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Abstract

Event-driven molecular dynamics (EDMD) is a technique for simulating hard particle systems. It has
been effectively used to study the entropy driven self-assembly of different particle shapes, including
spheres and ellipsoids. Here, we implement EDMD for hard spheres, and extend the algorithm to
polyhedral-shaped particles. To confirm the correctness of our implementation, we calculate the
equations of state for hard spheres and tetrahedra and compare with literature. Furthermore, the
performance and accuracy of our simulation technique are studied. We proceed to study particles
with a twisted triangular prism shape. This system is known to form a cholesteric liquid crystal
phase. Using both twisted and non-twisted periodic boundary conditions, and by measuring the
torque in the system, we directly derive the pitch of the cholesteric phase.
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List of symbols

Symbol Explanation

R Radius
r Position
v Velocity
t Time
M Mass
N Number of particles
E Number of events
ω Rotational velocity
q Quaternion
P Pressure
V Volume
σ Diameter
kB Boltzmann constant
η Packing fraction
Z Compressibility factor
T Temperature
I Moment of inertia
Π Torque
P Cholesteric pitch
P0 Equilibrium pitch
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Chapter 1

Introduction

1.1 Liquid crystals

In everyday life, substances are found to be in a solid, a liquid, or a gas phase. For some substances,
there is a region (of temperature and/or density) in between the solid (crystal) and the liquid phase,
where they can form a liquid crystal. Here, the substance has characteristics of both a crystal and
a liquid. In a crystal, molecules are ordered at regular points in space. In a liquid, molecules are
moving through space, and are not ordered. In a liquid crystal, there is ordering in the orientations
of the particles, but no ordering in all spatial dimensions as in a crystal phase. As a result, liquid
crystals have many of the mechanical properties of a liquid, but some of the optical properties are
similar to that of a crystal. This makes them suitable for many applications, the most well-known
of which are liquid-crystal displays or LCDs.

We distinguish three main types of liquid crystal phases. In the nematic phase, particles are only
aligned along their long axis. In the smectic phase, in addition to the alignment of their long axes,
particles are also ordered in layers. In the cholesteric phase, particles are aligned in such a way that
a twist is produced in the system, with the particle positions homogeneously distributed. Schematics
of these three types of liquid crystal phases are shown in figure 1.1, for ellipsoidal particles.

(a) Nematic phase (b) Smectic phase (c) Cholesteric phase

Figure 1.1: Schematics of different liquid crystal phases for ellipsoidal particles. In (c) particles are
coloured according to their orientation to highlight the twist in the system. Source: [39].

Liquid crystals have been extensively studied in computer simulations. In particular, several studies
employed hard particles (particles that cannot overlap) as simple models to study entropy-driven
phase transitions. The nematic [15], smectic [13], and recently cholesteric [9] phase were all observed,
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10 CHAPTER 1. INTRODUCTION

two of which can be seen in figure 1.2.

(a) Smectic phase (b) Cholesteric phase

Figure 1.2: The first smectic and cholesteric phases obtained by computer simulations of hard
particles. Sources: [13, 9].

For the cholesteric liquid crystal, the particle orientations are periodic along a certain direction, as
shown in figure 1.2b. The period of this twist is called the helical pitch.

The helical pitch of a cholesteric liquid crystal, which reflects how the molecules are microscopically
oriented with respect to each other, determines properties of the liquid crystal at a macroscopic
level. An interesting question is therefore how the helical pitch depends on the particle shape and
the system density in the liquid crystal. Monte Carlo simulations have been employed to calculate
the pitch [9], but another method is also possible. Given a particle shape, the pitch can be cal-
culated exactly [16] using two different simulations of the same system of particles. The required
measurements are not possible in a Monte Carlo simulation, but they are in a so-called event-driven
molecular dynamics simulation.

1.2 Event-driven molecular dynamics

In event-driven molecular dynamics (EDMD), a number of particles is placed in a system. All
particles move according to their own velocities, and interact only when collisions occur, at discrete
points in time. An algorithm modelling this behaviour needs to predict collisions, and update par-
ticle positions and velocities according to the laws of physics. The termination condition is often
based on a fixed number of collisions or a fixed time inside the simulation.

The first EDMD simulation was performed for a hard-disk system [1] in 1959. Since then, EDMD
has often been applied to systems consisting of spheres, including spheres in a velocity field [28, 27],
hard-sphere polymer chains [26], and patchy spheres [30]. The first simulation on non-spherical par-
ticles was on infinitely thin rods in 1983 [14], followed later by simulations on ellipses and ellipsoids
[7], and hard cubes [21, 29].
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In this report, we will apply the algorithm to so-
called twisted triangular prisms as shown in fig-
ure 1.3. A cholesteric phase has been observed
for hard particles of this shape. The goal of
this thesis is to study how fast and accurately
the helical pitch can be measured using EDMD
simulations.

Figure 1.3: Twisted triangular prism [9].
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Chapter 2

Theory & Methods

2.1 Spheres

2.1.1 EDMD

The main outline of an event-driven molecular dynamics algorithm is as follows.

1. Initialize the system.
2. Predict collisions for particle pairs.
3. Find the first collision in time, and move time forward to this point.
4. Update the positions of the colliding particles (now touching) and others, and adjust the

velocities of the colliding particles.
5. Delete all predicted collisions with the particles that just collided.
6. Predict new collisions for the particles that just collided.
7. If the stop criterion is not satisfied, go to step 3.

All predicted collisions are stored. The veloc-
ities and initial positions must be such that
the probability of two different collisions oc-
curring at exactly the same time is negligible.
For example, the velocities of the particles in
the system can be distributed uniformly on a
sphere. At the start of the algorithm, the radius
R of the particles and the temperature T of the
system are initialized.

The simplest version of the algorithm is the
one for spherical particles, which we will start
with. This is usually implemented with peri-
odic boundary conditions, which means that if
a particle leaves the simulation box at one side,
it reappears at the opposite side, as can be seen
in figure 2.1.

Figure 2.1: In periodic boundary conditions, the
system repeats itself in all directions.
Source: [38].

13



14 CHAPTER 2. THEORY & METHODS

2.1.2 Collision prediction

The time of collision between two spherical particles can be calculated as follows. Consider two
spherical particles i and j at time t0, with radius Ri and Rj , position ~ri and ~rj , and velocity ~vi and
~vj . If these two particles are to collide at time t0 + t, then the following equation will be satisfied:

|(~ri + t · ~vi)− (~rj + t · ~vj)| = Ri +Rj . (2.1)

We define ~rij = ~ri − ~rj and ~vij = ~vi − ~vj . Then, the smallest solution to this equation is

t =
−〈~rij , ~vij〉 −

√
(〈~rij , ~vij〉)2 − 〈~vij , ~vij〉 · (〈~rij , ~rij〉 − (Ri +Rj)2)

〈~vij , ~vij〉
. (2.2)

In practice, we first determine the determinant under the square root. If the determinant is greater
than zero, then we calculate t; otherwise, the particles will never collide (with the current velocities).
Similarly, if the resulting t is not positive, the particles will never collide. A special case is when
the particles are touching immediately after a collision. Due to the way velocities are updated, the
two particles will not collide again.

2.1.3 Collision velocities

When two particles collide, the resulting veloc-
ities are obtained by the laws of conservation
of momentum and energy. The following de-
scription is based on [36]. Consider the collision
between two spherical particles i and j, with
radius Ri and Rj , mass Mi and Mj , position ~ri
and ~rj and velocity ~vi and ~vj . Let ~r := ~rji be
the unit vector from the centre of particle i to
the centre of particle j. Let vi := 〈~vi, ~r〉 and
vj := 〈~vj , ~r〉.

By definition, vi is the velocity of particle i in the direction of particle j before the collision, and vj is
the velocity of particle j in the same direction. Define ui as the velocity of particle i in the direction
of particle j after the collision, and uj as the velocity of particle i in the same direction after the
collision. Because the motion of each particle is purely translational, the laws of conservation of
momentum and energy state that{

Conservation of momentum: Mivi +Mjvj = Miui +Mjuj ,

Conservation of kinetic energy: Miv
2
i +Mjv

2
j = Miu

2
i +Mju

2
j .

Since both particles are moving, vi 6= ui and uj 6= vj . This leads to the following result,

ui =
vi(Mi −Mj) + 2vjMj

Mi +Mj
, uj =

vj(Mj −Mi) + 2viMi

Mi +Mj
, (2.3)

which gives the updates ~vi = ~vi − vi~r + ui~r and ~vj = ~vj − vj~r + uj~r. Note that the velocities of the
particles orthogonal to ~r remain unchanged.
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2.1.4 Cell list

The most straightforward way of calculating the next collision in time is to calculate the moment of
collision for all particle pairs (i, j) with i < j and find the earliest one. However, if N is the number
of particles, then this approach scales as O(N2). A solution to this is to use a spatial partitioning
scheme known as the cell list [27].

Consider a simulation box with periodic boundary conditions. This box is divided into a num-
ber of cells of equal size, such that at each moment in the simulation, the centre of a particle
belongs to exactly one cell. For each cell, a list of the particles that belong to it is maintained. The
cells are chosen in such a way that two particles can only collide if they are in the same cell, or in
two neighbouring cells. This is achieved by choosing each of the sides of the cell to be no smaller
than the diameter of a particle.

To check for collisions, only particles in neigh-
bouring cells need to be considered, where pe-
riodic boundary conditions have to be taken
into account as well. (This is described in more
detail in [37].)

Next to particle collision events, there is now a
new type of event where a particle crosses from
one cell to the next. This changes the algo-
rithm in the following way. In case of a particle
collision:

Figure 2.2: By using a cell list, less particles
have to be checked for a collision. Source: [35].

1. Change the velocities of the involved particles according to 2.3.
2. Remove the events associated with both particles from the stored predicted events.
3. Update the positions and local time variables of the particles in these and neighbouring cells.
4. Predict new particle collisions and the next cell boundary crossings for these particles.

In case of a cell crossing:

1. Apply periodic boundary conditions.
2. Update the particle cell coordinates.
3. Predict collisions for this particle with particles in the new neighbouring cells and the next

cell boundary crossing.

By using a cell list, predicting collisions of a particle with other particles decreases from O(N2) to
O(1) with a constant depending again on the size of the cells and the density of the system.

Particles are given a local time variable, which is updated together with their position only if
they are involved in or are close enough to an event. This means that for a given event, updating
the particle positions is no longer O(N) but O(1) with a constant depending on the size of the cells
and the density.
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2.1.5 Event tree

By using an event tree, the earliest event is determined efficiently. Let E be the number of sched-
uled events at a given time. Using a sorting algorithm would take O(E logE) time, whereas with a
balanced binary tree (meaning that the number of levels is kept as small as possible) the complexity
scales as O(logE).

In more detail, the tree can be implemented as follows. A fixed array contains the nodes of the tree,
including a pool of spare nodes. The first part of the array contains the cell crossing events, and
each particle has exactly one such an event. These nodes are used for circular lists as well, such
that all events associated with a given particle can easily be removed. This tree is based on [27].
However, note that in this reference, the index -1 of the array is often accessed, which would result
in memory problems.

Figure 2.3: In a binary event tree, the nodes
contain the events and the edges are based on
the ordering in event time. Source: [34].

On top of this, the O(1) event tree as described
in [25] can be used. This makes finding the ear-
liest event O(1) instead of O(logN). The idea
of the algorithm is to only store events in the
event tree for which the time is close enough to
the current time in the simulation. If the differ-
ence between the two times is large, the event is
stored in one of a few lists based on how large
the difference is. If all events in the tree have
been handled, the next list is emptied, the tree
is filled, and this process is repeated.

2.2 Polyhedra

2.2.1 Quaternions

In order to represent the orientation of a non-spherical object in three-dimensional space, both a
rotation matrix and a quaternion are a possibility. We have chosen quaternions because of the low
number of calculations needed to combine two rotations for an object.

Consider a two-dimensional (infinitely thin) triangle in three-dimensional space. The position of the
triangle is defined by the position of its centre of mass, as it was for spheres. The orientation can
be described as follows. Define one orientation of the triangle as the base orientation. Then every
other orientation can be described by a three-dimensional unit vector ~v around which to rotate the
triangle, and a number ω that describes the angle around which the rotation should take place.
Note that in this sense, an orientation is no different from a rotation.

By defining the vector ~V = ω~v, one only needs three numbers to describe the orientation of a
particle, given the base orientation. A quaternion is a vector consisting of four numbers and hence
uses an extra number to simplify multiplications. Given the angle ω and the unit vector ~v, the
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corresponding quaternion is defined as

qo = [so, po] =
[
cos

ω

2
,
(

sin
ω

2

)
~v
]
.

Note that every quaternion has norm one, which means that the space of all possible quaternions
has dimension three, as expected.

Now, let the triangle be rotating. Then there is an axis represented by a vector ~w around which
the triangle rotates, and an angle φ that describes the angle around which the rotation takes place
in one unit of time. Hence, for a given time difference ∆t, the quaternion describing the rotation is
given by

qr = [sr, pr] =

[
cos

φ∆t

2
,

(
sin

φ∆t

2

)
~w

]
.

Two quaternions can be combined using the following formula from [8],

qf = [sf , pf ] = q1q2 = [s1s2 − p1 · p2, s1p1 + s2p2 − p1 × p1].

The rotation matrix Qf corresponding to qf is defined as follows. For pf = (p1, p2, p3), define

Pf =

 0 −p3 p2
p3 0 −p1
−p2 p1 0

 .
Then

Qf = 2

[
pfp

T
f + sfPf +

(
s2f −

1

2

)
I

]
.

(The difference with the formula in article [8] is intentional.) From the rotation matrix, the final
orientation of a point on the particle can be obtained.

Often, a more efficient way is to use the quaternion directly. Given a three-dimensional vector
~v and a quaternion q = [s, p], the vector ~v after applying the rotation described by the quaternion
q is

~vnew = ~v + 2p× (p× ~v + s~v).

In our application, the quaternion of a particle is not always updated when its centre of mass
is updated, so each particle now has two local times: one for its centre of mass corresponding
to translational velocity, and one for its orientation corresponding to rotational velocity. For a
random starting configuration, uniform quaternions can be used (as described in [19]), but this is
not mandatory.

2.2.2 Collision prediction

Bounding spheres

For spheres, the moment of collision between two particles can be calculated exactly. For triangles,
this is no longer the case. However, finding the moment of collision between two particles still
corresponds to finding the first root of the function describing the distance between these particles
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over time. There are many root finding algorithms for problems of this form. We choose to use a
method called Conservative Advancement because of its robustness. Although paper [5] shows that
this method has disadvantages concerning efficiency, a root finding algorithm can miss a collision,
as explained in [6].

In our simulation, the centre of mass of a triangle is defined as the centre of a sphere which exactly
contains this triangle. The idea is that two triangles cannot intersect if their containing spheres are
not intersecting. For a triangle pair A,B at a given time t0, there are a few possible scenarios.

• The spheres are not intersecting. In this case, we can calculate the moment at which the two
triangles will collide. There are two cases.

– The spheres will never collide. This means that the triangles will never collide.
– The spheres will collide at time t1 and, without a change in velocity, leave each other at

time t2. This means that a triangle collision is only possible in the time interval [t1, t2].

• The spheres are intersecting. In this case, we can calculate the moment t2 at which the two
spheres will leave each other. A triangle collision is now only possible in the time interval
[t0, t2].

The spheres always give us an interval in which
to search for a triangle collision. The precise
moment is found using Conservative Advance-
ment.

Figure 2.4: Bounding spheres of two tetrahedra.

Conservative Advancement

Conservative Advancement is a method to numerically determine the moment of collision between
two moving objects, where both translational and rotational velocity are taken into account. The
input consists of two convex particles with their starting positions, translational velocities, orienta-
tions, and rotational velocities. Also, a time interval in which a collision could occur is given, where
a collision is defined as two objects being within a given distance ε > 0 of each other. The method
then works as follows.

Using a distance function, the distance d between the two objects is determined along with the
closest points on each of the objects. Let ~c be the vector between these closest points. Because
of the convexity of both objects, for all pairs of points on the two objects it holds that they can
only collide after having travelled a combined distance d in the direction of ~c. This information is
used to determine a time step ∆t to reach the first moment at which the two objects can collide.
If there is a collision, then the algorithm is completed. If not, then the new positions are used to
calculate a new time step, and the algorithm keeps repeating until either a collision is found, or the
end of the given time interval is reached. For more details, see [32]. Since Conservative Advance-
ment can be very slow when objects are close to each other, we convert to the Bisection Method in
this case, since it is very robust. This also happens if the number of iteration steps becomes too large.
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A technical detail is the following. In order to handle the collision between two particles cor-
rectly, a vector between the closest points is needed. This means that the distance between the two
objects must still be strictly positive. Therefore, it may be possible that two objects are within
the distance ε of each other, which is reported as a collision, but that their velocities are such that
the closest points are moving apart (a so-called grazing collision). In this case, the velocities of the
particles do not change during a ‘collision’.

The exact distance between two triangles can be found using [10]. Conservative Advancement
only works for convex objects. For non-convex objects, one can divide the objects into convex
parts and compare those. We have chosen to divide the surface of the objects into triangles, but
other choices are possible. A separate Conservative Advancement algorithm was made for objects
consisting of triangles, based on pair-wise comparisons.

2.2.3 Collision velocities

Moment of inertia

In calculating new velocities for two colliding particles, their moments of inertia are needed. The
inertia matrix can be calculated for an arbitrary polyhedron, as proven in [11] in combination with
[24]. However, for simplicity we assume a spherical moment of inertia. The reason is that we are
interested in the equilibrium properties of the system, not in the precise dynamics. Moreover, the
second approach is faster and easier to implement.

Collision resolution

Resolving a collision involving torques is described in [23]. Let i and j be two colliding particles
with mass Mi,Mj and spherical moment of inertia Ii, Ij . Let n̂ be a unit vector normal to the point
of contact in the direction of particle i, let vn be the velocity with which the two particles collide in
the direction of n̂, and rCi, rCj the positions of the collision points on their corresponding objects.
Then, in order to have conservation of momentum and kinetic energy, the exchange of momentum
between the particles ∆pij is described by

∆pij = 2vn

(
1

Mi
+

1

Mj
+
‖rCi × n̂‖2

Ii
+
‖rCj × n̂‖2

Ij

)−1

. (2.4)

(The difference with the formula in article [23] is intentional.) For particles that do not have a
spherical moment of inertia, equation 2.4 is more complicated. In both cases, the velocities and
angular momenta of the particles are updated as follows.

~vi ← ~vi −
∆pij
Mi

n̂, (2.5)

~vj ← ~vj +
∆pij
Mj

n̂, (2.6)

~wi ← ~wi −
∆pij
Ii

(rCi × n̂), (2.7)

~wj ← ~wj +
∆pij
Ij

(rCj × n̂). (2.8)
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For more details, see appendix A.

2.3 Boundary conditions

In all EDMD simulations, the simulation box only has a finite size. This means that a choice has
to be made concerning the boundary conditions. We will describe three possibilities.

Figure 2.5: In normal periodic boundary con-
ditions, the simulation box is surrounded by its
identical periodic images.

Event-driven molecular dynamics simulations
can be implemented using periodic boundary
conditions. This means that if a particle leaves
the simulation box at one side, it reappears at
the opposite side with exactly the same velocity
(translational and, if relevant, rotational). A
characteristic of this is that a side of the system
is always influenced by the side opposite to it,
as shown in figure 2.5. If this is not desirable,
then another possibility is to place hard walls in
one or multiple direction(s). If a particle comes
in contact with this wall, then it bounces back
following similar physical laws as in a collision
between two particles.

The third possibility is less intuitive. In order to determine the helical pitch of a cholesteric liquid
crystal, so-called twisted periodic boundary conditions in one direction are needed. The result is
that all sides of the system are influenced by the opposite side just like before, but in one direction,
a side is influenced as if the opposite side were rotated with an angle of π/2 as illustrated by figure
2.6. The twist in the boundary conditions has implications for positions and orientations as well as
translational and rotational velocities. For more information, see [2]. Twisted periodic boundary
conditions are used in order to study the twist of a cholesteric liquid crystal through a torque
measurement, as we will show later.

2.4 Model

In simulations, we can study situations which are very hard to produce in controlled experiments, to
gain insight in the system we are studying. In this chapter we discuss the reliability of our results.
How much information is lost in going from the physical system to the model? This discussion is
inspired by the finite size effects shown in [4] and [12].
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Figure 2.6: In twisted periodic boundary conditions, the simulation box is still surrounded by its
periodic images, but these are rotated in one direction with respect to each other.

2.4.1 Simplifications

We begin by enumerating some of the simplifications we made in going from the physical system
to the model. The first one is that in event-driven molecular dynamics, all particle interactions are
assumed to be hard collisions. For non-spherical particles, a further simplification is added to this.
To save computation time, the moment of inertia of all particles is assumed to be that of a sphere,
independent of the particle shape. Especially for elongated particles, this changes the way collisions
are resolved (for more details, see appendix A).

Another simplification that requires special attention is the periodic boundary conditions.

2.4.2 Periodic boundary conditions

As we cannot model the actual macroscopic system, periodic boundary conditions give us a way
of imitating a large system while using only a limited number of particles. This way, there is no
actual surface. However, this does not mean that there are no finite-size effects anymore. In the
case of event-driven molecular dynamics, the finite-size effects are not as large as for some other
systems because the interactions between particles are not long-ranged. However, particles transfer
momentum to each other through collisions, and at some point, a particle will receive some of its
own momentum back again.

Another characteristic of periodic boundary conditions is the imposed symmetry. This is not a
problem for an isotropic simulation, in which case cubic boxes are the easiest way of implemen-
tation. For non-isotropic systems, there are other possibilities. Firstly, there are box shapes that
give a larger distance between particles and their own periodic images, compared to the cubic box.
See, for example, [31]. Secondly, walls can be used instead of periodic boundary conditions, but as
mentioned before, this can result in surface effects. An example can be found in [9].
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For cholesteric liquid crystals, ideally, the periodic boundary conditions should be such that the
cholesteric pitch is not distorted. Unfortunately, cholesteric pitches are usually very long com-
pared to the size of a particle. Interestingly, this is actually what we make use of in the torque
measurements, so the influence of boundary conditions should not be underestimated.

2.4.3 Pressure equilibration

In the type of simulations described in this report, measurements are only reliable if they are done
in equilibrium. This means that for more particles and higher densities, more collisions are required
before a reliable measurement can be made. In Molecular Dynamics simulations, the rate of pressure
equilibration is determined by the transfer of momentum between particles, and this is typically
fast. In Monte Carlo simulations, pressure equilibrates through diffusion, which is slower. Hence,
once a configuration in equilibrium has been obtained from a Monte Carlo simulation, the pressure
can be measured relatively fast in an EDMD simulation.

2.4.4 Rounding errors

For all computer simulations, the possible influence of rounding errors should be considered. In this
case, rounding errors and more generally numerical approximations influence the evolution of the
system at hand. The many-body systems we are studying are chaotic, which means that a small
difference in the simulation will grow exponentially as the simulation continues. For example, if the
direction of the velocity of a particle is slightly off, then it can miss a collision, which changes not
only the trajectory of this particle but also of the particle it would be colliding with, which in turn
influences other particles, etcetera.

The example shows that Molecular Dynamics does not exactly predict how the actual system
will evolve over time, but it is a good approximation of a possible evolution. By using statistical
averages such as pressure, the results are still reliable.

2.5 Measurements

2.5.1 Equation of state

We begin with some definitions. Consider a system of N hard particles with volume v0 in a
simulation box of volume V , at pressure P and temperature T . With kB the Boltzmann constant,
the packing fraction η and compressibility factor Z are defined by the following formulas.

η :=
Nv0
V

,

Z :=
PV

NkBT
.

An EDMD simulation is in so-called NVT ensemble, which means that throughout the simulation,
the number of particles, the volume of the simulation box and the temperature of the system are
constant. Hence, the packing fraction is constant as well. (In particular, for a system of hard
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spheres with diameter σ, the packing fraction is η = π
6
Nσ3

V .) The temperature T is fixed by

kBT =
2

d

1

N

N∑
i=1

(
1

2
Miv

2
i +

1

2
Iiω

2
i

)
where d is the number of degrees of freedom of the particle, N is the number of particles, and Mi, vi,
Ii and ωi are the mass, velocity, moment of inertia and rotational velocity, respectively, of particle
i. (A spherical particle has 3 degrees of freedom, and a polyhedron has 6 degrees of freedom.)
Since there is conservation of kinetic energy at each collision, the temperature remains the same
throughout the simulation.

Contrary to the packing fraction and the temperature, the pressure is unknown at the start of
the simulation. It is obtained as follows. At the start of the simulation, a variable Pm is set to zero.
Then, during the time in the simulation in which the pressure is measured, each collision between
two particles i and j contributes a term to this pressure. More specifically, if ~r = ~ri − ~rj is the
vector between the centres of the spheres and ~v = ~vi − ~vj is the relative velocity, then a term ~r · ~v
is added to Pm. At the end of the simulation, the average pressure P̄ is

P̄ =
−Pm
3tV

where t is the time in the simulation in which the pressure was measured [17].

Given the number density n = N/V , the compressibility factor Z is given by

Z = 1 +
P

nT

where the constant term comes from the contribution of an ideal gas. By changing the number of
particles and/or the volume of the simulation box, and keeping the temperature fixed, one can plot
the compressibility factor against the packing fraction.

2.5.2 Cholesteric pitch

The torque in a system can be measured as follows. At the start of a simulation, let Mαβ = 0 for
α, β = x, y, z. For every collision, add terms to this matrix. If particle i and j collide with each
other, let rij = ri− rj be the vector between the centres of mass of the two particles. Let τij be the
torque that particle j exerts on particle i, which is defined as

τij = ∆pij(rCi × n̂), (2.9)

where ∆pij is the exchange of momentum between the particles in equation (2.4), rCi is the position
of the collision point on particle i, and n̂ is the unit vector normal to the point of contact pointing
towards particle i.

At this collision, let rij be the vector from the centre of particle i to the centre of particle j,

of which rαij is the entry of the α-coordinate. Add a term rαij(τ
β
ij − τ

β
ji) to Mαβ for α, β = x, y, z.

Finally, the returned torque Παβ is

Παβ = −1

2
Mαβ
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for α, β = x, y, z.

Twisted periodic boundary conditions are used in order to study the twist of a cholesteric liq-
uid crystal through a torque measurement, as described in [16]. Suppose that two simulations
have been performed, one with normal and one with twisted periodic boundary conditions in the
α-direction. Let Πn

αα be the measured torque in the simulation with normal periodic boundary
conditions, and Πt

αα the same measurement for twisted periodic boundary conditions. Then the
equilibrium cholesteric pitch is equal to

P0 = −πlα/2 ·
Πn
αα

Πt
αα −Πn

αα

, (2.10)

where lα is the length of the simulation box in the direction of α, as derived in [16].

2.6 Speed-up

2.6.1 Bounding boxes

If particles are very long and thin, then the cell list becomes inefficient. The reason is that particles
can have many neighbouring particles within a radius ε > 0 of its bounding sphere, even though
the number of neighbours within a distance ε of the actual particle is a lot less. (Note that for
spheres, this number would be exactly the same.) In order to improve on the running time of the
simulation, we used nearest neighbour lists, loosely based on [8].

The idea is the following. At the start of the simulation, each particle is placed in an imaginary box,
which completely encloses the particle and does not touch it. This box stays fixed, independently
of the movement of the particle inside it. Two particles are considered neighbours if their bounding
boxes overlap. During the entire algorithm, only collisions between neighbours are recalculated.

Figure 2.7: Bounding box of a twisted triangular prism.

Apart from bounding sphere collisions, particle collisions and cell crossings, there is now another
type of event, which is when a particle collides with its bounding box. When this happens, a new
box is built around the particle. The cell list is used to recalculate the neighbours. The more
a neighbour list can be used before the particle collides with its bounding box, the higher the
improvement in efficiency.
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2.6.2 Parallelization

Even without their elongated form, twisted triangular prisms are computationally expensive because
each particle consists of 8 triangles, and our implementation of the Conservative Advancement is
not constant (but less than quadratic) in the number of triangles. In the hope of improving on the
running time of the simulation for large systems, we implemented a parallel algorithm based on [22]
using domain decomposition.

At the start of the simulation, each processor gets some of the cells in the system, which it will
handle during the rest of the simulation (note that we do not use dynamic load balancing). For a
given processor P , particles in cells on this processor are called real and particles in cells on other
processors virtual. Processor P only calculates collision times for particle pairs of which at least
one particle is real. If a particle moves from a cell on processor P to a cell on another processor,
P communicates this particle to that processor and removes the events of the particle from its own
event tree. Similarly, P can receive particles.

Contrary to the algorithm described in [22], there is communication after each event, where the
processor on which the event occurred communicates the changed particles to all processors that
contain neighbouring cells. This communication is expensive. To still obtain an improvement in
running time, we let the processor handling an event only recalculate collisions between two real
particles, and leave all other collisions for other processors to calculate.

2.7 Restarts

During a simulation, the program will output a saved state regularly. Each saved state is a file
containing all the information of the simulation at this point in time. The printed characteristics
are described in more detail in appendix C.

Saved states can be used to study the behaviour of the simulation over time. Given a saved
state, the simulation can also be restarted from this information. This is useful if the simulation
terminates prematurely, for whatever reason, in which case the simulation can be restarted from
the last saved state.
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Chapter 3

Results & Discussion

3.1 Validation

3.1.1 Spheres

We first wrote an EDMD simulation for spheres, based on the theory described in the previous
chapter. In order to test the correctness of our simulation, we compare our results with the litera-
ture.

There are two equations relating the packing fraction and the compressibility factor of a system.
The Carnahan-Starling equation of state is reliable for low packing fractions and defined by

Z =
1 + η + η2 − η3

(1− η)3
.

The Speedy equation of state is reliable for high packing fractions and states that

Z =
3

1− z
− a(z − b)

z − c

where z = (6η)/(π
√

2) and a, b, c are constants. According to [3], a ≈ 0.620735, b ≈ 0.708194 and
c ≈ 0.591663.

A comparison between the theoretic equations of state and the simulations is shown in figure 3.2.
All simulations were performed on a cubic simulation box. The values for low densities ranged from
64 particles in a box of length 20 to 1, 000 particles in a box of length 21. For high densities, the
number of particles was fixed at 108 and the box length varied from 9.65 to 8.865. When simulating
high densities, we place particles initially on an FCC lattice. An example of a simulation of spheres
is shown in figure 3.1.

The results of the simulations agree with the described theoretical equations of state. With the
simulation of spheres working, it could be expanded to simulate non-spherical particles as well.

27
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Figure 3.1: An example of a simulation of spheres with the first (cubic) and last configuration.

Figure 3.2: The compressibility factor Z = PV
NkBT

in a system of hard spheres is plotted against

the packing fraction η = Nv0
V of the system. The red line shows the Carnahan-Starling equation of

state, which is reliable at low packing fractions, and the blue line shows the Speedy equation of state,
which is reliable at high packing fractions. The black dots are values obtained by performing EDMD
simulations and correspond well to the equations.

3.1.2 Polyhedra

After establishing the correctness of our simulation for spheres, we adapted it to polyhedra.
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An example of a simulation of the simplest polyhedra, namely triangles, is shown in figure 3.3.

Figure 3.3: An example of a simulation of triangles with the first and last configuration. The red
and green colours indicate the two sides of a triangle.

With the program working for triangles, we could construct three-dimensional objects consisting of
triangles. We start with the simplest shape, a tetrahedron. Just like for spheres, one can determine
the equation of state of tetrahedra from simulations. An example of a simulation of tetrahedra at
low density is shown in figure 3.4. The final configuration for the highest density, still in the fluid
phase, is shown in figure 3.5. The obtained equation of state is shown in figure 3.6.

Figure 3.4: An example of a simulation of tetrahedra with the first and last configuration.
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Figure 3.5: The final configuration for the highest density studied. The system is still in the fluid
phase.

Figure 3.6: The compressibility factor Z = PV
NkBT

in a system of hard tetrahedra is plotted against

the packing fraction η = Nv0
V of the system. The red dots are the result of Monte Carlo equations

from [20], the blue line is the derived equation of state from the same source. (These results from
literature agree with those in [18].) The black dots are the values obtained by performing EDMD
simulations and correspond well to the Monte Carlo equations: in particular, underneath the black
point at the highest packing fraction, there is a red point.
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3.1.3 Twisted triangular prisms

The particles we are interested in are so-called twisted triangular prisms as described in [9], where
the particle shape is based on parameters h, ω, α, as shown in figure 3.7.

Figure 3.7: “A twisted triangular prism (TTP) is constructed from an elongated prism of height h
with (isosceles) triangular bases, determined by the angle γ, and perimeter πω. The width ω is used
as the unit of length. To introduce chirality, one triangular base is twisted by an angle α relative to
the other one and additional edges are constructed to obtain flat faces.” Souce: [9].

To test the program, we determined the equation of state of these particles for h/ω = 5 and α = 0.7.
For packing fractions between 0 and 0.15, a correct starting configuration could still be obtained
by hand. For higher densities, Monte Carlo simulations were performed in the Soft Condensed
Matter group at the Utrecht University to provide suitable starting configurations for the EDMD
simulations. The simulations give the equation of state in figure 3.9. At low densities, the figure

Figure 3.8: Twisted triangular prisms at packing fraction 0.15 at the starting configuration and after
1,500,000 collisions.

shows results of simulations with both normal and twisted periodic boundary conditions. One can
see that the type of periodic boundary conditions does not influence the pressure, because the
system is still in the fluid phase.
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Figure 3.9: The compressibility factor Z = PV
NkBT

in a system of hard twisted triangular prisms

is plotted against the packing fraction η = Nv0
V of the system. The black dots were obtained by

performing EDMD simulations with normal periodic boundary conditions, red points are with twisted
periodic boundary conditions with the red line as an estimate. The green points are the results
of performing Monte Carlo simulations. The blue points were obtained by taking configurations
from these Monte Carlo simulations as starting point for EDMD simulations with normal periodic
boundary conditions. The results from both types of simulations, Monte Carlo and EDMD, agree
with each other.

3.1.4 Technical remark

We would like to mention here that the stability of the program described in this chapter depends
largely on the particle shape. For very elongated particles, the rotational velocity can be large, which
can lead to many iteration steps in the collision prediction algorithm. Because of accumulating
rounding errors, even with the use of double precision, a collision may be predicted incorrectly.
This means that a long simulation of twisted triangular prisms may need many restarts, while a
similar simulation of tetrahedra does not. An option to avoid restarts would be to round down
numbers in the collision prediction instead of rounding them to the nearest value, but this could
lead to even more iteration steps.
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3.2 Efficiency

The running times of the different simulations described so far depend on many factors. These
include the number of particles, the density, the particle shape, the phase, the temperature, the
number of collisions, etcetera. Therefore, the speed-up obtained by using, for example, an event
tree, is not uniquely defined for all systems. Even so, we would like to give an indication of the
running times involved in the systems we have studied. The numbers should be taken as an illus-
tration of the qualitative influence of different factors on the running time of the program.

The simulations were run on two different systems. The first one was a personal computer, the
characteristics of which are shown below. The second one was the Batch system of the supercom-
puter Cartesius at surfSARA in Amsterdam. (Only thin nodes were used.) Memory is defined as
the amount of memory per node.

System Nodes Cores Clock (GHz) Memory (GB)

PC 1 2 2.66 72
Cartesius 1,080 24 2.60 64

540 24 2.40 64

Table 3.1: Characteristics of the computer clusters on which the simulations in this section were
run.

3.2.1 Spherical particles

We begin with simulations for the simplest shape we studied, the spherical particles. These sim-
ulations were done on the personal computer. We consider five different versions of the program.
For each new version of the program, an effort is made to make it more efficient compared to the
previous version.

The first version of the program we call ‘Array of O(N2)’. In this program, all predicted colli-
sions between particles are stored in an N × (N + 1) array A, where N is the number of particles.
For all 0 ≤ i < j < N , the predicted time of collision between particle i and j is stored in A(i, j).
The minimum of all entries in row i of matrix A is stored in A(i,N). These minima are in turn
used to calculate the smallest entry in the entire array. In other words, determining the smallest
time of collision is O(N2).

The second version of the program is ‘Event tree’, which uses the event tree described earlier.
This program already uses the cell list, where particle collisions are only calculated between par-
ticles in the same or neighbouring cells. From this program, only local times were added to the
particles to obtain ‘Local times’, which is the third version of our program.

In the fourth version of the program, ‘Cell crossing’, the previously calculated collisions of a particle
are re-used as much as possible when a particle crosses from one cell to the next, instead of being
re-calculated. Finally, in the fifth version, ‘List of O(1), the event tree of order one as described
earlier is used.
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Typical running times are in the following tables.

System: 512 particles, 20 × 20 × 20 box,
1,000,000 particle collisions.

Program Time (s) Relative

Array of O(N2) 103.0 100.0
Event tree 36.0 35.0
Local times 19.5 18.9
Cell crossing 19.6 19.0
List of O(1) 18.1 17.6

System: 1,000 particles, 21 × 21 × 21 box,
1,000,000 particle collisions.

Program Time (s) Relative

Array of O(N2) 205.2 100.0
Event tree 52.5 25.6
Local times 25.3 12.3
Cell crossing 25.1 12.2
List of O(1) 22.2 10.8

From the tables, we conclude that the speed-up associated with the different modifications to the
program is larger if the number of particles is higher and/or the density is higher, which is what we
would expect. Also, for a very small number of spherical particles, re-using previously calculated
collisions does not result in a speed-up, because the collision formula is so cheap.

3.2.2 Different shapes

Here, we use the last version of the program described in the previous subsection on the same
personal computer. The twisted triangular prisms have h/ω = 5, α = 0.7, and an equilateral base.

System: 512 particles, 20×20×20 box, 10,000
particle collisions.

Program Time (s) Relative

Spheres 0.2 1.0
Triangles 12.7 63.5
Tetrahedra 75.5 377.5
TTPs 243.9 1,219.5

System: 512 particles, 20×20×20 box, 100,000
particle collisions.

Program Time (s) Relative

Spheres 1.8 1.0
Triangles 125.8 69.9
Tetrahedra 765.1 425.1
TTPs 2,509.8 1,394.3

At this density, the twisted triangular prisms (TTPs) are still in the fluid phase, so nearest neighbour
lists do not improve the running time. (For example, 10,000 collisions of the above system for TTPs
takes 486.7 s.) Also, the running time can become worse as the simulation continues, depending on
the system. It is clear however, that the program has bad scalability in the number of triangles per
particle.
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3.2.3 Nearest neighbour lists

These simulations were performed on Cartesius. The system consists of twisted triangular prisms
with h/ω = 5, α = 0.7 and an (almost) equilateral base, a reduced temperature of kBT = 0.2, and
a fixed time in the simulation of 20 seconds.

System: 2,400 particles, γ = 1.04,
29.748473× 21.798350× 22.568546 box,
∼ 500,000 particle collisions.

Program Time (s) Relative

Without NNLs 118,472.2 100.0
With NNLs 44,833.9 37.8

System: 1,024 particles, equilateral base,
8.0×8.0×8.0 box, ∼ 315,000 particle collisions.

Program Time (s) Relative

Without NNLs 52,659.4 100.0
With NNLs 24,888.3 47.3

The tables show that the speed-up for nearest neighbour lists depends on the system. For most of
our systems, the speed-up was between 2.0 and 3.0.

3.2.4 Parallelization

These simulations were done on Cartesius. The system consists of twisted triangular prisms with
h/ω = 5, α = 0.7 and an equilateral base, a reduced temperature of kBT = 0.2, and a fixed time in
the simulation of 10 seconds. No nearest neighbour lists were used. Note that the parallel program
using only one processor is slightly different from the sequential algorithm, since changes for paral-
lelization are still performed.

System: 1,024 particles, equilateral base, 8.0× 8.0× 8.0 box, ∼ 150,000 particle collisions.

Number of processors Time (s) Relative

Sequential 25,426.3 100.0
1 25,321.3 99.6
2 20,756.6 81.6
4 17,834.7 70.1
8 15,731.0 61.9

Table 3.2: Without nearest neighbour lists.

For the system we studied, both parallelization and nearest neighbour lists are possible. Hence, we
wrote a program using both, and performed the same tests as before.

Number of processors Time (s) Relative

Sequential 11,500.1 100.0
1 11,634.9 101.2
2 10,962.4 95.3
4 11,116.0 96.7
8 11,148.2 96.9

Table 3.3: With nearest neighbour lists.
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We conclude that for the system already using nearest neighbour lists, the speed-up from paral-
lelization is modest. The reason is that parallelization divides the predictions of collisions over
multiple processors, but nearest neighbour lists already reduces the number of collisions that has
to be predicted. The predictions that remain are practically always on the current processor, which
makes the advantage of parallelization modest.

Note however that this is only the case for very elongated particles. Since this is the system
we are interested in, the current parallelization is for us not beneficial, but it could be for systems
of more spherical particles. An indication of this is shown below.

System: 847 particles, equilateral base, 7.25 × 7.25 × 8 box, h/ω = 3.0, ∼ 60,000 particle col-
lisions.

Number of processors Time (s) Time NNLs (s)

Sequential 5,649.7 4,097.5
1 5,316.0 3,819.2
2 4,527.1 3,624.0
4 3,844.1 3,367.9
8 3,367.3 3,212.0

So the parallel algorithm with 8 processors using NNLs is 21.6 per cent faster than the same
sequential algorithm.

3.2.5 Discussion

The simulations described in this chapter show the following trend. A simulation of particles can
be improved significantly by using an O(1) event tree with a cell list and local times and by re-
using previously calculated collisions at a cell crossing. Adapting such a simulation to particles of
which the surface consists of triangles drastically increases the running time, especially for particles
consisting of many triangles. For very elongated particles at a high density, the running time can
be improved again by using nearest neighbour lists, but the simulation time is still nowhere near
that of spherical particles anymore.

According to literature, it might be better to only have one collision in the tree for each particle.
In this case, a Complete Binary Tree can be used. However, this makes the program more difficult
to extend with different optimizations.

The distance between two objects could also be found by using a different algorithm for de-
termining the distance between the particles. An algorithm that only works for convex parts is
the so-called Gilbert-Johnson-Keerthi (GJK) algorithm [33], which is an iterative algorithm. This
algorithm could be applied to the different convex parts of the particles. Whether this results in a
speed-up or not depends on the number of convex parts needed.

Parallelizing the program has both advantages and disadvantages. One advantage is that the algo-
rithm described so far still has room for improvement, which could lead to bigger speed-ups than
those reported here. Also, the parallelization could give an improvement for non-elongated particles
as well, or for elongated particles whose neighbours change rapidly, in contrast to the nearest neigh-
bour lists. Finally, for a large number of particles, the required amount of memory is distributed
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over the processors, which could also improve the use of Cache. (For the systems we studied, a
maximum of 2, 520 particles was used, for which the use of Cache is not a limiting factor yet.)

On the other hand, we think it is safe to say that parallelization is significantly more program-
ming work than implementing nearest neighbour lists. This is partly because parallelization also
complicates practical issues like keeping track of the global pressure, restarting a simulation if one
processor fails, etcetera. The reader will have to be the judge whether the obtained speed-up weighs
up against the extra programming time.

For the simulations described in the next section, we used the fastest sequential program, which
contained nearest neighbour lists. The simulations were performed on two different computer clus-
ters of the Utrecht University, the first half of each simulation on Mars and after that the second
half on Thor.

System Nodes Cores Clock (GHz) Memory (GB)

Mars 15 8 2.0 4
14 4 2.2 2
13 4 2.0 2
6 4 2.2 4

Thor 8 48 2.8 128
7 48 2.6 128

Table 3.4: Characteristics of the computer clusters on which the simulations in the next section
were run.

3.3 Cholesteric liquid crystals

To determine the order of magnitude of the torque differences to be studied, we first ran a simulation
on a small configuration of 396 twisted triangular prisms with h/ω = 5, α = 0.7 and γ = 0.75 under
normal periodic boundary conditions. The packing fraction was η = 0.14877 and the compressibility
factor Z = 9.2333. After 1,460,000 collisions, the torque matrix was the following.

Παβ =

 0.009472 0.000925 0.001850
0.000323 -0.024452 0.000141
-0.003105 0.002619 -0.023422



The system was in a cholesteric liquid crystal
phase, as shown on the right. According to
theory, the off-diagonal entries of this matrix
should be zero, so the result is only accurate up
to the third decimal. The absolute size of the
torque of interest is quite small compared to the
variation within the simulation, which compli-
cates a precise calculation.

Figure 3.10: A system of 396 particles with
h/ω = 5, α = 0.7, γ = 0.75, η = 0.14877 and
Z = 9.2333 in a cholesteric phase.
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Next, we ran simulations on three different particles. All particles were twisted triangular prisms,
but the parameters determining their shape differed.

(a) α = 0.6, γ = 0.75 (b) α = 0.7, γ = 0.75 (c) α = 0.7, γ = 1.0

Figure 3.11: The three different twisted triangular prisms on which we performed torque measure-
ments. The second particle is twisted slightly more than the first, and the third particle has a larger
base than the second.

The systems we studied consisted of 2,520 particles. For each configuration, we performed two sim-
ulations: one with normal periodic boundary conditions, and one with twisted periodic boundary
conditions in one direction. Both systems were equilibrated over 2,000,000 collisions, after which the
torque was measured in the consecutive collisions. Apart from measuring the torque over many (at
least 1,000,000) consecutive collisions, we also measured the torque over time intervals containing
10,000 collisions separately. We will denote this as the variation of the torque.

The results are the following. The time is in arbitrary units depending on the temperature of
the system.
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(a) Packing fraction η = 0.20825, compressibility factor Z = 10.833.

(b) Packing fraction η = 0.22528, compressibility factor Z = 11.327.

Figure 3.12: The figures show the direct measurement of the pitch P0 of a cholesteric liquid crystal
in simulations at two different packing fractions. Given a system, two simulations are run, one
with normal (PBCs) and one with twisted (TBCs) periodic boundary conditions. The left figures
show a measurement of the torque Π in the system over time, where the variation is given by
the instantaneous torque. The right figures show the resulting measurement of the pitch P0. The
cholesteric pitch is expressed in the length of the radius of a sphere enclosing one particle. The
system consists of 2, 520 twisted triangular prisms with α = 0.6, h/ω = 5, γ = 0.75. After 2 million
collisions of equilibration, the measurement was done over another 2 million collisions.
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(a) Packing fraction η = 0.17583, compressibility factor Z = 10.547.

(b) Packing fraction η = 0.18115, compressibility factor Z = 10.775.

Figure 3.13: The figures show the direct measurement of the pitch P0 of a cholesteric liquid crystal
in simulations at two different packing fractions. Given a system, two simulations are run, one
with normal (PBCs) and one with twisted (TBCs) periodic boundary conditions. The left figures
show a measurement of the torque Π in the system over time, where the variation is given by
the instantaneous torque. The right figures show the resulting measurement of the pitch P0. The
cholesteric pitch is expressed in the length of the radius of a sphere enclosing one particle. The
system consists of 2, 520 twisted triangular prisms with α = 0.7, h/ω = 5, γ = 0.75. After 2 million
collisions of equilibration, the measurement was done over another 2 million collisions for figure (a)
or 1 million collisions for figure (b).
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(a) Packing fraction η = 0.22158, compressibility factor Z = 11.369.

(b) Packing fraction η = 0.25476, compressibility factor Z = 11.940.

Figure 3.14: The figures show the direct measurement of the pitch P0 of a cholesteric liquid crystal
in simulations at two different packing fractions. Given a system, two simulations are run, one
with normal (PBCs) and one with twisted (TBCs) periodic boundary conditions. The left figures
show a measurement of the torque Π in the system over time, where the variation is given by
the instantaneous torque. The right figures show the resulting measurement of the pitch P0. The
cholesteric pitch is expressed in the length of the radius of a sphere enclosing one particle. The
system consists of 2, 520 twisted triangular prisms with α = 0.7, h/ω = 5, γ = 1.0. After 2 million
collisions of equilibration, the measurement was done over another 1 million collisions for figure (a)
or 2 million collisions for figure (b).
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We note that the torque for the system with twisted periodic boundary conditions is indeed different
from the torque for the system with normal periodic boundary conditions. However, this difference
is relatively small both in absolute value and when compared to the variation of the torque. Because
the formula for the cholesteric pitch uses a division by this difference, the value of P0 can blow up,
as can be seen in figure 3.14b and in the beginning of figure 3.12b. By looking at the configurations,
we see that these are the configurations which show defects instead of a smooth cholesteric twist,
which do not disappear during the simulations. The initial configurations are shown in figure 3.15.

An example of the simulation behaviour is shown in figure 3.17. Despite the long EDMD sim-
ulations, the final configurations show a system that is not relaxed yet. For all higher densities,
we also expect the torque measurement method to fail, since neither the normal nor the twisted
periodic boundary conditions allow the equilibration of the system.

Even when the measured pitch does not blow up, a small difference in the measured torque can
give a large difference in the resulting pitch. This can be seen in figure 3.12a, where P0 varies
considerably over time.

α = 0.6, γ = 0.75, η = 0.20825
See also figure 3.12a.

α = 0.6, γ = 0.75, η = 0.22528
See also figure 3.12b.

α = 0.7, γ = 1.0, η = 0.25476
See also figure 3.14b.

Figure 3.15: Some of the initial configurations of the simulations measuring the equilibrium pitch
of a cholesteric liquid crystal. Note that the two configurations on the right contain defects, whereas
the left configuration is a smooth cholesteric twist.

Finally, the pitch is positive and relatively constant in figures 3.13a, 3.13b and 3.14a. According to
these figures, P0 is between 40 and 80, and a slight difference in the pressure (i.e., the volume) can
give quite a difference in P0. An example of the simulation behaviour is shown in figure 3.16. Notice
that for twisted periodic boundary conditions, the particle orientations at the top and bottom of the
system are practically perpendicular, which means that they fit on top of each other when taking
the twist in the boundary conditions into account. This suggests that the system can indeed reach
an equilibrated structure in a long EDMD simulation.

Although the order of the measured pitches is correct here, its seems that longer simulations are
needed to accurately determine the value of the equilibrium pitch.
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(a) Starting configuration

↙ ↘

(b) Normal periodic boundary conditions (c) Twisted periodic boundary conditions

Figure 3.16: The path of one configuration with a successful pitch measurement. The three figures
correspond to a front view (top), a top view (left below) and a bottom view (right below). This is
a system of 2, 520 twisted triangular prisms with α = 0.7, h/ω = 5, γ = 0.75. After 2 million
collisions of equilibration, the measurement was done over another 2 million collisions.
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(a) Starting configuration

↙ ↘

(b) Normal periodic boundary conditions (c) Twisted periodic boundary conditions

Figure 3.17: The path of one configuration with a failed pitch measurement. The three figures
correspond to a front view (top), a top view (left below) and a bottom view (right below). Neither
normal nor twisted periodic boundary conditions result in a structured cholesteric phase. This is a
system of 2, 520 twisted triangular prisms with α = 0.7, h/ω = 5, γ = 1.0. After 2 million collisions
of equilibration, the measurement was done over another 2 million collisions.
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3.3.1 Discussion

The results from measuring the cholesteric pitch are not accurate enough yet. This could be because
the equilibration time was not reached yet, or because the choice for a spherical moment of inertia
increased the required simulation time. It could be better to use a moment of inertia which is at
least elongated, for example that of an ellipsoid.

However, the computational time is already quite long, and would probably increase when using a
different moment of inertia. On that note, it might be interesting to equilibrate the configuration
with normal and twisted periodic boundary conditions using a Monte Carlo simulation, and then
only measure the torque using an EDMD simulation (instead of using this for equilibration as well).
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Chapter 4

Conclusion & Outlook

We have shown that the EDMD algorithm is not only an efficient method to study a system of
spherical particles, but that it can be extended to work for polyhedral, not necessarily convex parti-
cles as well. The equations of state of spheres, tetrahedra and even twisted triangular prisms could
be reproduced accurately. By using Monte Carlo simulations to produce the starting configurations,
we were able to simulate very dense systems of twisted triangular prisms, for which a cholesteric
liquid crystal phase occurs. The running time for this system was improved on by using an event
tree, a cell list, local times, bounding spheres and oriented bounding boxes.

The algorithm was adapted to accommodate both normal and twisted periodic boundary condi-
tions. This allowed a torque measurement which can be used to measure the cholesteric pitch of a
system directly. For configurations with defects, the measurements were not reliable, and in some
cases, the small absolute value of the torque measurement made the resulting pitch blow up. How-
ever, some simulations indicate that measuring the pitch directly this way is indeed possible, and
could give an accurate result.

Despite the many methods used to reduce the running time of the program, it still turned out
to be an important aspect of this project. By using the distance between two triangles on polyhe-
dra instead of between spheres, the program slowed down much more than anticipated. Moreover,
for the systems of twisted triangular prisms we studied, the time to handle a fixed number of col-
lisions increases as the simulation progresses. Because of the long shape of these particles, there is
a lot of rotational energy in the system, which does not equilibrate the configuration very well. As
an indication, the simulations described in the previous section took multiple weeks.

The algorithm can be improved on in several ways. In general, storing less events could give
an improvement on the time associated with actions in the event tree. For polyhedra, maybe the
algorithm for determining the distance between two triangles can be made more efficient. Another
option is to determine the distance between two polyhedra by using an algorithm called the Gilbert-
Johnson-Keerthi algorithm, or GJK for short. Because of the iterative nature of this algorithm,
we were inclined to use the exact approach. However, the accuracy of the distance between two
particles is less important in the simulation than the efficiency, since a fast program can simulate
many collisions and hence give a more accurate torque measurement. Since we are already using
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nearest neighbour lists, the improvement by using a parallel algorithm would be modest, but for
different systems, this could be an interesting option too.

Once the running time of the program has been improved upon, it would be interesting to do
more simulations to see if the results observed so far are consistent for other systems as well. If the
running time cannot be improved much, it could be worthwhile to equilibrate the configurations
using Monte Carlo simulations with both normal and twisted periodic boundary conditions, and
then only do the torque measurement in EDMD.

In terms of the actual pitch measurement, this could become more accurate if the simulations
are longer. If this is not the case, then possibly the assumption underlying the use of a spherical
moment of inertia is wrong, and it would be better to use an ellipsoidal moment of inertia or even
the “real” moment of inertia based on the actual particle shape.

In Monte Carlo simulations with walls, systems have been observed which have a twist in two
directions (but not at the same time). It would be interesting to see under which conditions they
are stable by using these torque measurements. This is something that we are still investigating.
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Appendix A

Collision resolution

Colliding velocities

Consider the collision of two particles i and j, with mass Mi and Mj , translational velocity ~vi and
~vj , and rotational velocity ~wi and ~wj . Let n̂ be the unit vector orthogonal to the plane of collision.
Let ~ri be the vector from the center of mass of particle i to the point of contact on particle i, and
similarly for particle j. The velocity vector of the point of contact on particle i in the direction of
n̂ is then given by

vi = (~vi + ~ωi × ~ri) · n̂, (A.1)

and similarly
vj = (~vj + ~ωj × ~rj) · n̂. (A.2)

Define ui as the velocity of particle i associated with n̂ after the collision, and similarly for uj . The
relation between vi, vj , ui, and uj is given by the so-called coefficient of restitution.

Coefficient of restitution

The laws for conservation of momentum and energy state that{
Conservation of momentum: Mivi +Mjvj = Miui +Mjuj ,

Conservation of kinetic energy: Miv
2
i +Mjv

2
j = Miu

2
i +Mju

2
j .

From conservation of momentum, it follows that

Mi(vi − ui) = Mj(uj − vj). (A.3)

From conservation of kinetic energy, it follows that

Mi(vi + ui)(vi − ui) = Mj(uj + vj)(uj − vj). (A.4)

Since both particles are moving, vi 6= ui and uj 6= vj . Hence, we can divide equation (A.4) by
equation (A.3) to obtain vi + ui = uj + vj , which means that
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−ui − uj
vi − vj

= 1. (A.5)

We will denote this by saying that the coefficient of restitution of an elastic collision equals one.

Conservation of momentum

Just like ~vi and ~vj describe the translational velocities of particle i and j before the collision, let ~vi
∗

and ~vj
∗ describe the translational velocities of particle i and j after the collision, and similarly for

~w∗
i and ~w∗

j . Conservation of linear momentum states that

Mi~v
∗
i +Mj~v

∗
j = Mi~vi +Mj~vj . (A.6)

This means that there exists an x ∈ R such that

~v∗i = ~vi +
x

Mi
n̂, (A.7)

~v∗j = ~vj −
x

Mj
n̂. (A.8)

The change in angular momentum of a particle is given by the so-called torque exerted on that
particle, which gives conservation of angular momentum of the system. In this case, if Ii and Ij are
the moments of inertia of particles i and j,

~w∗
i = ~wi + I−1

i (~ri × (xn̂)), (A.9)

~w∗
j = ~wj − I−1

j (~rj × (xn̂)). (A.10)

From the coefficient of restitution, we know that

−
(~v∗i + ~ω∗

i × ~ri) · n̂− (~v∗j + ~ω∗
j × ~rj) · n̂

vi − vj
= 1. (A.11)

Equations A.7 until A.11 give us a system of five equations in five unknowns ~v∗i , ~v
∗
j , ~ω

∗
i , ~ω

∗
j , x which

we can solve for x. By inserting equations A.7 until A.10 into equation A.11 and simplifying, we
get

(vi − vj) +

(
1

Mi
+

1

Mj
+
(

(I−1
i (~ri × n̂))× ~ri + (I−1

j (~rj × n̂))× ~rj
)
· n̂
)
x = −(vi − vj). (A.12)

This means that

x =
−2(vi − vj)

1
Mi

+ 1
Mj

+ ((I−1
i (~ri × n̂))× ~ri + (I−1

j (~rj × n̂))× ~rj) · n̂
. (A.13)

Spherical moment of inertia

Let us assume that the particles we are studying have a spherical moment of inertia. Then the
matrices Ii, Ij are diagonal with equality between all diagonal entries. Define Ci = Ii(1, 1) and
Cj = Ij(1, 1).
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It can easily be shown that for all vectors ~a and ~b, the identity ((~a ×~b) × ~a) ·~b = ‖a × b‖2 holds.
Hence, in this case,

x =
−2(vi − vj)

1
Mi

+ 1
Mj

+ C−1
i ‖~ri × n̂‖2 + C−1

j ‖~rj × n̂‖2
. (A.14)

This finishes the derivation of the collision formulas.
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Appendix B

Parallel algorithm

Algorithm 1 Main algorithm

Initialize the system.
Possibly read input.
Initialize the parallel structures.
Divide the system over the processors.
Initialize the real collisions.

While the maximal time has not been reached do
Find local event time.
Communicate the first event time to all other processors.
Find the global next event time.
If this is on the current processor do

Change the characteristics of the involved particles.
Communicate the changed particles to neighbouring processors.
Finish handling the event.

Else do
Possibly receive particle messages.
Process the received particle information:

Update cell lists.
Update oriented bounding boxes.
Update events.

End if
End while

Communicate results.
If this is processor zero do

Output results.
End if
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Algorithm 2 Cell crossing

If a particle crossed to another cell do
If the particle entered a virtual cell do

Remove events with virtual particles.
Else do

Possibly add particle collisions.
Calculate the cell boundary crossing time.

End if
End if



Appendix C

Program documentation

In order to run a simulation, the following characteristics of the system must be given as input.

• Particle shape. Already included shapes are spheres, tetrahedra and twisted triangular prisms.
For other polyhedral shapes, an array has to be filled in describing the endpoints of the
triangles on the shape relative to the center of mass.
• Number of particles. Up to 4,000 particles works on any system. For more particles, depending

on the system, it can be necessary to make some global variables local in order to avoid memory
problems.
• Length of the simulation box in the x-, the y- and the z-direction.
• Required number of collisions or amount of time inside the simulation.
• Whether or not to use nearest neighbour lists.
• Whether or not to use twisted periodic boundary conditions, and if so, in which direction.
• How often the program should print a saved state.

The additional information that is printed in a saved state is the following.

• Current time in the simulation.
• Current number of collisions.
• Whether or not the measurements have begun, and if so, at what time.
• Current pressure and torque.
• Additional information such as the number of events and the average number of iteration

steps for Conservative Advancement.

Given the name of the file, the program can read the starting configuration of the particles from
a file. It can also read all characteristics described above from a saved state file and continue the
simulation from there.
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