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Abstract

In 1942 Kelly conjectured that any finite, simple, undirected graph having
at least 3 vertices is uniquely determined by the multiset of all its subgraphs
obtained by deleting a vertex and all edges adjacent to it. In 1964 Harary
conjectured analogously that any graph having at least 4 edges is uniquely
determined by all its subgraphs obtained by deleting a single edge, which is
known as the edge reconstruction conjecture. Both conjectures are still open.
In the first part of this thesis we will discuss some of the work done so far
and provide some evidence in favour of the reconstruction conjectures. In
the second part I will prove that a specific type of tridegreed graphs is edge-
reconstructible, using techniques similar to those used by Myrvold, Ellingham
and Hoffman to prove that any bidegreed graph is edge-reconstructible.
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1 Introduction

In this section we will introduce the main conjecture of this thesis. Even though
this thesis is mainly about the edge reconstruction conjecture, it is natural to start
with the vertex reconstruction conjecture. It is not only the basis for, but as we
will show it even implies the edge reconstruction conjecture. Most of the results and
statements in this chapter are from [Bon91].

By a graph we will mean a finite, undirected simple graph. That is, a graph G is an
ordered pair (V,E) where V is a finite set and E is a set consisting of unordered pairs
of (distinct) elements of V . The elements of V are called vertices and the elements
of E are called edges. We will often refer to a graph by G, omitting (V,E) from the
notation. Furthermore, an edge {u, v} = e ∈ E is usually abbreviated as e = uv.
We call u and v the endpoints of e. We will denote v(G) = |V | for the number of
vertices and e(G) = |E| for the number of edges.

1.1 The vertex reconstruction conjecture

Given a graph G and a vertex v ∈ V , we write G − v for the graph with vertex set
V − {v} and all the edges of G not having v as one of the endpoints. We call G− v
a vertex-deleted subgraph of G.

Definition 1.1. Given a graph G, the multiset of all vertex-deleted subgraphs, up to
isomorphism, is called the deck of G. An element of the deck of G is called a card.

It is natural to wonder whether or not the set of all vertex-deleted subgraphs uniquely
determines the graph G. This gives rise to the following definition.

Definition 1.2. A graph H is called a reconstruction of G if the edge decks of
G and H coincide. A graph G is reconstructible if any reconstruction H of G is
isomorphic to G. An invariant of a graph is reconstructible if it is the same for
all reconstructions H of G.

In 1942 Kelly conjectured the following in his PhD thesis [Kel42] (page 73).
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Conjecture (Reconstruction conjecture). Any graph having at least 3 vertices is
reconstructible.

Remark. The condition that the graph has at least 3 vertices is necessary, as we can
see using the example G = K2 and H = 2K1, both of which have their deck equal to
two copies of K1. Clearly G and H are not isomorphic, showing that neither graph
is reconstructible.

1.2 The edge reconstruction conjecture

Analogous to before, an edge-deleted subgraph G − e of G is the graph having
the same vertex set as G and with edge set equal to E − {e}. Furthermore, we have
the following analogous definitions.

Definition 1.3. Given a graph G, the multiset of all edge-deleted subgraphs, up to
isomorphisms, of G is called the edge-deck of G. An edge-reconstruction of G
is a graph H such that G and H have the same edge-deck. We say that G is edge-
reconstructible if any edge-reconstruction H of G is isomorphic to G. An invariant
of a graph is edge-reconstructible if it is the same for all edge-reconstructions H
of G.

In 1964, Harary conjectured in [Har64] the following analogue of the reconstruction
conjecture.

Conjecture (Edge-reconstruction conjecture). Any graph having at least 4 edges is
edge-reconstructible.

Remark. Again the condition on the number of edges is necessary, as can be seen
by the following two examples.

•

•

•

•
G1

•

•

•

•
G2

•

•

•

•
H1

•

•

•

•
H2

Here, both G1 and G2 have an edge deck consisting of two copies of G, while H1 and
H2 have an edge deck consisting of three copies of H, where G and H are the graphs
shown below.

•

•

•

•
G

•

•

•

•
H
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1.3 Overview of this thesis

This thesis consists of two parts. In the first part, which consists of Chapter 2 and
Section 3.1 I will highlight some important results proved in the direction of the
reconstruction conjectures. In particular I will show Kelly’s lemma, Lemma 2.2,
which implies that the degree sequence is reconstructible. Furthermore, Corollary
2.7 shows that disconnected graphs are reconstructible. Both of these facts will be
used frequently in Chapter 4. After that, Section 3.1 will be devoted to probabilistic
proof that almost all graphs are reconstructible.

In the second part I will show some of my own work on this topic. Firstly, in
Section 3.2 I will generalize some of the techniques in Section 3.1 to show that with
probability tending to 1 the number of automorphisms of a graph is reconstructible.
In Chapter 4, which is the largest part of this thesis, I will briefly highlight techniques
used by Myrvold, Ellingham and Hoffman in [MEH87] to show that bidegreed graphs
are edge-reconstructible. After that, in Section 4.2 I will use similar techniques to
show that tridegreed graphs in which all but two vertices have the same degree are
edge-reconstructible. In Section 4.3 I will generalise these techniques and proofs to a
next type of tridegreed graphs, showing edge-reconstructability in most of the cases.
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2 Classical results

In this section we discuss some of the known results and used techniques.
Furthermore, we will show that the deck of G is edge-reconstructible, showing that
the reconstruction conjecture implies the edge-reconstruction conjecture. Again,
most of the material is from [Bon91]. Many of the results will be proven in the
setting of the reconstruction conjecture, but the formulations and proofs are easily
adapted to the setting of the edge-reconstruction conjecture.

2.1 Counting arguments

Many classical results in the direction of the reconstruction conjecture are based on
some counting argument. Before we continue with a simple but powerful lemma, we
need one more definition.

Definition 2.1. Given two graphs F and G, the number of subgraphs of G isomorphic
to F is denoted by s(F,G).

Now we can state and prove the following lemma, which is Lemma 1 in [Kel57].

Lemma 2.2 (Kelly’s lemma). Given two graphs F and G, satisfying v(F ) < v(G),
we can reconstruct s(F,G) from the deck of G.

Proof. Consider any subgraph F̃ isomorphic to F . This subgraph occurs in a vertex-
deleted subgraph G−v if and only if v does not belong to F̃ . Since there are precisely
v(G)− v(F̃ ) = v(G)− v(F ) such vertices, we find

s(F,G) =
1

v(G)− v(F )

∑
v∈V (G)

s(F,G− v).

As a consequence, we have the following.

Corollary 2.3. The number of edges and the degree sequence are reconstructible.

Proof. For the first statement simply take F = K2 in Kelly’s lemma, which is allowed
since v(G) ≥ 3 > v(F ). The second statement follows from the fact that the degree
of a vertex v equals the total number of edges minus the number of edges in G−v.
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However, we can not only reconstruct the number of subgraphs isomorphic to a given
graph. Under certain conditions, we can even construct the number of subgraphs
that are maximal in the sense of the following definition.

Definition 2.4. Let F be a collection of graphs and G a graph. An F-graph is a
member of F . An F-subgraph of G is a subgraph of G isomorphic to an F-graph.
Such a subgraph is called a maximal F-subgraph if it is not contained in any
other F-subgraph. The number of maximal F-subgraphs of G isomorphic to F ∈ F
is denoted by m(F,G), omitting the role of F for simplicity.

Example. Consider the case in which F consists of the graphs F1 and F2 depicted
below.

•
•

•
F1

•
•

•
•
F2

•
•

•
•

•

•
•

G

Then both the green and red triangle are F -subgraphs of G. However, only the red
triangle is a maximal F -subgraph, as the green triangle is contained in the subgraph
spanned by the four rightmost vertices, which is isomorphic to F2.

Definition 2.5. Let G be a collection of graphs. We say that G is recognisable if for
any G ∈ G and any reconstruction H of G, we have H ∈ G.

We have the following lemma, the proof of which is again based on a counting
argument, although it is more sophisticated than before. It was proven in 1973 in
[GH73].

Lemma 2.6 (Greenwell-Hemminger). Let F be a collection of graphs and G a
recognisable class of graphs such that for any G ∈ G and any F-subgraph F of G the
following two conditions are satisfied:

(i) v(F ) < v(G);

(ii) F is contained in a unique maximal F-subgraph of G.

Then m(F,G) is reconstructible for any F ∈ F and any G ∈ G.

Proof. From the second condition we deduce that

s(F,G) =
∑
X∈F

s(F,X)m(X,G),
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since the left-hand side of this equation counts the number of subgraphs of G
isomorphic to F and the right-hand side counts the same quantity by first considering
the unique maximal F -subgraph containing a given copy of F in G. This identity
can be inverted to obtain

m(F,G) =
∞∑
n=0

∑
(−1)ns(F,X1)s(X1, X2) · · · s(Xn−1, Xn)s(Xn, G),

where the inner sum runs over all n-tuples F ( X1 ( . . . ( Xn. Note that this
is in fact a finite summation, since there are only finitely many possibilities for Xn

such that s(Xn, G) 6= 0 and each Xn yields only a finite number of possible tuples.
Now, the right-hand side of this equation is reconstructible, since for all possible Xi

the first condition implies v(Xi) < v(G), hence s(Xi, G) is reconstructible by Kelly’s
lemma. Therefore, m(F,G) is reconstructible.

The Greenwell-Hemminger lemma has the following consequence.

Corollary 2.7. Disconnected graphs are reconstructible.

Proof. Note that a graph G is disconnected if and only if G has at most one vertex-
deleted subgraph that is connected. Therefore, it is recognisable from the edge-deck
whether or not G is disconnected. Now we apply the Greenwell-Hemminger lemma,
taking F to be the collection of connected graphs on at most v(G)− 1 vertices and
G the collection of disconnected graphs on v(G) vertices. Clearly v(F ) ≤ v(G)− 1 <
v(G) for any F ∈ F and G ∈ G and by the above G is recognisable. Since the
connected components of G are precisely the maximal F -subgraphs of G, the above
lemma shows that we can reconstruct the connected components of G, and hence G
itself.

2.2 Reconstructability implies edge-reconstructability

In this section we will show that the deck of a graph is edge-reconstructible. This
will show that if a graph is reconstructible, it is also edge-reconstructible. The first
step towards showing this result is to show that we only have to consider graphs
without isolated vertices. Note that we cannot apply Corollary 2.7, since the proof
presented there does not work for the case of edge-deleted subgraphs.

Lemma 2.8. The number of isolated vertices is edge-reconstructible.
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Proof. By the edge version of Kelly’s lemma we can deduce whether or not G contains
a path or cycle of length 3. If it does not, we can also find out whether or not G
contains a path of length 2 or not. Now, let m be the minimal number of isolated
vertices in an edge-deleted subgraph of G. Clearly, G has at most m isolated vertices.
If G contains a path or cycle of length 3, m also equals the number of isolated vertices
of G, since removing the middle edge of the path, or one of the edges from the cycle
will not increase the number of isolated vertices. Similarly, G has m − 1 isolated
vertices if it contains a path of length 2 (but no path or cycle of length 3) and m− 2
isolated vertices otherwise.

Corollary 2.9. The edge-reconstruction conjecture holds if and only if it holds for
all graphs without isolated vertices.

Proof. It is clear that if the edge-reconstruction conjecture holds, it also holds for all
graphs having no isolated vertices. For the reverse implication, let G be a graph and
H a reconstruction of G. By the previous lemma, G and H have the same number
of isolated vertices, so write G = G′ + nK1 and H = H ′ + nK1, where G′ and H ′

have no isolated vertices. Note that any edge of G is in fact an edge of G′. Since G
and H have the same number of edges, there is no harm in labeling them with the
same set in such a way that G − e ∼= H − e for all edges e. Now, by removing n
isolated vertices from G − e and H − e we also find G′ − e ∼= H ′ − e. Therefore, if
the edge-reconstruction conjecture holds for graphs without isolated vertices we can
conclude G′ ∼= H ′, showing G ∼= H as well.

We can now deduce the desired result, using a proof quite similar to the proof of
Corollary 2.7. Note that the condition that G has no isolated vertices is necessary
to ensure e(F ) < e(G) for any F -subgraph F of G.

Theorem 2.10. Let G be a graph without isolated vertices. Then the deck of G is
edge-reconstructible.

Proof. Let F be the class of graphs having v(G) − 1 vertices and G the class of
edge-reconstructions of G. Clearly G is edge-recognisable. Since G and its edge-
reconstructions have no isolated vertices, we find e(F ) < e(G) for any F -subgraph F
of G. Furthermore, given an F -subgraph F of G, it is contained in a unique maximal
F -subgraph of G, namely the subgraph of G induced by the vertices of F . Note that
this equals the graph G− v where v is the vertex not occurring in F .

Therefore, all conditions of the analogue of Lemma 2.6 for edge-deleted subgraphs
are satisfied, showing that for any F ∈ F , the number m(F,G) is reconstructible.
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Since m(F,G) is equal to the number of vertex-deleted subgraphs of G isomorphic
to F , we can reconstruct the deck of G in this way.

2.3 Graphs with many edges are edge-reconstructible

Intuitively, since the reconstruction conjecture implies the edge-reconstruction
conjecture, the latter should be easier. Although both conjectures are still open,
this is true in the sense that in the case of the edge-reconstruction conjecture there
are more techniques and more results known. For example, it is known that graphs
with a large number of edges are edge-reconstructible. The following theorem and
proof are from [Mül77].

Theorem 2.11. Let G be a graph with v(G) ≥ 6 and e(G) > v(G) · (log2 v(G)− 1).
Then G is edge-reconstructible.

Remark. The condition v(G) ≥ 6 does not appear in [Mül77], but as we will see
below it is required for his proof to work.

Before we can give the proof we need one more definition.

Definition 2.12. Let G and H be two graphs with v(G) = v(H). Write 〈G,H〉r for
the number of bijective maps f : V (G)→ V (H) such that there are precisely r edges
xy ∈ E(G) such that f(x)f(y) 6∈ E(H). We will call such a map f a defect-r-
homomorphism. We abbreviate 〈G,H〉 = 〈G,H〉0, which in the case e(G) = e(H)
is equal to the number of isomorphisms from G to H.

Proof of Theorem 2.11. Suppose that G is not edge-reconstructible. Then there
exists a reconstruction H of G such that G 6∼= H, in other words 〈G,H〉 = 0. Write
G for the complement of G, and abbreviate m = e(G) and n = v(G). We claim that

〈H,G〉 = 〈∅, G〉 −
∑

X⊆E(H)
|X|=1

〈X,G〉+
∑

X⊆E(H)
|X|=2

〈X,G〉+ . . .+ (−1)m〈H,G〉

and more generally

〈H,G〉r =
∑

X⊆E(H)
|X|=r

〈X,G〉 −
∑

X⊆E(H)
|X|=r+1

(
r + 1

r

)
〈X,G〉+ . . .+ (−1)m−r

(
m

r

)
〈H,G〉.
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Here, the terms in 〈H,G〉r follow from the inclusion-exclusion principle. Clearly,
defect-r-homomorphism f : H → G correspond to bijective maps f : V (H)→ V (G)
such that f maps precisely r edges of H to edges of G. Suppose that this set of edges
is given by X ⊆ E(H), with |X| = r, then f induces a homomorphism f : X → G,
yielding the contribution 〈X,G〉. However, extending this homomorphism to a map
f : H → G there could be more edges of H being mapped to edges of G. In particular,
if this happens on some set X ′ ⊆ E(H) having r+1 elements, we count this particular
map for

(
r+1
r

)
sets X, namely all r-element subsets of X ′. This shows that we must

subtract the second contribution. Considering the case where even more edges of H
are mapped to edges of G we find the other terms in the summation.

Of course, we also have the same equations with H replaced by G. Now, since G
and H have the same edge deck, we find that∑

X⊆E(G)
|X|=r

〈X,G〉 =
∑

X⊆E(H)
|X|=r

〈X,G〉

for any 0 ≤ r < n, since the multisets of graphs corresponding to n − 1-element
subsets of E(G) and E(H) coincide, so the same holds for the r-element subsets.
Using 〈H,G〉 = 0 we now find that

〈G,G〉r − 〈H,G〉r = (−1)m−r
(
m

r

)
〈G,G〉

for any r. Therefore,

2m ≤ 2m〈G,G〉 = 〈G,G〉
m∑
r=0

(
m

r

)
=

m∑
r=0

|〈G,G〉r − 〈H,G〉r|

≤
m∑
r=0

(
〈G,G〉r + 〈H,G〉r

)
= 2 · n!,

which is less than 2
(
n
2

)n
, provided that n ≥ 6. We can we rewrite this as m − 1 <

n(log2 n− 1), contradicting our assumption m > n(log2 n− 1).

2.4 Overview of known results

Of course, the results mentioned above are not the only ones. Below we will give a
(certainly not exhaustive) list of results that have been shown.
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Theorem 2.13. The following are reconstructible:

(a) Trees. [Kel57]

(b) The number of spanning trees. [Tut79]

(c) The number of perfect matchings. [Tut79]

(d) The number of Hamilton cycles. [Tut79]

(e) The characteristic polynomial. [Sac64] and [Tut79]

(f) The chromatic polynomial and the chromatic number. [Whi32] and [Tut79]

(g) Graphs having at most 11 vertices. [McK97]

Theorem 2.14. The following are edge-reconstructible.

(a) Graphs with minimum degree δ and average degree d satisfying d < δ+1− 1
δ+1

.
(Hoffmann 1977, unpublished)

(b) Graphs without an induced subgraph isomorphic to K1,3. [EPY88]

(c) Graphs with maximal degree ∆ and average degree d satisfying 2 log2(2∆) ≤ d.
[CNW82]
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3 Probabilistic results

In addition to the deterministic results in the previous section, there are also some
probabilistic results in the direction of the reconstruction conjectures. Many results
are shown with respect to the following way to generate random graphs.

Definition 3.1 (Erdös - Rényi model). For any positive integer n and 0 < p < 1 we
denote by G(n, p) the probability space of graphs on n vertices for which every pair
of vertices is joined independently with probability p.

3.1 Almost all graphs are reconstructible

Although the reconstruction conjectures have shown to be very hard, a probabilistic
argument shows that the conjecture holds for almost all graphs. To be precise, we
have the following theorem.

Theorem 3.2. For any n ∈ N, let pn be the probability that a graph G ∈ G(n, 1/2)
is reconstructible. Then limn→∞ pn = 1.

To prove this theorem, we need the following definition.

Definition 3.3. Let k be a nonnegative integer. We say that a graph G with n
vertices has property Ak if induced subgraphs of G on n − k vertices are pairwise
non-isomorphic. In other words, G − X 6∼= G − Y for every two distinct k-element
subsets X, Y ⊆ V (G).

The following theorem shows that graphs with property A3 are worth considering,
see also [Bol90].

Theorem 3.4. Suppose a graph G has property A3, then G is reconstructible. In
fact, G is reconstructible from any 3 vertex-deleted subgraphs.

Proof. Let u, v and w be vertices of G and consider G − u, G − v and G − w. We
give a proof that G is reconstructible from these graphs. First we show that we can
identify v inside G − u. Since G has property A3, it also has property A2, hence
(G − u) − x ∼= (G − v) − y if and only if {u, x} and {v, y} coincide. As u 6= v this
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implies x = v and y = u, hence v is the unique vertex x of G−u such that (G−u)−x
is isomorphic to some vertex-deleted subgraph of G− v.

Write X = (G − u) − x and Y = (G − v) − y where x and y are the vertices
corresponding to v and u respectively. By assumption X ∼= Y . We will show that
there is in fact only one isomorphism from X to Y . Namely, suppose that f1, f2 :
X → Y are two different isomorphisms and let z ∈ V (X) be such that f1(z) 6= f2(z).
Then Y −f1(z) ∼= X−z ∼= Y −f2(z), hence G−{v, y, f1(z)} ∼= G−{v, y, f2(z)} which
contradicts property A3. Therefore, we can label X and Y uniquely and from G− u
we can now determine all the neighbors of v inside G and add them to G− v. The
only exception to this is that we do not know whether or not u and v are connected.
However, u and v are both recognisable inside G−w, hence we can use this subgraph
to find this out.

Remark. It can be shown that graphs with property A2 are already reconstructible,
which is a stronger result since every graph with property A3 also has property A2.
However, the above proof also shows that one needs only 3 graphs from the deck,
which shows the interesting phenomenon that in most cases very few information
from the deck is used.

Furthermore, the subgraph G − w is only used to find out whether or not u and v
are connected. Therefore, if the degree sequence (or even the total number of edges)
is known, any two subgraphs suffice to reconstruct G.

We will now show that almost every graph has property A3, which in turn implies
Theorem 3.2. A key part of the proof will be the following lemma.

Lemma 3.5. Let G be a graph with vertex set V and let W ⊆ V . Denote |W | = t
and |V | = n and let ρ : W → V be an injective function different from the identity
function on W . Write g = g(ρ) for the number of elements w ∈ W such that
ρ(w) 6= w. Then there exists a set Iρ of unordered pairs of elements of W , such that
Iρ consists of at least g(t− 2)/6 pairs and furthermore Iρ ∩ ρ(Iρ) = ∅.

Proof. Consider all unordered pairs {v, w} of elements of W such that ρ(v) 6= v or
ρ(w) 6= w, of which there are g(t− g) +

(
g
2

)
. There are at most g/2 such pairs with

{v, w} = {ρ(v), ρ(w)}, namely pairs with {v, ρ(v)} with ρ(ρ(v)) = v. We divide by 2
since every pair {w, ρ(w)} is counted for both v = w and v = ρ(w). Therefore, there
are at least

g(t− g) +

(
g

2

)
− g/2 = g(t− g/2− 1) ≥ g(t/2− 1)
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pairs {v, w} with {ρ(v), ρ(w)} 6= {v, w}. Let Eρ be the set of these pairs. We
define a graph Hρ with vertex set Eρ in which we connect {v, w} with {ρ(v), ρ(w)}
(if {ρ(v), ρ(w)} belongs to Eρ, this might fail if for example ρ(v) or ρ(w) does not
belong to W ). Now every vertex in Hρ has degree at most 2, since {v, w} can only
be connected to {ρ(v), ρ(w)} and {ρ−1(v), ρ−1(w)}. A set Iρ satisfying Iρ∩ρ(Iρ) = ∅
now corresponds to an independent set of vertices in Hρ.

As the degree of every vertex is at most 2, Hρ consists of isolated vertices, paths and
cycles. Therefore, in every connected component we can select at least one third of
the vertices forming an independent set. This holds because we can select all isolated
vertices, at least one half of the vertices of every path (by starting at an end and
choosing vertices alternately) and at least one third in every cycle (again by starting
at some vertices and choosing alternately: in case of a triangle we are only able to
select one third of the vertices in this way). Therefore, Hρ has an independent set of
size at least 1/3|Eρ| ≥ 1/3g(t/2− 1) = g(t− 2)/6, as required.

We are now ready to prove the following theorem.

Theorem 3.6 (Korshunov, Müller, Bollobás). Let k be a nonnegative integer and let
G ∈ G(n, 1/2). Write pn for the probability that there exists some subset W ⊆ V (G)
of size |W | = n − k such that there is some injective id 6= ρ : W → V which is
an isomorphism ρ : G[W ] → G[ρ(W )]. Then limn→∞ pn = 0. In other words, the
probability that G has property Ak tends to 1.

Proof. First we fix W ⊆ V (G) of size n − k. Note that there are
(
n
k

)
≤ nk ways

to choose such a subset W . Write t = n − k, let id 6= ρ : W → V be an injective
function and let g = g(ρ) be as in the above lemma. Given 1 ≤ g ≤ t, there are at
most n2g such functions ρ, since ρ is determined by the w ∈ W such that ρ(w) 6= w,
for which there are

(
k
g

)
≤ kg ≤ ng options, and the values it attains for these w,

which is also bounded above by ng, since every w has n− 1 < n possible images.

Now write Sρ for the event that ρ is an isomorphism G[W ] → G[ρ(W )]. Let Iρ be
the set constructed in the previous lemma, then for each {v, w} ∈ Iρ the event

vw and ρ(v)ρ(w) are both edges or both nonedges

has probability 1/2. Furthermore, all those events are mutually independent, since
all pairs involved are different. In order for Sρ to be true, all of these events must
hold, hence the probability that Sρ occurs is at most

P(Sρ) ≤ (1/2)|Iρ| ≤ (1/2)g(t−2)/6.
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Therefore, for our given W the probability that we can find a id 6= ρ : W → V
yielding an isomorphism G[W ]→ G[ρ(W )] is given by

∑
ρ6=id

P(Sρ) =
t∑

g=1

∑
ρ:g(ρ)=g

P(Sρ) ≤
t∑

g=1

n2g2−g(t−2)/6 =
t∑

g=1

(
n22(2−t)/6)g

Now, since t = n − k we find that n22(2−t)/6 = n22(2+k−n)/6 < n−k−2 for n large
enough. This shows that the above summation is bounded from above by

∑
ρ6=id

P(Sρ) ≤
t∑

g=1

(n−k−2)g = n−k−2
t∑

g=1

(n−k−2)g−1 ≤ n−k−2
t∑

g=1

1 = tn−k−2 ≤ n−k−1.

Taking into account all possibilities for W we find that pn ≤ nk · n−k−1 ≤ n−1,
showing pn → 0 for n→∞.

3.2 Reconstruction of the number of automorphisms

In the proof of Theorem 2.11 we use the estimate #Aut(G) = 〈G,G〉 ≥ 1. One
might wonder if one can use results about Aut(G) to improve on this bound, or at
least say something about the reconstructability of #Aut(G). Firstly we note that
the case k = 0 of Theorem 3.6 shows that with probability tending to 1 we have
#Aut(G) = 1, so in general we will not be able to improve on this bound. However,
we can use techniques similar to above to say something about the reconstructability
of #Aut(G). First we prove the following lemma, which relates the number of
automorphisms of G to properties of edge-deleted subgraphs of G.

Lemma 3.7. For any graph G and any edge e of G write x(G−e,G) for the number
of edges we can add to G− e to obtain a graph isomorphic to G. Then

#Aut(G) · x(G− e,G) = #Aut(G− e) · s(G− e,G).

Proof. We will show that both sides of the equation count the number of labeled
embeddings of G − e in G. On the one hand, we can first choose x(G − e,G) ways
to extend G − e to a graph isomorphic to G, after which we have #Aut(G) ways
to choose the images of the vertices of G − e. On the other hand, we can also first
choose the subgraph of G to which we map G − e in s(G − e,G) ways, after which
we have #Aut(G− e) to embed G− e into this particular subgraph.
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From this lemma we might deduce that min{#Aut(G − e) · s(G − e,G)} is an
upper bound for #Aut(G). Since #Aut(G− e) can be computed and s(G− e,G) is
reconstructible, this gives a reconstructible upper bound on #Aut(G). Now we will
prove that we in fact almost always have equality. The proof will be similar to the
proof of Theorem 3.6.

Theorem 3.8. Let G ∈ G(n, 1/2) be a graph. Then, with probability tending to 1,
x(G− e,G) = 1 for all edges e of G. In particular, with probability tending to 1 we
have #Aut(G) = #Aut(G− e) · s(G− e,G) for all edges e.

Proof. Note that x(G − e, e) 6= 1 for some e if and only if there exists a bijection
id 6= ρ : V → V such that ρ(u)ρ(v) is not an edge of G for exactly one edge uv of G.

Now, let id 6= ρ : V → V be any bijection and let Iρ be as in Lemma 3.5. There is no
harm in assuming that Iρ has precisely kg = g(n − 2)/6 elements. Again, for every
{v, w} ∈ Iρ the probability the event

vw and ρ(v)ρ(w) are both edges or are both nonedges

has probability 1
2
, independently of all other events. Note that ρ can only satisfy

the above conditions if there are at most two events for which this fails, hence the
probability that ρ satisfies is bounded from above by

(
kg
2

)
22−kg ≤ k2g2

2−kg .

Using similar estimates to those in Theorem 3.6 we may bound the probability of
the existence of a bijection id 6= ρ : V → V such that ρ(u)ρ(v) is not an edge of G
for exactly one edge uv of G by

n∑
g=1

n2gk2g2
2−kg = 4

n∑
g=1

k2g(n
22(2−n)/6)g.

Using kg ≤ gn ≤ n2 and n22(2−n)/6 < n−6 for n large enough we can bound this by

4n4

n∑
g=1

n−6g = 4n−2
n∑
g=1

n−6(g−1) ≤ 4n−2
n∑
g=1

1 = 4n−1,

which goes to 0 when n goes to ∞.
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4 Reconstruction of almost regular graphs

From Corollary 2.3 one can easily deduce the following.

Corollary 4.1. Regular graphs are edge-reconstructible.

Proof. By the above mentioned corollary it is recognizable whether or not a graph is
k-regular. Now suppose we have a k-regular graph G and consider an edge-deleted
subgraph G− e. This graph has precisely two vertices of degree k− 1, and all other
vertices have the same degree, so in order to get a reconstruction of G one must add
an edge between these two vertices.

Of course, a similar proof also holds in the setting of vertex-deleted subgraphs. In
this section we will consider graphs that are in some sense almost regular and discuss
their reconstructability.

4.1 Reconstruction of bidegreed graphs

A bidegreed graph is a graph with two integers occurring in the degree sequence. In
1987 Myrvold, Ellingham and Hoffman proved the following theorem.

Theorem 4.2. Bidegreed graphs are edge-reconstructible.

The full proof can be found in their paper [MEH87], but we will highlight the first
steps here. We will do this in order to show the analogy with the proof we will give in
the next sections. Also, the entire proof is quite lengthy and technical and including
the full proof will not be very enlightening.

The proof starts by assuming that we have a bidegreed graph G that is not edge-
reconstructible. If the degrees of G differ by more than 1, a similar argument holds
as in the case of regular graphs, so we may assume that the degrees are consecutive.
Furthermore, if there is only one vertex of the smaller degree, the same argument
holds again by considering an edge incident to this vertex. Therefore, we know that
the degrees of G are d and d + 1 for some d and there are at least two vertices of
degree d.
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Also, by Corollary 2.7 we know that G must be connected. Finally we can also
restrict to d ≥ 2 since d = 1 will yield a path, which we know to be reconstructible.
In the following, we will call vertices of degree d− 1, d, d + 1 tiny, small and large,
respectively. For a bidegreed graph H, define s(H) to be the smallest path between
two small vertices.

Lemma 4.3. For any edge reconstruction H of G we have s(H) = s(G).

Proof. Write s = s(G) and consider a shortest path a0, a1, . . ., as between small
vertices a0 and as. Consider G − a0a1, in which vertex a0 becomes tiny and vertex
a1 becomes small. Now, to obtain any reconstruction of G we must connect a0 to a
small vertex b. If b 6= a1, as the existence of the path a1−as in H shows s(H) < s(G)
and if b ∈ {a1, as} the existence of the path a0 − a1 − . . .− as or a0 − as − . . .− a1
respectively shows s(H) ≤ s(G). In all cases, s(H) ≤ s(G). The analogous argument
with H and G shows the desired equality.

Remark. In fact, the above proof shows that the only way to obtain an edge
reconstruction of G is to join a0 with a1 or as, so there is at most one non-isomorphic
reconstruction. Since we assumed that there is also at least one, there is exactly one
non-isomorphic edge reconstruction, which we will denote by H. Furthermore, from
now on we will write s = s(G) = s(H).

Also, such a situation where there is only one possible replacement for a certain edge
is called a forced move.

Now, let Γ be G or H and a0, a1, . . ., as be a shortest path between two small vertices
in Γ. For π a permutation of {0, 1, 2, . . . , s} we write Γπ for the graph obtained from
Γ by deleting the edges ai−1ai for 1 ≤ i ≤ s and adding the edges aπ(i−1)aπ(i). It
is readily checked that (Γπ)σ = Γπσ for all π, σ. Let θ : i 7→ i + 1 mod s + 1 and
φ = (0, 1) be two permutations. Considering the forced moves described above one
deduces the following.

Lemma 4.4. If Gπ is isomorphic to G, then Gπθ and Gπθ−1 are isomorphic to H.

Proof. We will show this only for Gπθ, the other proof is analogous. Consider the
shortest path aπ(0) − aπ(1) − . . . − aπ(s). From the above observations, we know
that replacing aπ(0)aπ(1) by aπ(0)aπ(s) is a forced move, hence the resulting graph is
isomorphic to H. A careful consideration of this replacement shows that the resulting
graph is equal to Gπθ.

17



Corollary 4.5. The quantity s is odd.

Proof. Since θs+1 is the identity permutation, Gθs+1 must be isomorphic to G. By
repeated application of the above lemma we find that s+1 is even, hence s is odd.

In a similar vein, we find the following.

Lemma 4.6. If Gπ is isomorphic to G, then Gπφ is isomorphic to H.

Proof. Delete the edge aπ(1)aπ(2) from a shortest path aπ(0) − aπ(1) − . . . − aπ(s) in
Gπ. The resulting graph F has an path of length 1 between the small vertices
aπ(0) and aπ(1) and a path of length s − 2 between the small vertices aπ(2) and
aπ(s). By reconstructability of the degree sequence, together with the fact that
the shortest path between two small vertices must have length s, we find that a
replacing edge must have one endpoint from the vertices {aπ(0), aπ(1)} and the other
from {aπ(2), aπ(s)}. Therefore, H is isomorphic to one of the three possible graphs.
The first option is given

F + aπ(1)aπ(s) = Gπφθ2 ,

which is isomorphic to Gπφ by the previous lemma. The second option is given by

F + aπ(0)aπ(2) = Gπφ,

whereas the last option is given by

F + aπ(0)aπ(s) = Gπθ2 ,

which is isomorphic to Gπ
∼= G by the above lemma. Therefore, we can rule out the

last case and see that H is isomorphic to Gπφ in the two remaining cases.

Since θ and φ generate all permutations of {0, 1, . . . , s}, and both permutations are
odd, we can combine these results to deduce the following.

Lemma 4.7. For any permutation π, Gπ
∼= G if and only if π is an even permutation,

and Gπ
∼= H if and only if π is an odd permutation.

With the help of this lemma we can find the exact value of s.

Lemma 4.8. We have s = 3.
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Proof. Using the fact that Gπ = G for π = (s, s − 1, . . . , 1, 0) and calculating the
sign of π, we find that s ≡ 3 mod 4. Now, if s > 3 we can delete the edge a3a4 from
a shortest path, and any possible replacing edge yields an even permutation, hence
gives us back G. Therefore, G is reconstructible in that case, hence by assumption
this case is not possible.

After these preliminaries the proof mostly consists of showing that G (and H) cannot
contain various subgraphs as well as showing that they on the other hand must
contain some other graphs as a subgraph. For the details we refer to [MEH87]. In
their paper they also note that a slight adaptation of their proof also shows the
following result.

Theorem 4.9. Let G be a graph without three consecutive integers occurring in its
degree sequence, then G is edge-reconstructible.

4.2 Reconstruction of tridegreed graphs: a first case

In the view of Theorem 4.2, it is natural to try to prove that tridegreed graphs (that
is, graphs with three integers in the degree sequence) are reconstructible, as this
might be the first step towards an inductive approach. Since the theorem in the
previous section generalizes for graphs without three consecutive integers occurring
in their degree sequence, we will assume that we are considering tridegreed graphs
with degrees d, d+ 1 and d+ 2 for some d ≥ 1.

In [KR90] we have the following two theorems which could lead towards such an
inductive approach.

Theorem 4.10. A tridegreed graph with minimal degree at least 8 or average degree
larger than 2 log2(18) is edge-reconstructible.

Theorem 4.11. A fourdegreed graph with minimal degree at least 8 or average degree
larger than 2 log2(68) is edge-reconstructible.

This nearly settles the case of tridegreed graphs, except for the fact that we have some
condition on the degrees of the vertices. Below we will give a purely combinatorial
proof of reconstructability in a specific case. The advantage of this proof is that it
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works for all possible degrees, but the disadvantage is that it still does not work for
all tridegreed graphs.

Theorem 4.12. Tridegreed graphs in which all but two vertices have the same degree
are edge reconstructible.

Proof. Suppose we have a graph G of this type which is not edge reconstructible.

Suppose we have more than 1 vertex of degree d. If two vertices of degree d are
connected the edge joining them is a forced edge. Otherwise, any vertex of degree d
is connected with at most 2 vertices (namely the vertices of degree d+ 1 and d+ 2).
Therefore, d ∈ {1, 2}. If d = 1 connectivity and the degree sequence 1, 1, . . . , 1, 2, 3
implies that G must be isomorphic to the following graph.

•

•

•

•

•

If d = 2, the sum of the degrees of G is equal to 2 + 2 + . . . + 2 + 3 + 4 ≡ 1
mod 2, contradicting that the sum of the degrees is twice the number of edges, so in
particular even.

Now assume we have more than 1 vertex of degree d + 1. If the vertex of degree
d is connected to any vertex of degree d + 1, the connecting edge is a forced egde.
Otherwise, we must have d = 1, so the degree sequence 1, 2, 2, . . . , 2, 3 together with
connectivity implies that G must be isomorphic to a cycle with one edge joined:

• •

•

•

•

•

•

Now assume that we have more than 1 vertex of degree d + 2. In the remainder
of this proof vertices of degree d − 1, d, d + 1 and d + 2 are denoted by •, 4, ×
and ◦ respectively. As before, we may assume that the vertices 4 and × (which
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are now unique) are not connected. Write s(H) for the length of the shortest path
between the vertices 4 and ×, where H is any connected graph with degree sequence
d, d+ 1, d+ 2, d+ 2, . . . , d+ 2. Similarly to the proof of the bidegreed case, we have
the following lemma.

Lemma 4.13. G has a unique edge reconstruction H 6∼= G and s(H) = s(G).

Proof. Consider any path

4 e ◦ ◦ . . . ◦ ×

of minimal length and let e be the denoted edge. In G− e the above becomes

u
•

v
× ◦ . . . ◦ ×

w

Now, to obtain an edge reconstruction of G it is clear that we must add an edge
between a vertex of degree d− 1 and a vertex of degree d + 1. Therefore, there are
at most two options, namely uv and uw. Since G is not reconstructible, there are
also at least two options, so there are precisely two options.

Now, the unique edge reconstruction H contains

4 × ◦ . . . ◦ ◦

showing that s(H) ≤ s(G). Completely analogously we obtain the reverse inequality,
so we have in fact equality. ♣

Write s = s(G) = s(H) ≥ 2 and consider a shortest path 4 = a0, a1, . . . , as = × in
G. For π ∈ Sn = S{1,2,...,s} we write Gπ for the graph obtained by deleting aiai+1 for
1 ≤ i ≤ s− 1 and adding aπ(i)aπ(i+1) instead.

First assume that s ≥ 4. Then we have the following.

Lemma 4.14. For π = (s, . . . , 2, 1) we have Gπ
∼= G.

Proof. This is immediate from the following sequence of two forced moves.

4 e ◦ ◦ . . . ◦ × G

4 × ◦ . . . ◦ e ◦ H

4 ◦ ◦ . . . × ◦ G
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Here, the second forced moves follows since the edge on has to add must join two
vertices of degree d+ 1 (after deletion of e), hence it must join two of a1, as−1, as. If
it joins as−1 and as we get back H and if it joins a1 and as−1 the new graph contains
a shorter path between the vertices of degree d and d + 1 (in this case a path of
length 1). Therefore, we must replace e by a1as. ♣

Analogously, we can find the following.

Lemma 4.15. For π = (2, 3) we have Gπ
∼= G.

Proof. When s ≥ 5 we can consider the following series of 4 forced moves showing
the required. In every step, the move is forced due to reasons completely analogous
to those used in the previous lemma.

4 ◦ ◦ e ◦ ◦ . . . × G

4 ◦ e ◦ × ◦ . . . ◦ H

4 ◦ × ◦ e ◦ . . . ◦ G

4 ◦ ◦ ◦ e × . . . ◦ H

4 ◦ ◦ ◦ ◦ . . . × G

When s = 4 we have the following sequence of forced moves.

4 ◦ ◦ ◦ e × G

× ◦ e ◦ ◦ 4 H

◦ × e ◦ ◦ 4 G

×
e

◦ ◦ ◦ 4 H

4 ◦ ◦ ◦ × G

Here, the first and last forced moves occur since (after deleting the edge) we have two
vertices of degree d and one of d+ 1, so the new edge must join the vertex of degree
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d+ 1 with the other vertex of degree d. The two forced moves inbetween follow since
after deleting the edge we have three vertices of degree d+ 1 and we need to connect
two of them. In both cases one pair is already connected and the other pair is just
deleted, so we must add the third pair. ♣

Now, since (s, . . . , 2, 1) and (2, 3) generate Ss we find Gπ
∼= G for any π ∈ Ss.

However, the second graph drawn in Lemma 4.14 is of the form Gπ for some π,
hence H ∼= Gπ

∼= G, a contradiction.

Therefore, we only need to consider s = 2 and s = 3. However, if s = 2 deleting the
designated edge e from a shortest path gives the following situation.

4 ◦ e × =⇒ 4 × 4

Now we must join a vertex of degree d with a vertex of degree d+ 1. Since we have
only two possible pairs and one pair is already joined, the edge e is forced.

If s = 3 we have the forced move shown below.

4
a0 ◦

a1 ◦
a2 e ×

a3
=⇒ ×

a0

◦
a1

◦
a2

e′ 4
a3

Now, deletion of the edge e′ in the graph on the right gives a graph with 3 vertices
of degree d + 1 of which we have to connect 2. However, two of the three pairs are
already joined, so e′ is a forced edge, showing that the rightmost graph is uniquely
edge reconstructible.

4.3 Reconstruction of tridegreed graphs: a second case

In this section we will focus on tridegreed graphs with a unique vertex of degree d,
two vertices of degree d + 1 and the remaining vertices of degree d + 2. We will try
to apply the above techniques to this specific case. As before, denote the vertices
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of degree d − 1, d, d + 1 and d + 2 by •, 4, × and ◦. Suppose we have a non-
reconstructible graph G and write s(H) for the length of the shortest path from the
vertex of degree d to one of the vertices of degree d+1, where H is any graph having
the specified degree sequence.

Lemma 4.16. For any edge-reconstruction H of G we have s(H) = s(G).

Proof. Consider the edge-reconstruction H with s(H) minimal. We know that the
vertex of degree d cannot be connected to a vertex of degree d + 1, so we know
s(H) ≥ 2. If s(H) = 2 we have the leftmost situation and deletion of the indicated
edge e gives the rightmost situation.

4 ◦ ×e =⇒ • × ×

Now we note that it can be seen from the edge deck whether or not the two vertices
of degree d + 1 in H are connected, since they are connected if and only if there is
some edge-deleted subgraph. Since the degree sequence is reconstructible, it is clear
that we must connect the vertex of degree d− 1 with some vertex of degree d+ 1. If
the two vertices of degree d + 1 are not connected it is clear that we must join the
vertex of degree d− 1 with one of the two drawn vertices of degree d+ 1, giving us a
reconstruction H ′ with some path of length 2. By minimality 2 = s(H) ≤ s(H ′) ≤ 2,
showing equality. If the vertices of degree d+ 1 are connected in the original graph,
the edge-deleted subgraph contains the following situation

• × × ×

It is clear that joining the vertex of degree d − 1 with any of the vertices of degree
d+ 1 yields a path of length 2 between the vertex of degree d and a vertex of degree
d+ 1, again showing that any reconstruction H ′ of H has s(H ′) = 2 as well.

In the case of s(H) ≥ 3 we can have a similar argument, considering deletion of the
edge e indicated below.

4 . . . ◦ ◦ ×e

⇓

4 . . . × × ×
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From the degree sequence it follows that we must join two vertices of degree d + 1.
By minimality of s(H), one of which must be the leftmost of the three in the above
situation. Now, if the vertices of degree d + 1 are not connected, we must join this
vertex with one of the two leftmost vertices, yielding a path of length s(H) in the
reconstruction H ′, which similarly to above suffices to prove the lemma. Also, if the
two vertices of degree d + 1 are connected in the original graph we can apply the
same reasoning as above.

As before, write s = s(G), hence s = s(H) for any edge-reconstruction H of G. Note
that the above proof also shows that in the case the two vertices of degree d+ 1 are
not connected we have a unique edge-reconstruction H of G with H 6∼= G. Let us
first handle most of the cases where the two vertices of degree d+ 1 are connected.

Lemma 4.17. Suppose that in G the two vertices of degree d+ 1 are connected and
that s ≥ 3. Then G is edge-reconstructible.

Proof. Consider a shortest path of length s and remove the edge e indicated below.

4 ◦ . . . ◦ × ×e

⇓

• × . . . ◦ × ×

From reconstructability of the degree sequence, we see that we must join the vertex
of degree d − 1 with one of the vertices of degree d + 1. However, if we connect it
with one of the two rightmost vertices, we get a path of length 2 from the vertex of
degree d to a vertex of degree d + 1, contradicting the fact that s ≥ 3. Therefore,
the only way to get an edge-reconstruction of G is to draw e again, showing that G
is edge-reconstructible.

Unfortunately, the above proof misses the case s = 2. From now on, we will restrict
to graphs where the vertices of degree d+ 1 are not connected. Write m(G) for the
length of the shortest path from any path 4 = a0−a1− . . .−as−1−as = × of length
s to the vertex of degree d+1 not on this path. We will first show that the parameter
m(G) is reconstructible. Remember that we assumed that the vertices of degree d+1
are not connected, hence we have a unique nonisomorphic edge-reconstruction H of
G.
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Lemma 4.18. We have m(H) = m(G).

Proof. When proving s(H) = s(G) in Lemma 4.16 we have shown that H can be
obtained from G by deleting some edge from the shortest path a0− a1− . . .− as and
inserting some edge aiaj. Since the shortest path of length m(G) does not contain
the deleted edge, we still have a path of length m(G) from the vertex of degree d+ 1
to the path of length s (which consists of the vertices a0, a1, . . ., as in some order),
showing m(H) ≤ m(G). Analogously, we have the reverse inequality, showing the
desired equality.

Therefore, from now on, we will write m = m(G) = m(H). Note that by definition
the length of the shortest path between the two vertices of degree d + 1 is at least
m. The following lemma shows that at least one of s and m must be small.

Lemma 4.19. Suppose that m, s ≥ 5, then G is edge-reconstructible.

Proof. Consider any shortest path 4 = a0 − a1 − . . . − as. Similarly Lemma 4.14
and Lemma 4.15 we will show that Gπ

∼= G for π = (s− 4, s− 3, s− 2, s− 1, s) and
π = (s− 4, s− 3). This will yield Gπ

∼= G for any π ∈ S{s−4,s−3,s−2,s−1,s}, which will
lead to a contradiction to the same reasons as before. For the proof that Gπ

∼= G for
π = (s, s−1, s−2, s−3, s−4) the first step will be to remove as−5as−4 and add as−5as.
Here, we must add as−5as since the path × = as−4 − as−3 − as−2 − as−1 − as = ×
is a path of length 4 < m between to vertices of degree d + 1, hence the replacing
edge must have at least one of these vertices as an endpoint. Also, if s = 5 the
vertex as−5 = a0 now has degree d − 1, hence we must join this vertex with either
as−4 or as. Since we removed as−5as−4 we must indeed add as−5as. If s ≥ 6 the path
4 = a0 − a1 − . . . − as−5 = × is a path of length s − 5 < s between the vertex of
degree d and a vertex of degree d + 1, so the replacing edge must have as−5 as its
endpoint (as the replacing edge must have two vertices of degree d as its endpoints).
Since we removed as−5as−4, we find again that we must add as−5as.

In fact, we can do the same things for the case where s = 4, where Lemma 4.15
required a different proof.

Lemma 4.20. Suppose that m ≥ s = 4. Then G is edge-reconstructible.

Proof. Just as in the above lemma we can show the analogue of Lemma 4.14 in this
case, so it suffices to prove the analogue of Lemma 4.15. In fact, with a little bit
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more consideration, the same series of forced moves can be used to show that we still
have G(2,3)

∼= G. For clarity, we will again show this series of moves.

4 ◦ ◦ ◦ e × G

× ◦ e ◦ ◦ 4 H

◦ × e ◦ ◦ 4 G

×
e

◦ ◦ ◦ 4 H

4 ◦ ◦ ◦ × G

We will now discuss why this series of moves is still forced. As usual, enumerate the
vertices from left to right as 4 = a0 − a1 − a2 − a3 − a4 = ×. Let v be the vertex
of degree d + 1 not equal to a4. Now, after deletion of e = a3a4, the vertex a3 will
have degree d + 1 and the vertex a4 will have degree d. Since we know the degree
sequence, the replacing edge must join vertices of degree d and d + 1 respectively.
Therefore, the replacing edge is one of a0v, a4v, a0a3 (we exclude a4a3 since we just
deleted that edge). Now, if we add a0v we get a path 4 = a0 − a1 − a2 − a3 = × of
length 3 < s between the vertex of degree d and a vertex of degree d + 1, whereas
adding a4v will yield the path × = a0 − a1 − a2 − a3 = × of length 3 < m between
the vertices of degree d+ 1. Therefore, the replacing edge must be a0a3. By exactly
the same reasoning the last move is forced. Now we discuss why the second move
is forced, the third move is analogous. After deleting a1a2, we have four vertices of
degree d + 1, namely a0, a1, a2 and v, of which we must connect two. Since a0 and
a1 are connected, the replacing edge must have either a0 or a1 as its endpoint. Also,
the path a0− a3− a2 is a path of length 2 < m between two vertices of degree d+ 1,
so the replacing edge must also have either a0 or a2 as an endpoint. Therefore, if a0
is not an endpoint of the replacing edge, the replacing edge must be a1a2, but that
is the edge we just deleted. Therefore, a0 must be an endpoint. Since a0 and a1 are
already connected, the replacing edge is either a0v or a0a2. However, if we add a0v,
the path × = a1 − a0 − a3 − a2 is a path of length 3 < m between the two vertices
of degree d+ 1, a contradiction.

Now we consider the case where s is large, but m is small. We can show the desired
result except for the case (s,m) = (5, 4).
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Lemma 4.21. Suppose that we have (s,m) = (4, 2) or s ≥ 5, m ≤ 4 and (s,m) 6=
(5, 4). Then G is reconstructible.

Proof. Denote by 4 = a0−a1− . . .−as = × a path of length s such that the distance
from the vertex v of degree d + 1 not on this path to this path is m. Suppose that
this path of length m is between v and ai. Since a0− a1− . . .− ai− . . .− v is a path
of length i+m from the vertex of degree d to a vertex of degree d+ 1, we must have
i+m ≥ s, hence i ≥ m− s. By assumption, we have s−m ≥ 2.

We will first show that we can reduce to the case where i = s. Henceforth, suppose
that 2 ≤ i < s and delete the edge e = ai−1ai. After deletion of this edge we will have
four vertices of degree d+ 1, namely ai−1, ai, as and v, of which we must connect 2.
The existence of the path 4 = a0−a1− . . .−ai−1 = × shows that ai−1 must be one of
the endpoints. If i > m− s the path × = ai− . . .− as has length less then m, hence
the other endpoint must be either ai or as. Since we removed ai−1ai we see that the
replacing edge must be ai−1as. If i = m − s the roles of as and v are symmetric
symmetric, since both have distance m from ai. Since the replacing edge is ai−1as or
ai−1av we may assume without loss of generality that it is ai−1as. Now, in this new
situation, we in fact have i = s. Below one can see these situations for (s,m) = (5, 3)
for i = 4 > s − m and i = 2 = s − m respectively. The upper drawings are the
situation after deleting ai−1ai, whereas at the bottom one can see the situation after
adding in aias, after which the shortest path of length s is depicted in green, and the
path of length m to the ultimate vertex of this path is shown in red.

4
a0 ◦ ◦ × ×

ai ×
a5

◦◦×
v

4
a0 × ×

ai
◦ ◦ ×

a5

◦ ◦ ×
v

4 ◦ ◦ ◦ × ◦

◦◦×
4 ◦ ×

◦ ◦ ◦

◦ ◦ ×

Now, in the case that i = s, remove the edge as−1as, to give the situation shown

28



below. Here the length of the path between as and v is equal to m.

4
a0

◦ · · · ◦ ×
as−1

4
as

◦· · ·◦×
v

Now, we must connect one of the vertices of degree d with one of the vertices of
degree d + 1, hence one of a0, as with one of as−1, av. However, since both 4 =
a0 − . . . − as−1 = × and 4 = as − . . . − v = × are paths between a vertex of
degree d and a vertex of degree d+ 1, and their respective lengths are s− 1 < s and
m < s, one endpoint must be among a0, as−1 and the other endpoint among as, v.
Since we just deleted as−1as this gives a0v as the only option. But then the path
4 = as − . . . − v − a0 is a path of length m + 1 < s between the vertex of degree d
and a vertex of degree d+ 1, which is a contradiction. Therefore, the edge as−1as is
a forced edge and G is reconstructible.

There are only few cases remaining, which we can summarize in the following
theorem.

Theorem 4.22. Let G be a graph with one vertex of degree d, two vertices of degree
d + 1 and all other vertices of degree d + 2. Then G is edge-reconstructible, except
for possibly the following cases:

(a) The vertices of degree d+ 1 are connected and s = 2.

(b) The vertices of degree d+ 1 are not connected and s ∈ {2, 3}.

(c) The vertices of degree d + 1 are not connected and (s,m) = (4, 3) or (s,m) =
(5, 4).
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A Graph theory glossary

Below one finds an overview of some of the notation and concepts used throughout
this thesis. Some of the definitions below are specific to finite, simple, undirected
graphs, the only type of graph considered. Below G and H will always be graphs.

G+H The graph with V (G+H) = V (G) t V (H)

and E(G+H) = E(G) t E(H)

nG G+G+ . . .+G (n times)

Bidegreed graph A graph with exactly two integers in the degree sequence

Complete graph Kn The graph on n vertices with all possible edges;

V (Kn) = {1, 2, . . . , n}, E(Kn) = {ij | 1 ≤ i < j ≤ n}
Connected graph A graph with a path between any two vertices

Connected component A connected subgraph not strictly contained

in any other connected subgraph

Degree of a vertex v The number of edges having v as an endpoint;

The number of u ∈ V such that uv ∈ E
Degree sequence The non-increasing sequence of the vertex degrees

E, E(G) The edge set of G

e(G) The number of edges of G

Homomorphism G→ H A map f : V (G)→ V (H) such that

f(x)f(y) ∈ E(H) for all xy ∈ E(G)

Isomorphism An invertible homomorphism

Automorphism An isomorphism from a graph to itself

Isolated vertex A vertex of degree zero

Path A sequence of distinct vertices v0, v1, . . . , vn (with possibly

v0 = vn) such that vi−1vi ∈ E for all 1 ≤ i ≤ n

Regular graph A graph in which every vertex has the same degree

k-regular graph A graph in which every vertex has degree k

Subgraph H of G A graph with V (H) ⊆ V (G) and E(H) ⊆ E(G)

Subgraph induced by W , G[W ] The graph H with V (H) = W and E(H) all

pairs of elements of W contained in E(G)

Tridegreed graph A graph with exactly three integers in the degree sequence

V , V (G) The vertex set of G

v(G) The number of edges of G
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