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Abstract

Historically, weather and climate forecasting has always been important. But the changing climate
with the increasing frequency of extreme weather events and larger societal impacts has made good
forecasting skill of even more interest[6]. Improving individual weather and climate models is a difficult
task, but models have improved steadily over time as witnessed by objective skill scores. Recently it
has been proposed to combine imperfect models dynamically in order to further improve predictions.
In this thesis we explore a technique called Cross Pollination in Time (CPT, Smith 2001). In the CPT
approach the models exchange states during the prediction. The number of possible predictions grows
quickly with time and a strategy to retain only a small number of predictions, called pruning, needs to be
developed. In the training phase a pruning strategy is proposed based on retaining those solutions that
remain closest to the truth. From the training phase probabilities are derived that determine weights
to be applied to the imperfect models in the forecast phase. The CPT technique is explored using
low-order dynamical systems and applied to a global atmospheric model. The results indicate that the
CPT approach improves the forecast quality over the individual models. The technique is suited for
application to state-of-the art high-dimensional weather and climate models.
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Chapter 1

Introduction

In the last decades, climate change has received more and more attention. Especially the impact of
humans on climate has attracted a great deal of concern. To provide a scientific basis to develop climate-
related policies, in 1988 the Intergovernmental Panel on Climate Change (IPCC) was established. The
IPCC periodically publishes reports written by scientists. In their assessments it becomes clear that
although the climate simulations of the climate models that are developed by various institutes in the
world improve over time, these models remain imperfect. For instance, even in the simulation of the
multi-decadal annual mean precipitation rate models are off by various millimeters per day in large parts
of the world. Figure 1.1a [5] displays the multi-model mean of the annual mean precipitation (mm/day)
for the period 1980-2005. The relative errors (Figure 1.1d) are larger than 30% in most regions, especially
model values for the tropics are far off historical observations. Even more challenging is the simulation
of the response of the climate to scenario’s of future emissions of greenhouse gasses. The warming under
the RCP4.5 scenario (a standard scenario) for 2081-2100 as simulated by 42 climate models shows a large
spread (Figure 1.2). Obviously there is no consensus between the models.

Improving the models is a large research subject. A demanding aspect is that there are many unknown
parameters and approximations in a model because not all physical processes are explicitly resolved.
To model and tune all of these aspects requires a huge computational force effort. Models will remain
imperfect due to the complexity of the climate system with interaction across scales over many orders
of magnitude (108 − 10−6 m). Often it helps to average across models as model errors tend to average
out. In the IPCC example of the temperature in the future, the output of the models is hence averaged,
a multi-model mean is calculated. In [2] this multi-model ensemble method is supported, there is some
evidence it improves imperfect individual predictions. However, it is not obvious which imperfect models
and with what weights the forecast should be made. Because of that almost all operational predictions
are based on equal weights.

In this thesis it is proposed to combine models dynamically to further improve predictions. A training
method is developed to accomplish this. This training method provides information about the strengths
of each model. It is the aim to show that using these strengths can result in better predictions than
the predictions of the imperfect models individually. The method is developed using chaotic low-order
dynamical systems with only three degrees of freedom, that have often been used as toy models for
the atmosphere. These models are computationally very cheap allowing for extensive experimentation.
Secondly, the method developed on these toy models is applied to a more chaotic and realistic global
atmospheric model with 1449 degrees of freedom.
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Figure 1.1: Annual-mean precipitation rate (mm/day) for the period 1980-2005. (a) Multi-model-mean.
(b) Difference between multi-model mean and precipitation analyses from the Global Precipitation Cli-
matology Project (Adler et al., 2003). (c) Multimodel- mean absolute error with respect to observations.
(d) Multi-model-mean error relative to the multi-model-mean precipitation itself.

1.1 Supermodeling approach

In [13] it is proposed to combine models into one large supermodel by prescribing connections between
model equations. These connections act as nudging terms to bring the solutions of the different mod-
els together. If the connection coefficients are large enough, the system will quickly synchronize on an
(almost) joint trajectory. The nature of this trajectory depends on the relative strength of these con-
nections coefficients. For instance, if all models are nudged towards one model and this one model is
not nudged to the others, the ensemble will synchronize on the solution of this model. By training the
connection coefficients such that the synchronized trajectory follows an observed trajectory as close as
possible a supermodel is constructed with improved prediction capability. The training of the coefficients
is achieved by minimization of a cost function that measures the distance between the synchronized tra-
jectory and the observed trajectory. In [15] it is noted that the size of these coefficients is typically very
large. In that case the synchronized solution of the connected ensemble of models can be reproduced by
a weighted superposition of the imperfect models. In this thesis it is proposed to dynamically combine
imperfect models by a new procedure to construct such a weighted superposition of imperfect models.
The weights are learned from observed trajectories. This learning process follows the Cross Pollination
in Time (CPT) method, proposed by Leonard A. Smith[12]. CPT “crosses” different model trajectories
in order to create a larger ensemble. Hence the weighted superposition forms a supermodel that can
explore larger regions of state space compared to the individual imperfect models and hence might be
trained to more closely follow the truth. The method is developed using low-order dynamical systems.
The model with standard parameter values generates observations. Imperfect models are created by
perturbing parameter values.
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1.2 Outline

Section 2 of this paper explains the concept of a dynamical system and gives a few examples that are used
in this thesis, the Lorenz 63 system and the Lorenz 84 system. The next chapter explains the training by
cross pollination, how the weights should be determined and how the imperfect models should be chosen.
In section 4 the method is applied to the Lorenz 84 system. Section 5 shows the results for the Lorenz
63 system. CPT is also tested on a more complicated atmosphere model, this is done in section 6. In
section 7 different combinations of imperfect models are tested. The last sections contain a discussion
and conclusion.

Figure 1.2: Surface air temperature change in 2081-2100 for a collection of individual models, displayed
as anomalies with respect to the period 1986-2005 (Figure 12.9 from the Fifth Assessment Report 2013)
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Chapter 2

Dynamical systems

The supermodeling approach is tested in this thesis on low-order dynamical systems. A continuous-time
dynamical system consists of a space X and a family of maps F t : X → X, t ∈ T , where F t+s = F t ◦F s
and F 0 = Id[7]. A common way to define a continuous-time dynamical system is by use of differential
equations. For example with X = R3:

ẋ = f(x), x ∈ R3

with f : R3 → R3 and R3 forward invariant under the flow F t of f .
The considered dynamical systems in this thesis are chaotic for certain parameter values. This means
that small differences in the initial state lead to rapid divergence of orbits. For a discrete map, as used
in numerical computations, formally there is sensitive dependence on initial conditions if there is an
ε > 0 such that for every x ∈ X and δ > 0 there are y ∈ X and n ∈ N for which d(x, y) < δ and
d(fn(x), fn(y)) > ε[3]. Weather models are also chaotic which makes weather predictions so difficult.
Despite this chaotic behavior, the trajectories are confined to in the forward invariant set X, and the
intersection of all such sets has a complex structure: a strange attractor.

2.1 Lorenz 63

In 1963 Edward Lorenz developed a simple dynamical system to model atmospheric convection[8]. The
differential equations of the system depend on system parameters σ, ρ, β. The state space is described
by coordinates x, y, z.

ẋ = σ(y − x) (2.1)

ẏ = x(ρ− z)− y (2.2)

ż = xy − βz (2.3)

The standard parameter values are σ = 10, ρ = 28 and β = 8
3 . For these parameter values a strange

attractor appears, with the shape of a butterfly, as depicted in figure 2.1. Varying the parameters can
cause completely different behavior of the system. For example, the system can reduce to a stable
fixed point. This qualitative change is called a bifurcation. If the value of ρ is varied, one can analyze

that at ρH = σ(3+σ+β)
σ−β−1 a bifurcation takes place. If ρ increases through this point a chaotic attractor

arises. Each“butterfly wing” contains an unstable fixed point at its center, around which the trajectories
alternately revolve in an unpredictable pattern
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Figure 2.1: Plots of the attractor of the Lorenz 63 system with the standard parameter values.

2.2 Lorenz 84

Another dynamical system proposed by Lorenz is the Lorenz 84 system:

ẋ = −y2 − z2 − ax+ aF (2.4)

ẏ = xy − bxz − y +G (2.5)

ż = bxy + xz − z (2.6)

This system represents atmospheric circulation. Here x corresponds to the intensity of the zonal wind
and y, z represent the cosine and sine parts of a traveling wave. The standard parameter values are
a = 0.25, F = 8.0, b = 4.0, G = 1.0. For these values, a strange attractor appears that is more complex
than the butterfly of Lorenz 63, as can be noted from figure 2.2.
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Figure 2.2: Plots of the attractor of the Lorenz 84 system with the standard parameter values.
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Chapter 3

Cross Pollination in Time

Cross Pollination in Time (CPT) is a method for combining different models by “crossing” the trajectories
they generate to obtain a larger ensemble. A straightforward way to use M different imperfect models is
to compute M N -member ensembles. Even if the M models are comparable in quality it could be that
different models perform better in different regions. To distinguish which model performs best in which
region often there are not enough data available[12]. For that reason Smith presents the idea of cross
pollinating trajectories between models.
It is assumed that we have an observed trajectory, called the “truth”. The training phase of CPT starts
from an observed initial condition in state space. From this initial state, the M imperfect models run for
a certain period each ending in a different state. From these endpoints all models run again. Continuing
this process leads to a rapid increase of the number of predictions with time, allowing different areas
of the state space to be explored. To retain only a bounded number of predictions a pruning step is
required. We choose to continue only those predictions that remain closest to the truth, the others are
discarded. In figure 3.1 an example is shown for M = 3 different models.

Figure 3.1: Cross Pollination in Time for 3 models, with pruning (right).
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3.1 Determining weights

In the training phase, probabilities are derived to express the proportion of time for which a given
model best predicts the truth for a given variable. For example, if cross pollination has taken place P
times and model 1 is chosen to continue with P1 times, the probability that model 1 remains closest
to the truth is P1

P for P large enough. These probabilities then are used in predicting future states by
integrating a weighted sum of the time-derivatives of all imperfect models with weights corresponding
to these probabilities. So in the example, the weight is equal to P1

P , hence we integrate the expected
value of the time-derivative. This superposition of weighted imperfect models forms a supermodel, as all
models contribute to the evolution.

3.2 Iterative method

In order to obtain convergence towards a supermodel that reflects the truth in the best possible way the
training is carried out iteratively. The first iteration step is to obtain a weighted sum of the imperfect
models, the supermodel. In the second iteration step, this supermodel is added as an extra imperfect
model. In the subsequent iteration steps the previously obtained supermodel is replaced by the newly
obtained supermodel. If the added supermodel is closer to the true model than the initial imperfect
models, the constructed trajectory in the CPT procedure needs fewer strong adjustments from the
initial imperfect models. The trajectory will remain closer to the observations, which can result in
better estimations of the weights. Learning stops if the supermodel remains closer to the truth than the
individual imperfect models for all time steps during the training.

3.3 CPT as a parameter estimation method

In both the Lorenz systems, the imperfect models in this thesis will satisfy the same differential equa-
tions as the associated perfect model. Only the parameters are varied. Because the parameters appear
linearly in the equations, it is possible to reproduce the perfect model with a weighted sum of imperfect
models exactly, but only if the imperfect parameter values satisfy certain conditions. These conditions
are derived in this subsection.

As mentioned in section 2, the equations for the Lorenz 84 system are as follows:

ẋ = −y2 − z2 − ax+ aF (3.1)

ẏ = xy − bxz − y +G (3.2)

ż = bxy + xz − z (3.3)

In the equation for ẋ, both an a and a · F appear. Therefore, if should there only be two imperfect
models for the equation for ẋ for example: ẋ1 with parameters a1 and F1, and ẋ2 with parameters a2

and F2, it would not always be possible to get a weighted average of ẋ1 and ẋ2 in order to produce ẋ.
In this case there are three constraints whilst there are only two equations for ẋ. In a matrix-vector
equation this can be represented as follows, where β1 and β2 denote the weight given to ẋ1 and ẋ2:

 a1 a2

a1F1 a2F2

1 1

(β1

β2

)
=

 a
aF
1


This system will only give a solution for the standard parameter values for a and F if the equations
for a and aF are linearly dependent and if a1, a2 are not both equal to zero. Since a and F are not
known, it is unlikely that the parameters will be chosen this way. Hence we need to add an extra linearly
independent equation for ẋ with a3 and F3:
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 a1 a2 a3

a1F1 a2F2 a3F3

1 1 1

β1

β2

β3

 =

 a
aF
1


Three equations, three unknowns, this should do the job in case not two or more elements of {a1, a2, a3}
are zero. Or at least, it will give real values for β1, β2 and β3. But since the CPT weights are positive
by definition, another constraint applies: β1, β2, β3 ≥ 0. The following definitions are introduced:[1]:

Definition. Let x1, ...,xk be vectors in Rn and let λ1, ..., λk be nonnegative scalars whose sum is unity.
(a) The vector

∑k
i=1 λix

i is said to be a convex combination of the vectors x1, ...,xk.
(b) The convex hull of the vectors x1, ...,xk is the set of all convex combinations of these vectors.

This convex hull generalizes the ‘in between’ concept for one dimension: if we want a linear combination
of ξ1 and ξ2 with positive weights to reproduce parameter ξ, ξ has to lie in between ξ1 and ξ2. To be
able to reproduce the n-dimensional vector x, it has to lie inside the convex hull of vectors x1,x2, ...,xk.
Hence we know that for n parameters that appear linearly in one differential equation for a state variable,
n+ 1 linearly independent vectors of these parameters are needed which form a convex hull around the
true parameter vector. A convex hull constructed in this way is called a simplex.
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Chapter 4

Results for Lorenz 84

The first CPT experiment is performed with the Lorenz 84 system. As observed truth a trajectory with
the standard parameter values is used. From section 3.3 about the convex hulls it is clear that one needs
at least three imperfect models to possibly get a linear combination of the models that represents the
truth. As can be seen in table 4.1, the parameter values of the three imperfect models we used differ
substantially from the truth. Figure 4.2 shows the very distinct attractors of the imperfect models.
Figure 4.1 shows that a produced CPT trajectory remains close to the observations for a training period
of T = 1000 time steps, where in every time step a pruning step is taken and only one solution is
continued. Numerical solutions are obtained by using a fourth-order Runge Kutta time stepping scheme,
with a time step of 0.01.
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Figure 4.1: CPT training period with T = 1000 for the Lorenz 84 system.

For this experiment the models are integrated for T = 100 time steps, for 100 iterations. In every
iteration the same part of the attractor is used.
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Model a F aF b G
Model 1 0.1 4.8 0.48 3.0 0.4
Model 2 0.3 4.8 1.44 3.0 1.2
Model 3 0.3 15.0 4.50 5.5 1.2

True 0.250 8.00 2.00 4.00 1.00

Table 4.1: Standard and perturbed parameters values for the Lorenz 84 system.
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Figure 4.2: Trajectories of the imperfect models (red), together with the true trajectory (green) of Lorenz
84.

Already after one iteration, the weights for a, aF are almost perfect and remain the same during the
other 99 iterations. For b,G the iteration steps are quite helpful. After one iteration the weight for
model 1 is too small in the y component, the weight factor should be about twice as large. But after
100 iterations the weight factor resembles quite well the perfect weight factor and the weights also have
stabilized up to a few decimals. The weights wi, i ∈ {1, 3} after the CPT procedure are presented in
table 4.2. They determine the superposition of the imperfect models.

ẋsuper =

3∑
i=1

wxi ẋi (4.1)

ẏsuper =

3∑
i=1

wyi ẏi (4.2)

żsuper =

3∑
i=1

wzi żi (4.3)
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Model wxi wyi wzi
i = 1 0.2100 0.2506 0.5068
i = 2 0.5400 0.4904 0.0000
i = 3 0.2500 0.2509 0.4932

Table 4.2: Weights of the supermodel of the Lorenz 84 system.

In the case of the Lorenz 84 system, the superposition of the imperfect Lorenz 84 models again forms a
Lorenz 84 system, because of the linearity of the parameter values a, aF, b,G in the differential equations.
Hence the supermodel is a Lorenz 84 system for which the parameter values can be calculated, where
the value of b is chosen to be the average of by and bz.

asuper =

3∑
i=1

wxi ai (4.4)

aFsuper =

3∑
i=1

wxi aFi (4.5)

bsuper =
1

2

3∑
i=1

wyi bi +
1

2

3∑
i=1

wzi bi (4.6)

Gsuper =

3∑
i=1

wyiGi (4.7)

a F aF b G
True 0.250 8.000 2.000 4.000 1.000

Supermodel 0.258 7.765 2.003 4.005 1.000

Table 4.3: Parameter values of the truth and the supermodel for the Lorenz 84 system.

If this supermodel is integrated for a long time period, the attractor of the supermodel and the truth
look quite similar, as can be seen in figure 4.3.
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Figure 4.3: Trajectory of the supermodel (blue), together with the true trajectory (green) of the Lorenz
84 system.

4.1 Climate measures

Straightforward measures to compare the attractor of the supermodel and the truth are the mean (µ),
standard deviation (σ) and covariance.

µ(x) =
1

T

T∑
t=1

x(t) (4.8)

σ(x) =

√√√√ 1

T

T∑
t=1

(x(t)− µ(x))2 (4.9)

cov(x, y) =
1

T

T∑
t=1

(x(t)− µ(x))(y(t)− µ(y)) (4.10)

The calculation of these statistics is based on 500 runs of 5000 time steps. Also the error estimation of a
95% confidence interval is calculated. It is assumed that if there are enough runs, their mean, standard
deviation and covariance will approximate a normal distribution. For this normal distribution a 95%
confidence interval can be calculated: (x̄− z∗ σ√

n
, x̄+ z∗ σ√

n
) Here n = 500, and (x̄, σ) are the parameters

of the normal distribution. To have a 95% confidence interval, z∗ ≈ 1.96. From table 4.4 it is clear that
the attractors of the true model and the supermodel have almost the same statistics. Only for mean z,
Cov. yz and Cov. xz small but significal differences are found.
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Truth Supermodel
Mean x 1.01831 (0.00375) 1.01581 (0.00411)
Mean y 0.05343 (0.00806) 0.06158 (0.00922)
Mean z 0.27277 (0.00256) 0.26605 (0.00290)
SD x 0.57770 (0.00671) 0.57688 (0.00781)
SD y 0.91427 (0.00119) 0.91331 (0.00117)
SD z 0.90700 (0.00104) 0.90630 (0.00098)

Cov. xy -0.04208 (0.00814) -0.05025 (0.00931)
Cov. xz -0.03996 (0.00170) -0.03494 (0.00183)
Cov. yz -0.07120 (0.00284) -0.08110 (0.00332)

Table 4.4: The mean, standard deviation (SD) and covariance for the Lorenz 84 system for the truth
and the supermodel. Between brackets the 95% error estimation is given.

4.1.1 Kullback-Leibler

As measure for the difference between attractors the Kullback-Leibler divergence (KL)[10] can be used.
This measure quantifies to what extent a distribution P (x) is approximated by a distribution Q(x). Here,
P (x) denotes the ‘truth’. It is defined as follows[10]:

KL(P ||Q) = −
∫
P (x) log

Q(x)

P (x)
dx

Clearly, if Q = P , then KL(P ||Q) = 0. Further, KL(P ||Q) ≥ 0, as can be seen with Jensen’s inequality.
If Q(x) = 0 but P (x) > 0 the log term blows up. Because of that a smoothing is introduced[10]:

K(x) = α exp(−‖x‖2h2 ), where α is chosen such that
∫
K(x)dx = 1, hence K(x) becomes a Gaussian

distribution. The exact distributions P (x) and Q(x) are not known, instead only a sequence of values

in time. For P (x) this sequence is denoted by x(tn)
N
n=1 and for Q(x) this is denoted by y(tn)

N
n=1. Then

the distributions P (x) and Q(x) can be approximated as follows:

P (x) ≈ α

N

N∑
n=1

exp(−‖x− x(tn)‖2

2h2
)

and

Q(x) ≈ α

N

N∑
n=1

exp(−‖x− y(tn)‖2

2h2
)

Substituting these terms in the log term gives a convenient expression because α vanishes. Then only
the smoothing parameter h has to be chosen. But the P (x) term in front of the log term is more difficult
to calculate with this expression of superposition of Gaussians because of the α term. However, since
the truth P (x) is a sequence of values in time, it can be represented with delta functions: P (x) =
1
N

∑N
n=1 δ(x − xn). The sum and integral can be interchanged because of convergence. So the KL

divergence becomes: − 1
N

∑N
n=1

∫
δ(x − xn) log Q(x)

P (x)dx. From the fundamental properties of the Dirac

delta it is known that δ(x − xn) only has a value for x = xn, otherwise it is equal to zero. And since

the function is defined as a distribution, also
∫
δ(x − xn)dx = 1 holds. Therefore, − 1

N

∑N
n=1

∫
δ(x −

xn) log Q(x)
P (x)dx reduces to − 1

N

∑N
n=1 log Q(xn)

P (xn) . So P (x) is as factor in front of the log represented by a

superposition of delta functions, and in the log term approximated by the superposition of Gaussians.

Now it is possible to calculate the Kullback-Leibler distance:

KL(P ||Q) ≈ − 1

N

N∑
n=1

log

(∑N
k=1 exp(−‖x(tn)−y(tk)‖2

2h2 )∑N
k=1 exp(−‖x(tn)−x(tk)‖2

2h2 )

)

The sequence x(tn) consists of 50000 subsequent points from the true model. The sequence of observations
y(tn) consist of 50000 subsequent points from the supermodel. With some trial and error h is chosen to
be equal to 0.1. If h is too small, h = 0.01 for example, KL(P ||Q) still goes to infinity. If h is too large,
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for example h = 1, then KL(P ||Q) is almost equal to zero, even if the distributions of the true model
and the imperfect model are quite different.

Model KL(P ||Q)
Model 1 12.17
Model 2 55.25
Model 3 20.61

Supermodel 0.11
Truth 0.065 (0.028)

Table 4.5: Kullback Leibler value for 50000 subsequent points. Between brackets the standard deviation
for KL(P ||Q) is given.

Table 4.5 shows some more evidence that the supermodel has an attractor that is more similar than those
of the true model than the initial imperfect models. But to be able to interpret the KL(P ||Q) values
a bootstrapping method is performed. The true model runs from 100 different initial conditions on the
attractor for 50000 time steps. The run from the first initial condition is taken as truth. The KL(P ||Q)
value is then calculated 99 times. If it is assumed this bootstrapping method gives KL(P ||Q) values
that approximate a normal distribution, a standard deviation can be calculated. Then, the average true
KL(P ||Q) value is less than two standard deviations smaller than the KL(P ||Q) for the supermodel.

4.2 Forecast quality

Along with a measure for the climate statistics of the models, also a measure for quality or skill of a
“weather prediction” can be constructed. This measure reflects the forecast quality of the models on
shorter time scales. The squared Euclidean distance between the true trajectory and the trajectory of a
model with a slightly perturbed initial condition is calculated and averaged over a number of forecasts,
as shown in figure 4.4. On the true attractor, this value saturates for large enough forecast time T at
a value corresponding to the average distance between two arbitrary states. This distance is used to
normalize the measure of the forecast quality. The initial perturbation is chosen on the order of 10−1.
The number of forecasts is equal to 10000 and d = 10 time steps.

Figure 4.4: Measure of the forecast quality. At times ti a short integration of time T starts from observed
initial conditions and slightly perturbed conditions. The fixed time interval between times ti is denoted
by d.
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Figure 4.5: Forecast quality of the imperfect Lorenz 84 models and the Lorenz 84 supermodel (right).

It can be concluded from figure 4.5 that the imperfect models almost immediately have no added value
for the predictability. The supermodel definitely performs better. Up to 1500 time steps, where the
scaled difference is 0.8, there is no significant difference between the forecast quality of the supermodel
and the true model. After 1500 time steps the supermodel performs slightly worse but its performance
is still is very similar to that of the perfect model.
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Chapter 5

Results for Lorenz 63

The CPT approach is next tested on another low-order dynamical system, the well-known Lorenz 63
system. Two different imperfect models are created with parameter values that deviate about 30% from
the standard parameter values.

σ ρ β
Truth 10 28 8

3
Model 1 12.25 19 3.3
Model 2 7.5 35 1.9

Table 5.1: Standard and perturbed parameter values for the Lorenz 63 system.

The behavior of these imperfect models is quite different from the truth, as depicted in figure 5.1. The
first model has as attractor a stable fixed point. The second model has a chaotic attractor that resembles
the truth although there is a strong bias, the mean z-value is considerably larger.

 0

 10

 20

 30

 40

 50

z

Lorenz 63, before training (Model 1)

Truth
Model 1

z

 0

 10

 20

 30

 40

 50

 60

z

Lorenz 63, before training (Model 2)

Truth
Model 2

z

Figure 5.1: Trajectories of the imperfect models (red), together with the true trajectory (green) of the
Lorenz 63 system.

In the CPT training phase in every time step it is determined which model lies closest to the truth. Only
the trajectory of this model is continued. The training phase T is chosen to be 200 time steps. The
number of iterations is 100. Every iteration step the same part of the attractor is used for training.
The weights wi, i ∈ {1, 2} that are the result of the training phase are listed in table 5.2. They determine
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the superposition of the imperfect models.

ẋsuper =

2∑
i=1

wxi ẋi (5.1)

ẏsuper =

2∑
i=1

wyi ẏi (5.2)

żsuper =

2∑
i=1

wzi żi (5.3)

Model wxi wyi wzi
i = 1 0.5248 0.4385 0.5491
i = 2 0.4752 0.5615 0.4509

Table 5.2: Weights of the supermodel of the Lorenz 63 system.

After 45 iterations, the weights for ẏ and ż do not change anymore. The weights for ẋ are after 100
iterations still not converged, but the values differ only from the third decimal onwards.
Also in this case, the superposition of the imperfect Lorenz 63 models again forms a Lorenz 63 system,
because of the linearity of the parameter values σ, ρ, β in the differential equations. Hence the supermodel
is a Lorenz 63 system for which the parameter values can be calculated:

σ̇super =

2∑
i=1

wxi σ̇i (5.4)

ρ̇super =

2∑
i=1

wyi ρ̇i (5.5)

β̇super =

2∑
i=1

wzi β̇i (5.6)

σ ρ β
Truth 10 28 8

3
Supermodel 9.993 27.983 2.669

Table 5.3: Parameter values of the truth and the supermodel of the Lorenz 63 system.

If this supermodel is integrated for a long time period, the attractor of the supermodel and the truth
look quite similar, as can be seen in figure 5.2.
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Figure 5.2: Trajectory of the supermodel (blue), together with the true trajectory (green) of the Lorenz
63 system.

5.1 Climate measures

The calculation of the statistics of the model trajectories (mean, standard deviation and covariance) is
based on 500 runs of 5000 time steps. Also the error estimation of a 95% confidence interval is calculated.
The statistics of both the true and the supermodel attractor are very similar (Table 5.4). Especially
the standard deviations for both x, y and z do have up to the first decimal the same value. The largest
differences are in the covariance between x, z and y, z. However, these differences are 95% within the
uncertainty intervals and are thus not significant. The sizes of all confidence intervals for both the truth
and the supermodel are almost identical.

Truth Supermodel
Mean x 0.073 (0.099) 0.033 (0.098)
Mean y 0.073 (0.099) 0.034 (0.098)
Mean z 23.552 (0.012) 23.528 (0.012)
SD x 7.843 (0.010) 7.844 (0.009)
SD y 8.939 (0.011) 8.942 (0.010)
SD z 8.618 (0.012) 8.623 (0.012)

Cov. xy 61.529 (0.150) 61.547 (0.148)
Cov. xz 0.189 (0.266) 0.057 (0.268)
Cov. yz 0.247 (0.336) 0.109 (0.334)

Table 5.4: The mean, standard deviation (SD) and covariance for the Lorenz 63 system for the truth
and the supermodel. Between brackets the 95% error estimation is given.
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5.1.1 Kullback-Leibler

Another measure to compare attractors of different models is the Kullback-Leibler measure. For the
Lorenz 63 system this is calculated similarly as for Lorenz 84, only the value of h has to be adapted.
For Lorenz 84 h was chosen to be equal to 0.1, but for Lorenz 63 this causes values of KL(P ||Q) going
to infinity for the imperfect models. Hence h is chosen to be larger, h = 10. From table 5.5 it can
be concluded that the supermodel cannot be distinguished from the true model with respect to the
Kullback-Leibler measure.

Model KL(P ||Q)
Model 1 0.56
Model 2 0.15

Supermodel 1.50 · 10−3

Truth 3.62 · 10−3 (1.98 · 10−3)

Table 5.5: Kullback Leibler value for 50000 subsequent points. Between brackets the standard deviation
for KL(P ||Q) is given.

5.2 Forecast quality

As was done for the Lorenz 84 system, the forecast quality of the Lorenz 63 system is measured with the
mean squared error of forecasts started from slightly perturbed initial conditions. The initial perturbation
is chosen on the order of 10−1. The number of forecasts is equal to 1000 and d = 10 time steps. Figure
5.3 shows that the ability of the supermodel and the true model to predict the observed truth is about
the same. The imperfect models almost immediately lose their ability to predict well.
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Figure 5.3: Forecast quality of the imperfect Lorenz 63 models (left) and the Lorenz 63 supermodel
(right).
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Chapter 6

Results for a quasi-geostrophic
model

The Cross Pollination in Time method is next applied to the three-level quasi-geostrophic model of
atmospheric flow on a sphere of Marshall and Molteni[9]. The three levels are 200 hPa, 500 hPa and
800 hPa. The model integrates equations for the quasi-geostrophic potential vorticity (q) at these three
levels. A geostrophic model assumes that the Coriolis force is balanced by the pressure gradient force.
The potential vorticity can be seen as a measure of the circulation of an air parcel. The potential vorticity
of air parcels is conserved following the motion in the absence of forcing and dissipation: dq

dt = 0. This

total time derivative dq
dt can be written as: ∂q

∂t +u∇q, with u representing the velocity field. The velocity

u = (u, v) can also be written in terms of the streamfunction ψ: u = −∂ψ∂y and v = ∂ψ
∂x . Then the

advection term u∇q can be written as Jacobian operator of q and ψ: u∇q = ∂ψ
∂x

∂q
∂y −

∂ψ
∂y

∂q
∂x = J(ψ, q). If

dissipation (D) and forcing (F) are added to the system, the following equation is obtained:

∂q

∂t
+ J(ψ, q) = D + F

Since the streamfunction ψ and potential vorticity q are related by a linear operator, the potential
vorticity can be integrated in time if the dissipation and forcing are known.
The potential vorticity depends on longitude (λ) and latitude (φ) and can be represented with spherical
harmonic functions:

q(t, λ, φ) =

N∑
n=1

n∑
m=−n

qmn(t)Pn(φ)eimλ

Here, Pn(φ) denotes the Legendre polynomials. The model used supports the triangular T21 truncation.
This means there are 3 + 5 + 7 + ... + (2 · 21 + 1) = 222 − 1 = 483 spherical harmonic coefficients qmn.
This means for all three levels there are 483 · 3 = 1449 spherical harmonic coefficients in total.

m

n

Figure 6.1: Graphic representation of a triangular truncation
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6.1 Three different parameters

In the previous experiments, only parameters were varied to create different imperfect models, but the
structure of the models stayed the same. In this experiment also the structure of the model is adapted,
by using different forms of dissipation. To create different imperfect models, three parameter values are
varied:

• h0 scale height of the topography in km

• addisl Parameter of the land-seamask dependent Ekman damping (more friction over land)

• addish Parameter of the orography dependent Ekman damping (more friction over steep slopes)

If the parameters addisl, addish are both equal to zero, then uniform dissipation is used. Four different
imperfect models are used for the CPT training phase. One of them has uniform dissipation instead of
spatially varying dissipation.

h0 addisl addish
Truth 9.0 0.5 0.6

Model 1 6.0 1.0 0.0
Model 2 6.0 0.0 1.0
Model 3 14.0 0.0 0.0
Model 4 14.0 1.0 1.0

Table 6.1: Parameter values of the imperfect QG-models.

At every time step in the CPT training phase it is determined which model lies closest to the truth. The
training phase T is chosen to be 100 time steps. This corresponds with an integration period of 3 days.
Most of the physical processes are captured within 3 days. The number of iterations is 20. In every
iteration step a new part of the attractor is used for training, to get a better sampling of the attractor.
This is accomplished by continuing the integration of the truth. The time step is 1/36 day.
Since the parameters h0, addisl and addish only act on the lowest level in the atmosphere, there are only
four weights wi to be determined. The weights are determined for every spherical harmonic coefficient
individually and then they are averaged to obtain wi. After 20 iterations, the weights are not completely
converged, they can differ a few percent per iteration.

Model wi
i = 1 0.222
i = 2 0.239
i = 3 0.243
i = 4 0.296

Table 6.2: Weights of the QG-supermodel.

6.1.1 Climate measures

The potential vorticity calculated by the quasi-geostrophic model can be used to determine the geostrophic
winds ~u (m/s). Here ~u = (u, v), with u the zonal velocity component and v the meridional velocity com-
ponent. The size of the wind strength ‖~u‖ =

√
u2 + v2 is used as measure for the long-term behavior

of the quasi-geostrophic model. The true model, imperfect models and supermodel are integrated over
900 days in winter. In figure 6.2 and 6.3 this averaged wind strength at 800 hPa for both the true
model and the supermodel is shown. As statistical measure the root mean squared error (RMSE) of
the averaged wind strength over 900 days at 800 hPa is used. Since the parameters presumably will
have more influence on the wind strength at land than at sea, the area of N points where the RMSE is
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calculated is over land. The square consists of a part of Asia, including the Himalaya: from 25N to 60N
and from 60E to 110E, as shown in figure 6.4.

RMSE =

√√√√ 1

N

N∑
i=1

(‖~utruthi ‖ − ‖~umodi ‖)2

The computed RMSE indicates that the attractor of the supermodel resembles the truth quite well, see
table 6.3. To assess the uncertainty of the RMSE values again a bootstrapping technique is performed.
For 98 different initial conditions a trajectory of 900 days is computed with the true model. Then the
RMSE is calculated for these trajectories with respect to one other true trajectory of observations. The
95% percentile of these values is listed in table 6.3.

Model RMSE wind strength
Model 1 0.54
Model 2 1.67
Model 3 4.69
Model 4 1.81

True model 0.65 (0.93)
Supermodel 0.67

Table 6.3: The root mean squared error over 900 winter days. For the true model, the average RMSE is
given. Between brackets, the value is given for which 95% of the RMSE values is below that value.

Model 1 and the supermodel are indistinguishable from the true model in RMSE value, while the RMSE
value of the other imperfect models is much larger.

Figure 6.2: Wind strength for the true model at 800 hPa averaged over 900 days.
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Figure 6.3: Wind strength for the supermodel at 800 hPa averaged over 900 days.

Figure 6.4: The square denotes the area for which the RMSE of the wind strength is calculated.

To prove that the impact of the parameters over land is larger than over sea, at every grid point in
the world the RMSE value is calculated and compared to the mean RMSE value of the true model. In
figure 6.5 can be seen that especially model 3 with the uniform dissipation has RMSE values over land
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more than three times as high as the mean RMSE for the true model.

(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

(e) Supermodel

(f) Colorbar: the color indicates how many times larger
the model RMSE is compared to the mean RMSE for
the true model.

Figure 6.5: Comparing the model RMSE with the mean RMSE for the true model for every grid point
in the world.
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6.1.2 Forecast quality

As was done for the Lorenz systems, the forecast quality is measured by calculating the mean squared
error between the true trajectory and the trajectory of a model with a slightly perturbed initial condition
and to average this error over a number of forecasts. The mean squared error is taken over all three
levels and all spectral coefficients. The number of forecasts is 100 and d = 1000 time steps. The initial
perturbation is chosen on the order of 10−4.
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Figure 6.6: Forecast quality of the imperfect QG-models (left) and the QG-supermodel (right).

From figure 6.6 it is clear that the forecast quality of the supermodel has improved a lot compared to
the forecast quality of the imperfect models.

6.2 Variation in more sensitive parameters

In the previous section, the parameter values for h0, addisl and addish were varied. From the imperfect
models alone, it could be noticed that the value of these parameters does not have to be very precise to
make a good model. For example, the imperfect values of addisl and addish were chosen twice as large
as the true values and still the models had reasonable forecast quality. In this section other parameters
are tested, for which it is known that their true value is of more importance, solutions are more sensitive
to perturbation in these parameters.

• tdis Time scale in days of the Ekman damping

• rrdef1 Rossby radius of deformation of the 200-500 hPa layer

• rrdef2 Rossby radius of deformation of the 500-800 hPa layer

Ekman damping is the damping on vorticity in the boundary layer[4]. The Rossby radius of deformation
is the length scale at which the rotation of the earth becomes important. In table 6.4 the parameter
values for the imperfect models are denoted. For the Rossby radii the deviation is only a few percent.

tdis rrdef1 rrdef2
Truth 2.0 0.1150 0.0720

Model 1 1.5 0.1165 0.0705
Model 2 1.5 0.1130 0.0725
Model 3 2.4 0.1130 0.0705
Model 4 2.4 0.1165 0.0725

Table 6.4: Parameter values of the imperfect QG-models.
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The CPT procedure is carried out the same as for the previous experiment with h0, addisl, addish.
After 20 iterations, the weights (Table 6.5) are not completely converged, they differ a few percent per
iteration, but there is no increasing or decreasing trend.

Model w200
i w500

i w800
i

i = 1 0.653 0.217 0.093
i = 2 0.347 0.459 0.235
i = 3 0.000 0.157 0.215
i = 4 0.000 0.167 0.457

Table 6.5: Weights of imperfect QG-models at 200, 500 and 800 hPa.

6.2.1 Climate measures

Again as statistical measure the root mean squared error (RMSE) is used over the averaged wind strength
‖~u‖ =

√
u2 + v2 over 900 days in winter, at 800 hPa, but now at each of the N two-dimensional grid

points on the sphere:

RMSE =

√√√√ 1

N

N∑
i=1

(‖~utruthi ‖ − ‖~umodi ‖)2

Model RMSE wind strength
Model 1 1.92
Model 2 1.80
Model 3 1.10
Model 4 1.42

True model 0.48 (0.65)
Supermodel 0.45

Table 6.6: The root mean squared error over 900 winter days. For the true model, the average RMSE
is given over 98 different trajectories. Between brackets, the value is given for which 95% of the RMSE
values is below that value.

Table 6.6 reveals that the RMSE of the supermodel is even smaller than the average RMSE of the true
model, hence the supermodel is with respect to this climate measure indistinguishable from the true
model. The RMSE value of the imperfect models is much larger, also much larger than the upper bound
of the 95% interval.

6.2.2 Forecast quality

To have a measure for the forecast quality, the mean squared error is again taken over all three levels and
all spectral coefficients. The number of forecasts is 100 and d = 1000 time steps. The initial perturbation
is chosen in the order of 10−4. The forecast quality in figure 6.7 of the supermodel is not as good as
the forecast quality of the true model but the supermodel improves the predictability significantly as
compared to the individual models.
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Figure 6.7: Forecast quality of the imperfect QG-models (left) and the QG-supermodel (right).

6.2.3 Use of fewer imperfect models

The imperfect model with the worst forecast quality will be left out in the next experiment. The same
imperfect models from the previous subsection are used. The model with the worst forecast quality is
model 1, hence the supermodel is constructed out of models 2,3 and 4. The remaining models together
still contain the same different imperfect parameter values for tdis, rrdef1 and rrdef2 as before. The
CPT training phase is again performed with T = 100 and 20 iterations.
The forecast quality in figure 6.8 of the new supermodel has improved compared to the forecast quality of
the imperfect models, but clearly the forecast quality of the supermodel constructed of all four imperfect
models is better. This indicates that also an imperfect model with poorer forecast quality than the other
imperfect models can still contribute towards a superior supermodel.
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Figure 6.8: Forecast quality of the QG-supermodel and the QG-supermodel generated without the worst
imperfect model in forecast quality.

6.2.4 Use of equal weights

The CPT method gives us output weights that determine a superposition of models. But to what extent
are the values of these weights important? If the models all get equal weight, does that affect the quality
of the supermodel? In figure 6.9 the forecast quality of a supermodel with equal weights is plotted. The
equal weight supermodel does perform better than the imperfect models, but performs obviously worse
than the supermodel with the weights obtained from CPT. Hence, the CPT method training adds value
to the quality of the supermodel.
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Figure 6.9: Forecast quality of the QG-supermodel, the QG-supermodel generated without the worst
imperfect model in forecast quality and the QG-supermodel generated with equal weights.
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Chapter 7

Different convex hulls

7.1 Lorenz 84 revisited

In the previous Lorenz 84 experiments it was assumed that the imperfect models were given such that
the convex hull was already constructed. But what is the effect of using different convex hulls, all capable
of forming a linear combination that represents the true model? In the next experiments we assume that
for each parameter an imperfect value is given. Also we know the maximal deviation of the given values
to the perfect values. For example, it is given that parameters a1 and aF1 deviate no more than 20%
from the true values a and aF . Only it is not known whether a1 and aF1 are smaller or larger than a
and aF . If it is assumed that a1 is at least 80% of a, then a is at most a1

0.8 . And if a1 is at most 120%
of a, then a is at least a1

1.2 . So boundaries can be constructed where the truth must lie. For a and aF
we can construct a two dimensional rectangle with the four points that are obtained this way. But since
there are only two parameters, it was already known not more than three imperfect models are needed.
A possibility is to include the rectangle in a triangle. This can be done in several ways, but we would
like to have triangles that are as small as possible such that chosen parameter values do not deviate
too much from the possible parameter values. Several triangles are constructed, like a star around the
rectangle. See figure 7.1.

Figure 7.1: The star of eight convex hulls, where the dark grey rectangle denotes the area where the
truth lies.

Now we will perform the method with the eight different convex hulls as described above. It is assumed
that the parameter values for a, F, b and G are given and that they differ at most 20% from the truth.
Because there are eight different convex hulls for a, aF and also eight for b,G, there are in total 64
different convex hulls possible per model. The training period is 100 time steps and the number of
iterations is 50. The initial parameter values deviate less than 20% from the truth, to create convex hulls
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that do not coincidentally have points that represent the truth:

a F aF b G
Truth 0.25 8.0 2.0 4.0 1.0

Initial values 0.21 6.6 1.386 4.8 0.8

Table 7.1: Standard parameter values and perturbed parameter values for the Lorenz 84 system.

Because of the linearity of the parameters a, aF,G, b in the differential equations, the supermodel is a
Lorenz 84 system for which the parameter values can be calculated, the same way as done before. With
these super-parameters Lorenz 84 is integrated some time steps. The smallest difference between one of
the 64 integrations and the truth decides which convex hull apparently works best on this part of the
attractor. This process can be repeated for different parts of the attractor. If all convex hulls would
give approximately equivalent results for asuper, bsuper, Fsuper, Gsuper, then the probability distribution
of which convex hull performs best on some part of the attractor should be uniform. The integration
period with asuper, bsuper, Fsuper, Gsuper is 100 time steps. This is done 1000 times, where for every new
integration the initial starting point on the true attractor is shifted 15 time steps forward. A histogram
plot in figure 7.2 shows the non-uniformity of the convex hulls that perform best.

Figure 7.2: Histogram of the best performing convex hulls.

Apparently it makes much difference which convex hull is used. Why are some convex hulls performing
better than others? If a convex hull has a point that lies close to the truth, then it seems reasonable
that it performs better. However, in the histogram in figure 7.2 convex hull number 11 has the largest
weight. Convex hull 11 has for b,G a point that lies closely to b = 4.00 and G = 1.00, but for a, aF it
does not have a point close to a = 0.25 and aF = 2.00:

a aF b G
Truth 0.25 2.0 4.0 1.0

Model 1 0.087 0.48 3.91 1.03
Model 2 0.263 1.45 3.91 0.34
Model 3 0.263 2.92 7.83 1.03

Table 7.2: Imperfect parameter values for convex hull 11.
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So the question why some convex hulls perform much better than others remains. Although it should
be mentioned that all convex hulls give an improvement compared to the initial given parameter values.

In the next experiment each of the 64 combinations of convex hulls is tested individually to investigate
whether each convex hull is able to represent the truth with an iterative training period despite their
different results after one iteration. The training period is again 100 time steps and there are 50 iterations.
In every iteration step the attractor is shifted 30 time steps forward, to get a better sampling of the
attractor.

For every convex hull the values for a and aF remain (almost) the same after one iteration and are to
three decimals identical to the true values. For b and G this is different. Some convex hulls reach the true
values and stay there. Other ones reach the true values almost, but then deviate again. They show some
periodic behavior. After values that deviate sometimes more from the truth than the initial parameter
values, the next iterations they move again into the direction of the true values and then again deviate.
An explanation could be that the precise values of the parameters a and aF are of more importance
than the values of b and G in order to have a good model. Once the almost perfect values for a and
aF are reached, these are maintained. For b and G the explanation seems to hold that the convex hulls
that do converge the truth lies close to one of the three points of the convex hull. The other two points
therefore have a larger deviation from the truth than for other convex hulls. Because of that, the other
two points will not be chosen too quickly. See figure 7.3, where the black dot represents the true values.
The left triangle will deviate quicker from the true values than the right triangle.
This deviation for b and G from the true values can be prevented by shifting the attractor fewer steps
forward every new iteration. For example, only 5 steps instead of 30. This results in convergence to the
true values and once these are obtained, there will be no deviation afterwards. Shifting the attractor no
steps at all for a new iteration does result in converged values, but not always the almost perfect values.

We can conclude that every individual convex hull is able to represent the truth and is also able to
maintain these parameter values. Only there is some difference in convergence speed for the different
convex hulls and their consistency in keeping the same parameter values. This can be explained because
of the different shapes of the convex hulls. But by shifting the attractor more or fewer steps every
iteration step, all convex hulls chosen in this experiment can give almost perfect supermodels.

Figure 7.3: Different convex hulls for parameters b,G, where the dot represents the true value.

7.2 Different tetrahedrons for the QG-model

Just as done in the Lorenz 84 experiment, it is assumed that some parameter values are given and that
it is known to what extent the parameter maximally deviates. Then boundaries can be constructed for
the parameters, so a convex hull can be formed. For this new experiment the parameters for the different
time scales are varied:

• tdis Time scale in days of the Ekman damping

• trel Time scale in days of the temperature cooling

• tdif Time scale in days of the scale selective damping at the three levels for the smallest wavenumber

Since the parameters tdis−1, trel−1, tdif−1 are linearly implemented in the QG-model, it is also possible
to get from the obtained weights expressions for the supermodel parameters. In case of three parameters,
the boundaries form a 3-dimensional box with eight points. But since only four imperfect models are
needed, a tetrahedron can be constructed around this box. A disadvantage of this method is that the
deviation of the imperfect models becomes quite large compared to the truth. If the imperfect models
are too far away from the truth, it will be difficult to find suitable weights. Hence the box is divided
into 4-sided pyramids: tetrahedrons. See figure 7.4.
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Figure 7.4: Cube with tetrahedron inside, where tetrahedron number 4 is the red one and tetrahedron
number 5 the one behind the red tetrahedron.

The red coloured tetrahedron inside the box can be chosen in two ways. Once one point of the box is fixed
as a point of the tetrahedron, the other three are known. This red coloured tetrahedron immediately
divides the cube into five tetrahedrons.

tdis trel tdif
Truth 2.0 40.0 5.0
Initial 1.6 32.0 4.0

Point A 1.23 24.61 3.08
Point B 2.29 24.6 3.08
Point C 2.29 45.7 3.08
Point D 1.23 45.7 3.08
Point E 1.23 24.6 5.71
Point F 2.29 24.6 5.71
Point G 2.29 45.7 5.71
Point H 1.23 45.7 5.71

Table 7.3: Parameter values of the imperfect QG-models.

The initial parameter values deviate 20% from the true values and the convex hull is constructed by
assuming that the imperfect parameters deviate no more than 30%. In table 7.1 the parameter values
for the truth and the eight points of the box are mentioned. The point in the box that represents the
true parameter values lies closest towards precisely one of the eight boxpoints, G. The red tetrahedron
inside is chosen in such a way that it does not contain this closest boxpoint. Hence there is clearly one
of the five tetrahedrons that contains the truth. Although it is known that only one tetrahedron can
contain the truth, all tetrahedrons are tested to investigate if they still tend to the right values. The
training phase consists of 100 time steps and there are 20 iterations. The results are in table 7.2. The
tetrahedron that contains the truth is indicated with a *.

Tetrahedron number tdis trel tdif
1 2.03 30.80 4.01
2* 2.02 35.95 4.69
3 1.93 31.52 5.00
4 1.96 40.93 4.13
5 2.00 34.31 4.52

Table 7.4: Supermodel parameters for the five different tetrahedrons.

The convex hull that contains the truth, number 2, has values that approximate the true values. For the
other ones, especially the value of tdis has improved.
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In the same way as for the other imperfect QG-models, the forecast quality is computed. The forecast
quality of the imperfect models seems to be divided into two groups: A,D,E,G and B,C, F,H, where
the last group has a better forecast quality. The first group has as parameter value tdis = 1.23 and the
second group has tdis = 2.29, which is closer to the true value 2.0.
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Figure 7.5: Forecast quality of the imperfect QG-models (left) and the QG-supermodels (right).

The forecast quality of the five different supermodels proves that the convex hull that contains the truth
performs best, although all other supermodels give an improvement compared to the individual models
A to H, while their values for trel and tdif still substantially differ from the true parameter values. It
seems that the relative inaccuracy of parameter tdis is of more importance than the inaccuracy of trel
and tdif .

7.2.1 Values for the individual spherical harmonic coefficients.

To investigate whether the different spherical harmonic coefficients react differently to the values of
the parameters, the result of a CPT procedure without iteration is plotted for the spherical harmonic
coefficients individually. Since it takes more time for some parameters to adapt to the system, the
training period is 9000 time steps instead of the 100 time steps before. The experiment is done with
tetrahedron 2, the one that contains the truth.
Immediately it can be noticed that tdif has better results for higher spherical harmonic coefficients,
while trel has better results for lower spherical harmonic coefficients. Of course one would like to know
whether the too low values for shorter integration periods have a lot of influence on the solution of the
quasi-geostrophic model. Hence a sensitivity analysis is applied to the parameters tdis, trel and tdif .

Figure 7.6: Parameter results for integration period of 9000 time steps.
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7.2.2 Sensitivity analysis

The need to have exactly the right parameter values is clearly not the same for the different parameters
tdis, trel and tdif . Changing one of the input parameter values has distinct effects on the change of the
output of the model. This parameter based sensitivity can be measured. Intuitively, the sensitivity S is
the partial derivative of the output function with respect to the parameter[14]:

S =

M(e1,...,ei+∆ei,...,ep)−M(e1,...,ei,...,ep)
M(e1,...,ei,...,ep)

∆ei
ei

Here M is the model output, ei refers to the different model parameters and ∆ei is the perturbation
in a single model parameter. However, this is a local method, called OAT (One At a Time). Only one
parameter can be changed. But one would like to have a global, three-dimensional view of the sensitivity
of tdis, trel and tdif . Because of that in [14] the LH-OAT method is proposed, Latin Hypercube - One
At a Time. The idea of a Latin Hypercube is quite simple. Every parameter represents a dimension.
Each parameter is tested for a certain interval, this defines the cube. The intervals are divided into
subintervals, in our case of equal length. For example, the three parameters tdis, trel and tdif define
a three dimensional cube. We choose to have 4 subintervals. Then the Latin Hypercube consists of
43 = 64 small cubes. To get a sample from this 64 cubes, in every column in every dimension exactly
one cube is chosen. In total this gives 4 chosen cubes. The number of possibilities to draw such a sample
is equal to 4!(3−1) = 576. If firstly the cubes are chosen in two dimensions, then for the first row there
are 4 possibilities. For the second row, only 3 possibilities are left because in one column already a cube
has been chosen. For the third row there are 2 possibilities, and the last one is then fixed. So in two
dimensions there are 4 · 3 · 2 = 4! = 24 possibilities. Then the cubes have to get placed in the third
dimension, one of the four vertical layers. Again, there are 4 · 3 · 2 = 4! = 24 possibilities to do that.
Combined, this gives 4!(3−1) = 576 possibilities for a Latin Hypercube sample. See figure 7.7 for an
example of a two-dimensional Latin Hypercube sample.
With this sampling of four hypercube points, we can for every point j for every parameter ei perform
the OAT analysis and calculate the partial effect Si,j :[14]

Si,j =

∣∣∣∣∣∣
100 ∗

(
M(e1,...,ei(1+fi),...,ep)−M(e1,...,ei,...,ep)

[M(e1,...,ei(1+fi),...,ep)−M(e1,...,ei,...,ep)]/2

)
fi

∣∣∣∣∣∣
Here fi is the fraction by which parameter ei is changed.

An experiment is performed with a random sample of 4 hypercube points. As intervals for parameter ξ
we choose: [0.8ξ, 1.2ξ]. So the subintervals have a length of 0.1ξ. If an interval is chosen for a hypercube
point, the value of the parameter is the average value of the interval. The deviation fraction fi is set to
0.05. It is randomly chosen whether the deviation of 5% is positive or negative. As model output the
forecast quality is chosen as calculated in the previous section. The model with parameters e1, .., ei, ..., ep
is regarded as true model. The Euclidean distance between the reference trajectory and the trajectory
of a slightly perturbed start value is calculated, for 1000 time steps at 100 different start points. The
resulting function integrated in time is M . In the matrix Si,j , i = 1 stands for parameter tdis, i = 2 for
parameter trel and i = 3 for parameter tdif .

Si,j =

168 79 88 113
28 22 38 43
28 27 17 33


Clearly, the sensitivity values for tdis are much higher than for trel and tdif . This is a more extended
proof than in the previous section that a correct value for tdis is of more importance than correct values
for trel and tdif .
Next we try a sensitivity analysis with 16 points instead of only 4. The same interval for the parameters
is chosen: [0.8ξ, 1.2ξ] with ξ the parameter value. The subintervals therefore have a length of 0.025ξ.
The deviation fraction fi is set to 0.01. Then the same experiment is done as for 4 points.
The results for the 16 distinct points differ a lot from each other. tdis for example has sensitivity values
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between 8 and 150. However, if we average the results over the 16 hypercube points, this value Sav is
for tdis clearly the highest. Sav(tdis) = 57, Sav(trel) = 32, Sav(tdif) = 36.

Figure 7.7: A two-dimensional Latin Hypercube sample
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Chapter 8

Discussion

In this thesis the Cross Pollination in Time method is tested on low-order dynamical systems. For these
models the method gave good solutions for a supermodel. However, the state-of-the-art models are far
more complex than the examples from this thesis. Is the developed method also applicable to these
models?

One aspect of larger models is that more computation time is needed to run the model. For the low-order
dynamical systems such as Lorenz 63 and Lorenz 84, the computation time of CPT was negligible. In
only a few time steps a nice approach of the true model was obtained. Also for the quasi-geostrophic
model time was not an issue. Even if only a part of the attractor was used for training that was not a true
reflection of the complete attractor, the method was already able to give a supermodel of good quality.
There is some evidence [11] that improving weather forecasts results in better prediction of the climate
for centuries. Another advantage if the training period is small, is that also the amount of observational
data does not have to be large.
If the number of parameters increases, more imperfect models are needed to construct a supermodel.
This will increase the required amount of computation time. Nevertheless, the increase of required
imperfect models for an increasing number of parameters was found in this thesis to be linear. If every
time step the number of trajectories is pruned to one single prediction, the computational cost of CPT
is proportional to the number of imperfect models.

In section 2 the concept of a convex hull was introduced. The true model should lie in between the
imperfect models. With only difference in parameter values for the different imperfect models this
convex hull is easy to generate. For imperfect models with more differences in structure, it could become
more difficult. In reality imperfect state-of-the-art weather models differ structurally and a “convex hull”
approach does not apply explicity: the truth might be outside “the convex hull of the models”. Adding
an imperfect model that has the “opposite” behavior compared to the other imperfect models could be
a solution. This added model itself does not necessarily need a quality similar to the other imperfect
models. For the quasi-geostrophic atmosphere model it was concluded that also the model with the worst
forecast quality contributed towards a better supermodel, if it further completes the needed convex hull.

State-of-the-art models can structurally differ in for example gridding. To perform the CPT method,
regridding could be used to compare at which point in state space which model performs best. Or a
common state space of the imperfect models could be defined. In this space the CPT method could be
performed. With the help of data assimilation the next iteration step for the complete state space of the
models could be taken.
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Chapter 9

Conclusion

In this thesis a new method of combining different imperfect models dynamically was developed. This
Cross Pollination in Time method was successful in creating a supermodel that in the context of simple
chaotic systems resembles perfect model experiments.

To compare the quality of the supermodel with the imperfect models and the truth several measures
were used. For all these measures, both “weather” measures for the short-term predictability as well
as “climate” measures for the long-term predictability indicated that the obtained supermodels outper-
formed the imperfect individual models.

In case a weighted mean model is again a model of the same class, CPT is a parameter estimation
method. In that case, the applied convex hulls for the parameters worked well. In the last section it was
shown that different convex hulls are able to give good supermodels, hence the choice of the convex hulls
does not have to be that precise. One requirement only is that the imperfect models surround the truth.
But even if this is not the case, as also seen in the last section, the CPT method will try to optimize the
parameter with the most impact on the model.

Because of the need of a convex hull, also imperfect models with less forecast quality than the other
imperfect models can contribute towards a better supermodel. Removing the imperfect model with the
worst forecast quality that contributes to the convex hull leads to supermodels that have substantially
less quality, as observed for the quasi-geostrophic atmosphere model.

Finally it was shown for the quasi-geostrophic atmosphere model that the CPT method does have added
value compared to giving each imperfect model the same weight and constructing in that way a super-
model. There are many options to apply the CPT method and to develop it further. It is not only
applicable to weather and climate models, but also to other kind of models, for example economical or
biological models. Therefore it is reassuring to know that compared to the tested imperfect individual
models and a supermodel with equal weights Cross Pollination in Time does improve the weather and
climate predictions.
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