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Introduction

Motivation and goals

The study of black holes in anti-de Sitter (AdS) space has been of particular interest since

Maldacena conjectured the celebrated AdS/CFT correspondence [1], a duality between quantum

gravity in anti-de Sitter space and gauge theories on its conformal boundary. The weak version

of the correspondence relates the strong coupling limit of a gravity theory to the weak coupling

limit of a gauge theory. This means we can use the AdS/CFT correspondence to translate a

hard problem in the strongly coupled system in one theory to an easier problem in the weakly

coupled system in the dual theory. The duality is not yet fully understood and work is still to

be carried out to build a complete dictionary that takes us from one description to the other.

Besides the motivation from the AdS/CFT correspondence, black holes in AdS are interesting

in their own right because of their stability against radiation. It is known that a black hole

cannot be in stable thermal equilibrium with an indefinitely large reservoir of energy [2]. By

putting it in a finite box, as is the case in AdS space, we can make the black hole come to a

thermal equilibrium where statistical canonical ensemble techniques can be employed to study

macroscopic behavior of the black hole.

The main goal of the research is to determine whether or not there are BPS rotating black holes

in N = 1, D = 4 AdS supergravity. There are hints that the N = 1 supersymmetry algebra for

AdS in four dimensions permits 1
2 -BPS states at the bound E = |J | [3]. Recent literature [4]

suggests that for N = 2 with zero magnetic and electric charge, BPS states occurs at the same

bound as [3], which correspond to the ultra spinning limit. As a result, we aim to determine

the explicit preserved supersymmetries of rotating black holes in the ultra spinning limit. The

approach taken to attain the goal is outlined in the next section.
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CONTENTS

Outline

We will first review some background on black holes, in particular the Kerr solution in both flat

and AdS space. This will be done in chapter one.

In chapter two a brief introduction to supersymmetry, in particular the minimal (N = 1) case

will be given. We will discuss what supersymmetric and BPS states are. We will see that the

superalgebra in Minkowski space for N = 1 does not allow for massive BPS states. The N = 1

AdS superalgebra and its BPS bound are also discussed.

Chapter three is reserved for introducing N = 1 supergravity. Supergravity in both flat and AdS

space will be examined. We will clarify the connection between the BPS bound which comes

from the superalgebra and the Killing spinor equation. The relationship between Killing vectors

and Killing spinors will also be examined.

Chapter five presents the work in progress towards solving for the Killing spinor equation. We

will first examine the N = 1 Kerr black hole in Minkowski space to confirm the non-existence of

BPS Kerr black holes in flat space. This is in agreement with the fact that the superalgebra in

flat space does not allow for massive BPS states. We then investigate Kerr black holes in AdS

and present our current working in solving for the complete set of Killing spinors.
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Chapter 1

Review of black holes and the

Kerr solution

In this chapter a brief introduction to black hole, in particular the Kerr solution, will be given

to pave the way to our discussion in the next chapter. Treatment will first be carried out in flat

Minkowski spacetime and then in anti-de Sitter space.

1.1 The Einstein equation

Black holes emerged as possible solutions to the Einstein equation for general relativity. The basic

idea of general relativity is that the geometry of spacetime is dynamical: spacetime geometry is

determined by the distribution of matter and conversely, the motion of matter is influenced by

the geometry of spacetime. Let us quickly review how one arrives at the Einstein equation.

Our spacetime is the usual pseudo-Riemannian manifold with dynamical metric gµν and the

(−+++) signature. All curvature properties of the metric are encoded in the Riemann curvature

tensor Rµνρσ, which is expressed in terms of second order derivatives of gµν . It will vanish if

and only if the metric is perfectly flat. If we restrict the action of general relativity to be at

most quadratic in derivatives then the simplest possible choice for a gravitational action is the

Einstein-Hilbert action

SEH =

∫ √
−g(R− 2Λ) d4x, (1.1)

where Λ is the cosmological constant. The Einstein-Hilbert action, together with the matter

action SM , gives the complete action that describes both gravitational fields and matter. Upon
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1.2. BLACK HOLES IN FLAT SPACETIME

defining the energy-momentum tensor of matter to be

Tµν =
−2√
−g

δSM
δgµν

, (1.2)

and varying the combined action SEH +SM with respect to the metric, we arrive at the Einstein

equation

Rµν −
1

2
gµν(R− 2Λ) = Tµν . (1.3)

In vacuum, the energy-momentum tensor vanishes. Upon taking the trace (i.e. contracting both

sides of equation (1.3) with gµν) the Einstein equation takes the form

Rµν = Λgµν . (1.4)

1.2 Black holes in flat spacetime

The Schwarzschild black hole was the first exact solution to the vacuum Einstein equation with

vanishing cosmological constant, and hence Rµν = 0. The Schwarzschild metric takes the form

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2. (1.5)

The event horizons are located at the zeros of grr. In the case of the Schwarzschild metric there

is only one event horizon, located at r = 2M .

While the Schwarzschild solution is simple, it is not particularly interesting due to its spherical

symmetry. Black holes in nature are expected to form due to stellar collapse and since all stars

have angular momentum, we expect that the gravitational endstate of such collapse would instead

be a rotating black hole. The Kerr metric is the unique axisymmetric solution to the Einstein

equation in vacuum. The Kerr metric in the Boyer-Lindquist coordinates is given by [5] and

takes the form

ds2 = −∆

ρ2
(dt− asin2θdφ)2 +

ρ2

∆
dr2 + ρ2dθ2 +

sin2θ

ρ2

(
adt− (r2 + a2)dφ

)2
, (1.6)

where

∆ = ∆(r) = r2 − 2Mr + a2 and ρ2 = ρ2(r, θ) = r2 + a2cos2θ. (1.7)

The two constants, M and a, parameterise the possible solutions. The mass, M , is the Komar

energy of the black hole and a is the angular momentum per unit mass, a = J/M , where J is

the Komar angular momentum.

Kerr black holes have two distinct event horizons, located at the zeros of ∆, i.e., at r± =

M ±
√
M2 − a2.
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1.3. ANTI-DE SITTER SPACETIME

An important concept which will be relevant to later chapters is the concept of global timelike

Killing vectors. Killing vectors give the direction along which the metric is invariant [6]. Since

the Kerr metric is independent of both t and φ we can immediately deduce the existence of two

Killing vector fields in Kerr geometry: the time translation Killing vector ∂t and the azimuthal

Killing vector ∂φ. In Boyer-Lindquist coordinates they correspond to

Kµ = (1, 0, 0, 0) and Rµ = (0, 0, 0, 1). (1.8)

The Komar energy and Komar angular momentum mentioned earlier are the conserved quantities

associated with the time translation and azimuthal Killing vector respectively.

It can be shown that Kµ and Rµ are the only two linearly independent Killing vectors admitted

by the Kerr metric [7], hence any Killing vector of the Kerr metric can be expressed as a linear

combination of them. The norm of a generic Killing vector ξµ = Kµ + αRµ for constant α is

given by

ξ2 = gµνξ
µξν = gtt + 2α gtφ + α2gφφ. (1.9)

Since gφφ → +∞ and gtt → −1 at spatial infinity, ξµ is spacelike at spatial infinity unless α = 0.

As we are interested in timelike Killing vectors, we set α = 0 and recover the Killing vector

associated with time translation ξµ = Kµ.

The time translation Killing vector Kµ has norm

K2 = gµνK
µKν = gtt = −

(
1− 2Mr

ρ2

)
= −r

2 − 2Mr + a2cos2θ

ρ2
. (1.10)

This quantity is timelike at spatial infinity however as we travel towards the black hole past

r = M +
√
M2 − a2cos2θ > r+ it becomes spacelike. The region of spacetime outside the outer

event horizon where ∂t is spacelike is called an ergoregion and the boundary at which ∂t is

lightlike is called an ergosphere. More explicitly, the ergoregion is found to be

r+ ≤ r ≤M +
√
M2 − a2cos2θ, (1.11)

that is, it extends from the outer horizon to the surface of gtt = 0.

As a result, there is no global timelike Killing vector for Kerr black holes in flat space. This is

an important result which will be referred back to later in our discussion of BPS black holes.

1.3 Anti-de Sitter spacetime

Let us begin with a review of AdS space before discussing Kerr-AdS black holes. AdS space is a

maximally symmetric solution of the Einstein equation with negative cosmological constant

Rµν = Λgµν , Λ = − 3

l2
< 0. (1.12)
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1.4. KERR BLACK HOLES IN ANTI-DE SITTER SPACE

AdS space in d dimensions can be thought of as a submanifold of R2,d−1. Let us recall that

R2,d−1 is endowed with the following metric

ds2 = −(dx0)2 − (dxd)2 +

d−1∑
i=1

(dxi)2. (1.13)

The d-dimensional AdS space, AdSd, is then defined as the set of points (x0, ..., xd) that satisfy

− (x0)2 − (xd)2 +

d−1∑
i=1

(xi)2 = −l2. (1.14)

There are many ways to write down the metric for AdS, we will work in particular with AdS4 in

static coordinates (t, r, θ, φ). The AdS4 metric is given by [8] and takes the form

ds2 = −
(

1 +
r2

l2

)
dt2 +

(
1 +

r2

l2

)−1

dr2 + r2dΩ2, (1.15)

where l =
√
−3/Λ is the AdS radius, a cosmological length associated with the cosmological

constant Λ. Any metric that asymptotically approaches the metric in equation (1.15) is called

asymptotically AdS.

1.4 Kerr black holes in anti-de Sitter space

How might a black hole analogous to the Kerr black hole look like in AdS space? The Kerr-AdS

metric in Boyer-Lindquist coordinates [9] takes the form

ds2 = −∆r

ρ2

(
dt− a

Σ
sin2θ dφ

)2

+
ρ2

∆r
dr2 +

ρ2

∆θ
dt2 +

∆θ

ρ2
sin2θ

(
adt− r2 + a2

Σ
dφ
)2

, (1.16)

where

∆r = (r2 + a2)
(
1 +

r2

l2
)
− 2Mr , Σ = 1− a2

l2
, (1.17)

∆θ = 1− a2

l2
cos2θ , ρ2 = r2 + a2cos2θ.

The parameter M can no longer be interpreted as the Komar energy. Rather, the Komar energy

is determined to be M/Σ2 [8]. Similarly, the Komar angular momentum is J = aM/Σ2. Also

note that the rotation parameter a is constrained by the AdS radius, a2 < l2. This is because the

metric is singular when a2 = l2 and is inconsistent with the initial pseudo-Riemannian signature

when a2 > l2. Although we skip the derivation of this metric, it can be checked that in the limit

l→∞ we recover the Kerr metric in flat space and in the limit a→ 0 , M → 0 we recover empty

AdS space.
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1.4. KERR BLACK HOLES IN ANTI-DE SITTER SPACE

Upon examining the zeros of the horizon function ∆r, we can determine (see section 1.6) the

critical mass parameter Mextr

Mextr(a) =
l

3
√

6

(√(
1 +

a2

l2

)2

+
12a2

l2
+

2a2

l2
+2

)
×

(√(
1 +

a2

l2

)2

+
12a2

l2
− a

2

l2
−1

) 1
2

, (1.18)

such that the metric exhibits a naked singularity for M < Mextr. The metric represents a black

hole with two distinct event horizons for M > Mextr. For M = Mextr the horizon function ∆r

has a double zero and the black hole is extremal. The value for the critical mass parameter we

determined here agrees with result from earlier work by Caldarelli and Klemm [10]. We will

focus on the case M ≥Mextr, which guarantees the existence of an event horizon at r = r+ when

solving for the largest zero of ∆r.

By checking the coefficients of the metric, we see that the two Killing vectors of this space are

again the Killing vectors associated with time translation ∂t and axial symmetry ∂φ.

As with the case of asymptotically flat Kerr, we would like to determine if asymptotically AdS

Kerr black holes also possess an ergoregion. This can be done by repeating exactly what we did

for flat Kerr, i.e. solving explicitly for gtt = 0, which gives the location of the ergosphere. There

is, however, a quicker way to confirm the existence of an ergoregion without the need to solve

for gtt = 0, which is a quartic equation in r in Kerr-AdS.

This can be done by noticing that

gtt = −∆r

ρ2
+

∆θ

ρ2
a2sin2θ = − 1

ρ2
(∆r −∆θ a

2sin2θ). (1.19)

Solving for gtt = 0 is thus equivalent to solving for

∆r −∆θ a
2sin2θ = 0. (1.20)

Now we recall that ∆θ = 1 − a2

l2 cos2θ, which is positive for all values of θ since a2 < l2. This

implies that ∆θ a
2sin2θ ≥ 0 for all θ and equality occurs only at θ = 0, π/2.

The fact that ∆θ a
2sin2θ ≥ 0 has the effect of shifting the graph of ∆r −∆θ a

2sin2θ = 0 down

the vertical axis as compared to the graph of ∆r = 0, as is illustrated in figure 1.1. This will

open a gap in the r-axis between the largest zero of ∆r = 0 and the corresponding largest zero of

∆r−∆θ a
2sin2θ = 0. As a result, the existence of the largest event horizon r+, as guaranteed by

M ≥ Mextr, ensures the existence of rerg, the largest zero of equation (1.20) and that rerg ≥ r+

with equality occurs at θ = 0, π/2. This confirms the existence of an ergoregion for Kerr black

holes in AdS space. The ergoregion is given by

r+ ≤ r ≤ rerg. (1.21)
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1.5. ULTRA-SPINNING BLACK HOLES

−2 −1 1 2 3 4

−20

−10

10

20

r+ rerg r

∆r

∆r −∆θ a
2sin2θ

Figure 1.1: Schematic illustration of the horizon function ∆r and ∆r − ∆θ a
2sin2θ. The effect

of shifting the graph of ∆r down by ∆θ a
2sin2θ is the movement of r+ to rerg ≥ r+. The gap

between r+ and rerg (coloured in red) represents the ergoregion.

It should be noted that for Kerr-AdS gφφ → +∞ and gtt → −∞ at spatial infinity. This means

we cannot set α = 0 in ξµ = Kµ + αRµ when searching for global timelike Killing vectors

like we did for flat Kerr. As a result, in contrast to the case of asymptotically flat Kerr, the

existence of an ergoregion does not preclude the existence of a global timelike Killing vector. It

was determined that when the horizon radius is larger than the AdS radius, i.e. r+ > l, the

black hole admits a global Killing vector. This result is worked out in [11].

1.5 Ultra-spinning black holes

Since we suspect that the BPS bound is satisfied by the ultra-spinning limit a → l, we should

be working in a coordinate system where the metric is well-defined in that limit. The Kerr-AdS

metric in Boyer-Lindquist coordinates given in equation (1.16) is clearly singular in the limit

a→ l. Fortunately, recent works by Caldarelli et al. [12, 13] show that one can do a coordinate

transformation of the form

sin θ =
√

Σ sinh2 σ
2 , (1.22)

on the metric (1.16) then the resulting metric has a regular a→ l limit

ds2 =
dr2

V (r)
+
l2 + r2

4

(
dσ2 + sinh2 σdφ2

)
− V (r)

(
dt− l sinh2 σ

2 dφ
)2

, (1.23)

where

V (r) = 1 +
r2

l2
− 2Mr

l2 + r2
. (1.24)
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1.6. DERIVATIONS

As a sanity check, we compute the critical mass parameter for the new metric. It was found to

be Mextr = 8
3
√

3
l, which agrees with the limit a→ l of the result in equation (1.18).

It should be noted that the result of taking the limit is not unique and depends crucially on how

the limit is performed. The procedure described by [12] is the only known procedure in four

dimensions. The limit is taken while keeping the horizon radius r+ fixed and simultaneously

zooming into the poles of 1
a2−l2 .

1.6 Derivations

For section 1.4

Derivation of the critical mass parameter Mextr in equation (1.18):

We would like to find the critical value Mextr at which the horizon function ∆r, which is quartic

in r, has a double zero.

The zeros of ∆r are also the zeros of
∆r

l2
and therefore, we can solve for the zeros of

∆r

l2
since

it can be put in a more suggestive form

∆r

l2
= r̃4 + r̃2(1 + ã2)− 2M̃ r̃ + ã2, (1.25)

where

r̃ =
r

l
, ã =

a

l
, M̃ =

M

l
. (1.26)

Demanding that
∆r

l2
has a double root means equating (1.25) with a generic quartic which has

a double root.

r̃4 + r̃2(1 + ã2)− 2M̃ r̃ + ã2 = (r̃ −A)2(r̃2 +Br̃ + C)

= r̃4 + r̃3(B − 2A) + r̃2(A2 − 2AB + C) + r̃(A2B − 2AC) +A2C.

This leads to

B − 2A = 0

A2 − 2AB + C = 1 + ã2

A2B − 2AC = −2M̃

A2C = ã2

⇒



B = 2A

C − 3A2 = A2C + 1

M̃ = A(C −A2)

A2C = ã2

⇒



B = 2A

C2 − C(1 + ã2)− 3ã2 = 0

M̃ = A(C −A2)

3A4 +A2(1 + ã2)− ã2 = 0.

Upon solving the two quadratic equations for A and C under the conditions that A,C ≥ 0 (since

ã2, M̃ ≥ 0) we get unique solutions for A and C

C =
1

2

(
(1 + ã2) +

√
(1 + ã2)2 + 12ã2

)
(1.27)

A =
1

6

(
− (1 + ã2) +

√
(1 + ã2)2 + 12ã2

)
(1.28)
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1.6. DERIVATIONS

Then M̃ at which
∆r

l2
has double zeros is

M̃extr =
1

3
√

6

(
2(1 + ã2) +

√
(1 + ã2)2 + 12ã2

)
×
(
− (1 + ã2) +

√
(1 + ã2)2 + 12ã2

) 1
2

(1.29)

It is then straight forward to calculate Mextr from M̃extr using equation (1.26).
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Chapter 2

Introduction to supersymmetry

and BPS states

Supersymmetry, in very simple terms, is a spacetime symmetry between particles of integer spin

(bosons) and particles of half integer spin (fermions). Since it is a spacetime symmetry (relating

particles of different spins) we begin by reviewing some basics about spacetime symmetries.

2.1 The Poincaré algebra

The isometries, mappings that preserve the metric, of our flat Minkowski spacetime are elements

of the Poincaré group, which includes Lorentz transformations and translations. For Minkowski

spacetime we take the convention of a mostly plus signature

ηµν = diag(−1,+1,+1,+1).

Lorentz transformations and translations act on the coordinates as

xµ → Λµν x
ν + aµ,

where the matrix Λµν is an element of the Lorentz group SO(1, 3) specifying a Lorentz transfor-

mation and aµ is a vector parameterising a translation.

The Lorentz group has six generators, which consist of three spatial rotations Ji and three boosts

Ki, i = 1, 2, 3, which satisfy the following commutation relations

[Ji, Jj ] = iεijkJk , [Ji,Kj ] = iεijkKk , [Ki,Kj ] = −iεijkJk. (2.1)

12



2.2. THE SUPERALGEBRA AND BPS STATES IN FLAT SPACE

For later purposes let us introduce a four-vector notation for the generators. Since there are six

generators for the Lorentz group, we can express them in terms of an anti-symmetric tensor Mµν

where µ = 0, 1, 2, 3 as follows

M0i = Ki , Mij = εijkJk , Mµν = −Mνµ. (2.2)

The matrices Mµν are generators of the Lorentz group in the sense that any element of the group

can be expressed uniquely as

Λκσ = exp
(
− i

2
ωµν(Mµν)κσ

)
, (2.3)

where ωµν is a real antisymmetric matrix which contains the rotation angles and boost parame-

ters, and Mµν are 4× 4 matrices satisfying

(Mµν)κσ = i(δµκδ
ν
σ − δµσδνκ). (2.4)

There is a distinction to be made between elements of a group and those of its associated algebra.

For any group G, some group elements g ∈ G can be written as g = exp(iξata) = 1+iξata+O(ξ2)

where the ta matrices are the generators of the group. The generators are in an algebra, because

we can add and multiply them, whereas the group elements are in a group, because we can only

multiply them. The Lorentz group belongs to a class of groups called Lie groups which have an

infinite number of elements but a finite number of generators.

The commutation relations in (2.1) can then be written in a more compact way

[Mµν ,Mρσ] = −iηµρMνσ − iηνσMµρ + iηµσMνρ + iηνρMµσ. (2.5)

This is the commutation relation that defines the Lorentz algebra. The symmetry algebra that

describes Minkowski spacetime is the Poincaré algebra which is simply the Lorentz algebra to-

gether with the spacetime translation generators Pµ. The Poincaré algebra is defined as follows

[Mµν ,Mρσ] = −iηµρMνσ − iηνσMµρ + iηµσMνρ + iηνρMµσ,

[Pµ, Pν ] = 0, (2.6)

[Mµν , Pρ] = −iηρµPν + iηρνPµ.

2.2 The superalgebra and BPS states in flat space

So far we have only discussed spacetime symmetry, another type of symmetry that is allowed

by the S-matrix is internal symmetry. An example of internal symmetry is the SU(3) gauge

symmetry of the strong interactions which transforms quark states of different colour into each

13



2.2. THE SUPERALGEBRA AND BPS STATES IN FLAT SPACE

other. Note that internal symmetries do not change the Lorentz index, that is, an SU(3)c rotation

changes the colour of a quark, not its spin. There have been attempts to combine all known

symmetries into a single group, however the idea was abandoned after a series of no-go results

that led to the Coleman-Mandula theorem, which states that in a generic quantum field theory,

the most general symmetry enjoyed by the S-matrix is

G = GPoincaré ×Ginternal. (2.7)

The Coleman-Mandula theorem can be evaded by weakening one of its assumptions. One such

assumption is that the symmetry algebra only involves commutators of bosonic generators. If

we allow for fermionic generators, which satisfy anti-commutation relations, then we can enlarge

the group of allowed symmetries. Haag, Lopuskanski and Sohnius later showed that the most

general symmetry of the S-matrix is

G = GsuperPoincaré ×Ginternal, (2.8)

where the superPoincaré algebra is, as we will see, a specific extension of the Poincaré algebra

which includes transformations that turn bosons into fermions and vice versa.

We will include N such fermionic generators QIα, I = 1, . . . ,N together with their Hermitian

conjugates Q̄Iα̇ into the algebra. Note that here α and α̇ are both spinor indices and they

transform correspondingly in the representations ( 1
2 , 0) and (0, 1

2 ) of the Lorentz group.

A supersymmetry algebra with one fermionic generator Qα is called N = 1 supersymmetric,

with two fermionic generators Q1
α, Q

2
α called N = 2 supersymmetric, etc. Since a Weyl spinor in

D = 4 has four real components, a supersymmetric theory in D = 4 with N = 1 supersymmetry

has four real supercharges.

The N = 1 supersymmetry algebra, besides the commutators of (2.6), contains the following

(anti)-commutation relations

{Qα, Q̄β̇} = 2σµ
αβ̇
Pµ

{Qα, Qβ} = {Q̄α̇, Q̄β̇} = 0

[Pµ, Qα] = [Pµ, Q̄α̇] = 0 (2.9)

[Mµν , Qα] = i(σµν) β
α Qβ

The supersymmetry algebra can be extended to have more fermionic generators. If there are N
generators, the algebra is enlarged to

{QIα, Q̄Jβ̇} = 2σµ
αβ̇
Pµδ

IJ

{QIα, QJβ} = εαβZ
IJ (2.10)
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2.2. THE SUPERALGEBRA AND BPS STATES IN FLAT SPACE

where Z is the central charge of the algebra, in the sense that it commutes with all other gener-

ators.

From the anti-commutation relation in (2.10) we can deduce that ZIJ is anti-symmetric. This

means that ZIJ only exists in algebras with extended supersymmetry, i.e. when N ≥ 2.

Two important concepts in a supersymmetric theory that will be relevant to later discussion are

the concepts of supersymmetric and BPS states. Let us first discuss supersymmetric states.

Consider an arbitrary state |ψ〉. Using the relevant anti-commutation relation we get

2σµαα̇〈ψ|Pµ|ψ〉 = 〈ψ|{QIα, Q̄Iα̇}|ψ〉 = ||QIα|ψ〉||2 + ||Q̄I α̇|ψ〉||2 ≥ 0. (2.11)

Summing over α, α̇, noticing that σ0 is the only Pauli matrix with non-vanishing trace, gives

4〈ψ|P0|ψ〉 =
∑
α

||Qα|ψ〉||2 +
∑
α̇

||Q̄α̇|ψ〉||2 ≥ 0. (2.12)

If the state is massless we can find the lightcone frame where Pµ = (E, 0, 0, E). If it is massive

we can find its rest frame where Pµ = (m, 0, 0, 0). P0, therefore, gives the energy of the state.

Equation (2.12) implies that

E ≥ 0 (2.13)

for any state |ψ〉 in a supersymmetric theory. Furthermore,

E = 0 ⇐⇒ Qα|ψ〉 = Q̄α̇|ψ〉 = 0 ∀ α, α̇. (2.14)

This means a zero energy state must be invariant under all supersymmetry generators and this

is precisely what we mean by supersymmetric state.

Let us move on and discuss what it means to be BPS states. Notice that in the discussion

of supersymmetric states we have implicitly taken I = J , that is, the case of trivial central

charge ZIJ . If we now take the central charge into account, let us consider the simplest case of

such extension, the case N = 2. Consider the expectation value of a linear combination of the

supercharges as follow

〈ψ|
{
Q1
α + εαβ(Q2

β)†, (Q1
α + εαβ

(
Q2
β)†
)†}|ψ〉 = ||

(
Q2
β)†
)
|ψ〉||2 + ||

(
Q2
β)†
)†|ψ〉||2 ≥ 0 (2.15)

The left hand side, however, can be expressed as

〈ψ|
{
Q1
α + εαβ(Q2

β)†, (Q1
α + εαβ

(
Q2
β)†
)†}|ψ〉

= 〈ψ|{Q1
α, (Q

1
α)†}+ εαβ{Q1

α, Q
2
α}+ εαβ{(Q1

α)†, (Q2
α)†}+ {Q2

α, (Q
2
α)†}|ψ〉

= 8〈ψ|P0|ψ〉+ 4〈ψ|Z12|ψ〉 (2.16)
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2.3. THE SUPERALGEBRA AND BPS STATES IN ANTI-DE SITTER SPACE

The right hand sides of equations (2.15) and (2.16) give

E ≥ 1

2
Z12 (2.17)

Generalisation to extended supersymmetry gives

E ≥ 1

2
|Zr| , ∀r = 1, ..., N2 . (2.18)

where we have relabeled the central charges as Z12 = Z1, Z
34 = Z2, . . .

States that saturate this bound, i.e. E = 1
2 |Zr| ∀r = 1, ..., N2 are called 1

2BPS.

In this sense supersymmetric states (E = 0 ⇐⇒ Qα|ψ〉 = Q̄α̇|ψ〉 = 0) can be seen as complete

BPS. For N = 1, since the central charge is trivially realised, ZIJ = 0, the 1
2 -BPS bound reduces

to E ≥ 0.

2.3 The superalgebra and BPS states in anti-de Sitter space

The relevant anti-commutation relation of the N = 1 superalgebra in AdS4 is given by [3] in

terms of a Majorana spinor supercharge Q, the four-vector Pµ that generates translation and the

Lorentz generators Mµν as follows

{Qα, Qβ} = (Cγµ)αβPµ +
1

2
(Cγµν)αβMµν (2.19)

where C is the charge conjugation matrix. Note that instead of using the two-component Weyl

spinor formalism as in the earlier section we have adopted the four-component Majorana formal-

ism to be consistent with the authors of [3].

The anti-commutation relation can be written more compactly as

{Qα, Qβ} =
1

2
MAB(CΓAB)αβ (2.20)

where

ΓA = (γµ, γ5) , MAB = −MBA , Mµ5 = Pµ (2.21)

and A,B = 0, 1, 2, 3, 5. The convention we follow is

{ΓA,ΓB} = 2ηAB (2.22)

where η is the flat metric on E(2,4) with signature (−+++−). One important difference between

the Poincaré supersymmetry algebra and the AdS supersymmetry algebra is that P 2 commutes

with all elements of the former and is therefore a Casimir operator. The Casimir operators for

the AdS superalgebra is given by

c2 =
1

2
MABM

AB (2.23)

c4 = MA
BM

B
CM

C
DM

D
A (2.24)
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2.3. THE SUPERALGEBRA AND BPS STATES IN ANTI-DE SITTER SPACE

Similar to the energy condition E ≥ 0 for physical states in the Poincaré superalgebra that we

derived in equation (2.13), the condition for physical states in AdS superalgebra is

c4 − c22 ≥ 0 (2.25)

A complete treatment can be found in [3], however here we only quote the results.

Complete BPS states are those that saturate the bound in equation (2.25), that is, c4 − c22 = 0.

This corresponds to states with E = 0 where E is the eigenvalue of M05 = P0.

1
2 -BPS states are those for which E ≥ |J | where J is the eigenvalue of M23, which gives the

angular momentum around the 1-axis. This suggests that, unlike the case in flat space, the

superalgebra in AdS permits 1
2 -supersymmetric states with non-vanishing angular momentum

J . This bound coincides with the bound a ≤ l, thus 1
2 -BPS states, if in existence, will occur in

the ultra spinning limit a→ l.

The angular momentum J arises from the form of the anti-commutation relation in the AdS

superalgebra, which involves both Pµ and Mµν as given in equation (2.19). In contrast, the

anti-commutation relation in the Poincaré supersymmetry algebra involves only Pµ, as given in

equation (2.9).
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Chapter 3

N = 1, D = 4 supergravity and

BPS states

After having introduced the ideas of global supersymmetry in chapter two, we will now begin

to study how to combine global supersymmetry, Lorentz invariance and gauge principles to

formulate supergravity, a local theory of supersymmetry.

We will start by constructing a free spin- 3
2 field and then couple it to gravity to obtain the

pure N = 1, D = 4 supergravity consisting of the graviton and one Majorana spinor gravitino.

In doing this many important features of the theory, in particular the transformation rules

for individual fields, emerge. A brief discussion of supergravity in anti-de Sitter space is also

presented. Finally, we will examine BPS states in the context of supergravity.

3.1 A local theory of the free spin-3
2 field

Supergravity is the gauge theory of global supersymmetry: the parameter of transformation of

global supersymmetry is a constant spinor εα, in supergravity it becomes a general function of

spacetime εα(x). The associated gauge field is a spin- 3
2 vector-spinor quantity ψµα(x) called a

gravitino.

Motivated by a general gauge transformation of the form Aµ(x)→ Aµ(x) + ∂µλ(x) and a global

supersymmetry transformation θα → θα + εα we demand that the vector-spinor quantity ψµα(x)

transforms as

ψµ,α(x)→ ψµ,α(x) + ∂µεα(x). (3.1)
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3.2. VIELBEIN FORMALISM

We wish to construct an action which is (i) invariant under this gauge transformation, (ii) Lorentz

invariant, (iii) Hermitian and (iv) contains term with first order derivative. It is straight forward

to see that the action

S 3
2

= −
∫
dDx ψ̄µγ

µνρ∂νψρ, (3.2)

satisfies these requirements. The equation of motion is

γµνρ∂νψρ = 0. (3.3)

Note that in both equation (3.2) and (3.3) we have suppressed the spinor index α on the gravitino.

It is important to keep this in mind, particularly since we will soon review the vielbein formalism

to couple a fermionic quantity to curved space.

3.2 Vielbein formalism

One key issue we need to address is how to couple fermions to gravity. Normally for bosonic fields

the effects of gravity are taken into account by the simple replacements {∂µ, ηµν} → {∇µ, gµν}
in the matter Lagrangian. The same replacements, however, do not work in the case of fermionic

fields. Since we know how to work with fermions in flat Minkowski spacetime, we can try to

formulate our gravity theory using locally flat coordinates. More explicitly, we will rely the

existence of a locally inertial frame, one for which all physical laws become those known from

Minkowski spacetime, to build our theory. Such formalism is called the vielbein formalism and

fortunately for our case, a pseudo-Riemannian metric in four dimensions, the existence of such

coordinates (often known as local inertial coordinates) is guaranteed [6].

The conventional approach to gravity uses partial derivatives as a natural basis for the tangent

space Tp at a point p.

ê(µ) = ∂(µ). (3.4)

A four-vector V in the tangent space can be written as

V = V µê(µ) = (V0, V1, V2, V3). (3.5)

Similarly, the cotangent space, denoted by T ∗p , is spanned by the differential elements

ê(µ) = dx(µ). (3.6)

Since we wish to couple fermions to gravity, let us construct a new set of orthonormal basis

vectors êa that is locally flat, i.e. in these coordinates the metric is given by

ds2 = ηab de
a deb, (3.7)
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3.2. VIELBEIN FORMALISM

where η = diag(−1,+1,+1,+1). We now introduce the vielbein fields (or frame fields) eaµ(x) by

dea =
∂ea

∂xµ
dxµ ≡ eaµ(x)dxµ. (3.8)

We can thus view the vielbeins eaµ(x) as the transformation matrix between the usual coordinates

xµ and the inertial coordinates ea or equivalently as a set of orthonormal vector in T ∗p . Note

that the new basis is indexed by Latin letters rather than Greek because it is not derived from

any coordinate system.

The inverse vielbein eµa can be define analogously as

dxµ =
∂xµ

∂ea
dea ≡ eµa(x)dea. (3.9)

If we check explicitly,

dea = eaµdx
µ = eaµe

µ
b de

b, (3.10)

that is, eaµe
µ
b = δab . Thus, the vielbein and inverse vielbein are defined consistently. Vielbeins are

often considered to be the square root of the metric tensor due to

gµν(x) dxµdxν = ds2 = ηab de
adeb = ηab e

a
µ(x)ebν(x) dxµdxν . (3.11)

Hence

gµν(x) = eaµ(x) ηab e
b
ν(x). (3.12)

Equation (3.12) gives the general relation between the metric and a frame field. In general, for

a given metric tensor gµν(x), the frame field eaµ(x) is not unique. Let us check this explicitly.

Given any matrix Λab(x) which leaves ηab invariant, that is, given a local Lorentz transformation,

we can construct another frame field that also satisfies (3.12), namely

e′aµ (x) = Λ−1a
b(x)ebµ(x). (3.13)

As a result, all choices of frame fields that are related by local Lorentz transformations are

equivalent. We must therefore insist that the frame field and all geometrical quantities derived

from it transform covariantly with respect to local Lorentz transformations. It is this requirement

that will allow us to derive the correct covariant derivative acting on a fermionic quantity. We

will now derive this explicitly.

Since a one-form vielbein field transforms as

ea → Λ−1a
be
b, (3.14)

the differential two-form dea should transform as

dea → d(Λ−1a
b e
b) = (dΛ−1)abe

b + (Λ−1)abde
b. (3.15)

20



3.3. N = 1 SUPERGRAVITY IN FLAT SPACE

The first term, (dΛ−1)abe
b, spoils the covariance we wish to keep. To compensate for the term

induced by spacetime dependence of Λ−1(x), in a manner completely analogous to general rela-

tivity, we have to introduce a new term with transformation properties that will make the sum

transform covariantly. It can be verified that

dea + ωab ∧ eb ≡ T a, (3.16)

transforms as a vector under local Lorentz transformation if the new term ωab transforms as

ωab → (Λ−1)ac dΛc b + (Λ−1)ac ω
c
d Λdb. (3.17)

Since a spinor transforms under the local Lorentz transformation as

ψα(x) → exp
(
− 1

4
λab(x)γab

)
ψα(x), (3.18)

the Lorentz covariant derivative can be found to be

Dµψα(x) =
(
∂µ +

1

4
ωabµ (x)γab

)
ψα(x). (3.19)

For quantities with mixed indices, those that need to transform covariantly under both local

Lorentz and general coordinate transformations, the covariant derivative is given by

∇µψνα = Dµψνα − Γρµνψρα. (3.20)

Comparing to (3.19) we can see that covariant indices are contracted with the usual affine

connection Γρµν whereas vielbein indices are contracted with ωaµ b. ∇µ is covariant with both

local Lorentz and general coordinate transformations.

3.3 N = 1 supergravity in flat space

We have gathered the machinery needed to couple the free spin- 3
2 to curved space. Covariantis-

ing the equation of motion with respect to both the local Lorentz transformation and general

coordinate transformation turns the equation of motion (3.3) into

γµνρ∇νψρ = 0, (3.21)

where the partial derivative ∂ν has been replaced by the general covariant derivative ∇ν , which

contains the spin connection ωabµ and the affine connection Γρµν . Let us first assume there is no

torsion, therefore the affine connection becomes symmetric in the two lower indices µν. When

contracting with the antisymmetric γµνρ the affine connection will vanish. The general covariant

derivative will then reduce to a Lorentz covariant derivative and the equation of motion becomes

γµνρDνψρ = 0, (3.22)
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3.4. N = 1 SUPERGRAVITY IN ANTI-DE SITTER SPACES

which gives the action for spin- 3
2 in curved space as

S 3
2

= − 1

2k2

∫
dDxeψ̄µγ

µνρDνψρ. (3.23)

The gauge transformation of the gravitino is now

δψµ = Dµε(x) = ∂µε+
1

4
ωµabγ

abε. (3.24)

It can be shown [14] that the variation of the spin- 3
2 action will cancel against the variation of

the Einstein-Hilbert action to linear order in ψµ

S2 =
1

2k2

∫
dDx

√
−gR(g) =

1

2k2

∫
dDxeeaµebνRµνab(ω), (3.25)

provided that the vielbein transforms as

δeaµ =
1

2
ε̄γaψµ. (3.26)

The complete action is

S = S 3
2

+ S2. (3.27)

where S 3
2

and S2 are given in equation (3.23) and (3.25).

3.4 N = 1 supergravity in anti-de Sitter spaces

In this section we will carry out our discussion in AdS space. There are two crucial steps in

obtaining the AdS supergravity action from the complete action in flat space. The first step is

to add a cosmological term to (3.27), this is equivalent to replacing R with R− 2Λ. The second

step is to replace the Lorentz covariant derivative Dµ with a modified covariant derivative which

is appropriate for the de Sitter group [15] of the form

D̂µ ≡ Dµ −
1

2l
γµ. (3.28)

The supersymmetric action for AdS gravity is given by [14] and takes the form

S =
1

2κ2

∫
dDx e

(
R− ψ̄µγµνρD̂νψρ +

(D − 1)(D − 2)

l2

)
. (3.29)

3.5 BPS states in N = 1, D = 4 supergravity

To motivate the concept of BPS states in supergravity, we will borrow some techniques from

the superspace formalism. Although supergravity is not formulated in superspace, going to
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3.5. BPS STATES IN N = 1, D = 4 SUPERGRAVITY

superspace will help us understand how the operator formalism for supersymmetry that we

discussed in chapter two relates to supersymmetry variations on a field.

The basic idea of the N = 1 superspace is to enlarge ordinary spacetime coordinates xµ, which

are associated with the generators Pµ, by adding 2+2 anti-commuting coordinates θα, θ̄α̇, which

are associated with the supersymmetry generators Qα, Q̄α̇, to get an eight coordinate superspace

(xµ, θ, θ̄).

Before discussing supersymmetry transformations in superspace, let us first recall translations in

ordinary spacetime. Consider an infinitesimal translation of a scalar field φ(x) by a parameter

aµ

φ(x+ a) = e−iaPφ(x)eiaP = φ(x)− iaµ[Pµ, φ(x)] + . . . (3.30)

Here Pµ is the generator of translations in ordinary spacetime. The left hand side of equation

(3.30) can also be expanded as

φ(x+ a) = φ(x) + aµ∂µφ(x) + . . . (3.31)

Equating equation (3.30) and (3.31) gives

[φ(x),Pµ] = −i∂µφ(x) = Pµφ(x) (3.32)

where Pµ is the differential operator that represents the translation operator Pµ in field space.

As a result, a translation of a field by a parameter aµ can be expressed as

δaφ = φ(x+ a)− φ(x) = iaµPµφ (3.33)

The same treatment can be applied to a superfield, this was done in [16] and we will quote the

result here. A translation in superspace on a field Y (x, θ, θ̄) by an infinitesimal parameter (εα, ε̄α̇)

is given by

δε,ε̄Y = (iεQ+ iε̄Q̄)Y (3.34)

where Q, Q̄ are the supersymmetry generators. The Weyl spinors (εα, ε̄α̇) are the parameters of

the supersymmetry transformation.

Recall from chapter two that a BPS state is invariant under some of the supersymmetry gener-

ators Q, Q̄, that is,

Q|ψ〉 = Q̄|ψ〉 = 0. (3.35)

Equation (3.34) tells us that if a state, or equivalently, a field configuration is BPS with respect

to a certain number of supersymmetry operators then its supersymmetric variation with respect

to a certain number of spinors εα will vanish, i.e.

δε,ε̄Y = (iεQ+ iε̄Q̄)Y = 0 (3.36)
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Since the field Y (x, θ, θ̄) contains separate field components describing each physical particle in

the theory, the supersymmetric variation of each field component also vanishes.

Thus a field component ψ(x) is BPS if there exists some spinor ε(x) such that

δε(x)ψ = 0. (3.37)

Let us return to the N = 1 theory of a graviton and a gravitino we discussed earlier. The BPS

condition in equation (3.37) can be expressed explicitly in terms of each of the field as

δeaµ =
1

2
ε̄γaψµ = 0, (3.38)

δψµ = Dµε(x) = 0. (3.39)

As a result, to determine if a state is BPS we need to solve the equations given in (3.38) and

(3.39). Very often the fermionic field ψ is set to zero to simplify the calculation. The first

condition is automatically satisfied thus we only need to solve the second condition, which is also

called the Killing spinor equation.

Spinors which satisfy equation (3.39) are called Killing spinors. Intuitively they are the pa-

rameters of preserved supersymmetry of a state. If the Killing spinors are characterized by nQ

constants, the state has nQ preserved supersymmetries [14].

Provided that we have the explicit form of the Killing spinors, Killing vector can then be con-

structed as bilinears of Killing spinors as follows

Kν = ε̄′γνε. (3.40)

3.6 Derivations

For section 3.5

Show that Killing vectors can always be constructed as γν bilinears of Killing spinors:

Let εα be a Killing spinor, this implies that ∇̂µεα = D̂µεα = 0. The first equality comes from

the fact that εα is a scalar with respect to the µ index, therefore the affine connection contained

within the general covariant derivative ∇̂µ vanishes and the action of ∇̂µ reduces to that of the

modified covariant derivative D̂µ. The second equality is a straight forward application of the

definition of a Killing spinor.

We construct a vector Kν from the γν bilinear of two Killing spinor εα and ε′α

Kν = ε̄′γνε = ε̄′α̇γ
α̇α
ν εα, (3.41)
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then

∇̂µKν = ∇̂µ(ε̄′γνε) = ε̄′(∇̂µγν)ε. (3.42)

Let us consider

∇̂µγν = ∂µγν +
1

4
ωabµ [γab, γν ]− Γρµνγρ −

1

2l
[γµ, γν ] = −1

l
γµν . (3.43)

The first three terms vanish when acting on γν due to the vielbein postulate

∇̂µKν = −1

l
ε̄′γµνε. (3.44)

Since ∇µKν is antisymmetric in µν, the Killing vector equation, which is symmetric in µν, is

satisfied

∇̂(µKν) = −1

l
ε̄′(γµν − γνµ)ε = 0. (3.45)

Hence Kν is a Killing vector.
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Chapter 4

BPS Kerr black holes

We will examine BPS states for both asymptotically flat and AdS Kerr black holes in the context

of N = 1 supergravity in four dimensions. In flat space, the answer is already known from the

superalgebra, there are no BPS rotating black holes. We will confirm this by directly manipu-

lating the Killing spinor equation to show that the equation admits no massive solution. In AdS

space, there are hints from the AdS superalgebra that there might exist BPS black holes with

non-vanishing angular momentum. The limit in which these black holes can exist coincides with

the ultra-spinning limit a → l [4]. We will present our work in progress towards solving for the

complete set of Killing spinors of this case.

4.1 Non-existence of BPS Kerr black holes in flat space

As explained in chapter three, the supersymmetry admitted by a Kerr solution in N = 1 super-

gravity is characterised by the solutions to the Killing spinor equation

Dµεα = 0, (4.1)

where Dµ is the Lorentz covariant derivative which acts on spinors as

Dµεα =
(
∂µ +

1

4
ωabµ γab

)
εα.

To solve for the spinor ε(x) we first need to determine the spin connection ωab for Kerr black

holes embedded in Minkowski space.

The defining equation for the spin connection in the language of differential form is given by

dea + ωab(e) ∧ eb = 0. (4.2)
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4.1. NON-EXISTENCE OF BPS KERR BLACK HOLES IN FLAT SPACE

The Kerr metric in flat space was given in (1.6) but let us rewrite it here for the completeness

of the calculation

ds2 = −∆

ρ2
(dt− asin2θdφ)2 +

ρ2

∆
dr2 + ρ2dθ2 +

sin2θ

ρ2

(
adt− (r2 + a2)dφ

)2
, (4.3)

where

∆ = ∆(r) = r2 − 2Mr + a2 , ρ2 = ρ2(r, θ) = r2 + a2cos2θ.

If we choose the vielbeins to be

e0 =

√
∆

ρ
(dt− asin2θdφ),

e3 =
sin θ

ρ

(
adt− (r2 + a2)dφ

)
,

e1 =
ρ√
∆
dr,

e2 = ρdθ.

(4.4)

we can then work out the non-zero components of the spin connection:

ω01
t =

(r −M)ρ2 − r∆ + ra2sin2θ

ρ4
ω01
φ =

asin2θ

ρ4

(
r
(
∆− (r2 + a2)

)
− ρ2(r −M)

)
ω02
φ = −

√
∆asin θcos θ

ρ2

ω03
r =

rasin θ√
∆ρ2

ω03
θ =

√
∆acos θ

ρ2

ω12
r = −a

2cos θsin θ

ρ2
√

∆
ω12
θ =

r
√

∆

ρ2
(4.5)

ω13
φ =

r
√

∆sin θ

ρ2

ω23
t = −acos θ((r2 + a2)−∆)

ρ4
ω23
φ =

cos θ

ρ4

(
− a2sin2θ∆ + (r2 + a2)2

)
.

Notice that all components of the spin connection are functions of only r and θ, not of t and φ.

It is therefore sensible to first examine the µ = t and µ = φ components of the Killing spinor

equation (4.1).

For µ = t, the Killing spinor equation becomes

∂tεα = −1

2

(
ω01
t γ01 + ω23

t γ23

)
εα. (4.6)

Since ω01
t and ω23

t are constant with respect to t, we can solve this first order differential equation

by choosing a basis for the γ-matrices and using the eigenvalue method. In the real basis for the

γ-matrices, equation (4.6) becomes
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4.1. NON-EXISTENCE OF BPS KERR BLACK HOLES IN FLAT SPACE

∂tεα = −1

2


iω23
t −ω01

t

iω23
t −ω01

t

−ω01
t iω23

t

−ω01
t iω23

t

 εα. (4.7)

The eigenvalues and corresponding eigenvectors for this system are

λ1 = 1
2 (−ω01

t + iω23
t ) , λ2 = −λ1 , λ3 = 1

2 (−ω01
t − iω23

t ) , λ4 = −λ3 (4.8)

v1 =


1

1

1

1

 , v2 =


1

−1

1

−1

 , v3 =


1

−1

−1

1

 , v4 =


1

1

−1

−1

 . (4.9)

As a result, the general solution for the real spinor ε is

εα(t, r, θ, φ) =


1 1 1 1

1 −1 −1 1

1 1 −1 −1

1 −1 1 −1



α1e

λ1t

α2e
λ2t

α3e
λ3t

α4e
λ4t

 , (4.10)

where αi = αi(r, θ, φ) for i = 1, 2, 3, 4. We have separated the t-dependence of ε into the

exponents eλit and the r, θ, φ-dependence is contained within the coefficients αi. This is the best

we can do with µ = t.

For µ = φ the Killing spinor equation gives

∂φεα =
1

2

(
ω01
φ γ01 + ω02

φ γ02 + ω13
φ γ13 + ω23

φ γ23

)
εα. (4.11)

In the real basis for the γ-matrices equation (4.11) becomes

∂φεα =
1

2


−ω13

φ + iω23
φ −ω01

φ + iω02
φ

ω13
φ + iω23

φ −ω01
φ + iω02

φ

−ω01
φ + iω02

φ −ω13
φ + iω23

φ

−ω01
φ + iω02

φ ω13
φ + iω23

φ

 εα. (4.12)

We could try to solve for the eigenvalues and eigenvectors of this system, in a similar manner to

what we did earlier for µ = t. However, a faster way to solve this is to notice that we can write

ε(t, r, θ, φ) as

εα(t, r, θ, φ) =


1 1 1 1

1 −1 −1 1

1 1 −1 −1

1 −1 1 −1



α1e

λ1t

α2e
λ2t

α3e
λ3t

α4e
λ4t

 = Aξα, (4.13)
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where A is the 4 × 4 matrix and ξα is the column vector. Similarly we can shorten equation

(4.12) as ∂φε = Bε where B is the 4× 4 matrix in equation (4.12).

As a result, we have the relations∂φεα = Bεα = BAξα

∂φεα = ∂φ(Aξα) = A∂φξα.
(4.14)

therefore

∂φξα = A−1BAξα. (4.15)

Since we already chose to work in a particular basis (in our case, the real basis) of the γ-matrices,

we can easily compute and examine A−1BA. Equation (4.15) then becomes

∂φ


α1e

λ1t

α2e
λ2t

α3e
λ3t

α4e
λ4t

 =
1

2


−ω01

φ + i(ω02
φ + ω23

φ ) ω13
φ

−ω13
φ ω01

φ − i(ω02
φ + ω23

φ )

−ω01
φ + i(ω02

φ + ω23
φ ) −ω13

φ

ω13
φ ω01

φ − i(ω02
φ + ω23

φ )



α1e

λ1t

α2e
λ2t

α3e
λ3t

α4e
λ4t



Since the matrix A−1BA is block-diagonal, the first and second component of ξ are coupled

together, similarly for the third and fourth component. Let us examine the first two components

∂φ(α1e
λ1t) = (∂φα1)eλ1t =

[
− ω01

φ + i(ω02
φ + ω23

φ )
]
α1e

λ1t + ω13
φ α2e

λ2t

∂φ(α2e
λ2t) = (∂φα2)eλ2t = −ω13

φ α1e
λ1t +

[
ω01
φ − i(ω02

φ + ω23
φ )
]
α2e

λ2t.
(4.16)

Since the t-dependence has been put into the exponentials, we can remove the exponentials and

examine what remains

∂φα1 =
[
− ω01

φ + i(ω02
φ + ω23

φ )
]
α1 + ω13

φ α2e
(λ2−λ1)t

∂φα2 = −ω13
φ α1e

(λ1−λ2)t +
[
ω01
φ − i(ω02

φ + ω23
φ )
]
α2.

(4.17)

The left hand sides are no longer dependent on t while the right hand sides are still functions of

t. As a result, in order for the Killing spinor equation to be self-consistent, we need to require

λ1 = λ2. Since we defined λ1 = −λ2 earlier, it must be that λ1 = λ2 = 0. The same can be

deduced about λ3 and λ4. Therefore

λ1 = λ2 = λ3 = λ4 = 0. (4.18)

Upon recalling what the eigenvalues λi are in terms of the spin connection, we get the condition

ω01
t = ω23

t = 0. (4.19)
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From the coefficients of the spin connection (4.5) this happens if and only if either a = 0 or

M = 0.

Since a is the rotation parameter and M is the mass parameter in our Kerr metric, the condition

for self-consistency of the Killing spinor equation in flat space implies that there is no massive

spinning supersymmetric black hole in flat space.

This is consistent with the result from the supersymmetry algebra, that the N = 1 superalgebra

does not admit massive BPS states. This is also consistent with the fact that there is no global

timelike Killing vector for asymptotically flat Kerr black hole.

4.2 BPS Kerr black holes in anti-de Sitter space

The Killing spinor equation for AdS space is slightly different from the one in flat space. The

existence of a non-zero cosmological constant implies a constant curvature of spacetime indepen-

dent of matter. This leads to the need for a modified Lorentz covariant derivative suitable for

the de Sitter group as mentioned in earlier chapter.

The Killing spinor equation takes the form

D̂µεα =
(
∂µ +

1

4
ωabµ γab −

1

2l
γµ

)
εα = 0. (4.20)

Since we suspect that the BPS bound is satisfied by the ultra-spinning limit, we will be working

in limit a→ l. The metric in this limit is given in (1.23), which we will rewrite here

ds2 =
dr2

V (r)
+
l2 + r2

4

(
dσ2 + sinh2 σdφ2

)
− V (r)

(
dt− l sinh2 σ

2 dφ
)2

, (4.21)

with

V (r) = 1 +
r2

l2
− 2Mr

l2 + r2
. (4.22)

Similar to the flat case, we can choose a set of vielbeins as follows

e0 =
√
V (r)

(
dt− l sinh2 σ

2 dφ
)

e3 =

√
l2 + r2

2
sinhσdφ

e1 =
1√
V (r)

dr

e2 =

√
l2 + r2

2
dσ

(4.23)
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Solving for the spin connection gives

ω01
t =

1

2
V ′(r) ω01

φ = −1

2
lV ′(r) sinh2 σ

2

ω02
φ = −

l
√
V (r) sinhσ

2
√
l2 + r2

ω03
σ =

l
√
V (r)

2
√
l2 + r2

ω12
σ = −

r
√
V (r)

2
√
l2 + r2

(4.24)

ω13
φ = −

r
√
V (r) sinhσ

2
√
l2 + r2

ω23
t = − l V (r)

l2 + r2
ω23
φ = −coshσ +

l2 V (r) sinh2 σ
2

l2 + r2

Notice that all of the coefficients are functions of only r and σ, not of t and φ, and that all the

µ = r components vanish. Hence, the µ = r component of the Killing spinor equation reads

D̂rεα = 0. (4.25)

This gives

∂rεα =
1

2l
√
V
γ1εα. (4.26)

In the real basis for the γ-matrices we can derive

ε1 = c1 exp
( ∫ r

0
1

2l
√
V (r′)

dr′
)

+ d1

ε2 = c2 exp
( ∫ r

0
1

2l
√
V (r′)

dr′
)

+ d2

ε3 = c3 exp
(
−
∫ r

0
1

2l
√
V (r′)

dr′
)

+ d3

ε4 = c4 exp
(
−
∫ r

0
1

2l
√
V (r′)

dr′
)

+ d4

(4.27)

where the r-dependence has been isolated to the exponential, leaving ci and di dependent on

only (t, σ, φ).

The µ = t component of equation (4.20) gives

∂tεα = −1

2

(
ω01
t γ01 + ω23

t γ23 −
1

l
e0
tγ0

)
εα

= −1

2

(
ω01
t γ01 + ω23

t γ23 −
√
V

l
γ0

)
εα. (4.28)

Work is still to be done to solve equation (4.28) and the µ = σ, φ component of the Killing spinor

equation given the form of the Killing spinors we obtained in equation (4.27).

31



Chapter 5

Conclusion and outlook

We began by reviewing Kerr black holes in both flat and AdS space. As we have seen, asymptot-

ically flat Kerr black holes have no global timelike Killing vectors. Kerr black holes in AdS were

shown to possess an ergoregion, however this does not preclude them from admitting timelike

Killing vectors.

We examined the N = 1 Poincaré and AdS supersymmetry algebras and showed that the former

does not allow massive BPS states, while the later suggests that 1
2 -BPS states occur at E = |J |,

which is the ultra spinning limit of the black hole.

We also gave a brief introduction to N = 1 supergravity in both flat and AdS space in four

dimensions and saw how the Killing spinor equation emerges from the BPS bound in super-

gravity. As a result, searching for BPS black holes means solving the Killing spinor equation.

For asymptotically flat Kerr black holes, self consistency of the Killing spinor equation implies

that there are no massive, rotating BPS solutions. This is consistent with the result from the

supersymmetry algebra, that there is no massive BPS state for N = 1. This is also consistent

with the fact that asymptotically flat Kerr admits no globally timelike Killings vectors.

For asymptotically AdS Kerr the fact that a globally timelike Killing vector exists on this geom-

etry, together with the hints from the superalgebra that BPS states occur at E = |J |, suggests

that we might be able to find the complete form of the preserved supersymmetries for this space.

We presented our solution to the Killing spinor equation as it currently stands and work is still

needed to determine the complete set of Killing spinor equations.

One puzzle that we still need to understand is the ultra spinning limit. The resulting metric

after taking the limit is not unique, and depends on how the limit is taken. We would like to

understand if and how the procedure affects the number of preserved supersymmetries of the

original asymptotically flat Kerr black hole.
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