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Abstract

Memory is thought to be divided into two separate stores, one short term and one long term.

The mechanism behind short term storage is significantly less well understood than that of long

term storage and it is the storage of short term memories that is the focus of this work. A com-

putational approach is taken to exploring a possible mechanism by which they are encoded and

stored. This mechanism is comprised of a temporally patterned signal which exists persistently

in a pre-existing network that has been stochastically constructed to support such behaviour. It

is found that persistence of activity is achievable in a full neuronal model by introducing negative

feedback in the form of a delay period in which a synapse may not fire. In addition, it is found

that network cycles which could support storage of temporally patterned signals are achievable

in simplified models constructed in analogy to the full model. Finally, some signs that storage

may also be present in the full model are observed.
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Chapter 1

Introduction and literature review

It has been said that ‘memory is what we are’ [1]. It is of no surprise then that understanding

the nature of memory has been the subject of a great deal of research over the last century.

While it is well understood how memory behaves, the exact mechanisms for certain aspects

of its behaviour remain elusive. This work aims to uncover some aspects of the mechanisms

behind short term memory. Following a summary of the structure of the elements which make

up the brain, a short review of the current understanding of the mechanisms behind memory is

undertaken. The development of a proposed model is then outlined in a chronological manner

and the results of attempting to construct this model are presented.

1.1 Structure of the neuron

In order to understand the systems that were constructed and which will be discussed throughout

this work the structure of the main unit from which the brain is constructed, the neuron, should

first be explored. Figure 1.1 shows the structure of a neuron, which consists of four main parts

[2]. The main body of the neuron is known as the soma, this region contains the nucleus of

the cell. Carrying received signals into the neuron are pathways known as dendrites, these may

receive signals from multiple sources. While there may be many dendrites entering a neuron

there is only one pathway out, known as the axon, the structure of which is important when

considering how to simulate the system. This is discussed further in section 1.3. The axon can

connect to dendrites of a number of other neurons, through connections known as synapses. In

this way one neuron has influence over several others.

The human brain possesses an extremely large number of neurons, approximately 8.6× 1010 [3].

Approximately 80% are located in the cerebellum (figure 1.2), despite the fact that it constitutes
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only 10% of total brain mass [4]. Each neuron is connected to, on average, 7.0× 103 others and

there are approximately 1.5× 1014 synaptic connections in total [5].

Dendrites - pathways into the 
neuron

Soma - the main body of the neuron

Axon - the pathway out of the 
neuron

One axon can connect to dendrites 
from many other neurons through 
connections known as synapses.

Figure 1.1: The components of a neuron, based on Kandel et al. [2].

Figure 1.2: The brain, with the cerebellum visible, bottom right [6].
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1.2 Proposed models for memory

In 1968 Atkinson and Shriffin proposed their model of memory consisting of two distinct stores,

one short term and one long term [7]. Several years later Baddelely and Hitch proposed an

alternative formulation that nonetheless differentiated between types of long and short term

memory [8]. Much work has been done into neuroplastic descriptions of memory, even before the

distinction between long and short term memory was made, most notably that of Hebb [9]. This

neuroplastic behaviour, where memories are encoded when synaptic connections change their

efficacy in response to activation, is typically associated with long term memory although much

work is still being carried out into the exact mechanisms for this encoding [10].

As these neuroplastic alterations take time to occur, short term memory operates in a distinctly

different manner. First, a further distinction should be made between short-term memory and

working-memory. The former is simply a system for the short-term storage of information,

the latter is a larger system that deals with not just the storage of information, but also its

manipulation and processing. Short-term memory is one component of this system [11, 12].

Regardless, the distinction is often made lightly in much of the literature.

This work focuses on the mechanisms by which short-term memory functions. The mechanism

for this is much less understood, however one particularly promising mechanism is that proposed

by Mongillo, Barak, and Tsodyks [13]. Like the neuroplastic mechanism of long term memory,

their model suggests that memories are stored by patterning of synaptic activity. The difference

lies in that their mechanism does not rely on long term changes in synaptic efficacy, but rather

on short term changes due to depletion of calcium ions. The firing of a synapse requires a supply

of calcium ions. Once the synapse has fired, the supply of calcium ions in the connection is

temporarily depleted and the synapse can not fire with the same effectiveness. Effectively the

synapse is disabled for a short period of time. The primary result of [13] is that this temporary

disability of synaptic connections can result in a network which has the ability to recall patterns

of activation, specifically patterns of which neurons are active, rather than a temporal patterning.

1.3 Structure of the axon

Before constructing a model, the structure of the signals and the pathways which carry them

should be examined. The signal is known as an action potential and, despite similarity to an

electrical signal in a wire, its travel is not purely electrical in nature. It degrades quickly as it

travels but is reinforced electrochemically by ion imbalances as it travels.

The structure of the axon which carries the signal is such that it allows this reinforcement to

occur. The axon consists of a conductive medium surrounded by a fatty insulating layer known
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as myelin. This layer allows the signal to travel faster however in order for the signal to be

reinforced there are breaks in the layer at regular intervals, known as nodes of Ranvier. As the

signal crosses a break it slows down [2]. This is shown in figure 1.3. As a result of this myelination

the movement of the signal is partially discretised.

Pr
op

ag
at

io
n 

ra
te

Position along axon

Figure 1.3: Partial discretisation of action potential movement.

It is now possible to proceed, in the following chapter, with a discussion of the model that shall

be constructed using these elements.
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Chapter 2

Minimal model

2.1 Requirements

The basic principle is that if there is a closed circuit around which a signal can travel then it

should be possible to store data in the circuit by temporal patterning of the signal.

Throughout, the standard graph theory nomenclature for a closed walk without repeated vertices

(apart from the root vertex), a circuit, is adopted. A walk is defined as an alternating sequence of

vertices and edges where vertices and edges are the basic units from which a graph is constructed;

a graph is a collection of vertices joined by edges.

There are three basic components to make a simple model of this form function:

• A circuit

• Some way of inserting a temporally patterned signal into the circuit

• Some way of retrieving the data at a later time

Insert
signal

11100101  

 1
10

110
11 Read

signal

11
01

10
01

Figure 2.1: The minimum requirements for data storage and retrieval within this model.
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2.2 Computational considerations

As a result of the partial discretisation caused by myelination discussed in section 1.3 it was

chosen to model the signal pathways in a completely discretised manner. Individual nodes

were constructed that correspond to the biological nodes and simulations were conducted with

discretised time such that an action potential will advance by one node for each time step.

This is implemented as a linked list where the signal is passed from one node to the next with

each time step. This can occur trivially when there is only a single signal in the network however

when multiple signals are sent there can be problems if the nodes are not updated in the correct

order, as one signal could overwrite a signal in the next node. Correct ordering (from last node to

first in a chain) can be easily enforced for simple networks, however when more complex networks

are explored, as in chapter 3, this is no longer the case. To avoid this, propagation occurs in

two steps. In the first step the signal is moved into a temporary store on the next node and the

primary store is cleared. In the second step the signal is then moved within each node from the

temporary store to the primary store. The second propagation phase is only undertaken once all

nodes have completed the first phase. Calculations to determine whether a signal propagation

will take place are usually performed during the first phase. As these calculations can sometimes

be computationally intensive, and as the two phase update prevents dependence on update order,

the system can benefit greatly from parallelisation although this was not implemented due to

time constraints. In lieu of this, speed is improved by only performing updates on those nodes

where a bit is 1 and enforcing that the default state is 0. This is highly effective when the

network size is large compared with the number of signals however the gain is lost as the number

of signals increases. Eventually the point at which almost all cells are updated is reached, but

now with the added overhead of keeping track of which nodes are storing a 1.

1. 1. 1. 1.2 . 2 . 2 .

Primary signal storage

Temporary signal storage

Figure 2.2: Schematic showing the two step update process.

With this in mind a neuron is placed and a chain of node-based axon is grown and connected

back to the neuron in a circuit along with simple mechanisms for inserting a signal and reading

it back at the neuron.
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2.3 Data format

There are many ways in which data can be encoded. Presented here is one simple method by

which a preference for an object could be encoded. It is not necessarily biologically accurate

however it provides an easy to implement means to an end, as the exact detail of information

encoding is not the focus here.

Each bit in an 8-bit signal, for example 10100111, is assigned meaning as follows

1︸︷︷︸
[Start]

010︸︷︷︸
[Object]

01︸︷︷︸
[Preference]

1︸︷︷︸
[Remember or recall]

1︸︷︷︸
[End]

(2.1)

In this way up to 23 = 8 different objects can be encoded and one of 22 = 4 possible preferences

for each object can be assigned.

A signal 10100111 is sent and this is stored in the network as the remember/recall bit is set to 1.

When a signal is sent with the remember/recall bit set to 0 and no preference, such as 10100001

the incoming signal can be compared with signals stored in the network. If the object bits match

then the preference bits can be recalled from the network, effectively filling in the gaps in the

new signal.

2.4 Inserting a signal

With a signal encoded as above, a method of inserting the signal into the storage loop is still

required. This is achieved through the use of a simple queue structure. A queue is constructed of

sufficient size to contain the signal, in the case of the signal encoded in the previous section this

would be a length of eight. At each time step the neuron is given the value of the first item in the

queue and the queue is advanced ready for the next time step. This is repeated until the queue

is empty. A mechanism is also employed to prevent a newly encoded message overlapping with

a previously stored one. In essence, the queue, combined with advancing time forms a parallel

to serial converter.

2.5 Retrieving the signal

While storing the signal was simple, retrieving it is somewhat less so. A serial to parallel converter

must be constructed, which means converting temporal information to (in effect) spatial. This

is achieved through the use of a series of arms of increasing length that all start from the node

at which the measurement is to be taken, shown in figure 2.4. The first arm is one position in
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1 1 1 0 0 1 0 1

(a) The signal in the queue ready for insertion with

the first bit as encoded in section 2.3 first in the

queue, closest to the neuron.

     1 1 1 0 0
1

0
1

(b) Four time steps later the first three bits are

travelling around the circuit and the fourth bit

has just been inserted at the neuron.

Figure 2.3: Inserting an encoded signal into the circuit.

length, the second is two positions and so on, up to the eighth arm which is eight units in length.

As the signal arrives at the retrieval assembly the signal is passed into the first position of each

arm. The time advances and the signal moves down each arm, and the next bit of the signal is

passed into the first position. The first arm, which is too short to contain both of the first two

bits now contains only the second bit. This continues, with each new bit being passed into all

arms and the signal propagating down the arms appropriately. Again, when an arm is too short

to contain new bits, the old bits simply drop of the end and are discarded. After eight time

steps the arms are fully occupied with the signal. The terminal nodes of each of the eight arms

contain the corresponding bit of the signal and these can be read off simultaneously. Thus the

serial, temporally patterned, signal has been successfully converted to something parallel.

2.6 Data redundancy

In order to provide a useful method of data storage there should be some resistance to data

corruption. In the context of this model, this can be achieved by increasing the number of

circuits such that the signal travels in parallel around all three (figure 2.5). It is important that

the number of circuits is at least three to allow a majority rule to be applied at the neuron when

the signals recombine. If only two pathways are used then there is no way of knowing which of

the two signals is the correct and which is the corrupted.

In brief, if each pathway is assigned a weight of 1
3 and the neuron is set with a threshold to fire

of 1
2 then the neuron will only fire if at least two of the three signals are intact.

The simple model is extended by growing two more circuits of equal length and reconnecting

8



11
10

01
01

(a) The signal has just reached

the retrieval structure, which is

currently empty. It could poten-

tially still contain remnants of

an earlier signal.

   
   

11
10

0 1 0 1
0 1 0 10 1 0 1

0
1

0
1

0
1

0
1

0 1 00 10
(b) Four time steps later the first

four bits have started to make

their way along the arms. For

those arms that are too short the

signal simply drops off the end.

1 1 1 0
1 1 1 0 01 1 1 0 0 1

1
1

1
0

0
1

0

1
1

1
0

0
1

0
1

1 1 11 11

(c) Another four time steps later

all bits are in the retrieval arms,

the signal can be read off from

the terminal positions of the re-

trieval arms.

Figure 2.4: Retrieving a stored signal from the circuit.

(a) A single break results in a lost signal. This

can occur as the result of random noise in the

system corrupting a single bit or as the result

of a completely broken connection.

(b) The configuration required for data redun-

dancy. If the signal in one loop is compromised

the other two loops still allow the signal to sur-

vive.

Figure 2.5: The minimal requirements for data redundancy.
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1

1

0

1

(a) A 1 bit has been corrupted with a 0.

0

0

1

0

(b) A 0 bit has been corrupted with a 1.

Figure 2.6: Recombination rules showing situations where a bit is erroneously deactivated giving

1 · 13 + 1 · 13 + 0 · 13 > 1
2 , and where it is erroneously activated giving 1 · 13 + 0 · 13 + 0 · 13 < 1

2 .

them to the neuron, where the majority rule for firing is imposed. A small amount of noise can

be introduced into the propagation step and the signal remains robustly stored. Robustness can

be improved by adding more circuits and changing the threshold for successful firing. A typical

biological neuron may take more than 30 incoming action potentials to fire again [14, 2]. In the

interests of keeping computation times reasonable this is typically set to the minimum required

for the recombination rule, namely 3. This is of less importance when the model is implemented

as described thus far, however becomes much more significant when the scale of the system is

increased, as in the following chapter.
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Chapter 3

Scaling up

3.1 Network generation

The model implemented thus far is engineered to be successful. In particular, three or more

circuits were created with exactly the same length, however it is not clear a priori that such

circuits can be found in a real neurological network. In order to explore more biologically

interesting scenarios it is necessary to extend the ideas presented thus far to larger networks and

remove the ‘engineered’ nature.

In order to investigate further, a large network consisting of many interconnected neurons is

generated. Generating such a network that accurately represents the human brain is a very

active area of research and at present no totally satisfactory method has been devised [15]. The

procedure employed for doing so here, which draws on the work of Stepanyants and Chklovskii

[16], is based on probabilistic formations of connections. There are, however other possible

methods, most notably by over connecting a network and then pruning to match the desired

statistics [17]. The method used proceeds as follows: a large number of neurons are placed

in a box of fixed dimension with periodic boundary conditions; from each neuron, an axon is

grown at a constant rate in a random direction for a fixed number of steps; finally the axons are

connected to other neurons forming a link at the position on the axon which will result in the

shortest distance to the targeted neuron. In addition, this linking process is limited based on

distance with a gaussian probability by drawing a random number x ∈ [0, 1] and making the link

if x < g(r, c) for a gaussian function g of distance r and a full-width-half-maximum (FWHM) of

2c
√

ln 4. An example of the results are visible in figure 3.1.
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Figure 3.1: A network of 200 neurons inside a 100× 100 box with periodic boundary conditions.

Connections are made based on a gaussian probability with a FWHM parameter of 20.

3.2 Computational considerations

From an implementation point of view the linked list structure mentioned in 2.2 is extended to

allow each node to point to an arbitrary number of children. It is under these circumstances that

the two phase update detailed in that section is of critical importance. Two new considerations

now arise, how to handle the branching and how to handle the merging of signals.

If it is assumed that pointers to the child nodes are stored in the language’s idiomatic iteratable

vector type (in the author’s C++ implementation, ‘std::vector’) then branching is simply a

matter of iterating over the vector and performing the first update phase for each child node.

The second phase then proceeds on the child nodes as usual.

The recombination phase is more interesting, and is of critical importance for the recombination

rules, which were introduced in 2.6 and which come into major play later in this chapter. On each

of the parent nodes the first update phase is performed, however the situation now arises where

all three signals are being placed in the same temporary store, thus they must be transferred

in a suitable manner which does not lose information about the incoming signals. Although

the signals are binary in nature, and the primary data store need only be a ‘bool’ type, the

temporary store must be an ‘unsigned int’ type and be made to hold the sum of the incoming

signals. Then, in the second update phase a choice is made (for a neuron, this situation does

not arise for non-neuronal nodes) depending on whether a sufficient number of signals satisfy

the recombination rule are present. If yes, propagation from the temporary store to the primary

12



store proceeds by toggling the primary store bit on, if not, the primary store is toggled off.

1.

2. if(Σ>threshold) 1
  else 0
Σ

Figure 3.2: Schematic showing recombination during an update.

3.3 Determining a sufficient level of connectivity

First, confirmation that the desired properties are present in the networks resulting from the

outlined process is sought. To make a judgement, a study of the connectivity of the network

is conducted. Ignoring the axon and dendrite structure, an adjacency matrix based on which

neurons have a path between them may be constructed. It should be noted that the adjacency

matrix is, in general, symmetric for undirected graphs only, which is not the case here.

1

2

3

4

5

6

Figure 3.3: An example of a directed graph with 6 vertices.

The digraph shown in figure 3.3 has the adjacency matrix

A =



0 1 0 1 0 0

1 0 0 0 1 0

1 0 0 0 0 0

0 0 0 0 0 0

0 0 1 1 0 1

0 0 0 0 0 0


(3.1)

A well known result in graph theory is that the elements in the nth power of the adjacency

matrix give the number of pathways of length n from vertex i to vertex j, where i and j label the

13



vertices in a manner similar to figure 3.3. In particular, as circuits (closed paths) that return to

the root node are of interest, non-zero elements on the leading diagonal are considered, as they

represent paths of length n starting from i and returning to i. In the example of (3.1) A4 may

be computed, which will give paths of length 4.

A4 =



2 0 0 0 1 0

0 2 1 3 0 1

0 1 1 2 0 1

0 0 0 0 0 0

1 0 0 0 1 0

0 0 0 0 0 0


(3.2)

From this result it is visible that circuits originating from nodes 1, 2, 3 and 5 must be present.

Examining figure 3.3 confirms this result. For vertex 1, for example, there are circuits (1, 2, 5, 3)

and (1, 2, 1, 2). This also highlights an important caveat when using this method in that there

is no distinction between paths that are self intersecting and those which are not.

Adjacency matrices for full networks may now be considered. Define a connectivity parameter

C =
ne

nv
(3.3)

where nv is the number of vertices and ne ∈ [0, n2
v] is the number of edges. For an undirected

graph division would instead be by nv! as ne ∈ [0, nv!]. Networks generated using a gaussian

with a FWHM parameter significantly less than the size of the box result in low values of C and

those with a parameter much larger than the box size result in C close to n2
v.

It is desirable to form some quantitative opinion as to whether finding the sought after circuits

is likely. To do so, the lowest power nc of A such that every vertex lies on at least one circuit of

length ≤ nc is recorded. More explicitly, nc such that

diag

nc∑
n=1

An (3.4)

contains all non-zero elements.

For larger networks, such as that in figure 3.1 with 200 vertices, examining the powers of A by

hand is impractical, however this is easily achieved programmatically. Upon doing so, using an

arbitrary vertex numbering and plotting the dependence of nc on C (figure 3.4a), it is observed

that for low connectivities there is insufficient connectivity for any circuits to form however for

high connectivities trivial circuits (of length 2) for all nodes are seen. There is a transition

between the two states which becomes sharper and moves towards lower C for smaller system

sizes. In order to get an estimate of the connectivity level required when running simulations
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the turning points, where dnc

dC is maximised, as dependent on the number of vertices in the

system are plotted (figure 3.4b). This cannot be accurately extrapolated for the human brain,

however it does provide a reasonable estimate of the connectivity in another important organism,

Caenorhabditis elegans (C. Elegans). The nematode C. elegans has been the subject of much

study during which the locations and connectivities of its neuronal system have been mapped

with the bulk of the work being completed in 1986 by White et al. [18] and finished in 2011 by

Varshney et al. [19]. From the graph it is seen that a system size of 300 nodes corresponds to

C ≈ 6.15. C. Elegans has been determined to have C ≈ 7.94.
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(a) Means with infinite vales of nc ignored.
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(b) Plotting the points of maximum dnc
dC

.

Figure 3.4: nc for all vertices to lie in a circuit as dependent on C for system sizes of 10, 20, 30,

40 and 50 vertices. Data is binned based on FWHM parameter used to generate the networks.

The plot of maximum dnc

dC is fitted with an inverse exponential growth function of the form

a(1− e−
x
b ) + c where a = 4.083, b = 38.169 and c = 2.0735.

3.4 Qualitative comparison with real organisms

Confident that desirable properties are present, whether or not the networks that result from this

process are at all biologically reasonable may now be considered. To answer a visual comparison

between the networks produced and networks from real organisms is made, again turning to C.

Elegans. Figure 3.5a shows the connectivity of the C. Elegans neuronal network, using data

from [20], as well as two examples of artificial networks produced using the outlined method,

all visualised using Holten’s hierarchical edge bundle method [21]. There are two important

features to observe in the C. Elegans network. Firstly, the colours represent different ‘groups’
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within which there is a large amount of connectivity and between which there is less. The second

feature is second order structure between the groups. It is visible that, for example, the grey

group (centre, top) has no direct connections to the large purple group (centre, bottom). Figure

3.5b shows similar groupings and similar second order structure, suggesting that this method of

generating the networks is, to a qualitative degree, a good method. As the method is stochastic

in nature networks with this desired structure are not always obtained. Figure 3.5c shows a

network generated with the same parameters, that possesses grouping but not second order

structure. It is also observed that the groups in this example have a more uniform size than

groups in the C. Elegans network and in the first artificial network. It is a pathway for further

study to investigate how these structural differences affect the characteristics of activity during

the simulation (which will be discussed further in coming sections).

(a) C. Elegans, visible second

order structure

(b) Artificial, visible second or-

der structure

(c) Artificial, no second order

structure

Figure 3.5: Adjacency plots for (a) C. Elegans with 297 neurons, and (b), (c) artificial networks

of 300 neurons, connected with a gaussian probability with a FWHM parameter of 9 in a cube

of dimension 100 units.

3.5 Finding redundant circuits

The next question to be answered is simply ‘is it possible to find circuits with the desired

properties in this system?’. In order to determine this, a single neuron is picked at random and

a self-avoiding depth first search algorithm is used to find a path through the network that leads

back to the same neuron. The algorithm is then run two more times, this time with the added

constraint that the circuit length must be the same as the first circuit. The actual number of

neurons passed is irrelevant, just that the circuits have the same total distance (in terms of the

axonal nodes). Having three equal length circuits means that a weighted majority rule at the

base neuron may now be imposed and thus redundancy in the signal pathway may be attained.
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It turns out that finding such systems of three circuits is not difficult. In figure 3.6 the probability

of finding three circuits as a function of neuron connectivity is shown. The probability of finding

the three circuits is quantified by setting a threshold on the iterations of the depth first path

search beyond which the circuits are considered to have not been found. It is, of course, possible

that the circuits may still be present but the threshold gives an insufficient number of iterations

to find them, however the threshold is set high enough that the contribution from this is small.

Any larger thresholds and the run times become prohibitively long and as qualitative behaviour

is of greater interest at this point, the impact is minimal. It is visible that, provided the network

is sufficiently connected, it is usually possible to find the circuits as desired. In this case a good

estimate of ‘sufficiently connected’ might be a FWHM parameter of 20 as this results in finding

the three circuits with P > 0.8. A FWHM parameter of 20 results in C = 22.57 (as determined

by generating a number of networks based on this FWHM and calculating mean of the resultant

C values).
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Figure 3.6: The fraction of networks for which three equal length circuits can be found within

1 million iterations of the depth first path searching outlined in the text. The presence of such

a cut off manifests itself as a lowering from 1 of the fraction on the left side of the plot. Data

obtained for 100 neurons in a 50 unit cube, fraction taken over 300 repeats.

Once the circuits have been located, synapses not contributing to the pathway may be deactivated

(a non-physical choice, more on this later) and signals can be sent around. With an interface

written over the top this can again, as in the minimal model, be used to store and retrieve

data. Thus the behaviour of the minimal model has been successfully obtained within the larger

stochastically generated model.
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3.6 Extending the recombination rules

The model in this form still possesses some critical shortcomings. The idea of needing three

circuits was initially introduced as solution for the possibility of data corruption. As the three

loops originate from a single neuron, and because each neuron only has a single pathway out

(axon) from which the signal may eventually branch off (onto dendrites), there is still the possi-

bility that the signal may become corrupted in the short region before branching has a chance

to occur. Figure 3.7 shows schematically the redundancy that has been created, although most

of the pathway is protected, there is still a small region after the signal has left the root neuron

where a fatal corruption can occur.

(a) The desired configuration, this system is

properly redundant

(b) The actually configuration obtained, shown

with a break in the critical location

Figure 3.7: Redundancy in the minimal model compared to what has actually been achieved so

far.

The next reason is biologically motivated, the paths formed may pass through a large number of

neurons (figure 3.8) at which the weighted recombination rule has not been enforced. To bring

this closer to reality this condition must be implemented at all neurons on the path. In the

current configuration this would clearly not allow the signal to propagate as (with the exception

of the root neuron) only one signal enters each neuron on the path, thus the recombination rule

is not satisfied.

The third and final reason is again biologically motivated, in that the engineering needed to

select the synapses and turn off those not contributing to the three circuits is far beyond what is

biologically reasonable. Although the connections are made stochastically, there is no currently

known mechanism in the brain to allow such precise activation and deactivation.

To proceed, the recombination rule is applied at all neurons. A simulation must then be initiated

by placing more than one signal, as one alone is not enough to trigger the firing of any subsequent

neurons. This is achieved by placing one signal on every neuron in the system. Upon running

simulations at this point it is visible that there are two possible simulation outcomes. Either the
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Figure 3.8: A depiction with other neurons in the path shown, which were previously omitted.

This presents problems with the biological accuracy of the model.

signal dies very quickly as signals are insufficient to satisfy the recombination rules for very long,

or the network quickly becomes totally saturated. In either case, storing a temporally patterned

signal is not possible, in the first because there is no persistent signal and in the second because

with every node carrying a signal there is no opportunity for spacing in the pattern. Indeed, this

behaviour is typical for positive feedback loops as constructed here [22]. Figure 3.9 shows the

fraction of networks generated that saturate as a function of FWHM parameter. The outcome is

binary, in that the fraction of networks where the signal quickly dies out is the complement of the

fraction given here. The transition occurs at a FWHM of approximately 14, which corresponds

to C = 10.20.

5 10 15 20 25

0.2

0.4

0.6

0.8

1

FWHM parameter

F
ra

ct
io

n

Figure 3.9: The fraction of networks for which saturation occurs. Data obtained for 100 neurons

in a 50 unit cube, taken over 50 repeats.
In order to solve this, another physical phenomenon is turned to for inspiration, chemotaxis.

Conclusions similar to [22] result and this is the subject of the next chapter.
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Chapter 4

A chemotactic model for circuits

4.1 Introduction to the model

In order to determine synaptic rules that result in signals which travel in circuits, a simpler model

is first considered. Inspiration is taken from another biological mechanism, chemotaxis. Organ-

isms such as cells and bacteria often move in response to chemicals in their environment, indeed

chemotactic mechanisms are even important in the growth of axons [23]. The mechanism for

the movement of free organisms, for example bacteria, consists of two phases, a movement phase

and a tumbling phase [24]. The tumbling phase results random movement, however movement

in chemotactically favourable directions suppresses tumbling resulting longer movement phases

and hence biased movement [25].

This behaviour is often modelled as random walk with a bias in direction selection [26], and a

similar approach is taken here, simulating on a hexagonal lattice similar to Gharasoo et al. [27].

A signal is placed in the lattice and is allowed to move freely in a random walk. As the end

goal is the formation of non-trivial circuits the chemotactic stimulus is introduced in the form

of a preference for moving to lattice sites which have been visited before. This is implemented

by storing the last time at which the signal visited each lattice site. Initially the choice is made

with P = 1. This results in immediate formation of a trivial circuit, that is, a circuit consisting

of only two neighbouring lattice sites. To prevent this a lag time tl is introduced such that choice

is only made if the time since last visit tv > tl. Thus the choice is made with

P (selecting previously visited site) =

1 if tv > tl

1/6 if tv < tl
(4.1)

The neurological analogy is ion depletion within synapses, outlined in section 1.2. After a
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signal has been transmitted through a synapse, the concentration of ions in the connection that

are needed for transmission is reduced and conductivity is reduced until the ions have been

replenished [13].

At first, motion is random; if tv < tl, crossing the previously visited path has no consequence.

When the signal eventually intersects its own path with tv > tl these rules will result in the

particle preferentially moving back along this path again and a closed circuit is formed. The

magnitude of tl can be tuned and this affects the size of the circuit formed.

4.2 Improving the implementation

The first form of this model was implemented with absolute preference for the most recently

visited site. In this case, if the signal enters a circuit it will be totally locked there. Figure

4.1 shows the development of such a circuit, starting from a single seed point a random walk is

undertaken (figure 4.1a). A threshold is set with tl = 50 such that crossing a previously visited

path within the last 50 time steps has no effect (figure 4.1b). Only if the time since last visit is

greater than this threshold does the preferential behaviour come into effect. It is visible in the

final frame (figure 4.1c) that a stable loop has been formed. The example can be extended to

allow a non-zero probability of breaking away from the circuit

P (selecting previously visited site) =

1− ε if tv > tl

1/6 if tv < tl
(4.2)

for small ε ∈ R. The result of this is shown in figure 4.2. A stable circuit is formed when the

signal reaches a previously visited path with a time greater than the threshold, as before. Now

however, the introduction of a small amount of noise into the preferential selection process means

that the circuit is not totally stable. The signal may break away and quickly form another stable

circuit, visible in the final frame.

In order to close the gap between this simplified model and the full neuronal network model, the

simplified model is extended to allow multiple signals. At first this is done näıvely by setting a

target number of signals present in the entire network. If the total number of signals is less than

the target then a signal may branch by selecting a random neighbour site into which another

signal is placed. This implementation is considered näıve as there is no reason to assume that

a given site should have knowledge of the level of activity in the whole system. Nevertheless it

provides a base point to study the likelihood of obtaining circuits of a given length with multiple

signals and the synaptic rules as outlined above. In addition to implementing a way for the

number of signals to increase, a way for them to decrease is also added. Without this, once

the target level of activity is reached then the same n signals traverse the lattice indefinitely.
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(a) A single signal is placed in the

centre of the lattice and embarks

on a random walk.

(b) Path intersections are ignored

if they were visited less than 50

time steps ago.

(c) Path intersections result in a

stable closed loop if they were vis-

ited more than 50 time steps ago.

Figure 4.1: A random walk with no noise and a target loop length of 50 time steps on a hexagonal

lattice with dimension 50 × 50 and periodic boundaries. Coloured by time since last visit, red

most recent, blue least recent and skewed to a square to allow easier plot production.

(a) An initial stable circuit of at

least the target length is formed

as before.

(b) Noisy path selection allows

the signal to break away from the

loop.

(c) Another stable loop is formed

with similar length, again at least

the target length.

Figure 4.2: A random walk with 1% in the selection of the path and a target loop length of 50

time steps on a hexagonal lattice with dimension 50× 50 and periodic boundaries. Coloured by

time since last visit, red most recent, blue least recent and skewed to a square to allow easier

plot production.
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(a) A single signal is placed in the

centre of the lattice.

(b) New signals are formed and

each travels in a random walk.

(c) Interpretation becomes diffi-

cult, another method is needed.

Figure 4.3: A random walk with 1% noise for path selection and 1% noise for propagation success.

A total activity target of 20 signals is set with a target loop length of 50 time steps on a hexagonal

lattice with dimension 50× 50 and periodic boundaries.

Providing this mechanism via the introduction of a noisy propagation step allows new signals to

form and die at all time steps, and is analogous to the noise that is present in the full neuronal

model.

The resultant behaviour is visible in figure 4.3. Unlike the earlier single walker situations (figures

4.1 and 4.2) it is much more difficult to interpret whether cycles are present when many signals

are present. In order to determine whether they are actually present a more concrete method

is employed. By measuring the time between subsequent visits of a site by signals a picture of

whether circuits of a given sized are present can be formed. Figure 4.4 shows this for the model

with the global activity target.

It is clearly seen that circuits at and just above the target time (in this case, 40 time steps) are

being reliably formed. Particularly important is the fact that the falloff is very sharp, circuits

being formed with much larger length than the target age are not commonly seen. This is a very

desirable characteristic as circuits of the same length are desired when attempting to store data

redundantly.

4.3 Removing reliance on global properties

In order to remove the global nature of the activity target and to bring the simplified model

closer to the full neuronal model several steps are taken. First, branching is restricted to only a

small number of lattice sites by randomly selecting, for example, 10% of sites. This is analogous
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Figure 4.4: The number of time steps between subsequent visits of a site, with a global activity

target. Data is obtained per site and plotted for all sites in the lattice.

to the fact that branching only occurs at synapses in the full model, and that synapses are a

small number of the total number of nodes in the system. Alone, this is enough to limit the

growth of the system and prevent saturation.

Figure 4.5 shows the time between visits of each site on the lattice. Again it is seen that circuits

of close to the target length are reliably being formed. The falloff is still very sharp, albeit

slightly slower than in figure 4.4.

The effect of the noise on the update steps may also be examined by considering the average

number of visits to each site over a whole simulation. Figure 4.6 shows this for 0%, 0.5% and 1%

noise in the update step. It is seen that more noise makes the signal significantly more localised.

This is because it becomes harder for a signal to break away and explore new areas of the lattice.

There is a competitive equilibrium where a signal is only likely to persist when a large number of

walkers are around, enough that new walkers are added due to branching at a rate which meets

or exceeds the rate lost due to noise.

This is a desirable characteristic in a full model as it means that one signal is less likely to

interfere with another.

This intuition may now be applied to the full model. Directly translating the rules to the synapses

in the system, a rule is applied such that a synapse may only allow a signal through if a signal has

not passed through in the last n time steps. This, in essence, is a form of negative feedback, and

aligns with the conclusions of [22] that such a feature is necessary for stable neuronal activity.
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Figure 4.5: The number of time steps between subsequent visits of a site with no global activity

target, instead with an age limit for branching. Data is obtained per site and plotted for all sites

in the lattice.

(a) No noise (b) 0.5% noise (c) 1% noise

Figure 4.6: The average number of visits to each site with 100 walkers on a 200 × 200 lattice

with a delay time of 50 time steps. As the noise in the update step is increased signal movement

becomes more localised.
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Chapter 5

Towards storage

5.1 Large time behaviour

It is observed that when running the simulation for a large number of iterations the level of

activity in the system does not settle down to constant level. Rather, it varies in a periodic

manner, behaviour which is visible in figure 5.1. As already discussed, stable behaviour only

emerges when the negative feedback mechanism is added in the synaptic connections. Without

this, the activity either quickly decays to zero or quickly tends to the total number of nodes in

the network. As discussed earlier, Lim and Goldman [22] observed that the presence of negative

feedback is essential for sustained activity. They did not, however monitor global activity levels

in the same way as here.

Fourier analysis may be performed to determine the frequency, and hence period, of the os-

cillation. As seen in figure 5.1a, the period of the oscillation appears to be very well defined.

Figure 5.1b shows a fourier decomposition of the series in figure 5.1a where frequency has been

converted to period. Of interest is whether this period is dependent on any particular property

of the network. Data was collected to investigate the effect of varying the synapse delay time

on this period by varying the delay time and recording the period. The result is shown in figure

5.2.

At present, the cause of this periodic variation in activity level cannot be adequately be explained.

It is surmised that the network is constructed such that resonance can occur; the synapse delay

time prevents network saturation and once the delay time for a given synapse has elapsed it may

again contribute, allowing the network to increase activity levels again. Enough signals can be

stored in the axons during the delay period to make the subsequent increase in activity possible.

This initial explanation is consistent with the observation that the period of oscillation increases
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(a) The total activity (measured by the number of

active signals) as a function of time, following an

initial stimulation of one signal per neuron.
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(b) A Fourier decomposition of the activity, in-

verted to display period instead of frequency, cal-

culated omitting the first 1000 time steps.

Figure 5.1: The long term behaviour of the overall activity level

linearly with synapse lag time, as longer lag times will result in activity being suppressed for

longer. This behaviour must be taken into account in the discussion of the following sections.

5.2 Determining if circuits are present

Earlier, in section 3.5, it was observed that it is possible to find three redundant circuits if an

explicit search is conducted. Although the depth first search confirmed that, for a sufficiently

connected network, redundant circuits can typically be found, an attempt has not yet been made

to determine whether the desired circuits are able to store information in the context of a network

formed without direct synapse control. This investigation is conducted here.

When investigating the chemotactic model, the time taken between subsequent visits of a each

lattice site was studied (figure 4.5) and very well defined behaviour was exhibited. In the chemo-

tactic model the logical decisions related to deciding which path should be taken were occurring

on each lattice site. This statement seems trivial, however when considering the neuronal model

it is clear that the same cannot be said. In this case, the decisions are made at the synaptic

connections and the measurements are taken at the neurons – there is a disconnection between

the decision making and the measurement. In addition, as signals are now constrained to move

27



45 50 55 60

300

320

340

360

380

400

Synapse lag time

P
er

io
d

o
f

os
ci

ll
at

io
n

Figure 5.2: The dependence of the period of long range oscillatory behaviour as dependent on the

synapse lag time. The trendline has equation p = 5.94l + 49.07 and has a correlation coefficient

of r = 0.929.

only along axonic and dendritic connections, rather than having the freedom of the hexagonal

lattice, simply counting time differences is not sufficient. This is because on the hexagonal lat-

tice it is possible for individual loops to exists reasonably independently, while in the neuronal

model circuits are constrained such that signals potentially following several different circuits are

constrained to travel down the same axon or dendrite. This means the measured times between

signals passing through a neuron will be far less than the length of an actual circuit, as the timer

cannot distinguish which circuit a signal is travelling around. Indeed, attempting to take such a

measurement yields figure 5.3.

Determining whether circuits are present in this large, heavily connected network is a non-trivial

exercise. One could imagine tagging a signal and watching to see if that particular signal branched

and followed several redundant pathways, however the architecture of the simulation program as

written does not allow for such a technique (this could be an avenue for further investigation,

given time to restructure the implementation). Instead, a different method is employed – the

last n timesteps of activity at each neuron are recorded (setting n = 1024 in this study). At each

point in time the last m timesteps of activity are considered (setting m = 10). A search for the

presence of the binary string corresponding to the last m timesteps of activity is conducted over

the last n timesteps of activity that were recorded. It is expected that if circuit like structure is

present and data is successfully being stored then strings corresponding to the last m timesteps

would be found at regular intervals within the last n timesteps. Thus it is expected that plotting

the re-occurrence time would yield spikes in re-occurrence at regular intervals.
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Figure 5.3: The number of time steps between subsequent visits of a site for a neuronal network

with 200 neurons and FWHM parameter 40 in a 50 unit cube. Data is obtained per neuron and

plotted for all neurons in the network.

The following section explores the expected results of this method, before the experimental results

are presented.

5.3 Random binary sequences

To obtain a better understanding of this method of searching for binary strings an attempt is

made to mimic the behaviour in a simplified model without circuit like structure. The intention

is that this will serve as a baseline to compare with experimental results. To do this, a random

binary sequence of length n is generated, with each xi having a probability P . In each time

step the sequence is advanced xi+1 = xi and a new element is selected for x0. A search for

re-occurrences of the first l elements is conducted over the whole sequence for l� n. If a match

is found, the location in the sequence is stored and this process is repeated over a number of

time steps. This effectively reproduces the process occurring at the neurons as a simulation is

being run that was detailed in the previous section. The resultant histogram of re-occurrence

locations for P as defined is shown in figure 5.4 for both a constant P (xi = 1) = 0.5 and an i

dependent P (xi = 1) = 1
2 sin( i

180 ) + 1
2 (to simulate the effect of the sinusoidally varying activity

level in the system).

This dependence can be modelled analytically by considering the probability of finding matches

in the window [i, i + l]. The probability of two uncorrelated bits with probabilities pi and pj
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(a) P (xi = 1) = 0.5
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Figure 5.4: Simplified experimental pattern re-occurrences for n = 1000, l = 5 and k = 10000.
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Figure 5.5: Analytic pattern re-occurrences (up to a normalisation constant).
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either both being 1 occurring or both being 0 is

Pij = pipj + (1− pi)(1− pj) (5.1)

The probability of this occurring for a every pairing of elements in the comparison window where

p′i is the probability of an element in the reference sequence (i.e. one of the first l elements of

the sequence), is then

Pi =

l∏
k=0

(pk+i · p′k + (1− pk+i)(1− p′k)) (5.2)

up to a normalisation constant to ensure that
∫
Pdxi = 1. Figure 5.5 shows this distribution,

again for both P (xi = 1) = 0.5 and an i dependent P (xi = 1) = 1
2 sin( i

180 ) + 1
2 .

By approaching the problem from first principles, baseline results are obtained for a system in

which fundamentally not circuit like. These results can now serve as a point of comparison for

experimental results. If any loop like behaviour is present then the experimental results should

deviate from these results, hopefully exhibiting peaking on the same order of magnitude as the

synaptic lag time.

5.4 Experimental pattern search results

Figure 5.6 shows the results when the process described in section 5.2 is applied in the neuronal

model. At first, there does appear to be any evidence of circuit behaviour, rather the plot

appears similar to 5.3. Upon closer inspection it appears that in actual fact the decay is not

completely smooth. There does appear to be two bulges visible, the second located at t = 120,

the first somewhere nearer the origin. The lag time for the simulation was set at t = 60, thus the

second bulge occurs at 2× [lag time]. The important quality is that if this is genuinely periodic

behaviour, it occurs over a period much shorter than the overall activity variation and thus is

likely not related. This is a very positive sign that data is actually being stored. More data

is required to make any comment beyond speculation and unfortunately this has not yet been

gathered due to time constraints.
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Figure 5.6: Experimental pattern re-occurrences for the neuronal model with 300 neurons in a

50 unit cube, connected using a FWHM parameter of 40, simulated with a lag time of 60 time

steps and averaged over 25 runs.
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Chapter 6

Conclusions

6.1 Review

After reviewing biological literature, a minimal model consisting of a circuit that acts as a

feedback loop was formulated such that it is trivially capable of storing information in the form

of a temporally pattered signal. It was extended by adding extra circuits to allow redundancy

in the stored data, and error correction was implemented by equally weighting the circuits and

accepting the result carried by a majority of the circuits. With an interface over the top, it it

possible to reliably store and retrieve information from this network.

The construction of the minimal model in this form held little resemblance to physical neuronal

networks and hence the model was extended to a larger system with a stochastically generated

network. A method of connecting the network was introduced and a graph theory analysis of the

networks produced allowed estimation of a level of connectivity that would result in a majority

of neurons lying on closed circuits. This estimate turned out to also apply reasonably well to a

real network, that of the C. Elegans nematode. From there, a more precise search for the desired

circuits was conducted using a depth first searching algorithm. It was determined that, again

given sufficient connectivity, it was easy to find three circuits of equal length in a given network.

At this point the idea of simply turning off synapses that do not contribute to the three circuits

was entertained. This allowed, as with the minimal model, for information to be successfully

stored and retrieved using these stochastically generated networks.

The selective disabling of synapses was subsequently rejected, as such a mechanism for selectively

disabling connections is unphysical. In addition, the circuits formed only possessed the weighted

recombination rule at the root neuron of the circuit. Instead a system where all neurons carry the

recombination rule was explored. The most näıve approach produces networks which are very
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unstable, activity either quickly dies or saturates the network, neither of which is a desirable

outcome.

For inspiration the process of chemotaxis was examined and using lattice models rules that

allow for a stable activity level were discovered. Upon returning to the full neuronal model and

applying these rules it was determined that stable activity is achievable here also. A study into

the properties of the network when operating with stable activity was undertaken and interesting

periodic behaviour during long simulations was discovered. An investigation is also started into

whether or not data can be effectively stored in the final network, Although at the time of writing

a conclusive result has not yet been obtained, some promising results that suggest data storage

may be possible have been obtained.

6.2 Outlook

It has been demonstrated that a network can be constructed in a biologically reasonable and

stochastic manner that possesses many of the properties one could expect to require if data

storage of a temporally patterned signal is to be achieved. Determination of whether this has

been achieved is non-trivial due to the highly interconnected nature of the network and the high

levels of activity needed to satisfy the weighted recombination rules and provide stable behaviour.

Because of this, it is not entirely clear at present whether information storage in the final form

of the network has been achieved. It is possible that data is already being successfully stored,

just that the currently employed techniques are not able to detect it. The desired overall result

is tantalisingly close, although for the moment remains out of reach. Further study of systems

of this nature is needed and such study holds promise of achieving the desired result.
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