
Master Thesis Computing Science

Recoverable Robustness in Scheduling Problems

Author: Supervisors:

J.M.J. Stoef (3470997) dr. J.A. Hoogeveen
J.M.J.Stoef@uu.nl J.A.Hoogeveen@uu.nl

dr. ir. J.M. van den Akker
J.M.vandenAkker@uu.nl

August 17, 2015

Abstract

Solving optimization problems is normally done with deterministic data. These data are however not always
known with certainty. Recoverable robustness handles this uncertainty by modeling it in different scenarios.
An initial solution is found and can be made feasible in each scenario by applying a given and simple recovery
algorithm to it.

In this thesis the concept of recoverable robustness will be applied to different machine scheduling
problems. First it is applied to the problem of minimizing the number of late jobs on one machine where the
processing times of the jobs are uncertain. This problem is solved to optimality with the Moore-Hodgson
algorithm when all data are certain. Applying recoverable robustness to this problem, where recovery can
only be done by making extra jobs late, is proven to be weakly NP-complete when there is only one scenario.
To solve the problem, different exact algorithms are developed, including a dynamic programming algorithm
with pseudo-polynomial running time for a given number of scenarios. Branch and price is implemented
with the use of the separate recovery framework as a lower bound. This algorithm and a branch and bound
algorithm are then tested on their performance. When increasing the number of jobs or scenarios, instances
quickly fail to be solved within three minutes. Overall branch and bound performs best.

In the field of scheduling with rejection, not all jobs need to be scheduled and some may be rejected
which results in some penalty cost. To some of these problems for one machine recoverable robustness is
applied. This problem is solved when minimizing the sum of the makespan and the total rejection penalty.
The dynamic programming algorithm for minimizing the makespan with rejection when release dates are
available is extended to handle the different scenarios of the recoverable robustness problem. Recoverable
robustness is also applied on scheduling problems with rejection while minimizing the maximum lateness or
maximum tardiness.

2

Contents

1 Introduction 5

2 Basic Techniques 7
2.1 Machine scheduling . 7
2.2 Linear Programming . 8

2.2.1 The Linear Program . 8
2.2.2 Column Generation . 9
2.2.3 Branch and Bound . 9
2.2.4 Branch and Price . 10

2.3 Recoverable Robustness . 10
2.3.1 Separate Recovery Decomposition Model . 11
2.3.2 Combined Recovery Decomposition Model . 11

2.4 Dynamic Programming . 12

3 Minimize the Number of Late Jobs on a Single Machine 14
3.1 The 1||

∑
Uj-Problem . 14

3.1.1 Solution Methods . 15
3.2 Recoverable Robustness for the 1||

∑
Uj-Problem . 17

3.2.1 NP-Completeness . 18
3.2.2 Instances with Polynomial Time Algorithms . 20

3.3 Exact Algorithms . 27
3.3.1 Branch and Bound . 27
3.3.2 Separate Recovery Decomposition Model . 29
3.3.3 Branch and Price . 30
3.3.4 Dynamic Programming . 31
3.3.5 Direct Integer Linear Program . 32

3.4 Dominance Rules . 33

4 Scheduling with Rejection 38
4.1 Introduction . 38
4.2 Minimizing the Maximum Makespan with Rejection . 39

4.2.1 Minimizing the Maximum Makespan with Rejection and Release Dates 40
4.2.2 Recoverable Robustness for the 1|rej, rj |Cmax +RC-Problem 41

4.3 Minimizing Lmax or Tmax with Rejection . 43
4.3.1 Recoverable Robustness for 1|rej|Lmax +RC and 1|rej|Lmax +RC 45

3

5 Experiments 47
5.1 Problem Instances . 47
5.2 Branching Algorithms Compared . 48

5.2.1 Optimal Settings . 49
5.2.2 Difficulty of Instances . 52
5.2.3 Increased Number of Jobs and Scenarios . 58

5.3 Direct Linear Program . 62
5.4 Dynamic Programming . 65
5.5 Conclusion . 67

6 Conclusion and Further Research 69

4

Chapter 1

Introduction

Consider a paint factory, consisting of various mixing machines that have to be operated by different em-
ployees. These mixing machines can produce different colors of paint with different structures. The number
of liters that need to be made may also change per order placed by a customer. During one day in the
factory, there are many orders that have to be executed on the different machines. The customers also have
given a time on which they would like to have their order ready. The employees decide on how long it takes
to produce the order. Now the factory needs to determine in which order the orders are processed on the
different machines.

The objective of the paint factory is to minimize the number of late orders, where an order is late when
it is finished after the requested moment by the customer. A customer will not be pleased when his order is
finished after this time and therefore minimizing the number of late orders, or jobs, will result in the highest
number of satisfied customers.

It may happen however that a customer decides that he wants his order a little later or earlier than
requested or that an employee makes a guess on the processing time but they are not absolutely sure it takes
this time. This gives a lot of uncertainty in the planning of the sequence of the orders on one day. It may
even happen that not all of the supplies to produce one order are available at the start of a day and therefore
working on an order can only be started when the necessary supplies are delivered. Of course one can never
be certain when a supplier delivers its goods; a truck can always get stuck in traffic.

Determining the order of jobs on machines while optimizing an objective is researched in the field of
machine scheduling. Given the objective a planner has and the situation that is being described, there are
different algorithms to determine the optimal sequence of the orders when all the data are certain.

However, as explained for the painting factory, determining this sequence may be done under a lot of
uncertainties. These uncertainties can be modeled in scenarios, where each scenario contains one situation
that may occur. One solution to this problem for the factory is to find a schedule that is feasible for all
different scenarios, without making adaptations to this solution in any situation, being robust against all
possible variation. Such a solution can be difficult to find or might be expensive to execute. This is researched
in the field of robust optimization [1]. There are two other research fields for creating robust solutions for
all different scenarios; stochastic programming [2] and recoverable robustness [18, 5].

For stochastic optimization the uncertainties are represented in random variables, which follow a prob-
ability distribution of some kind. Two-phase stochastic programming finds a solution that is feasible for
almost all scenarios. Because the solution is not feasible for all scenarios, some recourse action needs to be
taken when the information changes. This recourse action is not restricted in its size and thus might be large

5

CHAPTER 1

changes. The objective in the first step is then to optimize the cost of the initial solution together with the
cost of the recourse action.

Recoverable robustness creates a solution that can be made feasible for each scenario when a certain
given recovery algorithm is used. An initial solution is created and from this initial solution the scenario
solutions can be created with a small adjustment. So one scenario needs to be the main scenario, called
the initial problem. The concept of recoverable robustness was introduced in [18] and applied to railway
optimization problems. In [6] the recoverable robust version of the knapsack problem is studied. In this
version of the knapsack problem all data is uncertain and different scenarios are created. Here is shown that
because the knapsack problem is weakly NP-hard, it is easily proven that the recoverable robust knapsack
problem is also weakly NP-hard for a fixed number of scenarios. This can be done for each NP-hard problem
that recoverable robustness is applied to. For an unbounded number of scenarios the problem is proven to
be strongly NP-hard.

In [5], two decomposition frameworks were developed to solve recoverable robustness for a given problem.
The separate recovery decomposition model separates the parts for creating the initial solution and recovery
part. The combined recovery decomposition model combines the initial problem and the recovery part for
each scenario. These models are implemented with the use of column generation. The models are applied
to the size robust knapsack problem, where only the size of the knapsack is uncertain, and results showed
that the separate recovery model obtained the nice results.

Both these decomposition models are implemented for the size robust multiple knapsack problem in [24].
Next to the models, two greedy approaches were introduced.

In this thesis the recoverable robustness approach will be investigated to solve the problem for the
painting machine in which employees are not doing a great job in estimating the processing times of the
orders. The factory is simplified by assuming there is only one machine. Minimizing the number of late jobs
for one machine is solved to optimality in polynomial time with the Moore-Hodgson algorithm [19] when all
information is certain. The recoverable robustness approach is defined for this problem where recovery can
be done by making extra jobs late. It is investigated whether there are polynomial time solutions for this
recoverable robustness problem when the processing times are uncertain.

It turns out however that finding a recoverable robust solution for this problem is NP-hard when con-
sidering only one possible scenario other than the initial problem and the processing time of an order only
increases compared to the initially assumed time. Therefore different exact algorithms, like applying the sep-
arate recovery algorithm of [5], are developed and their performance is tested on different types of instances.

When the factory does not want to process all orders and is willing to lose customers to other factories
or outsource the work to other partners, some orders might be rejected. These orders are then not taken into
account when sequencing the orders optimally. Machine scheduling problems involving rejection are almost
always NP-hard and therefore solving the recoverable robustness problem is in these cases also NP-hard.
For various machine scheduling problems with rejection the existing dynamic programming algorithms are
extended to also be able to handle the uncertainties in the recoverable robustness problem.

In Chapter 2 some preliminary knowledge that is used in different parts of this thesis is discussed. Then
in Chapter 3 the recoverable robustness approach for minimizing the number of late jobs is investigated.
Different algorithms are developed for this problem. The extensions of the dynamic programming algorithms
for the machine scheduling problems with rejection are covered in Chapter 4. The results of the experiments
on the different exact algorithms for the recoverable robustness problem while minimizing the number of late
jobs are presented in Chapter 5. In Chapter 6 conclusions are given on the different findings and developed
algorithms and future research is discussed.

6

Chapter 2

Basic Techniques

In this chapter the basic techniques that are necessary to understand the rest of this thesis are discussed.
First in Section 2.1 the field of machine scheduling is covered. Next linear programming is discussed in Section
2.2, together with various algorithms to solve a linear program. Next recoverable robustness is explained
extensively together with the separate recovery model in Section 2.3. At last dynamic programming is
covered in Section 2.4.

2.1 Machine scheduling

The field of machine scheduling concerns the problem of optimally allocating recourses to jobs over time, as
stated in [16]. Generally, there are m machines that have to process n jobs J1, . . . , Jn. Each machine can
only process one job at a time and each job can only be worked on by one machine at any moment in time.
A solution of a machine scheduling problem is called a schedule. Here, one or more non-overlapping time
intervals on one or more machines are allocated to each job. A schedule is feasible if the previously stated
demands are met. The schedule is optimal if it optimizes a given optimality criterion.

There are many different characteristics for the machines, jobs and optimality criteria. The field of
machine scheduling is deterministic: all the information that is necessary to describe a problem instance is
known with certainty in advance. For a certain job Jj the following information may be known:

• A processing time pij which denotes the time it takes to process job Jj on machine i.

• A release date rj which denotes when job Jj becomes available.

• A due date dj which denotes when job Jj is preferably be completed.

• A weight wj which denotes the importance of job Jj .

• A cost function fj which calculates the cost when job Jj finishes at a certain time.

Not all of these properties are necessary for each problem instance. Which are needed depends on the
optimality criterion and which situation is being described. The processing times are the only values that
are always necessary. To denote which information of a job Jj is known and what the other characteristics
of a problem instance are, Graham et al. described in [9] a three-field notation α|β|γ. This notation is
commonly used in the field of machine scheduling.

The first field consists of one or two symbols: one number specifies the number of machines m, and the
other specifies the type of machines used. If the number is left out, there are m machines. When the field

7

2.2. LINEAR PROGRAMMING CHAPTER 2

contains a P , there are identical parallel machines which means that processing a job takes the same time
on each machine. In the case of Q, there are uniform parallel machines which means that each machine
executes the jobs at a given speed. When the value is R all the machines are unrelated. There are many
more options, but these are not in the scope of this thesis. The reader is referred to [9].

The second field indicates the additional job characteristics. It may contain d̄j , which indicates that
each job Jj has a strict deadline on which this job has to be finished. When it contains pmtn, this denotes
that preemption is allowed. This means that the processing of a job may be stopped and continued at a
later point. When the field contains prec, this means that there are precedence constraints between jobs
which are specified by a directed graph. If the field contains tree then this graph is a tree. If it contains
rj , it means that the release dates of the jobs are specified, otherwise the release dates are assumed to be
zero. Finally it can contain pij = 1, which means that each operation that has to be performed has unit
processing times.

The last field defines the optimality criterion. Given a schedule the following values can be computed
for each job Jj :

• Its completion time Cj , the time when every machine is done processing job Jj .

• Its lateness Lj = Cj−dj denotes the time difference between the completion time and due date. When
the value is positive this job was late, when it is negative the job was on-time.

• The tardiness Tj = max{0, Lj}.

• The penalty Uj which is one when Tj > 0 and zero otherwise.

With these values, different optimality criteria can be constructed. Most common are Cmax and Lmax,
which denote the maximum completion time over all jobs and the maximum lateness of each job, respec-
tively. Other commonly used criteria for example are

∑
Cj ,
∑
Tj ,
∑
Uj and

∑
wjCj .

In [17] an extensive overview is given on the complexity of different scheduling problems. The authors
also refer to the polynomially-bounded algorithms that were created for many problems.

2.2 Linear Programming

2.2.1 The Linear Program

In a linear programming problem a linear objective function f(x) = cTx has to be optimized given a set of
linear constraints Ax ≤ b. Here, x is the vector of decision variables, c and b are vectors and A is a matrix
all with known coefficients. A linear program (LP) can always be written in the following standard form,
where ’min’ is short for minimize:

min f(x) = cTx

subject to

Ax ≤ b

x ≥ 0

The last constraint states that the decision variables have to be nonnegative. Additionally, it can be
demanded that the variables need to be integral. Then the problem is an integer linear program (ILP). A
special case of an ILP is when x ∈ {0, 1}, which makes it a binary integer linear program, or a 0− 1 integer
linear program. When only some of the decision variables need to be integral, the problem is called a mixed

8

2.2. LINEAR PROGRAMMING CHAPTER 2

integer linear program (MILP).

There are many commonly used algorithms to solve linear programming problems. The algorithms that
will be used in this thesis are explained in the next sections. In Section 2.2.2, column generation is explained.
Next, in Section 2.2.3, branch and bound is explained, and lastly branch and price is covered in Section 2.2.4,
which solves ILPs.

2.2.2 Column Generation

A method for solving large LPs is column generation. When using column generation to solve an LP, the
problem is first solved for only a subset of the decision variables. The solution that is found might be optimal
for the entire problem, then you stop. If the solution is not optimal, more variables, columns, need to be
added and the problem is solved again. This is repeated until the optimal solution is obtained.

To investigate whether the obtained solution is optimal, or which columns can be added, the reduced cost
can be calculated of each variable that is not yet in the problem. The reduced cost of a variable x denotes
the net gain per unit of adding this variable. When minimizing the linear program, adding a variable with
negative reduced cost can decrease the value of your solution. When no variable with negative reduced cost
exists the LP has reached its optimum. The reduced cost is calculated by c−ATω where ω is the shadow
price vector. The shadow price of a constraint is the unit price someone would want to pay for a little more
of this resource. The shadow prices are calculated when solving the LP.

There are two main problems that are needed to solve an LP with column generation, namely a pricing
problem and a master problem. The pricing problem finds the variable for which the reduced cost is minimal
in the case of minimizing the LP. This variable is then added to the master problem, which solves the LP
for a limited amount of variables. After this the pricing problem can be solved again, until no variable is
found that has negative reduced costs.

Column generation can also be used for finding a lower bound on the solution of an ILP. To obtain
this lower bound the integrality constraints of the ILP need to be relaxed, so x ≥ 0. This results in a
restricted master problem (RMP) which can be solved with column generation. If the solution of the RMP
is non-integer, then this solution is a lower bound on the solution of the ILP when the objective is being
minimized. When the solution of the RMP is integer, then this is the optimal solution of the ILP.

In [13] a nice overview is given on applying column generation to various machine scheduling problems.

2.2.3 Branch and Bound

The branch and bound algorithm consists of two steps. In the branching step a set Q of possible solutions is
split into two or more smaller sets Q1, Q2, . . . , Qz. In the bounding step a lower bound and an upper bound
for the objective function f(x) are calculated while only considering the solutions in a set Qi.

The algorithm starts at the root node where the set Q consists of all possible solutions. For this node
the bounding step is executed, so a lower and upper bound are obtained. For this node the branching step
is then performed creating z child nodes. For these nodes the lower and upper bounds are also calculated.
For each node the branching step can be performed again. Branching stops when |Q| = 1 in a node. These
leaf nodes have only one solution and thus the optimal solution is obvious. This solution will be stored as
the best solution if its value is better than the current best solution.

9

2.3. RECOVERABLE ROBUSTNESS CHAPTER 2

In certain situations it might not be useful to branch a node. If the lower bound of the node is greater
than the upper bound of any of the other nodes, then branching this node will never result in a better
solution than the node with the corresponding upper bound. If the lower bound in a node is equal to the
upper bound in this node the optimal solution of this node is found. This solution is compared to the current
best solution and stored as the new best when its value is lower than the current best value. When a node
does not have a valid solution, this branch is stopped.

When there are no nodes left to branch on, the algorithm terminates. The optimal solution of the
problem is then found. The order in which you branch the nodes can be done in a breadth first order or
depth first order. When going through the tree in breadth first order, a newly created node is added at the
end of the node queue. When it is done depth first, a node is added at the front of the queue. Another order
is best first, where the node with the lowest lower bound is the first node to branch.

2.2.4 Branch and Price

Branch and price is a special case of the branch and bound algorithm, as it uses the branch and bound
principle for solving an ILP. The lower bound calculated at each node is obtained by column generation.
Additionally, the child nodes inherit the columns from their parent that are feasible columns in these nodes.
The linear program is then solved including extra constraints to maintain the characteristics of the node, so
only feasible columns for this node will be added.

Branching a node can now also be stopped when the lower bound obtained by the column generation is
obtained by an integer solution. This solution is then the optimal solution for this branch and there is no
need to continue. This solution is again stored when it has a better value than the current best value.

2.3 Recoverable Robustness

A way to deal with uncertain parameters in an optimization problem is to model them into a set of scenarios
S. Each scenario handles a different situation that might occur. Recoverable robustness [18] is a method
to find a solution for the initial problem and each scenario s ∈ S that might occur. The solution that is
calculated for the initial problem can be recovered to the solution for a scenario by the use of a given recovery
algorithm. Unlike robust optimization [1] where such recovery is not allowed and the solution should also
be feasible for each scenario s ∈ S.

Consider the following optimization problem

min f(x)|x ∈ X

This is the initial problem, with X the set of feasible solutions and x the decision variables. This initial
problem then has a set of scenarios S for which Y s is the set of feasible solutions for scenario s and the
decision variables are ys. Let A be the set of admissible recovery algorithms. For a recovery algorithm
A ∈ A it must hold that A(x, s) ∈ Y s, i.e. A(x, s) computes a feasible solution for scenario s from an initial
solution x. Let in addition Rs be the feasible recovery set for scenario s, this set contains combinations of
initial solutions and solutions to the scenario problem that satisfy the recovery algorithm as denoted below.

Rs = {(x, ys)|A(x, s) = ys} ∀s ∈ S
The difference with two-phased stochastic programming [2] is that the recovery possibilities are limited.

The recovery robust optimization problem (RROP) is now denoted as follows, as stated in [5].

min f(x) +
∑
s∈S

g(ys, s)

10

2.3. RECOVERABLE ROBUSTNESS CHAPTER 2

subject to

x ∈ X

ys ∈ Y s

(x, ys) ∈ Rs ∀s ∈ S

This problem can then be solved by enumerating over all feasible combinations of solutions from X and
Y s for each scenario s ∈ S. The following sections explain how this method can be improved with the use
of column generation.

2.3.1 Separate Recovery Decomposition Model

In [5] separate recovery is mentioned for the first time to solve the recoverable robustness problem. As
mentioned earlier, when the full sets X and Y s are enumerated to solve the RROP problem, a very large
number of combinations has to be investigated to determine the optimal value. Therefore [5] suggests to only
look at subsets of X and Y s, thus X

′ ⊆ X and Y
′s ⊆ Y s are introduced. These sets start out small and new

variables will be added to obtain a better solution, which thus makes this a column generation approach. A
separate master problem (SMP) is introduced.

min f(x) +
∑
s∈S

g(ys, s)

subject to

x ∈ X
′

ys ∈ Y
′s

(x, ys) ∈ Rs ∀s ∈ S

To find new solutions for the sets X
′

and Y
′s there are pricing problems for each set. A separate recovery

initial pricing problem (SRIPP) for set X
′

and a separate recovery pricing problem (SRPPs) for each scenario
set Y

′s. These problems find the variables that have negative reduced cost, and these variables are added
to the SMP. Once these problems do not find variables with negative reduced cost, the solution of the SMP
is optimal. The solution of the column generation approach might be non-integral. If it is not required that
the solution of the RROP is integral, the problem is solved to optimality. If the optimal solution of the
SMP is integral, this solution is always the optimal solution of the RROP. When the solution of the SMP is
non-integral and the RROP problem requires an integral solution, additional steps need to be taken. This
can be done with branch and price for example, as explained in Section 2.2.4, where the separate recovery
decomposition model is used to find the lower bound in each node.

The exact forms of the SRIPP and SRPPs problems depend on for which type of optimization problem
the recoverable robustness model is being solved.

2.3.2 Combined Recovery Decomposition Model

The separate recovery decomposition model makes solutions to the initial problem and the scenario problem
independently of each other and then tries to combine them such that they satisfy the recovery constraint.
The combined recovery decomposition model works in exactly the opposite way. For each scenario, a solution
for the initial problem is made together with a solution for the scenario that satisfy the recovery constraints.

11

2.4. DYNAMIC PROGRAMMING CHAPTER 2

All these combinations are then tried to be combined in such way that the initial solutions are equal. This
decomposition model is also developed in [5].

Here a combined master problem (CMP) is introduced. The RROP gave a feasible recovery set Rs for
each scenario s ∈ S. In the CMP the restricted recovery sets R

′s ⊆ Rs are considered. Again this set starts
small and new variables will be added to obtain a better solution, following the column generation approach.
With this the CMP is defined as follows.

min f(x) +
∑
s∈S

g(ys, s)

subject to

(x
′

s, y
s) ∈ Rs ∀s ∈ S
x = x

′

s

To find new solutions for each set R
′s, there are pricing problems for each set, a combined pricing problem

(CPP s) for each scenario s ∈ S. From here on the combined recovery decomposition model works the same
as the separate one, the CCP s problems are solved to find variables with negative reduced cost until the
solution of the CMP is optimal. The exact form of the CPP s again depends on the type of optimization
problem the model is applied to.

2.4 Dynamic Programming

Dynamic programming is used to solve many optimization problems. The algorithm solves a problem by
dividing the problem into subproblems and combining their solutions to find the optimal solution for the
main problem. When computing the solution of a subproblem the answer to this subproblem is stored such
that it does not have to be computed again when it is needed later on.

In [8] dynamic programming is explained by showing the algorithm for the cutting stock problem. In
this problem several rods of the same length need to be cut in smaller pieces that can be sold and the profit
needs to be maximized. In this thesis this algorithm is demonstrated using it for the knapsack problem. In
the knapsack problem there are n items that have a weight aj and a revenue cj . The items can be put into
the knapsack as long as the total weight of the items does not exceed the knapsack size B. The goal is to
maximize the revenue. This problem is a classic optimization problem.

To define the subproblems a recursive formula is created. Dj(w) is defined as the best revenue that can
be achieved when using a subset of the items in set {1, 2, . . . , j} such that the weight of the knapsack is
exactly w. When w = 0, no items can be in the knapsack thus the revenue will be zero, so Dj(0) = 0 ∀j.
It holds that D0(w) = −∞ ∀w 6= 0 because this will not be a valid solution. Otherwise Dj(w) is defined as

Dj(w) = max{Dj−1(w), Dj−1(w − aj) + cj}.

For each item j it has to be decided whether it will be in the knapsack or not. If the item is not chosen the
weight of the knapsack considering items {1, 2, . . . , j − 1} has to be w, so in this case Dj(w) = Dj−1(w). If
the item is taken then the value of the knapsack considering only items from {1, 2, . . . , j − 1} will be equal
to Dj−1(w − aj). Adding the item increases the value with the revenue cj of item j and thus in this case
Dj = Dj−1(w − aj) + cj . The value of Dj(w) is then equal to the maximum over these both cases.

12

2.4. DYNAMIC PROGRAMMING CHAPTER 2

The optimal value vmax of the problem is then equal to maxwDn(w). The optimal solution can be found
by backtracking for each item j whether it was put into the knapsack or not. Let W =

∑
aj , then at most

O(nW) values need to be calculated and calculating each value costs constant time, thus this algorithm takes
O(nW) time.

13

Chapter 3

Minimize the Number of Late Jobs on
a Single Machine

In this chapter the single machine scheduling problem of minimizing the number of late jobs is discussed.
In Section 3.1 the problem will be explained together with various solution methods. Next the recoverable
robustness concept is applied to the problem in Section 3.2 and NP-hardness is proven here. In Section 3.3
the exact algorithms to solve the NP-hard problem are discussed. Lastly, in Section 3.4 some dominance
rules are shown to simplify the recoverable robustness problem for minimizing the number of late jobs.

3.1 The 1||
∑

Uj-Problem

Consider n jobs J1, . . . , Jn that have to be scheduled on one machine. For each job Jj a processing time pj
is known, this is the time it takes to process the job on the machine. Each job Jj also has a due date dj .
Each job is preferably finished before this time. The lateness of a job is defined as Lj = Cj − dj , where
Cj is the completion time of job Jj . The tardiness is then defined as Tj = max{Lj , 0}. The penalty Uj

is defined such that it equals one when Tj > 0 and zero otherwise. Preemption is not allowed, moreover,
it would not result in a better schedule for this problem, so when the machine starts working on a job, it
can only stop working on that job when the job is finished. Furthermore, each job is available from time zero.

With this information the ‘minimize the number of late jobs’ problem can be defined. For job J1, . . . , Jn
a schedule needs to be created that minimizes the number of late jobs. A job Jj is late when Tj > 0 and thus
Uj = 1. An optimal schedule now needs to minimize

∑
Uj . In the three-field notation of [9] this problem is

defined as 1||
∑
Uj .

An example for this problem is given in Table 3.1. There are five jobs, J1, . . . , J5 for which the processing
times pj and due dates dj are given. The minimum number of late jobs is two and the corresponding schedule
is made when J2 is scheduled first then job J3 and then job J5. Jobs J1 and J4 are scheduled at the end and
will be late.

In this problem all jobs are equally important. Sometimes however, there might be jobs for which it is
more important to be on time than others. To accomplish this, a weight wj may be assigned to each job Jj
and the objective will be to minimize

∑
wjUj , giving the 1||

∑
wjUj problem. A job with a high weight is

now more likely to be on time. To show this, weights are added to the jobs from the example in Table 3.1,
see Table 3.2. Job J1 will have a weight of three, the rest still has a weight of one.

14

3.1. THE 1||
∑
UJ -PROBLEM CHAPTER 3

J1 J2 J3 J4 J5
dj 6 7 8 9 11

pj 4 3 2 5 6

(a) The problem instance.

J2 J3 J5 J1 J4
dj 7 8 11 6 9

Cj 3 5 11 ��15 ��20

(b) The optimal solution.

Table 3.1: Schedule n jobs to minimize the number of late jobs.

J1 J2 J3 J4 J5
wj 3 1 1 1 1

dj 6 7 8 9 11

pj 4 3 2 5 6

(a) The problem instance.

J1 J4 J2 J3 J5
wj 3 1 1 1 1

dj 6 9 7 8 11

Cj 4 9 ��12 ��14 ��20

(b) The optimal solution.

Table 3.2: Schedule n jobs to minimize the weighted number of late jobs.

The original solution when all the weights were equal had a solution value of two, using the same solution
with the new weights would have a value of four. In Table 3.2 the optimal solution for the new problem is
shown. By making three jobs late now, job J1 can be on time and only gives a solution value of three. It is
important to set the weights properly. If the weight of job J1 would have been only two, the two solutions
would have equal value and job J1 would not necessarily be on time. To force a job Jj to be on time, the
value wj can always be set to +∞.

For more variants on the 1||
∑
Uj problem, the reader is referred to [12].

3.1.1 Solution Methods

This section explains how the optimal solutions of the previous section are obtained. In an optimal solution
the jobs can always be divided into two sets. The set E of the jobs that are early and the set L of the jobs
that are late. The jobs in L can always be scheduled after all the jobs from E because it does not matter
how late the late jobs are, it just matters that they are late. In [19] it is proven that in an optimal solution
the set E can always be scheduled in earliest due date order (EDD). This means that when job Jj and Ji
are both in E and dj < di, then job Jj is scheduled before job Ji. These jobs are scheduled without idle
time, meaning that when a job is finished, the next job starts immediately. The job in E with the smallest
due date starts at time zero. Therefore a schedule can always be determined when the sets E and L are known.

The problem of scheduling n jobs, J1, . . . , Jn jobs with known processing times, p1, . . . , pn and due dates,
d1, . . . , dn in such order that it minimizes the number of late jobs is known to be solved to optimality in
polynomial time by the Moore-Hodgson algorithm [19].

Moore-Hodgson Algorithm The Moore-Hodgson algorithm divides the jobs in the two sets E and L
from which the optimal schedule can easily be obtained as explained earlier. The algorithm consists of the
following steps:

1. Set σ to be the schedule in which all the jobs are in EDD-order, thus d1 ≤ d2 ≤ . . . ≤ dn. In the case
of equal due dates the order does not matter.

15

3.1. THE 1||
∑
UJ -PROBLEM CHAPTER 3

2. Find the first job Jj in the order which is late. If there is no such job, this schedule is optimal.

3. Let job Jm be the longest job from the set of all the predecessors of Jj and Jj itself, in σ.

4. Remove job Jm from schedule σ and move all the jobs to make sure there is no idle time left. Repeat
step 2 with the new schedule.

The jobs that are left in schedule σ are the jobs in set E. The deleted jobs will form set L together. The
number of late jobs in the resulting schedule, i.e. the size of the set L, is called the value of the solution.

This algorithm can be made to run in O(n log n) if a maximum heap is used to find the longest job in
step 3. An alternative algorithm that runs in O(n2) is the shortest processing time (SPT) algorithm, as
explained in [10].

Shortest Processing Time Algorithm

1. Start with re-ordering the jobs in shortest processing time order, so p1 ≤ . . . ≤ pn. In the case that
processing times are equal, the job with the earliest due date comes first. The sets E and L start
empty.

2. Find the first job in the order that is not in E or L. Put the jobs from E ∪ Jj in EDD-order. If each
job is on time, job Jj is added to E. Otherwise, job Jj is added to L.

3. Continue until the last job is reached. Then set E contains all the on time jobs and the set L contains
all the late jobs.

This algorithm runs slower than the Moore-Hodgson algorithm, so why would it be used? The advan-
tage of this algorithm is that when a job is added to the set E it will never get removed from it. In the
Moore-Hodgson algorithm a job is only surely in the set E when the algorithm terminates. This is be a
useful property.

These algorithms can however not be used for the 1||
∑
wjUj-problem. This problem is shown to be

NP-complete; for a proof the reader is referred to [17]. It is proven that there is no polynomial time
algorithm, unless P = NP. The following dynamic programming algorithm, that can be found in [12], gives
the optimal solution for the 1||

∑
wjUj-problem. To use the algorithm the jobs need to be ordered such that

d1 ≤ d2 ≤ . . . ≤ dn. The running time of this algorithm is O(n
∑
pj). Naturally this algorithm can also be

used for the 1||
∑
Uj-problem, here simply all the wj ’s in the algorithm are one. In this case this algorithm

still runs in pseudo-polynomial time.

Dynamic Programming Algorithm

fj(t) =

{
∞ if t > dj
min{fj−1(t) + wj , fj−1(t− pj)} otherwise

It is known that the jobs that are on time are scheduled in EDD-order. Thus it can be decided in that
order whether to schedule job Jj or not. Therefore this algorithm is performed after the jobs are ordered such
that d1 ≤ d2 ≤ . . . ≤ dn. Let fj(t) be the optimal value of the objective function when the total processing
time of the on time jobs is t. Initially fj(t) = 0 if j = t = 0 and ∞ otherwise. If job Jj is scheduled then the
total processing time of the jobs that are scheduled from J1, . . . , Jj−1 is t− pj , thus fj(t) = fj−1(t− pj). If
job Jj is chosen to be late then the total processing time of the jobs that are scheduled from J1, . . . , Jj−1 is
still t, but the total objective increases with wj . Thus in this case fj(t) = fj−1(t) + wj . The optimal value
is then the minimum over these two cases. In the case that t > dj this solution will not be feasible and thus

16

3.2. RECOVERABLE ROBUSTNESS FOR THE 1||
∑
UJ -PROBLEM CHAPTER 3

the value will be ∞. After calculating all the values, the optimal solution value is equal to mint fn(t). The
solution corresponding to this value can be found by backtracking.

Integer Linear Programming The last method to solve the problem is using linear programming.
Although this may not be the most straightforward method, it will be used in the remainder of this thesis. In
[14] assignment and positional date variables are used to make an ILP-formulation for the 1||

∑
Uj-problem.

Here the variable xij is used with the following property.

xij =

{
1 if job Ji is assigned to position j
0 otherwise

∀i, j

The first two constraints make sure that each job is on exactly one spot and one spot is filled by exactly
one job. The variable lk will denote the lateness of the job at spot k. The variable uk denotes whether the
job on spot k is late and is defined by the following piecewise linear function.

uk =

{
1 if lk > 0
0 otherwise

∀k

The linear program however requires a linear function, this equation can be rewritten to lk ≤ (
∑
pj −

dmin)uk with dmin = minj dj and
∑
pj−dmin is the maximum possible lateness. These are all the necessary

constraints. The objective is to minimize the number of late jobs, so this is to minimize
∑
uj . This gives

the following integer linear program:

min

n∑
j=1

uj

subject to

n∑
i=1

xij = 1 ∀j (3.1)

n∑
j=1

xij = 1 ∀i (3.2)

k∑
i=1

n∑
j=1

pjxij −
n∑

j=1

djxkj = lk ∀k (3.3)

lk ≤ (
∑

pj − dmin)uk ∀k (3.4)

xij ∈ {0, 1} ∀i, j (3.5)

uk ∈ {0, 1} (3.6)

(3.7)

3.2 Recoverable Robustness for the 1||
∑

Uj-Problem

This section will be focused on solving the recoverable robustness model for the 1||
∑
Uj-problem when the

processing times are uncertain but all other parameters are known for certain. This situation occurs in the

17

3.2. RECOVERABLE ROBUSTNESS FOR THE 1||
∑
UJ -PROBLEM CHAPTER 3

paint factory when the customers are not allowed to change their due date and the factory has to guess on
the processing time on the given orders. This can be because the machine works a bit slower than expected
or the order simply takes more time to produce than initially calculated.

The initial problem has n jobs J1, . . . , Jn where each job Jj has a processing time pj and a due date
dj . To model the uncertainties of the processing times there is a set S of scenarios where the n jobs have
the same due dates as in the initial problem and each job has a processing time psj for each scenario s ∈ S
which might be different from the processing time of job Jj in the initial problem. As explained in Section
2.3 there now can be found a set X with feasible solutions for the initial problem and a set Y s with all the
feasible solutions for each scenario s ∈ S.

As explained in the previous section a solution x ∈ X or ys ∈ Y s is defined by a set E with the on time
jobs and a set L with the late jobs. This division of the jobs can also be denoted by a variable uj , as used
in the linear programming expression. This variable uj is one if job Jj is late and thus is in set L and zero
otherwise. For each x ∈ X this gives variables uxj ∀j and for each ys ∈ Y s this gives a uysj ∀s ∈ S, j.

In recoverable robustness now a recovery algorithm needs to be defined. As stated earlier not every
possible recovery is allowed, as is the case in two-phased stochastic programming. In this thesis the recovery
can be done by making additional jobs from the initial set E late, such that the resulting schedule is feasible
in a scenario. The feasible recovery set for a scenario s ∈ S is now defined as Rs = {(x, ys)|uxj ≤ uysj ∀j}.
A job that was late in the initial schedule cannot be on time in a scenario schedule, every other combination
is allowed. Each scenario s ∈ S occurs with a probability ps and the initial problem occurs with a probability
p0. It must hold that

p0 +
∑
s∈S

ps = 1.

The recoverable robustness problem for minimizing the number of late jobs (RRML) is now defined as

min p0

∑
j

uxj +
∑
s∈S

ps
∑
j

uysj

subject to

x ∈ X

ys ∈ Y s

(x, ys) ∈ Rs ∀s ∈ S

A special case of the RRML problem is when in each scenario the processing times of the jobs can only
increase. In this case it holds that pj ≤ psj for each job Jj and each scenario s ∈ S. This problem will be
denoted as the recoverable robustness problem for minimizing the number of late jobs with only increase
(RRML-I). In the previous section the 1||

∑
wjUj was also discussed. For this problem the recoverable

robustness problem (RRML-W) can also be defined. The only change is the objective which becomes
min

∑
j wjuxj +

∑
s∈S

∑
j wju

s
ysj .

3.2.1 NP-Completeness

In a first attempt to solve the RRML problem it might be a good guess to use the Moore-Hodgson solution
of the initial problem as the schedule for the initial problem in the optimal solution of the RRML problem.
It is however not always optimal to do so, as is shown in the example in Tables 3.3. These tables show

18

3.2. RECOVERABLE ROBUSTNESS FOR THE 1||
∑
UJ -PROBLEM CHAPTER 3

a small instance of the RRML problem. In Table (a) the Moore-Hodgson solutions are shown. Here jobs
J2, J3 and J4 are on time when the Moore-Hodgson solution is calculated for the initial problem. These jobs
can however not be on time in the scenario because job J4 would violate its due date. Instead job J5 will
be processed on time to reach the optimal number of on time jobs. Using these two separate solutions as
a solution to the RRML problem is not a valid solution because job J5 violates the uj ≤ usj constraint and
thus the recovery algorithm. In Table (b) the optimal solution is shown, where in the initial problem an
other solution than the Moore-Hodgson solution is used.

J1 J2 J3 J4 J5
dj 6 7 8 9 11

pj �4 3 2 4 �6

psj �4 3 2 �8 1

(a) The Moore-Hodgson solutions

J1 J2 J3 J4 J5
dj 6 7 8 9 11

pj �4 3 2 �4 6

psj �4 3 2 �8 1

(b) An optimal solution for the RRML problem

Table 3.3: Counter example to the conjecture that using the Moore-Hodgson schedule of the initial problem
as the inital schedule in RRML is optimal.

This example suggests that when there is only one scenario, using the Moore-Hodgson schedule of the
scenario as the scenario solution in the RRML solution gives the optimal solution. But the example in
Table 3.4 proves wrong again. Just increasing J5 in the initial problem with one compared to the previ-
ous example, results in a counter example. Now job J5 cannot be on time after job J2 and J3 and thus
the previous solution is not valid anymore and there is no other possibility than making an additional job late.

J1 J2 J3 J4 J5
dj 6 7 8 9 11

pj �4 3 2 4 �7

psj �4 3 2 �8 1

(a) The Moore-Hodgson solutions

J1 J2 J3 J4 J5
dj 6 7 8 9 11

pj �4 3 2 4 �7

psj �4 3 2 �8 �1

(b) An optimal solution for the RRML problem

Table 3.4: Counter example to the conjecture that using the Moore-Hodgson schedule of the scenario as the
scenario schedule in RRML is optimal.

This means that the most straight forward solutions are not always valid and thus finding the optimal
solution for an RRML problem might be difficult. It turns out that it is really difficult. Although the problem
1||
∑
Uj can be solved in polynomial time, the RRML problem turns out to be weakly NP-complete, even

when the due dates are all equal. It can be checked in polynomial time that a given solution to the RRML
problem is valid and that the number of late jobs is not too high. Thus the problem is in NP. What remains
is to prove that the RRML problem is NP-hard. The reduction is done from a variant of the partition
problem, which is weakly NP-complete. The variant of partition is defined as follows.

Partition with cardinality constraint Given 2n positive integers a1, . . . , a2n with sum equal to 2A,
does there exist a subset R of size n of the index set {1, . . . , 2n} such that∑

i∈R
ai = A

19

3.2. RECOVERABLE ROBUSTNESS FOR THE 1||
∑
UJ -PROBLEM CHAPTER 3

Theorem 1. The RRML problem is weakly NP-hard, even when |S| = 1.

Proof. Given an instance of partition with 2n integers, the following instance of the decision variant of the
RRML problem is created with 2n jobs and one scenario s. Let M > 3A, each integer ai with i ∈ {1, . . . , n}
corresponds to a job Ji with processing times pi = M − ai and psi = M + ai. The due date for each job is
d = nM + A. Special job J0 is added with processing times p0 = 2A and ps0 = Q, where Q > M + A. The
due date of this job is also d = nM +A. The probability of the scenario, ps, is equal to 1

2 and the probability
of the initial problem, p0, is then of course as well 1

2 . The decision variant of the RRML problem now is:
Does this instance have a feasible solution with a solution value not more than n + 1

2 , corresponding with
exactly 2n+ 1 late jobs?

If the answer to the partition problem is ”yes”, then let R be the subset of {1, . . . , 2n} such that∑
i∈R aj = A. There now can be constructed a ”yes” instance to the RRML problem by putting job Ji with

i ∈ R on time in both the initial schedule and the scenario schedule and if i 6∈ R the job is late in both
schedules. In the initial schedule job J0 is also on-time. This gives a solution value of n+ 1

2 .

Figure 3.1: The Gantt chart of the optimal solution of the problem

If the answer to the RRML problem is ”yes”, let the set R contain the indices of the jobs that are on
time in the initial schedule, except job J0. For this schedule to be feasible, there need to be at least n + 1
jobs on time in the initial schedule. Because not more than n jobs can be on time from jobs J1, . . . , J2n job
J0 needs to be on time as well. It now holds that 2A +

∑
i∈R(M − ai) = 2A + nM −

∑
i∈S ai ≤ nM + A

and thus
∑

i∈R ai ≥ A. In the scenario schedule now n jobs need to be on time, this can only be the jobs
that are on time in the initial schedule. So it must hold that

∑
i∈R(M + ai) = nM +

∑
i∈R ai ≤ nM + A

and thus
∑

i∈R ai ≤ A. Thus it can be concluded that
∑

i∈R ai = A.
The answer to partition is ”yes” if and only if the answer to the RRML problem is ”yes”, so the problem

is weakly NP-hard.

This means that there is no polynomial time algorithm for the RRML problem unless P = NP . For a
fixed number of scenarios a pseudo-polynomial-time algorithm can be obtained by using dynamic program-
ming. More on the dynamic programming algorithm can be found in Section 3.3.4.

3.2.2 Instances with Polynomial Time Algorithms

Although the general RRML problem has now been proven to be NP-complete there might be instances of the
problem that can be solved in polynomial time. Theorem 2 proves that although the Moore-Hodgson solutions
cannot be used in the optimal solution of each problem directly, the solution values do give interesting
information on the optimal solution value of the RRML problem.

Theorem 2. Solve the Moore-Hodgson algorithm for the initial problem and for each scenario s ∈ S sep-
arately. Let v be the value of the Moore-Hodgson schedule of the initial problem and let ws be the value of
the Moore-Hodgson schedule of scenario s ∈ S. It holds that v+

∑
s∈S psws is a lower bound on the optimal

value of the RRML problem.

20

3.2. RECOVERABLE ROBUSTNESS FOR THE 1||
∑
UJ -PROBLEM CHAPTER 3

Proof. Let the value of the optimal solution for RRML be smaller than v +
∑

s∈S psws. For this to be true
there has to be at least one schedule that has fewer late jobs than the number of late jobs in its Moore-
Hodgson schedule. This can not be true because the value of the Moore-Hodgson schedule is the minimum
number of late jobs that is necessary to make all the other jobs be on time. So the value has to be at least
v +

∑
s∈S psws.

Thus the Moore-Hodgson schedules of the initial problem and all the scenarios together form a lower
bound on the solution value of a RRML problem. This means that when a valid solution is found with a
solution value equal to this lower bound, this solution is optimal. When considering the Moore-Hodgson
solutions of all problems together as a solution for the RRML problem, this solution is only not valid if there
is a job Jj for which holds that this is late in the Moore-Hodgson schedule of the initial problem and there is
a scenario s ∈ S in which job Jj is on time. This violates the recovery algorithm. This means however, that
if such a job Jj does not exist, this solution is valid and optimal. This together gives the following lemma:

Lemma 1. Consider an instance of the RRML problem. The Moore-Hodgson schedules of the initial problem
and the scenarios form the optimal solution to the RRML problem, if there does not exist a job Jj that is
late in the initial schedule and on time in a schedule of a scenario s ∈ S.

Whether such job Jj exists can easily be checked in O(n|S|) time. This is a check that can be done quite
quickly and if it has a positive result the optimal solution is found already. Only if such a job exists another
algorithm needs to be used to find a valid and optimal solution.

If a RRML-I problem is considered more information about the lower bound can be obtained because
more information is available on the value of the Moore-Hodgson solution of a scenario. When a set of jobs
is on time in a scenario schedule with only increased processing times compared to the initial problem, these
jobs can also be on time in the initial problem. With this information Theorem 3 is proven.

Theorem 3. Let v be the value of the Moore-Hodgson schedule of the initial problem. Let s be a scenario
where the processing times of the jobs are only increased. The value w of the Moore-Hodgson schedule of s
will be bigger than or equal to v.

Proof. Let w < v. It now holds that n− w > n− v and thus the number of on time jobs in the scenario is
larger than the number of on time jobs in the initial problem. The on time jobs of the scenario schedule are
all contained in the set Es. If we look at the jobs in Es in the initial problem, they all have smaller or equal
processing times in that problem. So the jobs in Es can be on time in the initial problem as well. But this
contradicts our assumption that n− v is the maximum number of on time jobs in the initial problem.

When considering an instance of the RRML-I with only one scenario, there now is an easy optimal
solution when the Moore-Hodgson solutions of the initial problem and the scenario have the same value.
Consider the set Es from the Moore-Hodgson solution of the scenario. All these jobs have longer or equally
long processing times as these jobs in the initial problem. Thus these jobs can also be on time in the initial
problem. Thus making the jobs from Es on time in both schedules of the solution of the RRML-I problem
gives a valid solution. This solution is also optimal because the value is equal to the lower bound.

Now consider again an instance of the RRML-I problem with one scenario, but now the scenario has
only one job Jj with an increased processing time, for all the other jobs the processing time in the scenario
is equal to the initial problem. When the value of the Moore-Hodgson schedule of the initial problem is v,
it is proven in theorem 4 that the value of the Moore-Hodgson schedule of the scenario now is v or v + 1.

Theorem 4. Let v be the value of the Moore-Hodgson schedule of the initial problem. Let s be a scenario
where only the processing time of one job j is increased. The value w of the Moore-Hodgson schedule of s
will be v or v + 1.

21

3.2. RECOVERABLE ROBUSTNESS FOR THE 1||
∑
UJ -PROBLEM CHAPTER 3

Proof. In Theorem 3 it is proven that w will not be smaller than v. So all that is left is to prove that
the Moore-Hodgson schedule of s will never have a value bigger than v + 1. There is always a schedule for
scenario s with at most v+1 late jobs. Simply make the same jobs late as in the Moore-Hodgson schedule of
the initial problem. If job Jj is late now, this schedule is valid. Otherwise make job Jj the extra late job in
this schedule. The jobs that are left on time were on time in the initial schedule too, so they do not violate
their due date. So we can always make a feasible schedule with v+ 1 late jobs, so the Moore-Hodgson value
for scenario s will never be bigger than v + 1.

With the use of Theorems 2 and 4 an algorithm can be created for the RRML-I problem with one scenario
in which only one job Jj has an increased processing time. The first step is to calculate the Moore-Hodgson
solution for the initial problem and the scenario. The value of the initial schedule is v. From theorem 4 we
know that the value of the Moore-Hodgson schedule of the scenario is v or v + 1. We look at both cases.

Case 1, the value of the Moore-Hodgson schedule of the scenario is v + 1: From Theorem 2 it fol-
lows that 2v + 1 is the lower bound of the value of the solution. An easy 2v + 1 solution can be
constructed. Make all the jobs from the L set of the Moore-Hodgson solution of the initial problem
late in both the initial schedule and the scenario and make job Jj late extra in the scenario schedule.
This would not be possible if job Jj was already late in the Moore-Hodgson solution for the initial
problem. But this can not be the case, otherwise the Moore-Hodgson value of the scenario solution
would be v. So we have a solution for the lower bound value, giving the optimal solution.

Case 2, the value of the Moore-Hodgson schedule of the scenario is v: From Theorem 2 it follows
that 2v is the lower bound of the value of the solution. An easy 2v solution can be constructed. Simply
take the on time set E from the Moore-Hodgson solution of the scenario and make the same set on
time in the initial problem. This is a valid solution as explained earlier and the solution is equal to
the lower bound value, thus the solution is optimal.

Calculating the Moore-Hodgson solution for an instance takes O(n log n) time, this has to be done only twice.
When these values are obtained the optimal solution is then easily obtained in O(1) time. Thus finding the
optimal solution to the RRML-I with one scenario in which only one job Jj has an increased processing time
can be calculated in O(n log n) and thus in polynomial time.

A J1 J2
pj
psj

B J1 J2
pj
psj �

C J1 J2
pj �
psj

D J1 J2
pj �
psj �

E J1 J2
pj
psj �

F J1 J2
pj
psj � �

G J1 J2
pj �
psj �

H J1 J2
pj �
psj � �

K J1 J2
pj �
psj

L J1 J2
pj �
psj �

M J1 J2
pj � �
psj

N J1 J2
pj � �
psj �

22

3.2. RECOVERABLE ROBUSTNESS FOR THE 1||
∑
UJ -PROBLEM CHAPTER 3

P J1 J2
pj �
psj �

Q J1 J2
pj �
psj � �

R J1 J2
pj � �
psj �

S J1 J2
pj � �
psj � �

Table 3.8: The sixteen different possible Moore-Hodgson outcomes for the RRML-I when n = 2.

Small problem instances Sometimes when instances of difficult problems are small there is an easy
solution to this problem. Therefore this will be investigated now for the RRML-I problem with one scenario,
where both the scenario and the initial problem are equally important. When only considering one scenario
a job Jj has four possible configurations when looking at the two different Moore-Hodgson schedules. It can
be late or on time in both schedules and all combinations can occur. This means that when there are n jobs,
there are 4n possible outcomes for the Moore-Hodgson solutions. This exponential function gets big very
quickly, but for n = 2, 3 and 4 it might be doable to take a look at these instances and maybe find small
instances that are easily to solve.

When n = 2 there are sixteen different possible Moore-Hodgson outcomes, as all shown in Tables 3.8. A
denotes that this job is on time and � means that it is late. Not all of these outcomes can occur because

it is proven in Theorem 3 that the Moore-Hodgson solution value of a scenario is bigger than or equal to the
Moore-Hodgson solution value of the initial problem value. Considering all these possible configurations it
holds that C, K, M, N, and R are not valid because of Theorem 3. When A, B, D, E, F, H, P, Q or S occurs,
these Moore-Hodgson schedules form the optimal solution together because there is a valid schedule equal
to the lower bound as proven in Theorem 2 and explained in Lemma 1. This leaves G and L and these will
be investigated further.

G J1 J2

pj p1 ��p2

psj ��p
s
1 ps2

L J1 J2

pj ��p1 p2

psj ps1 ��p
s
2

Table 3.9: The two valid Moore-Hodgson outcomes with no direct optimal solution for n = 2

For both instances, given in Table 3.9, it holds that the lower bound of the optimal solution is equal
to two. If there is a feasible schedule, which does not violate the recovery algorithm, with only two late
jobs, this schedule is optimal. In G job J2 can be finished before its due date in the scenario and thus
ps2 ≤ d2. It also holds that p2 ≤ ps2 because only RRML-I instances were considered, thus job J2 can
also be on time when job J1 is not on time in the initial schedule. Thus there is an optimal solution with
job J2 as the only job on time in both schedules. The same argumentation can be constructed for L for job J1.

This means that solving the RRML-I solution for only two jobs and one scenario will have straightforward
solutions that can be concluded from the Moore-Hodgson solutions. When increasing n to three there are
64 possible configurations, which are too many to enumerate here all. From these 64 there are only fifteen
that are not invalid, because the Moore-Hodgson value of the scenario is smaller than or equal to that of the
initial problem, or are a direct solution, because of Lemma 1. These fifteen configurations are shown below
in Table 3.13.

For all these possibly difficult problems, there are twelve instances that have an initial Moore-Hodgson
solution value equal to the scenario Moore-Hodgson value. All these have easy optimal solutions with the

23

3.2. RECOVERABLE ROBUSTNESS FOR THE 1||
∑
UJ -PROBLEM CHAPTER 3

set Es from the scenario Moore-Hodgson schedule on time in both schedules of the solution. This leaves G,
N and Q that do not have a direct solution. However, it may be assumed that psi ≤ di ∀i. This means that
the one job that is on time in the scenario in these examples can also be one of the other jobs in the scenario
schedule. This creates a valid schedule with a value equal to the lower bound of the RRML-I problem for
the three possible instances left. This means that when n = 3 the optimal solution of an instance can also
easily be obtained by inspecting the Moore-Hodgson solutions of both problems.

A J1 J2 J3
pj �
psj �

B J1 J2 J3
pj �
psj �

C J1 J2 J3
pj � �
psj � �

D J1 J2 J3
pj � �
psj � �

E J1 J2 J3
pj �
psj �

F J1 J2 J3
pj �
psj �

G J1 J2 J3
pj �
psj � �

H J1 J2 J3
pj � �
psj � �

K J1 J2 J3
pj � �
psj � �

L J1 J2 J3
pj �
psj �

M J1 J2 J3
pj �
psj �

N J1 J2 J3
pj �
psj � �

P J1 J2 J3
pj � �
psj � �

Q J1 J2 J3
pj �
psj � �

R J1 J2 J3
pj � �
psj � �

Table 3.13: The fifteen different possible Moore-Hodgson outcomes for the RRML-I when n = 3.

Adding another job, making n = 4, gives 256 possible configurations of which there are 74 feasible
outcomes that do not have a directly visible optimal solution. Again many of them can be eliminated
because the initial problem and the scenario Moore-Hodgson solution have an equal value. Other instances
can be eliminated because they have only one job on time in the scenario Moore-Hodgson solution. This
can easily be swapped to another job resulting in an optimal solution. What is left are the following twelve
instances.

24

3.2. RECOVERABLE ROBUSTNESS FOR THE 1||
∑
UJ -PROBLEM CHAPTER 3

J1 J2 J3 J4
pj �
psj � �

J1 J2 J3 J4
dj 6 11 12 13

pj 4 �5 3 2

psj 5 6 �7 �8

J1 J2 J3 J4
dj 8 15 16 20

pj 6 �7 5 8

psj 7 8 ��10 ��14

J1 J2 J3 J4
pj �
psj � �

J1 J2 J3 J4
dj 6 9 14 16

pj 4 5 �6 7

psj 6 �7 8 �9

J1 J2 J3 J4
dj 6 9 14 16

pj 4 5 �6 7

psj 6 �7 8 ��11

J1 J2 J3 J4
pj �
psj � �

J1 J2 J3 J4
dj 7 9 16 17

pj 4 5 6 �7

psj 6 �7 ��10 9

J1 J2 J3 J4
dj 6 9 14 15

pj 3 5 6 �8

psj 6 �7 �9 8

J1 J2 J3 J4
pj �
psj � �

J1 J2 J3 J4
dj 6 11 12 13

pj �5 4 3 2

psj 6 5 �8 �9

J1 J2 J3 J4
dj 8 15 16 20

pj �7 6 5 8

psj 8 7 ��10 ��14

J1 J2 J3 J4
pj �
psj � �

J1 J2 J3 J4
dj 6 11 12 13

pj �5 4 3 2

psj 6 �8 5 �9

J1 J2 J3 J4
dj 8 15 16 19

pj �7 6 5 8

psj 8 ��10 7 ��14

J1 J2 J3 J4
pj �
psj � �

J1 J2 J3 J4
dj 6 11 12 13

pj �5 4 3 2

psj 6 �8 �9 5

J1 J2 J3 J4
dj 8 15 16 19

pj �7 6 5 8

psj 8 ��10 ��14 11

J1 J2 J3 J4
pj �
psj � �

J1 J2 J3 J4
dj 7 9 14 16

pj 4 5 �6 7

psj �7 6 8 �9

J1 J2 J3 J4
dj 7 9 14 16

pj 4 5 �6 7

psj �7 6 8 ��11

25

3.2. RECOVERABLE ROBUSTNESS FOR THE 1||
∑
UJ -PROBLEM CHAPTER 3

J1 J2 J3 J4
pj �
psj � �

J1 J2 J3 J4
dj 7 9 16 17

pj 4 5 6 �7

psj �7 6 ��10 9

J1 J2 J3 J4
dj 7 9 15 17

pj 4 5 6 �9

psj �7 6 ��10 11

J1 J2 J3 J4
pj �
psj � �

J1 J2 J3 J4
dj 6 11 12 13

pj 4 �5 3 2

psj �7 6 5 �8

J1 J2 J3 J4
dj 10 15 16 19

pj 6 �7 5 8

psj ��10 8 7 ��14

J1 J2 J3 J4
pj �
psj � �

J1 J2 J3 J4
dj 6 11 12 13

pj 4 �5 3 2

psj �7 6 �8 5

J1 J2 J3 J4
dj 13 15 16 19

pj 6 �7 5 8

psj ��13 8 ��14 7

J1 J2 J3 J4
pj �
psj � �

J1 J2 J3 J4
dj 9 10 16 17

pj 4 5 6 �7

psj �9 ��10 7 8

J1 J2 J3 J4
dj 8 10 14 15

pj 3 5 6 �8

psj �8 ��10 7 9

J1 J2 J3 J4
pj �
psj � �

J1 J2 J3 J4
dj 8 9 14 16

pj 4 5 �6 7

psj �8 �9 7 8

J1 J2 J3 J4
dj 8 11 14 16

pj 4 5 �6 7

psj �8 ��11 7 9

Table 3.25: The twelve different possible Moore-Hodgson outcomes for the RRML-I when n = 4.

The twelve instances left are shown in Tables 3.25, in the left column the Moore-Hodgson schedules
are shown. The middle and right column show concrete examples of instances that would result in these
Moore-Hodgson solutions. In all these examples there is a job that violates the recovery algorithm but there
is a difference between the instances in the middle and right column. For the problems in the middle column
an optimal solution of three can be found, thus equal to the lower bound. These solutions can be created
by replacing one of the on time jobs in the scenario with one of the late jobs in either the initial problem
or the scenario. For the instances in the right column this is not possible. This would violate the due dates
of some jobs. Thus for instances with these Moore-Hodgson schedules an optimal solution can not be found
easily.

This means that for instances of the RRML-I problem with only one scenario the instances already get
difficult to solve when n = 4. From this moment on there can be instances that have different optimal
solutions when the processing times are different. Unfortunately there is no easy rule to check whether the
optimal solution is equal to the lower bound or extra jobs have to made late in these cases. This makes these
twelve instances difficult to solve and this is only the number when n = 4. This will only increase when n
gets even larger.

26

3.3. EXACT ALGORITHMS CHAPTER 3

3.3 Exact Algorithms

Solving an NP-complete problem cannot be done in polynomial time, unless P=NP. One way to find a good
solution quickly is to use an approximation algorithm. Such an algorithm may run in polynomial time but
will not always find an optimal solution. If the optimal solution value is v∗, an ε-approximation algorithm
will then give a value v for which holds that v ≤ εv∗ for ε > 1. Other approximation algorithms exist that
do not give an upper bound on the value found solution. If the exact optimal solution is needed an exact
algorithm can be used. In this section four exact algorithms are explained for the RRML problem. First
branch and bound is covered in Section 3.3.1, next the separate recovery framework from Section 2.3.1 is
applied in Section 3.3.2, after branch and price is explained in Section 3.3.3, dynamic programming is done
after that in Section 3.3.4 and last in Section 3.3.5 the direct integer linear program.

3.3.1 Branch and Bound

As explained in Section 2.2.3 branch and bound consists of two steps, the branching step and the bounding
step. Many different choices can be made on how to define these steps. Below is explained which steps are
used in the branch and bound algorithm for the RRML problem. Consider an instance of RRML with n
jobs and a set |S| of scenarios.

Branching step In the root node of the branching tree the set Q consists of all possible solutions of the
problem. Now consider a job Jj , this job has 2|S| + 1 possible configurations in a solution. It can be late in
all the schedules of the solution or on time in the initial schedule and then there are two options for each
scenario thus giving the 2|S| extra possibilities. In the first branching step the set Q is split into 2|S| + 1
subsets. In each subset only those solutions are allowed that satisfy one of the configurations of job Jj . For
example, when |S| = 1 this means that three subsets are created. In set Q1 job Jj must be on time in both
schedules, in set Q2 job Jj must be on time in the initial schedule and late in the scenario schedule and in
the last set Q3 job Jj must be late in both schedules.

After branching on job Jj each subset can be made into 2|S| + 1 smaller subsets again by allowing only
one possible configuration for a next job Ji. This can be continued until the configuration of each job is
determined and thus the size of the set will only be one.

All the jobs that are already branched on will be in the set B that is stored with the branch node so that
it can easily be determined what jobs are already done. It might happen that a given configuration that is
wanted for a job may violate a due date for some job because other jobs are also set to be on time. In this
case the set Q will not contain any feasible solutions thus branching on this node is not longer necessary.

The last thing to decide on in each branching step is on which job to branch. The following orderings
can be used:

• Increasing/decreasing due dates.

• Increasing/decreasing processing times.

• On a job that does not satisfy the recovery algorithm when looking at the Moore-Hodgson solutions.
If no such job exists, the optimal solution is found in this branch node.

Bounding step In the bounding step a lower and upper bound need to be calculated. These only exist
when the nodes contains a feasible solution. To verify if this exists, it needs to be checked that all the jobs
that are determined to be on time can all fit within their due dates. This can easily be checked in O(n) time.

27

3.3. EXACT ALGORITHMS CHAPTER 3

If this is not the case this nodes contains no feasible solutions. If there are some feasible solutions, a lower
bound on the optimal solution when considering all possible solutions can easily be found by calculating the
Moore-Hodgson solutions as proven in Theorem 2. When the lower bound needs to be calculated in a non
root node for some jobs the configuration is determined and this might not be equal to their configuration
in the Moore-Hodgson solution. For these lower bounds the Moore-Hodgson algorithm needs to be adapted
a bit to handle the possible configurations that are set for a certain job.

Consider the instance from Section 3.1, in the optimal solution jobs J1 and J4 were late. Now consider
a set B in which it is set for this schedule that J1 is on time and job J5 is late. In the optimal solution now
jobs J1 and J3 are on time.

J1 J2 J3 J4 J5
dj 6 7 8 9 11

pj 4 �3 2 �5 �6

Table 3.26: Schedule 5 jobs to minimize the number of late jobs when job J1 is on time and job J5 is late.

This can be determined by adapting the Moore-Hodgson algorithm from Section 3.1.1 in the following
manner. In step one the jobs that are predetermined to be late are not even added in the initial schedule
σ. So these jobs are not taken into consideration to be on time. In step three the longest job may be a job
that must be on time. When this job needs to be removed the next longest job is taken instead. In the
implementation with the maximum heap the jobs that must be on time are not inserted in heap. To make
sure this algorithm gives a valid solution, it needs to be checked that all the jobs that are determined to be
on time can all fit within their due dates. This was checked at the start of the bounding step. Thus a lower
bound can be calculated for each set Q in the branching tree.

Any feasible solution that can be created is a valid upper bound. An upper bound can therefore be
determined very easily. In the root node when all solutions are allowed an upper bound is made by putting
all jobs late. This makes the upper bound value always equal to p0n+

∑
s∈S psn. Once the set B increases

this value will get lower. It is easily counted how many jobs are set to be late in this set B. In addition to
this all the jobs that do not have their configuration set are counted as late in each schedule. These numbers
together will form the upper bound. The corresponding solution always gives feasible solutions because it is
known that the set on time jobs fit. This upper bound is however not that tight.

A feasible solution in a branch node with set B that gives a stricter upper bound can be created as
follows. Calculate the Moore-Hodgson solution of the initial problem and take into consideration the set
configurations of the different jobs in B. This gives a set E with on time jobs and the set L of late jobs.
In each schedule for a scenario now all the jobs from set L are set late. Consider now the jobs from set
E and perform for each scenario s ∈ S Moore-Hodgson on this set of jobs and take the branched jobs into
consideration because otherwise it could violate the possible solutions of set B. The jobs that are on time in
the Moore-Hodgson schedule of these smaller problems are on time in the scenario schedules of the complete
problems. These schedules together form a valid solution for a branch node and therefore a valid upper
bound for the RRML problem considering set B. That this upper bound does not give an optimal solution
to the RRML problem was already shown in Section 3.2.

This makes that the bounding step now has a lower bound which is calculated by performing Moore-
Hodgson on all nodes. For the upper bound there are two options. In the first, all jobs that are left to be
determined are all set late, therefore this upper bound is called everything late. In the other upper bound

28

3.3. EXACT ALGORITHMS CHAPTER 3

the Moore-Hodgson solution of the initial problem is used as a starting point. This upper bound is therefore
called Moore-Hodgson initial.

3.3.2 Separate Recovery Decomposition Model

The separate recovery framework is implemented with column generation in [5] and in [4] for the size robust
knapsack problem. The same can be done for the RRML problem. Let xr and ysr be the binary decision
variables for the problem.

xr =

{
1 if the rth schedule in X is chosen
0 otherwise

ysr =

{
1 if the rth schedule in Y s is chosen
0 otherwise

The schedules in X and Y s are further defined by the following parameters:

ujr =

{
1 if job j is late in the rth schedule in X
0 otherwise

usjr =

{
1 if job j is late in the rth schedule in Y s

0 otherwise

The integer linear program for the separate recovery model for the RRML problem is now formulated
as:

min p0

∑
r

(

n∑
j=1

ujr)xr +
∑
s∈S

ps
∑
r

(

n∑
j=1

usjr)ysr

subject to ∑
r

xr = 1 (3.8)∑
r

ysr = 1 ∀s ∈ S (3.9)∑
r

ujrxr −
∑
r

usjry
s
r ≤ 0 ∀j, s ∈ S (3.10)

xr ∈ {0, 1} ∀r (3.11)

ysr ∈ {0, 1} ∀r, s ∈ S (3.12)

Constraint (3.8) makes sure that from the set X with possible schedules for the initial problem only one
is chosen. Constraint (3.9) does that for each scenario s ∈ S. Constraint (3.10) makes sure that each chosen
scenario schedule can be created from the chosen initial schedule by making extra jobs late.

This model will then be solved using column generation. The constraints for xr and ysr need to be relaxed
to xr ≥ 0 and ysr ≥ 0 to obtain the separate master problem (SMP). Recall that subsets X

′ ⊂ X and in
Y

′s ⊂ Y s are used during the column generation. These sets contain the current solutions that are found
for the initial problem and each scenario. Initial solutions are needed to put in X

′
and in Y

′s for each s ∈ S
to solve the LP-relaxation for the first time. The first solution chosen here to put in each set is the schedule
with all jobs late, so uj0 = 1 for each job Jj and usj0 = 1 for each job Jj and each scenario s ∈ S. Later new

29

3.3. EXACT ALGORITHMS CHAPTER 3

solutions are put in these subsets.

When minimizing the SMP a better solution can be obtained when there is a solution for the initial
problem or a scenario that has negative reduced costs. The dual variable for constraint (3.8) is λ, for
constraints (3.9) this is µs for each scenario s ∈ S and the last constraints have πsj for each job Jj and
scenario s ∈ S. The reduced costs for xr and ysr are as follows:

Reduced costs xr : p0

∑n
j=1 ujr −

∑n
j=1

∑
s∈S ujrπjs − λ

=
∑n

j=1(ujr(p0 −
∑

s∈S πjs))− λ

Reduced costs ysr : ps
∑n

j=1 u
s
jr +

∑n
j=1 u

s
jrπjs − µs

=
∑n

j=1(usjr(ps + πjs))− µs

For finding a new initial schedule to add to X
′

a valid schedule needs to be found which minimizes∑n
j=1 wjuj − λ where wj = p0 −

∑
s∈S πjs. The same needs to be done for each scenario s ∈ S. A valid

schedule which minimizes
∑n

j=1 wju
s
j − µs where wj = ps + πjs needs to be found. While one of these

problems gives a negative value these solutions can be added to the SMP and repeat the procedure. When
all the reduced costs are nonnegative the optimal solution for the SMP is found.

In these pricing problems the problem of finding a schedule while minimizing the number of late jobs
with different weights for each job can be recognized. Finding a schedule for these pricing problems can thus
be done with the dynamic programming algorithm described in Subsection 3.1.1.

The result of this column generation approach might however result in a non-integral solution. To obtain
an integral solution this approach can be used as the lower bound in a branch and price algorithm, this will
be covered in Subsection 3.3.3.

3.3.3 Branch and Price

As explained in Section 2.2.4 the branch and price algorithm is a special case of the branch and bound
algorithm. Therefore all of the information explained on the branching steps in Section 3.3.1 holds also for
this algorithm. Except for the calculation of the lower bound. This is not done here with the help of the
Moore-Hodgson algorithm. Here a column generation approach is used to solve the LP-relaxation of the
separate recovery model as explained in Section 3.3.2.

When calculating the lower bound in a non-root node, for some of the jobs their configuration is already
determined. The column generation approach should be able to handle this, as was done in the branch
and bound algorithm for the Moore-Hodgson algorithm that was used to calculate the lower bound in a
node. The dynamic programming algorithm from Subsection 3.1.1 that is used in the pricing problem can
be adapted as following. Below this algorithm is shown for the initial algorithm. With different processing
times this is used for the pricing problems on each scenario as well.

fj(t) =


∞ if t > dj
fj−1(t) + wj+1 if job Jj is configured late
fj−1(t− pj+1) if job Jj is configured on time
min{fj−1(t) + wj+1, fj−1(t− pj+1)} otherwise

One other difference is that the third branching strategy cannot be used because such job is not defined
anymore in this case.

30

3.3. EXACT ALGORITHMS CHAPTER 3

3.3.4 Dynamic Programming

The dynamic programming algorithm explained in Section 3.1.1 can easily be extended to solve the RRML
problem. Of course it must still hold that the jobs are ordered such that d1 ≤ . . . ≤ dn. First consider the
following algorithm for the case with one scenario. Let fj(r, t) be equal to the value of the optimal solution
considering only jobs J1, . . . , Jj where the total processing time of the on time jobs of the initial schedule
is r and the total processing time of the on time jobs of the scenario schedule is t. Initialize fj(r, t) = 0 if
j = r = t = 0 and ∞ otherwise. The values can now be calculated given the following recurrence relation

fj+1(r, t) =

{
∞ if r > dj+1 or t > dj+1

min{fj(r, t) + p0 + p1, fj(r − pj+1, t) + p1, fj(r − pj+1, t− psj+1)} otherwise

If all these values are calculated correctly, the optimal solution can be determined by taking minr,t fn(r, t).
There are O(n

∑
pj
∑
psj) values that need to be calculated, each taking O(1) time. This algorithm thus

takes O(n
∑
pj
∑
psj) time and space. If P = max{

∑
pj ,
∑
psj}, this can be written as O(nP 2).

Theorem 5. The values of fj(r, t), with j ∈ {0, . . . , n}, r ∈ {0, . . . ,
∑j

i=1 pi} and t ∈ {0, . . . ,
∑j

i=1 p
s
i} are

calculated correctly.

Proof. This theorem is proven by induction. Suppose the values of fj(r, t) are correct for r ∈ {0, . . . ,
∑j

i=1 pi}
and t ∈ {0, . . . ,

∑j
i=1 p

s
i}. This is true when j = 0. Now is shown that the recurrence relation calculates the

correct values for fj+1(r, t). If r > dj+1 or t > dj+1 the last job in one of the schedules completes after its
deadline and thus this solution is infeasible. If r ≤ dj+1 andt ≤ dj+1 there are three possibilities. The first
option is make job Jj+1 late in both schedules, this gives the first minimand. The next option is to make
job Jj+1 on time in the initial schedule and therefore jobs J1, . . . , Jn must fit in the interval [0, r − pj+1] in
the initial schedule and is represented by the second minimand. The last option is to make job Jj+1 on time
in both schedules and thus jobs J1, . . . , Jn must fit in the interval [0, r − pj+1] in the initial schedule and in
the interval [0, t− psj+1] in the scenario schedule. Taking the smallest value of these three options gives the
correct value of fj(r, t).

This algorithm can easily be extended for more than one scenario. Change fj(r, t) into fj(r, t1, . . . , t|S|)
where ts is the total processing time of all the on time jobs from J1, . . . , Jj in the schedule of scenario s ∈ S.
The value of fj(r, t1, . . . , t|S|) will then be calculated by minimizing over the values for all the combinations

of setting job Jj late and on time in the different schedules. There are 2|S| + 1 possible combinations. If P
then is the maximum value of all the total processing time of each of the scenarios and the initial scenario.
This algorithm then runs in O(n2|S|P |S|+1) time, which is not pseudo-polynomial for unknown |S|. Whether
the RRML problem is strongly NP-hard is an open problem.

The RRML-W problem can easily be proven to be NP-hard, simply because the 1||
∑
wjUj is already

NP-hard. The dynamic programming algorithm for this problem is very similar to the algorithm for the
RRML problem, except that a late job Jj does not contribute pj to the objective but wjpj . This gives the
following dynamic programming algorithm algorithm for one scenario, which can be extended to |S| scenarios
as well.

fj+1(r, t) =

{
∞ if r > dj+1 or t > dj+1

min{fj(r, t) + p0w0 + p1w1, fj(r − pj+1, t) + p1w1, fj(r − pj+1, t− psj+1)} otherwise

31

3.3. EXACT ALGORITHMS CHAPTER 3

3.3.5 Direct Integer Linear Program

An other way to solve the RRLM problem is by adapting the linear program described in paragraph 3.1.1
to also handle the different scenarios. Let xsij be the decision variable defined as

xsij =

{
1 if job j is scheduled in spot i in the schedule for scenario s
0 otherwise

The constraints (3.1) and (3.2) can be added for each scenario s ∈ S. The same holds for constraints
(3.3) and (3.4). The problem that now needs to be tackled is to make sure that each schedule for scenario
s ∈ S is created from the initial schedule by only making extra jobs late. Thus making sure that the recovery
algorithm is being used. Therefore uj ≤ usj needs to be added for each job Jj and scenario s ∈ S.

With this we have the complete linear program

min p0

n∑
j=1

uj +
∑
s∈S

ps

n∑
j=1

usj

subject to

n∑
i=1

xij = 1 ∀j

n∑
i=1

xsij = 1 ∀j, s ∈ S

n∑
j=1

xij = 1 ∀i

n∑
j=1

xsij = 1 ∀i, s ∈ S

k∑
i=1

n∑
j=1

pjxij −
n∑

j=1

djxkj = lk ∀k

k∑
i=1

n∑
j=1

psjx
s
ij −

n∑
j=1

dsjx
s
kj = lsk ∀k, s ∈ S

lk ≤ (
∑

pj − dmin)uk ∀k

lsk ≤ (
∑

psj − dsmin)usk ∀k, s ∈ S
uj ≤ usj ∀j, s ∈ S

xij , x
s
ij ∈ {0, 1} ∀i, j

uj , u
s
j ∈ {0, 1} ∀i, j

This problem can then be solved with an algorithm that solves linear programs.

32

3.4. DOMINANCE RULES CHAPTER 3

3.4 Dominance Rules

The performance of the algorithms developed in Section 3.3 may be improved when not all the jobs have to
be considered. This might be the case if it is known that a job Jj is on time in all schedules in the optimal
solution. Then Jj can already be set before the algorithms start. In this section it is investigated whether
some jobs of a RRML problem have these properties.

Moore-Hodgson On Time for each Scenario

A first attempt to find a job that does not have to be included in the calculations, is to take a look at a job Jj
that is on time in the Moore-Hodgson schedule of the initial problem and is on time for each Moore-Hodgson
schedule of a scenario. It might be that this job will also be on time in the schedules of the optimal solution.
In the example here below in Table 3.27, this is indeed the case. Here there are two jobs that are on time
in the Moore-Hodgson solution of the initial problem and the scenario, namely job J1 and J4, and these are
both on time in the optimal solution of the recoverable robustness problem.

J1 J2 J3 J4
dj 2 7 11 19

pj 1 6 �8 7

psj 2 �7 9 8

(a) The Moore-Hodgson solutions

J1 J2 J3 J4
dj 2 7 11 19

pj 1 �6 8 7

psj 2 �7 9 8

(b) An optimal solution for the RRML problem

Table 3.27: The jobs that are Moore-Hodgson on time in each Moore-Hodgson schedule seem also on time
in the optimal solution.

This turns out to be true for many cases, but not in general. A counter example is given in Table 3.28,
where job J1 is the job that contradicts this idea. The optimal solution in Table (b) is the only possible
solution with the solution value equal to the lower bound, no matter the values of p0 and ps.

J1 J2 J3 J4 J5
dj 52 54 74 78 98

pj 27 20 ��28 25 25

psj 27 ��30 28 ��37 37

(a) The Moore-Hodgson solutions

J1 J2 J3 J4 J5
dj 52 54 74 78 98

pj ��27 20 28 25 25

psj ��27 30 28 ��37 37

(b) An optimal solution for the RRML problem

Table 3.28: Counter example to the conjecture that a job that is on time in each Moore-Hodgson schedule
is on time for each schedule in the optimal solution.

To determine which jobs that are on time in all Moore-Hodgson schedules will be on time in an optimal
solution and which job will not be on time, the following two sets, H

′
and H with H ⊆ H ′

, are defined.

Definition 1. Set H
′

contains the indices of the jobs Jj with the following property:

• Job Jj is on time in the Moore-Hodgson schedule of the initial schedule and the Moore-Hodgson schedule
of all the scenarios.

33

3.4. DOMINANCE RULES CHAPTER 3

Definition 2. Set H ⊆ H
′

contains the indices from set H
′

for which the following additional property
holds:

• Job Jj has a processing time shorter than all the jobs not in H in the initial schedule and in all the
scenarios. And thus:

pj ≤ pi ∀j ∈ H and i 6∈ H
psj ≤ psi ∀j ∈ H, i 6∈ H and s ∈ S

In the example from Table 3.27, the set H
′

contains jobs J1 and J4 and H contains only job J1 and
these jobs were on time in all schedules of the optimal solution. In the second example in Table 3.28 set H

′

contains J1 and J5 and set H is empty, however, J1 is not on time in any of the two schedules of the optimal
solution. Why can’t this job be on time in an optimal solution?

Job J1 is not in H because of job J2, this violates the additional property. If the optimal solution in Tabel
3.27 (b) is adapted and job J1 is made on time in both schedules, job J4 becomes late in the initial schedule
and job J2 in the scenario schedule. Now in each schedule there is a job that was late in Moore-Hodgson, on
time now. These are job J3 for the initial problem and job J2 for the scenario. Making these two jobs late,
would solve the lateness created by making job J1 on time in both schedules. The problem that arises now
is that making these both late, creates the Moore-Hodgson schedules again, which is not a valid solution to
the RRML problem. The other option would be to make job J2 late in both schedules, this however does
not resolve the lateness of job J4 in the initial schedule. This problem is caused by the fact that it cannot
be assumed that job J2 is also larger than job J1 in the initial schedule as is the case in the scenario schedule.

This problem indicates the intuition behind the definition of set H. When job J1 from the previous
example would have been from set H, then job J2 would have been larger than job J1 in both schedules
of the solution and making job J2 late would have resolved the lateness problem. With this, the following
theorem can be proven about jobs in set H. To do so, Lemma 2 is needed.

Lemma 2. Let OTI be the optimal set of jobs that are on time in the schedule of the initial problem in
a RRML problem. The optimal solution of a scenario can be obtained by performing the Moore-Hodgson
algorithm on the jobs in the set OTI.

A consequence of this is the following lemma:

Lemma 3. Consider an optimal solution O for an instance of the RRML problem with job Jj on time in
the initial schedule of O. Job Jj was also on time in the Moore-Hodgson schedule of the initial problem and
all scenarios. Job Jj will be on time in all schedules of solution O.

Theorem 6. Consider an instance of the RRML problem. The set H is defined as explained in definition
1. There exists an optimal solution with all the jobs from H on time in all schedules.

Proof. Following Lemma 2and 3, an optimal solution exists where the jobs from H that are on time in this
solution are on time in each scenario as well. Let O be such a solution. Each job from H that is not on time
in all schedules of O, is late in all schedules. Consider job Jj the job with the smallest initial processing time

from H that is not on time in all schedules of O. Now it is shown that an equally good solution O
′

can be
created with job Jj on time in all schedules.

Because all jobs from H could be on time together in the Moore-Hodgson solution, the lateness of job Jj
is caused by a job not in H that is on time in O. Let job Jl be such job with the smallest due date, smaller
than job Jj that is not in H and is on time in the initial schedule of O. Now make job Jj on time in the

34

3.4. DOMINANCE RULES CHAPTER 3

initial solution and job Jl late. This gives a valid initial solution with the same solution value, because by
the property of set H it holds that pl ≥ pj .

This however could have created a non valid solution, because job Jl could also have been on time in
some of the scenario solutions. This can be solved by making job Jl late in these scenarios and job Jj on
time, as was done for the initial problem. This also gives valid solutions for these scenarios because of the
property of set H and the solution value is also still equal. Now job Jl is late in all schedules. Job Jj might
however still have some scenarios where it is late. With the use of Lemma 2, it is shown that these problems
can also be resolved. This all together results in a solution O

′
with job Jj on time in all schedules. The

procedure can be repeated until the schedule O
′

is created with all jobs from H on time in all schedules.

Algorithm 1 Obtain the set H

1: Calculate the Moore-Hodgson schedules of the initial problem and of each scenario s ∈ S.
2: H ← all the jobs that are on time in all Moore-Hodgson schedules
3: pmin ← the smallest processing time of the jobs not in H in the initial problem
4: psmin ← the smallest processing time of the jobs not in H in scenario s
5: for all jobs Jj in H do
6: if pj ≥ pmin or there is scenario s ∈ S for which psj ≥ psmin then
7: Remove job Jj from H
8: end if
9: end for

10: return H

Thus obtaining the set H before starting an algorithm can certainly reduce the number of jobs for which
the configuration needs to be determined. How large this set can become is investigated in Section 5.2.3.
Algorithm 1 shows the pseudo-code on how to obtain set H. Calculating all the Moore-Hodgson schedules
takes O(sn log n) time, obtaining the initial set H takes O(sn), calculating the minimum values of the jobs
not in H takes O(sn) again. Initializing the algorithm thus takes O(sn log n). The for-loop takes O(s) for
each job and thus O(sn) in total. Therefore the total algorithm runs in O(sn log n).

Because set H can contain a lot of jobs that are surely on time, there can be jobs that can never be
on time because of these jobs. This is covered in lemma 4. Before starting an algorithm, these jobs can be
determined, reducing the number of jobs left even more.

Lemma 4. Consider an instance of the RRML problem for which the set H is determined. Let job Jk be a
job not in H. When considering the optimal solution with all jobs from set H on time, job Jk can never be
on time in any of the schedules if holds that∑

Jj∈H,dj<dk

pj + pk > dk

The job will not be on time in scenario s if holds that∑
Jj∈H,dj<dk

psj + psk > dk

So far it was shown that the jobs that are on time in all the Moore-Hodgson schedules, the jobs in H
′
,

will not all be on time in all schedules of the optimal solution of a RRML problem. However, when an

35

3.4. DOMINANCE RULES CHAPTER 3

extra property holds for the jobs, resulting in set H, they are proven to be on time in Theorem 6. There are
however instances in which all jobs from H

′
are on time as shown in Table 3.27.

One could order the jobs of the initial problem not in earliest due date order, but in shortest processing
time order (SPT). Now consider only those instances of the RRML-problem in which the scenarios have
exactly the same SPT-order as the initial problem, these instances are called RRML− SPT from now on.
For these instances it does hold that all the jobs from H

′
are on time in all the schedules of an optimal

solution. This can be easily proven by adapting the proof of Theorem 6 with the use of Theorem 7.

Theorem 7. Consider an optimal solution O of 1||
∑

j uj problem created with the shortest processing time
algorithm from Section 3.1.1and let E be the set of on time jobs in this schedule and L the late jobs of this
schedule. Now consider a different optimal solution O

′
with job Jj ∈ E late and all the jobs in E with shorter

processing times than Jj are still on time in O
′
. In this solution there is now a job Jl ∈ L on time that has

a longer or equal processing time than job Jj.

Proof. This is proven by contradiction, sort the jobs in SPT order and assume that pl < pj . Job Jl can be
on time together with all the jobs with shorter processing time than job Jj but job Jj was on time in the
SPT solution. Thus Jl must have been on time in the SPT algorithm as this job cannot be made late again
once it is on time in the SPT algorithm. This forms a contradiction, thus pl > pj .

Theorem 8. Consider an instance of the RRML-SPT problem. The set H
′

is defined as explained in
definition 2. There exists an optimal solution with all the jobs from H

′
on time in all schedules.

Proof. Following Lemma 2 and 3, an optimal solution exists where the jobs from H
′

that are on time in this
solution are on time in each scenario as well. Let O be such a solution. Each job from H

′
that is not on

time in all schedules of O, is late in all schedules. Consider job Jj the job with the smallest initial processing

time from H
′

that is not on time in all schedules of O. Now it is shown that an equally good solution O
′

can be created with job Jj on time in all schedules.

Because all jobs from H
′

could be on time together in the Moore-Hodgson solution, the lateness of job
Jj is caused by a job not in H

′
that is on time in O. Proven in Theorem 7 there exists a job not in H

′
with

longer processing time than Jj that is on time in O, call this job Jl. If multiple exist, take the one with the
smallest due date. Now make job Jj on time in the initial solution and job Jl late. This gives a valid initial
solution with the same solution value, because it holds that pl ≥ pj .

This however could have created a non valid solution, because job Jl could also have been on time in
some of the scenario solutions. This can be solved by making job Jl late in these scenarios and job Jj on
time, as was done for the initial problem. This also gives valid solutions for these scenarios because of the
property that all problems had the same SPT order and thus job Jl also has a larger processing time than
job Jj in each scenario. The solution value is also still equal. Now job Jl is late in all schedules. Job Jj might
however still have some scenarios where it is late. With the use of Lemma 2, it is shown that these problems
can also be resolved. This all together results in a solution O

′
with job Jj on time in all schedules. The

procedure can be repeated until the schedule O
′

is created with all jobs from H
′

on time in all schedules.

Thus for an RRML-SPT instance, the set H
′

can be determined and these jobs can be set before starting
an algorithm from Section 3.3. Another observation that can be made now is in the case of an instance of
the RRML problem with a scenario that has total opposite SPT-order than in the initial problem the sets
H and H

′
will be empty and thus for all jobs the configuration needs to be determined with an algorithm.

This is also a property of the instance created for the NP-hardness proof in Theorem 1.

36

3.4. DOMINANCE RULES CHAPTER 3

Moore-Hodgson Late for each Scenario

For a job that is late in every Moore-Hodgson schedule it might be expected that it is late in every schedule
of the solution. What advantage can there be to have these jobs on time? This however turns out not to be
true. The counter example can be found in Table 3.29. Here job J5 contradicts the theorem. This example
even contradicts that when the job that is the biggest in the initial problem and in the scenario is late in
each Moore-Hodgson schedule, it will be late in all schedules of the optimal solution. So a proof like theorem
6 does not exist for Moore-Hodgson late jobs. The reason why job J5 is on time in this schedule is simply
because for job J4 to be on time, jobs J1 and J2 cannot be on time and thus there is some space left in the
initial schedule for job J5. Thus these late jobs can be on time because other jobs have to be late to make
the schedule feasible regarding the recovery algorithm.

J1 J2 J3 J4 J5
dj 6 6 7 7 19

pj 2 4 1 �5 ��13

psj �6 �6 2 5 ��17

(a) The Moore-Hodgson solutions

J1 J2 J3 J4 J5
dj 6 6 7 7 19

pj �2 �4 1 5 13

psj �6 �6 2 5 ��17

(b) An optimal solution for the RRML problem

Table 3.29: Counter example to the conjecture that a job that is late in each Moore-Hodgson schedule is
late for each schedule in the optimal solution.

37

Chapter 4

Scheduling with Rejection

4.1 Introduction

In the previous section it was assumed that all jobs have to be processed. The jobs that are late are still
processed at the end of the schedule in a random order, because the magnitude of the lateness does not
matter. Instead of processing all jobs, the paint factory could also reject a job when the capacity cannot
handle this job or this job cannot be finished before its due date. The customer could then offer the job to
another company. Rejecting a job might come with a penalty, for example because rejecting a regular client
is not good for receiving future jobs from this customer. Another kind of rejection cost might be caused
by outsourcing the job. The factory outsources the job to a partner company and this will not be without cost.

The general definition of scheduling with rejection is: there are n jobs J1, . . . , Jn that have to be pro-
cessed on m machines M1, . . . ,Mm. The jobs might have some additional information depending on the
scheduling criterion of the factory. When rejection is allowed, ej denotes the rejection penalty for job Jj .
For these problems the three-field notation introduced by [9] as explained in Section 2.1 can still be used.
When scheduling with rejection is used, the entry rej is added to the second field β.

When creating a solution, the set of jobs needs to be divided into two sets. The jobs that get accepted
are in set A and the jobs that get rejected are in Ā. The jobs in set A then need a schedule on how these
jobs are processed on the different machines. The objective value is then measured by two different criteria.
Criteria one (F1) is the scheduling criterion that depends on the ordering of the jobs that are accepted
and the second criterion (F2) is minimizing the rejection cost RC =

∑
Jj∈Ā ej . This makes this problem a

bi-criteria scheduling problem.

The field of multicriteria scheduling is extensively covered in [23]. From this paper it follows that there
are four different objective functions that can be created with F1 and F2. Here ε(F1/F2) denotes that
criterion F1 is minimized subject to F2 being upper bounded by a known value. For ε(F2/F1) this is
exactly the other way around.

(P1) minF1 + F2

(P2) ε(F1/F2)

(P3) ε(F2/F1)

(P4) The set of Pareto-optimal points for (F1, F2)

38

4.2. MINIMIZING THE MAXIMUM MAKESPAN WITH REJECTION CHAPTER 4

The definition of a Pareto-optimal point is given as follows in [22].

Definition 3. A solution S is Pareto-optimal with respect to criteria F1 and F2 if there does not exist
another solution S′ such that F1(S′) ≤ F1(S) and F2(S′) ≤ F2(S) with at least one of these inequalities
being strict.

In this thesis the focus will be on objective (P1), this is also the most studied objective of the four
problems. Most scheduling problems with rejection are NP-hard and an overview of this can be found in
[22]. The complexity and references of algorithms of the non NP -hard problems can also be found in this
survey. In this chapter the concept of recoverable robustness will be applied to different scheduling problems
with rejection. In the first section this problem will be minimizing the makespan of one machine, which is
an easy problem with polynomial running time. In the next section the jobs will have release dates and this
problem then already becomes NP-hard. The chapter is concluded with applying the concept to the problem
of minimizing the maximum lateness or tardiness of a schedule.

4.2 Minimizing the Maximum Makespan with Rejection

The problem of minimizing the makespan, 1||Cmax, without considering rejection is very easy. The jobs can
be simply scheduled in a random sequence without idle time. The total makespan will then be equal to∑

j pj and this cannot be done in shorter time. When rejection is allowed, 1|rej|Cmax +RC, an easy O(n)
time algorithm can be constructed. An observation that can be made is that a job Jj either contributes pj
to the objective or ej . For each job Jj it can easily be checked which of pj and ej is the smallest. If pj is
the smallest the job is scheduled on the machine, if ej is the smallest the job will be rejected. The order in
which the jobs will be scheduled on the machine has no influence.

In this problem there might be uncertainties about the values of the processing time of a job or the
rejection cost of a job. The uncertainties can again be modeled with the recoverable robustness model
explained in Section 2.3. Each scenario s will cover a different situation that might occur and the solution
consists of a set A of the accepted jobs in the initial problem and As is the set of accepted jobs in each
scenario s. Each of these sets has a complement, Ā or Ās, that consists of the jobs that are rejected. The
chosen recovery algorithm is about the same as in the previous chapter. A job that was rejected in the initial
schedule, cannot be processed on the machine in a scenario. This is fair because the customer probably went
to another factory to process its job and this job will not be available when the scenario occurs. A job that
was initially processed might however be rejected in a scenario. Thus Ā ⊆ Ās. The objective function now
becomes

p0(Cmax +
∑
Jj∈Ā

ej) +
∑
s∈S

ps(C
s
max +

∑
Jj∈Ās

esj).

Consider an instance with scenario set S and n jobs J1, . . . , Jn. Each job Jj has an initial processing
time pj , a scenario processing time psj for each scenario s ∈ S, an initial rejection cost ej and a scenario
rejection cost esj for each scenario s ∈ S. In this case every schedule contributes equally to the objective
and thus p0 = ps ∀s. An important observation that can be made is that whether a job Jj is accepted or
rejected in each scenario only depends on pj , p

s
j , ej and esj . It does not depend on the values of the other

jobs or on which job is scheduled before or after job Jj on the machine. A second observation that can be
made is that a job will never be scheduled in scenario s if psj ≥ esj . Now two cases can be distinguished for
each job in this problem.

Case 1: pj < ej. In this case it would be better for the initial schedule to schedule job Jj . This means that
it then can simply be determined for each scenario individually whether psj ≥ ej . In this case this job
will be scheduled in scenario s, otherwise it will be rejected.

39

4.2. MINIMIZING THE MAXIMUM MAKESPAN WITH REJECTION CHAPTER 4

Case 2: pj ≥ ej. In this case the job Jj would not be scheduled in the initial problem if there were no
scenarios. However there might be scenarios for which it holds that psj < esj and these would be

scheduled if this was the only schedule under consideration. Let the set S
′

j be the set that contains all

these scenarios for which hold that psj < esj . These jobs will be accepted for all scenarios in S
′

j and in
the initial problem if holds that pj +

∑
s∈S′

j
psj ≤ ej +

∑
s∈S′

j
esj , otherwise job Jj will be rejected in

all scenarios and the initial schedule.

Both cases cost O(|S|) time and this must be done for all jobs J1, . . . , Jn. Thus the problem of
1|rej|Cmax + RC with recoverable robustness can be solved in O(n|S|). Therefore this algorithm runs
in polynomial time no matter how many scenarios the problems has.

4.2.1 Minimizing the Maximum Makespan with Rejection and Release Dates

It may happen that not each job is directly available. This may happen because not all the material for
this job has arrived at the factory. To model this each job Jj will now also have a release date rj . Without
rejection allowed this problem is defined as 1|rj |Cmax. This problem is solved to optimality by using the
earliest release date rule (ERD-rule) [3]. The jobs are ordered such that r1 ≤ r2 ≤ . . . ≤ rn and scheduled
in that order. The starting time of job Jj is then equal to max{rj , Cj−1}.

When rejection is allowed the problem 1|rej, rj |Cmax +RC becomes NP-hard. This is proven in [15] by
a reduction from the partition problem. In [7] it is proven by reduction from the 0/1-knapsack problem. An
important lemma is the following.

Lemma 5. There exists an optimal schedule for the 1|rej, rj |Cmax + RC-problem in which the scheduled
jobs from set A are scheduled by the ERD-rule.

In [15] these dynamic programming algorithms were proposed to solve the 1|rej, rj |Cmax +RC problem
and will be presented here. The second algorithm is slightly adapted with the use of the algorithm proposed
in [25]. For both of these algorithms the jobs are ordered such that r1 ≤ r2 ≤ . . . ≤ rn and rmax = maxj rj ,
P =

∑
j pj and W =

∑
j ej . When the optimal value is found with one of the algorithms, the jobs that

belong to the set A of accepted jobs and the jobs that belong to Ā can be found by backtracking. For each
job it is decided whether to accept it or not in ERD order, because of lemma 5.

Dynamic programming algorithm one (DP1)
Let fj(V) be the optimal value of the objective function when the jobs under consideration are J1, . . . , Jj
and the total rejection penalty is exactly V . In an optimal schedule, job Jj is either rejected or it will be
processed on the machine. If job Jj is rejected, the total rejection penalty considering jobs J1, . . . , Jj−1 will
be V − ej . Thus in this case fj(V) = fj−1(V − ej) + ej . When job Jj is rejected the total rejection penalty
considering the jobs J1, . . . , Jj−1 will still be V and the optimal objective value considering only these jobs is
fj−1(V). The makespan of these jobs will then be equal to fj−1(V)− V . Now as stated earlier, the starting
time of job Jj will then be equal to max{fj−1(V) − V, rj} and thus the completion time of job Jj is equal
to Cj = max{fj−1(V) − V, rj} + pj . It now holds that fj(V) = Cj + V = max{fj−1(V) − V, rj} + pj + V .
These cases give the following recursive formula for this dynamic programming algorithm.

fj(V) = min{fj−1(V − ej) + ej ,max{fj−1(V)− V, rj}+ pj + V }

Where the initial values when only job J1 is considered are f1(0) = r1 + p1, f1(e1) = e1 and f1(V) =∞
for any v 6= 0, e1. The other values can be calculated using the previous formula. The optimal value is equal

40

4.2. MINIMIZING THE MAXIMUM MAKESPAN WITH REJECTION CHAPTER 4

to min0≤V≤W fn(V).

The recursive function calculates at most O(nW) state values and the calculation of each value costs
constant time. Thus this algorithm runs in O(nW) time. When all the rejection costs are equal, ej = e for
all jobs Jj , then W = ne and the running time of this algorithm becomes O(n2) as only the values fj(V)
with V a multiple of e have interesting values. This means that in the special case that the rejection costs
are equal, the problem 1|rej, rj , ej = e|Cmax +RC is not NP-hard.

Dynamic programming algorithm two (DP2)
Let fj(t) be the minimum value of the total rejection penalty when the jobs under consideration are J1, . . . , Jj
and the makespan of the accepted jobs among J1, . . . , Jj is exactly t. Again there are two cases for job Jj ,
it is rejected or it is accepted and processed. The case that job Jj gets rejected is easy. The makespan
of jobs J1, . . . , Jj−1 is still t and thus fj(t) = fj−1(t) + ej . When job Jj gets accepted it must hold that
t ≥ rj + pj . If t > rj + pj , the makespan of the scheduled jobs among J1, . . . , Jj−1 must be exactly t − pj
and thus fj(t) = fj−1(t − pj). If t = rj + pj then the makespan of the scheduled jobs among J1, . . . , Jj−1

is at most rj . Thus it holds that fj(t) = min0≤t′≤rj fj−1(t′). This gives the following recursive formula for
this dynamic algorithm algorithm.

fj(t) =

 fj−1(t) + ej if t < rj + pj
min{fj−1(t) + ej ,min0≤t′≤rj fj−1(t′)} if t = rj + pj
min{fj−1(t) + ej , fj−1(t− pj)} if t > rj + pj

The initial values when only job J1 considered are f1(0) = e1, f1(r1 + p1) = 0 and f1(t) = ∞ for all
values t 6= 0, r1 + p1. The optimal value is then equal to min0≤t≤rn+P (fn(t) + t).

The recursive formulation calculates at most O(n(rmax + P)) state values. In the first and third case
this calculation takes constant time. In the case that t = rj + pj , each iteration costs O(rmax + P). This
case however happens only once for each job Jj . Thus the total running time is O(n(rmax + P)).

4.2.2 Recoverable Robustness for the 1|rej, rj|Cmax +RC-Problem

For the 1|rej, rj |Cmax + RC-problem, the recoverable robustness problem can be used to model possible
uncertainties. The release dates now could come as an extra uncertainty on top of the processing times and
the rejection cost. These release dates may be uncertain when it is not clear when the needed goods to
process a certain job arrive at the factory. Because the 1|rej, rj |Cmax +RC-problem is already NP-hard on
its own, the recoverable robustness method will also be NP-hard for this problem. This means there will be
no algorithm for the general problem that has a polynomial running time. The same recovery algorithm will
be used as for the problem without release dates, thus it must hold that Ā ⊆ Ās.

In a first attempt to formulate an algorithm for the recoverable robust 1|rej, rj |Cmax + RC-problem,
DP1 can be extended. The state variable could be extended to fj(V0, V1, . . . , VS) which corresponds to the
optimal value of the objective function when the jobs under consideration are J1, . . . , Jj and the total rejec-
tion penalty in the initial schedule is V0 and the total rejection penalty in scenario s is Vs. When there is one
scenario this is simply fj(V0, V1) and each job has three possible configurations. When job Jj is rejected in
both the initial problem and the scenario, fj(V0, V1) = fj(V0− ej , V1− esj) + ej + esj . In the second case, job
Jj is accepted in the initial problem and rejected in the scenario, but then a problem arises. The completion
time of the last accepted job from jobs J1, . . . , Jj−1 is needed from both the initial schedule and the scenario
schedule. This value however cannot be obtained from fj−1 for any value of V0 and V1. Thus DP1 cannot

41

4.2. MINIMIZING THE MAXIMUM MAKESPAN WITH REJECTION CHAPTER 4

be extended to find a solution for the problem of 1|rej, rj |Cmax +RC.

In a second attempt DP2 is extended. The state variable fj(t0, t1, . . . , t|S|) is the optimal value of the
total rejection penalty when the jobs under consideration are J1, . . . , Jj and the makespan of the initial
schedule is t0 and the makespan of scenario s ∈ S is ts. This algorithm will first be explained when there is
only one scenario. The state variable now is equal to fj(t0, t1) and each job Jj has three possible cases: it is
accepted in both the initial problem and the scenario, it is rejected in both schedules or it is rejected in the
scenario and accepted in the initial schedule. In DP2 the calculation depended on the value of t, resulting
in three different minimands. Here the calculation depends on values of t0 and t1.

In the case job Jj gets rejected in both schedules, the makespan of the scheduled jobs among J1, . . . , Jj−1

is still t0 in the initial schedule and t1 in the scenario schedule and thus fj(t0, t1) = fj−1(t0, t1)+ej +esj . This
holds for every value of t0 and t1. Next consider the case where job Jj is accepted in the initial schedule and
rejected in the scenario. The makespan of the jobs J1, . . . , Jj−1 in the scenario schedule will still be t1. For
the initial schedule it must hold that t0 ≥ rj +pj . If t0 > rj +pj , the makespan of the scheduled jobs among
J1, . . . , Jj−1 must be exactly t0− pj and thus fj(t0, t1) = fj−1(t0− pj , t1) + esj . If t0 = rj + pj , the makespan
of the scheduled jobs among J1, . . . , Jj−1 is at most rj . Thus, fj(t0, t1) = min0≤t′≤rj fj−1(t′, t1) + esj .

In the case job Jj gets accepted in both schedules, it must hold that t0 ≥ rj + pj and t1 ≥ rsj + psj . In
case t0 > rj + pj and t1 > rsj + psj , the makespan of the scheduled jobs among J1, . . . , Jj−1 must be t0 − pj
in the initial schedule and t1 − psj in the scenario schedule, giving fj(t0, t1) = fj−1(t0 − pj , t1 − psj). In case
t0 = rj + pj and t1 = rsj + psj , the makespan of the scheduled jobs among J1, . . . , Jj−1 is at most rj in
the initial schedule and rsj in the scenario, thus fj(t0, t1) = min0≤t′0≤rj ,0≤t′1≤rsj fj−1(t′0, t

′
1)}. The other two

combinations left are a combination of both formulas and are easily obtained. This results in the following
recursive formula for this dynamic programming algorithm.

fj(t0, t1) =



fj−1(t0, t1) + ej + esj if t0 < rj + pj
min{fj−1(t0, t1) + ej + esj ,min0≤t′≤rj fj−1(t′, t1) + esj} if t0 = rj + pj , t1 < rsj + psj
min{fj−1(t0, t1) + ej + esj ,min0≤t′≤rj fj−1(t′, t1) + esj , if t0 = rj + pj , t1 = rsj + psj

min0≤t′0≤rj ,0≤t′1≤rsj fj−1(t′0, t
′
1)}

min{fj−1(t0, t1) + ej + esj ,min0≤t′≤rj fj−1(t′, t1) + esj , if t0 = rj + pj , t1 > rsj + psj
min0≤t′≤rj fj−1(t′, t1 − psj)}

min{fj−1(t0, t1) + ej + esj , fj−1(t0 − pj , t1) + esj} if t0 > rj + pj , t1 < rsj + psj
min{fj−1(t0, t1) + ej + esj , fj−1(t0 − pj , t1) + esj , if t0 > rj + pj , t1 = rsj + psj

min0≤t′≤rsj fj−1(t0 − pj , t′)}
min{fj−1(t0, t1) + ej + esj , fj−1(t0 − pj , t1) + esj , if t0 > rj + pj , t1 > rsj + psj
fj−1(t0 − pj , t1 − psj)}

The initial values when only job J1 is considered are f1(0, 0) = e1 + es1, f1(r1 + p1, 0) = es1 and f1(r1 +
p1, r

s
1 + ps1) = e1 + es1; for other values of t0 and t1 it holds that f1(t0, t1) = ∞. The optimal value can be

calculated as follows.

min
0≤t0≤rn+P,0≤t1≤rsn+P s

fn(t0, t1) + t0 + t1

Let R = max{rmax, r
s
max}, then the recursive formulation calculates at most O(n(R + P)2) values. In

the worst case, when t0 = rj + pj and t1 = rj + pj , the calculation of a table entry takes O(R2) time.
This however happens only n times. When t0 = rj + pj or t1 = rj + pj the calculation takes O(R), this
only happens O(2nP) times. The other cases take at most O(1) time. Thus the total running time of the
algorithm is bounded by O(n(R+ P)2).

42

4.3. MINIMIZING LMAX OR TMAX WITH REJECTION CHAPTER 4

The dynamic programming algorithm to solve the recoverable robustness problem for the 1|rej, rj |Cmax+
RC problem with only one scenario is already quite extensive. This algorithm can however be extended
to solve the problem for all sizes of |S|. As stated earlier this would be done with the state variable
fj(t0, t1, . . . , t|S|) which is equal to the optimal value of the total rejection penalty when the jobs under
consideration are J1, . . . , Jj and the makespan of the initial schedule is t0 and the makespan of scenario
s ∈ S is ts. If R = max{rmax,maxs∈S r

s
max}, the recursive formulation calculates at most O(n(R + P)|S|)

values. The number of minimands in one case will be O(2|S|) and the worst minimand will take O(R|S|)
time and thus one case will take O(2|S|R|S|). Thus the algorithm will take O(n2|S|R|S|(R + P)|S|) running
time.

4.3 Minimizing Lmax or Tmax with Rejection

In the previous chapter it did not matter how late a job was; one time unit too late was equally good or bad
as twenty time units too late. When it does matter how late a job is, the maximum lateness or maximum
tardiness of a job can be measured. As mentioned earlier in Section 2.1 the lateness of a job is defined as
Lj = Cj − dj . The maximum lateness of a schedule is then defined as Lmax = maxj Lj . Negative lateness
means that this job was on time, this is not taken into account when looking at tardiness. This means
Tj = max{Lj , 0} and the maximum lateness of a job is then Tmax = maxj Tj .

The problems 1||Lmax and 1||Tmax are closely related and are both solvable using the same algorithm.
In [11] it is proven that the optimal schedule can be created for these two problems by scheduling the jobs
in earliest due date order (EDD-rule). The jobs are ordered such that d1 ≤ d2 ≤ . . . ≤ dn and the starting
time of job Jj is simply Cj−1, where the start time of job J1 = 0.

When rejection is allowed the problems 1|rej|Lmax + RC and 1|rej|Tmax + RC become NP-hard. The
reduction from the partition problem can be found in [21]. For these problems two dynamic programming
algorithms are constructed in [21], which are explained here below with a small adjustment such that the
case of rejecting all jobs is covered better. They both depend on the following lemma, which can also be
stated for 1|rej|Tmax +RC.

Lemma 6. There exists an optimal schedule for the 1|rej|Lmax + RC problem in which the scheduled jobs
from set A are scheduled by the EDD-rule.

For executing the following pseudo-polynomial time algorithms it is assumed that the jobs are ordered
such that d1 ≤ d2 ≤ . . . ≤ dn. Opposite to the previous dynamic programming algorithms these algorithms
start by deciding on job Jn and then on job Jn−1 and so on. In this way important information on the
maximum lateness can be easily computed.

Dynamic programming on the rejection costs
Let fj(e) be the optimal value of the maximum lateness when the jobs in consideration are Jj , Jj+1, . . . , Jn
and the total rejection penalty of the jobs is e. The boundary conditions on job Jn are the following,
fn(en) = −dmin, fn(0) = pn − dn and fn(e) = ∞ if e 6= en, 0. When looking at the optimal schedule
corresponding to the value of fj(e) there are two possible cases for job Jj , it is either rejected or accepted.
Job Jj can only be rejected if e ≥ ej , in which case fj(e) = fj+1(e − ej) because the rejection penalty of
the rejected jobs among Jj+1, . . . , Jn must be e− ej . If job Jj is scheduled then the total rejection penalty
is still e. The lateness of the jobs Jj+1, . . . , Jn will be increased by pj and the lateness of job Jj is exactly
pj − dj . Then fj(e) = max{fj+1(e) + pj , pj − dj}. This gives the following recursive formula.

43

4.3. MINIMIZING LMAX OR TMAX WITH REJECTION CHAPTER 4

fj(e) =

{
max{fj+1(e) + pj , pj − dj} if e < ej
min{fj+1(e− ej),max{fj+1(e) + pj , pj − dj}} otherwise

The optimal value for the 1|rej|Lmax +RC-problem is equal to

min
0≤e≤

∑
j ej

f1(e) + e

and for 1|rej|Tmax +RC this is equal to

min
0≤e≤

∑
j ej

max{0, f1(e) + e}

. Recall that W =
∑
ej , at most nW values need to be calculated and each value requires O(1) time, so the

running time of the algorithm is O(nW). This means again that when all the rejection costs are equal these
problems, 1|rej, ej = e|Lmax +RC and 1|rej, ej = e|Tmax +RC can be solved in polynomial time.

Dynamic programming on the lateness of the jobs
Let fj(l) be the minimum value of the total rejection penalty when the jobs in consideration are Jj , Jj+1, . . . , Jn
and the maximum lateness of the scheduled jobs is at most l. The boundary conditions on job Jn are the
following.

fn(l) =

 en if l = −dmin

0 if l ≥ pn − dn
∞ otherwise

In the schedule that corresponds to the optimal value of fj+1(l) there are two possible cases for job
Jj . Either job Jj is accepted and scheduled or job Jj is rejected. In the case that job Jj is rejected the
maximum lateness of the scheduled jobs of Jj+1, . . . , Jn is l and the rejection penalty will increase with ej
thus fj(l) = fj+1(l) + ej . If job Jj gets scheduled its lateness is pj − dj and thus there will be no feasible
solution if l < pj − dj . The lateness of the scheduled jobs among Jj+1, . . . , Jn will increase with pj and
thus the lateness of these scheduled jobs can be at most l − pj , that is, fj(l) = fj+1(l − pj). This gives the
following recurrence relation.

fj(l) =

{
fj+1(l) + ej if l < pj − dj
min{fj+1(l) + ej , fj+1(l − pj)} otherwise

It is clear that Lmax ≤
∑

j pj − dmin, because Cj can never be larger than
∑

j pj , and Lmin ≥ −dmin,
thus there are only

∑
j pj possibilities of the value of Lmax. The optimal value for 1|rej, ej = e|Lmax +RC

can be found by

min{f1(l) + l| − dmin ≤ l ≤
∑
j

pj − dmin}

and for the 1|rej, ej = e|Tmax +RC problem it is equal to

min{f1(l) + max{0, l}| − dmin ≤ l ≤
∑
j

pj − dmin}.

There are at most n
∑

j pj values that need to be calculated and each calculation takes O(1) time so the
running time of the algorithm is O(nP).

44

4.3. MINIMIZING LMAX OR TMAX WITH REJECTION CHAPTER 4

4.3.1 Recoverable Robustness for 1|rej|Lmax +RC and 1|rej|Lmax +RC

The problems 1|rej|Lmax + RC and 1|rej|Lmax + RC may have uncertain processing times, due dates or
rejection penalties. These may again be modeled with the recoverable robustness approach from Section
2.3. As in the previous section one of the dynamic programming algorithms may be extended to also find
solutions for each scenario that obey the recovery algorithm constraint.

Extending the dynamic programming algorithm on the rejection costs to have a state variable fj(e0, e1, . . . , e|S|)
that is the sum of the minimum lateness over all schedules given that the rejection penalty in the initial
schedule is equal to e0 and that in each scenario s this is equal to es raises a problem. This is because it
cannot be determined what the exact lateness in one schedule is and thus it is not known how this value
must be changed. Therefore a second attempt is made with the algorithm on the lateness of the jobs.

Let fj(l0, l1, . . . , l|S|) be the minimum value of the total rejection penalty when the jobs in consideration
are Jj , . . . , Jn and the maximum lateness of the initial schedule is at most l0 and in scenario schedule s this
is at most ls. First consider the algorithm for only one scenario, then the state variable is equal to fj(l0, l1).
There are three different configurations for job Jj . If job Jj is rejected in both schedules then the maximum
lateness in the schedules considering only jobs Jj+1, . . . , Jn must still be l0 and l1. The penalty increases
with ej + esj and thus fj(l0, l1) = fj+1(l0, l1) + ej + esj . In the second case job Jj may be accepted in the
initial schedule but rejected in the scenario. As in the previous algorithm it now must hold that l0 ≥ pj−dj ,
because this is the lateness of job Jj . The maximum lateness among the scheduled jobs among Jj+1, . . . , Jn
can be at most l − pj , thus fj(l0, l1) = fj+1(l0 − pj , l1) + esj . If job Jj gets accepted in both schedules, it
must hold that l0 ≥ pj − dj and l1 ≥ psj + dsj . Now fj(l0, l1) = fj+1(l0 − pj , l1 − psj). This gives the following
recursive formula.

fj(t) =


fj+1(l0, l1) + ej + esj if l0 < pj − dj
min{fj+1(l0, l1) + ej + esj , fj+1(l0 − pj , l1) + esj} if l0 ≥ pj − dj , l1 < psj − dsj
min{fj+1(l0, l1) + ej + esj , fj+1(l0 − pj , l1) + esj , if l0 ≥ pj − dj , l1 ≥ psj − dsj
fj+1(l0 − pj , l1 − psj)}

The initial values when only the last job Jn is considered are

fn(l0, l1) =


en + esn if l0 = −d0

min, l1 = −d1
min

esn if l0 ≥ pn − dn, l1 = −d1
min

0 if l0 ≥ pn − dn, l1 ≥ psn − dsn
∞ otherwise

The optimal value for the recoverable robust 1|rej|Lmax +RC can be found by

min{f1(l0, l1) + l0 + l1|lmin
0 ≤ l ≤ lmax

0 , lmin
1 ≤ l ≤ lmax

1 }

and for the recoverable robust 1|rej|Tmax +RC problem it is equal to

min{f1(l0, l1) + max{0, l0}+ max{0, l1}|lmin
0 ≤ l ≤ lmax

0 , lmin
1 ≤ l ≤ lmax

1 }

Let P = max{
∑
pj ,
∑
psj}, the recursive formulation calculates O(nP 2) values. Calculating these values

are all done in O(1) and thus the running time of the dynamic programming algorithm for one scenario takes
O(nP 2) time.

45

4.3. MINIMIZING LMAX OR TMAX WITH REJECTION CHAPTER 4

This dynamic programming algorithm can be extended to solve problems for all sizes of S. In this general
case the state variable would be fj(l0, l1, . . . , l|S|) which is equal to the minimum value of the total rejection
penalty when the jobs in consideration are Jj , . . . , Jn and the maximum lateness of the initial schedule is at
most l0 and in scenario schedule s this is at most ls. Depending on the values of fj(l0, l1, . . . , l|S|), the value of
fj(l0, l1, . . . , l|S|) can be calculated. If P = max{

∑
pj ,maxs∈S

∑
psj}, the dynamic programming algorithm

will calculate O(nP |S|) values. One entry can have O(2|S|) minimands which all can be calculated in O(1)
time. Thus one value takes O(2|S|) time to calculate. Thus the algorithm for the general case O(n2|S|P |S|).

46

Chapter 5

Experiments

To find out which algorithm works best and which settings give the best results, experiments need to be
performed. To do so problem instances need to be created, how this is done is explained in Section 5.1.
First the branch and bound and branch and price algorithms are tested, here after called the branching
algorithms. These experiments are performed in two rounds. In the first round the branching algorithms are
tested on instances with n = 40 and s = 2 to find the best settings, see Section 5.2.1, and the most difficult
instances, see Section 5.2.2. In the second round n and s will be increased to see how the performances of
the best settings are affected. These results can be found in Section 5.2.3. Next the performance of the
last two algorithms, dynamic programming and the direct linear program, is discussed in Sections 5.4 and 5.3.

The problem and the algorithms are implemented using C# and with ILOG CPLEX 12.6.0. the linear
programs are solved. This is necessary to solve the separate recovery algorithm within branch and price and
the direct linear program later on. All the experiments in the upcoming sections are run on an R© Intel TM

core i7-3610QM 2.30 GHz processor with 8 GB of RAM.

5.1 Problem Instances

For testing the exact algorithms problem instances need to be created. When creating a problem for the
RRML problem, first an initial problem needs to be created. Because minimizing the number of late jobs has
a polynomial time algorithm, there is no literature on how to create interesting instances for this problem.
The weighted variant, 1||

∑
wjuj , however is NP-hard and has literature on creating instances for the prob-

lem. To create an initial scenario from these instances for the RRML problem, the weights can be omitted.

For each job Jj an initial processing time pj is generated from the uniform distribution [1, 30]. In
[20] now the two parameters R and T are used to create the due dates. The parameter R is the relative
range of due dates and the parameter T is the average tardiness factor. When the processing times are
computed, the value of P =

∑
j pj is known. The due dates are now generated from the uniform distribution

[P (1− T − R
2), P (1− T + R

2)]. The jobs will be sorted in non-decreasing due date order. When R is small,
the due dates are close together, as R increases the smallest and biggest due date generated will be further
apart. Therefore the term relative range of due dates. When T is small, the due dates are close to P and
they will be further from P when T increases. When the due dates are close to P most jobs will fit, but
when T increases and the due dates get smaller than P then not all jobs will fit and more jobs will become
late. Therefore T is called the average tardiness factor.

47

5.2. BRANCHING ALGORITHMS COMPARED CHAPTER 5

For each combination of n and s the values of R and T are chosen between 0.2 and 1.0 with steps of
0.2. Only those values are chosen that keep the due dates positive. This gives 14 different combinations per
combination of n and s. To complete the initial problem, the value p0 is randomly created.

To complete the instances the set of scenarios S needs to be created. These problems can be created
in different ways. One could create the processing times for each job Jj in the scenario from an uniform
distribution as well, then pj will be independent from each psj . Here is chosen to let the scenario processing
times depend on the initial processing times. It may be that psj is bigger or smaller than pj with a certain
factor or that the processing time stays the same. The first two types of problem instances create problems
for the RRML problem.

• Random increase and decrease (RID). Here the following procedure is used for each job Jj in each
scenario s. With a probability of 33 % it holds that psj = pj for job Jj , with probability 33% it holds
that psj = 0.75pj and the last 33% makes psj = 1.5pj .

• Opposite increase and decrease (OID). Now all scenarios are created at the same time. Consider job
Jj in each scenario, in 33% of the scenarios it will hold that psj = 0.75pj , for another 33% psj = 1.5pj
and for the other scenarios the processing time will stay the same. In which scenario the job increases
or decreases is randomly determined.

To also see the effect of the algorithms on instances of the RRML-I problem, the following instances
have been created as well.

• Random increase (RI). Here the following procedure is used for each job Jj in each scenario s. With
a probability of 50 % it holds that psj = pj and in the other cases psj = 1.5pj .

• Opposite increase (OI). Now all scenarios are created at the same time. Consider job Jj in each
scenario, in half of the scenarios will hold that psj = 1.5pj and the other half will have psj = pj . In
which scenario the job increases of stays equal is randomly determined.

The opposite increase instance types, OID and OI, are not defined properly for all sizes of S. To overcome
this problem, both OID and OI will use their random equivalent strategy when there is only one scenario.
This solves the problems for OI. OID is also not defined well for two scenarios, in this case a job will increase
in one scenario and decrease in the other. Which scenario increases or decreases is chosen randomly.

The probabilities ps for each scenario s ∈ S are determined as done in [24]. Probabilities p
′

s are set to a

value from the uniform distribution [1, 3]. These are then scaled such that ps =
p
′
s∑

s∈S p′
s+p0

for each scenario

s ∈ S. The value p0 is scaled in the same way.

5.2 Branching Algorithms Compared

In this section the performances of the two branching algorithms are compared; branch and bound and
branch and price. Both algorithms have different parameters for which the optimal value has to be deter-
mined, this is done in Section 5.2.1 by testing the different parameters on instances with 40 jobs and two
scenarios. In the next section is investigated what are difficult instances and what properties these instances
have. Next in Section 5.2.3 the performances of the branching algorithms are tested when the number of
jobs and scenarios increase. They are then compared to each other.

The set H was defined in Section 3.4, this set contains all jobs which will be definitely on time in all
schedules of the optimal solution. Set H can always be obtained in the root node with the use of algorithm 1.

48

5.2. BRANCHING ALGORITHMS COMPARED CHAPTER 5

This reduces the number of jobs for which its configuration needs to determined by the branching algorithms.
Using this set to pre set multiple jobs will always give a better performance of the branching algorithms.
It simply reduces the number of jobs on which the branching algorithms need to run and the calculation is
fairly easy. Therefore in the performance measure of the branching algorithms the set H is always used to
reduce the running time of the algorithms. This can be done because the size of this set is always equal for
all different settings and algorithms and therefore this will not influence the findings.

For an optimal performance of the branch and price algorithm separate recovery must work well. For
each pricing problem with negative reduced cost the corresponding column will be added to the master
problem. One could choose to add more than the column with the highest reduced cost and investigate the
performance when also the second best is added and so on as is done in [24], but this is not the focus of this
thesis.

When an initial solution is added, for each scenario s ∈ S a solution can be constructed that satisfies
the recovery algorithm and thus with the new initial column they would together form a valid solution.
This can be done for each scenario by performing the Moore-Hodgson algorithm on the on time jobs of
the initial schedule. This gives a valid solution for each scenario. This is exactly how the Moore-Hodgson
initial upper bound is created. In stead of adding a second best column, the columns corresponding to the
solutions for each scenario are added. In Table 5.1 the results are shown of performing separate recovery
100 instances with 40 jobs and two scenarios, with either adding these extra columns or not adding them.
The 100 instances are 25 for each instance type with taking the values of R and T randomly while of course
keeping the lower bound positive.

Time (ms) Added columns Iterations

Extra scenarios avg. max avg. max avg. max integral

Yes 50 629 2158 4837 543 1203 86

No 77 758 2441 5112 938 1945 72

Table 5.1: Results for initial testing of Separate Recovery.

When adding the extra columns, the solution is reached quicker. Even with less columns and less
iterations. Most importantly, there are 14 more instances solved to an integral solution directly. This is a
much better performance than without adding the extra columns. Therefore, this addition will always be
used when performing separate recovery.

5.2.1 Optimal Settings

To perform one of the branching algorithms a decision needs to be made on the branching and bounding
heuristic. In Section 3.3 different upper bounds and branching heuristics were discussed. The everyting late
upper bound made all the non-determined jobs late, where the Moore-Hodgson initial upper bound used
the Moore-Hodgson algorithm on these jobs. For deciding on which job to branch, the next options were
discussed in this section. It can be done in increasing or decreasing due dates order, called first or last
here. Other options were to select in order of increasing or decreasing initial processing times, so taking the
longest or shortest job. The last option was to branch on a job that does not satisfy the recovery algorithm
when looking at the Moore-Hodgson solutions. The last option will be called invalid job in this chapter. The
different ways to traverse the branch tree, which node to choose to do the branching step on, were explained
in Section 2.2.3. Recall that it were the following three options; in breadth first a new node is added at the
end of the queue, depth first adds the node in front of the queue and best first takes the node with the lowest
lower bound first. This all is summarized in Table 5.2.

49

5.2. BRANCHING ALGORITHMS COMPARED CHAPTER 5

Not all of these settings will work equally well. In this section will be tested what choices give the best
result for these two algorithms. The branching heuristic invalid job is not valid in branch and bound, as
mentioned earlier. To test the branching algorithms the following problem instances are created for 40 jobs
and two scenarios. For each type of instance, RID, OID, RI and OI, 25 instances are created with random
values for R and T from the set {0.2, 0.4, 0.6, 0.8, 1.0}. A combination is of course only feasible if the lower
bound of the uniform distribution the due dates are taken from stays positive, such that each due date is
positive. This gives 100 instances to test the branching algorithms in the first round. These were the same
instances on which the separate recovery algorithm was tested. For solving each instance in this first round
a running time limit of three minutes is set, if this run exceeds the three minutes it has failed.

Node selection Branch Heuristic Upper bound Heuristic

Best first First Everyting late

Depth first Last Moore-Hodgson initial

Breadth first Longest

Shortest

Invalid job

Table 5.2: Different heuristics for the branch and bound and branch and price algorithm.

Time (ms) Visited nodes Weighted

Node selection Branch avg. max avg. max failed avg. time avg. nodes

Best first First 692 15280 4761 116673 16 29381 66220
Last 1984 110547 10601 521147 16 30466 46137

Longest 4770 174710 11559 270411 9 20540 43189
Shortest 403 24790 3669 190918 15 27342 57797

Invalid job 3976 163091 14181 811663 12 25098 38865

Depth first First 7872 166314 185953 3537245 9 23363 552774
Last 10549 177950 254712 4585096 14 34272 808128

Longest 2787 117819 70827 3076575 5 11647 288064
Shortest 9595 148687 196004 3224191 24 50492 1041304

Invalid job 4736 157881 111769 3713715 6 15251 363279

Breadth first First 17677 171154 110389 856934 75 139419 696808
Last 9475 93524 76464 528986 74 135663 692960

Longest 6969 107067 46052 590140 77 140202 679940
Shortest 15135 121777 96662 683319 65 122297 596245

Invalid job 17636 114787 150216 1044344 69 129667 686307

Table 5.3: Results when looking at the different branching heuristics, node selection options and the upper
bound is everything late for branch and bound.

In Table 5.3 the results for the branch and bound algorithm can be found when the upper bound heuristic
is everything late. In this table the columns time shows the average time and maximum time that was needed
given all the successful runs, thus the runs that completed within three minutes. The visited nodes column
show the average and maximum number of visited nodes of all the non failed runs. The columns below

50

5.2. BRANCHING ALGORITHMS COMPARED CHAPTER 5

weighted show the average time and nodes when the failed runs are taken into account. For each failed run
three minutes run time is counted and their by then number of visited nodes.

What can be seen is that branching on the jobs with the longest initial processing time or on an invalid
job works better than all other branching options, independent of the node selection decision. They solve
more problems within the given time, are quicker overall and with less average nodes. Here it is important
to look at the weighted columns, where the failed runs are also taken into account. The best choice for the
node selection is depth first. Best first is not much worse, but breadth first does not work very well.

Time (ms) Visited nodes Weighted

Node selection Branch avg. max avg. max failed avg. time avg. nodes

Best first First 1850 64843 11900 317883 11 21446 40773
Last 572 30249 3517 149275 14 25691 43015

Longest 3037 175883 11281 266837 7 15424 46688
Shortest 876 53710 4464 173681 14 25953 36621

Invalid job 575 20723 5678 190163 11 20311 42030

Depth first First 7451 156452 108174 2185875 8 21254 309610
Last 7327 168329 104358 2378465 13 29774 432716

Longest 2496 104584 36622 1491601 6 13146 196393
Shortest 5438 171673 75942 2460039 18 36859 505244

Invalid job 5228 149511 68695 1926698 7 17462 233920

Breadth first First 5858 144653 50401 1411457 11 25013 162183
Last 3138 140019 28104 1620457 15 29667 184261

Longest 4958 174131 47230 1491601 7 17210 131670
Shortest 2369 146005 12942 580892 20 37895 203568

Invalid job 4648 171282 39820 1471149 9 20429 146787

Table 5.4: Results when looking at the different branching heuristics, node selection options and the upper
bound is Moore-Hodgson initial for branch and bound.

The results with the Moore-Hodgson upper bound for branch and bound can be found in Table 5.4.
Branching on the longest initial job or an invalid job still works best and depth first is the best way to
traverse the branch tree. What is interesting is that selecting the nodes breadth first is not much worse than
the other two strategies as it was with the everything late upper bound. This will be caused by the tighter
upper bound which causes that less nodes are necessary. This is also seen when comparing the two different
upper bounds with each other, the used number of nodes decreased drastically. For the Moore-Hodgson
initial upper bound less nodes are used and therefore in the most cases this upper bound finds the optimal
solution the quickest. In the two best configurations, depth first with longest job or invalid job, a bit less
problems get solved than with the everything late upper bound. However on 100 instances a difference of
one problem solved is not that much. Therefore the Moore-Hodgson upper bound is still considered the best
setting.

Thus for the branch and bound algorithm there are two settings that work pretty good. Because one
best setting is wanted, this will be traversing the tree in depth first order, branching on the job with the
longest initial processing time and using the Moore-Hodgson initial upper bound.

The question is whether the same settings work the best for the branch and price algorithm. Branching
on the invalid job is of course not defined for this algorithm, so this option is not valid here. From all the 100

51

5.2. BRANCHING ALGORITHMS COMPARED CHAPTER 5

instances there are 86 instances that have an integral solution in the root node of the branch tree. Thus that
the average number of visited nodes is very low makes a lot of sense because for all these directly integral
cases the number of visited nodes is one.

Time (ms) Visited nodes Added columns Iterations

Node selection Branch avg. max avg. max avg. max avg. max failed

Best first First 918 27317 21 1288 721 20513 206 5423 0
Last 1294 64897 18 611 1143 53569 299 13895 0

Longest 411 10715 7 326 363 9626 95 2743 0
Shortest 1637 63455 26 996 1432 62098 407 18038 0

Depth first First 1773 57000 38 1359 1580 61252 437 17006 0
Last 1953 118950 30 1326 1520 90430 414 24281 1

Longest 677 19082 12 491 582 14816 155 4059 0
Shortest 2648 159608 45 1916 2288 134432 656 38675 2

Breadth first First 1238 45398 24 1288 1014 34336 284 9177 0
Last 2184 117461 25 921 1816 90584 476 23452 0

Longest 932 35745 11 341 805 28190 199 6577 0
Shortest 2087 68453 37 996 1833 68061 520 19761 1

Table 5.5: Results when looking at the different branching heuristics, node selection options and the upper
bound is everything late for branch and price.

In Table 5.5 the results for the upper bound heuristic everything late are given. Branching on the job
with the longest initial processing time works the best here, as it was for the branch and bound algorithm.
This is clear from every measurement in this table of results. The best node selection strategy is however
not the same as for the branch and bound algorithm. Here it is best to choose best first and depth first,
which was best for branch and bound, is even the worst option.

For the Moore-Hodgson initial upper bound the results are found in Table 5.6. It is clear that for the
branch and price algorithm this upper bound works better. Less time, nodes, columns and iterations are
needed. Here branching on the longest job in the initial problem works best again, as is traversing the tree
in a best first order.

Thus for the branch and price algorithm, use the Moore-Hodgson initial upper bound heuristic and
branch on the longest initial job. This can be done while traversing the tree in best first order. This gives
the quickest results.

After this first round of testing the best settings for the branching algorithms are found. For the branch
and bound algorithm the tree will be traversed depth first, while branching on the longest initial job and
having the Moore-Hodgson initial upper bound. This setting will be used for this algorithm in the rest of
this thesis. For the branch and price algorithm this is almost the same, only the tree is traversed in best
first order. Next will be investigated with the use of these settings what instances are hardest.

5.2.2 Difficulty of Instances

The following set of instances is created, again for 40 jobs and two scenarios. For each type of scenario
instances, RID, OID, RI and OI, 140 instances are created. These 140 instances are 10 instances for each
possible combination of R and T . These instances are then solved with the branch and bound algorithm

52

5.2. BRANCHING ALGORITHMS COMPARED CHAPTER 5

Time (ms) Visited nodes Added columns Iterations

Node selection Branch avg. max avg. max avg. max avg. max failed

Best first First 792 23613 21 1288 698 20513 200 5423 0
Last 1162 60422 17 611 1102 53569 290 13895 0

Longest 351 10147 7 326 320 9626 83 2743 0
Shortest 1580 60029 26 996 1432 62098 407 18038 0

Depth first First 1120 52586 24 1323 992 45899 276 11826 0
Last 885 30580 21 811 875 30197 240 8430 1

Longest 522 18065 11 491 446 13419 122 4059 0
Shortest 3095 112818 71 3693 2241 72174 666 22814 1

Breadth first First 1035 41997 23 1288 892 34336 253 9177 0
Last 1732 106255 22 921 1572 90584 413 23452 0

Longest 555 19751 9 326 497 16580 126 3887 0
Shortest 1876 59183 37 996 1755 62098 499 18038 1

Table 5.6: Results when looking at the different branching heuristics, node selection options and the upper
bound is Moore-Hodgson late for branch and price.

and the branch and price algorithm. The best settings as found previously are used for these algorithms.

Time (ms) Visited nodes

Instance type avg. max avg. max failed weighted avg. time

OID 4868 164469 26571 587364 14 22381
RID 5180 160177 33002 914477 23 33901

OI 1953 170758 7070 417751 1 3225
RI 1127 155711 5346 721370 0 1127

Table 5.7: Results when looking at the different instance types for Branch and Bound

Time (ms) Visited nodes Added columns Iterations

Instance type avg. max avg. max avg. max avg. max integral failed

OID 859 18151 19 326 737 15001 200 3915 92 0
RID 3024 46603 49 936 2066 38547 580 9531 82 0

OI 2679 93818 103 4552 1327 54203 488 19453 119 3
RI 272 17720 8 591 161 7771 52 3012 131 1

Table 5.8: Results when looking at the different instance types for Branch and Price

In tables 5.7 and 5.8 the results for the different instance types for the branching algorithms are shown.
From the branch and bound results it is clear that the instances when only increasing the processing times
in the scenarios and not also decreasing some processing time compared to the initial processing time are
easiest, except for one, all problems get solved in time. The solutions are found using a lot less nodes

53

5.2. BRANCHING ALGORITHMS COMPARED CHAPTER 5

than when also decreasing processing times. Random increase and decrease is the most difficult of the four
different types.

When looking at the results for the branch and price algorithm, the scenario types with only increasing
processing times have the most directly integral solutions. This might be an indicator that these instances
are easy. However, these are only the only instances for which some runs failed. This seems really contra-
dictory. A direct cause is not clear. Looking at the running time and the number of visited nodes, OID and
RI are the quickest, with the random only increasing processing times clearly the number one. It also needs
least number of columns and iterations. The RID here is the most difficult when looking at all the numbers
accept the number of fails, as it was for the branch and bound algorithm.

Time (ms) Visited nodes

R T avg. max avg. max failed weighted avg. time

0.2 0.2 6224 109920 23710 257742 2 14913
0.4 11819 160177 83191 914477 7 41251
0.6 9165 170758 36439 721370 10 51874
0.8 6403 164469 27932 544861 1 10743

0.4 0.2 2 50 30 534 0 2
0.4 6077 106203 36319 587364 3 19121
0.6 1667 22496 12947 122166 7 32875

0.6 0.2 0 0 1 1 0 0
0.4 2704 85437 19687 580186 1 7136
0.6 1701 49388 9450 186943 7 32903

0.8 0.2 0 0 1 1 0 0
0.4 105 3585 1343 46217 0 105

1.0 0.2 0 0 1 1 0 0
0.4 83 3289 914 35912 0 83

Table 5.9: Results when looking at the instances with different R and T for Branch and Bound

The results for the branching algorithms for the different values of the parameters R and T are given
in tables 5.9 and 5.10. Recall that the parameter R is the relative range of due dates and the parameter T
is the average tardiness factor. The results for the branch and bound algorithm show that when increasing
T , it takes longer to solve the problem and more instances fail. Except for the combination of R = 0.2 and
T = 0.8, these are even the easiest instances for R = 0.2. This seems to show that the more jobs are late,
the harder the problems are.

When increasing R, the problems get solved quicker and less instances fail. When R increases the range
of due dates is larger and thus more jobs can be on time. Thus this again shows that the problems are harder
when more jobs will be late. These same patterns are seen when looking at the results for the branch and
price algorithm. This is also shown in the number of directly integral solutions.

The explanation for these results is quite easy when looking at the following values for the different
instances. The first measurement is the size of set H, the set of jobs that are all on time in all schedules
of the optimal solution. As explained earlier, a larger set H is expected to result in quicker results. The
other measurements are the distances from the initial lower and upper bound to the optimal solution. These
values are calculated as follows. Let the lower and upper bound calculated in the root node be LBroot and

54

5.2. BRANCHING ALGORITHMS COMPARED CHAPTER 5

Time (ms) Visited nodes Added columns Iterations

R T avg. max avg. max avg. max avg. max integral failed

0.2 0.2 578 10706 17 396 200 2719 89 1766 30 0
0.4 2343 34673 39 476 1595 23361 443 6365 21 0
0.6 4353 77951 178 4552 3300 54203 1041 19453 15 1
0.8 1129 6464 21 201 1248,25 6801 325 1677 23 0

0.4 0.2 38 877 1 31 12 201 6 142 39 0
0.4 2889 31946 62 591 1869 23671 550 6402 25 1
0.6 4613 46603 74 726 3148 38547 840 9531 17 1

0.6 0.2 16 168 1 1 5 7 2 3 40 0
0.4 5058 93818 191 3866 1966 29361 828 14696 32 0
0.6 2491 40007 33 381 1569 21785 446 6654 25 1

0.8 0.2 17 276 1 1 5 7 2 3 40 0
0.4 363 12860 12 456 96 3160 47 1608 37 0

1.0 0.2 12 74 1 1 4 6 2 3 40 0
0.4 22 446 1 1 7 50 2 14 40 0

Table 5.10: Results when looking at the instances with different R and T for Branch and Price

UBroot and the optimal value is opt. The distance to the lower bound is then opt−LBroot and the distance
to the upper bound is UBroot − opt. Because the lower bound calculation is different for branch and bound
then for branch and price, two values are shown. If these are values are small, the results are also expected
sooner.

The results for the random only increase instances are shown in Table 5.11. The size of set H decreases
when T increases and thus when more jobs can be on time. The size of the set increases when R increases,
this again nicely reflects the property of the parameter R. The distances to the upper and lower bound
have exactly the opposite pattern and this again reflects the expected results; larger distances result in more
difficult instances.

In Table 5.12 the results are shown for the opposite increase instances. The patterns for the size of set H
and the distances of the lower and upper bound are the same as for the random increase instance. However,
the sizes of set H are a bit smaller and the distances are a bit larger. This implies that the opposite increase
instances are a bit harder than the random increase instances. This was clear in the running times of the
branch and bound algorithm and in the number of integral solution for the branch and price algorithm.

Next the values are given for the random increase and decrease instances are given in Table 5.13. Com-
pared to the random only increase instances the differences are not that clear. When R = 0.2 the size of
set H is larger, but for all other values of R the size is smaller. The distances to the initial lower and
upper bound are a lot larger than the random only increase instances. These then explain the difficulty the
algorithms had with the random increase and decrease instances.

At last the values for the opposite increase and decrease are given in Table 5.14. First these will be
compared to the values of the opposite only increased values. The size of set H is larger in all cases, this is
caused by the fact that the decreased jobs make more room for jobs to be on time. The distance to the initial
upper and lower bound however are larger in most cases. This explains that the branch and bound algorithm
needs more time to solve the opposite increase and decrease instances and less instances are directly integral
in the branch and price algorithm.

Compared to the random increase and decrease instances, the distances to the initial lower and upper

55

5.2. BRANCHING ALGORITHMS COMPARED CHAPTER 5

size set H Distance to LB - BB Distance to LB - BP Distance to UB

R T avg. max avg. max avg. max avg. max

0.2 0.2 22 26 0.00 0.00 0.00 0.00 0.09 0.62
0.4 19 24 0.04 0.36 0.01 0.1 0.07 0.67
0.6 16 26 0.03 0.35 0.12 0.41 0,14 0.65
0.8 13 22 0.07 0.70 0.00 0.00 0.16 0.61

0.4 0.2 25 31 0.00 0.00 0.00 0.00 0.01 0.12
0.4 20 23 0.08 0.80 0.01 0.06 0.18 0.65
0.6 18 22 0.01 0.13 0.14 0.87 0.33 0.87

0.6 0.2 29 36 0.00 0.00 0.00 0.00 0.00 0.00
0.4 23 27 0.00 0.00 0.00 0.00 0.28 1.00
0.6 20 25 0.00 0.00 0.40 1.00 0.23 1.00

0.8 0.2 32 39 0.00 0.00 0.00 0.00 0.00 0.00
0.4 23 28 0.00 0.00 0.00 0.00 0.23 1.00

1.0 0.2 37 40 0.00 0.00 0.00 0.00 0.00 0.00
0.4 25 31 0.00 0.00 0.00 0.00 0.03 0.28

Table 5.11: Difficulty of instances RI

size set H Distance to LB - BB Distance to LB - BP Distance to UB

R T avg. max avg. max avg. max avg. max

0.2 0.2 19 24 0.04 0.41 0.00 0.00 0.24 1.00
0.4 17 23 0.04 0.31 0.02 0.10 0.12 0.76
0.6 15 18 0.25 1.00 0.12 0.41 0.21 0.90
0.8 11 15 0.04 0.43 0.00 0.00 0.11 0.53

0.4 0.2 21 27 0.00 0.00 0.00 0.00 0.00 0.00
0.4 19 22 0.01 0.12 0.01 0.06 0.17 0.80
0.6 17 22 0.09 0.46 0.05 0.34 0.33 0.83

0.6 0.2 22 29 0.00 0.00 0.00 0.00 0.00 0.00
0.4 19 25 0.10 0.44 0.05 0.29 0.20 0.65
0.6 18 25 0.05 0.32 0.01 0.09 0.15 0.65

0.8 0.2 25 34 0.00 0.00 0.00 0.00 0.00 0.00
0.4 19 24 0.04 0.42 0.03 0.28 0.19 0.97

1.0 0.2 33 40 0.00 0.00 0.00 0.00 0.00 0.00
0.4 19 30 0.00 0.00 0.00 0.00 0.00 0.00

Table 5.12: Difficulty of instances OI

bound however are sometimes smaller and sometimes larger. This is not a clear indicator whether these
problems are harder than the random instances. The size of the set H however is larger than for the random
increase and decrease instances. This shows why the RID instances where the hardest to solve.

So when the value R increases the size of set H increases and the distances to the lower and upper

56

5.2. BRANCHING ALGORITHMS COMPARED CHAPTER 5

size set H Distance to LB - BB Distance to LB - BP Distance to UB

R T avg. max avg. max avg. max avg. max

0.2 0.2 22 28 0.25 0.53 0.03 0.13 0.27 1.00
0.4 17 24 0.46 0.62 0.11 0.42 0.58 1.00
0.6 14 19 0.18 0.49 0.02 0.20 0.57 0.97
0.8 12 17 0.48 0.99 0.05 0.22 0.46 1.00

0.4 0.2 28 39 0.10 0.53 0.00 0.00 0.17 0.83
0.4 17 24 0.44 1.00 0.14 0.34 0.57 1.00
0.6 13 18 0.36 1.00 0.08 0.38 0.40 1.85

0.6 0.2 34 40 0.00 0.00 0.00 0.00 0.00 0.00
0.4 21 25 0.14 1.00 0.04 0.16 0.54 1.00
0.6 18 23 0.33 0.74 0.09 0.43 0.70 1.00

0.8 0.2 39 40 0.00 0.00 0.00 0.00 0.00 0.00
0.4 24 36 0.21 0.90 0.02 0.22 0.12 0.72

1.0 0.2 40 40 0.00 0.00 0.00 0.00 0.00 0.00
0.4 28 40 0.13 0.70 0.00 0.00 0.17 0.65

Table 5.13: Difficulty of instances RID

size set H Distance to LB - BB Distance to LB - BP Distance to UB

R T avg. max avg. max avg. max avg. max

0.2 0.2 25 28 0.34 1.56 0.03 0.17 0.29 0.76
0.4 18 21 0.26 0.59 0.07 0.44 0.52 0.87
0.6 16 21 0.39 0.58 0.10 0.40 0.30 0.72
0.8 13 15 0.49 1.04 0.04 0.29 0.14 1.04

0.4 0.2 29 32 0.15 1.00 0.01 0.13 0.21 0.74
0.4 21 27 0.47 1.46 0.08 0.38 0.43 0.99
0.6 18 22 0.45 1.00 0,10 0.24 0.34 0.69

0.6 0.2 35 40 0.00 0.00 0.00 0.00 0.00 0.00
0.4 23 27 0.26 0.88 0.05 0.24 0.51 1.00
0.6 20 25 0.13 0.42 0.06 0.32 0.30 1.00

0.8 0.2 40 40 0.00 0.00 0.00 0.00 0.00 0.00
0.4 26 35 0.07 0.39 0.00 0.00 0.20 0.83

1.0 0.2 40 40 0.00 0.00 0.00 0.00 0.00 0.00
0.4 29 35 0.06 0.48 0.00 0.00 0.13 0.76

Table 5.14: Difficulty of instances OID

bounds decrease. The increase of T causes the opposite effect. Small sets H and small distances are easy to
solve instances, therefore the instances are hardest to solve when R = 0.2 and T = 0.8, because increasing
T to 0.8 is the only exception. This pattern cannot be checked for other R, as with these values the lower
bound of the uniform distribution the initial due dates are taken from will then be negative. As the negative
due dates are unwanted, and leaving them out is not an option, creating instances with these R values is not

57

5.2. BRANCHING ALGORITHMS COMPARED CHAPTER 5

feasible.
The random increase and decrease instances are the hardest to solve. These have the smallest sets H in

most cases, which leaves the most jobs to be set. The distances to the optimal solution are the largest, which
also indicate hard solutions. This matches the results found when performing the branching algorithms on
these instances.

In the next section will be investigated what influence the increase of the number of jobs n and the size
of the set S has on the performance of the branching algorithms.

5.2.3 Increased Number of Jobs and Scenarios

In the previous section results showed that the best setting for the branch and bound algorithm is traversing
the tree best first, while branching on the job with the longest initial processing time and using the Moore-
Hodgson initial upper bound. For the branch and price algorithm the Moore-Hodgson initial upper bound
is used as well and the tree is traversed in depth first order. In a node will also be branched on the job with
the longest initial processing time. These two algorithms will now be tested further for these settings when
the number of jobs and scenarios increase.

Besides testing on the branching algorithms, the performance of the separate recovery algorithm will be
tested on its own as well. This is interesting because when separate recovery gets impossible to solve, branch
and price will have no purpose. The influence of the increase of jobs and scenarios on the running time and
the number of integral solutions will be tested.

To investigate the influence of the number of jobs instances sets will be created for n = 20, 40, 60, 80, 100, 120
and all these will have only two scenarios. To investigate the influence of the number of scenarios, sets will
be created for |S| = 1, 2, 3, 5, 8, 10 with 40 jobs. Each test set will contain 100 instances; for each of the four
types of instances 25 instances are created and these instances are made with random values for R and T .

First the influence of the increasing number of jobs and scenarios on the size of set H is investigated.
These seemed to be of great influence on the performance of the branching algorithms. By looking at their
values and later comparing them to the results of the branching algorithms, this hopefully gives more insight
into what makes an instance difficult.

Influences on the Size of Set H

In the previous section the results of the initial experiments showed that when the size of set H is close to
the number of jobs of the problem, then they are solved quicker than when this set is small. The effect of the
parameters R and T on the size of H were discussed in the previous section. Here will be shown what effect
the increase of jobs or the number of scenarios has on the size of the set. The results are shown in Figure
5.1. The black line in the left graph indicates a size equal to the number of jobs. When the number of jobs
increases, the size of H increases, but the size gets further away from the maximum size while increasing
n. The number of jobs in set H stay about half the number of jobs in total. This is a first indication that
problems with a higher number of jobs are harder to solve.

In the graph on the right, the influence of the increase in scenarios is displayed. For all these instances the
maximum size of set H is 40, because this is the number of jobs for the instances used in these experiments.
The decrease is large when increasing the size of S from 1 to 2 to 3. After that the average size seems to
stabilize around 17 jobs. This indicates that for a small set of scenarios the problems will be a lot easier to
solve than when increasing the size of the set to 10. Here it however seems that when |S| is 8 or 10, the
difficulty is the same.

58

5.2. BRANCHING ALGORITHMS COMPARED CHAPTER 5

20 40 60 80 100 120
0

20

40

60

80

100

120

Number of jobs

S
iz

e
of

se
t

H

1 2 3 5 8 10
10
12
14
16
18
20
22
24
26
28
30
32
34

Number of scenarios

S
iz

e
o
f

se
t

H
Figure 5.1: Influence of the number of jobs and scenarios on the size of set H

Separate Recovery

The performance of the separate recovery algorithm is of huge influence on the performance of the branch
and price algorithm. When the separate recovery algorithm takes a long while to solve the problem in the
root node, the chance will be small that the problem will be solved at all. Unless this solution is directly
integral of course. In Figure 5.2 the results can be found when increasing the number of jobs from 20 to 120,
for all problems with two scenarios. These values are all averages over all 100 instances.

An exponential increase in time can be found here. Overall the running time increases to an average of
17.000 ms. The number of runs that result in an integral solution, also decreases a lot. For 20 jobs almost
all instances have an integral solution, for 120 jobs it is less than half. The combination of these two results
will probably result in more fails for the branch and price algorithm when the number of jobs increases.

The number of columns and iterations needed reflect the running time. More columns and iterations are
needed to reach a solution, thus this results in the increase of running time. The influence of the number of
jobs is quite big, but 120 jobs is quite a lot thus this is not a direct problem for this algorithm.

In Table 5.3 the results can be found of the experiments with 40 jobs and an increasing number of
scenarios. As expected here the number of columns and iterations also increase. What is interesting to see
is that the number of columns needed increases to about the same number as when increasing the number
of jobs. The number of iterations however does not increase as much. This can be caused by the fact that
when the number of scenarios is larger, more columns are added during one iteration because of an increased
number of pricing problem and extra added columns. In total this again has an increasing result in the
running time, but for ten scenarios this did not get dramatical. Within two seconds most problems are
solved. What may cause longer running time for the branch and price algorithm is the decrease in integral
solutions. For the 100 instances, there are only 35 integral when reaching the ten scenarios. Thus a solution
gets found quite quickly, but they are mostly non-integral. Next, the effect on the branching algorithms is
investigated.

59

5.2. BRANCHING ALGORITHMS COMPARED CHAPTER 5

20 40 60 80 100 120
0

0.5

1

1.5

2
·104

Number of jobs

R
u

n
n

in
g

ti
m

e
(m

s)

20 40 60 80 100 120
0

20

40

60

80

100

Number of jobs

N
u

m
b

er
of

in
te

g
ra

l

20 40 60 80 100 120
0

0.5

1

1.5

2
·105

Number of jobs

N
u

m
b

er
of

co
lu

m
n

s

20 40 60 80 100 120
0

1

2

3

4

5
·104

Number of jobs

N
u

m
b

er
of

it
er

at
io

n
s

Figure 5.2: Influence of the number of jobs on different performance measures of Separate Recovery.

The Branching Algorithms

When the number of jobs increases the depth of the branching tree increases, because there are more jobs
to be set. Even when leaving the jobs that are in set H out, the number of jobs to determine their settings
for increases. This suggests that problems will get harder when the number of jobs increases from 20 to 120.
The results for the separate recovery algorithm already suggested this, because the running time to solve
the algorithm increased drastically. The figures in Table 5.4 show the results for both branching algorithms.
The tables show results for both algorithms for the average over all instances that reached a solution and the
weighted results also take the failed instances in account. These are stopped when reaching the three minutes.

As expected the problem increases in difficulty. The number of fails increases for both algorithm to 50.

60

5.2. BRANCHING ALGORITHMS COMPARED CHAPTER 5

1 2 3 4 5 6 7 8 9 10

200

400

600

800

1,000

1,200

1,600

Number of scenarios

R
u

n
n

in
g

ti
m

e
(m

s)

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

Number of scenarios

N
u

m
b

er
of

in
te

g
ra

l

1 2 3 4 5 6 7 8 9 10
0

0.3

0.6

0.9

1.2

1.5

1.8
·105

Number of scenarios

N
u

m
b

er
of

co
lu

m
n

s

1 2 3 4 5 6 7 8 9 10

0.5

1

1.5

2
·104

Number of scenarios

N
u

m
b

er
of

it
er

at
io

n
s

Figure 5.3: Influence of the number of scenarios on different performance measures of Separate Recovery.

Branch and price however solves more instances in general. Weighted, the branch and price algorithm does
this quicker, the branch and bound algorithm solves the problems that it solves quicker than the branch and
price algorithm. This is probably caused by the drastic increase in running time for the separate recovery
algorithm in the root node. For 120 jobs, the branch and price algorithm solves the problems either in the
root node or not at all.

The number of nodes that are needed to solve the problems stay a lot smaller for the branch and price
algorithm as for branch and bound. This was also the case in Section 5.2.1. The number of nodes needed
increases until about 60 jobs are reached. This can be caused by a longer time for calculations in one node,
because of the increased number of jobs. This increases the running time of for example the Moore-Hodgson
solution for calculation the lower bound in the branch and bound algorithm. For the branch and price
algorithm this was already established. An other explanation is the fact that only the easy problems get

61

5.3. DIRECT LINEAR PROGRAM CHAPTER 5

solved and they do not need many nodes. For the weighted problem this can be caused by the fact that the
algorithm is stopped and is not continued until finished.

The last graphs show the number of added columns and needed iterations, these are the total columns
and iterations used for all the separate recovery algorithms performed in the different nodes. The same
arguments as for the nodes can be used to explain these results.

This means when increasing the number of jobs the branch and price algorithm performs the best. More
instances get solved and it gets done quicker. The question of course stays how both algorithms perform
when there is no limit un the running time, this would however cost a lot of time, because this could take
forever.

Next to the figures in Table 5.5 the results are shown when increasing the number of scenarios. When
the number of scenarios increases, the depth of the tree stays the same. The number of children for one child
however increases. The number of children was equal to 2|S| + 1 and thus for eight scenarios this already
gives 257 children. Where for two scenarios this was only five. The separate recovery algorithm showed not
a large increase in running time, but the number of integral solutions decreased.

Here the running time for the separate recovery algorithm did not increase as much as for the increase
scenarios. For both branching algorithms this seems true, thus the increased number of children of a node
has a large influence. This is again caused by the large increase in number of failing instances. Even more
than 60 are failed for both algorithm. For the branch and price algorithm for eight or ten instances, problems
get either solved in the root node or not at all, as was seen for the increased number of jobs.

The total number of nodes that needs to be traversed before finding the optimal solution is larger than
when increasing the number of jobs. What happens here again, as we saw when increasing the number of
jobs, is that the number of nodes decrease again after some time, which again can be explained by the fact
that less nodes can be explored because of the longer calculation time needed in a node. The same pattern
can again be seen for the number of columns and iterations.

So again the branch and price algorithm performs a bit better than the branch and bound algorithm.
This makes that the branch and price algorithm is the algorithm someone should use to solve the recoverable
robustness problem for minimizing the number of late jobs. However, the number of jobs should not increase
too much and the same holds for the number of scenarios. Otherwise even the branch and price algorithm
does not solve the problems quickly.

5.3 Direct Linear Program

The next algorithm to test is the direct linear program as explained in Section 3.3.5. As mentioned earlier,
the set H can be predetermined to make to problem easier to solve. In the case of the linear program
however, this means for each job that was in set H, constraints need to be added to force the information
of set H. Because ui denotes whether the job on spot i is late or not, this cannot help to force job Jj to be
on time or late. Therefore variables ũk and ũsk are defined such that they are one when job Jk is late in the
schedules. To get the right values for these variables we need them to satisfy these constraints:

ũj = ui if xij = 1 ∀i, j
ũsj = usi if xsij = 1 ∀i, j, s ∈ S

62

5.3. DIRECT LINEAR PROGRAM CHAPTER 5

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
·105

Number of jobs

R
u

n
n

in
g

ti
m

e
(m

s)

BB
BP

BB - weighted
BP - weighted

20 40 60 80 100 120
0

20

40

60

80

100

Number of jobs

N
u

m
b

er
of

fa
il
s

BB
BP

20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2
·105

Number of jobs

N
u

m
b

er
of

n
o
d

es

BB
BB - weighted

20 40 60 80 100 120
0

20

40

60

80

100

120

Number of jobs

N
u

m
b

er
of

n
o
d

es

BP
BP - weighted

20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
·104

Number of jobs

N
u

m
b

er
of

co
lu

m
n

s

BP
BP - weighted

20 40 60 80 100 120
0

500
1,000
1,500
2,000
2,500
3,000
3,500
4,000
4,500
5,000
5,500
6,000
6,500

Number of jobs

N
u

m
b

er
of

it
er

a
ti

o
n

s

BP
BP - weighted

Figure 5.4: Influence of the number of jobs on different performance measures of both Branching Algorithms.

63

5.3. DIRECT LINEAR PROGRAM CHAPTER 5

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4
·105

Number of scenarios

R
u

n
n

in
g

ti
m

e
(m

s)

BB
BP

BB - weighted
BP - weighted

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

Number of scenarios

N
u

m
b

er
o
f

fa
il
s

BB
BP

1 2 3 4 5 6 7 8 9 10
0

0.3

0.6

0.9

1.2

1.5

1.8
·105

Number of scenarios

N
u

m
b

er
of

n
o
d

es

BB
BB - weighted

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

Number of scenarios

N
u

m
b

er
of

n
o
d

es

BP
BP - weighted

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5
·104

Number of scenarios

N
u

m
b

er
of

co
lu

m
n

s

BP
BP - weighted

1 2 3 4 5 6 7 8 9 10

0.5

1

1.5

2
·104

Number of scenarios

N
u

m
b

er
o
f

it
er

at
io

n
s

BP
BP - weighted

Figure 5.5: Influence of the number of scenarios on different performance measures of both Branching
Algorithms.

64

5.4. DYNAMIC PROGRAMMING CHAPTER 5

This means that when job Jj is on spot i and the job on spot i is on time, job Jj needs to be on time
as well. The same holds when the job Jj is on spot i and the job on spot i is late, then job Jj must be late
too. These two constraints can be written in a linear function as follows:

xij − 1 ≤ ũj − ui ≤ 1− xij ∀i, j
xsij − 1 ≤ ũsj − usi ≤ 1− xsij ∀i, j, s ∈ S

Now for each job Jj in H, the constraint ũsj = 0 needs to be added for each scenario s ∈ S and ũj = 0
is also added to maintain it in the initial problem.

An instance set for 20 jobs with one scenario is created, that consists of 100 instances with 25 of each
instance type, all with random values of R and T . Solving these problems gave the following results. Without
the extra constraints 31 instances failed and the average time was 27303 ms. Adding the extra constraints
decreased the number of fails to three and the average time to solve the problems was 10273 ms. Therefore,
it is clear that although extra constraints are necessary, it results in much better results.

Additional testing with the extra constraints was done for multiple instances sets, the results are shown
in Table 5.17. For each combination of n and |S| again the same instance set of 100 instances is created with
25 instances of each instance type with random values for R and T . The results show that the performance
is much worse than for either branching algorithm. Here for 40 jobs and only one scenario, which is the same
set as used previously, already 59 instances fail, although branch and price solves all instances and branch
and bound fails only for seven. The used time was also only one tenth of the time. This shows that it is
better to use one of the branching algorithms, as they are a lot quicker. This algorithm was not tested more,
because no promising results where expected.

|S| 1 2

n avg. time (ms) failed avg. time (ms) failed

10 138 0 515 0

15 1495 0 10273 3

20 4892 2 38080 25

30 19538 25

40 24280 59

Table 5.15: Direct Linear Programming results for different n and the sizes of S

Instead of adding the extra constraints, one could also leave the jobs from set H out of the calculation.
To do so, the due dates of the jobs that are left of the initial problem and each scenario need to be adapted,
so that the left out jobs can always fit. This can be done. However, this would reduce the number of jobs
to half, as was seen for the results for set set H. This would still not give great results that perform better
than the branching algorithms.

5.4 Dynamic Programming

In Section 3.3.4 was explained how the RRML problem can be solved with dynamic programming. For
implementing this algorithm efficiently for only one schedule, thus with no scenarios, a two-dimensional

65

5.4. DYNAMIC PROGRAMMING CHAPTER 5

array with dimensions n and P =
∑
pj is used. When the recoverable robustness problem is being solved,

this two-dimensional array becomes a |S|+2-dimensional array. When the size of the scenario set S is known,
implementing this is not a problem, when |S| is unknown however, initializing this multi-dimensional array
becomes hard and this gives the first problems with this algorithm. To solve this problem, all the values of
fj(r, t0, . . . , t|S|) for all jobs j are stored in one long array.

Let P = max{maxs∈S
∑
psj ,
∑
pj}, the length of this array will then be nP |S|+1. Storing all values in one

array seems nice solution to the initialization problem, an array however has a length limit of 2147483648.
Which is approximately 2.1 · 109. This seems a lot, but Table 5.16 shows how little this is. Assuming
that a job has an average processing time of 15, because the processing times are taken from the uniform
distribution [1, 30], and thus P is approximately 15n, the estimated length of the array is shown in this table.

n \|S| 1 2 3 4

5 2.8 · 104 2.1 · 106 1.6 · 108 1.2 · 1010

10 2.3 · 104 3.4 · 106 5.1 · 108 7.6 · 1010

15 7.5 · 105 1.7 · 107 3.8 · 109 8.6 · 1011

20 1.8 · 106 5.4 · 108 1.6 · 1011 4.9 · 1013

25 3.5 · 106 1.3 · 109 4.9 · 1011 1.9 · 1014

30 6.0 · 106 2.7 · 109 1.2 · 1012 5.5 · 1014

Table 5.16: The length of the array given n and the size of S

This shows that when there are only two scenarios, a problem cannot have more than 20 jobs. There
might even be instances where this would fail, because this is only an estimation. For three scenarios this
decreases to only 10 jobs. For one scenario this is still solvable when the number of jobs increases to 20. This
shows the problem of the solution of the initializing problem. Unfortunately, this cannot be improved. So
testing the performance for this algorithm can only be done for a very little number of scenarios and jobs.

In Section 3.4 the set H was defined as the set of jobs that are on time in every schedule of the optimal
solution. This set H can be determined before running the algorithm with the Algorithm 1 and while running
the dynamic programming algorithm this information can be used to reduce the running time.

This algorithm will now be tested for the following instances. For one scenario it will be tested for 5,
10, 15, 20, 30 and 40 jobs, so that it can be compared to the results of the branching algorithms. For two
scenarios it will be tested for 5, 10, 15 and 20 jobs and for three scenarios only for 5 jobs. The following
instance set is created for each combination. For each type of instance, RID, OID, RI and OI, 25 instances
are created with random values for R and T from the set {0.2, 0.4, 0.6, 0.8, 1.0}. A combination is of course
only feasible if the lower bound stays positive.

The results for the experiments are shown in Table 5.17. It is clear that the average array size was a
little under estimated, because the number of instances that go outside the size of the array, given in the
columns with ’out’, is 100 quite soon when the number of scenarios is two. For three scenarios five jobs
was even too much. This can be explained by the fact that many instances only have increased jobs in the
scenarios and thus P s will be higher than 15n in these scenarios.

The results that are here, show that increasing the number of scenarios from one to two results in a
drastic increase in running time. Increasing the number of jobs for one scenario also shows a nice time
increase, but it is not as drastic as for increasing the number of scenarios. For 40 jobs this is solved in an
average time of 3 seconds. The branching algorithms however solved this within one second and thus it
is better to use these algorithms. The dynamic programming algorithm does outperform the direct linear
program, because all problems get solved here and on average they are solved in a tenth of the time.

66

5.5. CONCLUSION CHAPTER 5

|S| 1 2 3

n avg. time (ms) failed out avg. time (ms) failed out avg. time (ms) failed out

5 7 0 0 1265 0 0 - - 100

10 54 0 0 10673 0 44 - - -

15 203 0 1 - - 100 - - -

20 203 0 1 - - 100 - - -

30 1395 0 1 - - - - - -

40 3513 0 1 - - - - - -

Table 5.17: Dynamic programming results for different n and the sizes of S

5.5 Conclusion

In this chapter the performances of the four algorithms that were developed in Section 3.3 were tested;
Branch and bound, branch and price, the direct linear program and dynamic programming. Firstly different
instances needed to be created. Four different types were made, differing in increasing and decreasing the
processing times in the scenarios and forcing the scenarios to oppose each other or letting it happen in
random. The parameters R, the relative range of due dates, and T , the average tardiness factor, where used
to create different due dates.

The direct linear program performed the worst. Instances with only one scenario already fail when
having only 20 jobs and when increasing this number to 40, already more than half of the instances fail.
Increasing the number of scenarios to two gives already failing instances for 15 jobs. The branch and price
algorithm solves these problems all, within a second. The implementation of this algorithm is fairly easy,
because only the constraints have to be added to the CPLEX solver, but the running times are too long.

The dynamic programming algorithm performs better. All instances that can be solved, are solved within
time and quicker than the direct linear program. However, because of the implementation limitations, no
instances with more than two scenario can be solved and for two scenarios the number of jobs needs to stay
small. This limitation is bad, however the instances that can get solved are solved much slower than by
either of the branching algorithms.

For the branching algorithms many different settings were available, the best settings were determined for
the branching heuristic, the node selection options and the two possible upper bound. The Moore-Hodgson
initial upper bound turned out to be the best and branching on the job with the longest initial processing
time gives the quickest results. Best first is the best way to select a node for the branch and bound algorithm
and depth first for the branch and price algorithm.

The difficulty of the problems strongly depended on the size of the set H. The set is large when all
the due dates of the instances are wide apart and are close to the sum of the processing times of the initial
problem. The set is smaller when the jobs only increase in the scenarios. When set H is smaller, more jobs
are left to determine and this resulted in longer processing time. The instances where the processing times
increase and decrease however had less tight initial upper and lower bounds, which resulted in the fact that
these were the most difficult to solve problems.

Growing the number of jobs and the size of the scenario set had a big influence on the performance of
the Separate Recovery algorithm. The number of integral results decreases to only half of the instances and
the running time, number of added columns and needed iterations increase exponentially when the number
of jobs increase. When the scenario set gets larger, the time increases as well, however less drastically. These

67

5.5. CONCLUSION CHAPTER 5

results were not very promising for the results for the branch and price algorithm.

These expectations became reality. When increasing the number of jobs, for both algorithms the number
of fails increase until half of the instance set. When the number of scenarios is ten, it is even more than 60.
The average weighted time came closer to the maximum of 180.000 ms with each increase. The problems
that do get solved however, do that quicker on average, because only the easy instances are left. The number
of used nodes increases, but decreases again later on. This is caused by longer times needed in each node.
Overall the performance of the branch and price algorithm is a bit better, mostly because it solves more
instances.

68

Chapter 6

Conclusion and Further Research

To handle uncertainties in the data of various machine scheduling problems, the recoverable robustness
method was applied to these problem in this thesis. For minimizing the number of late jobs, the recoverable
robustness problem was proven to be weakly NP-hard when there is only one scenario, even for the case
with common due dates. For this problem a dynamic programming algorithm was developed that runs in
pseudo-polynomial time. It might be interesting to research whether this problem turns strongly NP-hard
when the number of scenarios is unknown.

The Moore-Hodgson algorithm [19], that solved the problem of minimizing the number of late jobs for
one machine when all the data is certain, turned out to give some viable information for the problem. Applied
to each scenario and the initial problem this gives the lower bound to the optimal solution. If these solutions
do not violate the recovery algorithm, this of course is then the optimal solution. When an instance has
only one scenario with one increased job, a simple polynomial time algorithm exists with the use of the
Moore-Hodgson algorithm. When the scenarios may only contain increased processing times, instances for
two or three jobs have easy solutions. When this increases to four, the solution is not directly clear. It might
be equal to the lower bound, or one higher.

For jobs that are on time in the Moore-Hodgson solutions of each scenario and the initial problem, it
was proven that these are on time in the optimal solution of the recoverable robustness problem when these
jobs have shorter processing times than the jobs for which this not holds. The property of these jobs can be
used to decrease the problem size as these jobs can be left out of calculations. Finding more jobs that can
be left out of calculation might make the problem even easier.

Next the recoverable robustness approach was applied to problems of scheduling with rejection. For
minimizing the makespan with rejection a polynomial time algorithm was developed for the recoverable
robustness method. When release dates are available, minimizing the makespan with rejection is already
NP-hard when all data is certain. A dynamic programming algorithm was extended to handle uncertainty
covered in scenarios. The same was done for minimizing the lateness and tardiness with rejection. These
problems can not be solved in polynomial time, because the recoverable robustness problem is NP-hard when
the initial problem is already NP-hard.

For the recoverable robustness problem of minimizing the number of late jobs, three algorithms where
developed next to the dynamic programming algorithm. An integer linear program was made and solved
with CPLEX, results however showed no promising results. The dynamic programming algorithm preformed
better, however it was limited by its implementation.

The two well performing algorithms are the branch and bound algorithm and the branch and price

69

CHAPTER 6

algorithm. Both algorithms performed best while using the Moore-Hodgson initial upper bound, which uses
the Moore-Hodgson solution of the initial problem as schedule for the initial problem and then performs the
Moore-Hodgson algorithm on the jobs that were on time in this schedule for each scenario s ∈ S to obtain
the jobs that can be on time in these scenarios. This gives a valid solution and thus an upper bound to the
problem. Researching whether a tighter upper bound exists might be interesting to do.

Branching on the jobs with the longest initial processing time gave the best results for both algorithms.
The lower bound in each node for the branch and bound algorithm was calculated by calculating the Moore-
Hodgson solutions for each scenario. For the lower bound in the branch and price algorithm the Separate
Recovery approach developed by [5] was used. One could also use the combined recovery approach from [5]
to research if this gives better results.

Increasing the number of jobs increases the average running time a lot. The number of failed instances
increase to about half the number of instances. The same holds for increasing the number of scenarios. The
average time needed in a node just becomes too large. Branch and price however solves more problems than
the branch and bound algorithm and thus performs better.

For further research it might be interesting to find good approximation algorithms, instead of the exact
algorithms. These might give quite good results, although not optimal, but have a lot better running time.
The Moore-Hodgson initial upper bound gave quite good solutions most of the time. Research could be
done on how tight this upper bound is. One might also consider to not solve the direct linear program to
optimality, but until the duality gap is small. This gives not the optimal solution, but a quite good solution.

The experiments also showed that when scenarios contained increasing and decreasing jobs compared to
the initial processing times and thus where not only instances to the RRML-I problem, the instances were
harder to solve. Interesting research might be done on exactly why this is the case. The question what makes
an instances difficult is an important one to solve, to fully grasp the difficulty of the recoverable robustness
problem.

70

Bibliography

[1] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust optimization. Princeton University Press, 2009.

[2] John R Birge and Francois Louveaux. Introduction to stochastic programming. Springer Science &
Business Media, 2011.

[3] J. Blazewicz, K.H. Ecker, G. Schmidt, and J. Weglarz. Scheduling in Computer and Manufacturing
Systems. Springer Publishing Company, Incorporated, 2nd edition, 2012.

[4] P.C. Bouman, J.M. van den Akker, and J.A. Hoogeveen. Recoverable robustness by column generation.
In Camil Demetrescu and MagnúsM. Halldórsson, editors, Algorithms – ESA 2011, volume 6942 of
Lecture Notes in Computer Science, pages 215–226. Springer Berlin Heidelberg, 2011.

[5] P. Bouwman. A column generation framework for recoverable robustness. Master’s thesis, Universiteit
Utrecht, 2011.

[6] C. Büsing, A. MCA Koster, and M Kutschka. Recoverable robust knapsacks: the discrete scenario case.
Optimization Letters, 5(3):379–392, 2011.

[7] Z. Cao and Y. Zhang. Scheduling with rejection and non-identical job arrivals. Journal of Systems
Science and Complexity, 20(4):529–535, 2007.

[8] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algorithms, Third Edition.
The MIT Press, 3rd edition, 2009.

[9] R.L. Graham. Bounds on performance of scheduling algorithms. Computer and Job Scheduling Theory.

[10] H. Hoogeveen and V. T’kindt. Minimizing the number of late jobs when the start time of the machine
is variable. Operations Research Letters, 40(5):353 – 355, 2012.

[11] J.R. Jackson. Scheduling a production line to minimize maximum tardiness. Technical report, DTIC
Document, 1955.

[12] J.A. Hoogeveen J.M. van den Akker. Minimizing the number of tardy jobs. In J.Y.-T. Leung, editor,
Handbook of Scheduling: Algorithms Models and Performance Analysis, pages 227–243. CRC Press Inc.,
2004.

[13] J.A. Hoogeveen J.M. van den Akker and S.L. Van de Velde. Applying column generation to machine
scheduling. In J. Desrosiers G. Desaulniers and M.M. Solomon, editors, Column Generation, pages
305–330. Springer, 2005.

[14] A. B. Keha, K. Khowala, and J.W. Fowler. Mixed integer programming formulations for single machine
scheduling problems. Computers and Industrial Engineering, 56:357–367, 2009.

[15] L. Lu L. Zhang and J. Yuan. Single machine scheduling with release dates and rejection. European
Journal of Operational Research, 198(3):975 – 978, 2009.

71

BIBLIOGRAPHY CHAPTER 6

[16] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys. Sequencing and scheduling: Algo-
rithms and complexity.

[17] J.K. Lenstra, A.H.G. Rinnooy Kan, and P. Bucker. Complexity of machine scheduling problems. Annals
of Discrete Mathematics, 1:343–362, 1977.

[18] C. Liebchen, M. Lübbecke, R.H. Möhring, and S. Stiller. Recoverable robustness. Technical report,
ARRIVAL-Project, August 2007.

[19] J.M. Moore. An n job, one machine sequencing algorithm for minimizing the number of late jobs.
Management Science, 15(1):102–109, 1968.

[20] C.N. Potts and L.N. van Wassenhove. A branch and bound algorithm for the total weighted tardiness
problem. Operations Research, 33(2):363–377, 1985.

[21] S. Sengupta. Algorithms and approximation schemes for minimum lateness/tardiness scheduling with
rejection. In Algorithms and Data Structures, pages 79–90. Springer, 2003.

[22] D. Shabtay, N. Gaspar, and M. Kaspi. A survey on offline scheduling with rejection. Journal of
Scheduling, 16(1):3–28, 2013.

[23] V. T’kindt, H. Scott, and J. Billaut. Multicriteria scheduling: theory, models and algorithms. Springer,
2006.

[24] D.D. Tönissen. The size robust multiple knapsack problem, 2013.

[25] L. Zhang, L. Lu, and J. Yuan. Single-machine scheduling under the job rejection constraint. Theoretical
Computer Science, 411(16–18):1877 – 1882, 2010.

72

