·10−2 1.3·10−2 1.8·10−3 1.2·10−3 7.2·10−4 1.7·10−3 1.1·10−3 7.7·10−4

SOU-adv(y) 5.8·10−3 9.4·10−3 1.3·10−2 3.4·10−4 2.3·10−4 1.3·10−4 5.3·10−4 6.6·10−4 4.8·10−4

Central adv(x) 3.0·10−3 2.3·10−3 3.1·10−3 2.8·10−3 2.6·10−3 2.3·10−3 1.2·10−2 2.9·10−2 6.1·10−2

Central adv(y) 1.3·10−3 2.4·10−3 2.9·10−3 1.1·10−3 1.2·10−3 1.3·10−3 5.9·10−3 1.3·10−2 2.9·10−2

α-adv(x) 4.3·10−3 3.8·10−3 3.7·10−3 3.8·10−3 4.0·10−3 4.0·10−3 1.3·10−2 3.0·10−2 6.2·10−2

α-adv(y) 1.5·10−3 2.0·10−3 2.2·10−3 1.9·10−3 2.3·10−3 2.5·10−3 5.8·10−3 1.3·10−2 2.9·10−2

FIS-adv(x) 3.4·10−3 1.1·10−2 1.3·10−2 1.8·10−3 1.3·10−3 7.4·10−4 4.6·10−3 2.4·10−2 6.6·10−2

FIS-adv(y) 5.8·10−3 9.4·10−3 1.3·10−2 4.2·10−4 2.4·10−4 1.4·10−4 1.3·10−2 2.7·10−2 5.7·10−2

diff(x) 2.92 1.50 0.78 2.84 1.53 0.795 2.24 1.35 0.751
diff(y) 0.559 0.293 0.157 0.606 0.303 0.151 0.695 0.314 0.153

42

Table 7: Advection convergence for a quadratic field on three grids: weighted L1 error:

Perot Dual least squares
15 cells 60 cells 240 cells 15 cells 60 cells 240 cells 15 cells 60 cells 240 cells

uc 1.0·10−1 4.8·10−2 2.3·10−2 8.2·10−1 7.4·10−1 7.2·10−1 1.02 1.15 1.16
vc 6.5·10−2 3.4·10−2 1.7·10−2 1.3·10−1 1.8·10−1 1.9·10−1 2.4·10−1 1.9·10−1 1.6·10−1

∂u
∂x 3.1·10−4 2.0·10−4 1.2·10−4 3.3·10−3 6.3·10−3 1.3·10−2 2.1·10−3 5.4·10−3 1.2·10−2

∂u
∂y 4.0·10−4 2.9·10−4 1.7·10−4 4.4·10−3 9.9·10−3 2.0·10−2 9.1·10−3 1.4·10−2 2.5·10−2

∂v
∂x 2.2·10−4 1.3·10−4 7.1·10−5 4.5·10−4 1.1·10−3 1.5·10−3 1.5·10−3 1.8·10−3 2.5·10−3

∂v
∂y 1.7·10−4 1.4·10−4 9.1·10−5 4.1·10−4 9.1·10−4 1.3·10−3 2.2·10−3 5.5·10−3 1.2·10−2

FOU-adv(x) 1.2·10−3 1.5·10−3 1.7·10−3 1.4·10−3 1.6·10−3 1.7·10−3 1.7·10−3 2.2·10−3 2.4·10−3

FOU-adv(y) 1.4·10−3 1.4·10−3 1.4·10−3 3.7·10−4 3.8·10−4 4.1·10−4 2.5·10−3 2.6·10−3 2.6·10−3

SOU-adv(x) 9.4·10−4 1.2·10−3 1.5·10−3 6.0·10−4 3.2·10−4 1.6·10−4 8.3·10−4 4.1·10−4 2.0·10−4

SOU-adv(y) 1.1·10−3 1.3·10−3 1.3·10−3 1.4·10−4 7.1·10−5 3.3·10−5 1.9·10−4 1.2·10−4 6.2·10−5

Central adv(x) 8.5·10−4 6.1·10−4 3.8·10−4 8.5·10−4 5.2·10−4 2.9·10−4 2.4·10−3 2.5·10−3 2.4·10−3

Central adv(y) 4.8·10−4 3.5·10−4 2.1·10−4 2.3·10−4 1.4·10−4 8.4·10−5 1.6·10−3 1.7·10−3 1.7·10−3

α-adv(x) 1.2·10−3 7.6·10−4 4.5·10−4 1.3·10−3 8.1·10−4 4.6·10−4 2.7·10−3 2.7·10−3 2.6·10−3

α-adv(y) 4.6·10−4 3.7·10−4 2.4·10−4 4.3·10−4 2.7·10−4 1.5·10−4 1.7·10−3 1.8·10−3 1.7·10−3

FIS-adv(x) 9.6·10−4 1.2·10−3 1.5·10−3 6.6·10−4 3.3·10−4 1.7·10−4 1.2·10−3 1.1·10−3 9.7·10−4

FIS-adv(y) 1.2·10−3 1.3·10−3 1.4·10−3 1.4·10−4 7.2·10−5 3.3·10−5 2.4·10−3 2.4·10−3 2.3·10−3

diff(x) 1.7·10−6 2.4·10−6 2.8·10−6 1.5·10−6 1.4·10−11 5.3·10−7 3.4·10−6 1.8·10−6 1.0·10−6

diff(y) 1.1·10−6 1.5·10−6 1.8·10−6 1.8·10−7 7.4·10−12 1.4·10−7 4.3·10−7 3.4·10−7 2.5·10−7

43

Table 8: Advection convergence for a quadratic field on three grids: weighted L2 error:

Perot Dual least squares
15 cells 60 cells 240 cells 15 cells 60 cells 240 cells 15 cells 60 cells 240 cells

uc 2.2·10−2 5.4·10−3 1.4·10−3 5.2·10−2 1.1·10−2 2.5·10−3 8.5·10−2 2.5·10−2 6.2·10−3

vc 9.8·10−3 2.6·10−3 6.6·10−4 1.7·10−3 1.0·10−3 3.0·10−4 6.6·10−3 1.1·10−3 2.2·10−4

∂u
∂x 1.1·10−7 7.0·10−8 4.4·10−8 9.7·10−7 8.8·10−7 8.8·10−7 5.4·10−7 6.7·10−7 7.8·10−7

∂u
∂y 2.6·10−7 1.7·10−7 9.4·10−8 1.7·10−6 2.1·10−6 2.2·10−6 7.4·10−6 4.9·10−6 3.9·10−6

∂v
∂x 1.2·10−7 6.0·10−8 2.9·10−8 1.9·10−8 3.3·10−8 2.1·10−8 2.2·10−7 1.4·10−7 9.3·10−8

∂v
∂y 4.4·10−8 4.3·10−8 2.6·10−8 1.7·10−8 2.5·10−8 1.4·10−8 5.5·10−7 6.8·10−7 7.9·10−7

FOU-adv(x) 2.7·10−6 4.8·10−6 6.2·10−6 4.5·10−6 6.9·10−6 8.1·10−6 5.5·10−6 2.3·10−5 4.4·10−5

FOU-adv(y) 4.5·10−6 5.1·10−6 5.8·10−6 2.6·10−7 2.6·10−7 2.7·10−7 1.8·10−5 3.9·10−5 7.9·10−5

SOU-adv(x) 1.8·10−6 5.6·10−6 8.5·10−6 6.4·10−7 1.8·10−7 4.9·10−8 9.0·10−7 2.4·10−7 6.4·10−8

SOU-adv(y) 4.3·10−6 5.0·10−6 5.6·10−6 3.1·10−8 8.1·10−9 1.7·10−9 6.6·10−8 2.4·10−8 7.2·10−9

Central adv(x) 1.5·10−6 7.6·10−7 4.1·10−7 1.7·10−6 6.3·10−7 2.4·10−7 1.9·10−5 4.1·10−5 7.9·10−5

Central adv(y) 4.4·10−7 3.8·10−7 2.4·10−7 1.2·10−7 5.2·10−8 2.2·10−8 6.1·10−6 1.4·10−5 2.9·10−5

α-adv(x) 3.1·10−6 1.3·10−6 6.0·10−7 3.7·10−6 1.6·10−6 7.1·10−7 2.1·10−5 4.2·10−5 8.0·10−5

α-adv(y) 4.1·10−7 3.5·10−7 2.0·10−7 4.1·10−7 1.9·10−7 8.4·10−8 6.0·10−6 1.4·10−5 2.9·10−5

FIS-adv(x) 1.8·10−6 5.6·10−6 8.5·10−6 6.8·10−7 1.9·10−7 5.1·10−8 2.9·10−6 1.4·10−5 3.2·10−5

FIS-adv(y) 4.4·10−6 5.2·10−6 5.8·10−6 3.5·10−8 8.4·10−9 1.8·10−9 2.0·10−5 4.1·10−5 8.1·10−5

diff(x) 4.2·10−12 1.4·10−11 3.2·10−11 3.1·10−12 1.3·10−12 6.7·10−13 1.3·10−11 5.9·10−12 2.9·10−12

diff(y) 3.2·10−12 7.4·10−12 1.4·10−11 5.2·10−14 7.7·10−14 3.8·10−14 3.7·10−13 2.2·10−13 1.5·10−13

44

Table 9: Convergence rate r for quadratic field

Convergence rates based on L1
w:

Perot Dual Least squares

uc 1.067 1.025 2.153 2.056 1.803 1.978
vc 0.947 0.992 1.493 1.899 2.265 2.269
∂u
∂x 0.635 0.734 1.006 0.963 0.474 0.820
∂u
∂y 0.481 0.727 0.854 0.955 1.395 1.150
∂v
∂x 0.808 0.856 0.703 1.534 1.726 1.514
∂v
∂y 0.267 0.618 0.792 1.486 0.594 0.833

FOU-adv(x) no conv. no conv. no conv. no conv. no conv. no conv.
FOU-adv(y) 0.0447 0.0003 no conv. no conv. no conv. no conv.
SOU-adv(x) no conv. no conv. 0.919 0.965 1.015 1.016
SOU-adv(y) no conv. no conv. 0.985 1.094 0.742 0.889
Central adv(x) 0.485 0.693 0.703 0.827 no conv. 0.0721
Central adv(y) 0.445 0.713 0.663 0.790 no conv. 0.018
α-adv(x) 0.627 0.736 0.670 0.820 no conv. 0.106
α-adv(y) 0.281 0.660 0.696 0.837 no conv. 0.0347
FIS-adv(x) no conv. no conv. 0.989 0.9995 0.144 0.165
FIS-adv(y) no conv. no conv. 0.948 1.103 0.0237 0.0401
diff(x) no conv. no conv. 0.802 0.734 0.939 0.807
diff(y) no conv. no conv. no conv. 0.542 0.331 0.461

Convergence rates based on L∞:
Perot Dual LSQ

uc 0.839 0.926 2.005 1.971 1.660 2
vc 0.640 0.849 0.722 1.879 2.262 1.989
∂u
∂x no conv. no conv. 0.916 0.935 0.864 1
∂u
∂y no conv. no conv. 0.544 0.990 0.796 1
∂v
∂x 0.0825 no conv. 0.205 0.877 1.111 1
∂v
∂y no conv. no conv. 0.486 1.007 0.864 1

FOU-adv(x) no conv. no conv. no conv. no conv. no conv. no conv.
FOU-adv(y) no conv. no conv. no conv. no conv. no conv. no conv.
SOU-adv(x) no conv. no conv. 0.518 0.782 0.538 0.558
SOU-adv(y) no conv. no conv. 0.598 0.839 no conv. 0.460
Central adv(x) 0.404 no conv. 0.121 0.138 no conv. no conv.
Central adv(y) no conv. no conv. no conv. no conv. no conv. no conv.
α-adv(x) 0.178 0.0542 no conv. 0.00603 no conv. no conv.
α-adv(y) no conv. no conv. no conv. no conv. no conv. no conv.
FIS-adv(x) no conv. no conv. 0.491 0.831 no conv. no conv.
FIS-adv(y) no conv. no conv. 0.817 0.765 no conv. no conv.
diff(x) 0.955 0.943 0.891 0.947 0.729 0.846
diff(y) 0.933 0.899 0.997 1.011 1.147 1.034

45

7 Numerical tests with the shallow water model

After the simplified model already discussed, we proceed with testing the velocity reconstruction
methods in the shallow water solver. This adds the influence of the bed discretization, the waterlevel
discretization and the time integration, which was first left out. All this is done in Fortran, as this
is faster than Matlab. The code to compute the second order reconstruction method over the dual
volume is added to the D-Flow FM program, but the method that integrates over the cell itself is
left out, as it is almost the same.

In D-Flow FM, we will try and simulate again a constant velocity field by taking a simple
channel flow with a constant bed slope and bottom friction. We will simulate a linear field using
a moving plates test and a quadratic field using a channel with a no-slip condition on the channel
walls. These can all be done on the same grids. Taking a channel with length L = 400 meters in
east-west direction, and a width of W = 100m (north-south), we let the water flow in at the west
boundary and out at the east boundary. The north and south boundary can be used to apply slip
conditions or velocity boundaries. We take a water depth of 10m (a bed level at z = −10m, to
which we apply a slope for the constant and quadratic velocity field) and record for each test the
discharge through the east (outflow) boundary, the water surface level and the maximum velocity
and its profile.

As all of the testcases have the analytical advection equal to zero, the advection calculation as
seen in section 4.2 will be turned off for half of the simulations to test its accuracy.

We can use square grids with cells of size 10×10m, 5×5m, 2.5×2.5m), mixed grids (figure 7a)
where the left part of the grid has squares of 10m and 5m, then a transition area using triangles and
to the right a rectangular grid with cells of 10× 5m and 5× 2.5m respectively, and fully triangular
grids (figure 7b).

After careful consideration, the least squares method will not be analyzed here, as its matrices
are degenerate on aligned grids, and the simulations become unstable for almost every test in this
section.

For consistency, we will use the following colors throughout all the following plots:

blue: Dual velocity reconstruction with advection

red: Dual velocity reconstruction without advection

green: Perot’s velocity reconstruction with advection

magenta: Perot’s velocity reconstruction without advection

We set θ = 1. The wave computations are stable since θ ≥ 1
2 , (see section 4.6) but the waves

will be dissipated for large θ. However, for the stationary simulations, we choose faster convergence
and ignore the dissipation.

46

Figure 6: Screenshot of the program

(a) Mixed grid

(b) Triangular grid

Figure 7: Types of grids used for D-Flow FM simulations, the fully square grid is not pictured

47

7.1 Constant velocity profile: uniform channel flow without wall friction

7.1.1 Test description

A constant velocity profile is obtained by taking a bottom slope of i = 5 · 10−5m/m, and a water
depth of 10m at the in- and outflow boundaries (the bottom is at z = −10m at the inflow boundary
and at z = −10.02m at the outflow boundary, we apply boundary conditions ζ = 0m at the inflow
boundary and ζ = −0.02m at the outflow boundary). The bottom friction is C = 65

√
m/s (C

represents the Chézy coefficient).

7.1.2 Analytical solution

We can use Chézy’s formula |u| = C
√
Ri where R is the hydraulic radius, which is the area of a

cross-section orthogonal to the flow divided by the wetted perimeter(the length of the cross section
boundaries that touch water). Due to the implementation in D-Flow FM, we can substitute the
total water depth H here. Finally, i is the bottom slope to determine the velocity:

u = C
√
Ri = 65

√
5 · 10−4 = 1.453444185374863m/s. (110)

Since the velocity is constant in x-direction and zero in the y-direction, there is no advection. The
discharge area is A = 1000m2 and hence the discharge is Q = Au = 1453.444185374863m3/s.

7.1.3 Results

It turns out to be necessary to slightly change the discretization of h~u
∣∣
f
. We are working with

a discretized bed that exactly follows the prescribed slope (most discretizations work with small
steps in the bottom). If cell 1 has outflow through face f and cell 2 has inflow through that same
face, we define

(h~u)f = (1− αf)(h~u)c1 + αf (h~u)c2. (111)

This scheme turns out to be stable for the intended simulation but may become unstable for other
situations, as it contains a weighted interpolation for an explicit quantity.

Table 10 shows the velocity through the outflow boundary. Since the dual method with advec-
tion explodes on the coarsest triangle grid, the refined triangle grid is considered instead.

We can show that all grids show the same convergence behaviour starting from the initial state
(figure 8) and have correct water levels up to an error of a quarter millimeter (table 12).

These results are insufficient to show whether Perot’s velocity reconstruction or the dual method
is better, but this was expected. Since Perot is a first order method and the dual method is second
order, both should be able to reconstruct the velocity up to solver precision, but it turns out that
the dual method converges to a slightly different value. Its causes will be discussed in chapter 8.

We can also see the relative errors in the velocity (figure 10) where we see that the simulations
with advection are better at the boundary, but distort the uniform profile by an amount of 2·10−9.
Table 11 shows that Perot’s velocity reconstruction performs better than the dual, and table 12
shows that the square grid has the most accurate waterlevels. The differences between Perot’s
reconstruction and the dual reconstruction are discussed in section 8.

48

Table 10: Outflow velocities u in m/s (should be 1.453444185374863m/s) for uniform channel flow

Grid u with Advection u without Adv

Square Perot 1.453444185375 1.453444185375
Dual 1.454822543164 1.455783309386

Mixed Perot 1.453444225404 1.453444225317
Dual 1.454824179518 1.455783319692

Triangles Perot 1.453445952744 1.453445949843
Dual (explodes) 1.455783835685

Tr. Refined Perot 1.450192082956 1.461790473772
Dual 1.448057509625 1.461711063228

Table 11: Velocity errors over entire grid in the uniform velocity profile

L∞ L1 L2

Adv no Adv Adv no Adv Adv no Adv

Square Perot 8.5·10−8 8.5·10−8 1.1·10−7 1.1·10−7 9.7·10−8 9.7·10−8

Dual 1.4·10−3 2.3·10−3 1.8·10−3 3.0·10−3 1.6·10−3 2.7·10−3

Mixed Perot 4.7·10−8 4.7·10−8 6.2·10−8 6.2·10−8 5.3·10−8 5.3·10−8

Dual 1.4·10−3 2.4·10−3 1.9·10−3 3.3·10−3 1.6·10−3 2.7·10−3

Triangle Perot 1.9·10−6 1.9·10−6 2.2·10−6 2.2·10−6 2.0·10−6 2.0·10−6

refined Dual 1.4·10−3 2.3·10−3 1.7·10−3 3.0·10−3 1.5·10−3 2.7·10−3

Table 12: Waterlevel errors over entire grid in the uniform velocity profile

L∞ L1 L2

Adv no Adv Adv no Adv Adv no Adv

Square Perot 1.9·10−15 1.9·10−15 2.2·10−16 2.2·10−16 4.1·10−16 4.1·10−16

Dual 2.5·10−4 2.5·10−4 3.0·10−4 2.8·10−4 2.6·10−4 2.5·10−4

Mixed Perot 8.2·10−10 8.2·10−10 4.6·10−10 4.6·10−10 4.7·10−10 4.7·10−10

Dual 2.5·10−4 2.5·10−4 3.1·10−4 3.0·10−4 2.7·10−4 2.6·10−4

Triangles Perot 3.2·10−9 3.2·10−9 1.6·10−9 1.6·10−9 1.6·10−9 1.6·10−9

refined Dual 2.5·10−4 2.5·10−4 3.0·10−4 2.8·10−4 2.6·10−4 2.5·10−4

49

(a) Mixed grid (b) Triangular grid

Figure 8: Convergence behaviour of the velocity for uniform channel flow

(a) Mixed grid (b) Triangular refined grid

Figure 9: The water levels (vertical axis) along the channel centerline for uniform channel flow

(a) Mixed grid (b) Triangular grid

Figure 10: Relative errors in velocity as a function of y for uniform channel flow at the outflow
boundary

50

7.2 Linear velocity profile: Couette moving plates flow

7.2.1 Test description

Consider two infinitely long plates parallel to one another, with water flowing in between. The
distance between the plates (width of the channel) is W . If we move the plates in the east-west
direction, the water will adhere to the plates and the water velocity will show a linear profile. We
can simulate this by letting the water flow from west to east, set the tangential velocity on the
northern boundary to 10m/s and the tangential velocity on the southern boundary to zero. The
water surface level ζ = 0 at the in- and outflow boundary, and the bottom friction is zero.

7.2.2 Analytical solution

Starting from the Navier-Stokes equations, we know that ∂u
∂x and v should be zero. We cross out all

terms that would be zero in a steady state: ∂u
∂t , u∂u∂x , v ∂u∂y , u ∂v∂x , v ∂v∂y , ∂2u

∂x2
, ∂2v
∂y2

, and we get: 1
ρ
∂p
∂x =

ν ∂
2u
∂y2

. We know that ∂p
∂x is constant since u does not depend on x. Let u(x, 0) = 0, u(x,W) = UW ,

and we integrate:

∂u

∂y
=

ˆ
∂2u

∂y2
dy

=

ˆ
1

ρν

∂p

∂x
dy

=
1

ρν

∂p

∂x
y + C1 (112)

u(y) =

ˆ
∂u

∂y
dy

=

ˆ UW

0

1

ρν

∂p

∂x
y + C1 dy

=
1

2ρν

∂p

∂x
y2 + C1y + C2 (113)

u(0) = 0 ⇒ C2 = 0 (114)

u(W) = UW ⇒ C1 =
UW
W
− W

2ρν

dp

dx
(115)

u(y) =
1

2ρν

dp

dx
y(y −W) +

UW
W

y (116)

If we assume incompressibility, i.e. ∂p
∂x = 0, we get u = UW

W y. We can integrate to get the discharge,
with a depth of 10m and width W = 100m, and UW = 10m/s, this is

Q =

ˆ 0

z=−10

ˆ 100

y=0

y

10
dy dz = 5000m3/s.

The surface of the water is exactly zero over the entire domain.

Implementation boundary conditions

The ghost points where the velocity boundaries are defined lie at a distance of 1
2

√
Vc outside of the

channel, where Vc is the area of the corresponding interior cell. For the coarsest triangular grid,

51

Table 13: Discharge Q in m3/s for flow between two plates and the percentual increase from the
correct value of 5000m3/s

Grid Q with Advection Q without Adv

Square Perot 4999.999996443687 5000.000000002055
increase (%) -7.1126·10−8 4.1091·10−11

Dual 4999.999967612755 4999.999999997543
increase (%) -6.4774·10−7 -4.9149·10−11

Mixed Perot 4999.940088164551 5000.110331962351
increase (%) -0.0012 0.0022
Dual 4998.669147418284 5000.107002698290
increase (%) -0.0266 0.0021

Triangles Perot 4937.418569010896 4999.431100102393
increase (%) -1.2516 -0.0114
Dual 5050.031122902201 5000.345021685037
increase (%) 1.0006 0.0069

Table 14: Velocity errors over the entire grid for flow between two plates

L∞ L1 L2

Adv no Adv Adv no Adv Adv no Adv

Square Perot 1.8·10−8 1.8·10−8 3.5·10−9 3.5·10−9 4.4·10−9 4.4·10−9

Dual 1.8·10−8 1.8·10−8 3.5·10−9 1.4·10−9 4.4·10−9 3.5·10−9

Mixed Perot 0.12 0.12 0.004 0.004 0.011 0.011
Dual 0.080 0.077 0.0031 0.0034 0.0074 0.0086

Triangle Perot 1.0012 1.0012 0.381 0.381 0.430 0.430
Dual 0.274 0.0361 0.0976 0.0052 0.115 0.0071

A = 100m2, hence the ghost points lie at y = −5m and y = 105m and we can define the velocity
in the ghost points as u = (0,−0.5) and (0, 10.5). The mixed grid has boundary cells of size 50m2,
hence the ghost points are at a distance of

√
50/2 from the boundary, making the velocity in the

ghost points equal to u = (0,−
√

50/20) and (0, 10 +
√

50/20).

7.2.3 Results

The discharges are listed in table 13, with a highest error of 1.25%. The velocity errors L∞, L1,
L2 are in table 14, the waterlevel errors (remember ζ = 0 everywhere) are in table 15 and a cross
section along the middle of the channel is shown in figure 11. Figure 12 shows relative velocity
errors at the outflow boundary as a function of y. The maximum waterlevel error is 22cm, while
the maximum velocity error is 1m/s. Figure 11 shows that the maximal error in ζ for the mixed
grid coincides with the row of triangles. The smallest errors are obtained for the square grid, where
the dual method performs the same as Perot’s method, but for the mixed and triangular grid we
can see that the errors in the dual method are slightly smaller than the errors for Perot’s method.
This is expected as Perot’s method is not exact for a linear profile on an irregular grid.

52

Table 15: Waterlevel errors in m (correct: ζ = 0) over the entire grid for flow between two plates

L∞ L1 L2

Adv no Adv Adv no Adv Adv no Adv

Square Perot 8.7·10−9 8.7·10−9 1.3·10−9 1.3·10−9 1.6·10−9 1.6·10−9

Dual 8.7·10−9 8.9·10−9 1.3·10−9 3.3·10−10 1.6·10−9 1.2·10−9

Mixed Perot 0.1042 0.1042 0.0017 0.0017 0.0092 0.0092
Dual 0.0399 0.0379 0.0013 0.00062 0.00399 0.00353

Triangles Perot 0.221 0.221 0.0172 0.0172 0.0296 0.0296
Dual 0.092 0.039 0.014 0.0014 0.019 0.0036

(a) Mixed grid (b) Triangular grid

Figure 11: The water levels (vertical axis) along the line from (x, y) = (0, 50) to (400, 50) for flow
between two plates

53

(a) Square grid (b) Mixed grid

(c) Velocity profile triangular grid (d) Relative errors triangular grid

Figure 12: Relative velocity errors for flow between two plates as a function of y at the outflow
boundary

54

7.3 Quadratic velocity profile: Poiseuille Flow

7.3.1 Test description

The Poiseuille Open Channel Flow [2] has a no-slip condition on the north and south boundaries,
which causes the water to be faster in the middle of the channel. There is no bottom friction.
The correct solution has a quadratic velocity profile, so we do not expect either Perot’s or the
dual-integrated velocity reconstruction method to reach machine precision. Since the boundary
conditions are implemented in a linear fashion, this might be impossible. For this reason, a con-
vergence study is performed just as in section 6.4.

7.3.2 Analytical solution

For a rectangular channel with a constant bed slope and corresponding waterlevels (the water
column has constant height H), assume that the density ρ and kinematic viscosity ν are constant,
there is no bottom friction or influence from the Coriolis force, or from wind or waves. This means
that ζ(x = 0) = ζin, ζ(x = L) = ζin − ∆ζ, where the parameters ζin and ∆ζ are given. The
boundaries in y-direction are no-slip boundaries: u = v = 0 at y = 0 and y = W . The Shallow
Water Equations reduce since the terms ∂ζ

∂t ,
∂u
∂y , ∂u

∂t , ∂v
∂t , g

∂ζ
∂y , u∂u∂x , v ∂u∂y , ∂2u

∂x2
, ∂2v
∂y∂x , u ∂v∂x , v ∂v∂y , ∂2v

∂x2
,

∂2u
∂x∂y , ∂2v

∂y2
are all zero once the flow has reached a steady state and we obtain the system

H
(∂u
∂x

+
∂v

∂y

)
= 0, g

∂ζ

∂x
= ν

∂2u

∂y2
(117)

We had assumed the water column height H to be constant, and since we know the bed slope and
the boundaries for ζ, we immediately know that ζ(x) = ζin −∆ζ xL . Then, knowing that ∂u

∂y needs
to have a zero at W/2 (the middle of the channel is where the flow is fastest, hence u has a local
maximum), we have

∂2u

∂y2
=
g

ν

∂ζ

∂x
= −g∆ζ

νL
⇒ ∂u

∂y
=
−g∆ζ

νL
(y −W/2) (118)

Then, using u = v = 0 at the no-slip boundaries, we find

u(y) =
−g∆ζ

νL

ˆ (
y − W

2

)
dy =

−g∆ζ

2νL
(y2 −Wy) (119)

We find umax = u(x,W/2) = g∆ζ
2νL · 2500, the discharge Q (independent of x) through a cross-

section of the channel orthogonal to the flow is

Q =

ˆ 0

z=−H

ˆ W

y=0
u(y) dy dz =

H

6
· 106 · g∆ζ

νL
m3/s. (120)

Using H = 10, ∆ζ = 2cm, ν = 0.1, we get Q = 4087.5 and umax = 6.131.

7.3.3 Convergence on a square grid

Since this profile is quadratic, it would be unreasonable to expect either Perot or the dual velocity
reconstruction to reach machine precision, even on a square grid. This is why we first make a

55

Table 16: Errors in the Poiseuille flow waterlevels over entire square grid

L∞ L1 L2

Grid size Adv no Adv Adv no Adv Adv no Adv

10m Perot 1.8·10−3 1.8·10−3 1.0·10−3 1.0·10−3 1.1·10−3 1.1·10−3

Dual 1.8·10−3 1.4·10−4 1.0·10−3 8.3·10−5 1.1·10−3 8.4·10−5

5m Perot 4.2·10−4 4.2·10−4 2.7·10−4 2.7·10−4 2.7·10−4 2.7·10−4

Dual 4.2·10−4 5.6·10−5 2.7·10−4 3.1·10−5 2.7·10−4 3.1·10−5

2.5m Perot 1.2·10−4 1.2·10−4 7.9·10−5 7.9·10−5 7.8·10−5 7.8·10−5

Dual 1.2·10−4 2.2·10−5 7.9·10−5 1.0·10−5 7.8·10−5 9.8·10−6

Convergence rates
L∞ L1 L2

Perot + advection 2.08 1.84 1.87 1.80 1.95 1.81
Perot without adv 2.08 1.84 1.87 1.80 1.95 1.81
Dual + advection 2.08 1.84 1.87 1.80 1.95 1.81
Dual without adv 1.31 1.32 1.41 1.62 1.45 1.64

convergence study on a series of square grids, with cell sizes of 10× 10m, 5× 5m and 2.5× 2.5m.
The channel is as before: 400m long and 100m wide, so we work with 400 cells, 1600 cells and
6400 cells. We will consider convergence rates as in section 6.4, for each method (Perot with and
without advection, dual velocity reconstruction with and without advection). Figure 13 shows that
the velocities at the boundaries differ most from the prescribed profile, but this may be caused by
the linearization in the boundary conditions (see paragraph 5.6).

Again, the convergence rates are solutions to the equation Lpcoarse = 2rLpfine, with p ∈ {1, 2,∞}.
When r = 1, this means linear convergence, when r = 2 the convergence is quadratic, etc. The L1

norm mostly shows the convergence of primary variables such as velocity and water levels, while
L2 can consider the convergence of quantities such as the kinetic energy Ek = 1

2m|u|
2, and their

limit L∞ gives the maximum deviation from the correct value.
Convergence rates are in table 18, based on the errors in the same table. The errors are

calculated over the entire grid. Since all cells are square, Perot’s velocity reconstruction method
has (almost) quadratic behaviour and the matrix A formed by the second order correction is just an
identity matrix. According to table 19, the methods show the same order in all the errors (meaning
that the error caused by a non-zero calculated advection is small compared to the overall error).
Only the dual method without advection differs from the other three situations; we see that this
converges faster than it should, since r > 2, the convergence seems better than quadratic. As the
velocity data for the runs using the dual method without advection contain a period in the last
digits, which does not disappear when the simulation is run for a longer time or when the maximal
Courant number is lowered, full time-convergence is not obtained and the convergence rate r may
be unreliable. This explains the cases where r > 2. As advection has a dissipating effect, this
period in the data disappears for the runs with advection enabled. However, for Perot’s method
and the dual with advection, we see superlinear convergence, as expected.

56

Table 17: Discharge Q in m3/s for Poiseuille flow over square grid, correct value is 4087.5m3/s and
the percentual difference (increase compared to correct value):

Perot Dual
Square with advection without advection with advection without advection

10 m 4119.308461207200 4095.487871438126 10 m 4119.308461207199 4142.104339836873
increase (%) 0.7782 0.1954 0.7782 1.3359

5 m 4095.487871438126 4098.729045990548 5 m 4095.487871438127 4098.729045992969
increase (%) 0.1954 0.2747 0.1954 0.2747

2.5m 4089.529567153803 4089.773057728640 2.5m 4089.529567153802 4089.773057728640
increase (%) 0.0497 0.0556 0.0497 0.0556

Table 18: Errors in the Poiseuille flow velocity over entire square grid

Grid size L∞ L1 L2

Adv no Adv Adv no Adv Adv no Adv

10m Perot 0.036 0.036 0.022 0.022 0.024 0.024
Dual 0.036 0.053 0.022 0.050 0.024 0.046

5m Perot 0.012 0.012 0.0075 0.0075 0.0084 0.0084
Dual 0.012 0.014 0.0075 0.012 0.0084 0.012

2.5m Perot 0.0034 0.0034 0.0022 0.0022 0.0025 0.0025
Dual 0.0034 0.0036 0.0022 0.0028 0.0025 0.0029

Convergence rates
L∞ L1 L2

Perot + advection 1.60 1.78 1.53 1.74 1.53 1.76
Perot without adv 1.60 1.78 1.53 1.74 1.53 1.76
Dual + advection 1.60 1.78 1.53 1.74 1.53 1.76
Dual without adv 1.93 1.95 2.11 2.07 2.02 1.98

57

Table 19: Errors in the Poiseuille flow velocity over entire (non-uniform) grid

L∞ L1 L2

Adv no Adv Adv no Adv Adv no Adv

Mixed Perot 10m 0.50 0.50 0.15 0.15 0.16 0.16
Perot 5m 0.22 0.22 0.027 0.027 0.039 0.039
Dual 10 m 0.42 0.036 0.17 0.026 0.19 0.024
Dual 5 m 0.18 0.012 0.031 0.0066 0.041 0.0060

Triangles Perot 10m 1.23 1.23 0.48 0.48 0.49 0.49
Perot 5m 0.79 0.79 0.22 0.22 0.22 0.22
Dual 10m 0.69 0.058 0.34 0.034 0.34 0.040
Dual 5m 0.51 0.10 0.12 0.012 0.12 0.014

Convergence rates
L∞ L1 L2

Mixed Perot + advection 1.16 2.47 2.05
Perot without adv 1.16 2.47 2.05
Dual + advection 1.19 2.47 2.25
Dual without adv 1.59 1.98 2.01

Triangles Perot + advection 0.65 1.15 1.13
Perot without adv 0.65 1.15 1.13
Dual + advection 0.41 1.46 1.44
Dual without adv no conv. 1.47 1.55

7.3.4 Convergence results on non-uniform grids

Convergence rates for the dual velocity reconstruction method according to table 19 are only slightly
better than those for Perot’s method; the same is seen in the waterlevels (table 21). This is expected
since a second order method cannot reconstruct a quadratic field on an unstructured grid to machine
precision. The mixed grid shows better convergence than the triangular grid. The discharges (table
20) have the best result on the mixed grid, where it does not matter if Perot’s method or the dual
method is employed. For the triangular grid, the discharges are more accurate with the dual velocity
method.

58

Table 20: Discharge Q in m3/s for Poiseuille flow over non-uniform grid, and the percentual increase
compared to the correct value of 4087.5m3/s:

Perot Dual
with advection without advection with advection without advection

Mixed 10m 4121.472492720819 4112.379823648109 4131.907814431218 4117.174245421137
increase (%) 0.8311 0.6087 0.864 0.7260

5m 4089.141989251060 4092.713149988351 4090.540939775473 4094.561307010622
increase (%) 0.0402 0.1275 0.0744 0.1728

Triangles 10m 4296.404604173152 3716.198689253789 4291.865011730972 4129.165508965953
increase (%) 5.1108 -9.0838 4.9998 1.0193

5m 4167.015275640806 3809.114770554570 4133.956318626508 4093.571361283370
increase (%) 1.9453 -6.8106 1.1365 0.1485

Table 21: Waterlevel errors in the Poiseuille flow velocity over entire (non-uniform) grid

L∞ L1 L2

Adv no Adv Adv no Adv Adv no Adv

Mixed Perot 10m 0.0083 0.0083 0.0058 0.0058 0.0057 0.0057
Perot 5m 0.0060 0.0060 0.0021 0.0021 0.0024 0.0024
Dual 10 m 0.021 0.00024 0.013 2.5·10−5 0.013 3.4·10−5

Dual 5 m 0.010 0.00033 0.0034 7.9·10−6 0.0037 1.6·10−5

Triangles Perot 10m 0.082 0.082 0.044 0.044 0.041 0.041
Perot 5 m 0.050 0.050 0.025 0.025 0.022 0.022
Dual 10m 0.14 0.00017 0.026 4.9·10−5 0.025 4.9·10−5

Dual 5 m 0.066 0.0012 0.011 2.2·10−5 0.010 6.4·10−5

Convergence rates
L∞ L1 L2

Mixed Perot + advection 0.466 1.47 1.26
Perot without adv 0.466 1.47 1.26
Dual + advection 1.03 1.97 1.87
Dual without adv no conv. 1.68 1.14

Triangles Perot + advection 0.71 0.82 0.90
Perot without adv 0.71 0.82 0.90
Dual + advection 1.07 1.30 1.31
Dual without adv no conv. 1.137084 no conv.

59

Figure 13: Velocity profiles for Poiseuille flow on square grid
60

8 Discussion

In the chapters 6 and 7, we see the second order velocity reconstruction methods perform better
than Perot’s first order velocity reconstruction method. Still, a few remarks need to be made.

The experiments with velocity reconstruction in the simplified model (chapter 6) show that the
second order methods perform better than Perot’s method when the grid consists of only triangles,
but not when quadrilaterals are involved. This is probably due to the fact that the circumcenter
in a quadrilateral does not always exist, and the approximation formula does not converge to a
unique location. On the mixed grid, only the least squares method gives significant improvement
over Perot.

We also saw that the advection calculation suffers from the fact that uf is taken as a point
value, not as a quantity varying over the face. This is especially true for second order advection
with Perot’s velocity reconstruction.

For advection and diffusion, both the dual and the least squares method perform better than
Perot’s method, though they need to be paired with a second order advection method (prefer-
ably second order upwind) to guarantee convergence (linear convergence for linear fields, sublinear
convergence on quadratic fields).

Lastly, we need to remember that the quantities other than velocity, advection and diffusion
(water depth, viscosity, ...) are assumed to be unity so the results in D-Flow FM will never be as
good as this.

The experiments in D-Flow FM (chapter 7) involve a full matrix which contains mostly zeros
being used in the initialization step. As this matrix (A from the dual method) is only based on
geometry, it only needs to be calculated once. Changing this to sparse indexing would involve
rewriting a lot of the algorithm but, as some attempted simulations needed more memory than
available, it would be necessary for an implementation that would be used by external parties.

The experiments with uniform channel flow show that the dual velocity reconstruction method
converges to a different value than Perot’s method. The uniform flow has this problem both when
starting from the analytical solution and when starting with a velocity of 0m/s. The uniform flow
is dominated by the bottom friction term, while the moving plates and Poiseuille are dominated by
viscosity. Therefore it needs investigating if the bottom friction somehow reduces the improvements
made by the dual method.

The moving plates flow does not show a big difference between Perot’s and dual velocity recon-
struction. It would be expected that the dual method is capable of reconstructing the velocities
up to machine precision, while Perot’s method cannot, but the dual method only shows little im-
provements. The probable cause is the non-linear aspects in the simulations which we have not
considered.

For the Poiseuille flow, we see mostly results confirming the earlier data but the non-converging
simulations are troubling. As stated before, the dissipating effect of the advection calculation
(which is absent here) may be the cause. Another possible explanation for the difference is that
the diffusion calculation ∇2~u (which is solved explicitly) would work better with the second order
reconstruction method than with Perot, though we have insufficient data to conclude this.

When simulations diverge, this may be due to the explicit nature of the advection calculation.
Setting a lower Courant number or letting the simulations run longer does not help with this
problem, but a fully implicit program is not (yet) available, and working on this is outside the
scope of this thesis. Another possible problem is that the advection computation uses first-order
ingredients (also for the second order velocity reconstruction) and point values uf .

61

A last consideration is the computational time of the model; as Perot’s velocity reconstruction
often produces good results, it is not always necessary to use the second order velocity reconstruc-
tion. The matrix A for the dual velocity reconstruction is constructed only once (since it depends
only on the grid geometry), but used to solve an equation in every timestep. It also does not
replace Perot’s velocity reconstruction, but uses and then overwrites it. The matrix to solve for ζ
is constructed and solved every timestep, but its size is n × n (where n is the number of cells in
the grid), while the matrix A has size 2n × 2n and has four times as many non-zero entries. The
matrix solver in D-Flow FM uses Gaussian Elimination where possible and Conjugate Gradients
in other cases [13]. Both of these methods have time complexity O(n3) [9] for a n × n matrix, so
solving the water level matrix has costs k ·n3 for some constant k while A has costs k(2n)3 = 8kn3,
which means it takes eight times as long to solve as the waterlevel matrix. On the other hand, the
co-opting of the waterlevel solver for the second order velocities may be a problem in itself. As the
solver is optimized to solve (common instances of the) equation system for ζ, better results may
be possible with another solver, especially one that does not have the requirement of a symmetric
system.

62

9 Conclusion

The dual velocity reconstruction method with second order upwind advection is the best choice
(when it comes to accuracy) in the simplified model on a triangular grid. For a mixed grid, the
least squares velocity reconstruction method is better in some cases, though the convergence of any
of the advection methods cannot be guaranteed for the least squares velocities. The second order
reconstruction integrated over the cell itself is an acceptable alternative for integration over the
dual volume. The hybrid method (section 5.4) does not improve on Perot.

While Perot’s method shows first order grid convergence in the velocities, the second order
methods (correction using integration over the dual volume or the cell itself, and least squares
method) have second order grid convergence in the velocities and first order grid convergence in
the gradients, and for some choices of the advection and diffusion discretization methods.

In D-Flow FM, for both the linear and quadratic velocity profile, the dual method is equal to
Perot’s velocity reconstruction method on square grids, as expected. For non-uniform grids, it is
only a little better in each of the measured quantities: discharge, velocity and water level. We
assume the dual method without advection to be unreliable for the reasons stated in chapter 8.

We can conclude that the second order velocity methods are indeed more accurate than Perot’s
method. The dual method has satisfactory convergence behaviour in both the simplified Matlab
model and in D-Flow FM, though a second order advection method would need to be added.
Furthermore, it is a general method, appropriate for all grids and for both explicit and implicit
discretizations. The second order method that integrates over the cell and the least squares method
show satisfying behaviour in the simplified model.

As the dual method does not show large improvements over Perot’s method, and deteriorates
when the grid becomes more irregular, might not be worth the additional running time. Whether
this can be solved by using another (differently optimized) matrix solver or by optimizing the
existing code was not part of this research. A possibly easier solution is, for a domain requiring a
very irregular grid where the dual method does show a clear advantage over Perot, a faster solution
may be to perform a domain decomposition which enables a more regular grid to be used. This
may add time in the initialization step of the model but give faster running times. In this case, the
least squares velocity reconstruction method combined with a fully implicit discretization may be
considered as well.

63

10 Recommendations for further research

Every scientific investigation yields new questions. As I have often encountered unstable simulations
in this thesis, which could often be solved by choosing different discretizations for either the bed
or the (hu)f , it is natural to wonder if the explicit part of the integration is responsible for this.
Programming everything implicitly was not possible in the time available, nor inside the scope of
this thesis, but it may improve the stability of the D-Flow FM program.

The dual method with second order advection was not studied in D-Flow FM, though the
Matlab experiments suggest it would be the best combination of methods. The diffusion as done
in the Matlab experiments (chapter 6) is not used in the D-Flow FM experiments, but it shows
good convergence behaviour. The time-integration of the advection and diffusion methods are not
studied here. The time-integration of least squares and the cell-integrated second order velocity
method are not studied. Even though we have reason to assume that the cell-integrated method
would behave the same as the dual velocity reconstruction method, this needs to be verified. The
time-integration for the least squares method also needs to be studied, as it might become better
when done implicitly.

As the mixed grids show their biggest errors in the triangles area, and the all-triangles grid
shows the highest errors of all in the D-Flow FM experiments, even though it has uniquely defined
circumcenters for all of its cells, the question remains whether triangles cause large errors (especially
in the waterlevels ζ) or the transition between two types of cells (rectangles to triangles and vice
versa) is responsible for this type of error.

The uniform flow simulations leave us wondering if the bottom friction has a negative influence
on the second order velocity reconstruction.

As pointed out, the large running times of the dual velocity reconstruction method are a big
disadvantage, and alternatives should be considered. A fully implicit model of the SWE with a least
squares velocity reconstruction, or generating a new, more regular grid (possibly using a domain
decomposition) which employs the current discretization may be appropriate solutions.

64

Acknowledgements

I would like to thank Frank Platzek and Mart Borsboom at Deltares for supervising my research
and helping me when I got stuck. I would like to thank my colleagues at Deltares, especially
Mohamed Nabi, Arthur van Dam, Herman Kernkamp, Sander van der Pijl, Michal Kleczek, Bert
Jagers for discussing mathematics, helping with the implementation of the algorithm, answering
questions about the existing D-Flow FM code, or helping with Visual Studio or Delft3D-QuickPlot
issues.

Furthermore, I would like to thank Jason Frank, for being my supervisor at Utrecht University.

65

References

[1] M. Borsboom. Construction and analysis of D-Flow FM-type discretizations. Deltares memo,
August 2013.

[2] M. Borsboom and S. van der Pijl. Assessment of accuracy of discretization of convection and
viscosity in D-Flow FM. Deltares memo, 2012.

[3] W. Boscheri, M. Dumbser, and M. Righetti. A semi-implicit scheme for 3D free surface flows
with high-order velocity reconstruction on unstructured voronoi meshes. International journal
for numerical methods in fluids, 72:607–631, 2013.

[4] V. Casulli and E. Cattani. Stability, accuracy and efficiency of a semi-implicit method for
threedimensional shallow water flow. Computers and Mathematics with Applications, 27(4):99–
112, 1994.

[5] V. Casulli and R.T. Cheng. Evaluation of the UnTRIM model for 3-D tidal circulation.
Estuarine and Coastal Modeling: Proceedings of the Seventh International Conference in St.
Petersburg, FL, November 2001, pages 628–642, 2001.

[6] V. Casulli and R.A. Walters. An unstructured grid, threedimensional model based on the
shallow water equations. International journal for numerical methods in fluids, 32:331–348,
2000.

[7] V. Casulli and P. Zanolli. Semi-implicit numerical modeling of nonhydrostatic free-surface flows
for environmental problems. Mathematical and Computer Modelling, 36:1131–1149, 2002.

[8] O.B. Fringer, M. Gerritsen, and R.L. Street. An unstructured-grid, finite-volume, nonhydro-
static, parallel coastal ocean simulator. Ocean Modelling, 14:139–173, 2006.

[9] G.H. Golub and C.F. van Loan. Matrix Computations. John Hopkins University Press, 4th
edition, 2013.

[10] D.A. Ham, J. Pietrzak, and G.S. Stelling. A scalable unstructured grid 3-dimensional finite
volume model for the shallow water equations. Ocean Modelling, 10:153–169, 2005.

[11] P.C. Hammer and A.H. Stroud. Numerical integration over simplexes. Mathematical tables
and other aids to computation, 10:137–139, 1956.

[12] F.H. Harlow and J.E. Welch. Numerical calculation of time-dependent viscous incompressible
flow of fluid with free surface. The Physics of Fluids, 8(12):2182–2189, December 1965.

[13] H.W.J. Kernkamp, A. van Dam, G.S.Stelling, and E.D. de Goede. Efficient scheme for the
shallow water equations on unstructured grids with application to the continental shelf. Ocean
Dynamics, 61:1175–1188, 2011.

[14] S.C. Kramer and G.S. Stelling. A conservative unstructured scheme for rapidly varied flows.
International journal for numerical methods in fluids, 58:183–212, 2008.

[15] P.S. Peixoto and S.R.M. Barros. On vector field reconstructions for semi-lagrangian transport
methods on geodesic staggered grids. Journal of Computational Physics, 273:185–211, 2014.

66

[16] J.B. Perot. Conservation properties of unstructured staggered mesh schemes. Journal of
Computational Physics, 159:58–89, 2000.

[17] F.W. Platzek. Accuracy and efficiency aspects in numerical river modelling (work in progress).
PhD thesis, T.U. Delft, 2016.

[18] Stichting Deltares. D-Flow FM Technical Reference, 2015.

[19] Maarten van Reeuwijk. A mimetic mass, momentum and energy conserving discretization for
the shallow water equations. Computers and Fluids, pages 411–416, 2011.

[20] D. Vidovic. Polynomial reconstruction of staggered unstructured vector fields. Theoret. Appl.
Mech., 36(2):85–99, 2009.

[21] I. Wenneker, A. Segal, and P. Wesseling. A mach-uniform unstructured staggered grid method.
International Journal for Numerical Methods in Fluids, 40:1209–1235, 2002.

[22] Pieter Wesseling. Principles of Computational Fluid Dynamics. Springer, 2000.

[23] X. Zhang, D. Schmidt, and J. B. Perot. Accuracy and conservation properties of a three-
dimensional unstructured staggered mesh scheme for fluid dynamics. Journal of Computational
Physics, 175:764–791, 2002. http://www.ecs.umass.edu/mie/tcfd/Papers/USM_3D.pdf.

67

http://www.ecs.umass.edu/mie/tcfd/Papers/USM_3D.pdf

	Introduction
	Background
	Motivation and aim

	Governing equations
	The Navier Stokes equations
	Shallow water equations

	Unstructured staggered grids
	Finite Volume Discretization
	Staggered grids
	Determining the circumcenter
	Grid structure
	Orthogonality
	Discrete operators for mimetic schemes

	Discretizing the SWE in time and space
	Semi-implicit solution approach
	Discretizing the advection operator
	Discretizing the diffusion operator
	Velocity vector reconstruction with Perot's method
	Momentum conservation
	Time step limitations

	Accuracy of the velocity reconstruction
	Analysis of Perot's reconstruction
	Second order corrections for Perot
	Integration over the dual volume
	Integration over the cell itself

	Least Squares solution
	Hybrid method
	Other options for velocity reconstruction and alignment index
	Boundary conditions

	Experiments with a simplified model
	The model
	First-order upwind advection
	Second-order upwind advection
	-weighted method for advection
	Central method for advection
	Face-integrated method (Simpson rule) for advection
	Discrete advection: difficulties
	Analytical advection using Gauss quadrature
	Diffusion

	Test description
	Results
	Convergence for advection methods
	Test description
	Constant velocity field
	Linear velocity field: results
	Quadratic velocity field: results

	Numerical tests with the shallow water model
	Constant velocity profile: uniform channel flow without wall friction
	Test description
	Analytical solution
	Results

	Linear velocity profile: Couette moving plates flow
	Test description
	Analytical solution
	Results

	Quadratic velocity profile: Poiseuille Flow
	Test description
	Analytical solution
	Convergence on a square grid
	Convergence results on non-uniform grids

	Discussion
	Conclusion
	Recommendations for further research

