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Abstract

The top quark pole mass is affected by perturbative divergences
known as renormalons, therefore this mass parameter possesses a

theoretical ambiguity of order ΛQCD, the infrared scale of
divergence. We subtract a part of the static tt potential and obtain
the potential-subtracted mass which is renormalon-free and thus
measurable with bigger precision. We demonstrate the presence

of the renormalon ambiguity in the top quark pole mass and in the
static tt potential and with this the cancellation of the renormalon

ambiguity in the potential-subtracted mass. Before we discuss
renormalons, we review how one computes one-loop quantum

corrections in QED and the SM, starting from the gauge-principles
that underlie these theories. We focus on renormalisation and its
non-perturbative implications, we discuss how the conservation

of Noether current affects the counter terms in QED and verify the
optical theorem explicitly for top quark decay.
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Chapter 1
Introduction

In quantum field theories we are confronted with a lot of freedom to choose
conventions, parametrisations and scheme’s. We thus start with a lagrangian
and the corresponding Feynman rules, and from that we demonstrate how
to compute the one-loop quantum corrections. An understanding of the
details in this demonstration, allows us to look at three different mass
schemes for the top quark in quantum chromodynamics (QCD), the theory
of quarks and gluons.

Motivation

Each mass scheme corresponds to a theoretically defined mass parameter
such as: the pole mass mpole, the modified minimal subtracted mass mMS,
the potential subtracted mass mPS [1], the modified potential subtracted
mass mPS [2] and the 1S mass m1S [3]. Not all of these theoretical mass
parameters can be extracted from experimental fits with the same preci-
sion. We explore how infrared renormalons affect the precision by which
the mpole, mMS and mPS mass parameters can be measured.

We invest a substantial amount of effort to develop a good understand-
ing of the one-loop quantum corrections. To obtain more accurate predic-
tions it is necessary to compute not only the leading order tree-level contri-
butions but also the leading and eventually the sub-leading quantum cor-
rections, which amounts to an expansion in the coupling constant. Also in
these calculations, there is a multitude of possible conventions, parametri-
sations and schemes which makes it important to recognise what is phys-
ically relevant. Therefore, we explore different regularisation and renor-
malisation schemes in quantum electrodynamics (QED) through explicit
step-by-step computations.

Version of June 30, 2016– Created June 30, 2016 - 23:01
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10 Introduction

Of all the possible particles in the standard model (SM), we choose to
focus on the top quark. The top quark is the heaviest fundamental particle
in the standard model and although its discovery in 1995 at the Tevatron
forwent the discovery of the Higgs particle in 2012 at the LHC by more
than a decade, the accuracy by which we know its mass is nearly an order
of magnitude less precise. [4] Also the top quark is a vey short-lived
particle since it is more massive than the W-boson. It has an open decay
to a W-boson and the full decay width Γt = 1.41+0.19

−0.15 GeV [4] is so large
that a top quark decays before it has time to hadronise, which allows for a
wider applicability of the perturbative method. [5, 6]

The electroweak parameters together with a well-determined top quark
mass allow one to test the consistency of the SM. The SU (3)× SU (2)×
U (1) symmetry that underlies the standard model makes that a more pre-
cise determination of the top quark mass allows us to determine other
parameters with a bigger precision also. The sensitivity to new physics
would increase once the effect of top quark quantum corrections is known
at bigger precision. Also, due to the large top quark mass there is a strong
coupling between the top quark and the Higgs boson, which might pro-
vide us with beyond the standard model (BSM) physics sensitivity. [7]

Figure 1.1: These plots have been taken from Ref. [8]. It shows the for what
values of mt and mh the SM electroweak vacuum is stable, meta-stable and un-
stable with a zoom-in on the best measured experimental values of the Higgs
and top quark mass at the time. Additionally, the instability scale of the vacuum
expectation value of the Higgs field is shown in GeV.

There are even cosmological implications, the current best measured
values of the Higgs and top quark pole masses are mH = 125.09± 0.24 GeV
and mt = 174.6± 1.9 GeV [4]. It has been shown at next-to-next-to-leading-
order (NNLO) that the standard model (SM) Higgs potential becomes unsta-
ble at energy scales that lie well below the Planck scale, which makes our

10
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universe metastable with a lifetime of about the age of the universe. [8, 9]
Some claim that metastability is a necessary condition for the universe that
is favoured by quantum gravity theories. [10] The largest uncertainty on
the conclusions in these works is the top quark pole mass, which can be
seen in Fig: 1.1.

Measuring the top quark mass

In this thesis we concern ourselves with the theoretical ambiguity in the
top quark pole mass that is caused by so-called renormalons. These renor-
malons are one of the limiting factors in a precise determination of the
theoretical mass parameter known as the top quark pole mass. We show
that a different theoretical top quark mass parameter exists that is free of
these renormalons. Here, we describe some experimental methods that
are used to extract theoretical top quark mass parameters from data.

The top quark mass parameters such as the pole mass, the MS mass or
the potential-subtracted mass are not physically observable, hence not di-
rectly measurable. In particle colliders we only count the number of events
with a certain kinematical signature and fit this to theoretical predictions.
Then we extract the best-fitting value for the top quark mass parameter mt
with a certain likelihood and uncertainty.

Schematically, the general method is that we try to find the solution for
mt of the following implicit relation as a function of kinematical variables
{P}. Aexp ({P}) is the measured number of events with a certain signature
and Ath (mt, {P}) is the expected number of events with that signature.

Aexp ({P}) = Ath (mt, {P}) (1.1)

The first detection and subsequent study of the top quark and its mass
have been performed at hadron colliders such as the Tevatron and the
LHC. Mass measurements are performed with events wherein a tt-pair
is produced that decays into almost exclusively a W-boson accompanied
by a bottom quark. The top quark mass parameter is then extracted from
the data by sophisticated methods such as the template method or the matrix
element method.

The QCD-induced production of a tt-pair happens through either gluon
fusion or quark-antiquark annihilation, whereof the NLO corrections have
been computed long ago. [11] Notable is also that due to different collider
energies the dominant tt-production mechanism at the Tevatron is quark-
antiquark annihilation whilst at the LHC this is gluon fusion.

The tt-pair rapidly decays via an open weak decay to a W-boson and
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12 Introduction
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Figure 1.2: This figure shows the dominant tt-production channels in hadron
colliders. On the left gluon fusion is shown and on the right quark-antiquark
annihilation is shown.

a bottom-quark. The decays to down or strange quark are heavily sup-
pressed as off-diagonal elements in the quark-mixing martrix VCKM, which
is nearly diagonal in flavour space. The bottom quarks hadronise into jets
of particles whilst the W-bosons have the option to either decay into a jet
or into a lepton with a neutrino.

The tt-decay channels with each their own merits are classified through
the decay channels of the two W-boson. The dilepton-channel has two
jets from the bottom quarks and a low background relative to other two
channels, but is plagued by a low branching fraction and therefore low
statistics. In contrast with this the all-hadronic channel with four jets has a
large branching fraction, but is plagued by a large background from QCD
multi-jet events. In this channel, it is necessary to employ data filtering
methods inspired by neural networks that combine kinematic variables
in order to construct a discriminant that allows one to filter out tt-events.
Preferably one looks at the lepton + jet channel with three jets, which has
less background than the all-hadronic channel and a much bigger branch-
ing fraction than the dilepton channel.

The template method is the traditional method employed to extract
the top quark mass from collision data. The data is fitted to the kine-
matics of the event by minimising a χ2-function and a top quark mass
mrec

t is reconstructed from the best-fitting event hypothesis. Additionally,
events with different values for mt are simulated to construct template his-
tograms. One uses these templates to derive a parametrisation of the mrec

t
histograms as a function of mt. Finally, maximum-likelihood methods are
used to fit the template function to the histogram of mrec

t that was observed
in the collision data.

The most precise top quark measurements have been obtained by use
of the matrix-element method. In this method the entire event kinemat-
ics is used to improve sensitivity for the top quark mass. One computes
the event probability P (mt, {P}) as a function of the top quark mass mt
and the measured kinematic variables {P}. This requires expressions for

12
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the tt-production and decay diagrams at leading order, which are convo-
luted with parton distribution functions and the detector response. Events
with a bigger likelihood to be a tt-event are given a greater weight in the
top quark mass determination, which is central to the effectiveness of this
method.

These and other experimental methods to determine the top quark
mass in hadron collider and their (dis)advantages with additional refer-
ences are reviewed in [12], a more accessible treatment is found in [13].

Figure 1.3: This is the design for the proposed International Linear Collider (ILC),
a 31 kilometre long electron-positron collider that would reach energies of up to
500 GeV. The image was taken from: www.linearcollider.org .

However, the top quark mass is expected to be measurable with a
higher precision at or below ∼ 100 MeV in future lepton colliders such
as the proposed International Linear Collider (ILC) [14] and the Com-
pact Linear Collider (CLIC) [7]. At lepton and most notably the above
named e+e− colliders one collides fundamental particles instead of com-
posite objects like protons, hence the QCD background is reduced because
the initial state is fully characterised.

t
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,
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g

Figure 1.4: This figure shows the dominant tt-production channels in e+e− collid-
ers. On the left the photon exchange is shown and on the right Z-boson exchange
is shown.

At a lepton collider the dominant tt-production goes via virtual pho-
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14 Introduction

ton and Z-boson exchange with backgrounds from di-boson production of
a Z-boson or W-boson pair. The tt-pair then decays again into the dilep-
ton channel, the semi-leptonic channel and the all-hadronic channel via an
intermediate W-boson.

One way to extract the top quark mass is by means of direct recon-
struction above the threshold energy for the production of two top quarks,
which is at about

√
s ≈ 2mt ∼ 350 GeV . This method is similar to the tem-

plate method that was described for hadron colliders, but an application
of the matrix element method should be feasible as well. Unfortunately,
the connection between the mass parameters in theory to experimentally
accessible parameters is still lacking. [7]

A threshold scan is expected to outperform the direct reconstruction in
the determination of the top quark mass. In a threshold scan one measures
the cross-section of tt-events close to and at the threshold in finite size
steps. Also, data points are taken further below threshold to measure the
background. To extract from these data points the top quark mass, the
data-points are compared to calculated cross-sections for different mass
hypotheses via χ2-fitting.

Figure 1.5: This plot has been taken from Ref. [15]. It shows at successive or-
ders the prediction for the cross-section of tt-events close to threshold for elec-
tron positron scattering as a function of the centre-of-mass energy

√
s taking

mPS
(
µ f = 20 GeV

)
= 171.5 GeV, ΓCM = 1.33 GeV and αs (mZ) = 0.1185± 0.0006

as input. The colour bands show the variation of the result as a function of renor-
malisation scale µ.

14
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At the threshold energy the quark anti-quark pair have non-relativistic
relative momentum, hence the strong interaction drives the system to form
sharp bound-state resonances. Only, these sharp bound-state resonances
are smeared out by the weak interaction’s decay into one broad peak. This
process is well-understood theoretically at N3LO in the QCD corrections
by use of effective field theories such as non-relativistic QCD (NRQCD)
and potential NRQCD (PNRQCD) in the potential-subtracted mass scheme.
[15] The N3LO computation was necessary because the N2LO contribution
was still large with respect to the NLO prediction as shown in Fig: 1.5.

Structure

To compute quantum loop corrections in QED without too much luggage,
we start off with a description of QED and its symmetries in Ch: 2. This al-
lows us to introduce our notation, spinor and gamma-matrix conventions
and define the Feynman rules with free gauge parameter and a photon
regulator mass.

Having understood the origin of the QED Feynman rules, we use them
in Ch: 3 to compute the leading order one-loop quantum corrections to
the propagators and vertex function in QED. Along with this computation
we define the exact propagator, the vertex-function, the pole mass and
compare two infrared regulator schemes. More importantly though, our
step-by-step by hand evaluation of the Feynman diagrams allows us to
explain the techniques that are necessary for the evaluation and motivate
the use of more automated techniques.

The divergences in the self-energies and vertex functions that have
been regulated in Ch: 3 need to be cancelled by an appropriate choice for
the counter terms Zi. In Ch: 4 we compute these counter terms in the MS
and the OS renormalisation schemes for both infrared regulator schemes.
Additionally, we relate the mass parameters in the two schemes and show
what non-perturbative information is contained in the Zi.

In Ch: 5 we take a side-step and demonstrate that the quantum equiva-
lent of conservation of Noether current in QED leads to constraints on the
space-time structure of QED amplitudes and the equality of counter terms
in the MS and OS renormalisation schemes.

From Ch. 6 onwards we move on from one-loop calculations in QED
to the top quark and the SM. Here, we work the Feynman rules relevant
for the top quark interactions and for top quark and gluon one-loop cal-
culations in the SM. We do not simply state the Feynman rules, but also
explain which mechanism or principle gives rise to them.

Version of June 30, 2016– Created June 30, 2016 - 23:01
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16 Introduction

After the significant effort of the by hand evaluation of QED one-loop
diagrams, we use a more automated approach in Ch: 7 to one-loop self-
energy diagrams of the gluon and the top quark in the SM. We aim to
describe an automisation method that proves to be sufficient for our pur-
poses, not one that is general.

In Ch: 8 we use the more automated method to show the validity of
the optical theorem at leading order for the dominant decay channel of
the top quark into a W-boson and a bottom quark in the unitary gauge.

The general concept of renormalons is introduced in Ch: 9. We dis-
cuss the definition of renormalons in QED, demonstrate their characteris-
tic n!-growth in a perturbative expansion and show an effective method
of resummation. Finally, we argue for a gauge-invariant prescription that
generalises the QED renormalons to QCD.

With the running coupling prescription from Ch: 9, we evaluate in
Ch: 10 how renormalons induce a theoretical ambiguity in the top quark
pole mass that is of order ΛQCD ≈ (200− 300)MeV [16]. We demonstrate
that renormalons induce a similar ambiguity in the static toponium poten-
tial, which cancels the pole mass renormalon ambiguity in the Schrödinger
equation of the toponium system. This motivates the definition of a renormalon-
free mass, the potential-subtracted mass.

16
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Chapter 2
A Description of QED

We describe the lagrangian of quantum electrodynam-
ics (QED), show that this lagrangian is gauge-invariant
and deduce the corresponding Feynman rules for later
computations. We also introduce notation and de-
fine our conventions concerning spinors and gamma-
matrices.

We start with a fermion spin-½ field with a local U(1) gauge symme-
try. The local gauge-symmetry requires that we covariantise the derivative
and introduce an interaction with a gauge-field. For the gauge-field we
introduce a kinetic term, a gauge-fixing term and a small regularisation
mass.

The Feynman rules that we derive will be used to calculate the self-
energies and the vertex-correction. For a more complete treatise of the
subject one could look at introductions to quantum field theory such as:
Ref. [17, ch. 58] and Ref. [18, 19] or without a rigorous treatment of
quantum field theory: Ref. [20].

2.1 The lepton sector

QED is the theory of electromagnetism at the quantum scales, it involves
charged fermion particles called leptons. These leptons are electrons, muons,
tauons and their respective anti-particles. The (anti)-muons and (anti)-
tauons that are produced via electromagnetic or weak interactions quickly
decay to (anti)-electrons (and neutrino’s) via the weak interaction. Here,

Version of June 30, 2016– Created June 30, 2016 - 23:01
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18 A Description of QED

we consider only electrons and their anti-particles, the positrons.
The lagrangian of QED contains an electron/positron spin-½ fermion

field Ψ (x). These objects are four-component vectors in spin space, and
their Dirac conjugate fields are defined as Ψ (x) ≡ Ψ† (x) γ0.

To use fermion fields we need the γ-matrices, four independent trace-
less 4× 4 matrices with a space-time index, that obey a Clifford algebra as
shown in Eq: 2.1. As a shorthand notation we also introduce for any vec-
tor aµ the shorthand aµγµ ≡ aµγµ ≡ /a . Relations and identities involving
γ-matrices are tabulated in App: A.

{γµ, γν} ≡ γµγν + γνγµ = −2ηµν (2.1)

The free-field lagrangian for the spinor field Ψ(x) is shown in Eq: 2.2,
the origin of which is found in textbooks such as [17, ch. 36]. From the
free-field Lagrangian one constructs the propagator in momentum space
S̃ (/p) by taking the inverse, as shown in Eq: 2.3. This propagator, as shown
in Eq: 2.3 is inserted for every internal electron line in a Feynman diagram.
∗

LΨ,0 = −Ψ (x) (−i/∂ + m)Ψ (x) (2.2)

1
i

S̃(/p) ≡
−i

/p + m− iε
= −i

−/p + m
p2 + m2 − iε

(2.3)

The external lines of electrons or positrons in Feynman diagrams are
contracted with spinors. The spinors describe the spin-polarisation of the
asymptotic incoming and outgoing states. Incoming electrons are con-
tracted with us (p), outgoing electrons with the Dirac conjugate spinor
us (p), incoming positrons with vs (p) and outgoing positrons with vs (p).
The s-index is used to denote the spin-state of the spinor.

The us (p) and vs (p) spinors describe the asymptotic states, therefore
they satisfy the classical equations of motion that are derived by varying
the free-field fermion lagrangian.

(−i/∂ + m)Ψ (x) = 0 (2.4)

We now construct a plane-wave decomposition for Ψ (x) in terms of
positive and negative frequency modes and the spinors us (p) and vs (p).

Ψ (x) ∝ us (p) eipx + vs (p) e−ipx (2.5)

∗The ’−iε’-prescription in the propagators is usually not written explicitly, expect for
in the definition of the Feynman rules.

18
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2.1 The lepton sector 19

Since the field Ψ (x) should satisfy Dirac’s equation, we find that the
spinors should satisfy:

(/p + m) us (p) = 0 (−/p + m) vs (p) = 0
us (p) (/p + m) = 0 vs (p) (−/p + m) = 0

(2.6)

We use a relativistic normalisation of the spinors:

us′ (p) us (p) = 2mδs,s′ us′ (p) vs (p) = 0
vs′ (p) vs (p) = −2mδs,s′ vs′ (p) us (p) = 0

(2.7)

Some additional identities involving spinors contracted with gamma-
matrices are tabulated in App: A.

The local U (1) gauge-symmetry

QED has a local U (1) gauge-symmetry and thus the lagrangian is in-
variant under the transformation Ψ (x) → Ψ′ (x) = eieξ(x)Ψ (x), where
e = −0.302822 the charge of the electron in Heaviside-Lorentz units with
h̄ = c = 1 and ξ (x) is the gauge parameter field. The free-field lagrangian
transforms as:

LΨ,0 → L′Ψ,0 = −Ψ (x) (−i/∂ + m)Ψ (x)− e∂µξ (x)Ψ (x) γµΨ (x) (2.8)

We see that the free-field lagrangian is not invariant under local U (1)
gauge transformations. To solve this, we introduce a massless spin-1 gauge
field Aµ (x), a bosonic space-time vector field that represents the photon.
This field transforms under gauge transformations as:

Aµ(x)→ A′µ (x) = Aµ (x) + ∂µξ (x) (2.9)

To ensure that the lagrangian in Eq: 2.2 becomes invariant under local
U(1) gauge transformations we replace the ordinary derivative by a co-
variant derivative, defined as ∂µ → Dµ ≡ ∂µ − ieAµ (x). This replacement
gives us an interaction term:

LI = eΨ (x) /A (x)Ψ (x) (2.10)

Upon adding the interaction term to the free-field lagrangian we get:

LΨ,0 + LI = −Ψ (x) (−i /D + m)Ψ (x) (2.11)

= −Ψ (x) (−i/∂ + m)Ψ (x) + eΨ (x) /A(x)Ψ (x) . (2.12)

Version of June 30, 2016– Created June 30, 2016 - 23:01
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20 A Description of QED

For every electron-photon vertex in a Feynman diagram we insert a
vertex factor that is constructed from LI . The vertex factor from Eq: 2.10
equals ieγµ, which is i times the factor that multiplies the fields in the
interaction term.

2.2 The gauge sector

The free-field lagrangian for the gauge field, which is invariant under the
U (1) gauge transformations given in Eq: 2.9, is given in Eq: 2.13. The
tensor Fµν is the field strength tensor, introduced as a shorthand notation.
In QED the components of Fµν correspond to the electric and the magnetic
field whilst the vector-field Aµ(x) corresponds to the four-vector potential.

LA,0 = −1
4

Fµν (x) Fµν (x) = −1
4
(
∂µ Aν (x)− ∂ν Aµ (x)

)2 (2.13)

The local gauge invariance of the free field lagrangian ensures that not
all components of the gauge field are physical. It is also not possible to
construct a propagator, since the part of the lagrangian quadratic in the
fields in momentum space is not invertible. The quadratic part has a null
vector along the direction of the momentum, the longitudinal polarisation
of the photon.

To construct a propagator for the gauge fields we introduce a term
that makes the quadratic part invertible, a so-called gauge-fixing term as
shown in Eq: 2.14 with λ as an arbitrary gauge-dependent term. Since λ
is arbitrary, physical observables must not be a function of λ.

Lg. f . = −
1
2
(
λ∂µ Aµ (x)

)2 (2.14)

We also introduce an infrared photon regulator mass to pre-empt the
appearance of infrared divergences due to diagrams where an on-shell
electron is indiscernible from an on-shell electron with an additional zero-
momentum photon. A small photon regulator mass mγ regularises in-
frared divergences. We add the mass term shown in Eq: 2.15 to the QED
lagrangian. Formally mγ equals zero, so it is more a mathematical crutch.

Lmγ = −1
2

m2
γ Aµ (x) Aµ (x) (2.15)

The photon mass term and the gauge-fixing term break the gauge in-
variance of the theory. However, we expect that gauge-invariance is recov-
ered for infinitesimal photon regulator masses and the gauge-fixing term

20
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2.3 The complete QED lagrangian 21

decouples from the interacting sector of the theory. ∗

With these additions the part quadratic in the gauge-fields becomes in
momentum space:

S = −1
2

∫
dd p Aµ (p)

[(
p2 + m2

γ

)
ηµν −

(
1− λ2

)
pµ pν

]
Aν (p) (2.16)

Now we find the propagator by inverting the term in square brackets
of Eq: 2.16. The propagator is given in Eq: 2.18, in Feynman diagrams the
complete term shown must be included for every internal photon line.

∆̃µσ (p)
[(

p2 + m2
γ

)
ησν −

(
1− λ2

)
pσ pν

]
= δν

µ (2.17)

⇒ 1
i

∆̃µν (p) =
−i

p2 + m2
γ − iε

[
ηµν −

(
1− λ−2

) pµ pν

p2 + λ−2m2
γ

]
(2.18)

2.3 The complete QED lagrangian

When we sum all terms in Eq: 2.13 , Eq: 2.14, Eq: 2.15 , Eq: 2.2 and Eq:
2.10 we finally find the full bare Lagrangian describing QED, wherein we
regularise infrared divergences using a small photon mass.

LQED = LA,0 + Lg. f . + Lmγ + LΨ,0 + LI

= −1
4

FµνFµν −
1
2
(
λ∂µ Aµ

)2 − 1
2

m2
γ Aµ Aµ −Ψ (−i/∂ + m)Ψ + eΨ /AΨ

(2.19)

The bare lagrangian with its parameters e and m describes a theory
which is not finite, due to infinite loop contributions. This fact motivates
us to do some shifting, renaming and rescaling to ensure that the m and e
in the Eq: 2.20 are finite.

LQED =− 1
4

Z3FµνFµν −
1
2

λ2 (∂µ Aµ
)2

− 1
2

m2
γ Aµ Aµ + iZ2Ψ/∂Ψ− Z0mΨΨ + Z1eΨ /AΨ

(2.20)

Up to tree-order approximation, without considering quantum loop
corrections, we find Zi = 1 + O(e2) since each loop in QED requires at
least two vertices. The terms proportional Zi − 1 are called counter terms,
since they are introduced to counter unwanted divergences.

The Feynman rules of QED are given by:

∗This statement is not trivial and not true in theories like QCD or the SM, see the more
detailed treatise of gauge-fixing in QCD in Sec: 6.1 and BRST-symmetry in [17, ch. 74].
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e
=:

�i

/p + m

(a)

�µ ⌫
=:

�i

p2 + m2
�

h
⌘µ⌫ � (1 � ��2)

pµp⌫
p2 + ��2m2

�

i

(b)

�
=: ie�µ

(c)

Figure 2.1: The Feynman rules in QED gauge sector: (a) the electron propagator,
(b) the photon propagator and (c) the electron-photon vertex.
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Chapter 3
One Loop Calculations in QED

In this chapter we determine and evaluate the one-loop
corrections to the photon propagator, the electron prop-
agator and the vertex function. We also define the exact
(electron) propagator and the pole mass and relate it to
the self-energy functions.
During these step-by-step by hand computations, we
explain the techniques necessary to evaluate the Feyn-
man diagrams. This includes the use of spinor and
gamma-matrix identities, Wick rotations, space-time
symmetries of the integral, Feynman parametrisation
and regularisation of divergences.

We consider two different infrared regulators, namely the photon reg-
ulator mass and full dimensional regularisation (in contrast with dimen-
sional regularisation of solely UV-divergences). At this stage both reg-
ulators yield the same unrenormalised photon and electron self-energy
functions, only the vertex correction is affected by what regulator we use.

3.1 The photon self-energy

In this section we determine the one-loop quantum corrections to the pho-
ton self-energy. We discuss the definition of the self-energy, and its relation
to the exact photon propagator. We evaluate the diagrams that contribute
to the photon self-energy using a photon regulator mass for the infrared
divergences and dimensional regularisation for ultraviolet divergences.
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24 One Loop Calculations in QED

The exact photon propagator

The photon self-energy is made up out of the interactions that a photon
undergoes with itself. If we take these quantum corrections into account
we can construct the exact propagator, ∆̃µν (p), which is defined as the
sum of Feynman diagrams with two photon sources. The self-energy is
the subset of diagrams denoted as iΠµν (p), which stays connected if any
one line is cut. This subset of diagrams, that is one-particle irreducible or 1PI
for short.

To see how the exact photon propagator, the free-field photon propaga-
tor and the self-energy are related let us consider the diagrammatic Fig: 3.1
and the algebraic expression that follows from it in Eq: 3.1.

Figure 3.1: This diagrammatic expression resembles Eq: 3.1. The sum of dia-
grams wherein a photon undergoes interactions with itself.

1
i

∆̃µν (p) =
1
i

∆̃µν (p) +
1
i

∆̃µρ (p) [iΠρσ (p)]
1
i

∆̃σν (p)

+
1
i

∆̃µρ (p) [iΠρσ (p)]
1
i

∆̃σα (p)
[
iΠαβ (p)

] 1
i

∆̃βν (p) + ...

=
1
i

∆̃µρ (p)
∞

∑
n=0

[
[iΠρσ (p)]

1
i

∆̃σν (p)
]n

(3.1)

In the full calculation, we will learn that Πµν (p) = p2
(

ηµν − pµ pν

p2

)
Π
(

p2) =
p2PµνΠ

(
p2). Here Pµν is a tensor that projects vectors in the space-time

direction transverse to the photon direction of motion, so pµPµν = 0. In
anticipation of this result we can rewrite the exact propagator in terms of
the self-energy Π

(
p2) using the the sum of the geometric series ∗.

Since Π
(

p2) involves corrections of at least two vertices, making up
one fermion loop, it is of order O

(
e2) � 1 and we can legitimately use

the geometric series. We now rewrite the last term in brackets of Eq: 3.1,
we have put m2

γ → 0 since there are no infrared divergences to regularise
at this stage:

∗The geometric series is given by ∑∞
n=0 xn = 1

1−x for x < 1

24
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3.1 The photon self-energy 25

[iΠµσ (p)]
1
i

∆̃σν (p) = Πµσ (p) ∆̃σν (p)

= p2
[

ηµσ − pµ pσ

p2

] [
ησν −

(
1− λ−2

) pσ pν

p2

]
1

p2 − iε
Π
(

p2
)

= p2
[

δ
µ
ν −

pµ pν

p2

]
1

p2 − iε
Π
(

p2
)
= Pµ

ν Π
(

p2
)

(3.2)

Since Pµ
ν is a projector matrix, we find:

[
[iΠµσ (p)]

1
i

∆̃σν (p)
]n

=

[
δ

µ
ν −

pµ pν

p2

]
Πn

(
p2
)
= Pµ

ν (p)Πn
(

p2
)

(3.3)

We now apply the geometric series to Eq: 3.1, where we note that the
gauge-dependent term that survives comes from the n = 0 term in the
summation. All other gauge-dependent terms vanish when they are mul-
tiplied by any of the projectors, the final correction to the photon propaga-
tor in terms of Π

(
p2) is given by:

1
i

∆̃µν (p) =
1
i

∆̃µρ (p)
∞

∑
n=0

[
[iΠρσ (p)]

1
i

∆̃σν (p)
]n

=
Pµν (p)

p2 [1−Π (p2)]− iε
+ λ−2

pµ pν

p2

p2 − iε

(3.4)

The gauge-dependent part of the propagator decoupled from the self-
energy interactions, which verifies the claim that was made earlier.

The contributing diagrams

The diagrams that contribute to Πµν(p) in the one-loop approximation
are shown in Fig: 3.2. The first diagram contains a fermion loop which
adds a factor −1 and the second one comes from the counter term vertex
proportional to (Z3 − 1).

Figure 3.2: This diagrammatic expression shows us the diagrams that contribute
to the photon self-energy up to one loop.
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26 One Loop Calculations in QED

iΠµν(p) =

a︷ ︸︸ ︷

(−1) (ieZ1)
2
(

1
i

)2 ∫ d4l

(2π)4 Tr
[
S̃ (/l + /p) γµS̃ (/l ) γν

]

− i (Z3 − 1) p2
(

ηµν − pµ pν

p2

)
+O

(
e4
)

(3.5)

The evaluation of the diagrams

We first use Z1 = 1 +O
(
e4) which simplifies the first term and allows for

the evaluation of the O(e2) contribution to the photon self-energy. Next
we expand the trace of a from Eq: 3.5:

Tr
[
S̃ (/l + /p) γµS̃ (/l ) γν

]
=

1(
(l + p)2 + m2

)
(l2 + m2)

Tr [(−/l − /p + m) γµ (−/l + m) γν]

(3.6)

We now expand the trace from Eq: 3.6 and use the γ-matrix identities
from App: A:

Tr [(−/l − /p + m) γµ (−/l + m) γν] =lρ (l + p)σ Tr [γσγµγργν]− (l + p)ρ m���
���:

0
Tr [γργµγν]

− lρm���
���:

0
Tr [γµγργν] + m2Tr [γµγν]

(3.7)

We cancel the trace over an odd number of γ-matrices by applying Eq:
A.14. We then apply Eq: A.15 and Eq: A.16 to get rid of the traces, and we
obtain:

Tr [(−/l − /p + m) γµ (−/l + m) γν] = 4
[
(l + p)µ lν + lµ (l + p)ν −

[
l · (l + p) + m2

]
ηµν
]

.

(3.8)

This is plugged back into Eq: 3.6 and the fermion loop contribution of
Eq: 3.5 becomes:

a = −4e2
∫ d4l

(2π)4
(l + p)µ lν + lµ (l + p)ν −

[
l · (l + p) + m2] ηµν

(l2 + m2)
(
(l + p)2 + m2

) (3.9)

We now introduce Feynman parameters to further evaluate Eq: 3.9 by
combining the denominators. Details about the Feynman parameter trick
can be found in App: B. We apply Eq: B.2 to Eq: 3.9 by choosing A =
(l + p)2 + m2 and B = l2 + m2, we then get:

26
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3.1 The photon self-energy 27

a = −4e2
∫ d4l

(2π)4

∫ 1

0
dx

(l + p)µ lν + lµ (l + p)ν −
[
l · (l + p) + m2] ηµν

(l2 + 2x (l · p) + x2 p2 + m2)
2 (3.10)

Now we perform a shift in the integration variable from l to q = l + xp
which modifies the term in the denominator of Eq: 3.10 as:

l2 + 2x (l · p) + x2 p2 + m2)2 = (l + xp)2 + x (1− x) p2 + m2 = q2 + D2
0 (3.11)

Here, we made the definition:

D2
0 ≡ x (1− x) p2 + m2 (3.12)

We perform the same shift in integration variable for the numerator:

l · (l + p) = (q− xp) (q + (1− x) p) = q2 + (p · q)− x (1− x) p2 (3.13)

(l + p)µ lν = (q + (1− x) p)µ (q− xp)ν

= qµqν + (1− x) pµqν − xqµ pν − x (1− x) pµ pν (3.14)

All the terms in the numerator that are odd in q will vanish since we
integrate them over an even integration domain with a denominator that is
even in q. Every contribution at q will cancel against an equal but negative
contribution at −q, thus we can neglect them.

a = −4e2
∫ d4q

(2π)4

∫ 1

0
dx

2qµqν − 2x (1− x) pµ pν −
[
q2 − x(1− x)p2 + m2] ηµν

(
q2 + D2

0
)2 (3.15)

The momentum integral in Eq: 3.15 diverges since the integrand does
not vanish fast enough for large momenta, irrespective of the value that
we choose for mγ. We perform dimensional regularisation to regularise this
UV-divergence and parametrise the divergence such that the integral can
be evaluated.

In dimensional regularisation one goes from d = 4 dimensions to d =
4 − ε dimensions. As a consequence, the coupling constant e will get a
mass dimension [e] = 1

2 ε ∗. We introduce an arbitrary mass scale µ̃2 =
eγE
4π µ2 ∗∗ where [µ] = 1 in mass dimensions. We now write e → eµ̃

ε
2 to

ensure that e remains a dimensionless parameter.

∗This can be verified by demanding that the QED Lagrangian has a dimension of
d = 4− ε. From the mass terms and the kinetic terms the dimension of the fields Aµ (x)
and Ψ (x) can be determined after that one can determine [e] from the interaction term.
∗∗This special choice for µ̃ in terms of µ motivated by Ref. [17, ch. 14] cancels some

terms down the road. γE ≈ 0.5772..., the Euler-Mascheroni constant.
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28 One Loop Calculations in QED

If we also switch the order of integration then we get the Eq: 3.15 be-
comes:

a = −4e2µ̃ε
∫ 1

0
dx
∫ ddq

(2π)d
2qµqν − 2x (1− x) pµ pν −

[
q2 − x (1− x) p2 + m2] ηµν

(
q2 + D2

0
)2

(3.16)

We now apply some momentum integral identities such that Eq: 3.16
becomes easier to handle. We first apply Eq: C.2 and separate the integral
in two pieces:

a = 4e2µ̃ε
∫ 1

0
dx
∫ ddq

(2π)d

[
a.1︷ ︸︸ ︷(

1− 2
d

)
ηµν q2

(
q2 + D2

0
)2

+
2x (1− x) pµ pν +

[
m2 − x (1− x) p2] ηµν

(
q2 + D2

0
)2

]
(3.17)

We now apply Eq: C.4 from App: C.2 to a.1 :

∫
ddq

q2

(
q2 + D2

0
)2 =

d
2

∫
ddq

1(
q2 + D2

0
) =

d
2

∫
ddq

(
q2 + D2

0
)

(
q2 + D2

0
)2 (3.18)

⇒ a.1 =

(
1− 2

d

) ∫
ddq

q2

(
q2 + D2

0
)2 = −D2

0

∫
ddq

1
(
q2 + D2

0
)2 (3.19)

We now substitute a.1 back into Eq: 3.17 and fill out D2
0 = x (1− x) p2 +

m2, we find:

a =

b︷ ︸︸ ︷
−8e2µ̃ε p2

(
ηµν − pµ pν

p2

)
b︷ ︸︸ ︷∫ 1

0
dx
∫ ddq

(2π)d
x (1− x)
(
q2 + D2

0
)2

(3.20)

We see in Eq: 3.20 the justification of our assumption on the tensorial
structure of Πµν (p). We now zoom in on the fermion loop contribution to
Π(p2), namely b . We now perform a Wick rotation as explained in App:
C.3 to circumvent the singularities of our integration domain by using Eq:
C.6.

b = −i8e2µ̃ε
∫ 1

0
dx x(1− x)

∫ ddq

(2π)d
1

(
q2 + D2

0
)2 . (3.21)

We now evaluate the momentum integral in Eq: 3.21 by using Eq: C.7
from App: C.4 and setting d = 4− ε, this gives:

28
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3.2 The electron self-energy 29

b = − ie2

2π2 Γ
( ε

2

) ∫ 1

0
dx x (1− x)

(
4πµ̃2

D2
0

) ε
2

(3.22)

The use of Eq: C.7 constrains the regularisation parameter as ε > 0, this
is important whenever we use that equation. We now expand the Gamma
function for infinitesimal values for ε Eq: C.10, fill out µ̃ in terms of µ and
use the fact that xε = 1 + ε ln x +O

(
ε2), after which we find:

b = − ie2

2π2

(
2
ε
− γE +O (ε)

) ∫ 1

0
dx x (1− x)

[
1 +

ε

2

(
γE − ln

D2
0

µ2

)
+O

(
ε2
)]

(3.23)

= − ie2

π2

(
1
ε
− 1

2
γE +O (ε)

)[
1
6

(
1 +

ε

2
γE

)
− ε

2

∫ 1

0
dx x (1− x) ln

D2
0

µ2 +O
(

ε2
)]

(3.24)

= − ie2

6π2

[
1
ε
− 3

∫ 1

0
dx x (1− x) ln

D2
0

µ2

]
(3.25)

Now we can substitute b from Eq: 3.25 back into a at Eq: 3.5, and
write down the full expression for Π

(
p2) in accordance with Eq: 5.30 in

Ref. [21].

Π
(

p2
)
= − e2

6π2

[
1
ε
− 3

∫ 1

0
dx x (1− x) ln

D2
0

µ2

]
− (Z3 − 1) +O

(
e4
)

(3.26)

3.2 The electron self-energy

In this section we determine the one-loop quantum corrections to the elec-
tron self-energy. In analogy with the photon self-energy we discuss the
definition of the electron self-energy and its relation to the electron exact
propagator and the pole mass. We evaluate the diagrams that contribute
to the electron self-energy using a photon regulator mass for the infrared
divergences and dimensional regularisation for the UV-divergences.

The exact electron propagator

The electron self-energy is conceptually defined analogous to the photon
self-energy. Only, we now sum the 1PI diagrams with two electron instead
of two photon sources and that the electron self-energy has spinor indices.
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30 One Loop Calculations in QED

Let us first see how the electron self-energy Σ (/p) is defined algebraically,
and how it relates to the exact electron propagator S̃ (/p).

1
i

S̃ (/p) =
1
i

S̃ (/p)
∞

∑
n=0

[
iΣ (/p)

1
i

S̃ (/p)
]n

=
1
i

S̃ (/p)

[
1 + iΣ (/p)

1
i

S̃ (/p)
∞

∑
n−1=0

[
iΣ (/p)

1
i

S̃ (/p)
]n−1

]

=
1
i

S̃ (/p)
[

1 + iΣ (/p)
1
i

S̃ (/p)
]

(3.27)

Let us now have a look at the exact inverse propagator in terms of the
inverse free-field propagator and the self-energy.

[
1− S̃ (/p)Σ (/p)

]
S̃ (/p) = S̃ (/p)

S̃−1 (/p) = S̃−1 (/p)− Σ (/p) = /p + m− Σ (/p)
(3.28)

Therefore the exact electron propagator in terms of the electron self-
energy can be written as:

1
i

S̃(/p) =
−i

/p + m− iε− Σ(/p)
(3.29)

The choice of counter terms or i.o.w. the renormalisation scheme affects
both m and Σ (/p). However, the location of the pole /p = zpole, which can
be complex, is not affected by a different choice of renormalisation scheme.
This motivates the definition of a mass parameter that is known as the pole
mass mpole through the following self-consistency relation:

mpole ≡ −Re
[
zpole

]
(3.30)

When we additionally define γ ≡ 2Im
[
zpole

]
then it is possible to ex-

pand Eq: 3.29 around zpole and express the pole mass in terms of the self-
energy function, in accordance with Ref. [22]. ∗∗

1
i

S̃ (/p) =
−iZ

(
zpole

)

/p + mpole − i
2 γ

+ n.p. (3.31)

A comparison of Eq: 3.31 with Eq: 3.29 allows us to express there pa-
rameters in terms of the self-energy function Σ (/p). The parameter γ is

∗∗The expansion of the exact propagator around zpole requires the following expansion

for the self-energy : Σ (/p) = Σ
(

zpole

)
+ ∂

∂/p
Σ (/p)

∣∣∣
/p=zpole

(
/p − zpole

)
+O(

(
/p − zpole

)2
)
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3.2 The electron self-energy 31

proportional to the coupling constant squared and in QED just zero, this
allows us to set mpole → m on the right hand side of the self-consistency
relation.

mpole = m− Re
[
Σ
(

zpole

)]
≈ m− Re [Σ (−m)]

γ = 2Im
[
ΣR

(
zpole

)]
≈ 2Im

[
ΣR

(
zpole

)]

Z−1
(

zpole

)
= 1− ∂

∂/p
Σ (/p)

∣∣∣
/p=zpole

≈ 1− ∂

∂/p
Σ (/p)

∣∣∣
/p=−m

(3.32)

The contributing diagrams

The diagrams that contribute to Σ (/p) in the one-loop approximation are
shown in Fig: 3.3. The first diagram contains a virtual photon arc, and the
second one comes from the counter term vertices involving both Z0 and
Z2.

⌃(/p) :=
! p

! p + l

 l

! p

µ ⌫
+

! p ! p
+ O(e4)

Figure 3.3: This diagrammatic expression shows us the diagrams that contribute
to the electron self-energy at one loop.

iΣ (/p) =

a︷ ︸︸ ︷

(ieZ1)
2
(

1
i

)2 ∫ d4l

(2π)4

[
γνS̃ (/p + /l ) γµ

]
∆̃µν (l)

−i (Z2 − 1) /p − i (Z0 − 1)m +O
(

e4
)

(3.33)

The evaluation of the diagrams with a photon mass

Again, we first use that Z1 = 1 + O(e2) to allow the evaluation of the
O
(
e4) contribution to the electron self-energy and we put d = 4 − ε to

apply dimensional regularisation. We first treat the integrand of a from
Eq: 3.33 by expanding the propagators:
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32 One Loop Calculations in QED

[
γνS̃ (/p + /l ) γµ

]
∆̃µν (l) =

γµ (−/p − /l + m) γµ(
(p + l)2 + m2

) (
l2 + m2

γ

) −
(

1− λ−2
)

×

b︷ ︸︸ ︷[
/l

1

/p + /l + m
/l
]

1(
l2 + m2

γ

) (
l2 + λ−2m2

γ

)

(3.34)

We now first use the γ-matrix identities shown in Eq: A.9 and Eq: A.11
to simplify the numerator of the gauge-independent part of Eq: 3.34:

γµ (−/p − /l + m) γµ = −γµ (/p + /l ) γµ + mγµγµ = − (d− 2) (/p + /l )− dm (3.35)

For b , the gauge-dependent part in square brackets of Eq: 3.34, we
first try to cancel factors before we use γ-matrix identities:

b =

/l︷ ︸︸ ︷
[(/p + /l + m)− (/p + m)]

1

/p + /l + m
[(/p + /l + m)− (/p + m)]

= (/p + /l + m)− 2 (/p + m) + (/p + m)
1

/p + /l + m
(/p + m)

= /l − (/p + m) +
(/p + m) [(−/p + m)− /l ] (/p + m)

(p + l)2 + m2

(3.36)

Now we can use γ-matrix identities to simplify Eq: 3.36, we especially
made use of Eq: A.10 and Eq: A.12:

b = /l − (/p + m) +

(
p2 + m2) (/p + m)− (/p + m) /l (/p + m)

(p + l)2 + m2

= /l − (/p + m)−
(

p2 + m2) /l

(p + l)2 + m2
+ (/p + m)

p2 + 2 (p · l) + m2

(p + l)2 + m2

= ���
0

/l −
(

p2 + m2) /l

(p + l)2 + m2
− (/p + m)

l2

(p + l)2 + m2

(3.37)

The first term in b vanishes when we put it back in a through Eq:
3.34. The integrand will then be an odd function of the integration variable
over an even domain.

−e2µ̃ε
(

1− λ−2
) ∫ ddl

(2π)d
/l(

l2 + m2
γ

) (
l2 + λ−2m2

γ

) = 0 (3.38)

For the last two simplifications of the integrand of a we substitute

32
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3.2 The electron self-energy 33

l2 →
(
l2 + λ−2m2)− λ−2m2

γ and replace /l → /p
(p·q)

p2 which is justified in
Eq: C.1 of App: C.1, we find:

a =e2µ̃ε
∫ ddl

(2π)d

(2− d)
(

1 + p·l
p2

)
/p − dm +

(
1− λ−2) (/p + m)

(
(p + l)2 + m2

) (
l2 + m2

γ

)

+ e2µ̃ε
(

1− λ−2
) ∫ ddl

(2π)d

p2+m2

p2 (p · l) /p + λ−2m2
γ (/p + m)

(
(p + l)2 + m2

) (
l2 + m2

γ

) (
l2 + λ−2m2

γ

)

=− e2µ̃ε
∫ ddl

(2π)d

[
(d− 2)

(
1 + p·l

p2

)
−
(
1− λ−2)] /p +

(
d + λ−2 − 1

)
m

(
(p + l)2 + m2

) (
l2 + m2

γ

)

− e2µ̃ε
(

1− λ−2
) ∫ ddl

(2π)d

[
λ−2m2

γ − p2+m2

p2 (p · l)
]

/p + λ−2m2
γm

(
(p + l)2 + m2

) (
l2 + m2

γ

) (
l2 + λ−2m2

γ

)

(3.39)

Now we plug a from Eq: 3.39 back into Eq: 3.33. We then decompose
the electron self-energy into two functions via Σ (/p) = mA

(
p2)+/pB

(
p2).

A
(

p2) in Eq: 3.40 contains Z0 and multiplies the mass term. B
(

p2) in Eq:
3.41 contains Z2 and multiplies the kinetic term.

A
(

p2
)
=

c︷ ︸︸ ︷
ie2µ̃ε

∫ ddl

(2π)d
d + λ−2 − 1(

(p + l)2 + m2
) (

l2 + m2
γ

) +

d︷ ︸︸ ︷
ie2µ̃ε

(
1− λ−2

)

×

d︷ ︸︸ ︷
∫ ddl

(2π)d

λ−2m2
γ(

(p + l)2 + m2
) (

l2 + m2
γ

) (
l2 + λ−2m2

γ

) − (Z0 − 1) +O
(

e4
)

(3.40)
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B
(

p2
)
=

e︷ ︸︸ ︷

ie2µ̃ε
∫ ddl

(2π)d

(d− 2)
(

1 + p·l
p2

)
−
(
1− λ−2)

(
(p + l)2 + m2

) (
l2 + m2

γ

) −

f︷ ︸︸ ︷
ie2µ̃ε

(
1− λ−2

) p2 + m2

p2

×

f︷ ︸︸ ︷∫ ddl

(2π)d
p · l(

(p + l)2 + m2
) (

l2 + m2
γ

) (
l2 + λ−2m2

γ

) +

g
︷ ︸︸ ︷
ie2µ̃ε

(
1− λ−2

)

×

g
︷ ︸︸ ︷
∫ ddl

(2π)d

λ−2m2
γ(

(p + l)2 + m2
) (

l2 + m2
γ

) (
l2 + λ−2m2

γ

) − (Z2 − 1) +O
(

e4
)

(3.41)

We perform the momentum integral of c in Eq: 3.40. We use the same
tricks as we did for the integral in Eq: 3.9.

∫ ddl

(2π)d
1(

(p + l)2 + m2
) (

l2 + m2
γ

) =
∫ 1

0
dx
∫ ddl

(2π)d
1

(
l2 + 2xp · l + x (p2 + m2) + (1− x)m2

γ

)2

=
∫ 1

0
dx
∫ ddq

(2π)d
1

(
q2 + D2

1
)2

(3.42)

Here, we define for convenience:

D2
1 ≡ x (1− x) p2 + x

(
m2 −m2

γ

)
+ m2

γ (3.43)

We perform a coordinate shift q = l + xp, we use Eq: 3.42 in c , we do
a Wick rotation and evaluate the momentum integral.

c = −e2µ̃ε
∫ 1

0
dx
∫ ddq

(2π)d
d + λ−2 − 1
(
q2 + D2

1
)2 = −e2µ̃ε

(
d + λ−2 − 1

) Γ
(

2− d
2

)

(4π)
d
2 Γ (2)

∫ 1

0
dx
(

D2
1

)−(2− 1
2 d)

(3.44)

We substitute d = 4− ε and expand for infinitesimal ε:

34
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c =− e2

16π2 µ̃εΓ
( ε

2

) (
3 + λ−2 − ε

) ∫ 1

0
dx

(
4π

D2
1

) ε
2

=− e2

16π2

(
2
ε
− γE +O (ε)

)(
3 + λ−2 − ε

)(
1 +

ε

2

∫ 1

0
dx ln

4πµ̃2

D2
1

+O
(

ε2
))

=− e2

8π2

(
3 + λ−2

) 1
ε
+

e2

8π2

[
1 +

1
2

(
3 + λ−2

) ∫ 1

0
dx ln

D2
1

µ2

]
+O (ε)

(3.45)

The integral in c can be evaluated by a symbolic math calculator such
as Sympy [23], but the result is not very appealing. We were unable to find

a compact and meaningful series expansion in terms of κ ≡ m2
γ

m2 , unless we
make additional assumptions for p2. However, if we set κ = 0 then we
find:

∫ 1

0
dx ln

D2
1

µ2

∣∣∣∣∣
m2

γ=0

=
∫ 1

0
dx ln

(
x (1− x) p2 + xm2

µ2

)

=
∫ 1

0
dx ln x +

∫ 1

0
dx ln

(
p2 + m2 − xp2

µ2

)
= −1− µ2

p2

∫ m2

µ2

p2+m2

µ2

du ln u

= −2− m2

p2 ln
m2

µ2 +
p2 + m2

p2 ln
(

p2 + m2

µ2

)

= −2 + ln
m2

µ2 +
p2 + m2

p2 ln
(

1 +
p2

m2

)

(3.46)

We now continue with the momentum integral of d in Eq: 3.40, where
we neglect the pre-factor again. For this integral we need to use Eq: B.3
with A =

(
(p + l)2 + m2

)
, B =

(
l2 + λ−2m2

γ

)
and C =

(
l2 + m2

γ

)
.

∫ ddl

(2π)d
1(

(p + l)2 + m2
) (

l2 + m2
γ

) (
l2 + λ−2m2

γ

)

= 2
∫ 1

0
dx
∫ 1−x

0
dy
∫ ddl

(2π)d
1

(
l2 + 2xp · l + x

(
p2 + m2 −m2

γ

)
− y (1− λ−2)m2

γ + m2
γ

)3

= 2
∫ 1

0
dx
∫ 1−x

0
dy
∫ ddq

(2π)d
1

(q2 + D2)
3

(3.47)

In Eq: 3.47 we define D2 ≡ x (1− x) p2 + x
(

m2 −m2
γ

)
− y

(
1− λ−2)+

m2
γ and q = l + xp. Now we use Eq: 3.47 in d and we perform a Wick
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rotation and evaluate the momentum integral.

d = −2e2µ̃ε
(

1− λ−2
) ∫ 1

0
dx
∫ 1−x

0
dy
∫ ddq

(2π)d

λ−2m2
γ

(
q2 + D2

)3

= − e2

16π2

(
1− λ−2

) ∫ 1

0
dx
∫ 1−x

0
dy

λ−2m2
γ

D2

=
e2

16π2 λ−2
∫ 1

0
dx
∫ D̃2

1

D2
1

du
u

= − e2

16π2 λ−2
∫ 1

0
dx

[
ln

D2
1

m2 − ln
D̃2

1
m2

]
(3.48)

Here, we made the additional definition:

D̃2
1 ≡ x (1− x) p2 + x

(
m2 − λ−2m2

γ

)
+ λ−2m2

γ (3.49)

Now we substitute c from Eq: 3.45 and d from Eq: 3.48 back into Eq:
3.40. In this equation, we can set m2

γ = 0 to simplify our result without
running into divergences.

A
(

p2
)
=− e2

8π2

(
3 + λ−2

) 1
ε
+

e2

8π2

[
1 +

1
2

(
3 + λ−2

) ∫ 1

0
dx ln

D2
1

µ2

− 1
2

λ−2
∫ 1

0
dx

[
ln

D2
1

m2 − ln
D̃2

1
m2

] ]
− (Z0 − 1) +O

(
e4
) (3.50)

A
(

p2
) ∣∣∣∣∣

m2
γ=0

= − e2

8π2

(
3 + λ−2

) 1
ε
− e2

8π2

[
2 + λ−2 − 1

2

(
3 + λ−2

)

×
[

ln
m2

µ2 +
p2 + m2

p2 ln
(

1 +
p2

m2

)] ]
− (Z0 − 1) +O

(
e4
)

(3.51)

We now turn our attention to the integrals in B
(

p2) in Eq: 3.41. We
first separate e into two parts:

e =

e.1︷ ︸︸ ︷
ie2µ̃ε

∫ ddl

(2π)d
d + λ−2 − 3(

(p + l)2 + m2
) (

l2 + m2
γ

)

+

e.2︷ ︸︸ ︷
ie2µ̃ε d− 2

p2

∫ ddl

(2π)d
p · l(

(p + l)2 + m2
) (

l2 + m2
γ

)

(3.52)

If we put λ−2 → λ−2 − 2 in c from Eq: 3.40, then c equals e.1 in the

36
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above expression. So, we do this replacement in Eq: 3.45 and find e.1 :

e.1 = − e2

8π2

(
1 + λ−2

) 1
ε
+

e2

8π2

[
1 +

1
2

(
1 + λ−2

) ∫ 1

0
dx ln

D2
1

µ2

]
+O (ε) (3.53)

We continue with e.2 in Eq: 3.52, we do a Feynman parametrisation
and discard the term odd in the integration variable:

∫ ddl

(2π)d
p · l(

(p + l)2 + m2
) (

l2 + m2
γ

) =
∫ 1

0
dx
∫ ddl

(2π)d
p · l

(
l2 + 2xp · l + x (p2 + m2) + (1− x)m2

γ

)2

=
∫ 1

0
dx
∫ ddq

(2π)d

p ·
(
���

0
q − xp

)

(
q2 + D2

1
)2

(3.54)

The integral in Eq: 3.54 is plugged back into e.2 , and then we perform
the momentum integral. We expand for infinitesimal values of ε and find:

e.2 = e2µ̃ε (d− 2)
∫ 1

0
dx
∫ ddq

(2π)d
x

(
q2 + D2

1
)2

=
e2

16π2 (d− 2) Γ

(
2− d

2

) ∫ 1

0
dx x

(
4πµ̃2

D2
1

) ε
2

=
e2

16π2 (2− ε)

[
2
ε
− γE +O (ε)

] [
1
2
− ε

2

∫ 1

0
dx x ln

D2
1

4πµ̃2 +O
(

ε2
)]

=
e2

8π2
1
ε
− e2

16π2

[
1 + 2

∫ 1

0
dx x ln

D2
1

µ2

]
+O (ε)

(3.55)

The integral in e.2 for m2
γ → 0 is given by:

2
∫ 1

0
dx x ln

D2
1

µ2

∣∣∣∣∣
m2

γ=0

= −2 + ln
m2

µ2 −
m2

p2 +

(
p2 + m2

p2

)2

ln
(

1 +
p2

m2

)
(3.56)

Continuing to f , we Feyman parametrise the integral in Eq: 3.41, do a
coordinate shift and discard the terms odd in the integration variable:
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∫ ddl

(2π)d
p · l(

(p + l)2 + m2
) (

l2 + m2
γ

) (
l2 + λ−2m2

γ

) =

2
∫ 1

0
dx
∫ 1−x

0
dy
∫ ddl

(2π)d
p · l

(
l2 + 2xp · l + x

(
p2 + m2 −m2

γ

)
− y (1− λ−2)m2

γ + m2
γ

)3

= 2
∫ 1

0
dx
∫ 1−x

0
dy
∫ ddq

(2π)d

p ·
(
���

0
q − xp

)

(q2 + D2)
3

(3.57)

Here, we made use of q = l + xp and D2 ≡ x (1− x) p2 + x
(

m2 −m2
γ

)
−

y
(
1− λ−2)m2

γ + m2
γ. Now we plug the result of the integral in Eq: 3.57

back into the expression for f and compute the momentum integral:

f = −2e2µ̃ε
(

1− λ−2
) (

p2 + m2
) ∫ 1

0
dx
∫ 1−x

0
dy
∫ ddq

(2π)d
x

(
q2 + D2

)3

= − e2

16π2

(
1− λ−2

) (
p2 + m2

) ∫ 1

0
dx
∫ 1−x

0
dy

x
D2

=
e2

16π2
p2 + m2

m2
γ

∫ 1

0
dx
∫ D̃2

1

D2
1

du
x
u
= − e2

16π2
p2 + m2

m2
γ

∫ 1

0
dx x

[
ln

D2
1

m2 − ln
D̃2

1
m2

]
(3.58)

To evaluate f we can not simply set m2
γ → 0, since both the factor in

the integral and the denominator of the pre-factor vanish. We must take
the limit for m2

γ → 0 by combining the logarithms and taking the first
term in the Taylor expansion of the logarithm. For finite values of the
integration parameter and the momentum p the validity of this procedure
is guaranteed.

lim
m2

γ→0

[
ln

D2
1

m2 − ln
D̃2

1
m2

]
= lim

m2
γ→0
− ln

D̃2
1

D2
1

= lim
m2

γ→0
− ln


1−

(
1− λ−2

) (1− x)m2
γ

x (1− x) p2 + x
(

m2 −m2
γ

)
+ m2

γ




=
(

1− λ−2
) (1− x)m2

γ

x (1− x) p2 + xm2 +O
(

m4
γ

)

(3.59)

The validity of this procedure is shown more rigorously by setting
m2

γ → 0 in Eq: 3.57. We then Feynman parametrise, which leads to the

38
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same conclusion as Eq: 3.59.

p2 + m2

m2
γ

∫ 1

0
dx

x (1− x)m2
γ

x (1− x) p2 + xm2 =
(

p2 + m2
) [

1−
∫ 1

0
dx

m2

p2 + m2 − xp2

]

=
p2 + m2

p2

[
1 +

m2

p2

∫ m2

p2+m2

du
u

]
=

p2 + m2

p2

[
1− m2

p2 ln
(

1 +
p2

m2

)] (3.60)

g is identically the same as term d in Eq: 3.48. Thus, we now substitute

e from Eq: 3.53 and Eq: 3.55, f from Eq: 3.58 and g from Eq: 3.48 into
Eq: 3.41:

B
(

p2
)
= − e2

8π2 λ−2 1
ε
+

e2

16π2

[
1 +

∫ 1

0
dx
[
1 + λ−2 − 2x

]
ln

D2
1

µ2

−
∫ 1

0
dx

(
λ−2 +

p2 + m2

m2
γ

x

)[
ln

D2
1

m2 − ln
D̃2

1
m2

] ]
− (Z2 − 1) +O

(
e4
) (3.61)

B
(

p2
) ∣∣∣∣∣

m2
γ=0

= − e2

8π2 λ−2 1
ε
− e2

8π2 λ−2

[
1− 1

2
ln

m2

µ2 −
p2 + m2

p2

×
[

1
2
+ ln

(
1 +

p2

m2

)]
+

1
2

(
p2 + m2

p2

)2

ln
(

1 +
p2

m2

)]
− (Z2 − 1) +O

(
e4
)

(3.62)

3.3 The vertex correction
with photon regulator mass

The last one-loop quantum corrections that we need to evaluate are the
one-loop quantum corrections to the electron-photon vertex. We first dis-
cuss the definition of the vertex function and then determine which dia-
grams contribute to it. Finally, we evaluate those diagrams with a photon
regulator mass for the infrared divergences and dimensional regularisa-
tion for the ultraviolet divergences.

The exact vertex function

The exact three-point vertex function Vµ (k, p, p′) is defined as the sum
of diagrams with one incoming electron source with momentum p, one
outgoing electron source with momentum p′ and a photon source with a
momentum k = p− p′ by conservation of momentum.
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We write the exact vertex function as the sum of the tree-level con-
tribution with its counter term, the one-loop correction and higher-order
corrections:

iVµ
(
k, p, p′

)
= (ieZ1) γµ + iVµ

1−loop
(

p, p′
)
+O

(
e5
)

(3.63)

The contributing diagrams

The only diagram that contributes to the one-loop vertex correctionVµ
1−loop (p, p′)

is the diagram that is associated to the anomalous magnetic moment of the
electron, wherein a virtual photon connects the incoming and outgoing
electron legs as shown in Fig: 3.4.

# k

! p ! p0

µ

=

# k

! p ! p0µ

+

# k

! p  l
! p0⇢

µ

�

+ O(e5)

Figure 3.4: This diagrammatic expression shows us the contribution to the
electron-photon vertex up to one loop. The crossed circle vertex has a vertex
factor of iZ1eγµ instead of the usual ieγµ.

iVµ
1−loop

(
p, p′

)
= (ieZ1)

3
(

1
i

)3 ∫ d4l

(2π)4

[
γρS̃

(
/p′ + /l

)
γµS̃ (/p + /l ) γσ

]
∆̃ρσ (l) (3.64)

The evaluation of the diagram

Again, we use that Z1 = 1 +O
(
e2) to allow the evaluation of the O

(
e3)

contribution to the one-loop vertex correction and we also put d = 4− ε to
apply dimensional regularisation. We then expand Eq: 3.64 by filling out
the expressions that we have for the propagators:

40
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(
V

µ
1−loop (p, p′)

e

)
= −

a︷ ︸︸ ︷
ie2µ̃ε

∫ ddl

(2π)d γρ 1
(/p′ + /l ) + m

γµ 1
(/p + /l ) + m

γρ
1

l2 + m2
γ

+

b︷ ︸︸ ︷
ie2µ̃ε

(
1− λ−2

) ∫ ddl

(2π)d
/l

1
(/p′ + /l ) + m

γµ 1
(/p + /l ) + m

/l
1(

l2 + m2
γ

) (
l2 + λ−2m2

γ

)

(3.65)

We park the gauge-dependent part b for later evaluation, and con-
tinue with the gauge-independent part a :

a = −ie2µ̃ε
∫ ddl

(2π)d γρ− (/p′ + /l ) + m

(p′ + l)2 + m2
γµ− (/p + /l ) + m

(p + l)2 + m2
γρ

1
l2 + m2

γ
(3.66)

We expand the numerator of a in Eq: 3.66 in terms of nine factors.
We take special care to keep factors of (/p + m) and (/p′ + m), since these
factors vanish when contracted by the spinors of external electron and
positron lines.

a N =γρ
[
−
(
/p′ + /l

)
+ m

]
γµ [− (/p + /l ) + m] γρ

=γρ
[
−
(
/p′ + m

)
− /l + 2m

]
γµ [− (/p + m)− /l + 2m] γρ

=

a.1 N︷ ︸︸ ︷
γρ
[
/p′ + m

]
γµ [/p + m] γρ +

a.2 N︷ ︸︸ ︷
γρ/l γµ/l γρ +

a.3 N︷ ︸︸ ︷
4m2γργµγρ

+

a.4 N︷ ︸︸ ︷
γρ
[
/p′ + m

]
γµ/l γρ +

a.5 N︷ ︸︸ ︷
γρ/l γµ [/p + m] γρ

−
a.6 N︷ ︸︸ ︷

2mγρ/l γµγρ−
a.7 N︷ ︸︸ ︷

2mγργµ/l γρ−
a.8 N︷ ︸︸ ︷

2mγρ
[
/p′ + m

]
γµγρ−

a.9 N︷ ︸︸ ︷
2mγργµ [/p + m] γρ

(3.67)

Now we use γ-matrix identities from App: A to bring the a.i N to the
canonical form. In the canonical form factors of (/p + m) and (/p′ + m) ap-
pear completely on the right and left of the tensorial expressions, for the
other possible factors we choose a convenient order of terms. In canonical
form the terms in Eq: 3.67 become:

a.1 N = 4γµ
[

p · p′ + (d− 4)m2
]
+ 8m

(
p + p′

)µ −
(
/p′ + m

)
(3.68)

× [2 (d− 5)mγµ + 4pµ]−
[
2 (d− 5)mγµ + 4p′µ

]
(/p + m)

+ (d− 6)
(
/p′ + m

)
γµ (/p + m)

a.2 N = γρ/l γµ/l γρ
∗ (3.69)
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a.3 N = γµ
[
4 (d− 2)m2

]
(3.70)

a.4 N = 4γµ p′ · l − 2 (d− 5)mγµ/l − 4p′µ/l + 8mlµ+ (3.71)
(
/p′ + m

)
[(d− 6) γµ/l − 4lµ]

a.5 N = 4γµ p · l + 2 (d− 5)mγµ/l − 4pµ/l + 4 (d− 3)mlµ (3.72)
+ [(d− 6) /l γµ − 4lµ] (/p + m)

a.6 N =− 2 (d− 4)mγµ/l − 4 (d− 2)mlµ (3.73)

a.7 N =2 (d− 4)mγµ/l − 8mlµ (3.74)

a.8 N =− 4 (d− 3)m2γµ − 8mp′µ +
(
/p′ + m

)
[2 (d− 4)mγµ] (3.75)

a.9 N =− 4 (d− 3)m2γµ − 8mpµ + [2 (d− 4)mγµ] (/p + m) (3.76)

We now sum Eq: 3.68 - Eq: 3.76 to recover a N in canonical form, after
some cancellations and rearrangements we find:

a N =γρ/l γµ/l γρ + 4γµ
[
p · p′ + p′ · l + p · l

]
− 4mlµ − 4

(
p + p′

)µ /l

+
(
/p′ + m

) [
2mγµ − 4 (p + l)µ + (d− 6) γµ/l

]

+
[
2mγµ − 4

(
p′ + l

)µ
+ (d− 6) /l γµ

]
(/p + m)

+ (d− 6)
(
/p′ + m

)
γµ (/p + m)

(3.77)

Now that we have worked out the numerator of Eq: 3.66, we intro-
duce Feynman parameters. For the sake of brevity, we refer to the whole
numerator in Eq: 3.77 with index abstractly as a N.

a =− ie2µ̃ε
∫ ddl

(2π)d
a N(

(p′ + l)2 + m2
) (

(p + l)2 + m2
) (

l2 + m2
γ

)

=− 2ie2µ̃ε
∫ ddl

(2π)d

∫ 1

0
dx
∫ 1−x

0
dy

× a N(
l2 + 2xp · l + xp2 + 2yp′ · l + yp′2 + (x + y)

(
m2 −m2

γ

)
+ m2

γ

)3

(3.78)

We perform a coordinate shift in the denominator of the momentum
integral from l to q = l + xp + yp′ and change the order of integration.

a =− 2ie2µ̃ε
∫ 1

0
dx
∫ 1−x

0
dy
∫ ddq

(2π)d
a N (l = q− xp− yp′)

(
q2 + D2

2
)3 (3.79)

Here, we define:

D2
2 ≡ x (1− x) p2 + y (1− y) p′2 − 2xyp · p′ + (x + y)

(
m2 −m2

γ

)
+ m2

γ (3.80)

∗This term is left as it is, this form is easier to work with after we have introduced
Feynman parameters.

42
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3.3 The vertex correction with photon regulator mass 43

We also need to perform the coordinate shift in the numerator
a N (l = q− xp− yp′) and bring it back to canonical form, but terms odd
in q are dropped since they do not contribute. The result after applying
γ-matrix identities continuously is given by:

a N =γµ
[
4
(

1− x− y +
1
2
(d− 2) xy

)
p · p′ − (d− 2) y (1− y) p′2 − (d− 2) x (1− x) p2

− (d− 6) (x + y)m2
]
+ 2 [(d− 2) y (x + y)− 2x]mp′µ + 2

[
(d− 2) x (x + y)

− 2y
]
mpµ +

(
/p′ + m

) [
(2 + (d− 6) (x + y))mγµ + 2 (d− 2) y (1− y) p′µ

− 2 ((d− 2) xy + 2 (1− x− y)) pµ
]
+
[
(2 + (d− 6) (x + y))mγµ

+ 2 (d− 2) x (1− x) pµ − 2 ((d− 2) xy + 2 (1− x− y)) p′µ
]
(/p + m)

+ (d− 6)
(
/p′ + m

)
(1− x− y) γµ (/p + m) +

a.I N︷ ︸︸ ︷
γρ

/qγµ
/qγρ

(3.81)

We continue evaluation with a.I and put the remaining term a.II =
a − a.I aside. We first apply Eq: C.2 and after that Eq: A.11 twice, we
find:

a.I =− 2ie2µ̃ε
∫ 1

0
dx
∫ 1−x

0
dy
∫ ddq

(2π)d

γρ/qγµ/qγρ
(
q2 + D2

2
)3

=− 2
d

ie2µ̃ε
∫ 1

0
dx
∫ 1−x

0
dy
∫ ddq

(2π)d

q2γργνγµγνγρ
(
q2 + D2

2
)3

=− 2 (d− 2)2

d
ie2µ̃ε

∫ 1

0
dx
∫ 1−x

0
dy
∫ ddq

(2π)d
q2γµ

(
q2 + D2

2
)3

(3.82)

We cancel the numerator term with parts in the denominator and ob-
tain a part with a quadratic denominator and a part with a cubic denomi-
nator, subsequently the evaluation proceeds as usual:
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a.I =
2 (d− 2)2

d
e2µ̃εγµ

∫ 1

0
dx
∫ 1−x

0
dy
∫ ddq

(2π)d

[
1

(
q2 + D2

2
)2 −

D2
2(

q2 + D2
0
)3

]

=
2 (d− 2)2

d
e2

(4π)
d
2

µ̃εγµ
∫ 1

0
dx
∫ 1−x

0
dy
[

Γ

(
2− d

2

)
− 1

2
Γ

(
3− d

2

)]
(D2

2)
−(2− 1

2 d)

=
e2

8π2 γµ

(
1− 3

4
ε +O

(
ε2
))(2

ε
− γE −

1
2
+O (ε)

)

×
[

1
2
− ε

2

∫ 1

0
dx
∫ 1−x

0
dy ln

D2
2

4πµ̃2 +O
(

ε2
)]

=
e2

8π2 γµ 1
ε
− e2

8π2 γµ

[
1 +

1
2

ln
m2

µ2 +
∫ 1

0
dx
∫ 1−x

0
dy ln

D2
2

m2

]
+O (ε)

(3.83)

We continue with a.II , we perform the momentum integral and there-
after we set d = 4 − ε dimensions and drop all terms that are of order
O (ε).

a.II =− 2ie2µ̃ε
∫ 1

0
dx
∫ 1−x

0
dy
∫ ddq

(2π)d
a.II N(

q2 + D2
2
)3

= 2e2µ̃ε
∫ 1

0
dx
∫ 1−x

0
dy
∫ ddq

(2π)d
a.II N(

q2 + D2
2
)3

=
e2

(4π)
d
2

µ̃εγ

(
3− d

2

) ∫ 1

0
dx
∫ 1−x

0
dy a.II N

(
D2

2

)−(3− 1
2 d)

=
e2

16π2

∫ 1

0
dx
∫ 1−x

0
dy

a.II Nd=4
D2

2
+��

�*0
O (ε)

(3.84)

We now fill out d = 4 in a.II N and separate it into five different parts,
to make the tensorial structure more explicit.

a.II Nd=4 =− 2γµ
[

x (1− x) p2 + y (1− y) p′2 − 2 (1− x− y + xy) p · p′ − (x + y)m2
]

(3.85)

+ 4 (y (x + y)− x)mp′µ + 4 [x (x + y)− y]mpµ

+ 2
(
/p′ + m

) [
(1− x− y)mγµ + 2y (1− y) p′µ − 2 (1− x− y + xy) pµ

]

+ 2
[
(1− x− y)mγµ + 2x (1− x) pµ − 2 (1− x− y + xy) p′µ

]
(/p + m)

− 2
(
/p′ + m

)
(1− x− y) γµ (/p + m)

a.II Nd=4 =− 2γµN0 + 4 [y (x + y)− x]mp′µ + 4 [x (x + y)− y]mpµ (3.86)

+ 2
(
/p′ + m

)
N′µ1 + 2Nµ

1 (/p + m)− 2
(
/p′ + m

)
(1− x− y) γµ (/p + m)

44
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3.3 The vertex correction with photon regulator mass 45

In a.II Nd=4 of Eq: 3.86, we define the following three functions:

N0 ≡x (1− x) p2 + y (1− y) p′2 − 2 (1− x− y + xy) p · p′ − (x + y)m2 (3.87)

Nµ
1 ≡ (1− x− y)mγµ + 2x (1− x) pµ − 2 (1− x− y + xy) p′µ (3.88)

N′µ1 ≡ (1− x− y)mγµ + 2y (1− y) p′µ − 2 (1− x− y + xy) pµ (3.89)

In terms of these functions we write a.II as:

a.II =− e2

8π2 γµ
∫ 1

0
dx
∫ 1−x

0
dy

N0

D2
2
+

e2m
4π2 p′µ

∫ 1

0
dx
∫ 1−x

0
dy

y (x + y)− x
D2

2

+
e2m
4π2 pµ

∫ 1

0
dx
∫ 1−x

0
dy

x (x + y)− y
D2

2

+
e2

8π2

(
/p′ + m

) ∫ 1

0
dx
∫ 1−x

0
dy

N′µ1
D2

0
+

e2

8π2

∫ 1

0
dx
∫ 1−x

0
dy

Nµ
1

D2
2
(/p + m)

− e2

8π2

(
/p′ + m

) ∫ 1

0
dx
∫ 1−x

0
dy

(1− x− y) γµ

D2
2

(/p + m)

(3.90)

We continue with the gauge-dependent part b from Eq: 3.65. We first
cancel as many propagators as possible, after which we separate b in four
constituent pieces.

b =i
(

1− λ−2
)

e2µ̃ε
∫ ddl

(2π)d
/l

1
(/p′ + /l ) + m

γµ 1
(/p + /l ) + m

/l

× 1(
l2 + m2

γ

) (
l2 + λ−2m2

γ

)

=i
(

1− λ−2
)

e2µ̃ε
∫ ddl

(2π)d

[(
/p′ + /l

)
+ m−

(
/p′ + m

)] 1
(/p′ + /l ) + m

γµ

× 1
(/p + /l ) + m

[(/p + /l ) + m− (/p + m)]
1(

l2 + m2
γ

) (
l2 + λ−2m2

γ

)

=i
(

1− λ−2
)

e2µ̃ε
∫ ddl

(2π)d

[
1−

(
/p′ + m

) 1
(/p′ + /l ) + m

]
γµ

×
[

1− 1
(/p + /l ) + m

(/p + m)

]
1(

l2 + m2
γ

) (
l2 + λ−2m2

γ

)

(3.91)
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b =i
(

1− λ−2
)

e2µ̃ε
∫ ddl

(2π)d

[ b.1︷︸︸︷
γµ −

b.2︷ ︸︸ ︷
(/p′ + m) [− (/p′ + /l ) + m] γµ

(p′ + l)2 + m2

−

b.3︷ ︸︸ ︷
γµ [− (/p + /l ) + m] (/p + m)

(p + l)2 + m2
+

b.4︷ ︸︸ ︷
(/p′ + m) [− (/p′ + /l ) + m] γµ [− (/p + /l ) + m] (/p + m)(

(p′ + l)2 + m2
) (

(p + l)2 + m2
)

]

× 1(
l2 + m2

γ

) (
l2 + λ−2m2

γ

)

(3.92)

We bring the numerators b.2 N, b.3 N and b.4 N into canonical form
using γ-matrix identities:

b.2 N =
(

p′2 + m2
)

γµ −
(
/p′ + m

)
/l γµ (3.93)

b.3 N =
(

p2 + m2
)

γµ − γµ/l (/p + m) (3.94)

b.4 N =
(

p2 + m2
) (

p′2 + m2
)

γµ −
(

p2 + m2
) (

/p′ + m
)

/l γµ (3.95)

−
(

p′2 + m2
)

γµ/l (/p + m) +
(
/p′ + m

)
/l γµ/l (/p + m)

We first evaluate b.1 by using the methods that were explained previ-
ously:

b.1 =i
(

1− λ−2
)

e2µ̃εγµ
∫ ddl

(2π)d
1(

l2 + m2
γ

) (
l2 + λ−2m2

γ

)

=i
(

1− λ−2
)

e2µ̃εγµ
∫ 1

0
dx
∫ ddl

(2π)d
1

(
l2 + (1− x (1− λ−2))m2

γ

)2

=−
(

1− λ−2
)

e2µ̃εγµ
∫ 1

0
dx
∫ ddq

(2π)d
1

(
q2 + (1− x (1− λ−2))m2

γ

)2

(3.96)
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3.3 The vertex correction with photon regulator mass 47

b.1 =−
(

1− λ−2
) e2γµ

8π2

[
2
ε
− γE +O (ε)

]

×
[

1− ε

2

∫ 1

0
dx ln

((
1− x

(
1− λ−2))m2

γ

4πµ̃2

)
+O

(
ε2
)]

=−
(

1− λ−2
) e2γµ

8π2
1
ε
+
(

1− λ−2
) e2γµ

16π2

[
ln

m2
γ

µ2 +
∫ 1

0
dx ln

(
1− x

(
1− λ−2

))]

=−
(

1− λ−2
) e2γµ

8π2
1
ε
−
(

1− λ−2
) e2γµ

16π2

[
1− ln

m2

µ2 − ln κ

]
− e2λ−2

16π2 γµ ln λ−2

(3.97)

We now continue with b.2 , this requires more efforts since b.2 N de-
pends on the integration variable.

b.2 =− i
(

1− λ−2
)

e2µ̃ε
∫ ddl

(2π)d
b.2 N(

(p′ + l)2 + m2
) (

l2 + m2
γ

) (
l2 + λ−2m2

γ

)

=− 2i
(

1− λ−2
)

e2µ̃ε
∫ 1

0
dx
∫ 1−x

0
dy
∫ ddl

(2π)d

× b.2 N(
l2 + 2xp′ · l + xp′2 + x

(
m2 −m2

γ

)
− y (1− λ−2)m2

γ + m2
γ

)3

=− 2i
(

1− λ−2
)

e2µ̃ε
∫ 1

0
dx
∫ 1−x

0
dy
∫ ddq

(2π)d

× b.2 N (l = q− xp′)
(

q2 + x (1− x) p′2 + x
(

m2 −m2
γ

)
− y (1− λ−2)m2

γ + m2
γ

)3

(3.98)

Now we perform the coordinate shift q = l + xp′ in the numerator
b.2 N in Eq: 3.93, where we drop the the part odd in q. Since Eq: 3.93
is linear in the integration variable, we thus make the replacement l =
−xp′.

b.2 N =
(

p′2 + m2
)
(1− x) γµ +

(
/p′ + m

)
xmγµ (3.99)

The form of b.2 N in Eq: 3.99 allows us to perform both the momentum
integral and the integral over the Feynman parameter y.
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b.2 =
(

1− λ−2
) e2

16π2

∫ 1

0
dx
∫ 1−x

0
dy

×
(

p′2 + m2) (1− x) γµ + (/p′ + m) xmγµ

x (1− x) p′2 + x
(

m2 −m2
γ

)
− y (1− λ−2)m2

γ + m2
γ

=
e2m−2

γ

16π2

(
p′2 + m2

)
γµ
∫ 1

0
dx (1− x)

[
ln

D′21
m2 − ln

D̃′21
m2

]

+
e2m−2

γ

16π2

(
/p′ + m

) ∫ 1

0
dx x mγµ

[
ln

D′21
m2 − ln

D̃′21
m2

]

(3.100)

Here, we define the p′ analogues of Eq: 3.43 and Eq: 3.49 ∗:

D′21 ≡x (1− x) p′2 + x
(

m2 −m2
γ

)
+ m2

γ (3.101)

D̃′21 ≡x (1− x) p′2 + x
(

m2 − λ−2m2
γ

)
+ λ−2m2

γ (3.102)

The result of the full evaluation of b.3 can be argued from the result of
b.2 . Upon making the replacement p′ → p and interchanging the terms
γµ and (/p + m) in the numerator of Eq: 3.100, we get the result of b.3 .
This is also verified by going through the evaluation of the numerator,
starting with Eq: 3.94 instead of Eq: 3.93.

b.3 =
e2m−2

γ

16π2

(
p2 + m2

)
γµ
∫ 1

0
dx (1− x)

[
ln

D2
1

m2 − ln
D̃2

1
m2

]

+
e2m−2

γ

16π2

∫ 1

0
dx x mγµ

[
ln

D2
1

m2 − ln
D̃2

1
m2

]
(/p + m)

(3.103)

Finally, we continue with the evaluation of b.4 . This time, the denom-
inator contains four factors and the numerator also contains a quadratic
part in the loop momentum.

∗Note that for λ = 1 the term b.2 still vanishes.
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b.4 =i
(

1− λ−2
)

e2µ̃ε
∫ ddl

(2π)d
b.4 N(

(p′ + l)2 + m2
) (

(p + l)2 + m2
) (

l2 + m2
γ

) (
l2 + λ−2m2

γ

)

=6i
(

1− λ−2
)

e2µ̃ε
∫ 1

0
dx
∫ 1−x

0
dy
∫ 1−x−y

0
dz
∫ ddl

(2π)d

× b.4 N (l = q− xp− yp′)
(

l2 + 2xp · l + xp2 + 2yp′ · l + yp′2 + (x + y)
(

m2 −m2
γ

)
− z (1− λ−2)m2

γ + m2
γ

)4

=i6
(

1− λ−2
)

e2µ̃ε
∫ 1

0
dx
∫ 1−x

0
dy
∫ 1−x−y

0
dz
∫ ddq

(2π)d
b.4 N (l = q− xp− yp′)

(
q2 + D2

2 − z (1− λ−2)m2
γ

)4

(3.104)

In Eq: 3.104 we used the function D2
2 that was defined in Eq: 3.80. For

the numerator, written in Eq: 3.105, we need to perform the coordinate
shift, discard the terms odd in q and bring the it back into the canonical
form, we find: ∗

b.4 N =
(

p′2 + m2
) (

p2 + m2
)
(1− x− y) γµ +

(
p2 + m2

) (
/p′ + m

)
N′µ2

+
(

p′2 + m2
)

Nµ
2 (/p + m) +

(
/p′ + m

)
Nµ

3 (/p + m) +

b.II N︷ ︸︸ ︷(
/p′ + m

)
/qγµ

/q (/p + m)

(3.105)

We separated b.4 into b.II , the part quadratic in the integration vari-
able q, and b.I = b.4 − b.II , the terms that are left over. Furthermore, we
make the following definitions for notational convenience:

Nµ
2 = (x + y)mγµ + 2xypµ − 2y (1− y) p′µ (3.106)

N′µ2 = (x + y)mγµ + 2xyp′µ − 2x (1− x) pµ (3.107)

Nµ
3 =

((
xp + yp′

)2 −
(

p′2 + m2
)

y−
(

p2 + m2
)

x
)

γµ (3.108)

− 2 (x + y)m
(

xpµ + yp′µ
)

We first evaluate b.I , we perform both the momentum integral and

∗This is actually a quite lengthy though straightforward procedure to do by hand,
since it is not that insightful we omit it.

Version of June 30, 2016– Created June 30, 2016 - 23:01

49



50 One Loop Calculations in QED

the integral over the Feynman parameter z.

b.I =−
(

1− λ−2
) e2

16π2

∫ 1

0
dx
∫ 1−x

0
dy
∫ 1−x−y

0
dz

b.I N(
D2

2 − z (1− λ−2)m2
γ

)2

=
e2m−2

γ

16π2

∫ 1

0
dx
∫ 1−x

0
dy b.I N

[
1

D2
2
− 1

D̃2
2

] (3.109)

Here, we define:

D̃2
2 ≡ x (1− x) p2 + y (1− y) p′2 − 2xyp · p′ + (x + y)

(
m2 − λ−2m2

γ

)
+ λ−2m2

γ (3.110)

We substitute back the numerator b.I N from Eq: 3.105 into b.I Eq:
3.109, which gives:

b.I =
e2m−2

γ

16π2

(
p′2 + m2

) (
p2 + m2

)
γµ
∫ 1

0
dx
∫ 1−x

0
dy (1− x− y)

[
1

D2
2
− 1

D̃2
2

]

+
e2m−2

γ

16π2

(
p2 + m2

) (
/p′ + m

) ∫ 1

0
dx
∫ 1−x

0
dy N′µ2

[
1

D2
2
− 1

D̃2
2

]

+
e2m−2

γ

16π2

(
p′2 + m2

) ∫ 1

0
dx
∫ 1−x

0
dy Nµ

2 (/p + m)

[
1

D2
2
− 1

D̃2
2

]

+
e2m−2

γ

16π2

∫ 1

0
dx
∫ 1−x

0
dy
(
/p′ + m

)
Nµ

3 (/p + m)

[
1

D2
2
− 1

D̃2
2

]

(3.111)

We continue with the evaluation of the last integral b.II , with the nu-
merator in Eq: 3.105 and the integral in Eq: 3.104. We handle the numer-
ator b.II N as the numerator a.I from Eq: 3.83, so we omit those details
and write down the result:

b.II =6i
(

1− λ−2
)

e2µ̃ε
∫ 1

0
dx
∫ 1−x

0
dy
∫ 1−x−y

0
dz
∫ ddq

(2π)d

× (/p′ + m) /qγµ/q (/p + m)
(

q2 + D2
2 − z (1− λ−2)m2

γ

)4

=− 6
(

d− 2
d

)(
1− λ−2

)
e2µ̃ε

∫ 1

0
dx
∫ 1−x

0
dy
∫ 1−x−y

0
dz
∫ ddq

(2π)d

× (/p′ + m) q2γµ (/p + m)
(

q2 + D2
2 − z (1− λ−2)m2

γ

)4

=−
(

1− λ−2
) e2

16π2

∫ 1

0
dx
∫ 1−x

0
dy
∫ 1−x−y

0
dz

(/p′ + m) γµ (/p + m)

D2
2 − z (1− λ−2)m2

γ

=
e2m−2

γ

16π2

∫ 1

0
dx
∫ 1−x

0
dy
(
/p′ + m

)
γµ (/p + m)

[
ln

D2
2

m2 − ln
D̃2

2
m2

]

(3.112)
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For reference, we now sum the terms that we have evaluated and write
down the full vertex correction up to the one-loop level. Thus, we collect
the terms written down in Eq: 3.83, Eq: 3.90, Eq: 3.97, Eq: 3.100, Eq: 3.103,
Eq: 3.111 and Eq: 3.112:

(
V

µ
1−loop (p, p′)

e

)
=

e2λ−2

8π2 γµ 1
ε
− e2

16π2 γµ

[ (
3− λ−2

)
−
(

1− λ−2
)

ln κ

+ λ−2
(

ln λ−2 + ln
m2

µ2

)]
− e2

8π2 γµ
∫ 1

0
dx
∫ 1−x

0
dy

[
ln

D2
2

m2 +
N0

D2
2

− 1
2

(
p2 + m2) (p′2 + m2)

m2
γ

(1− x− y)

(
1

D2
2
− 1

D̃2
2

)]
+

e2m−2
γ

16π2 γµ
∫ 1

0
dx (1− x)

×
[(

p2 + m2
) [

ln
D2

1
m2 − ln

D̃2
1

m2

]
+
(

p′2 + m2
) [

ln
D′21
m2 − ln

D̃′21
m2

]]

+
e2m
4π2 pµ

∫ 1

0
dx
∫ 1−x

0
dy

x (x + y)− y
D2

2
+

e2m
4π2 p′µ

∫ 1

0
dx
∫ 1−x

0
dy

y (x + y)− x
D2

2

+
e2

8π2

(
/p′ + m

) ∫ 1

0
dx
∫ 1−x

0
dy

N′µ1
D2

2
+

e2m−2
γ

16π2

(
/p′ + m

) ∫ 1

0
dx x mγµ

×
[

ln
D′21
m2 − ln

D̃′21
m2

]
+

e2m−2
γ

16π2

(
p2 + m2

) (
/p′ + m

) ∫ 1

0
dx
∫ 1−x

0
dy N′µ2

×
[

1
D2

2
− 1

D̃2
2

]
+

e2

8π2

∫ 1

0
dx
∫ 1−x

0
dy

Nµ
1

D2
2
(/p + m) +

e2m−2
γ

16π2

∫ 1

0
dx x mγµ

×
[

ln
D2

1
m2 − ln

D̃2
1

m2

]
(/p + m) +

e2m−2
γ

16π2

(
p′2 + m2

) ∫ 1

0
dx
∫ 1−x

0
dy

× Nµ
2 (/p + m)

[
1

D2
2
− 1

D̃2
2

]
− e2

8π2

(
/p′ + m

) ∫ 1

0
dx
∫ 1−x

0
dy

(1− x− y) γµ

D2
2

(/p + m)

+
e2m−2

γ

16π2

∫ 1

0
dx
∫ 1−x

0
dy
(
/p′ + m

)
γµ (/p + m)

[
ln

D2
2

m2 − ln
D̃2

2
m2

]

+
e2m−2

γ

16π2

∫ 1

0
dx
∫ 1−x

0
dy
(
/p′ + m

)
Nµ

3 (/p + m)

[
1

D2
2
− 1

D̃2
2

]

(3.113)
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3.4 The vertex correction
in full dimensional regularisation

The off-shell vertex correction result in a general gauge and with a finite
photon regulator mass is not very practical in use, since it involves mul-
tiple unevaluated Feynman parameter integrals and it is not clear which
terms are infrared finite due to the complex dependence on the regulator
mass.

We thus show the same calculation (omitting some small steps) in full
dimensional regularisation where we set m2

γ → 0 from the beginning and
work with on-shell momenta for the electrons. We then see that dimen-
sional regularisation of IR-divergences is more practical and is preferred.

The on-shell vertex function

The on-shell vertex function Λµ (p′, p) with k = p′ − p and on-shell electron
momenta is defined in terms of the one-loop vertex correction from the
previous section:

Λµ
(

p′, p
)
=Z1γµ +

(
V

µ
1−loop (p′, p)

e

) ∣∣∣∣∣p2=p′2=−m2

m2
γ=0

+O
(

e4
)

=Z1γµ −

a︷ ︸︸ ︷
ie2µ̃ε

∫ ddl

(2π)d γρ 1
(/p′ + /l ) + m

γµ 1
(/p + /l ) + m

γρ
1
l2

+

b︷ ︸︸ ︷
ie2µ̃ε

(
1− λ−2

) ∫ ddl

(2π)d
/l

1
(/p′ + /l ) + m

γµ 1
(/p + /l ) + m

/l
1
l4 +O

(
e4
)

(3.114)

The evaluation of the integrals

The evaluation of a has many similarities with what we saw in the previ-
ous section. The numerator a N is again given by Eq: 3.77, the denomina-
tors however look different on-shell:

a = −ie2µ̃ε
∫ ddl

(2π)d

a N
(l2 + 2p · l) (l2 + 2p · l) l2 (3.115)
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3.4 The vertex correction in full dimensional regularisation 53

The next step is to introduce Feynman parameters, followed by a spe-
cial coordinate shift of u = y

x+y and v = x + y which brings the integral in
a particularly convenient form:

a =− 2ie2µ̃ε
∫ 1

0
dx
∫ 1−x

0
dy
∫ ddl

(2π)d

a N

(l2 + 2l · (xp + yp′))3

=− 2ie2µ̃ε
∫ 1

0
du
∫ 1

0
dv v

∫ ddl

(2π)d

a N

(l2 + 2l · ((1− u) vp + uvp′))3

(3.116)

The validity of the coordinate shift and the accompanying change in
the boundary conditions is easier to see by interposing the coordinate
shifts {x , y} → {s = x − y , v = x + y} → {t = s/v , v} → {u =
1
2 (1− t) , v}:

∫ 1

0
dx
∫ 1−x

0
dy f (x , y) =

1
2

∫ 1

0
dv
∫ v

−v
ds f

(
x =

1
2
(v + s) , y =

1
2
(v− s)

)

=
1
2

∫ 1

−1
dt
∫ 1

0
dv v f

(
x =

1
2

v (1 + t) , y =
1
2

v (1− t)
)

=
∫ 1

0
du
∫ 1

0
dv v f (x = (1− u) v , y = uv)

(3.117)

We also do a coordinate shift in the momentum variable l = q− (1− u) vp−
uvp′ and rearrange terms:

a =− 2ie2µ̃ε
∫ 1

0
du
∫ 1

0
dv v

∫ ddq

(2π)d

a N (l = q− (1− u) vp− uvp′)
(

q2 − v2 ((1− u) p + up′)2
)3

=− 2ie2µ̃ε
∫ 1

0
du
∫ 1

0
dv v

∫ ddq

(2π)d

a N (l = q− v (p + uk))

(q2 + u (1− u) v2k2 + v2m2)
3

(3.118)

We work out the numerator a N(l = q− v (p + uk)) in canonical form
and divide the terms into three constituents, the terms independent of the
Feynman parameter v, the terms linear in v and the terms quadratic in v.
This is easier with a specialised symbolic mathematics calculator such as
FORM [24], we find:
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{
a N , O

(
v0
)}

=− 2γµ
(

k2 + 2m2
)
+
(
/p′ + m

)
[2mγµ − 4pµ] +

[
2mγµ − 4p′µ

]

× (/p + m) + (d− 6) (/p + m) γµ (/p + m) +

a.I N︷ ︸︸ ︷
γρ

/qγµ
/qγρ{

a N , O
(

v1
)}

= v
{

2γµ
(

k2 + 4m2
)
− 4mupµ − 4m (1− u) p′µ +

(
/p′ + m

)

×
[
(d− 6)mγµ + 4pµ + 2 (d− 2) up′µ

]
+
[
(d− 6)mγµ

+ 2 (d− 2) (1− u) pµ + 4p′µ
]
(/p + m)− (d− 6)

(
/p′ + m

)

× γµ (/p + m)
}

{
a N , O

(
v2
)}

=− v2
{
(d− 2) γµ

(
u (1− u) k2 + m2

)
− 2 (d− 2) (1− u)mpµ

− 2 (d− 2) ump′µ +
(
/p′ + m

) [
2 (d− 2) u

(
(1− u) pµ + up′µ

)]

+
[
2 (d− 2) (1− u)

(
(1− u) pµ + up′µ

)] (
/p′ + m

) }

(3.119)

We now fully evaluate a.I and leave a.II = a − a.I , the term that
is quadratic in q and the only UV-divergent term, in a way analogous to
what we have shown in the previous section. This time we must only be
careful to evaluate the integral over the Feynman parameter v for finite
values of ε. At the end we expand in the infinitesimal parameter εUV =
ε > 0 and take the leading order terms, we find:

a.I =
2 (d− 2)2

d
e2

(4π)
d
2

µ̃εγµ

[
Γ

(
2− d

2

)
− 1

2
Γ

(
3− d

2

)] ∫ 1

0
dv

× 1
v3−d

∫ 1

0
du
(

u (1− u) k2 + m2
)−(2− 1

2 d)

=
e2

8π2 γµ 1
εUV
− e2

16π2 γµ

[
1 + ln

(
m2

µ2

)
+
∫ 1

0
du ln

(
u (1− u)

k2

m2 + 1
)]

+O (ε)

(3.120)

For the other terms that we get when we plug the numerator Eq: 3.119
back into the integral of Eq: 3.118, we first perform the integral over q.
The integral over the Feynman parameter v is now straightforward, the
decomposition in Eq: 3.119 for vx with x = 0, 1, 2 gives us:

∫ 1

0
dv

vx+1

(v2)
3− 1

2 d
=
∫ 1

0
dv vx−(1+ε) =

1
x− ε

with ε < 0 if x = 0 (3.121)

The integral over the Feynman parameter v as shown in Eq: 3.121 im-
plies that in the decomposition we made for the numerator the terms of
order O

(
v0) are the IR-divergent ones, and the other terms are the IR-
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3.4 The vertex correction in full dimensional regularisation 55

and UV-finite terms.
Two tricks that help to simplify the end-result are related to the sym-

metry of part of the integrand under a coordinate shift of u→ 1− u:

∫ 1

0
du (1− u)2 f (u (1− u)) =

∫ 1

0
du u2 f (u (1− u))

∫ 1

0
du u f (u (1− u)) =

∫ 1

0
du (1− u) f (u (1− u))

⇒
∫ 1

0
du u f (u (1− u)) =

1
2

∫ 1

0
du f (u (1− u))

(3.122)

With this information we set ε = 0 for the non-divergent terms and ex-
pand in ε for the infrared divergent terms, in terms of D2

0 ≡ u (1− u) k2 +
m2 we get∗:

a.II =
e2

16π2

[(
1

εIR
+

1
2

ln
(

m2

µ2

)) ∫ 1

0
du

1
D2

0
+

1
2

∫ 1

0
du

1
D2

0
ln

(
D2

0
m2

)]{
a.II N , O

(
v0
)} ∣∣∣

v=1

+
e2

16π2

∫ 1

0
du

1
D2

0

({
a.II N , O

(
v1
)}

+
1
2

{
a.II N , O

(
v2
)}) ∣∣∣

v=1

(3.123)

We continue with the b , after cancelling as many terms from the nu-
merator as possible we get in analogous to Eq: 3.92 from the previous
section:

b =i
(

1− λ−2
)

e2µ̃ε
∫ ddl

(2π)d
1
l4

[ b.1︷︸︸︷
γµ −

b.2︷ ︸︸ ︷
(/p′ + m) [− (/p′ + /l ) + m] γµ

l2 + 2p′ · l

−

b.3︷ ︸︸ ︷
γµ [− (/p + /l ) + m] (/p + m)

l2 + 2p · l +

b.4︷ ︸︸ ︷
(/p′ + m) [− (/p′ + /l ) + m] γµ [− (/p + /l ) + m] (/p + m)

(l2 + 2p′ · l) (l2 + 2p · l)

]

(3.124)

We first evaluate b.1 , which is made difficult by the fact that the inte-
gral is both IR- and UV-divergent. To cope with this we can not use the
standard formula Eq: C.7 since the right hand side would be infinite. In-
stead of this we need Wick rotate and break up the integral in an angular
part and a radial part, the angular part evaluates to 2π

d
2 /Γ

(
d
2

)
and the

radial part needs to be broken up again. We break up the radial part in a
part that is regularised in the IR-domain and a part that is regularised in

∗We work it out explicitly at the end, and sum it with the gauge-dependent terms.
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the UV-domain.

b.1 =−
(

1− λ−2
)

e2µ̃εγµ
∫ ddl

(2π)d
1

l
4

=− 2
(

1− λ−2
) e2

(4π)
d
2

γµ µ̃ε

Γ
(

d
2

)
[∫ µ

0
dl

1

l
5−d +

∫ ∞

µ
dl

1

l
5−d

]

=−
(

1− λ−2
) e2

8π2 γµ
(

4πµ̃2
)ε (

1 +
ε

2
(γE + 1)

) [
−1

ε
l
−ε
∣∣∣
µ

0
− 1

ε
l
−ε
∣∣∣
∞

µ

]

=−
(

1− λ−2
) e2

8π2 γµ

(
1

εUV
+

1
εIR

)

(3.125)

For the evaluation of b.2 we use the numerator that was determined
in Eq: 3.93 which simplifies due to the on-shell condition, and after a co-
ordinate shift becomes Eq: 3.99.

b.2 =i
(

1− λ−2
)

e2µ̃ε
∫ ddl

(2π)d
(/p′ + m) /l γµ

(l2 + 2p′ · l) l4

=i
(

1− λ−2
)

e2µ̃ε
∫ 1

0
dx
∫ ddl

(2π)d
((1− x) /p′ + m) /l γµ

(l2 + 2xp′ · l)3

=
(

1− λ−2
) e2

16π2

(
4πµ̃2

m2

) ε
2

Γ
(

1 +
ε

2

) /p′ + m
m

γµ
∫ 1

0
dx x (1− x)

(
x2
)−(1+ 1

2 ε)

=
(

1− λ−2
) e2

16π2
(/p′ + m) γµ

m

[
1

εIR
− 1 +

1
2

ln
(

m2

µ2

)]

(3.126)

Just as in the previous section we argue for b.3 based on the fact that
it is the same integral with a slightly different tensorial structure in the
numerator, we find:

b.3 =
(

1− λ−2
) e2

16π2
γµ (/p + m)

m

[
1

εIR
− 1 +

1
2

ln
(

m2

µ2

)]
(3.127)

Finally, we continue with the evaluation of b.4 , starting in an analogue
fashion as in the last section such as to use as much of those results as pos-
sible. We first introduce Feynman parameters and perform a coordinate
shift:

56
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3.4 The vertex correction in full dimensional regularisation 57

b.4 =6i
(

1− λ−2
)

e2µ̃ε
∫ 1

0
dx
∫ 1−x

0
dy
∫ ddl

(2π)d

(1− x− y) b.4 N

(l2 + 2l · (xp + yp′))4

=6i
(

1− λ−2
)

e2µ̃ε
∫ 1

0
dx
∫ 1−x

0
dy
∫ ddq

(2π)d

(1− x− y) b.4 N (l = q− xp− yp′)
(

q2 + xyk2 + (x + y)2 m2
)4

=6i
(

1− λ−2
)

e2µ̃ε
∫ 1

0
du
∫ 1

0
dv
∫ ddq

(2π)d

(1− v) b.4 N (l = q− v [(1− u) p + up′])

(q2 + v2 (u (1− u) k2 + m2))
4

(3.128)

We turn our attention to the numerator and perform the same coor-
dinate shifts, we start with Eq: 3.105 enforce the on-shell condition and
replace x → v (1− u) and y→ uv, we find:

b.4 N =−

b.I N︷ ︸︸ ︷
v2 (

/p′ + m
) [(

u (1− u) k2 + m2
)

γµ + 2mu
(

pµ + p′µ
)]

(/p + m)

+

b.II N︷ ︸︸ ︷(
/p′ + m

)
/qγµ

/q (/p + m)

(3.129)

Without repeating tricks that were shown full out previously we per-
form the momentum integral, the integral over the Feynman parameter v
and expand in terms of ε. In particular, we used Eq: 3.122 to simplify b.I
and treated the q dependence of the numerator in b.II as in the previous
section, we find:

b.I =
(

1− λ−2
) e2

16π2
(/p′ + m) γµ (/p + m)

m2

[(
1

εIR
− 1

2

(
3− ln

(
m2

µ2

)))

×
∫ 1

0
du

m2

D2
0
+

1
2

∫ 1

0
du

m2

D2
0

ln

(
D2

0
m2

)]
+
(

1− λ−2
) e2

16π2
(/p′ + m) (pµ + p′µ) (/p + m)

m3

×
[(

1
εIR
− 1

2

(
3− ln

(
m2

µ2

))) ∫ 1

0
du

(
m2

D2
0

)2

+
1
2

∫ 1

0
du

(
m2

D2
0

)2

ln

(
D2

0
m2

)]

(3.130)

b.II =−
(

1− λ−2
) e2

16π2
(/p′ + m) γµ (/p + m)

m2

[(
1

εIR
− 1

2

(
1− ln

(
m2

µ2

)))

×
∫ 1

0
du

m2

D2
0
+

1
2

∫ 1

0
du

m2

D2
0

ln

(
D2

0
m2

)] (3.131)

We now sum al the contributions from a.I in Eq: 3.120, a.II in Eq:

Version of June 30, 2016– Created June 30, 2016 - 23:01

57



58 One Loop Calculations in QED

3.123, b.1 in Eq: 3.125, b.2 in Eq: 3.126, b.3 in Eq: 3.127, b.I in Eq:
3.130 and b.II in Eq: 3.131. This gives us a final result for Λµ (p, p′) in
accordance with Eq: 5.66 and Eq: 5.66a in [21]:

Λµ
(

p, p′
)
=Λ0

(
k2
)

γµ +Λ1

(
k2
) pµ + p′µ

m
+ /p′ + m

m
Λ

µ
2
(

p, p′
)

+Λ
µ
3
(

p, p′
) /p + m

m
+ /p′ + m

m
Λ

µ
4
(

p, p′
) /p + m

m
+O

(
e4
) (3.132)

Λ0

(
k2
)
=Z1 +

e2

8π2 λ−2 1
εUV
− e2

8π2
1

εIR

[ (
1− λ−2

)
+

(
2 +

k2

m2

)
(3.133)

×
∫ 1

0
du ln

(
D2

0
m2

)]
− e2

16π2

[
2 + ln

(
m2

µ2

)
+
∫ 1

0
du ln

(
D2

0
m2

)
+

(
2 +

k2

m2

)

×
[∫ 1

0
du

m2

D2
0

ln

(
D2

0
m2

)
+ ln

(
m2

µ2

) ∫ 1

0
du

m2

D2
0

]
− 2

(
4 +

k2

m2

) ∫ 1

0
du

m2

D2
0

]

Λ1

(
k2
)
=− e2

16π2

∫ 1

0
du

m2

D2
0

(3.134)

Λ
µ
2
(

p, p′
)
=

e2

16π2
1

εIR

[(
3− λ−2

)
γµ − 4

pµ

m

] ∫ 1

0
du

m2

D2
0
− e2

16π2

[ (
1− λ−2

)
(3.135)

×
[

1− 1
2

ln
(

m2

µ2

)]
−
[

γµ − 2
pµ

m

]( ∫ 1

0
du

m2

D2
0

ln

(
D2

0
m2

)

+ ln
(

m2

µ2

) ∫ 1

0
du

m2

D2
0

)
+ 2

∫ 1

0
du

γµ − 1
2 pµ − 2p′µ + u (1− u) kµ

D2
0

]

Λ
µ
3
(

p, p′
)
= Λ2

(
p′, p

)
NB: ! p � p′ ⇒ k→ −k ! (3.136)

Λ
µ
4
(

p, p′
)
=− e2

8π2 γµ 1
εIR

∫ 1

0
du

m2

D2
0
+
(

1− λ−2
) e2

16π2
pµ + p′µ

m
1

εIR
(3.137)

×
∫ 1

0
du

(
m2

D2
0

)2

− e2

32π2
pµ + p′µ

m

[ ∫ 1

0
du

(
m2

D2
0

)2

ln

(
D2

0
m2

)

−
(

3− ln
(

m2

µ2

)) ∫ 1

0
du

(
m2

D2
0

)2 ]
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Chapter 4
Renormalisation of QED

In this chapter, we renormalise QED by computing the
counter terms Z0, Z1, Z2 and Z3 in the on-shell and MS
renormalisation schemes. Additionally, we find that the
on-shell (OS) renormalisation scheme is affected by the
IR-regulator scheme that we use.
The counter terms allow us to determine the non-
perturbative running of the electron mass parameter m
and the coupling constant e at higher momentum scales.
We demonstrate that the renormalised electron mass
and charge respectively decrease and increase in mag-
nitude at higher momentum scales.

As we showed in the previous chapter, the addition of quantum cor-
rections to the vertices and propagators in QED yields divergences. We
regulated the divergences using dimensional regularisation of the UV-
divergences and both dimensional regularisation and a photon regulator
mass for the IR-divergences. Renormalisation is now necessary to can-
cel the regulated divergences in physical observables by an appropriate
choice for the counter terms.

Differences choices for the finite parts of the counter terms define dif-
ferent renormalisation schemes, and thus different definitions of the renor-
malised mass parameter. We consider here the MS and OS mass schemes
for the electron mass, of these only the MS mass is renormalisation scale
dependent.

We aim to show that renormalisation is more than a necessary proce-
dure to counter divergences. The freedom to choose different values for
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µ allows us sum certain logarithmic terms to all orders and even in cases
gives us non-perturbative information about our theory. Renormalisation
allows us to apply perturbation theory at a whole range of different energy
scales parametrised by µ and thus extends the applicability of the pertur-
bative method. More details and a conceptual interpretation of renormal-
isation in terms of Wilson’s approach using cutoff regularisation can be
found in Ref. [18, ch. 12].

4.1 The MS renormalisation scheme

In the modified minimally subtracted renormalisation scheme, denoted as
MS, the counter terms are chosen as to cancel only the divergent contribu-
tions to the photon self-energy, the electron self-energy and the electron-
photon vertex function. ∗

The photon self-energy shown in Eq: 3.26, the electron self-energy
functions A

(
p2) shown in Eq: 3.51 and B

(
p2) shown in Eq: 3.62 and the

photon-electron vertex function shown in both Eq: 3.113 and Eq: 3.133 for
different infrared regulators become UV-finite for the following choices
for the counter terms:

Z0,MS = 1− e2

8π2

(
3 + λ−2

) 1
ε
+O

(
e4
)

Z1,MS = 1− e2λ−2

8π2
1
ε
+O

(
e4
)

Z2,MS = 1− e2

8π2 λ−2 1
ε
+O

(
e4
)

Z3,MS = 1− e2

6π2
1
ε
+O

(
e4
)

(4.1)

We note the remarkable equality of the counter terms Z1,MS = Z2,MS.
The results in Eq: 4.1 are consistent with the UV-divergent part of the
results in [17, ch. 62] and the minimally subtracted results in [21, ch. 5] in
the Feynman gauge λ = 1 ∗∗.

The MS photon self-energy function ΠMS
(

p2) is given by:

ΠMS

(
p2
)
=

e2

2π2

∫ 1

0
dx x (1− x) ln

(
D2

0
µ2

)
+O

(
e4
)

(4.2)

∗The scheme is referred to as modified because we choose µ̃2 = eγE
4π µ2 and minimal

since we only cancel the divergent part.
∗∗To compare the result in [21] with our result we note that they use a mostly minus

metric instead of our mostly positive metric.
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The MS electron self-energy, we write as ΣMS (/p) = mAMS
(

p2) +
/pBMS

(
p2). The functions AMS

(
p2) and BMS

(
p2) are given by:

AMS

(
p2
)
= − e2

8π2

[
2 + λ−2 − 1

2

(
3 + λ−2

) [
ln

m2

µ2

+
p2 + m2

p2 ln
(

1 +
p2

m2

)]]
+O

(
e4
) (4.3)

BMS

(
p2
)
= − e2

8π2 λ−2

[
1− 1

2
ln

m2

µ2 −
p2 + m2

p2

[
1
2
+ ln

(
1 +

p2

m2

)]

+
1
2

(
p2 + m2

p2

)2

ln
(

1 +
p2

m2

)]
+O

(
e4
) (4.4)

4.2 The on-shell renormalisation scheme

An appropriate choice for the finite parts of the counter terms allows us to
let the mass parameter m and e correspond to the physical mass and charge
of the electron, which is what the OS renormalisation scheme does. We
require the exact propagators for on-shell particles to have a singularity
with residue one whenever the momentum squared equals minus the on-
shell mass squared. Also, the electron-photon vertex function must be of
the form: ieγµ +O

(
e4) when all in and out-going particles are on-shell.

The photon self-energy

For Z3,OS = Z3,MS + Z3, f in where Z3,MS is given by Eq: 4.1, we need to fix
Z3, f in such that the on-shell conditions are satisfied. For the photon exact
propagator, the tensorial structure of Πµν (p) guarantees that we have a
pole at p2 = 0, so we only need to fix Π (0) = 0 to guarantee that the exact
propagator has a pole with a residue of one.

Pµν (p)
[1−Π (0)]

= Pµν ⇒ Π (0) = 0 (4.5)

We apply the constraint on Eq: 3.26, we find:
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ΠOS (0) = −
e2

6π2

[
1
ε
− 3

∫ 1

0
dx x (1− x) ln

(
m2

µ2

)]
− (Z3,OS − 1) +O

(
e4
)

=
e2

12π2 ln
(

m2

µ2

)
− Z3, f in +O

(
e4
)
= 0

⇒ Z3, f in =
e2

12π2 ln
(

m2

µ2

)
+O(e4)

(4.6)

The end result in the OS renormalisation scheme after substituting
Z3, f in back into the self-energy function Π

(
p2) and the counter term is

given by:

ΠOS

(
p2
)
=

e2

2π2

∫ 1

0
dx x (1− x) ln

(
D2

0
m2

)
+O

(
e4
)

(4.7)

Z3,OS = 1− e2

6π2
1
ε
+

e2

12π2 ln
(

m2

µ2

)
+O(e4) (4.8)

The results in Eq: 4.7 and Eq: 4.8 are gauge-independent and therefore
consistent with the on-shell results in Ref. [17, ch. 62] that were obtained
using the Feynman gauge λ = 1.

In Fig: 4.1 we show how ΠOS
(

p2) varies as a function of the photon
momentum. We see in particular that for p2 < −4m2 the photon propa-
gator gets an imaginary component. This means that the off-shell photon
becomes unstable and can decay into an on-shell electron and an on-shell
positron.

The electron self-energy with photon regulator mass

For Z0,OS = Z0,MS + Z0, f in and Z2,OS = Z2,MS + Z2, f in where Z0,MS and
Z2,MS are given by Eq: 4.1, we need to fix Z0, f in and Z2, f in such that the
on-shell conditions are satisfied. To obtain a pole in the exact electron
propagator at /p = −m with a residue of one we must enforce on the self-
energy the conditions: Σ (−m) = 0∗ and ∂

∂/p
Σ (/p) |/p=−m = 0.

We apply the constraints on the self energy functions A
(

p2) in Eq: 3.50
and B

(
p2) in Eq: 3.61 with m2

γ 6= 0:

Σ (−m) = m
(

A
(
−m2

)
− B

(
−m2

))
= 0 ⇒ A

(
−m2

)
− B

(
−m2

)
= 0 (4.9)

∗Here /p = −m ⇒ p2 = −/p2 = −m2.
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Figure 4.1: This figure shows us the behaviour of ΠOS
(

p2) in units of α = e2

4π
and an approximation to ΠOS

(
p2) where we approximated the logarithm inside

the integral by the linear term in its Taylor expansion.

We set p2 = −m2 in Eq: 3.50 and Eq: 3.61 and subtract them from each
other.

A
(
−m2

)
− B

(
−m2

)
=

e2

16π2

[
1 + 3 ln

m2

µ2 + 2
∫ 1

0
dx (1 + x) ln

(
x2 + (1− x)

m2
γ

m2

)

− λ−2
∫ 1

0
dx ln

(
1−

(
1− λ−2

) (1− x)m2
γ

x2m2 + (1− x)m2
γ

)]

−
(

Z0, f in − Z2, f in

)
+O

(
e4
)
= 0

(4.10)

The expression in Eq: 4.10 allows us to determine
(
Z0, f in − Z2, f in

)
for

m2
γ 6= 0, a cumbersome expression. Fortunately, the expression in Eq:

4.10 is a finite function in terms of κ =
m2

γ

m2 , which we see from the series
expansions in Eq: C.11 and Eq: C.12 of App: C.5. The result for m2

γ = 0 is
given by:

(
Z0, f in − Z2, f in

) ∣∣∣∣∣
m2

γ=0

= − e2

4π2

(
1− 3

4
ln

m2

µ2

)
+O

(
e4
)

(4.11)

We now continue to determine the second constraint on the counter
terms ∂

∂/p
Σ (/p) |/p=−m = 0 :

Version of June 30, 2016– Created June 30, 2016 - 23:01

63



64 Renormalisation of QED

∂

∂/p
Σ (/p)/p=−m =

∂

∂/p

[
mA

(
p2
)
+ /pB

(
p2
)]

/p=−m

= 2m2 ∂

∂p2

[
A
(

p2
)
− B

(
p2
)]

p2=−m2
+ B

(
−m2

)
= 0

(4.12)

We first determine the value of the derivative term:

A
(

p2
)
− B

(
p2
)
=

e2

16π2

[
1 + 3 ln

m2

µ2 + 2
∫ 1

0
dx (1 + x) ln

D2
1

m2 +
p2 + m2

m2
γ

×
∫ 1

0
dx x

[
ln

D2
1

m2 − ln
D̃2

1
m2

] ]
−
(

Z0, f in − Z2, f in

)
+O

(
e4
) (4.13)

Now we substitute the result we found in Eq: 4.11:

A
(

p2
)
− B

(
p2
)
=

e2

16π2

[
5 + 2

∫ 1

0
dx (1 + x) ln

D2
1

m2 +
p2 + m2

m2
γ

×
∫ 1

0
dx x

[
ln

D2
1

m2 − ln
D̃2

1
m2

] ]
+O

(
e4
) (4.14)

Before we take the full derivative of Eq: 4.14 with respect to p2 evalu-
ated at p2 = −m2, we act it on the first integrand separately:

m2 ∂

∂p2 ln
D2

1
m2

∣∣∣∣∣
p2=−m2

=
x (1− x)

x (1− x) p2

m2 + x + (1− x) κ

∣∣∣∣∣
p2=−m2

=
x (1− x)

x2 + (1− x) κ
(4.15)

Using Eq: 4.15, we find that the full derivative of Eq: 4.14 with respect
to p2 evaluated at p2 = −m2 is given by:

2m2 ∂

∂p2

[
A
(

p2
)
−B

(
p2
) ]

p2=−m2

=
e2

8π2

[
2
∫ 1

0
dx

x
(
1− x2)

x2 + (1− x) κ

− 1
κ

∫ 1

0
dx x ln

(
1−

(
1− λ−2

) (1− x) κ

x2 + (1− x) κ

)]
+O

(
e4
)

(4.16)

It is not possible to set κ = 0, since the integrals contain logarithmic
divergences in κ. We therefore take the limit for κ approaching zero, and
we use the series expansions that are tabulated in App: C.5, we find:
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lim
κ→0

2m2 ∂

∂p2

[
A
(

p2
)
− B

(
p2
) ]

p2=−m2

= − e2

8π2

[
1 + ln κ +

1
2κ

( (
1− λ−2

)

× (1 + ln κ) κ − λ−2 ln λ−2κ
)
+O

(√
κ
)
]
+O

(
e4
)

= − e2

16π2

[(
3− λ−2

)
(1 + ln κ)− λ−2 ln λ−2

]
+O

(√
κ
)
+O

(
e4
)

(4.17)

Now, we fill out Eq: 4.17 and B
(
−m2) by using Eq: 3.62 into Eq: 4.12,

do some rearranging and find ourselves an expression for Z2, f in :

lim
κ→0

Z2, f in = − e2

16π2

[ (
3 + λ−2

)
− λ−2 ln

m2

µ2 +
(

3− λ−2
)

ln κ

−λ−2 ln λ−2 +O
(√

κ
)
]
+O

(
e4
) (4.18)

Now, we use Eq: 4.11 in Eq: 4.18 to find Z0, f in:

lim
κ→0

Z0, f in = − e2

16π2

[
7 + λ−2 −

(
3 + λ−2

)
ln

m2

µ2 +
(

3− λ−2
)

ln κ

−λ−2 ln λ−2 +O
(√

κ
)
]
+O

(
e4
) (4.19)

The end-result in the OS renormalisation scheme after substituting Z0, f in
and Z2, f in back into the self-energy functions A

(
p2) and B

(
p2) and the

counter terms in terms of κ as infrared regulator are given by:

AOS

(
p2
)
=

e2

16π2

[(
3− λ−2

)
[1 + ln κ]− λ−2 ln λ−2

]
(4.20)

+
e2

16π2

(
3 + λ−2

) p2 + m2

p2 ln
(

1 +
p2

m2

)
+O

(
e4
)

BOS

(
p2
)
=

e2

16π2

[(
3− λ−2

)
[1 + ln κ]− λ−2 ln λ−2

]
+

e2

16π2 λ−2

[
p2 + m2

p2 (4.21)

×
[

1 + 2 ln
(

1 +
p2

m2

)]
−
(

p2 + m2

p2

)2

ln
(

1 +
p2

m2

)]
+O

(
e4
)

Z0, OS = 1− e2

8π2

(
3 + λ−2

) 1
ε
− e2

16π2

[
7 + λ−2 −

(
3 + λ−2

)
ln

m2

µ2 (4.22)
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+
(

3− λ−2
)

ln κ − λ−2 ln λ−2

]
+O

(
e4
)

Z2, OS = 1− e2

8π2 λ−2 1
ε
− e2

16π2

[ (
3 + λ−2

)
− λ−2 ln

m2

µ2 (4.23)

+
(

3− λ−2
)

ln κ − λ−2 ln λ−2

]
+O

(
e4
)

AOS
(

p2) and B
(

p2) still depend on: µ, κ, and λ but the functions in
Eq: 4.24 do not:

∆AOS

(
p2
) ∣∣∣∣∣

λ=1

=AOS

(
p2
)
− AOS

(
−m2

) ∣∣∣∣∣
λ=1

=
α

π

p2 + m2

p2 ln
(

1 +
p2

m2

)
+O

(
e4
)

∆BOS

(
p2
) ∣∣∣∣∣

λ=1

=BOS

(
p2
)
− BOS

(
−m2

) ∣∣∣∣∣
λ=1

=
α

4π

[
p2 + m2

p2

[
1 + 2 ln

(
1 +

p2

m2

)]

−
(

p2 + m2

p2

)2

ln
(

1 +
p2

m2

)]
+O

(
e4
)

(4.24)

In Fig: 4.2 we show how ∆AOS
(

p2)
∣∣∣
λ=1

and ∆BOS
(

p2)
∣∣∣
λ=1

vary as a

function of the electron momentum.
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Figure 4.2: This figure demonstrates the behaviour of ∆AOS
(

p2)
∣∣∣
λ=1

and

∆BOS
(

p2)
∣∣∣
λ=1

in units of α = e2

4π . When the gauge is changed the graphs will

scale with different scale factors namely:
(
3− λ−2) and λ−2 respectively.
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The electron self-energy
in full dimensional regularisation

A photon regulator mass regularises the IR-divergences in the OS condi-
tion but the expansion in terms of κ is quite difficult. In a different ap-
proach we handle the IR-divergence using dimensional regularisation by
delaying the expansion in the regularisation parameter ε to the very end.

We have already regularised the UV-divergences in terms of ε > 0,
now we use ε < 0 to regularise the IR-divergence in the OS condition. To
discern between the two types of divergences we introduce εUV ≡ ε > 0
and εIR ≡ −ε > 0.

All IR-finite expressions such as AMS
(

p2) in Eq: 4.3 and BMS
(

p2) in
Eq: 4.4 are unaffected when we employ full dimensional regularisation.
However to evaluate the derivative term in Eq: 4.12 we must now take the
derivative before we expand in ε.

We first put m2
γ = 0 in the expression for A

(
p2) shown in Eq: 3.40:

A
(

p2
)
=

c︷ ︸︸ ︷
ie2µ̃ε

∫ ddl

(2π)d
d + λ−2 − 1(

(p + l)2 + m2
)

l2
− (Z0 − 1) +O

(
e4
) (4.25)

We decompose the integral as before, and take the derivative of the
expression for c as shown in Eq: 3.45:

2m2 ∂

∂p2 c
∣∣∣

p2=−m2
=− e2

8π2 Γ
( ε

2

) (
3 + λ−2 − ε

)(4πµ̃2

m2

) ε
2

×
∫ 1

0
dx m2 ∂

∂p2

[
x (1− x)

p2

m2 + x
]− ε

2 ∣∣∣
p2=−m2

=
e2

8π2 Γ
( ε

2

) (
3 + λ−2 − ε

)(4πµ̃2

m2

) ε
2 ( ε

2

) ∫ 1

0
dx x (1− x)

(
x2
)−(1+ 1

2 ε)

(4.26)

Now we perform the integral over the Feynman parameter x, where
we need ε < 0 for the integral to be well-defined:

∫ 1

0
dx (1− x) x−1−ε = −1

ε
(1− x) x−ε

∣∣∣
1

0
− 1

ε

∫ 1

0
dx x−ε

=
1
ε
(0)−ε − 1

ε (1− ε)

∣∣∣
ε<0

= − 1
ε (1− ε)

(4.27)

The factor 1
ε (0)

−ε = 0 only for ε < 0 and is else undefined. We plug
the integral of Eq: 4.27 back into expression c of Eq: 4.26, expand for ε,
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rearrange and then find in agreement with [21, ch. 5]:

2m2 ∂

∂p2 A
(

p2
) ∣∣∣

p2=−m2
=

e2

8π2

(
3 + λ−2

) 1
εIR
− e2

8π2

[
2 + λ−2

−1
2

(
3 + λ−2

)
ln

m2

µ2

]
+O

(
e4
) (4.28)

We continue with B
(

p2) by putting m2
γ = 0 in Eq: 3.41:

B
(

p2
)
=

e︷ ︸︸ ︷

ie2µ̃ε
∫ ddl

(2π)d

(d− 2)
(

1 + p·l
p2

)
−
(
1− λ−2)

(
(p + l)2 + m2

)
l2

−

f︷ ︸︸ ︷
ie2µ̃ε

(
1− λ−2

) p2 + m2

p2

×

f︷ ︸︸ ︷∫ ddl

(2π)d
p · l(

(p + l)2 + m2
)

l4
− (Z2 − 1) +O

(
e4
)

(4.29)

We decompose the integral as before, and continue with the m2
γ = 0

analogue of the decomposition of e in terms of e.1 and e.2 as in Eq: 3.52.
The result for the derivative of e.1 again follows from the substitution of
λ−2 → λ−2 − 2 in c :

2m2 ∂

∂p2 e.1
∣∣∣

p2=−m2
=

e2

8π2

(
1 + λ−2

) 1
εIR
− e2

8π2

[
λ−2 − 1

2

(
1 + λ−2

)
ln

m2

µ2

]
(4.30)

The derivative of e.2 follows from Eq: 3.55:

2m2 ∂

∂p2 e.2
∣∣∣

p2=−m2
=

e2

8π2 (2− ε) Γ
( ε

2

)(4πµ̃2

m2

) ε
2

×
∫ 1

0
dx xm2 ∂

∂p2

[
x (1− x)

p2

m2 + x
] ε

2 ∣∣∣
p2=−m2

=− e2

8π2 (2− ε) Γ
( ε

2

)(4πµ̃2

m2

) ε
2 ( ε

2

) ∫ 1

0
dx x2 (1− x)

(
x2
)−(1+ 1

2 ε)

(4.31)

Now we perform the integral over the Feynman parameter x, we see
that unlike Eq: 4.27 this integral is finite for ε = 0:
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∫ 1

0
dx (1− x) x−ε =

���
���

���:
0

1
1− ε

(1− x) x1−ε
∣∣∣
1

0
+

1
1− ε

∫ 1

0
dx x1−ε

=
1

(1− ε) (2− ε)

(4.32)

We plug the integral of Eq: 4.32 back into e.2 of Eq: 4.31, expand for ε,
rearrange and then find:

2m2 ∂

∂p2 e.2
∣∣∣

p2=−m2
=− e2

8π2 (4.33)

Finally we put m2
γ = 0 in the expression for f in Eq: 3.58. We keep

ε and integrate over the now redundant Feynman parameter y, we then
find:

f = − e2

16π2

(
1− λ−2

)
Γ
(

1 +
ε

2

)(4πµ̃2

m2

) ε
2 p2 + m2

m2

×
∫ 1

0
dx x (1− x)

(
x (1− x)

p2

m2 + x
)−(1+ 1

2 ε)
(4.34)

We take the derivative of f as shown in Eq: 4.34 and evaluate it for
p2 = −m2. We substitute Eq: 4.27 for the integral over x, rearrange, and
then find:

2m2 ∂

∂p2 f
∣∣∣

p2=−m2
=− e2

8π2

(
1− λ−2

) ( ε

2

)
Γ
( ε

2

)(4πµ̃2

m2

) ε
2 ∫ 1

0
dx x (1− x)

(
x2
)−(1+ 1

2 ε)

=− e2

8π2

(
1− λ−2

) 1
εIR

+
e2

8π2

(
1− λ−2

) [
1− 1

2
ln

m2

µ2

]

(4.35)

We plug the integrals e.1 of Eq: 4.30, e.2 of Eq: 4.33 and f of Eq: 4.35
into the derivative of B

(
p2), then find in agreement with [21, ch. 5]:

2m2 ∂

∂p2 B
(

p2
) ∣∣∣

p2=−m2
=

e2

4π2 λ−2 1
εIR
− e2

4π2 λ−2
[

1− 1
2

ln
(

m2

µ2

)]
+O

(
e4
)

(4.36)

We now write down the complete derivative term by subtracting the
contribution in Eq: 4.36 from Eq: 4.28:
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2m2 ∂

∂p2

[
A
(

p2
)
− B

(
p2
)] ∣∣∣

p2=−m2
=

e2

8π2

(
3− λ−2

) 1
εIR
− e2

8π2

[
2− λ−2

−1
2

(
3− λ−2

)
ln

m2

µ2

]
+O

(
e4
) (4.37)

The expression in Eq: 4.37 and B
(
−m2) from Eq: 4.4 allow us to find

Z0,OS and Z2,OS and the self-energy functions A
(

p2) and B
(

p2):

AOS

(
p2
)
=− e2

8π2

(
3− λ−2

) [ 1
εIR

+
1
2

ln
m2

µ2

]
+

e2

8π2

[
2− λ−2 (4.38)

+
1
2

(
3 + λ−2

) p2 + m2

p2 ln
(

1 +
p2

m2

)]
+O

(
e4
)

BOS

(
p2
)
=− e2

8π2

(
3− λ−2

) [ 1
εIR

+
1
2

ln
m2

µ2

]
+

e2

8π2

[
2− λ−2 + λ−2 p2 + m2

p2 (4.39)

×
[

1
2
+ ln

(
1 +

p2

m2

)]
−
(

p2 + m2

p2

)2

ln
(

1 +
p2

m2

)]
+O

(
e4
)

Z0, OS =1− e2

8π2

(
3 + λ−2

) 1
εUV

+
e2

8π2

(
3− λ−2

) 1
εIR

(4.40)

− e2

4π2

[
2− 3

2
ln

m2

µ2

]
+O

(
e4
)

Z2, OS =1− e2

8π2 λ−2 1
εUV

+
e2

8π2

(
3− λ−2

) 1
εIR
− e2

8π2

[
2− 3

2
ln

m2

µ2

]
+O

(
e4
)

(4.41)

The vertex function with a photon regulator mass

For Z1,OS = Z1,MS + Z1, f in where Z1,MS is given by Eq: 4.1, we need to
fix Z1, f in such that the OS condition is satisfied. The OS condition for the
vertex-function can formally be written as:

us′
(
p′
)
Vµ
(

p, p′
)

us (p)

∣∣∣∣∣p2=p′2=−m2

(p−p′)2=0

= us′
(
p′
)

γµus (p)

∣∣∣∣∣p2=p′2=−m2

(p−p′)2=0

(4.42)

We use the spinor identity given in Eq: A.17 on the right-hand side and
the fact that p = p′ with p2 = p′2 = −m2:

us (p)

(
V

µ
1−loop, f in (p, p)

e

)
us (p) = −2pµZ1, f in (4.43)
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We now expand the left-hand side of the above equation:

us (p)

(
− e2

16π2 γµ

[(
3− λ−2

)
−
(

1− λ−2
)

ln κ + λ−2
(

ln λ−2 − ln
(

µ2

m2

))]

− e2

8π2 γµ
∫ 1

0
dx
∫ 1−x

0
dy

[
ln

(
D2

2
m2

)
+

N0

D2
2

]

+
e2m
4π2 pµ

∫ 1

0
dx
∫ 1−x

0
dy

(x + y)2 − (x + y)
D2

2

)
us (p) = −2pµZ1, f in

(4.44)

Now we use the spinor identities to get an equation for Z1, f in. The
on-shell conditions give us that all terms proportional to

(
p2 + m2) or(

p′2 + m2) vanish and the terms involving (/p + m) and (/p′ + m) drop out
due to the contraction with spinors. The on-shell condition allows us to
simplify Eq: 3.80 and Eq: 3.87 into:

D2
2

∣∣∣∣∣ p=p′

p2=−m2

= (x + y)2 m2 − (x + y)m2
γ + m2

γ ≡ D2
2 (4.45)

N0

∣∣∣∣∣ p=p′

p2=−m2

=
[
(x + y)2 − 4 (x + y) + 2

]
m2 (4.46)

The use of which allows us to write for Z1, f in:

Z1, f in =
e2

16π2

[(
3− λ−2

)
−
(

1− λ−2
)

ln κ + λ−2
(

ln λ−2 + ln
(

m2

µ2

))]

+
e2

8π2

∫ 1

0
dx
∫ 1−x

0
dy

[
ln

(
D2

2
m2

)
−m2 (x + y)2 + 2 (x + y)− 2

D2
2

]
+O

(
e4
)

(4.47)

We perform a coordinate shift u = (x + y) and v = (x− y) on the
integrals in Eq: 4.47 and use the series expansions given in Eq: C.12, Eq:
C.13 and Eq: C.14 to evaluate the integrals:

∫ 1

0
dx
∫ 1−x

0
dy ln

(
D2

2
m2

)
=
∫ 1

0
du u ln

(
u2 + (1− u) κ

)
(4.48)

≈ −1
2
− 1

2
(1 + ln κ) κ +O

(
κ2
)

∫ 1

0
dx
∫ 1−x

0
dy

[
(x + y)2 + 2 (x + y)− 2

]
m2

D2
2

=
∫ 1

0
du

u
(
u2 + 2u− 2

)

u2 + (1− u) κ
(4.49)
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≈ 5
2
+ ln κ − 3π

2
√

κ +
1
2
(5− ln κ) κ +O

(
κ

3
2

)

After some rearranging, these integrals give us Z1, f in:

lim
κ→0

Z1, f in =− e2

16π2

[ (
3 + λ−2

)
− λ−2 ln

(
m2

µ2

)
+
(

3− λ−2
)

ln κ

− λ−2 ln λ−2 +O
(√

κ
)
]
+O

(
e4
) (4.50)

We substitute Z1, f in from Eq: 4.52 into the expression for Z1,OS, this al-
lows us to write down the one-loop vertex correction. We keep κ only to
parametrise IR divergences and write down the part of the vertex correc-
tion that does not contain unevaluated Feynman parameter integrals. We
note that the identity Z1,OS = Z2,OS also holds for the OS renormalisation
scheme.

iVµ
OS
(

p, p′
)
= ieγµ − ie3

8π2 γµ [3 + ln κ] + integrals +O
(

e5
)

(4.51)

Z1,OS =1− e2λ−2

8π2
1
ε
− e2

16π2

[ (
3 + λ−2

)
− λ−2 ln

(
m2

µ2

)

+
(

3− λ−2
)

ln κ − λ−2 ln λ−2

]
+O

(
e4
) (4.52)

The vertex function in full dimensional regularisation

The vertex-function with a photon regulator mass yields the correct values
for the counter terms but it is easier in full dimensional regularisation. The
OS renormalisation prescription in terms of Λµ (p, p′) is given by:

us′
(
p′
)

Λµ
(

p, p′
)

us (p)

∣∣∣∣∣p2=p′2=−m2

k2=0

= us′
(
p′
)

γµus (p)

∣∣∣∣∣p2=p′2=−m2

k2=0

(4.53)

The constraints p2 = p′2 = −m2 and k2 = 0 again imply p = p′, using
this and the spinor identities and normalisation from App: A we fix Z1, f in:
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us′
(
p′
)

Λµ
(

p, p′
)

us (p)

∣∣∣∣∣p2=p′2=−m2

k2=0

=Λ0 (0) us′ (p) γµus (p)︸ ︷︷ ︸
2pµδs,s′

+
2pµ

m
Λ1 (0) us′ (p) us (p)︸ ︷︷ ︸

2mδs,s′

= 2pµ

⇒ Λ0 (0) + 2Λ1 (0) +O
(

e4
)
=1

(4.54)

From Eq: 4.54, we solve for Z1, f in and substitute this back into Z1,OS.
We find again as in the previous section that Z1,OS = Z2,OS and the expres-
sion is consistent with the result in Ref. [21, ch. 5].

Z1,OS = 1− e2

8π2 λ−2 1
εUV

+
e2

8π2

(
3− λ−2

) 1
εIR
− e2

8π2

[
2− 3

2
ln
(

m2

µ2

)]
+O

(
e4
)

(4.55)

Now that we have fixed Z1,OS we write down the vertex-function renor-
malised in the OS renormalisation prescription with OS electrons.

Λ
µ
OS
(

p, p′
)
=Λ0,OS

(
k2
)

γµ +Λ1

(
k2
) pµ + p′µ

m
+ /p′ + m

m
Λ

µ
2
(

p, p′
)

+Λ
µ
3
(

p, p′
) /p + m

m
+ /p′ + m

m
Λ

µ
4
(

p, p′
) /p + m

m
+O

(
e4
) (4.56)

Λ0,OS

(
k2
)
=1 +

e2

8π2
1

εIR

[
2−

(
2 +

k2

m2

) ∫ 1

0
du ln

(
D2

0
m2

)]
− e2

16π2

[
6

− 2 ln
(

m2

µ2

)
+
∫ 1

0
du ln

(
D2

0
m2

)
+

(
2 +

k2

m2

)[ ∫ 1

0
du

m2

D2
0

ln

(
D2

0
m2

)

+ ln
(

m2

µ2

) ∫ 1

0
du

m2

D2
0

]
− 2

(
4 +

k2

m2

) ∫ 1

0
du

m2

D2
0

]
(4.57)

An alternative more popular decomposition of the vertex-function in
terms of two form factors F1

(
k2) and F2

(
k2), where F1

(
k2) is referred to

as the charge form factor and F2
(
k2) as the anomalous magnetic moment

form factor, is given by:

us′
(
p′
)

Λµ
(

p, p′
)

us (p)

∣∣∣∣∣
p2=p′2=−m2

= F1

(
k2
)

us′
(
p′
)

γµus (p) +
ikν

m
F2

(
k2
)

us′
(
p′
)

Sµν (p)

(4.58)

By making use of the proof of Eq: A.17 we determine the two form
factors:
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F1

(
k2
)
= Λ0

(
k2
)
+ 2Λ1

(
k2
)
⇒ F1

(
k2
)
= 1

F2

(
k2
)
= −2Λ1

(
k2
)
⇒ F2 (0) =

e2

8π2

(4.59)

These expressions for the form factors are consistent with the results
in Ref. [21, ch. 5]. We note that F1

(
k2) was fixed at k2 = 0 by the renor-

malisation procedure but is still IR-divergent for all k2 6= 0, F2
(
k2) on the

other hand was not affected by the renormalisation. Because of the IR-
divergences, it is not useful to try and plot F1

(
k2) but it is possible to plot

F2
(
k2) as shown in Fig: 4.3:

−4 −3 −2 −1 0 1 2 3 4 5

k2/m2

0.0

0.2

0.4

0.6

0.8

1.0

F
2
(k

2
)

α

F2

(
k2
)

Figure 4.3: This figure shows us the behaviour of F2
(
k2) in units of α = e2

4π . This
result is invariant of the choice of gauge or renormalisation.

4.3 Relating IR-regularisation schemes

We have now successfully renormalised QED in both the MS and OS-
renormalisation schemes by means of two different IR-regulator proce-
dures. Namely, we have considered the extension of dimensional regular-
isation to handle also IR-divergences and we have introduced a fictitious
photon mass term in the original lagrangian back in Sec: 2.2. Here, we
now compare the different IR-regularisation schemes using the previous
results.

The photon regulator mass introduces extra integrals proportional to
m2

γ in the evaluation of the self-energy functions, namely the integrals d
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in A
(

p2) of Eq: 3.40 and g in B
(

p2) of Eq: 3.41. Also, in the evaluation of

f in B
(

p2) we have to introduce an extra Feynman parameter to account
for the regulator and it does not seem possible to simplify the result for the
vertex correction such that we only have one Feynman parameter integral.

The application of MS renormalisation scheme was not affected by the
use of regulator scheme, but the OS renormalisation scheme was. In di-
mensional regularisation, it was possible to isolate the ∝ 1

εIR
divergent

terms by hand, whilst the isolation of ∝ ln κ terms was only possibly by
using computer algebra software.

The use of full dimensional regularisation has the advantage that it
does not require the introduction of extra terms in the lagrangian. Hence,
dimensional regularisation does also not introduce additional terms that
break gauge-invariance like the photon mass term in Eq: 2.15. Further-
more, the use of full dimensional regularisation does not require a sepa-
rate implementation, because dimensional regularisation is already used
for the regularisation of the UV-divergences. We only need to delay the
expansion in terms of ε until after all other calculations have been com-
pleted.

When we compare the result for the derivative terms in Eq: 4.37 in
full dimensional regularisation with the result we found using a photon
regulator mass as shown in Eq: 4.17, then we find:

2
εIR

= − ln
m2

γ

µ2 +
1

3− λ−2

[
1− λ−2

(
1− ln λ−2

)]
(4.60)

This correspondence between the photon mass and the dimensional
regulator was also found in Ref. [21, ch. 5] in the Feynman gauge
( λ = 1 ).

Concluding, we consider the extension of dimensional regularisation
of UV-divergences to also regularise IR-divergences in the same frame-
work preferable with respect to the inclusion of a photon mass regulator.
The only drawback of this method is that intuitively the departure from
d = 4 to d = 4− ε dimensions, where ε can be both positive and negative,
is hard to imagine whilst giving a photon an asymptotically small mass
can be imagined.

4.4 Relating the MS and OS mass schemes

We have given the electron self-energy in both the MS and the OS renor-
malisation scheme. The pole mass mpole as defined in Eq: 3.30 equals the
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on-shell mass mOS and since this definition is renormalisation scheme in-
dependent, we can express mpole = mOS in terms of mMS.

1
i

S̃ (/p) =
−i

/p + mMS − ΣMS (/p)
=

−i

/p + mOS − ΣOS (/p)
(4.61)

/p + mOS − ΣOS (/p)
∣∣∣
/p=−mOS

= 0 ⇒ /p + mMS − ΣMS (/p)
∣∣∣
/p=−mOS

= 0 (4.62)

We first determine the O
(
α0) solution of Eq: 4.62 and plug that into

the O (α) equation to find the first order solution:

O
(

α0
)

: −mOS + mMS +O (α) = 0 ⇒ mOS =mMS +O (α)

=mMS + ∆m +O
(

α2
) (4.63)

Here we defined ∆m as theO (α) contribution to mOS. Plugging the ze-
roth order solution back into the equation we obtain the first order equa-
tion:

O (α) : −∆m + mMS

[
B
(
−m2

MS

)
− A

(
−m2

MS

)]
+O

(
α2
)
= 0

⇒ ∆m =
α

2π
mMS

[
2− 3

2
ln

m2
MS

µ2

]
+O

(
α2
) (4.64)

We now write down the relation between the OS mass and the MS
mass up to O (α) using the one-loop self-energy result. This result is in-
vertible by the same order by order expansion method.

mOS =mMS

[
1 +

α

2π

(
2− 3

2
ln

m2
MS

µ2

)]
+O

(
α2
)

mMS =mOS

[
1− α

2π

(
2− 3

2
ln

m2
OS

µ2

)]
+O

(
α2
) (4.65)

The accuracy by which a measurement of the in QED physically ob-
servable mOS allows us to determine mMS (µ) depends on whether at higher
loop corrections the analogue of the series expansion in Eq: 4.65 converges
or not.

The higher order corrections up to the three-loop order in QED are
given in Eq: 66 of Ref. [25] and the O (α) result is in agreement what
we find in Eq: 4.65. In QCD the relation between the heavy quark mass
defined in the MS and OS renormalisation schemes has been computed in
perturbative QCD at the four-loop order by Ref. [26].
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4.5 Renormalisation scale dependence in MS

The bare lagrangian in Eq: 2.19 and the renormalised lagrangian in Eq:
2.20 describe the same theory in different parametrisations. Only the pa-
rameters of the bare lagrangian do not depend on the used renormalisa-
tion scheme whilst the renormalised lagrangian does depend on the used
renormalisation scheme and scale. By use of the method and notation
shown in Ref. [17, ch. 66] we explore the implications of this.

In QED we can write down the bare electron charge and the bare mass
in terms of the renormalised electron charge and mass and the counter
terms. The µ̃-derivative and also the µ-derivative of these bare param-
eters must vanish because the original theory is not µ̃-dependent or µ-
dependent.

The bare electron charge is given by Eq: 4.66 denoted with a subscript
zero, we take the logarithm of this equation and then the ln µ-derivative.

e0 =
Z1√
Z3Z2

µ̃
ε
2 e (4.66)

ln e0 = E (e) + ln (e) +
ε

2
ln µ̃ with E (e, ε) =

∞

∑
n=1

En (e)
εn = ln

Z1√
Z3Z2

(4.67)

We take the ln µ-derivative of the above expression:

0 =
∂E (e, ε)

∂e
∂e

∂ ln µ
+

1
e

∂e
∂ ln µ

ε

2

0 =

(
1 +

e
ε

∂E1 (e)
∂e

+ ...
)

∂e
∂ ln µ

+
ε

2
e

(4.68)

We choose ∂e
∂ ln µ = − ε

2 e + βe (e) and fix the function βe (e) order by
order in the renormalised electron charge using the expression for the
counter terms as derived for MS.

ln
Z1√
Z3Z2

=
e2

12π2
1
ε
+O

(
e4
)
⇒ βe (e) =

e2

2
∂E1 (e)

∂e
+ ... =

e3

12π2 +O
(

e5
)

(4.69)

With the explicit expression for the beta-function βe (e) in terms of the
renormalised electron charge e we can solve a differential equation and re-
late the electron charge at different scales non-perturbatively. The solution
of this equation shows that QED becomes more strongly coupled higher
energies.∗

∗The pole in the solution of the beta-function is commonly referred to as the Landau
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e (µ2) = e (µ1)

(
1− e2 (µ1)

6π2 ln
µ2

µ1

)− 1
2

(4.70)

Every loop order in the quantum corrections of a process introduces at
least two additional interactions, therefore one usually considers the beta-
function of the fine-structure constant αe = e2

4π . With our knowledge of
βe (e), we find:

βαe (αe (µ)) =
∂αe

∂ ln µ
=

∂αe

∂e
βe (e (µ)) =

β0︷︸︸︷
2

3π
α2

e +O
(

α3
e

) (4.71)

The same procedure gives us non-perturbative information about the
electron MS mass. The term γm (e) = 1

m
∂m

∂ ln µ is referred to as the anoma-
lous dimension of the electron mass.

m0 =
Z0

Z2
m (4.72)

ln m0 =M (e, ε) + ln m with M (e, ε) =
∞

∑
n=1

M1 (e)
εn = ln

Z0

Z2
(4.73)

Now we take the ln µ-derivative and substitute in the beta-function we
found previously:

0 =
1
m

∂m
∂ ln µ

+
∂M (e, ε)

∂e
∂e

∂ ln µ

0 =γm (e) +
(

∂M1 (e)
∂e

1
ε
+ ...

)(
− ε

2
e + βe (e)

) (4.74)

We now substitute what we now about the values of the counter terms
and the beta-function to find the anomalous dimension of the electron
mass∗:

ln
Z0

Z2
= − 3e2

8π2
1
ε
+O

(
e4
)
⇒ γm (e) = − 3e2

8π2 +O
(

e4
)

(4.75)

With the expressions for both β (e) and γm (e) we can solve a differen-
tial equation and relate the electron mass at different scales non-perturbatively.
The solution shows that the effective mass of an electron become less at

pole. For µ1 ≈ 1 eV the Landau pole lies at µ2 = µ1 exp 6π2

e2(µ1)
≈ 10286 eV. Neither QED

or perturbation theory is valid at those energy scales.
∗This result can also be obtained by taking the ln µ-derivative of mOS as shown in Eq:

4.65.
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higher energies.

m (µ2) = m (µ1)

(
e (µ1)

e (µ2)

) 9
2
= m (µ1)

(
1− e2 (µ1)

6π2 ln
µ2

µ1

) 9
4

(4.76)

The Callan-Symanzik equation

Not only bare parameters are µ-independent, also the correlation func-
tions of bare fields need to be µ-independent.

Gn,m (e, m, µ̃) = 〈0|
n︷ ︸︸ ︷

Aµ1 (x1) ...Aµn (xn)

m︷ ︸︸ ︷
Ψ (xn+1) ...Ψ (xn+m) |0〉

= (Z3)
− n

2 (Z2)
−m

2

µ-independent︷ ︸︸ ︷
〈0| Aµ1

0 (x1) ...Aµn
0 (xn)Ψ0 (xn+1) ...Ψ0 (xn+m) |0〉

(4.77)

We now define the anomalous dimensions for the photon field γA (e)
and the electron field as γΨ (e) and evaluate them as we did for the elec-
tron mass in the previous section:

γA (e) =
1
2

∂ ln Z3

∂ ln µ
=

e2

12π2 +O
(

e4
)

γΨ (e) =
1
2

∂ ln Z2

∂ ln µ
=

e2λ−2

16π2 +O
(

e4
) (4.78)

These definitions allow us to construct a differential equation that de-
scribes the µ-dependence of correlation function’s in QED non-perturbatively:

(
µ

∂

∂µ
+ βe (e)

∂

∂e
+ mγm (e)

∂

∂m
+ nγA (e) + mγΨ (e)

)
Gn,m (e, m, µ) = 0 (4.79)

In some cases, the above differential equation provides a solution at
values for the external momenta where perturbation theory breaks down.
This could happen when there are large logarithms in the perturbative ex-
pansion that do not converge. It is an example of non-perturbative physics
that is found through renormalisation of a perturbative expansion.
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Chapter 5
The Consequences of
Noether-Current Conservation

In this chapter, we provide an explanation for the
seemingly coincidental equality of Z1,MS = Z2,MS and
Z1,OS = Z2,OS that we found when we renormalised
QED up to one-loop in Ch: 4 based on the treatise in
Refs. [17, ch. 22, 67 and 68]. The equality of the counter
terms in QED is brought about by the Ward-Takahashi
identities, which also constrain the space-time struc-
ture of amplitudes. However, we demonstrate that at
a more fundamental level these are actually both conse-
quences of the quantum equivalent of the conservation
of Noether currents in classical mechanics.

5.1 The conservation of Noether current in QFT

We consider a theory of scalar fields φa instead of QED aiming for con-
ceptual understanding instead of mathematical rigour. In a classical field
theory the variational principle by assumption dictates that the field con-
figuration that is realised in nature is characterised as an extremum of the
action. To satisfy this, the fields must obey the equations of motion.

S =
∫

ddxL
(
φa, ∂µφa

)
(5.1)

δS
δφa

=
∂L
∂φa
− ∂µ

(
∂L

∂
(
∂µφa

)
)

= 0 (5.2)
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82 The Consequences of Noether-Current Conservation

We perform an infinitesimal transformation of the fields that corre-
sponds to a continuous symmetry of the action, in other words a trans-
formation φa → φa + δφa such that δS = 0 with a vanishing δφa at the
boundaries of the integration range. If δS = 0 then the lagrangian density
can at most transform by a total derivative δL = ∂µKµ. This observation
allows us to define a current jµ that is conserved when the equations of
motion are satisfied, the Noether current:

δL =
δS
δφa

δφa + ∂µ

(
∂L

∂
(
∂µφa

) δφa

)
= ∂µKµ (5.3)

∂µ jµ = ∂µ

(
∂L

∂
(
∂µφa

) δφa − Kµ

)
= − δS

δφa
δφa (5.4)

In QFT the fundamental object is not the action but the path integral
Z (J), which does not choose one specific field configuration but includes
all of them with their own weight. Unless the path integral measure is af-
fected by the transformation of the fields, any transformation of the fields
φa leaves δZ (J) = 0 because we are integrating over all of them.

Z (J) =
∫
Dφei[S+

∫
ddy Jaφa] (5.5)

δZ (J) = i
∫
Dφei[S+

∫
ddy Jaφa]

∫
ddx

(
δS
δφa

+ Ja

)
δφa (5.6)

The Schwinger-Dyson equations follow when we take n functional deriva-
tives with respect to the source Ja and afterwards set Ja = 0, δφa is factored
out as an arbitrary change in the fields.

0 =
∫
DφeiS

∫
ddx
(

i
δS
δφa

φa1 (x1) ...φan (xn)

+
n

∑
j=1

φa1 (x1) ...δaaj δ
d (x− xj

)
...φan (xn)

)
δφa (x)

(5.7)

0 = i 〈0| T δS
δφa

φa1 (x1) ...φan (xn) |0〉+
n

∑
j=1
〈0| Tφa1 (x1) ...δaaj δ

d (x− xj
)

...φan (xn) |0〉
(5.8)

The terms in the summation of Eq: 5.8 are called contact terms, they only
become important when xi = xj and do not contribute to scattering ampli-
tudes in the LSZ formula so the classical equation of motions inside cor-
relation functions are conserved up to contact terms. The Ward-Takahashi
identity follows from Eq: 5.4 if the field transformation corresponds to a
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5.2 The constraint of WT-identities on QED amplitudes 83

continuous symmetry:

i∂µ 〈0| Tjµ (x) φa1 (x1) ...φan (xn) |0〉 =
n

∑
j=1
〈0| Tφa1 (x1) ...δφaj δ

d (x− xj
)

...φan (xn) |0〉

(5.9)

The Noether currents inside correlation functions are thus conserved
up to contact terms under the assumption that the path integral measure
is invariant under the field transformation. This finding is also valid for
theories involving fermions or vector bosons though for fermions the anti-
commutation relations insert some minus signs in the contact terms.The
above treatment is presented in more detail with examples in Ref. [17, ch.
22] and Ref. [18, ch. 9].

5.2 The constraint of WT-identities
on QED amplitudes

We must first determine how to get from the mathematically abstract n-
point correlation function to physical scattering amplitudes to apply the
Ward-Takahashi identity in QED scattering amplitudes. Exactly this is
what is done by the Lehmann- Symanzik-Zimmermann formula or LSZ-formula,
shown in Eq: 5.10 for scalar particles. To make Eq: 5.10 applicable also for
fermions and vector-bosons one needs to include spin-polarisation vectors
for all initial and final states.

〈 f | i〉 =in+n′ (Z)−
n+n′

2

∫
ddx1eik1x1

(
−∂2

1 + m2
)

...ddx′1eik′1x′1
(
−∂2

1′ + m2
)

× 〈0| Tφ (x1) ...φ
(

x′1
)

... |0〉
(5.10)

The LSZ-formula is the consequence of integrating the n-point correla-
tion functions over wave packets that describe asymptotic initial and final
states with definite momenta at time T = ±∞. [17, ch. 41] [18, sec. 7.2]
The field-strength normalisation factors that appear in the LSZ-formula
follow from matrix elements that describe the probability amplitude to
create a properly normalised one-particle state from the vacuum;

√
Z =

〈0| φ (0) |λ0〉 where λ0 denotes a zero-momentum one-particle state. The
field equations in combination with

√
Z do not completely cancel the exact

propagators of the external lines they leave a factor of
√

Z.
We consider a transformation of the fields Ψ and Ψ with a space-time

independent constant ξ of the form Ψ (x) → Ψ′ (x) = e−ieξΨ (x), a con-
tinuous symmetry of the QED lagrangian by construction. The conserved
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84 The Consequences of Noether-Current Conservation

Noether current that is associated to this symmetry is given by:

∂µ jµ = ∂µ

(
∂L

∂
(
∂µΨ

) δΨ

)
= eξ∂µ

(
ΨγµΨ

)
= 0 (5.11)

Since this is true for any ξ, we drop ξ and find:

Jµ = eΨγµΨ ⇒ ∂µ Jµ = 0 (5.12)

Now we write down the Lagrangian for the photon sector of the theory:

LQED,A =− 1
4

FµνFµν − 1
2

F2 + Jµ Aµ

=− 1
2

∂µ Aν∂µ Aν +
1
2

∂µ Aν∂ν Aµ − 1
2

λ2∂µ Aµ∂ν Aν + Jµ Aµ
(5.13)

We determine the equations of motion by the variational principle and
note that the factor in square brackets is the inverse photon propagator ∗:

[
�ηµν −

(
1− λ2

)
∂µ∂ν

]
Aν + Jµ = 0 (5.14)

We now use Eq: 5.8 to apply the equations of motion for the photon
field to the scattering amplitude of a process involving an incoming pho-
ton:

〈 f | i〉 =in+n′ (Z)−
n+n′

2

∫
ddx1 ε

µ
1 e−ik1x1

[
�ηµν −

(
1− λ2

)
∂µ∂ν

]
... 〈0| TAν (x1) ... |0〉

=− in+n′ (Z)−
n+n′

2

∫
ddx1 ε

µ
1 e−ik1x1 ...

(
〈0| TJµ (x1) ... |0〉+ contact terms

)

(5.15)

The contact terms do not contribute to the left hand side because the
contact terms do not have the correct singularities and are killed by the
wave operators. We now show that the scattering amplitude of processes
involving longitudinally polarised photons with polarisation vectors ∝ kµ

vanish by replacing εµ → kµ and doing a partial integration where surface
terms integrate to zero:

∗If we contract the equations of motion with ∂µ we find that the photon field classically

has no longitudinal polarisation; λ2�∂ν Aν +��
�* 0

∂µ Jµ = 0 ⇒ ∂ν Aν = 0
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5.3 The equality of counterterms in QED 85

〈 f | i〉 =− in+n′ (Z)−
n+n′

2

∫
ddx1kµ

1 e−ik1x1 ... 〈0| TJµ (x) ... |0〉

=in+n′−1 (Z)−
n+n′

2

∫
ddx1∂

µ
1

(
e−ik1x1

)
... 〈0| TJµ (x) ... |0〉

=− in+n′−1 (Z)−
n+n′

2

∫
ddx1e−ik1x1 ...∂µ

1 〈0| TJµ (x) ... |0〉+ surface terms

=− in+n′−1 (Z)−
n+n′

2

∫
ddx1e−ik1x1 ...contact terms + surface terms = 0

(5.16)

We use the general Ward-Takahashi identity as shown in Eq: 5.9 to go
from the third line to the fourth line.

5.3 The equality of counterterms in QED

One could ask now, what happens when we introduce counter terms to the
QED Lagrangian. The Noether current associated to the gauge symmetry
is then modified as: Jµ → J′µ = Z2 Jµ, whilst the equations of motion for
the photon field are modified as:

[
�ηµν −

(
1− λ2

)
∂µ∂ν

]
Aν +

Z1

Z3
Jµ = 0 (5.17)

More importantly though, we find that the Ward-Takahashi identities
and eventually gauge invariance imply that Z1 = Z2 to all orders in per-
turbation theory in the MS- and OS-renormalisation schemes. From this it
becomes apparent that the kinetic term iZ2Ψ/∂Ψ and the interaction term
Z1eΨ /AΨ can be renormalised as one term: iZ1Ψ /DΨ, with the covariant
instead of regular derivative.

To show this more rigorously we consider the Fourier transform of the
correlation function between two fermion fields connected by a vertex:
Z1 Jµ (x) for an external gauge field. By contracting the fermion fields in-
side the current Jµ with the explicit fermion fields in the correlation func-
tion this can be rewritten in terms of the exact propagators and the exact
vertex function:

Cµ
αβ =iZ1

∫
d4xd4yd4zeikx−ip′y+ipz 〈0| TJµ (x)Ψα (y)Ψβ (z) |0〉

= (2π)4 δ4 (k + p− p′
) [1

i
S̃
(

p′
)

iVµ
(

p′, p
) 1

i
S̃ (p)

]

αβ

(5.18)

Now we rewrite kµCµ
αβ in terms of the Noether current J′µ associated

to the infinitesimal field transformations δΨ (x) = −ieΨ (x) and δΨ (x) =
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86 The Consequences of Noether-Current Conservation

ieΨ (x). We then discard a surface term and rewrite the derivative of the
Noether current in terms of the contact terms shown in Eq: 5.9:

kµCµ
αβ =− Z1

∫
d4xd4yd4zeikx−ip′y+ipz∂µ 〈0| TJµ (x)Ψα (y)Ψβ (z) |0〉

=− i
Z1

Z2
e (2π)4 δ4 (k + p− p′

) [
S̃ (p)− S̃

(
p′
)]

αβ

(5.19)

We now have two expressions for kµCµ
αβ which must be equal, these

expressions can be evaluated in different renormalisation schemes.

(
p− p′

)
µ

S̃
(

p′
)
Vµ
(

p′, p
)

S̃ (p) =
Z1

Z2
e
[
S̃ (p)− S̃

(
p′
)]

⇒
(

p− p′
)

µ
Vµ
(

p′, p
)
=

Z1

Z2
e
[
S̃−1 (p′

)
− S̃−1 (p)

] (5.20)

In the MS-scheme we know that the vertex function and the exact
propagator are finite whilst any contribution to the counter terms is in-
finite therefore Z1,MS = Z2,MS. In the OS-scheme we know that for p2 =

p′2 = −m2 we have iVµ (p, p′) = ieγµ and S̃−1 (p) = /p + m therefore
again Z1,OS = Z2,OS. ∗

We demonstrated that the equality of counter terms in QED is a con-
sequence of the conservation of Noether current. This result shows that
fundamental physical principles can leave hints in small subtleties of the
theory.

∗A more diagrammatic derivation of the equality of counter terms from the Ward-
Takahashi identities is given in Ref. [18, sec. 7.4].
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Chapter 6
The Standard Model Interactions of
the Top Quark

In this chapter, we work out the Feynman rules for parts
of the standard model relevant for top quark and gluon
one-loop calculations in the renormalisable gauge. The
standard model is the gauge theory with an underlying
gauge symmetry SU (3)× SU (2)×U (1), which at the
moment best describes our world.
We first focus on the SU (3) part of the SM before
we continue to electroweak part with the underlying
SU (2) ×U (1) symmetry. We demonstrate the gauge-
fixing procedure, the BEH-mechanism and derive the
vertex factors and propagators in the quark sector.

More details about QCD in the context of nonabelian gauge theories
is found in Ref. [17, ch. 69,72]. A more thorough explanation of the
Higgs mechanism and spontaneous symmetry breaking in the SM and a
few other examples is found in Ref. [17, ch. 86-87, 89], Ref. [18, ch. 20] or
more brief and accessible in Ref. [19, ch. 46-47].

In our short description of the SM, we used Ref. [17] notation and con-
ventions as much as possible. The Feynman rules of the standard model
in the mostly negative metric and using different conventions is found in
Ref. [27]. The great multitude of possible conventions that is explained
in Ref. [27], motivates why we want to make no mistake and derive them
from the lagrangian terms ourselves.
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88 The Standard Model Interactions of the Top Quark

6.1 The SU (3) part of the standard model

The SU (3) part of the standard model is commonly referred to as quan-
tum chromodynamics, the theory of quarks and gluons. The interaction
associated to the SU (3) gauge symmetry is the strong-interaction, which
acts on particles that transform under SU (3) gauge transformations e.g.
particles with so-called colour charge.

The quark lagrangian

The quark lagrangian describes colour charged spin-½ fermions and anti-
fermions named quarks respectively anti- quarks. The formalism that is
used to handle the fermion nature of these particles was treated in Sec:
2.1. There are three generations of quarks that each contain one quark
with an electric charge of +2

3 |e| and a quark with an electric charge of
−1

3 |e|, together this makes that there are six different quark flavours. The
quarks with a positive electric charge are called u, c and t (up, charm and
top) and the negatively charged quarks are d, s and b (down, strange and
bottom).

These quarks are described by Dirac fields Ψi I (x) that transform un-
der the fundamental representation of SU (3) so: Ψi I (x) → Ψ′i I (x) =
Uij (x)Ψj I (x) where i, j are the colour indices summed from one to three
and I is a flavour index which is summed from one to six. Any SU (3)
transformation Uij (x) can be formed by eight traceless hermitian gener-
ator matrices Ta

ij that together span the group, which allows us to write:

Uij (x) = e−ig3θa(x)Ta
where g3 is the SU (3) coupling constant.

These generator matrices Ta
ij obey commutation relations of the form

shown in Eq: 6.1, where f abc are totally antisymmetric structure constants.
The generators can be conveniently normalised according to Eq: 6.2 where
T (R) is a representation dependent number called the index of the group,
we choose it to be one half.

[
Ta, Tb

]
= i f abcTc (6.1)

Tr
[

TaTb
]
= T (R) δab =

1
2

δab (6.2)

We need to introduce a gauge-field that transforms as in Eq: 6.3 in the
adjoint representation of the group to make the Dirac lagrangian shown in
Eq: 2.2 invariant under SU (3) transformations of the fields Ψi I (x). The
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6.1 The SU (3) part of the standard model 89

gauge-field of QCD is known as the gluon field and it is a massless spin-1
boson field, that carries colour charge but no electric charge.

Aµ (x)→ A′µ (x) = U (x) Aµ (x)U† (x) +
i

g3
U (x) ∂µU† (x) (6.3)

From the gauge-field we construct a covariant derivative Dij µ:
(

Dµ

)
ij = δij∂µ − ig3 Aa

µTa
ij (6.4)

We now write down the gauge-invariant quark lagrangian from which
we can deduce the quark propagator and the quark-gluon vertex factor:

Lq =−Ψi I
(
−i /Dij + mIδij

)
Ψj I

=−Ψi I (−i/∂ + mI)Ψi I + g3Ψi I /AaTa
ijΨj I

(6.5)

By following the treatment in Sec: 2.1 we can write down the quark
propagator as:

1
i

S̃ij I (/p) ≡
−iδij

/p + mI − iε
(6.6)

From the quark lagrangian in Eq: 6.5 we can deduce the vertex factor
that describes the coupling of quarks to gluons in the Feynman rules. Ex-
cept for the colour and flavour factors the Feynman rules for electrons in
Sec: 2.1 also apply to quarks.

µ a

i

j

=: ig3�
µT a

ij

Figure 6.1: The quark-gluon vertex that follows from the quark lagrangian
shown in Eq: 6.5.

The gluon lagrangian

The covariant derivative shown in Eq: 6.4 allows us to construct the field-
strength tensor Fµν, which transforms covariantly in the adjoint represen-
tation of the group in other words: Fµν (x)→ F′µν (x) = U (x) Fµν (x)U† (x).
In terms of the gauge-field the field-strength tensor is given by:
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90 The Standard Model Interactions of the Top Quark

Fµν =
i

g3

[
Dµ, Dν

]
= ∂µ Aν − ∂ν Aµ − ig3

[
Aµ, Aν

]
(6.7)

It is apparent that the simplest gauge-invariant term involving only the
gauge-field Aµ is given by the trace of two contracted field-strength ten-
sors as shown in Eq: 6.8. This is the classical lagrangian for a nonabelian
gauge theory. We see that this theory is complicated by the fact that the
gauge field now couples to itself as well.

Lcl.g =− 1
4T (R)

Tr
[
FµνFµν

]
= −1

2
Tr
[
FµνFµν

]

=− 1
2

(
∂µ Aa

ν − ∂ν Aa
µ

)2
− g3 f abc Aaµ Abν∂µ Ac

ν −
1
4

g2
3 f abe f cde Aaµ Abν Ac

µ Ad
ν

(6.8)

Just as in the QED case, we cannot construct a propagator from the la-
grangian shown in Eq: 6.8. The lagrangian in Eq: 6.8 is manifestly Lorentz
invariant, which is an advantage but has a downside. The downside is that
our description has a redundancy associated to gauge transformations. In
the path-integral description we are still integrating over an infinite num-
ber of field-configurations that are connected via gauge transformations
parametrised by θa (x) and are thus physically equal.

Gauge-fixing and ghosts

To correctly fix the gauge, we use Faddeev-Popov gauge-fixing following
closely [17, ch. 71]. We first add a source term to the lagrangian in Eq: 6.8
and write down the path integral:

Z (J) ∝
∫
DA eiScl.g(A,J) with Scl.g (A, J) =

∫
d4x

[
−1

2
Tr
[
FµνFµν

]
+ Jaµ Aa

µ

]
(6.9)

To restrict the integration of the path integral in Eq: 6.9 only to phys-
ical distinct field configurations at every space-time point x, we must in-
troduce delta functions that only picks out one gauge slice parametrised
by one specific θa

0 (x) ∗. Assuming the DA is an integration over phys-
ical distinct configurations and physical non-distinct configurations are
parametrised by θa (x):

Z (J) ∝
∫
DA ∏

x,a
δ (θa (x)− θa

0 (x)) eiScl.g(A,J)
(6.10)

∗If one considers the original lagrangian as the fundamental object of the theory, then
we should also include an integration over physical non-distinct states. This introduces
a pre-factor that is formally infinite but does not contribute to correlation functions.
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6.1 The SU (3) part of the standard model 91

To evaluate this integral we must define a θa
0 (x) and find what field

configurations are physically distinct. We pick a gauge by demanding it
to be the solution of a gauge-fixing function Ga (x) = 0 where we use
Ga (x) = ∂µ Aaµ − ωa in terms of a still arbitrary field ωa. Expanding the
gauge-fixing function around the solution for θa

0 (x) allows a coordinate
shift involving a determinant, which results in:

Z (J) ∝
∫
DA det

(
δGa (x)
δθb (y)

)
∏
x,a

δ (Ga (x)) eiScl.g(A,J) (6.11)

The original path integral does not depend on the field ωa (x), so the

inclusion of the term
∫
Dω e−

i
2ξ

∫
d4xωaωa

only changes the overall (irrele-
vant) normalisation of Z (J). The delta-functions allow us to evaluate the
ω integral and give us the gauge-fixing term:

Z (J) ∝
∫
DA det

(
δGa

δθb

)
eiScl.g(A,J)+iSg. f .(A) with Sg. f . (A) = − 1

2ξ

∫
d4x

(
∂µ Aaµ

)2

(6.12)

The gauge-fixing term allows us to construct the gluon propagator
but we still need to evaluate the determinant. Under an infinitesimal
gauge transformation the gluon field transforms as: Aaµ (x)→ A′aµ (x) =
Aaµ (x) − Dac

µ θc (x) where the covariant derivative of the adjoint repre-
sentation is given by: Dac

µ = δac∂µ + g3 f abc Ab
µ. With this information we

evaluate the functional derivative of the gauge fixing function as: δGa(x)
δθb(y) =

−∂µDab
µ δ4 (x− y). In [18, ch. 9] it is shown that this functional determi-

nant is equal to the path-integral of Grassman-valued fields:

det
(

δGa (x)
δθb (y)

)
∝
∫
DcDc eiSgh(A)

with Sgh (A) =
∫

d4x ca∂µDab
µ cb = −

∫
d4x

[
∂µca∂µca − g3 f abc∂µcacb Ac

µ

] (6.13)

The full gauge-fixing procedure has introduced unphysical polarisa-
tions of the gluons and unphysical ghost states that are both dependent
on an arbitrary gauge-fixing function Ga (x). Since the theory is gauge
invariant, these unphysical states do not appear in final or initial states.
BRST-symmetry arguments as elaborated on in [17, ch. 74] lie at the basis
of these assertions.
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92 The Standard Model Interactions of the Top Quark

The Feynman rules for gluon interactions

Now, we add the gauge-fixing and ghost parts to the classical gluon la-
grangian in Eq: 6.8. This gives us the propagators for the gluons and the
ghost fields, the gluon-ghost vertex and the gluon self-interaction vertices:

a µ b ⌫
=:

�i�ab

p2

h
⌘µ⌫ � (1 � ⇠)

pµp⌫
p2

i

(a)

a b
=:

�i�ab

p2

(b)

! p

µ a

c

b

=: g3f
abcpµ

(c)

! k

 p

 q

µ a

⇢ c
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Figure 6.2: The Feynman rules in QCD gauge sector: (a) the gauge-fixed gluon
propagator, (b) the ghost propagator, which shows the direction of the flow of
ghost number, (c) the gluon-ghost-ghost vertex, (d) the triple gluon vertex and (e)
the quartic gluon vertex.

6.2 The SU (2)×U (1) gauge-sector

The SU (2) × U (1) part of the standard model is commonly referred to
as the electroweak part of the standard model or GWS-theory named af-
ter Glashow-Weinberg and Salam. The phenomenology of this theory is
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6.2 The SU (2)×U (1) gauge-sector 93

to a great extend determined by a complex scalar SU (2)-doublet φ re-
ferred to as the Higgs-field. The non-zero vacuum expectation value of the
Higgs-field spontaneously breaks SU (2)×U (1) to U (1). This remaining
symmetry constitutes QED.

In this section, we describe how the BEH-mechanism spontaneously
breaks the symmetry that underlies GWS-theory and how it affects the
quadratic part of the Higgs-field and the gauge-fields. We do not explic-
itly work out all possible interactions among the Higgs-field, gauge-fields,
Goldstone-fields and ghost fields.

The Higgs-field and the BEH-mechanism

The Higgs-field is a two-component complex scaler doublet that trans-
forms under SU (2)×U (1) as φi (x)→ φ′i (x) = Uij (x) φj where Uij (x) is
given by:

Uij (x) =

SU(2)︷ ︸︸ ︷
exp (−ig2θa (x) Ta)

U(1)︷ ︸︸ ︷
exp (−ig1ξ (x)Y)

(6.14)

We choose Ta = 1
2 σa as the generators of the SU (2) symmetry such

that Eq: 6.1 and Eq: 6.2 are obeyed. The factor g1Y in the U (1) part is
reminiscent of the charge in QED (see Sec: 2.1) and therefore Y is known
as the hypercharge of the field. For the Higgs-field Y = −1

212.
We also introduce a set of gauge-fields Aµ (x) ∗ that transforms in the

SU (2) equivalent of Eq: 6.3 and a gauge-field Bµ (x) that transforms in
the same way as the photon field in Eq: 2.9. These gauge fields allow us to
construct a covariant derivative for the Higgs-field, given by:

(
Dµ

)
ij =δij∂µ − i

[
g2 Aa

µTa
ij + g1BµYij

]

=


∂µ − i

2

(
g2 A3

µ − g1Bµ

)
− ig2

2

(
A1

µ − iA2
µ

)

− ig2
2

(
A1

µ + iA2
µ

)
∂µ + i

2

(
g2 A3

µ + g1Bµ

)



(6.15)

A general gauge-invariant lagrangian for the Higgs-field that can be
constructed with the covariant derivative and a potential V

(
φ†φ

)
is given

by:

Lφ = −
(

Dµφ
)†

(Dµφ)−V
(

φ†φ
)

(6.16)

∗The field Aµ (x) is not to be confused with the gluon field from the previous section,
gauge-fields are often called Aµ (x) regardless of the symmetry group.
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94 The Standard Model Interactions of the Top Quark

The general form of the potential which is renormalisable, has a nonzero
vacuum expectation value and is bounded from below is given by:

V
(

φ†φ
)
= −µ2φ†φ + λ

(
φ†φ

)2
(6.17)

The field configuration of the vacuum of this theory should minimise
the potential energy, the minus sign in front of the quadratic term in the
potential shown in Eq: 6.17 creates a local at |φ| = 0 so this is not the
correct vacuum to use in perturbation theory. The true vacuum is found
at the other zero of the derivative of the potential with respect to |φ|:

dV
d|φ| = 0 ⇒ −2µ2|φ|+ 4λ|φ|3 = 0

|φ0| =
±√

2
v with v =

√
µ2

λ

(6.18)

We now decompose the complex scalar Higgs-field φ in terms of two
scalar fields H (x) and φ0 (x) and one complex field φ− (x) with (φ− (x))† =
φ+ (x):

φ (x) =

(
1√
2
(v + H (x) + iφ0 (x))

φ− (x)

)
(6.19)

Upon substitution of Eq: 6.19 in the potential shown in Eq: 6.17 we find
that up to terms quadratic in the fields the potential is given by:

V
(

φ†φ
)
=
−m4

H
16λ

+
1
2

m2
H H2 + ... with m2

H = 2λv2 = 2µ2 (6.20)

The constant term in the potential does not affect the physics of the
theory so it can be discarded. More importantly though the field H (x)
,the scalar Higgs field, has a mass mH whilst the other fields φ0 and φ±,
the Goldstone bosons, are massless.

The electroweak gauge-fields

For the electroweak gauge fields Aµ (x) and Bµ (x) we introduce the ki-
netic terms analogue to those shown previously in Eq: 6.8 and in Eq: 2.13,
which gives us:

L = −1
2

Tr
[
FµνFµν

]
− 1

4
BµνBµν (6.21)

Here we introduced the definition Bµν = ∂µBν − ∂νBµ. The vacuum
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6.2 The SU (2)×U (1) gauge-sector 95

expectation value of the of the complex scalar Higgs-field φ in the covari-
ant derivative shown in Eq: 6.15 generates mass terms for the Aa

µ (x) and
Bµ (x) gauge fields.

Dµ ·
1√
2

(
v
0

)
=
−i√

2




v
2

(
g2 A3

µ − g1Bµ

)

g2v
2

(
A1

µ + iA2
µ

)

 (6.22)

Upon substituting Eq: 6.22 into the lagrangian for the complex scalar
Higgs-field in Eq: 6.16 three linear combinations of the four gauge-fields
will acquire masses, the complex scalar W-boson field and the Z-boson
field. The only field that does not acquire a mass corresponds to the pho-
ton field.

W±µ =
1√
2

(
A1

µ ∓ iA2
µ

)
with mW =

g2v
2

Zµ =
1√

g2
1 + g2

2

(
g2 A3

µ − g1Bµ

)
with mZ =

√
g2

1 + g2
2v

2

Aµ =
1√

g2
1 + g2

2

(
g1 A3

µ + g2Bµ

)
with mA = 0

(6.23)

Now we substitute the linear combinations of Eq: 6.23 back into Eq:
6.21, this generates the kinetic terms that we need and also interaction and
self-interaction terms involving only gauge-fields.

L = −1
2
|∂µW+

ν − ∂νW+
µ |2 −

1
4

ZµνZµν − 1
4

FµνFµν + ... (6.24)

Here, we introduced the definition Zµν = ∂µZν − ∂νZµ, used Fµν =
∂µ Aν− ∂ν Aµ and show only the quadratic terms that we need to construct
the propagators. Now we introduce the conventional weak-mixing angle

cos θW = g2/
√

g2
1 + g2

2 = mW/mZ and the electron charge e = −g1 cos θW

and substitute the new decomposition of the gauge-fields in the general
covariant derivative of Eq: 6.15, we find the SU (2) generators that belong
to new decomposition:

(
Dµ

)
ij = δij∂µ −

ig2√
2

[
W+

µ T− + W−µ T+
]
− i

g2

cos θW

(
T3 − sin2 θW Q

)
Zµ − i|e|QAµ

(6.25)

The SU (2) generators for the W-boson are T± = T1∓ iT2 and the gen-
erator for the electromagnetic charge is given by Q = T3 + Y. The scalar
Higgs-field H (x) is thus neutral whilst the φ− (x) Goldstone-boson has a
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96 The Standard Model Interactions of the Top Quark

negative electromagnetic charge.

Gauge-fixing and ghosts

We now fix the gauge as explained for the SU (3) part of the standard
model in Sec: 6.1. Since we are free to choose a gauge-fixing function,
we can cancel the following unwanted terms that appear in the covariant
derivative of Eq: 6.16:

a = − 1√
2

[
∂µ

(
1√
2
(H + iφ0)

φ−

)]†

Dµ

(
v
0

)
+ h.c.

= mZ∂µφ0Zµ + imW
(
∂µφ+Wµ − − ∂µφ−Wµ +

)
(6.26)

The gauge-fixing function Ga with a ∈ {1, ..., 4} that cancels these terms
through the gauge-fixing term Lg. f . = − 1

2ξ G2, is given by the functions:

G1 = ∂µ A1
µ −

imWξ√
2

(
φ+ − φ−

)
G2 = ∂µ A2

µ +
mWξ√

2

(
φ+ + φ−

)

G3 = ∂µ A3
µ −mWξφ0 G4 = ∂µBµ − tan θWmWξφ0

(6.27)

The other terms in the gauge-fixing term make it possible to construct
propagators for the gauge bosons and they give gauge-dependent and
thus unphysical masses to the Goldstone-bosons.

Lg. f . = −
1

2ξ
G2 =− 1

2ξ

(
2|∂µWµ +|2 +

(
∂µZµ

)2
+
(
∂µ Aµ

)2
)
− a + tot. deriv.

− ξm2
Wφ+φ− − 1

2
ξm2

Zφ2
0

(6.28)

The ghost term shown for SU (3) in Sec: 6.1 in SU (2) gets an addi-
tional term from the last terms in gauge-fixing functions shown in Eq:
6.27. Leaving the explicit details of the calculation this introduces gauge-
dependent masses for the ghost-fields ∗ and additional interactions cou-
pling the ghost-fields to the scalar Higgs-field and the Goldstone-bosons.

The Feynman rules for the electroweak gauge sector

We now have all the ingredients to write down the propagators of the
gauge-fields, the scalar Higgs field and the Goldstone- bosons by inverting
the parts that are quadratic in the associated fields.
∗When the ghost-fields are written in the analogue linear combinations of Eq: 6.23 then

their masses will be equal to ξ times the mass of the gauge-field that they are associated
to.
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Figure 6.3: The propagators in the electroweak gauge sector: (a) W±-boson,
(b) Z0-boson, (c) photon, (d) Higgs-boson, (e) φ0 Goldstone-boson and (f) φ±
Goldstone-boson.

6.3 The SU (2)×U (1) quark-sector

The complex scalar Higgs-field φ that we considered in the previous sec-
tion is not the only field that transforms non-trivially under the SU (2)×
U (1)-symmetry of the standard model. The left-handed and right-handed
components of the three generations of quark fields and lepton fields also
transform independently in different representations of SU (2) × U (1)-
symmetry.

In this section we describe how the left-handed and right-handed quark
fields are organised to form the quark lagrangian discussed in Sec: 6.1, Eq:
6.5. We will work out the BEH-mechanism affected interactions between
the quark fields and the gauge-fields, scalar Higgs-field and Goldstone
fields. We do not consider the lepton-sector in detail since it is fairly ana-
logue to the quark-sector and we disregard the SU (3) colour indices.
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98 The Standard Model Interactions of the Top Quark

The quark-fields and gauge-coupling

Let us denote the positively charged quark-fields in a generation by uI
and the negatively charged quark field by dI e.g. the up and down quark
fields for I = 1. The SU (2) acts only on the left-handed components of
these quark fields whilst the U (1) acts on all field with different values for
the hypercharge Y. The uLI and dLI components organise themselves in a
SU (2) doublet qI with hypercharge Y = 1

6 . The uRI and dRI components
are SU (2) singlets with hypercharges Y = 2

3 and Y = −1
3 respectively. ∗

Y
(

qI =

(
uLI
dLI

))
=

1
6

Y (uRI) =
2
3

Y (dLI) = −
1
3

(6.29)

The chiral fields uL, dL, uR and dR can be constructed from the Dirac
fields by using chiral projectors.

uL =

(
1− γ5

2

)
u uR =

(
1 + γ5

2

)
uR

dL =

(
1− γ5

2

)
d dR =

(
1 + γ5

2

)
dR

(6.30)

The covariant derivative for qI is shown in Eq: 6.15 where i and j run
over the doublets entries and Y = 1

6 . The covariant derivatives for uR I
and dR I are given by:

DµuRI = ∂µuRI − ig1

(
2
3

)
BµuRI DµdRI = ∂µdRI − ig1

(
−1

3

)
BµdRI (6.31)

We write down the kinetic terms for the fermions, plug in the linear
combinations of Eq: 6.23 and combine the chiral fermion fields where pos-
sible to form non-chiral fields e.g. uI = uRI + uLI and dI = dRI + dLI .

Lkin =iqI /DqI + iuRI /DuRI + idRI /DdRI

=iuI /∂uI + idI /∂dI +
g2√

2
uLI /W+dLI +

g2√
2

dLI /W−uLI

+
g2

cos θW
uI /Z

(
1
2

(
1− γ5

2

)
− 2

3
sin2 θW

)
uI

+
g2

cos θW
dI /Z

(
−1

2

(
1− γ5

2

)
+

1
3

sin2 θW

)
dI +

2
3
|e|uI /AuI −

1
3
|e|dI /AdI

(6.32)

∗In the lepton sector the doublet has a hypercharge of Y = − 1
2 and the upper singlet

e.g. electron, muon and tauon have Y = −1 whilst the lower singlet e.g. the correspond-
ing neutrinos might not exist.
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6.3 The SU (2)×U (1) quark-sector 99

We do not draw all vertices and determine their vertex factors, since
all the interaction terms have a similar structure. Let Gµ denote a gauge-
field, α some arbitrary pre factor, Γ some spinor structure, v the outgoing
spinor-field and w the incoming spinor field. All interaction terms in Eq:
6.32 have the structure Lint = αGµvΓµw and thus a vertex-factor: iαΓµ.

G

w

v

=: i↵�µ

Figure 6.4: The general vertex between a gauge-field and two spinor-fields that
follows from interaction terms of the form: Lint = αGµvΓµw.

The Yukawa-terms

The mass terms for the quarks in Eq: 6.5 require us to introduce terms that
couple the left-handed and right-handed chiral fields. The mass term can
be decomposed as: uu = uLuR + uRuL It is necessary to couple these terms
to the complex scalar Higgs field, if we want to introduce mass terms for
the fermions. These terms are called Yukawa terms, and the most general
form of them is given by:

LYuk = −εijφ
†
i (qI)j y′I JdRJ − φi (qI)i y′′I JuRJ + h.c. (6.33)

We coupled the left-handed quark doublet in two different ways to the
complex scalar Higgs-field, with an antisymmetric epsilon tensor and a
dot-product using indices i and j. The indices I and J allow for the possi-
bility of coupling chiral fermion fields from different generations.

The Yukawa terms in Eq: 6.34 will include terms proportional to both
dLIy′I JdRJ and uLIy′′I JuRJ . We now reparametrise the quark fields using the
unitary matrices UL, UR, DL and DR in such a way that the mass terms are
diagonal with positive real coefficients y′K and y′′K as follows:

uLI → (UL)I J uLJ and uLI → uLJ
(
U†

L
)

J I
uRI → (UR)I J uRJ and uRI → uRJ

(
U†

R
)

J I

}
such that y′′I J = (UL)IK y′′K

(
U†

R

)
KJ

dLI → (DL)I J dLJ and dLI → dLJ
(

D†
L
)

J I
dRI → (DR)I J dRJ and dRI → dRJ

(
D†

R
)

J I

}
such that y′I J = (DL)IK y′K

(
D†

R

)
KJ

(6.34)
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100 The Standard Model Interactions of the Top Quark

Going back to the gauge-coupling interactions that follow from Eq:
6.32, the only affected terms are to be found in the terms that involve
the W±-boson. We define the Cabibbo-Kobayashi-Maskawa matrix as:
VCKM = U†

LDL and write down the new gauge-coupling terms to the W±-
boson:

LW± int =
g2 (VCKM)I J√

2
uLI /W+dLJ +

g2
(
V†

CKM
)

I J√
2

dLI /W−uLJ (6.35)

We now use the decomposition of the complex scalar Higgs field shown
in Eq: 6.19 and the diagonalisation of the coupling terms in generation
space from Eq: 6.34 to rewrite the Yukawa terms and show how it gener-
ates masses for the quark fields.

LYuk =−muK uKuK −mdK dKdK −
muK

v
HuKuK −

mdK

v
HdKdK − i

muK

v
φ0uKγ5uK

+ i
mdK

v
φ0dKγ5dK +

√
2 (VCKM)IK mdK

v
φ+uLIdRK −

√
2muK (VCKM)KI

v
φ+uRKdLI

+

√
2mdK

(
V†

CKM
)

KI
v

φ−dRKuLI −
√

2
(
V†

CKM
)

IK muK

v
φ−dLIuRK

(6.36)

The quark mass terms appear in Eq: 6.36 as was expected by means
of the BEH-mechanism. The vertices between the quark spinors and the
scalar Higgs field and the Goldstone boson’s will introduce additional ver-
tices. Let ψ denote either the scalar Higgs field or the Goldstone boson
fields, α some arbitrary pre factor, Γ some spinor structure, v the outgoing
spinor-field and w the incoming spinor field. All interaction terms in Eq:
6.36 have the structure Lint = αψvΓw and thus a vertex-factor: iαΓ.

 

w

v

=: i↵�

Figure 6.5: The general vertex between a component of the complex scalar Higgs
field and two spinor-fields that follows from interaction terms of the form: Lint =
αψvΓw.
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Chapter 7
One-loop calculations in QCD

In this chapter, we evaluate the exact one-loop correc-
tions to gluon and top quark propagators in full dimen-
sional regularisation and renormalisable gauge. We em-
ploy more automated techniques by use of FORM [24]
to cope with spinor and space-time indices. We demon-
strate how the number of integrals that must be evalu-
ated is reduced in a more systematic way, through the
use of symmetries and the identification of a set of stan-
dard integrals. We aim to give a description of an au-
tomisation method that proves to be sufficient for our
purposes, not one that is general.

7.1 Implementation of Automated Techniques

In this section, we describe the semi-automatic procedure, that we used to
evaluate the QCD one-loop diagrams. In broad lines, we first perform the
colour algebra using standard relations, then we handle the momentum
and spinor indices using projectors to construct scalar integrals and at the
end we write our results in terms of a small set of standard integrals.

STEP 1: The colour algebra

In one loop calculations we do not encounter strings of more than two
SU (3) generators in either fundamental or adjoint representation, thus
we only need two group invariants to perform the summation over colour
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indices.
The normalisation of the SU (3) generators in the fundamental repre-

sentation in Eq: 6.2 already tells us:

Ta
ijT

b
ji = T (R) δab where T (R) =

1
2

(7.1)

The following commutation relation shows us that (TaTa)ij must be
proportional to the identity since it commutes with all elements generators
of the group. The proportionality constant C (R) is known as the quadratic
Casimir number in the fundamental representation.

[
TaTa, Tb

]
= i f abc (TaTc + TcTa) = 0 ⇒ (TaTa)ij = C (R) δij (7.2)

The value for the quadratic Casimir number C (R) follows from the
normalisation relation in Eq: 7.1. The SU (3) gauge group has eight gen-
erators and the trace over δij is equal to number of colours, from this we
find C (R) = 4

3 .
The structure constants are the generators of the adjoint representation

of the group:
(
Ta

A
)bc

= i f abc. By the Jacobi identity of the fundamental
representation, they satisfy a commutation relation similar to Eq: 6.1. The
adjoint representation also has a normalisation T (A), and the invariant
Casimir number C (A) is equal to this.

(
Ta

ATb
A

)cd
δcd = f acd f bcd = T (A) δab

(Ta
ATa

A)
cd = f ace f ade = C (A) δcd

(7.3)

The choice for the normalisation T (R) of the fundamental representa-
tion fixes C (A) = T (A). In our case, we have C (A) = Nc = 3, which is
already fixed by T (R) = 1

2 . The value for C (A) can be derived by using
the diagrammatic approach to colour algebra, explained in Ref. [28], on
the eight gluon states defined in Ref. [20].

STEP 2: The Lorentz algebra

The use of the symmetries of our integrals removes the space-time indices
from our expressions. We project our integrals onto orthogonal subspaces
by using projectors that are constructed from the external momenta.

By conservation of momenta our one-loop integrals Iµν (p) only de-
pend on one external momenta, say p. We then decompose our integral
as:

102
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7.1 Implementation of Automated Techniques 103

Iµν (p) =
(

ηµν − pµ pν

p2

)
p2F1

(
p2
)
+ pµ pνF2

(
p2
)

where F1

(
p2
)
=

1
(d− 1)

1
p2

(
ηµν −

pµ pν

p2

)
Iµν (p) , F2

(
p2
)
=

pµ pν

p4 Iµν (p)
(7.4)

This step is fully automated by FORM [24] by considering the space-
time indices as vector indices. At this stage the use of some automisation
is recommended to prevent bookkeeping errors, especially for expressions
that involve vertex factors with a complicated space-time structure.

STEP 3: The spinor algebra

We remove free spinor indices from our expressions by means of spinor
projectors using traces of spinor structures. The resulting and already
present spinor traces are evaluated by use of the relations that are listed
in App: A. Fortunately, FORM already has a built-in definition of the
gamma-matrices and methods to contract and trace them. The gamma-
matrices as defined by FORM are related to our definition by the following
transformation rule: γµ = ±iγµ

FORM.
A general spinor matrix M̃ has 4× 4 = 16 degrees of freedom which

can be decomposed in the following basis of gamma-matrix bilinears that
are orthogonal under the trace operation: ∗

M̃ =

1 comp.︷︸︸︷
M̃(0) +

1 comp.︷︸︸︷
M̃(1) γ5 +

4 comp.︷ ︸︸ ︷
M̃(2) µ γµ +

4 comp.︷ ︸︸ ︷
M̃(3) µ γµγ5 +

6 comp.︷ ︸︸ ︷
M̃(4) µν Sµν

= 16 comp. (7.5)

When one considers a spinor matrix M (/p, m) that only depends on
one external momentum p and the mass of the particle then the term pro-
portional to Sµν vanishes by the antisymmetry of this spinor bilinear. We
only need to use the full chiral decomposition when the underlying the-
ory treats the two chiralities of the fermion on unequal footing such as the
weak interaction in the SM.

non-chiral: M (/p, m) = mA
(

p2
)
+ /pB

(
p2
)

chiral: M (/p, m) = ∑
R,L

PR,L

(
mAL,R

(
p2
)
+ /pBL,R

(
p2
))

where: PR,L =
1
2

(
1± γ5

)
(7.6)

∗We define Sµν ≡ i
4 [γ

µ, γν]
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Here, we note that A
(

p2) = AL
(

p2)+ AR
(

p2) and B
(

p2) = BL
(

p2)+
BR
(

p2). The associated projectors are given by:

A
(

p2
)
=

1
4m

Tr [M (/p, m)] AR,L

(
p2
)
=

1
2m

Tr [M (/p, m) PR,L]

B
(

p2
)
= − 1

4p2 Tr [M (/p, m) /p] BR,L

(
p2
)
= − 1

2p2 Tr [M (/p, m) /pPR,L]
(7.7)

STEP 4: Obtaining a basis set of integrals

We rewrite the multitude of possible terms in terms of ordered sets of in-
tegrals that are evaluated in the next step. We eliminate the appearances
of the internal momenta in the numerator by rewriting them in terms of
denominators, external momenta and particle masses.

Case 1: We first consider one-loop integrals with one mass scale in the
propagators and one external momentum, which appear in fermion loop
diagrams. We express these integrals in terms of the following denomina-
tors: D0 ≡ l2 + m2 and D1 ≡ (p + l)2 + m2.

We now rewrite all appearances of the internal loop momenta in the
numerator in terms of the denominators D0 and D1. We thus write: p · l =
1
2

(
D1 − D0 − p2) and l2 = D0 −m2. The terms that we are left with, will

then contain integrals of the following form:

J1 (α, β) ≡ µ̃ε
∫ ddl

(2π)d
1

Dα
0 Dβ

1

(7.8)

The set of J1 (α, β) is not linearly independent because there exists rela-
tions between them. Let us first consider the relations that originate from
linear transformations in the integration variable and space-time symme-
tries.

∫ ddl

(2π)d
1

Dα
0 Dβ

1

l→−l−p︷︸︸︷
=

∫ ddl

(2π)d
1

Dβ
0 Dα

1

⇒ J1 (α, β) = J1 (β, α) (7.9)

This uses the fact that we are integrating over an even integration do-
main, so the shift in integration variable l → −l does not affect the value
of the integral. Furthermore the integral of an odd integrand over an even
integration domain vanishes:

∫ ddl

(2π)d
p · l
Dα

0
= 0 ⇒ J1 (α,−1) = J1 (α− 1, 0) + p2 J1 (α, 0) (7.10)
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Finally, we use the analytic continuations to relate our integrals, as
shown in App: C.2. In our case this gives us the following relation:

J1 (α, 0) =
αm2

α− d
2

J1 (α + 1, 0) (7.11)

We use the above expression to bring all integrals J1 (α, 0) to J1 (2, 0).
This integral is one of the integrals in our preliminary basis of independent
integrals to which we try to bring our expressions.

Case 2: For massless particles in the loop the relations for J1 still hold.
Nevertheless, we define a separate set of integrals J0 with D0 ≡ l2 and
D1 ≡ (p + l)2 as follows:

J0 (α, β) ≡ µ̃ε
∫ ddl

(2π)d
1

Dα
0 Dβ

1

(7.12)

The most conspicuous change is that Eq: 7.11 now implies that J0 (α, 0) =
J0 (0, α) = 0 for α > 0, the statement however is stronger since Eq: C.3
implies that J0 (α, 0) = J0 (0, α) = 0 for any value of α. In dimensional reg-
ularisation scaleless integrals evaluate to zero. Intuitively we would say
that the integral has a mass dimension but after the integration there are
none available. ∗

When we use Eq: 7.11 on a general J0 (α, β) then we arrive after some
rearrangements at:

J0 (α, β) =
β

d− 2α− β
J0 (α− 1, β + 1)− p2β

d− 2α− β
J0 (α, β + 1) (7.13)

This shows that for β < 0 which in combination with J0 (β, α) = J0 (α, β)
also applies to α. We find that a repeated application of Eq: 7.13 leads us
to J0 (α, β) = 0 for either α ≤ 0 or β ≤ 0.

Case 3: We also consider loop diagrams with two different particles
in the loop of which one is massless, which appear in the fermion self-
energy. We rewrite our integrals in terms of the denominators D0 ≡ l2

and D1 ≡ (p + l)2 + m2. For appearances of the loop momentum in the
numerator, we write: p · l = 1

2

(
D1 − D0 −

(
p2 + m2)) and l2 = D0. The

terms that we are left with, then contain integrals of the following form:

J2 (α, β) ≡ µ̃ε
∫ ddl

(2π)d
1

Dα
0 Dβ

1

(7.14)

∗A rigorous argument for the so-called ’t Hooft-Veltman conjecture is found in Ref. [29].
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We note that Eq: 7.10 also produces a relation for integrals J2, namely:

J2 (α,−1) = J2 (α− 1, 0) +
(

p2 + m2
)

J2 (α, 0) (7.15)

We do not make the possible replacements J2 (0, α) = J1 (α, 0) and
J2 (α, 0) = J0 (α, 0) = 0. Instead we introduce two new sets of integrals and
corresponding replacement rules, which significantly reduces the number
of integrals that we need to evaluate.

Jr (α) ≡
∫ ddl

(2π)d
p · l

Dα
0 D1

Js (α) ≡
∫ ddl

(2π)d
p · l

D0Dα
1

(7.16)

J2 (0, α) = J2 (1, α− 1)− 2Js (α)−
(

p2 + m2
)

J2 (1, α)

J2 (α, 0)|α>1 = J2 (α− 1, 1) + 2Jr (α) +
(

p2 + m2
)

J2 (α, 1)
(7.17)

One fully eliminates all appearances of either J2 (0, α) and J2 (α, 0) when
one applies Eq: 7.17 with in addition J2 (1, 0) = J0 (1, 0) = 0.

Case 4: Another possibility that arises in loop diagrams of the fermion
self-energy is the appearance of two massive particles in the loop, of which
one is a massive gauge particle with mass M. We rewrite our integrals in
terms of denominators D0 ≡ l2 + M2 , D1 ≡ (p + l)2 + m2 and D2 =
l2 + ξM2. The massive gauge particle thus introduces an additional gauge
dependent denominator. For appearances of the loop momentum in the
numerator, we write: p · l = 1

2

(
D1 − D0 + M2 −

(
p2 + m2)) and l2 = D0−

M2. The terms that are left, then contain integrals of the form:

J3 (α, β, γ) ≡ µ̃ε
∫ ddl

(2π)d
1

Dα
0 Dβ

1 Dγ
2

J4 (α, β) ≡ J3 (α, β, 0)

(7.18)

We apply an odd integrand relation to eliminate the integrals J3 (α,−1, γ):

∫ ddl

(2π)d
p · l

Dα
0 Dγ

2
= 0 ⇒ J3 (α,−1, γ) = J3 (α− 1, 0, γ) +

(
p2 + m2 −M2

)
J3 (α, 0, γ)

(7.19)

To eliminate integrals such as J3 (0, β, γ), J4 (α, 0) and J4 (0, β) for β > 1
we define two additional sets of integrals with replacement rules.

J̃3 (α, β, γ) ≡ µ̃ε
∫ ddl

(2π)d
p · l

Dα
0 Dβ

1 Dγ
2

J̃4 (α, β) ≡ J̃3 (α, β, 0)

(7.20)
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J3 (0, β, γ) = −2 J̃3 (1, β, γ) + J3 (1, β− 1, γ) +
(

M2 − p2 −m2
)

J3 (1, β, γ)

J4 (α, 0)
∣∣∣
α>1

= 2 J̃4 (α, 1) + J4 (α− 1, 1) +
(

p2 + m2 −M2
)

J4 (α, 1)

J4 (0, β) = −2 J̃4 (1, β) + J4 (1, β− 1) +
(

M2 − p2 −m2
)

J4 (1, β)

J4 (1,−1) = J4 (0, 0)−
(

M2 − p2 −m2
)

J4 (1, 0)

(7.21)

Additionally we observe that the integral J4 (1, 0) equals J1 (1, 0) when
we set m2 → M2 in Eq: 7.8.

STEP 5: Evaluating the integrals

After the preceding steps, we obtain an expression in terms of small sets
of integrals. We now evaluate these sets of integrals in terms of elemen-
tary functions such as exponents and powers and special functions such
as the gamma function and (generalised) hypergeometric functions by use
of Feynman parametrisation.

There is still a lot of redundancy in these expressions with gamma func-
tions and (generalised) hypergeometric functions. We can often bring our
expressions into a simpler, more aesthetic, expression, by using special
properties of these functions, partial integrations of the integral represen-
tations of the hypergeometric functions and Gauss’ relations for contigu-
ous functions that are tabulated in Ref. [30].

Case 1: We define x±
(
m2) = 1

2

(
1±

√
1 + 4m2

p2

)
and evaluate the inte-

gral set J1 in terms of elementary and special functions:

J1 (0, 2) =
i

16π2 Γ
( ε

2

)(m2

µ2

)− ε
2

e
γEε

2

J1 (α, β) =
i

16π2
Γ
(

ε
2 + α + β− 2

)
e

γEε
2

Γ (α + β)

(
m2

µ2

)− ε
2 (

m2
)2−α−β

×F1

(
α;

ε

2
+ α + β− 2,

ε

2
+ α + β− 2; α + β;

1
x+

,
1

x−

)
(7.22)

The function F1 is Appell’s first hypergeometric function as defined in
Ref. [31, ch. 9], which is a generalisations of the standard hypergeometric
functions. The first Appell’s hypergeometric function has the following
integral representation, where B is the Euler-beta function:

B (α , γ− α)F1
(
α ; β , β′ ; γ ; y , z

)
=
∫ 1

0
dx xα−1 (1− x)γ−α−1 (1− yx)−β (1− zx)−β′

(7.23)
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For aesthetical reasons in the calculation of fermion loops we substitute
F1

(
2; ε

2 , ε
2 ; 4; 1

x+ , 1
x−

)
and eliminateF1

(
1; ε

2 , ε
2 ; 2; 1

x+ , 1
x−

)
by expanding the

partial integration of the following integral:

∫ 1

0
dx
(

x (1− x)
4x+x−

+ 1
)1− ε

2
= 1− 1− ε

2
4x+x−

∫ 1

0
dx x (1− 2x)

(
x (1− x)
4x+x−

+ 1
)− ε

2
(7.24)

We find the following relation between Appell’s first hypergeometric
functions:

3− ε

6
F1

(
2;

ε

2
,

ε

2
; 4;

1
x+

,
1

x−

)
=

(
1
2

(
1− ε

2

)
+ x+x−

)
F1

(
1;

ε

2
,

ε

2
; 2;

1
x+

,
1

x−

)
− x+x−

(7.25)

Case 2: The integral set J0 (α, β) is evaluated in terms of elementary
and special functions in the following expression, the m2 → 0 limit of Eq:
7.22:

J0 (α, β) =
i

16π2
Γ
(

ε
2 + α + β− 2

)
e

γEε
2

Γ (α) Γ (β)
B
(

2− α− ε

2
, 2− β− ε

2

)( p2

µ2

)− ε
2 (

p2
)2−α−β

(7.26)

The structure of J0 (α, β) in terms of gamma functions makes it possible
to parametrise all member of the set J0 (α, β) for α > 0 and β > 0 in terms
of one member of the set say: J0 (1, 1).

J0 (1, 1) =
i

16π2 Γ
( ε

2

)
e

γEε
2 B

(
1− ε

2
, 1− ε

2

)( p2

µ2

)− ε
2

J0 (1, 2) = −1− ε

p2 J0 (1, 1)

J0 (2, 2) =
2 + ε

p2 J0 (1, 2) = − (2 + ε) (1− ε)

p4 J0 (1, 1)

(7.27)

Case 3: The integral set J2 (α, β) is evaluated in terms of elementary
and special functions in the following expression:

J2 (α, β) =
i

16π2
Γ
(

ε
2 + α + β− 2

)
Γ
(
2− α− ε

2
)

e
γEε

2

Γ (β) Γ
(
2− ε

2
)

× 2F1

(
ε

2
+ α + β− 2 , α ; 2− ε

2
; − p2

m2

)(
m2

µ2

)− ε
2 (

m2
)2−α−β

(7.28)

The function 2F1 is the hypergeometric function as defined in Ref. [30,
ch. 15], the standard hypergeometric function. The standard hypergeo-
metric function has the following integral representation:
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B (b , c− b) 2F1 (a , b ; c ; z) =
∫ 1

0
dx xb−1 (1− x)c−b−1 (1− zx)−a (7.29)

The additional Jr (α) and Js (α) evaluated in terms of elementary and
special functions are given by the following expressions:

1
p2 Jr (α) = −

i
16π2

Γ
(

ε
2 + α− 1

)
Γ
(
3− α− ε

2
)

e
γEε

2

Γ
(
3− ε

2
) (7.30)

× 2F1

(
ε

2
+ α− 1 , α ; 3− ε

2
; − p2

m2

)(
m2

µ2

)− ε
2 (

m2
)1−α

1
p2 Js (α) = −

i
8π2

Γ
(

ε
2 + α− 1

)
e

γEε
2

Γ (α) (4− ε)
(7.31)

× 2F1

(
ε

2
+ α− 1 , 1 ; 3− ε

2
; − p2

m2

)(
m2

µ2

)− ε
2 (

m2
)1−α

From Gauss’ relations for contiguous functions in Ref. [30, ch. 15] we
see that there is a large redundancy in integrals containing hypergeomet-
ric functions. We chose to express our results in terms of (in short-hand
notation):

F012

(
m2
)
≡2F1

(
ε

2
, 1 ; 2− ε

2
; − p2

m2

)
(7.32)

F023

(
m2
)
≡2F1

(
ε

2
, 2 ; 3− ε

2
; − p2

m2

)
(7.33)

We could express the following three hypergeometric functions en-
tirely in terms of the the hypergeometric functions in Eq: 7.32 and Eq:
7.44 by using Eq: 15.2.14, Eq: 15.2.17 and Eq: 15.2.19 from Ref. [30, ch. 15].
This list is far from exhaustive but it sufficed for our purposes.

2F1

(
ε

2
, 1 ; 3− ε

2
; − p2

m2

)
=

1
2− ε

(
(4− ε) F012

(
m2
)
− 2F023

(
m2
))

(7.34)

2F1

(
1 +

ε

2
, 1 ; 3− ε

2
; − p2

m2

)
=− 2

ε

( (
2− ε

2

)
F012

(
m2
)
− 2F023

(
m2
) )

(7.35)
(

1 +
p2

m2

)
2F1

(
1 +

ε

2
, 2 ; 3− ε

2
; − p2

m2

)
=

2
ε

( (
2− ε

2

)
F012

(
m2
)
− (2− ε) F023

(
m2
) )

(7.36)

Case 4: For our calculations we do not need the preliminary base set
J3 (α, β, γ) for general values of α, β and γ which yields an overly complex
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expression. The expression for a few special cases suffices, such as α =
β = γ = 1:

M2 J3 (1, 1, 1) = − i
16π2

Γ
(

ε
2
)

e
γEε

2

1− ξ

(
F1

(
1;

ε

2
,

ε

2
; 2;

1
y+

,
1

y−

)
−F1

(
1;

ε

2
,

ε

2
; 2;

1
ỹ+

,
1

ỹ−

))(m2

µ2

)− ε
2

with y± ≡
1
2


1 +

M2 −m2

p2 ±
√

1 + 2
M2 + m2

p2 +

(
M2 −m2

p2

)2

 ỹ± ≡ y±

∣∣∣
M2→ξM2

(7.37)

In case β = 0 we can write a general expression for J3 (α, 0, γ):

J3 (α, 0, γ) =
i

16π2
Γ
(

ε
2 + α + γ− 2

)
e

γEε
2

Γ (α + γ)

× 2F1

( ε

2
+ α + γ− 2 , γ ; α + γ ; (1− ξ)

)(M2

µ2

)− ε
2 (

M2
)2−α−γ

(7.38)

When additionally α = 1 and γ = 1, then the hypergeometric function
can be evaluated and we find:

2F1

( ε

2
, 1 ; 2 ; (1− ξ)

)
=

ξ1− ε
2 − 1(

1− ε
2
)
(1− ξ)

⇒ J3 (1, 0, 1) =
i

16π2

Γ
(

ε
2
)

e
γEε

2

(
ξ1− ε

2 − 1
)

(
1− ε

2
)
(1− ξ)

(
M2

µ2

)− ε
2

(7.39)

The additional integral J̃3 (1, 1, 1) in terms of special and elementary
functions is given by:

M2

p2 J̃3 (1, 1, 1) =
i

32π2
Γ
(

ε
2
)

e
γEε

2

1− ξ

(
F1

(
1;

ε

2
,

ε

2
; 3;

1
y+

,
1

y−

)
−F1

(
1;

ε

2
,

ε

2
; 3;

1
ỹ+

,
1

ỹ−

))(m2

µ2

)− ε
2

(7.40)

The set of integrals J4 (α, β) ≡ J3 (α, β, 0) in terms of elementary and
special functions is given by the following expression:

J4 (α, β) =
i

16π2
Γ
(

ε
2 + α + β− 2

)
e

γEε
2

Γ (α + β)

×F1

(
β;

ε

2
+ α + β− 2,

ε

2
+ α + β− 2; α + β;

1
y+

,
1

y−

)(
m2

µ2

)− ε
2 (

m2
)2−α−β

(7.41)

The additional integral set J̃4 (α, β) ≡ J̃3 (α, β, 0) evaluated in terms of
elementary and special functions is given by the following expression:
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1
p2 J̃4 (α, β) =− i

16π2
αΓ
(

ε
2 + α + β− 2

)
e

γEε
2

Γ (α + β + 1)

×F1

(
β;

ε

2
+ α + β− 2,

ε

2
+ α + β− 2; α + β + 1;

1
y+

,
1

y−

)(
m2

µ2

)− ε
2 (

m2
)2−α−β

(7.42)

We choose to express our Appell’s first hypergeometric functions in
terms of the following representatives, to counter the redundancy in ex-
pressions with Appell’s first hypergeometric functions. We also show their
hypergeometric analogues when one sets m2 → 0.

F12

(
m2, M2

)
≡F1

(
1;

ε

2
,

ε

2
; 2;

1
y+

,
1

y−

) ∣∣∣
m2→0

=

(
m2

M2

) ε
2 Γ

(
1− ε

2
)

Γ
(
2− ε

2
) 2F1

(
ε

2
, 1, 2− ε

2
,− p2

M2

)

(7.43)

F23

(
m2, M2

)
≡F1

(
2;

ε

2
,

ε

2
; 3;

1
y+

,
1

y−

) ∣∣∣
m2→0

=

(
m2

M2

) ε
2 Γ

(
1− ε

2
)

Γ
(
3− ε

2
) 2F1

(
ε

2
, 2, 3− ε

2
,− p2

M2

)

(7.44)

The analogue of Eq: 7.34 in terms of Appell’s first hypergeometric func-
tions is given by:

F1

(
1;

ε

2
,

ε

2
; 3;

1
y+

,
1

y−

)
= 2F12

(
m2, M2

)
−F23

(
m2, M2

)
(7.45)

7.2 The Gluon Self-Energy

In this section, we compute the one-loop quantum corrections to the gluon
self-energy. We first determine the contributing diagrams and then evalu-
ate them using the automated techniques from Sec: 7.1 in full dimensional
regularisation and renormalisable gauge.

We will repeatedly make use of the following decomposition of the
self-energy contributions for diagram i ∈ {1, ..., 4} instead of the general
decomposition in Eq: 7.4:

Π(i)µνab (p) =
(

ηµν − pµ pν

p2

)
p2Π(i)ab

(
p2
)
+ pµ pν∆(i)ab

(
p2
)

(7.46)

The diagrams that contribute to the gluon self-energy at the one-loop
order are pure QCD graphs. From Sec: 6.1 we learned that gluons only
couple to the colour-charged fields, which are: the quark fields, the gluon
fields and the ghost-fields. Only at two-loop order can gluons couple to
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electromagnetically or weakly charged fields through quark interactions.

The quark contribution

Figure 7.1: The quark loop contribution to the gluon self-energy.

We now apply the Feynman rules for the diagram in Fig: 7.1 as we
have derived in Sec: 6.1, we find:

iΠ(1)µνab (p) = (−1)∑
q

∫ d4l

(2π)4 Tr
[(

ig3γµTa
ij

)(1
i

S̃q
il (/l )

)(
ig3γνTb

kl

)(1
i

S̃q
jk (/p + /l )

)]

= −g2
3µ̃ε

(
Ta

ijT
b
ji

)
∑
q

∫ ddl

(2π)d Tr
[
γµS̃q (/l ) γνS̃q (/p + /l )

]

(7.47)

By the automatic procedure as described in Sec: 7.1 we find the fol-
lowing results in Eq: 7.48 and Eq: 7.49. Both the colour-charge and the
transversality of the gluon are conserved in this interaction. This result is
the exact analogue of Eq: 3.26, which was obtained by hand.

Π(1)ab
(

p2
)
= − αs

3π
T (R) δabΓ

( ε

2

)
e

γEε
2 ∑

q

(
m2

q

µ2

)− ε
2

F1


2;

ε

2
,

ε

2
; 4;

1

x+
(

m2
q

) ,
1

x−
(

m2
q

)




∆(1)ab
(

p2
)
= 0

(7.48)

The expansion of Eq: 7.48 in terms of the parameter ε, which is required
to find the values for the MS counter terms, is given by:
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Π(1)ab
(

p2
)
= −2αs

3π
T (R) n f δab 1

ε
+

2αs

π
T (R) δab ∑

q

∫ 1

0
dx x (1− x) ln

(
x (1− x)

p2

µ2 +
m2

q

µ2

)
+O (ε)

|m2
q�p2 = −2αs

3π
T (R) n f δab 1

ε
+

αs

3π
T (R) n f δab

(
−5

3
+ ln

p2

µ2

)
+O (ε)

∆(1)ab
(

p2
)
= 0

(7.49)

The gluon four-point vertex contribution

! p

g

 l

g

g

! p

µ a ⌫ b
⇢ c � d

Figure 7.2: The gluon four-point interaction loop contribution to the gluon self-
energy.

We now apply the Feynman rules for the diagram in Fig: 7.2 as we
have derived in Sec: 6.1, we find:

iΠ(2)µνab (p) =
(
− ig2

3

[
f abe f cde (ηµρηνσ − ηµσηνρ) + f ade f bce (ηµνησρ − ηµρηνσ)

+ f ace f dbe (ηµσηνρ − ηµνηρσ)
]) ∫ d4l

(2π)4

(
1
i

∆̃dc
ρσ (l)

) (7.50)

We could use the automatic procedure to evaluate Π(2)µνab (p) but in
this case a short argument will already show us that Π(2)µνab (p) = 0 in
dimensional regularisation because it contains only scaleless integrals. To
see this let us disregard the complex vertex factor:

µ̃ε
∫ ddl

(2π)d ∆̃dc
ρσ (l) = δdcµ̃ε

∫ ddl

(2π)d
1
l2

(
ηρσ − (1− ξs)

lρlσ
l2

)
= a ηρσδdc (7.51)

There are no external momenta in the problem so the integral must be
proportional to ηρσ, using this:
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a =
d− 1 + ξs

d
µ̃ε
∫ ddl

(2π)d
1
l2 = 0 (7.52)

The gluon three-point contribution

! p

gg

! p + l

g

! p

 l

µ a ⌫ b

Figure 7.3: The gluon three-point interaction loop contribution to the gluon self-
energy.

We now apply the Feynman rules for the diagram in Fig: 7.3 as we
have derived in Sec: 6.1. We must not forget to include a symmetry factor
of one half that corresponds to an interchange of the two propagators in
the loop, we find:

iΠ(3)µνab (p) =
1
2

∫ d4l

(2π)4

[
g3 f abc (ηµρ (l − p)σ + ηµσ (2p + l)ρ − ηρσ (p + 2l)µ)]

(
1
i

∆̃
d f
σκ (p + l)

)

×
[

g3 f be f
(

ηνλ (−l + p)κ − ηνκ (2p + l)λ + ηλκ (p + 2l)ν
)] (1

i
∆̃ce

ρλ (l)
)

=
g2

3
2

(
f acd f bcd

)
µ̃ε
∫ ddl

(2π)d

[(
ηµρ (l − p)σ + ηµσ (2p + l)ρ − ηρσ (p + 2l)µ)]

×
[(

ηνλ (l − p)κ + ηνκ (2p + l)λ − ηλκ (p + 2l)ν
)]

∆̃σκ (p + l) ∆̃ρλ (l)

(7.53)

By the automatic procedure as described in Sec: 7.1 we find the follow-
ing results in Eq: 7.54 and Eq: 7.55.

Π(3)ab
(

p2
)
= − αsT (R) Nc

16 (3− ε)π
δab
(
− 50 + 37ε− 7ε2 + 2

(
6− 11ε + 3ε2

)
ξs

− (3− ε) εξ2
s

)
Γ
( ε

2

)
e

γEε
2 B

(
1− ε

2
, 1− ε

2

)( p2

µ2

)− ε
2

∆(3)ab
(

p2
)
= − αs

8π
T (R) NcδabΓ

( ε

2

)
e

γEε
2 B

(
1− ε

2
, 1− ε

2

)( p2

µ2

)− ε
2

(7.54)
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The expansion of Eq: 7.54 in terms of the parameter ε, which is required
to find the values for the MS counter terms, is given by:

Π(3)ab
(

p2
)
=

αs

12π
T (R) Ncδab 1

ε
(25− 6ξs)

+
αs

72π
T (R) Nc

(
89− 75 ln

p2

µ2 + 18
(

1 + ln
p2

µ2

)
ξs + 9ξ2

s

)
+O (ε)

∆(3)ab
(

p2
)
= − αs

4π
T (R) Ncδab 1

ε
− αs

8π
T (R) Nc

(
2− ln

p2

µ2

)
+O (ε)

(7.55)

The ghost contribution

! p

gg

! p + l

gh

! p

 l

µ a ⌫ b

Figure 7.4: The ghost loop contribution to the gluon self-energy.

We now apply the Feynman rules for the diagram in Fig: 7.4 as we
have derived in Sec: 6.1. We must not forget to include a minus sign for
the fact that the ghost fields are fermion fields, we find:

iΠ(4)µνab (p) = (−1)
(

g3 f adc (p + l)µ
) (

g3 f be f lν
) ∫ d4l

(2π)4

(
1
i

∆̃d f (p + l)
)(

1
i

∆̃ce (l)
)

= −g2
3

(
f acd f bcd

)
µ̃ε
∫ ddl

(2π)d
(p + l)µ lν

(p + l)2 l2

(7.56)

By the automatic procedure as described in Sec: 7.1 we find the follow-
ing results in Eq: 7.57 and Eq: 7.58.

Π(4)ab
(

p2
)
=

αsT (R) Nc

8 (3− ε)π
δabΓ

( ε

2

)
e

γEε
2 B

(
1− ε

2
, 1− ε

2

)( p2

µ2

)− ε
2

∆(4)ab
(

p2
)
=

αs

8π
T (R) NcδabΓ

( ε

2

)
e

γEε
2 B

(
1− ε

2
, 1− ε

2

)( p2

µ2

)− ε
2

(7.57)

The expansion of Eq: 7.57 in terms of the parameter ε, which is required
to find the values for the MS counter terms, is given by:
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Π(4)ab
(

p2
)
=

αs

12π
T (R) Ncδab 1

ε
+

αs

72π
T (R) Nc

(
8− 3 ln

p2

µ2

)
+O (ε)

∆(4)ab
(

p2
)
=

αs

4π
T (R) Ncδab 1

ε
+

αs

8π
T (R) Nc

(
2− ln

p2

µ2

)
+O (ε)

(7.58)

Conclusion

The sum of the four diagrams evaluated in Eq: 7.48, Eq: 7.54 and Eq: 7.57
together make up the gluon self-energy. The expansion in terms of ε for
p2 � m2

q gives us:

Πab
(

p2
)
= − αs

2π
T (R) δab 1

ε

(
4
3

n f −
(

13
3
− ξs

)
Nc

)
+

αs

3π
T (R)

(
n f

(
−5

3
+ ln

p2

µ2

)

+
1

24
Nc

(
97− 78 ln

p2

µ2

)
+

3
4

Nc

(
1 + ln

p2

µ2

)
ξs +

3
8

Ncξ2
s

)
− (Z3 − 1) +O (ε)

∆ab
(

p2
)
= 0

(7.59)

The divergent part of this result agrees with Ref. [17, ch. 73] for
ξs = 1. We see that the longitudinal component to the self-energy that was
introduced by the three-point gluon interaction loop in Eq: 7.54 and Eq:
7.55 is cancelled by the contribution of the ghost loop in Eq: 7.57 and Eq:
7.58. Therefore the introduction of the ghost fields that were necessary for
the gauge-fixing procedure conserve the transversality of the gluon.

7.3 The Top-Quark Self-Energy

In this section, we compute the one-loop quantum corrections to the quark
self-energy. We first determine the contributing diagrams and then evalu-
ate them using the automated techniques from Sec: 7.1 in full dimensional
regularisation and renormalisable gauge.

The diagrams that contribute to the top-quark self-energy at one-loop
order involve besides the pure QCD graphs also a QED graph and vari-
ous weak interaction graphs. Quarks couple directly to gluons, photons,
W-bosons, Z-bosons, Higgs-bosons, Goldstone-bosons and quarks with
different flavours.
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Figure 7.5: The photon contribution to the top-quark self-energy.

The photon contribution

We now apply the Feynman rules for the diagram in Fig: 7.5 as we have
derived in Sec: 6.3. The electromagnetic charge of the top quark relative to
the positron charge is denoted by qt =

2
3 .

iΣ(1)
ij (/p) =

∫ d4l

(2π)4 (−iqteγν)

(
1
i

S̃ij (/p + /l )
)
(−iqteγµ)

(
1
i

∆̃µν (l)
)

=q2
t e2µ̃ε

∫ ddl

(2π)d

[
γνS̃ (/p + /l ) γµ

]
∆̃µν (l) δij

(7.60)

By the automatic procedure as described in Sec: 7.1 we find the follow-
ing results in Eq: 7.61 and Eq: 7.65. This result is the exact analogue of Eq:
3.51 and Eq: 3.62, which were obtained by hand.

A(1)
ij

(
p2
)
= − q2

t αe

2π
(3 + ξEW − ε)

Γ
(

ε
2
)

e
γEε

2

2− ε

(
m2

t
µ2

)− ε
2

F012

(
m2

t

)
δij

B(1)
ij

(
p2
)
= − q2

t αe

π
ξEW

Γ
(

ε
2
)

e
γEε

2

4− ε

(
m2

t
µ2

)− ε
2

F023

(
m2

t

)
δij

(7.61)

The expansion of Eq: 7.61 in terms of the parameter ε, which is required
to find the values for the MS counter terms, is given by:

A(1)
ij

(
p2
)
=− q2

t αe

2π
(3 + ξEW) δij

1
ε
− q2

t αe

2π

[
2 + ξEW −

1
2
(3 + ξEW) ln

m2
t

µ2

+
1
2
(3 + ξEW) ln

(
1 +

p2

m2
t

) ]
δij +O (ε)

B(1)
ij

(
p2
)
=− q2

t αe

2π
ξEWδij

1
ε
− q2

t αe

2π
ξEW

[
1− 1

2
ln

m2
t

µ2 −
p2 + m2

t
p2

[
1
2
+ ln

(
1 +

p2

m2
t

)]

+
1
2

(
p2 + m2

t
p2

)
ln
(

1 +
p2

m2
t

) ]
δij +O (ε)

(7.62)
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The gluon contribution
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Figure 7.6: The gluon contribution to the top-quark self-energy.

We now apply the Feynman rules for the diagram in Fig: 7.6 as we
have derived in Sec: 6.1, we find:

iΣ(2)
ij (/p) =

∫ d4l

(2π)4 (ig3γµTa
ik)

(
1
i

S̃kl (/p + /l )
)(

ig3γνTb
lj

)(1
i

∆̃ab
µν (l)

)

=g2
3

(
Ta

ikTb
kj

)
µ̃ε
∫ ddl

(2π)d

[
γνS̃ (/p + /l ) γµ

]
∆̃ab

µν (l)
(7.63)

We can either use the automatic procedure from Sec: 7.1 or recognise
that Eq: 7.63 only differs from Eq: 7.60 in the colour factors. Either way,
we find:

A(2)
ij

(
p2
)
= −αsC (R)

2π
(3 + ξs − ε)

Γ
(

ε
2
)

e
γEε

2

2− ε

(
m2

t
µ2

)− ε
2

F012

(
m2

t

)
δij

B(2)
ij

(
p2
)
= −αsC (R)

π
ξs

Γ
(

ε
2
)

e
γEε

2

4− ε

(
m2

t
µ2

)− ε
2

F023

(
m2

t

)
δij

(7.64)

The expansion of Eq: 7.48 in terms of the parameter ε, which is required
to find the values for the MS counter terms, is given by:

A(2)
ij

(
p2
)
=− αsC (R)

2π
(3 + ξs) δij

1
ε
− αsC (R)

2π

[
2 + ξs −

1
2
(3 + ξs) ln

m2
t

µ2

+
1
2
(3 + ξs) ln

(
1 +

p2

m2
t

) ]
δij +O (ε)

B(2)
ij

(
p2
)
=− αsC (R)

2π
ξsδij

1
ε
− αsC (R)

2π
ξEW

[
1− 1

2
ln

m2
t

µ2 −
p2 + m2

t
p2

[
1
2
+ ln

(
1 +

p2

m2
t

)]

+
1
2

(
p2 + m2

t
p2

)
ln
(

1 +
p2

m2
t

) ]
δij +O (ε)

(7.65)
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The W+-boson/quark contribution
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Figure 7.7: The W+/quark contribution to the top-quark self-energy. The quark
in the loop can either be a down, strange or bottom quark.

We now apply the Feynman rules for the diagram in Fig: 7.7 as we
have derived in Sec: 6.2 and Sec: 6.3, we find:

iΣ(3)
ij (/p) = ∑

q∈{d,s,b}

∫ d4l

(2π)4

(
ig2Vtq√

2
γν 1− γ5

2

)(
1
i

S̃ij (/p + /l )
)( ig2V∗tq√

2
γµ 1− γ5

2

)(
1
i

∆̃µν (l)
)

= ∑
q∈{d,s,b}

παW |Vtq|2
2

µ̃ε
∫ ddl

(2π)d

[
γν
(

1− γ5
)

S̃ (/p + /l ) γµ
(

1− γ5
)]

∆̃µν (l) δij

(7.66)

We use the automatic procedure from Sec: 7.1 using the chiral decom-
position, the only nonzero self-energy function is given by:

B(3)
R ij

(
p2
)
=− ∑

q∈{d,s,b}

αW |Vtq|2
16π

Γ
( ε

2

)
e

γEε
2

(
m2

q

µ2

)− ε
2 [

(2− ε)F23

(
m2

q, m2
W

)

+
4
(

1− ξ
1− ε

2
EW

)

2− ε

(
m2

q

m2
W

) ε
2

− 4
m2

q

m2
W

(
F12

(
m2

q, m2
W

)
−F12

(
m2

q, ξEWm2
W

))

−
p2 −m2

q

m2
W

(
F23

(
m2

q, m2
W

)
−F23

(
m2

q, ξEWm2
W

)) ]
δij

(7.67)

We define D2 ≡ x (1− x) p2 + x
(

m2
W −m2

q

)
+ m2

q and also D̃2 with

m2
W → ξEWm2

W . The expansion of Eq: 7.54 in terms of the parameter ε,
which is required to find the values for the MS counter terms, is given by:
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B(3)
R ij

(
p2
)
=− ∑

q∈{d,s,b}

αW |Vtq|2
4π

(2− ξEW) δij
1
ε
+ ∑

q∈{d,s,b}

αW |Vtq|2
8π

[
ξEW

(
1− ln

(
ξEW

m2
W

µ2

))

+ ln
m2

W
µ2 + 2

∫ 1

0
dx x ln

D2

µ2 − 2
m2

q

m2
W

∫ 1

0
dx

(
ln

D2

µ2 − ln
D̃2

µ2

)

−
p2 −m2

q

m2
W

∫ 1

0
dx x

(
ln

D2

µ2 − ln
D̃2

µ2

)]
δij +O (ε)

(7.68)

The φ+-boson/quark contribution
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Figure 7.8: The φ+/quark contribution to the top-quark self-energy. The quark
in the loop can either be a down, strange or bottom quark.

We now apply the Feynman rules for the diagram in Fig: 7.8 as we
have derived in Sec: 6.2 and Sec: 6.3, we find:

iΣ(4)
ij (/p) = ∑

q∈{d,s,b}

∫ d4l

(2π)4

(
i
√

2Vtq

v

(
mq

1− γ5

2
−mt

1 + γ5

2

))(
1
i

S̃ij (/p + /l )
)

×
(

i
√

2V∗tq
v

(
mq

1 + γ5

2
−mt

1− γ5

2

))(
1
i

∆̃ (l)
)

= ∑
q∈{d,s,b}

παW |Vtq|2µ̃ε
∫ ddl

(2π)d

[(
mq

mW

(
1 + γ5

)
− mt

mW

(
1− γ5

))
S̃ (/p + /l )

×
(

mq

mW

(
1− γ5

)
− mt

mW

(
1 + γ5

)) ]
∆̃ (l) δij

(7.69)

We use the automatic procedure from Sec: 7.1 using the chiral decom-
position for the mass self-energy function and the non-chiral decomposi-
tion for the kinetic self-energy function:
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A(4)
R ij

(
p2
)
= ∑

q∈{d,s,b}

αW |Vtq|2
4π

Γ
( ε

2

)
e

γEε
2

(
m2

q

µ2

)− ε
2 mqmt

m2
W
F12

(
m2

q, ξEWm2
W

)
δij

A(4)
L ij

(
p2
)
= ∑

q∈{d,s,b}

αW |Vtq|2
4π

Γ
( ε

2

)
e

γEε
2

(
m2

q

µ2

)− ε
2 m3

q

mtm2
W
F12

(
m2

q, ξEWm2
W

)
δij

B(4)
ij

(
p2
)
= ∑

q∈{d,s,b}

αW |Vtq|2
4π

Γ
( ε

2

)
e

γEε
2

(
m2

q

µ2

)− ε
2 mqmt

m2
W
F23

(
m2

q, ξEWm2
W

)
δij

(7.70)

We define D2 ≡ x (1− x) p2 + x
(

ξEWm2
W −m2

q

)
+ m2

q. The expansion
of Eq: 7.70 in terms of the parameter ε, which is required to find the values
for the MS counter terms, is given by:

A(4)
R ij

(
p2
)
= ∑

q∈{d,s,b}

αW |Vtq|2
2π

mqmt

m2
W

δij
1
ε
− ∑

q∈{d,s,b}

αW |Vtq|2
4π

mqmt

m2
W

∫ 1

0
dx ln

D2

µ2 δij +O (ε)

A(4)
L ij

(
p2
)
= ∑

q∈{d,s,b}

αW |Vtq|2
2π

m3
q

mtm2
W

δij
1
ε
− ∑

q∈{d,s,b}

αW |Vtq|2
4π

m3
q

mtm2
W

∫ 1

0
dx ln

D2

µ2 δij +O (ε)

B(4)
ij

(
p2
)
= ∑

q∈{d,s,b}

αW |Vtq|2
2π

mqmt

m2
W

δij
1
ε
− ∑

q∈{d,s,b}

αW |Vtq|2
2π

mqmt

m2
W

∫ 1

0
dx x ln

D2

µ2 δij +O (ε)

(7.71)

The Z0-boson contribution

! p

t

! p + l

 l

Z0

t

! p

t

i j
µ ⌫

Figure 7.9: The Z0 contribution to the top-quark self-energy.

We now apply the Feynman rules for the diagram in Fig: 7.9 as we
have derived in Sec: 6.2 and Sec: 6.3, we find:
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iΣ(5)
ij (/p) =

∫ d4l

(2π)4

(
ig2

cos θW
γν

(
1
2

(
1− γ5

2

)
− qt sin2 θW

))(
1
i

S̃ij (/p + /l )
)

×
(

ig2

cos θW
γµ

(
1
2

(
1− γ5

2

)
− qt sin2 θW

))(
1
i

∆̃µν (l)
)

=
4παW

cos2 θW
µ̃ε
∫ ddl

(2π)d

[
γν

(
1
2

(
1− γ5

2

)
− qt sin2 θW

)
S̃ (/p + /l )

× γµ

(
1
2

(
1− γ5

2

)
− qt sin2 θW

)]
∆̃µν (l) δij

(7.72)

We use the automatic procedure from Sec: 7.1 using the chiral decom-
position for the kinetic self-energy function and the non-chiral decompo-
sition for the mass self-energy function:

A(5)
ij

(
p2
)
=

qtαW
4π

tan2 θW

(
1− 2qt sin2 θW

) Γ
(

ε
2
)

e
γEε
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2 (
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2
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)
δij

+
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Γ
( ε

2

)
e

γEε
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t
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)− ε
2
[
(4− ε)F12
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t , m2
Z

)
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t
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(
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(
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t , m2
Z
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m2
Z

(
F23
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Z

)
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m2
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Z

) )]
δij
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R ij

(
p2
)
=− αW

8π

(
1− 2qt sin2 θW

)2

cos2 θW

Γ
(

ε
2
)

e
γEε

2

2− ε

(
m2

Z
µ2

)− ε
2 (

1− ξ
1− ε

2
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)
δij

− αW
32π

(
1− 2qt sin2 θW

)2

cos2 θW
Γ
( ε

2

)
e

γEε
2

(
m2

t
µ2

)− ε
2
[
(2− ε)F23

(
m2

t , m2
Z

)
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m2

t
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t
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Z

(
F23
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t , m2
Z

)

−F23

(
m2

t , ξEWm2
Z

) )]
δij

B(5)
L ij

(
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)
=− q2

t αW

2π
sin2 θW tan2 θW

Γ
(

ε
2
)

e
γEε

2
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(
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Z
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)− ε
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)
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−F23

(
m2

t , ξEWm2
Z

) )]
δij (7.73)

We define D2 ≡ x (1− x) p2 + x
(
m2

Z −m2
t
)
+ m2

t and also D̃2 with
m2

Z → ξEWm2
Z. The expansion of Eq: 7.73 in terms of the parameter ε,

which is required to find the values for the MS counter terms, is given by:

A(5)
ij

(
p2
)
=

qtαW
4π

tan2 θW

(
1− 2qt sin2 θW

)
(1− ξEW) δij

1
ε
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)
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Z
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0
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t
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∫ 1

0
dx
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Z
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0
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D2
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D̃2
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)]
δij +O (ε)
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)
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cos2 θW
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(
ln
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(7.74)

The Higgs-boson contribution

! p

t

! p + l

 l

H

t
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Figure 7.10: The Higgs-boson contribution to the top-quark self-energy.
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124 One-loop calculations in QCD

We now apply the Feynman rules for the diagram in Fig: 7.10 as we
have derived in Sec: 6.2 and Sec: 6.3, we find:

iΣ(6)
ij (/p) =

∫ d4l

(2π)4

(
−i

mt

v

)(1
i

S̃ij (/p + /l )
)(
−i

mt

v

)(1
i

∆̃ (l)
)

=παW
m2

t
m2

W
µ̃ε
∫ ddl

(2π)d S̃ (/p + /l ) ∆̃ (l) δij

(7.75)

By the automatic procedure as described in Sec: 7.1 we find the follow-
ing results in Eq: 7.76 and Eq: 7.77.

A(6)
ij

(
p2
)
=

αW
16π

m2
t

m2
W

Γ
( ε

2

)
e

γEε
2 F12

(
m2

t , m2
H

)
δij

B(6)
ij

(
p2
)
= − αW

32π

m2
t

m2
W

Γ
( ε

2

)
e

γEε
2 F23

(
m2

t , m2
H

)
δij

(7.76)

We define D2 ≡ x (1− x) p2 + x
(
m2

H −m2
t
)
+m2

t . The expansion of Eq:
7.76 in terms of the parameter ε, which is required to find the values for
the MS counter terms, is given by:

A(6)
ij

(
p2
)
=

αW
8π

m2
t

m2
W

δij
1
ε
− αW

16π

m2
t

m2
W

∫ 1

0
dx ln

D2

µ2 δij +O (ε)

B(6)
ij

(
p2
)
=− αW

16π

m2
t

m2
W

δij
1
ε
+

αW
16π

m2
t

m2
W

∫ 1

0
dx x ln

D2

µ2 δij +O (ε)

(7.77)

The φ0-boson contribution
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t

! p + l
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�0

t
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t
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Figure 7.11: The φ0 contribution to the top-quark self-energy.

We now apply the Feynman rules for the diagram in Fig: 7.11 as we
have derived in Sec: 6.2 and Sec: 6.3, we find:
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iΣ(7)
ij (/p) =

∫ d4l

(2π)4

(mt

v
γ5
)(1

i
S̃ij (/p + /l )

)(mt

v
γ5
)(1

i
∆̃ (l)

)

=− παW
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t
m2

W
µ̃ε
∫ ddl

(2π)d

[
γ5S̃ (/p + /l ) γ5

]
∆̃ (l) δij

(7.78)

By the automatic procedure as described in Sec: 7.1 we find the follow-
ing results in Eq: 7.79 and Eq: 7.80.

A(7)
ij

(
p2
)
= − αW

16π

m2
t

m2
W

Γ
( ε

2

)
e

γEε
2 F12

(
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t , ξEWm2
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)
δij

B(7)
ij

(
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)
= − αW

32π

m2
t

m2
W

Γ
( ε

2

)
e

γEε
2 F23

(
m2

t , ξEWm2
Z

)
δij

(7.79)

We define D2 ≡ x (1− x) p2 + x
(
ξEWm2

Z −m2
t
)
+ m2

t . The expansion
of Eq: 7.79 in terms of the parameter ε, which is required to find the values
for the MS counter terms, is given by:

A(7)
ij

(
p2
)
=− αW

8π

m2
t

m2
W

δij
1
ε
+

αW
16π

m2
t

m2
W

∫ 1

0
dx ln

D2

µ2 δij +O (ε)

B(7)
ij

(
p2
)
=− αW

16π

m2
t

m2
W

δij
1
ε
+

αW
16π

m2
t

m2
W

∫ 1

0
dx x ln

D2

µ2 δij +O (ε)

(7.80)

Conclusion

The seven evaluated diagrams in Eq: 7.61, Eq: 7.64, Eq: 7.67, Eq: 7.70, Eq:
7.73, Eq: 7.76 and Eq: 7.79 together make up the top quark self-energy at
the one-loop level. A change of parameters: mt → mq, qt → qq and the
component of VCKM also allows us to obtain the full one-loop self-energy
for the up and charm quark.

We could sum the seven diagrams that contribute to top quark self-
energy but it yields us no exact cancellations or simplifications like the
ones we encountered for the gluon. The cancellation of the divergent parts
of A(6)

ij
(

p2) and A(7)
ij
(

p2) therefore seems to be only coincidental.
In Ch: 8, the W-boson contribution to the self-energy is discussed in

relation to the weak decay of the top quark. Then in the subsequent chap-
ters, Ch: 9 and Ch: 10, we discuss how a specific class of higher order
contributions affect the top quark self-energy.
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Chapter 8
The Weak Decay of the Top Quark

In this chapter, we verify the optical theorem for the de-
cay of the top quark into a W-boson and mainly a bot-
tom but also a strange or down quark. We first explain
how the optical theorem is a consequence of unitarity of
the scattering matrix, before we compute the the lead-
ing order decay rate and self-energy contribution of the
W-boson and quark. In this chapter, we use the uni-
tary gauge to eliminate the contributions of charged
Goldstone-bosons.

A general formula for the decay rate is derived in Ref. [17, ch. 11]
and Ref. [18, ch. 4] upon assuming that the LSZ formula, which relates
the scattering amplitudes to Green’s functions, is valid also for particles
that are not one-particle eigenstates of the hamiltonian. The decay rate
in a general frame for a particle with momentum p and mass m in terms
of the amplitude of the contributing diagrams that describe the decay of
that particle to n other particlesM1→n, the Lorentz-invariant phase space
measure for the outgoing particles denoted as dLIPSn (p) and a symmetry
factor S = ∏i ni! to account for identical particles in the final state is given
by:

Γ
(

p2
)
=

1
2SE (p2)

∫
|M1→n|2 dLIPSn (p)

with dLIPSn (p) ≡ (2π)4 δ4

(
p−

n

∑
i

ki

)
n

∏
j=1

d̃k j

(8.1)
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128 The Weak Decay of the Top Quark

Here, the Lorentz invariant momentum measure is defined as d̃k j ≡
d3kj/ (2π)3 2k0

j . We write: ΓCM =
E(p2)

m Γ
(

p2) to go to the centre-of-mass
frame.

8.1 The optical theorem

The optical theorem is a nonlinear relation between amplitudes of a pro-
cessMi→ f , where i denotes the initial state and f denotes the final state,
and the amplitudes of the processes:Mi→n andMn→ f , where n denote all
possible intermediate states. We denote the total incoming and out going
momenta by ki = k f , then the optical theorem can be stated as:

Im
[
Mi→ f

]
=

1
2S ∑

n

∫
M∗

f→nMi→ndLIPSn (ki) (8.2)

The optical theorem is a consequence of the unitarity of the scattering
matrix or S-matrix, which relates the initial states |i〉 at time T → −∞ with
the final states | f 〉 at time T → +∞.

| f 〉 = S† |i〉
|i〉 = S | f 〉 (8.3)

The initial state is normalised such that 〈i | i〉 = 1, conservation of prob-
ability requires that also 〈 f | f 〉 = 1. To ensure this, the S matrix must be
unitary:

1 = 〈i | i〉 = 〈 f | S†S | f 〉 = 〈 f | f 〉 = 1 ⇒ S†S = I (8.4)

In the absence of interactions the initial state and the final state are
equal. This motivates the following decomposition in terms of the scatter-
ing matrix in terms of the identity matrix and a T-matrix, which contains
the interactive part of the scattering process:

S = I + iT (8.5)

Using this decomposition we show that in accordance with [18, sec.
7.3] unitarity of the S-matrix results in a nonlinear constraint to the T-
matrix:

I = S†S = I + i
(

T − T†
)
+ T†T ⇒ i

(
T − T†

)
= −T†T (8.6)

When we express this relation in terms of the invariant amplitudeMa→b
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8.2 The decay rate for t→ bW 129

and insert an identity element between T and T† on the righthand side as
the summation over all possible intermediate states n with momenta k j we
obtain Eq: 8.2. Note that 〈b| T† |a〉 = 〈a| T |b〉, furthermore one needs:

(2π)4 δ4 (ka − kb)Ma→b = 〈b| T |a〉 I = ∑
n

∫ n

∏
j=1

d̃k j |n〉 〈n| (8.7)

The optical theorem relates the decay rate to the imaginary part of the
self-energy. If we choose the final and initial state in Eq: 8.2 to equal that of
a propagating unstable particle ∗, then the left-hand side equals the imag-
inary part of the self-energy contracted with the initial and final polarisa-
tion vectors or spinors. The right-hand side becomes the decay rate in the
centre of mass frame multiplied with the mass of the particle, see Eq: 8.1.
For an unstable fermion, we find:

Im [u (p)Σ (/p) u (p)] = mΓ
(

p2
)

(8.8)

The above expression can be related to the definition of γ in Sec: 3.2.
The relation that we find depends on the chiral structure of the self-energy
function.

γ = ΓCM14 non-chiral: Σ (/p)
γ = 2ΓCMPR,L chiral: Σ (/p)

(8.9)

8.2 The decay rate for t→ bW

In this section, we compute the physical decay rate for a top quark into
a W-boson and mainly a bottom quark∗∗. This is a strong and dominant
decay channel because the top quark is so massive that the W-boson need
not be off-shell such as in the decays of lighter quarks and leptons. In this
tree-level calculation we consider both the incoming and outgoing parti-
cles to be on-shell, although this need not be the case.

The Feynman rules that we use here were derived in Sec: 6.2, they arise
from the electroweak gauge coupling of the quark fields and are adjusted
by the diagonalisation of the Yukawa couplings between the quark fields
and the complex scalar Higgs doublet.

∗Actually, unstable particles have no asymptotic states, though it is possible to define
states that solve classical equations of motion
∗∗The branching ratio of top quark decay into W-bosons and bottom quarks with re-

spect to decay into a W-boson and a bottom, strange or down quark according to Ref. [4]
is given by: Γ(t→bW)

Γ(t→qW)
= 0.957± 0.034 where q ∈ {d, s, b}.
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130 The Weak Decay of the Top Quark

The squared decay amplitude evaluated

The Feynman diagram that describes the t → bW decay is shown in Fig:
8.1. The corresponding amplitude is given by the vertex factor with polar-
isation spinors for the incoming top quark and the outgoing bottom quark
and a polarisation vector for the W-boson.

! p + k ! k

! p
t

W+

b

Figure 8.1: The Feynman diagram that corresponds to the process of a top quark
decaying into a bottom quark and a W+-boson. The vertex factor is equal to:
ig2V∗tb√

2
γµ
(

1−γ5

2

)

M =
ig2V∗tb√

2
ub (p)

Γ︷ ︸︸ ︷
γµ

(
1− γ5

2

)
ut (p + k) ε

µ
λ (k)

(8.10)

We define
〈
|M|2

〉
as the absolute squared amplitude averaged over

the initial spins and summed over the final spins.
〈
|M|2

〉
= παW |Vtb|2 ∑

spins

[
ub (p)α

(
Γµ

)
αβ

ut (p + k)β

]

×
[

ut (p + k)ρ

(
γ0Γ†

ν γ0
)

ρσ
ub (p)σ

]
εν∗

λ (k) ε
µ
λ (k)

(8.11)

We employ Casimir’s trick e.g. Eq: A.8 and the equivalent formula for
the W-boson in Eq: 8.12 to remove the explicit spinor and polarisation
tensor dependencies in Eq: 8.11.

∑
λ

ε
µ∗
λ (k) εν

λ (k) = ηµν +
kµkν

m2
W

(8.12)

The replacement of the spinors and polarisation tensors leaves us with
a trace over a string of gamma-matrices that we have performed using
FORM [24].
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8.2 The decay rate for t→ bW 131

〈
|M|2

〉
=παW |Vtb|2Tr

[
(−/p + mb) γµ

(
1− γ5

2

)
(−/p − /k + mt)

(
1 + γ5

2

)
γν

](
ηµν +

kµkν

m2
W

)

=− 2παW |Vtb|2
(

p · (p + k)− 2
(k · (p + k)) (k · p)

m2
W

)

(8.13)

We use that all the incoming and outgoing particles are on-shell so p2 =

−m2
b, k2 = −m2

W and (p + k)2 = −m2
t by momentum conservation so the

final expression for
〈
|M|2

〉
after some rearranging becomes:

〈
|M|2

〉
=παW |Vtb|2

m4
t

m2
W

[(
1− m2

W
m2

t

)(
1 + 2

m2
W

m2
t

)
− m2

b
m2

t

(
2− m2

W
m2

t
− m2

b
m2

t

)]
(8.14)

The decay rate evaluated

We use Eq: 8.1 in the CM-frame of the top quark such that k1 = (mt, 0, 0, 0)
to compute the decay rate with the squared amplitude as written in Eq:
8.14. We first expand the Lorentz-invariant phase space measure, then
we use the spatial delta-functions to perform three integrations over the
spatial momenta of the bottom quark and since we have no angular de-
pendencies we also perform the angular integrations of the W-boson mo-
menta, we find:

ΓCM =
1

2mt

∫ 〈
|M|2

〉
dLIPSn (k1) =

〈
|M|2

〉

32π2mt

∫ d3k
k0

d3 p
p0 δ

(
k0 + p0 −mt

)
δ3 (k + p)

=

〈
|M|2

〉

32π2mt

∫ d3k
k0 p0 δ

(
k0 + p0 −mt

)
=

〈
|M|2

〉

8πmt

∫
d|k| |k|

2

k0 p0 δ
(

k0 + p0 −mt

)

(8.15)

In Eq: 8.15 the on-shell condition for the W-boson and bottom quark

gives us: k0 =
√
|k|2 + m2

W and p0 =
√
|k|2 + m2

b. The last integral over
|k| is nonzero for only one specific value of |k| that conserves momentum
but we must remember that integrating over this delta-function means
that we must divide with the absolute value of the derivative of the ar-
gument with respect to the integration variable:

∫
dx δ ( f (x)) = ∑

i

∣∣∣d f (xi)

dx

∣∣∣
−1

with f (xi) = 0 (8.16)

The integration over the delta-function simplifies the expression for the
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132 The Weak Decay of the Top Quark

decay rate significantly:

∂

∂|k|
(

k0 + p0 −mt

)
=
|k|
(
k0 + p0)

k0 p0 ⇒ Γ =

〈
|M|2

〉

8πm2
t
|k| (8.17)

We solve:
√
|k|2 + m2

W +
√
|k|2 + m2

b −mt = 0 for |k| to find the final

expression for the decay rate. At the solution for |k|2 the arguments of the
roots in this equation must be the squares of something to cancel mt, the
solution is:

|k| = 1
2mt

√
m4

t − 2
(
m2

W + m2
b
)

m2
t +

(
m2

W −m2
W
)2 (8.18)

Now, we plug the solution for |k| and the full expression for
〈
|M|2

〉

into the expression we have for the decay rate and conclude∗:

ΓCM =
αW |Vtb|2m3

t
16m2

W

[(
1− m2

W
m2

t

)(
1 + 2

m2
W

m2
t

)
− m2

b
m2

t

(
2− m2

W + m2
b

m2
t

)]

×

√√√√1− 2
m2

W + m2
b

m2
t

+

(
m2

W −m2
b
)2

m4
t

(8.19)

If we replace the CKM-matrix element Vtb and mb by Vts and ms or Vtd
and md we obtain the decay rates of the top quark to strange and down
quarks instead of bottom quarks. We mention the decays of the top quark
to a down or a strange quark for completeness, although in practise they

are significantly suppressed because |Vtd|2
|Vtb|2 ∼ 10−4 and |Vts|2

|Vtb|2 ∼ 10−3.

We take αW = (3.392772± 0.000002) · 10−2, |Vtb| = 1.021± 0.032, mW =
80.385± 0.015 GeV, mb = 4.18± 0.03 GeV and mt = 160+5

−4 GeV from Ref.
[4], where mt is the MS mass parameter. Since the strange and down quark
contributions are negligible, the tree level result in Eq: 8.19 predicts for the
full decay rate:

ΓCM = (1.18± 0.14) ·
( mt

160 GeV

)3.7
GeV (8.20)

The value for ΓCM in Eq: 8.20 agrees well with Γt = 1.41+0.19
−0.15 GeV [4]

from experimental fits. The given error is the error induced only by the un-

∗If we are prepared to make a 3.8% error we can set m2
b = 0 (0.3%) and

|Vtb|2 = 1 (4.0%) and conclude ΓCM ≈ αW m3
t

16m2
W

(
1− m2

W
m2

t

)2 (
1 + 2 m2

W
m2

t

)
in agreement with

[18, ch. 21].
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8.3 Relating the decay rate to self-energy contributions 133

certainties in the input parameters which is dominated by the error in the
top quark mass and the CKM-matrix element, therefore it underestimates
the true error.

Additional systematic errors are expected from:

• This is the tree-level result, quantum-loop corrections at higher-orders
in perturbation theory have not been taken into account.

• The input parameters: αW , mt, mb and mW are renormalised param-
eters as a function of the renormalisation scale µ. The running of the
coupling and the masses as a function of the renormalisation scale
has not been taken into account.

8.3 Relating the decay rate
to self-energy contributions

In this section, we present the calculation of the Ŵ+-boson and bottom
quark contribution to the top quark self-energy in the unitary gauge ξEW →
∞∗∗. We re-evaluate the contributing diagram because it is not simply the
limit of Eq: 7.68 for ξEW → ∞. Afterwards, we compare the result with the
decay rate that we have determined in the last section.

The evaluation of the diagram

We evaluate the diagram shown in Fig: 8.2, it has a bubble with a bottom
quark and a W-boson. We use the unitary gauge ξEW → ∞ to eliminate
Goldstone-bosons.

! p

t

! p + l

 l

Ŵ+

t

! p

b

i j
µ ⌫

Figure 8.2: The Feynman diagram that corresponds to the contribution of the
Ŵ+-boson and the bottom quark at the one-loop level.

∗∗We denote the Ŵ+-boson in the unitary gauge ξEW → ∞ with a hat.
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134 The Weak Decay of the Top Quark

We apply the Feynman rules for the diagram in Fig: 8.2 as we have
derived in Sec: 6.2, with ξEW → ∞. This yields Eq: 8.21 for the unitary
Ŵ+-boson propagator, which does not fall of for large momenta as the
renormalisable gauge W-boson propagator in Fig: 6.3(a), therefore we ex-
pect that the UV-divergences in the self-energy become worse.

1
i

ˆ̃∆µν (p) =
−i

p2 + m2
W

[
ηµν +

pµ pν

m2
W

]
(8.21)

In terms of this propagator, we find:

iΣ̂ij (/p) =
∫ d4l

(2π)4

(
ig2Vtb√

2
γν 1− γ5

2

)(
1
i

S̃ij (/p + /l )
)(

ig2V∗tb√
2

γµ 1− γ5

2

)(
1
i

ˆ̃∆µν (l)
)

=
παW |Vtb|2

2
µ̃ε
∫ ddl

(2π)d

[
γν
(

1− γ5
)

S̃ (/p + /l ) γµ
(

1− γ5
)]

ˆ̃∆µν (l) δij

(8.22)

We use the automatic procedure from Sec: 7.1 using the chiral decom-
position, the only nonzero self-energy function is given by:

B̂Rij

(
p2
)
=

αW |Vtb|2
4π

Γ
(

ε
2
)

e
γEε

2

2− ε

(
m2

W
µ2

)− ε
2

δij +
αW |Vtb|2

16π
Γ
( ε

2

)
e

γEε
2

(
m2

b
µ2

)− ε
2

×
[

4
m2

b
m2

W
F12

(
m2

b, m2
W

)
+

(
p2 −m2

b
m2

W
− 2 + ε

)
F23

(
m2

b, m2
W

)]
δij

(8.23)

We expand Eq: 8.23 in terms of the parameter ε and define D2 =
x (1− x) p2 + x

(
m2

W −m2
b
)
+ m2

b:

B̂Rij

(
p2
)
=

αW |Vtb|2
8π

(
p2 + 3m2

b
m2

W

)
δij

1
ε
+

αW |Vtb|2
8π

[
2− ln

m2
W

µ2 +

(
2− p2

m2
W

) ∫ 1

0
dx x ln

D2

µ2 −
m2

b
m2

W

∫ 1

0
dx (2− x) ln

D2

µ2

]
δij +O (ε)

(8.24)

The expressions in Eq: 8.23 and Eq: 8.24 in the unitary gauge corre-
sponds to the general gauge results in Eq: 7.67 and Eq: 7.68. In fact the
gauge independent terms in Eq: 7.67 can all be found also in Eq: 8.23. One

must put (2− ξEW) → −ξEW and D̃2 → xξEW
m2

W
µ2 in Eq: 7.68 to see what

roughly happens with the gauge dependent terms. Evaluating the Feyn-
man integrals with these approximations that are valid for ξEW → ∞ we
recover the UV-divergent terms in Eq: 7.68 up to finite terms when we
make the replacement:
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ln

(
ξEW

m2
W

µ2

)
' 2

ε
(8.25)

The full self-energy function is given by:

Σ̂ij (/p) =
(

1 + γ5

2

)
/pB̂Rij

(
p2
)

(8.26)

The self-energy contribution of the W-boson and the bottom quark in
Eq: 8.24 has not been renormalised, the real part is still divergent. We
ignore this, and instead relate the imaginary part of the self-energy to the
decay rate that was found earlier in Eq: 8.19 by using Eq: 8.8.

Im
[
u (p) Σ̂ (/p) u (p)

] ∣∣∣
p2=−m2

t

= mtΓCM (p) (8.27)

We contract the spinors and gamma matrix structure by applying the
spinor definitions and normalisation of Eq: A.6 and Eq: A.7 together with
the anti-commutation relation of the γ5 matrix of Eq: A.5.

u (p)
(

1 + γ5

2

)
/pu (p) =

1
4

(
u (p) /p

(
1− γ5

)
u (p) + u (p)

(
1 + γ5

)
/pu (p)

)

=− mt

4

(
u (p)

(
1− γ5

)
u (p) + u (p)

(
1 + γ5

)
u (p)

)

=− mt

2
u (p) u (p) = −m2

t

(8.28)

Since the spinor contraction yields a real constant, the imaginary part
of Eq: 8.24 must reside in the integration over the logarithms. The complex-
valued logarithm written in terms of its real and imaginary part is given
by:

ln x ≡ ln |x|+ iArgx (8.29)

The complex part is proportional to the phase of x, so when x becomes
negative this part contributes a factor π. Thus we examine where in our
integration domain the argument of the logarithm becomes negative.

D2

µ2

∣∣∣
p2=−m2

t

=
m2

t
µ2 x2 +

(
m2

W −m2
b −m2

t
µ2

)
x +

m2
b

µ2 ≤ 0 (8.30)

When the argument of the logarithm becomes negative the phase of the

argument is: Arg D2

µ2

∣∣∣
p2=−m2

t

= −π for a branch cut on the negative axis

since we absorbed an infinitesimal complex value in the masses; m2
W ≡
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136 The Weak Decay of the Top Quark

m2
W − iε and m2

b ≡ m2
b − iε. The roots of the argument of the logarithm are

given by:

x± =
1
2

(
α︷ ︸︸ ︷(

1− m2
W −m2

b
m2

t

)
±

β︷ ︸︸ ︷√√√√1− 2
m2

W + m2
b

m2
t

+

(
m2

W −m2
b
)2

m4
t

)
(8.31)

Both roots are real and in the integration range in our case since m2
t ≥(

m2
W + m2

b
)2 and m2

W � m2
b. So we now have all that we need to calculate

the imaginary part of the following integrals:

Im
[∫ 1

0
dx ln

D2

µ2

∣∣∣
p2=−m2

t

]
= −π

∫ 1
2 (α+β)

1
2 (α−β)

dx = −πβ (8.32)

Im
[∫ 1

0
dx x ln

D2

µ2

∣∣∣
p2=−m2

t

]
= −π

∫ 1
2 (α+β)

1
2 (α−β)

dx x = −παβ

2
(8.33)

We substitute the result of the above integrals and the spinor contrac-
tion in Eq: 8.27 and find:

Im
[
u (p) Σ̂ (/p) u (p)

] ∣∣∣
p2=−m2

t

=
αW |Vtb|2m2

t
16

((
2 +

m2
t

m2
W

)
α− m2

b
m2

W
(4− α)

)
β

=
αW |Vtb|2m4

t
16m2

W

[(
1− m2

W
m2

t

)(
1 + 2

m2
W

m2
t

)
− m2

b
m2

t

(
2− m2

W + m2
b

m2
t

)]
β

(8.34)

When we compare the expression above with Eq: 8.19, then we find
the verification of Eq: 8.27. This is the generalisation to spin-½ of

Im
[
Π
(

p2)]
∣∣∣

p2=−m2
t

= mtΓCM, where Π
(

p2) is the scalar particle’s self-

energy, which is worked out in Ref. [17, ch. 25]. This was also verified for
the top quark decay into a W-boson and a bottom quark in Ref. [32]. We
also see that although Σ̂ (/p) depends on the renormalisation scale µ, this
µ-dependence disappears in physical observables such as the decay rate
ΓCM.
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Chapter 9
The Definition of Renormalons

In this chapter, we introduce renormalons and demon-
strate their presence in the all-order summation of QED
bubble chain diagrams. We define and apply the Borel
resummation technique to resummate and construct an
analytical representation of this class of diagrams.
The definition of renormalons in terms of quark bubble
graphs in QCD would neglect the equally sized contri-
butions of gluon and ghost bubbles. We explore how
the definition of renormalons in QED is extended to
QCD and leads to a prescription that is usable to com-
pute the renormalon contribution to a diagram.

Up until now, we studied one-loop contributions to the top quark self-
energy. These calculations can be extended to two-loop and three-loop
orders but the computations become increasingly more difficult and soon
incalculable. A different approach is to compute the first few orders and
then estimate the higher order contribution.

Some gauge-invariant subsets of the higher-order corrections in QED
were found, that with some approximations are computable at arbitrary
loop-order in perturbation theory. [33] These subsets are the bubble-chain
diagrams, wherein a photon propagator is dressed by an arbitrary num-
ber of fermion bubbles. It was also found that these diagrams posses n!-
growth, which induces divergent behaviour of the perturbative expansion.

These perturbative divergences with a characteristic n!-growing series
expansion in renormalisable field theories such as QED but also in QCD
are known as renormalons. Renormalons also significantly affect the top
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138 The Definition of Renormalons

quark self-energy, which is why we consider renormalons here, and how
they affect the top quark mass in Ch: 10. A more extensive study of renor-
malons in different physical processes is found in Ref. [34].

9.1 The renormalon prescription in QED

We first discuss the definition of renormalons in QED before treating the
more intricate definition of renormalons in QCD. Unlike for QCD it is pos-
sible in QED to identify an explicit gauge invariant set of diagrams that
displays renormalon behaviour, namely the bubble-chain diagrams. The
renormalon contribution to a diagram in QED such as an electron self-
energy diagram or a electron-electron scattering diagram is found by re-
placing the photon propagator by the photon exact propagator.

Here, we shall take a closer look at the renormalon contribution to the
electron self-energy, the diagram in Fig: 9.1(a), since this diagram is di-
rectly connected to the definition of the electron pole mass through Eq:
3.30 or more practically Eq: 3.32.

When we apply the Feynman rules, then we find the following expres-
sion for the diagram in Fig: 9.1(a) which contains the photon one-loop
exact propagator:

iΣr̃ (/p) =
∞

∑
n=0

∫ d4l

(2π)4 (ieγν)

(
1
i

S̃ (/p + /l )
)
(ieγµ)

(
1
i

∆̃µρ (l)
) [(

iΠρσ

MS
(l)
)(1

i
∆̃σν (l)

)]n

=e2µ̃ε
∫ ddl

(2π)d

[
γνS̃ (/p + /l ) γµ

]




∆̃µν(l)︷ ︸︸ ︷
∞

∑
n=0

1
l2 Pµν (l)Πn

MS

(
l2
)
+ ξEW

lµlν
l4




(9.1)

We make the approximation µ2 � m2 to get a more tractable expres-
sion for the photon self-energy function in the above expression then the
one given in Eq: 4.2. We also recall that β0 = 2

3π from Eq: 4.71 and make
the definition C = −5

3 , we find:

ΠMS

(
p2
)
≈ β0αe

2
ln
(

p2

µ2 eC
)
+O

(
α2

e

)
(9.2)

The renormalon contribution to a QED diagram is thus obtained by the
exact propagator prescription which adds a factor of ∑∞

n=0 ΠMS
(
l2) to the

integrand of Eq: 9.1. This addition corresponds to a gauge invariant subset
of the quantum corrections to the self-energy which exhibits n!-growth, as
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! p ! p

 l

! p + l

µ ⌫ !
1X

n=0
! p ! p

R

R

R

R l

! p + l

µ | {z }
n-loops

⌫

(a) The electron one-loop self-energy diagram.

! p

! k0! k

! q

! p0

⌫

µ

!

! p

! k0! k

R

! q

R
P1

n=0 n-loops

8
>>>><
>>>>:

! p0

⌫

µ

(b) The tree-level contribution to the electron-electron scattering.

(c) The electron bubble as the sum of an unrenormalised elec-
tron bubble and the counter term.

Figure 9.1: This figure shows the prescription which yields renormalons in the
shown two QED diagrams. In this prescription, one replaces the photon prop-
agator by the photon exact propagator, renormalisation of the electron bubble
insertions has thus already been performed.

we will show. The factor eC is renormalisation scheme dependent and
only of subleading interest, exhibiting at most (n− 1)!-growth.

In QED there exist a different prescription that yields up to the sublead-
ing factor eC the same renormalon behaviour. In violation with Feynman
rules we then make the replacement αe (µ) → αe

(
l2) in the integrand,

where αe
(
l2) or the running coupling is the solution of Eq: 4.71, given by:

αe

(
l2
)
=

αe (µ)

1− β0αe(µ)
2 ln l2

µ2

= αe (µ)
∞

∑
n=0

(
β0αe (µ)

2

)n
lnn l2

µ2 (9.3)

The running coupling prescription adds a factor ∑∞
n=0 ΠMS

(
l2e−C) to

the integrand of Eq: 9.1. This addition thus corresponds to the same
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gauge-invariant subset of the quantum corrections to the self-energy as
for the exact propagator prescription.

9.2 The n!-growth of the individual diagrams

Here, we explicitly show the n!-growth of the the individual n-bubble di-
agrams Σn,̃r (/p) as shown in Fig: 9.1(a). For the moment we are just in-
terested in the leading order behaviour and therefore we set the external
momentum p to be on-shell as a simplification and assume n > 0, so that
we do not need to consider the gauge-dependent part of the photon exact
propagator which only contributes to the n = 0 contribution.

We follow the techniques described in Sec: 7.1 up until STEP 4 using
the fact that all relations for the J2 integrals except for analytic continua-
tions work in the same way for integrals that have an additional factor of

∼ lnn p2

µ2 . We then set p2 = −m2 and find:

An,̃r

(
p2
)
=

a︷ ︸︸ ︷

ie2 (d− 1)
(

β0αe

2

)n
µ̃ε
∫ ddl

(2π)d

lnn
(

l2

µ2 eC
)

(l2 + 2p · l) l2

(9.4)

Bn,̃r

(
p2
)
=

b︷ ︸︸ ︷

ie2
(

β0αe

2

)n
µ̃ε
∫ ddl

(2π)d

(
(d− 3)− (d− 2) p·l

m2

)
lnn
(

l2

µ2 eC
)

(l2 + 2p · l) l2

(9.5)

We need to apply the following trick to evaluate the integrals in a and
b :

lnn x =

(
∂

∂δ

)n
xδ
∣∣∣
δ=0

(9.6)

We apply this trick to a , after which we introduce Feynman parame-
ters, perform the momentum integral and recognise the integral represen-
tation of the Euler beta function.

a =i (d− 1) e2µ̃ε

(
β0αe

2
∂

∂δ

)n (eC

µ2

)δ ∫ ddl

(2π)d
1

(l2 + 2p · l) (l2)
1−δ

∣∣∣∣∣
δ=0

=− (3− ε)
αe

4π

(
β0αe

2
∂

∂δ

)n Γ
(

ε
2 − δ

)
Γ (1 + 2δ− ε)

Γ (2 + δ− ε)

(
m2

µ2

)−( ε
2−δ)

e
γEε

2 +δC

∣∣∣∣∣
δ=0

(9.7)
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9.2 The n!-growth of the individual diagrams 141

We now use the duplication formula Eq: 6.1.17 from Ref. [30] on
Γ (1 + 2δ− ε) in a , followed by the reflection formula Eq: 6.1.18 from
Ref. [30] on Γ

(
ε
2 − δ

)
Γ
(
1 + δ− ε

2

)
. This brings a in the following form:

a =− (3− ε)
αe

4π

(
β0αe

2
∂

∂δ

)n
(

π

sin
(
π
(

ε
2 − δ

))
)

×



e
γEε

2 +δC−2( ε
2−δ) ln 2Γ

(
1
2 + δ− ε

2

)

√
πΓ (2 + δ− ε)



(

m2

µ2

)−( ε
2−δ)

∣∣∣∣∣
δ=0

(9.8)

We continue the evaluation with b in the same manner:

b =ie2µ̃ε

(
β0αe

2
∂

∂δ

)n (eC

µ2

)δ ∫ ddl

(2π)d

(d− 3)− (d− 2) p·l
m2

(l2 + 2p · l) (l2)
1−δ

∣∣∣∣∣
δ=0

=
αe

4π

(
β0αe

2
∂

∂δ

)n (
1− (2− ε)

1− δ

2 + δ− ε

)

× Γ
(

ε
2 − δ

)
Γ (1 + 2δ− ε)

Γ (2 + δ− ε)

(
m2

µ2

)−( ε
2−δ)

e
γEε

2 +δC

∣∣∣∣∣
δ=0

(9.9)

We again apply the duplication and reflection formulas from Ref. [30]
on the Γ-functions in b and find:

b =
αe

4π

(
β0αe

2
∂

∂δ

)n (
1− (2− ε)

1− δ

2 + δ− ε

)(
π

sin
(
π
(

ε
2 − δ

))
)

×



e
γEε

2 +δC−2( ε
2−δ) ln 2Γ

(
1
2 + δ− ε

2

)

√
πΓ (2 + δ− ε)



(

m2

µ2

)−( ε
2−δ)

∣∣∣∣∣
δ=0

(9.10)

To find the leading order behaviour of the self-energy functions An,̃r
(

p2)

and Bn,̃r
(

p2) we neglect terms of order O (ε, δ).

An,̃r

(
p2
)
=− (3 +O (δ, ε))

αe

4π

(
β0αe

2
∂

∂δ

)n ( 1
ε
2 − δ

+O (δ, ε)

)
(1 +O (δ, ε))

(
m2

µ2

)−( ε
2−δ)

∣∣∣∣∣
δ=0

=− 3αe

4π

(
β0αe

2
∂

∂δ

)n ( 1
ε
2 − δ

+O
(

δ0, ε0
))(m2

µ2

)−( ε
2−δ)

∣∣∣∣∣
δ=0

(9.11)
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Bn,̃r

(
p2
)
=

αe

4π

(
β0αe

2
∂

∂δ

)n (3
2

δ +O
(

δ2, ε2, δε
))( 1

ε
2 − δ

+O (α, ε)

)

× (1 +O (α, ε))

(
m2

µ2

)−( ε
2−δ)

∣∣∣∣∣
δ=0

=
3αe

8π

(
β0αe

2
∂

∂δ

)n ( δ
ε
2 − δ

+O (δ, ε)

)(
m2

µ2

)−( ε
2−δ)

∣∣∣∣∣
δ=0

(9.12)

We now expand
(

m2

µ2

)−( ε
2−δ)

in terms of
(

ε
2 − δ

)
and perform the deriva-

tive to find the dominant contribution to the self-energy functions.

(
β0αe

2
∂

∂δ

)n ( 1
ε
2 − δ

+O
(

δ0, ε0
))(m2

µ2

)−( ε
2−δ)

∣∣∣∣∣
δ=0

=

(
β0αe

2

)n ∞

∑
k=0

(−1)k

k!

(
∂

∂δ

)n (( ε

2
− δ
)k−1

lnk m2

µ2 +O
(( ε

2
− δ
)k

lnk m2

µ2

))

= n!
(

β0αe

ε

)n (2
ε

)
+

1
n + 1

(
β0αe

2

)n
lnn+1 m2

µ2 +O
((

2
ε

)n
, lnn m2

µ2

)

(9.13)

In Eq: 9.13, the regularisation parameter ε is such that
∣∣∣2

ε

∣∣∣ �
∣∣∣ ln m2

µ2

∣∣∣.
For finite and non-zero values of m2

µ2 we can thus neglect the mass depen-
dent term. Nevertheless, we include the mass dependent term since for
either m2

µ2 � 1 or m2

µ2 � 1 the highest power of ln m2

µ2 is the leading order

finite term that survives after the
(2

ε

)k
terms are cancelled by the counter

terms through renormalisation.

(
β0αe

2
∂

∂δ

)n ( δ
ε
2 − δ

+O (δ, ε)

)(
m2

µ2

)−( ε
2−δ)

∣∣∣∣∣
δ=0

=−
(

β0αe

2

)n ∞

∑
k=0

(−1)k

k!

(
∂

∂δ

)n
(( ε

2
− δ
)k

lnk m2

µ2 −
ε

2

( ε

2
− δ
)k−1

lnk m2

µ2

+O
(
{δ, ε}

( ε

2
− δ
)k

lnk m2

µ2

))

=n!
(

β0αe

ε

)n
−
(

β0αe

2

)n
lnn m2

µ2 +O
((

2
ε

)n−1
, lnn−1 m2

µ2

)

(9.14)

In Eq: 9.14, the mass dependent term cancels the contribution from the

142

Version of June 30, 2016– Created June 30, 2016 - 23:01



9.3 The Borel transform 143

UV-divergence for n = 0. The term is also not suppressed by a factor
n + 1 as in Eq: 9.13. Substituting Eq: 9.13 and Eq: 9.14 into the self-energy
functions An,̃r

(
p2) and Bn,̃r

(
p2), we find:

An,̃r

(
p2
) ∣∣∣

n≥0
=− 9

4
n!
(

β0αe

ε

)n+1
+O

((
2
ε

)n)
(9.15)

Bn,̃r

(
p2
) ∣∣∣∣∣

n>0

=
9
8

n!
(

β0αe

ε

)n+1 ε

2
+O

((
2
ε

)n−1
)

(9.16)

The leading order term that appears in the self-energy functions indeed
grows factorially with the number of electron loops. The divergent feature
of this class of diagrams compels us to include all of them in a perturbative
treatment to make meaningful predictions, the smallness of the coupling
constant does not counter the factorial growth of the number of electron
loops.

In the general case of a n!-growing perturbative series of the following
form:

R =
∞

∑
n=0

rn =
∞

∑
n=0

n!αncn (9.17)

In the above expression, α is the coupling constant and cn is an arbitrary
constant that does not depend heavily on the value of n. If we assume
cn ∼ cn+1, then at a certain order in perturbation theory one reaches the
smallest correction, this happens when |rn+1| > |rn|:

|rn+1|
|rn|

≥ 1 ⇒ (n + 1) α

∼1︷ ︸︸ ︷
|cn+1|
|cn|

≥ 1 ⇒ n ≥ 1
α
− 1

(9.18)

After renormalisation at the same order as the number of electron loops
the terms proportional to

(2
ε

)k
are cancelled by counter term contributions

and the factorial growth is hidden in this particular class of diagrams. One
thus usually considers the Adler function in the discussion of renormalons
such as in Ref. [34].

9.3 The Borel transform

The method of choice to handle factorial growth is the Borel resummation
technique. By using the Borel transform, it is possible to define the repre-
sentation of the exact photon propagator in Borel space, that can be used
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as a Feynman rule in Borel space. Analogous to Ref. [34] we define the
Borel transform of a series as:

R = ±
∞

∑
n=0

rnαn+1 ⇒ B [R] (t) =
∞

∑
n=0

rn
tn

n!
for sgn (α) = ±1 (9.19)

The original series R might not be convergent but the Borel transform
often is, the n!-divergent behaviour has been regularised through this trans-
form. We use the ratio test to compute RR, the radius of convergence for
the original series R. If the limit exist then we find:

RR = lim
n→∞

∣∣∣∣
rn

rn+1

∣∣∣∣ ⇒ RB(R) = lim
n→∞

∣∣∣∣
rn (n + 1)!

rn+1n!

∣∣∣∣ = RR

∞︷ ︸︸ ︷(
lim

n→∞
(n + 1)

)
(9.20)

We thus find that the Borel transform of a series R with a finite radius
of convergence RR has an infinite radius of convergence. If the original
series is asymptotic with a radius of convergenceRR = 0 and |rn| ∼ n!An

for n → ∞ then the radius of convergence of the Borel transform is finite
RB(R) ≥ 1

A .

We also define the Borel integral R̃ which is the inverse Borel transform.
This analytical representation of R has the same series expansion as the
original series R. It is important to note that the sign of α dictates what
part of the Borel transform is relevant for R or R̃.

R̃ =





∫ ∞
0 dt e−

t
|α| B [R] (t) , α > 0

∫ 0
−∞ dt e

t
|α| B [R] (t) , α < 0

(9.21)

With the above formalism we now compute the Borel transform of the
leading-order self-energy functions An,̃r

(
p2) from Eq: 9.15 and Bn,̃r

(
p2)

from Eq: 9.16 choosing α = β0αe
2 , we find:

B

[
∞

∑
n=0

An,̃r

(
p2
)]

(t) ≈ −9
4

1
ε− t

∼ −9
4

1
(−t)

(9.22)

B

[
∞

∑
n=1

Bn,̃r

(
p2
)]

(t) ≈ 9
16

t
ε− t

∼ 9
16

t
(−t)

(9.23)

The expression in Eq: 9.22 and Eq: 9.23 shows us that we have a diver-
gence at t = 0 which dominates the summation before renormalisation.
This divergence corresponds to the

(2
ε

)k
terms in both Eq: 9.15 and Eq:

9.16 and is thus related to the UV-behaviour of the diagrams, hence a UV
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renormalon. The Borel parameter now regulates the divergence and pro-
vides us with an analytical representation.

We construct the Borel transform of the gauge-independent part of the
exact photon propagator to determine the sub-leading renormalons in the
self-energy functions, we find:

R =
∞

∑
n=0

Πn
MS

(
l2
)
⇒ B [R] (t) =

2
β0αe

(
eC l2

µ2

)t

(9.24)

R̃ =
2

β0αe

∫ ∞

0
dt e−

2t
β0αe

(
eC l2

µ2

)t

(9.25)

This leads us to define the following Feynman rule for the exact photon
propagator in Borel space:

B
[
∆̃µν (l)

]
(t) =

2
β0αe

[(
eC

µ2

)t 1

(l2)
1−t Pµν (l) +

ξEW lµlν
l4

]
(9.26)

The Borel resummation of the one-loop exact photon propagator in
term of the inverse Borel transform of Eq: 9.26 does not invalidate the
Dyson resummated expression in Eq: 3.4. However, the Borel resummated
expression allows the evaluation of the momentum integral and regulates
the collective divergence of the all-order summation in terms of the Borel
parameter t.

9.4 The exact evaluation
of the renormalon diagram

We now perform the exact evaluation of Σr̃ (/p) as shown in Eq: 9.1 using
the exact photon propagator in Borel space as shown in Eq: 9.26. This cal-
culation can be done with the procedure in Sec: 7.1 upon making a small
redefinition of Js (α) and deriving new relations to handle the t depen-
dence of the hypergeometric functions.

The gauge-dependence in Σr̃ (/p) comes from the n = 0 term in the
summation of Eq: 9.1. The calculation of the n = 0 term has already been
performed in Sec: 3.2 for general values of ξEW , so we can set ξEW = 0 for
now and add the gauge-dependent part of A

(
p2) in Eq: 3.51 and B

(
p2) in

Eq: 3.62 afterwards, if necessary. We find that the n > 0 terms constitute a
gauge-independent contribution to the renormalon diagram.

The regularisation parameter ε, that we use to dimensionally regularise
our integrals is not strictly necessary when we calculate the Borel trans-
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forms of Ar̃
(

p2)
∣∣∣
ξEW=0

and Br̃
(

p2)
∣∣∣
ξEW=0

. We set ε = 0 and treat the

Borel parameter t as our regularisation parameter. We also renormalise in
terms of the Borel parameter. To remain in the MS renormalisation scheme
we need to insert two scheme-dependent polynomials RA (t) and RB (t),
the explicit form of which is not important for the discussion of the singu-
larities according to Ref. [16].

The redefinition of Js (α) which is more suited to this particular calcu-
lation reads for D0 ≡ l2 and D1 ≡ (p + l)2 + m2:

J̃s (t, α) ≡
∫

µ̃ε ddl

(2π)d
p · l

D1−t
0 Dα

1

(9.27)

J2 (−t, α− t) = J2 (1− t, α− t)− 2 J̃s (t, α)−
(

p2 + m2
)

J2 (1− t, α) (9.28)

The evaluation of J̃s (t, α) in terms of elementary and special functions
is given by:

1
p2 J̃s (t, α) = − i

16π2
Γ
(

ε
2 − t + α− 1

)
Γ
(
2− ε

2 + t
)

e
γEε

2

Γ (α) Γ
(
3− ε

2
) (9.29)

× 2F1

(
ε

2
− t + α− 1 , 1− t ; 3− ε

2
; − p2

m2

)(
m2

µ2

)− ε
2 (

m2
)1+t−α

We express our result in terms of the following hypergeometric func-
tions that are regularised with the Borel parameter and where the dimen-
sional regularisation parameter ε has been set to zero (in short-hand nota-
tion):

F̃012 (t) ≡2F1

(
−t , 1− t ; 2 ; − p2

m2

)
(9.30)

F̃023 (t) ≡2F1

(
−t , 2− t ; 3 ; − p2

m2

)
(9.31)

By applying Eq: 15.2.14, Eq: 15.2.17 and Eq: 15.2.19 from Ref. [30,
ch. 15] we find expressions for the following hypergeometric functions:

2F1

(
−t , 1− t ; 3 ; − p2

m2

)
=

1
1 + t

(
2F̃012 (t)− (1− t) F̃023 (t)

)
(9.32)

2F1

(
1− t , 1− t ; 3 ; − p2

m2

)
=

1
t (1 + t)

(
2F̃012 (t)− (2 + t) F̃023 (t)

)
(9.33)

(
1 +

p2

m2

)
2F1

(
1− t , 1− t ; 3 ; − p2

m2

)
=− 1

t

(
2F̃012 (t) + (2 + t) (1− t) F̃023 (t)

)

(9.34)
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When we take into account the above modifications, we find the fol-
lowing result by the procedure in Sec: 7.1:

B
[

Ar̃

(
p2
) ∣∣∣

ξEW=0

]
(t) =− 3

2πβ0

(
eC m2

µ2

)t

Γ (−t) Γ (1 + t) (9.35)

× 2F1

(
−t , 1− t , 2,− p2

m2

)
− 1

2πβ0

[
3
t
− RA (t)

]

B
[

Br̃

(
p2
) ∣∣∣

ξEW=0

]
(t) =

3
4πβ0

(
eC m2

µ2

)t

t Γ (−t) Γ (1 + t) (9.36)

× 2F1

(
−t , 2− t , 3,− p2

m2

)
+

1
2πβ0

RB (t)

The second term in B
[

Ar̃
(

p2)
∣∣∣
ξEW=0

]
(t) of Eq: 9.35 and Eq: 9.36 has

been included to renormalises the gauge-independent part of the Borel
transform of the self-energy function at t ∼ 0 in the MS renormalisation
scheme. It equals the gauge-independent part of the Borel transform of
(Z0 − 1).

The location of renormalons

We have evaluated the self-energy contribution in QED of the whole class
of diagrams shown in Fig: 9.1(a). We obtained Eq: 9.35 and Eq: 9.36 with
the decomposition Σr̃ (/p) = mAr̃

(
p2)+ /pBr̃

(
p2) which is the QED ana-

logue of the result in Eq: 3.9 of Ref. [16] for QCD.

The hypergeometric functions 2F1

(
−t , 1− t , 2,− p2

m2

)
and

2F1

(
−t , 2− t , 3,− p2

m2

)
absolutely converge for t > −1

2 and |p2| < m2

but there is a pole at t = −1
2 according to Ref. [30]. This is not the whole

story, the Γ-functions introduce additional poles on every positive integer
t > 0 whenever the hypergeometric function is nonzero.

The pole at t = −1
2 is an infrared renormalons and does not trouble us

in QED since the inverse Borel transform integration domain is between
t = 0 and t = +∞. The poles for positive integers are the UV-renormalons
that do affect QED. The inverse Borel transform can not be performed
without a modification of the integration contour and therefore the per-
turbation series is not Borel-summable, as concluded also in the original
work by Ref. [33]. This signals us that the QED perturbative series is only
an asymptotic series as explained in App: D.
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9.5 The renormalon prescription in QCD

In this section, we evaluate the QED renormalon prescriptions in QCD.
We demonstrate that the exact propagator prescription does not constitute
a gauge-invariant set of diagrams in QCD. This motivates the use of the
running coupling prescription in QCD which is by its definition gauge-
invariant.

The exact propagator prescription

When we use the exact propagator prescription, we first need to determine
the MS self-energy function analogue of Eq: 9.2 by use of the result in Eq:
7.59 for mq ∼ 0. It is possible to bring the result in a similar form but it is
no longer possible to relate the pre-factor to the β0 coefficient.

Πab
MS

(
p2
)
≈ αsT (R)

3π

(
a + b ln

p2

µ2

)
δab ≈ αsT (R)

3π
b ln

(
e

a
b

p2

µ2

)
δab

a ≡ −5
3

n f +

(
11
3

+
3
8
(1 + ξs)

2
)

Nc , b ≡ n f −
(

5
2
+

3
4
(1− ξs)

)
Nc

(9.37)

Unlike for what we saw for QED, we note that the one-loop correc-
tions that contribute to the exact gluon propagator in QCD are not gauge-
invariant. This has the consequence that it is possible to have either b < 0,
b = 0 or b > 0, therefore this analysis does not allow us to say how renor-
malons in QCD affect physical observables.

Regardless of whether b > 0 or b < 0 we construct the Borel transform
of the power series of the self-energy function to be:

R =
∞

∑
n=0

Πn
MS

(
l2
)
⇒ B [R] (t) =

3π

αsT (R) |b|

(
e

a
b

l2

µ2

)t

(9.38)

The sign of b determines what the integration domain of the inverse
Borel transform is:

R̃ =





3π
αsT(R)|b|

∫ ∞
0 dt e−

3πt
αsT(R)|b|

(
e

a
b l2

µ2

)t
, b > 0

3π
αsT(R)|b|

∫ 0
−∞ dt e+

3πt
αsT(R)|b|

(
e

a
b l2

µ2

)t
, b < 0

(9.39)

B
[
∆̃ab

µν (l)
]
(t) =

3π

αsT (R) |b|



(

e
a
b

µ2

)t
1

(l2)
1−t Pµν (l) +

ξslµlν
l4


 δab (9.40)

We obtain the Borel transform of the QCD equivalent of the diagram
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shown in Fig: 9.1(a) by making the replacements C → a
b , αe → αs, ξEW →

ξs and β0 → 2T(R)
3π |b| in Eq: 9.35 and Eq: 9.36.

The location of infrared and ultraviolet renormalons in the Borel plane
now depends on the value of the gauge parameter ξs through b and a. It
is not even clear whether we are affected by either IR or UV renormalons.
The exact propagator prescription does not yield a gauge invariant set of
diagrams and therefore has no well-defined physical interpretation.

The running coupling prescription

We use the analogue of Eq: 9.3 in QCD for αs (µ) with a β0 < 0 ∗ to apply
the running coupling prescription αs (µ)→ αs

(
l2) in the evaluation of the

QCD analogue of Fig: 9.1(a).

αs

(
l2
)
= αs (µ)

1

1 + |β0|αs(µ)
2 ln l2

µ2

= αs (µ)
∞

∑
n=0

(
−|β0|αs (µ)

2

)n
lnn l2

µ2 (9.41)

The momentum-scale at which the running-coupling diverges is ΛQCD,
it relates to both αs (µ) and β0:

1 =
|β0|αs (µ)

2
ln

µ2

Λ2
QCD

⇒ ΛQCD = µ e
− 1
|β0 |αs(µ) (9.42)

The numerical value for the infrared scale of divergence lies at
ΛQCD ≈ (200− 300)MeV [16]. The running coupling can be conveniently
rewritten in terms of ΛQCD:

αs

(
l2
)
=

2

|β0| ln l2

Λ2
QCD

(9.43)

The Feynman rule in Borel space that enforces the running coupling
prescription for a gluon exchange between two quarks, is given by:

B
[
∆̃ab

µν (l)
]
(t) =

2
|β0|αs (µ)

[(
l2

µ2

)t 1
l2 Pµν (l) +

ξslµlν
l4

]
δab (9.44)

The renormalon contribution to the top quark self-energy diagram in
Eq: 7.64 with the above identification is given by an analogue of Eq: 9.35
and Eq: 9.36. We replace αe (µ) → αs (µ), ξEW → ξs, β

(QED)
0 → |β(QCD)

0 |,
∗In QCD β0 = − 1

6π

(
11Nc − 4n f T (R)

)
acc. to Ref. [17, ch. 73] which is negative for

nF ≤ 16 when Nc = 3 and T (R) = 1
2 .
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C → 1, m2 → m2
t and integrate the Borel parameter t over the negative

axis, since β
(QCD)
0 < 0. Additionally, we multiply with an overall colour

factor of C (R) in accordance with the one-loop result in Eq: 7.64, we find:

B
[

Ar̃

(
p2
) ∣∣∣

ξs=0

]
(t) =− 3C (R)

2π|β0|

(
m2

t
µ2

)t

Γ (−t) Γ (1 + t) (9.45)

× 2F1

(
−t , 1− t , 2,− p2

m2
t

)
− C (R)

2π|β0|

[
3
t
− RA (t)

]

B
[

Br̃

(
p2
) ∣∣∣

ξs=0

]
(t) =

3C (R)
4π|β0|

(
m2

t
µ2

)t

t Γ (−t) Γ (1 + t) (9.46)

× 2F1

(
−t , 2− t , 3,− p2

m2
t

)
+

C (R)
2π|β0|

RB (t)

We observe that the inverse Borel transform of Eq: 9.45 and Eq: 9.46
has the same t-dependence as the QED result and therefore the leading
order contribution to the series expansion exhibits the same n!-growth as
Eq: 9.15 and Eq: 9.16. Also the β0 coefficient in QCD is a gauge-invariant
quantity as it was in QED, which means that the renormalons in this pre-
scription are not affected by an arbitrary choice of gauge. We thus verify
that the running coupling prescription in QCD captures the characteristic
n!-growth and retains gauge invariance.

Renormalon behaviour is not exclusive to the diagrams in Fig: 9.1,
we expect all processes in either QED or QCD to be affected by them
through the running coupling prescription. The renormalon bubble chain
diagrams define a divergent subset of the higher-order quantum correc-
tions in the interaction between two electrons in QED, or diagrammati-
cally:

QED : ↵e

�
l2
� e�µ⌫ (l) ⇡ 2

Figure 9.2: The running coupling prescription in QED captures roughly the con-
tribution of the photon exact propagator for m2 � µ2 in the interaction of two
electrons. However, this is only a subset of all higher order corrections.

We find that in QCD the running coupling prescription in the inter-
action between quarks is no longer similar to the contribution of the exact
gluon propagator even when m2

q � µ2. There are other diagrams that con-
tribute, so it is still possible that a subset of diagrams exists that exhibits
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the same renormalon behaviour as the QED bubble chain diagrams. ∗ Al-
though it might be possible to find a gauge-invariant subset of diagrams
that exhibits renormalon behaviour at one-loop or two-loop, this does not
guarantee that it is possible to find a calculable all-order definition of this
set of diagrams. A few one-loop diagrams that do contribute to the quark
interaction but are not included in the exact propagator prescription are
shown in Fig: 9.3(c-f).

QCD : ↵s

�
l2
� e�ab

µ⌫ (l) 6⇡

(a) The running coupling prescription is
not roughly similar to the exact propaga-
tor prescription in QCD.

QCD : ↵s

�
l2
� e�ab

µ⌫ (l) 2

(b) The running coupling prescription is
assumed to be still a subset of the inter-
action between quarks.

(c) (d) (e) (f)

Figure 9.3: The running coupling prescription in QCD might include at the one-
loop order ∝ αs (µ) (c) vertex corrections, (d) quark self-energy contributions or
(e-f) two-gluon exchange. These are just a few examples, at the one-loop order
already there are 14 + n f number of diagrams that contribute to the interaction
between two quarks.

The use of the running coupling prescription is arguable through the
qualitative interpretation of the running coupling. The running coupling
is like an effective coupling at a certain energy or momentum scale. This
is because one always chooses a renormalisation scale at about the same
scale as the involved momenta to not produce large logarithms which in-
validate the perturbative expansion. The running coupling prescription
aims to include already a lot of higher order corrections by integrating
over this renormalisation scale.

A more rigorous argumentation for the running-coupling prescription
is given by Ref. [36]. They generalise their prescription from fermion

∗According to Ref. [35] one-gluon exchange can be mimicked by two-gluon exchange
as a reason for why one-gluon exchange is not gauge-invariant.
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bubble insertions, which we used in Sec: 9.1 for QED at one-loop and
dubbed the exact propagator prescription. Therefore, they also include
the factor ∝ eC in their prescription.

The fermion bubble chain diagrams form a gauge-invariant subset in
QCD but are not expected to be a good approximation of the multi-loop
result because of equally sized contributions from gluon and ghost-loop
insertions. In a QCD-like theory with a large number of flavours n f → ∞,
the so-called 1

n f
-expansion of QCD∗, these contribution can be neglected

and the self-energy function of the gluon becomes (in analogy with the
QED result in Eq: 9.2):

ΠMS

(
p2
)
≈ β0αs

2
ln
(

p2

µ2 eC
)
+O

(
α2

s

)
with β0 ≈

2n f T (R)
3π

(9.47)

The generalisation to QCD is completed by putting β
1/n f
0 →

∣∣∣βQCD
0

∣∣∣
in a procedure referred to as naive nonabelianisation. The full prescription
then reads αs (µ) → αs

(
l2eC), which in QED is equivalent to our exact

propagator prescription.
In Ref. [36] that in many QCD observables such as the pole mass, when

one applies the running coupling prescription in the one-loop result the
∝ α2

s (µ) term is a good approximation to the full two-loop order result. A
justification of the validity of this prescription in QCD at an arbitrary order
can only be given afterwards, if one computes all contributing diagrams
at that order and compares.

∗An application of the 1
n f

-expansion to the calculation of the quark pole mass is found
in Ref. [16].
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Chapter 10
Different Mass Schemes
and Toponium

In this chapter, we demonstrate the presence of the
renormalon ambiguity in the (top) quark pole mass and
the renormalon cancellation in the potential-subtracted
mass or PS mass. The PS mass is defined in terms of the
toponium potential, which is the QCD equivalent of the
Coulomb potential in QED.
We explicitly compute the leading order contribution
to the static toponium potential before we apply the
running coupling prescription to determine the renor-
malon contribution. We demonstrate the renormalon
ambiguity in the potential and show that despite this,
the energy levels of possible bound states would be un-
ambiguous.

10.1 The renormalon ambiguity
in the top quark pole mass

We defined the pole mass mpole for an electron in Eq: 3.30 as minus the real
part of the complex pole zpole in the electron propagator. This definition
is also valid for the top quark even though γ 6= 0 because the top quark
mass mt � γ ∼ ΓCM. We again assume mpole = mMS (µ) +O

(
αsmMS

)
.
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mpole = mMS (µ)− Re
[
Σr̃

(
−mpole

)]

mpole = mMS (µ)− Re
[
mMS (µ) Ar̃

(
−m2

pole

)
−mpoleBr̃

(
−m2

pole

)] (10.1)

We solve the above self-consistency relation at next-to-leading order by
setting mpole → mMS (µ) on the right-hand side of Eq: 10.1. We first con-
sider the Borel transform because it is then possible to plug in Eq: 9.45 and
Eq: 9.46 for the Borel transform of the self-energy functions. When ξs 6= 0,
the self-energy functions obtain gauge-dependent one-loop contributions
that cancel each in the determination of the pole mass, just as in Sec: 4.4.

∆m (µ, t) =B
[
mpole −mMS (µ)

]
(t)

=mMS (µ) B
[

Br̃

(
−m2

MS (µ)
)
− Ar̃

(
−m2

MS (µ)
)]

(t)
(10.2)

We substitute the Borel-transforms of the self-energy functions evalu-
ated at p2 = −m2

MS
(µ) which by use of Eq: 15.1.20 of Ref. [30] allows us

to write ∆m (µ, t) as:

∆m (µ, t) =
C (R)mMS (µ)

2π|β0|


6

(
m2

MS
(µ)

µ2

)t
Γ (−t) Γ (1 + 2t)

Γ (3 + t)
(1 + t) +

[
3
t
+ RB (t)− RA (t)

]


(10.3)

We can now not apply the inverse Borel transform to find the mass
difference between the pole mass and the MS mass, because the above
expression has poles in the integration domain of the Borel parameter at
t = −

(
1
2 + k

)
for k ∈ N and additionally at t = −2. We need to modify

the integration contour around these poles to perform the inverse trans-
form.

There is no preferred way to modify the integration contour around
the poles. This introduces a theoretical ambiguity in the definition of the
top quark pole mass, known as the renormalon ambiguity. The size of this
ambiguity is estimated to be half the difference of the integral taken by
moving the integration contour via Im [t] > 0 and via Im [t] < 0 around
the pole, the simplest two prescriptions. The ambiguity should then be
equal to the magnitude of the pole residue of the integrand in the inverse
Borel transform of Eq: 10.3.
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or ?

(a) The simplest two modification of the integration
contour around the poles.

� (mpole)t =
1

2

����������

-

����������

=
1

2

����������

����������

(b) The definition of the renormalon ambiguity due to a renor-
malon at location t in terms of the two integration contour
modifications.

Figure 10.1: This figure defines diagrammatically the renormalon ambiguity in
the pole mass due to a pole at t in terms of the simplest two integration contour
modifications.

Figure 10.2: In this figure we show the location of the poles of ∆m (µ, t), denoted
by stars and dots, in the complex plane of the Borel parameter t, the Borel plane.
The dot singularities are UV-renormalons, all but the t = 0 renormalon lie out-
side the integration range for β0 < 0. The t = 0 renormalon is cancelled by the
renormalisation counter term at t = 0. The IR-renormalons that affect ∆m (µ, t)
lie at t = −

( 1
2 + k

)
for k ∈ N and additionally at t = −2.

Version of June 30, 2016– Created June 30, 2016 - 23:01

155



156 Different Mass Schemes and Toponium

We expand ∆m (µ, t) around the poles to find the pole residues and
their relative sizes:

lim
t→− 1

2

∆m (µ, t) =
C (R)mMS (µ)

π|β0|

(
m2

MS
µ2

)− 1
2 1

t + 1
2
+ n.p.

lim
t→− 3

2

∆m (µ, t) = −3C (R)mMS (µ)

8π|β0|

(
m2

MS
µ2

)− 3
2 1

t + 3
2
+ n.p.

lim
t→−2

∆m (µ, t) =
C (R)mMS (µ)

4π|β0|

(
m2

MS
µ2

)−2
1

t + 2
+ n.p.

(10.4)

The other poles of ∆m (µ, t) with k ∈ N\{0} have residues:

Res
[

∆m (µ, t)
mMS (µ)

; t = −
(

1
2
+ k
)]

=
(−1)k

(
1− 2

3 k
)

24k−2 (2k)!

(
(2k− 1)!
(k− 1)!

)2 C (R)
π|β0|

(
m2

MS
µ2

)−( 1
2+k)

(10.5)

The relative size of the pole residues for adjacent values k-values for
k > 1 is given by:

Res
[

∆m(µ,t)
mMS(µ)

; t = −
(

1
2 + (k + 1)

)]

Res
[

∆m(µ,t)
mMS(µ)

; t = −
(

1
2 + k

)] = −1
4

(
k + 1

2
k + 1

)(
m2

MS
µ2

)−1

(10.6)

We use the inverse Borel transform to determine the theoretical ambi-
guity δ

(
mpole

)
:

mpole −mMS (µ) = Re
[∫ 0

−∞
dt ∆m (µ, t) e

2t
αs(µ)|β0 |

]
= Re



∫ 0

−∞
dt ∆m (µ, t)

(
Λ2

QCD

µ2

)−t



(10.7)

For ΛQCD � mMS (µ) the ambiguity caused by the pole at t = −1
2

dominates all others by at least a factor
m2

MS
Λ2

QCD
� 1.

δ
(

mpole

)
t=− 1

2

= C (R)
ΛQCD

|β0|
(10.8)

The ambiguity due to the infrared renormalon is given by δ
(
mpole

)
∝

ΛQCD ∼ (200− 300)MeV in Eq: 10.8. The big uncertainty in the top quark
pole mass is thus partly caused by the renormalon ambiguity. In future
e+e− colliders we will require a mass definition that is not affected by the
renormalon ambiguity to be able to make better predictions.
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10.2 The LO static toponium potential 157

10.2 The LO static toponium potential

Here, we define the static toponium potential and explicitly compute the
leading order contribution. This demonstrates by what method we com-
pute the potential and what Feynman diagrams make up this potential.
The toponium static potential is defined in terms of the scattering ampli-
tude in the limit of static quarks. We also determine the leading order
relativistic correction, which allows us to determine the range of validity
of the potential.

The definition of the static toponium potential

We define the static toponium potential between a top and an anti-top
colour singlet due to QCD interactions in momentum space as a function
of the transferred squared momentum q2 to equal minus the scattering
amplitude in the static limit, we find:

〈
p′, k′

∣∣ iTqq |p, k〉 = iM (2π)4 δ4 ((p + k)−
(

p′ + k′
))

⇒Ṽtt

(
q2
)
=

1
4m2Mtt

(
q2
)
|static

(10.9)

The colour singlet state of a quark and an anti-quark unlike the colour
octet states forms bound state mesons for the lighter quarks, if these in-
volve a quark and an anti-quark with the same flavour this is called quarko-
nium. The rapid weak decay of the top quark prevents the formation of a
bound-state toponium, but the would-be toponium resonance does leave
an imprint on the threshold cross-section as was shown in Fig: 1.5.

We take the colour traces over the incoming and outgoing quarks and
divide by a normalisation factor of three. This prescription enforces the
colour singlet condition and corresponds to the following expression for
the colour state with r, b and g the eigenvectors of the colour representa-
tion and r, b and g of the anti-colour representation.

|Q〉singl. =
1√
3

(
|rr〉+

∣∣∣bb
〉
+ |gg〉

)
(10.10)

The static potential describes the interaction between the quark and
anti-quark with relative velocities in the non-relativistic limit like the Coulomb
potential in QED. We later demonstrate that in this limit dynamical effects
such as spin-flips and angular enhancements are suppressed.
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The scattering amplitude

The diagrams that contribute to the static toponium potential at leading
order are shown in Fig: 10.3. The first diagram is trivial since a gluon has
no colour singlet state. Therefore we only need to compute the second
diagram.

! p

! k0
t

! k

! q
t

! p0

g

j

i

l

k

µ a ⌫ b ,

! p

t

! k0! k

! q

t

! p0

g

k

i

l

j

⌫ b

µ a

Figure 10.3: These two diagrams would contribute at leading order, which is at
tree level, to the static toponium potential. The first diagram is trivial however
since there are no gluon singlets.

The first diagram in Fig: 10.3, that corresponds to quark annihilation is
zero for an incoming quark anti-quark singlet. This is shown mathemati-
cally by first writing down the vertex factor:

ig3γµTa
ij (10.11)

This vertex factor is contracted with
δij√

3
by the singlet condition:

ig3γµTa
ij

δij√
3
=

ig3γµ

√
3 �

��>
0

Ta
ijδij = 0 (10.12)

This is true by the tracelessness of the SU (3) generator matrices, hence
the whole diagram vanishes.

For the second diagram we use the Feynman rules that we have de-
rived in Sec: 6.1. We also enforce the colour singlet condition but not yet
the non-relativistic limit on the scattering amplitude to obtain the static
potential, we find:
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10.2 The LO static toponium potential 159

iMtt

(
q2
)
=
[
us′
(
p′
)
(ig3γµTa

ik) us (p)
] (1

i
∆̃ab (q)

) [
vr (k)

(
ig3γνTb

lj

)
vr′
(
k′
)] δijδkl

3

= ig2
3

(
Ta

ikTa
ki

3

)
1
q2

[
us′
(
p′
)

γµus (p)
] [

vr (k) γνvr′
(
k′
)]

= i
4παsC (R)

q2

a︷ ︸︸ ︷[
us′
(
p′
)

γµus (p)
] [

vr (k) γνvr′
(
k′
)]

(10.13)

We note that this scattering amplitude is gauge-invariant due to the
spinor contractions and the only thing we still need to do is determine a
in the non-relativistic limit. The simplest way is to set all momenta to be
p = m

(
1,~0
)

, p′ = m (1, 0), k = m (1, 0) and k′ = m (1, 0).

Formally, there is no momentum transfer in this limit so q2 = 0 and
thusMtt

(
q2) diverges. It is not mathematically correct to set q2 → 0 in a

but not in the rest ofMtt
(
q2). In the next subsection we consider the non-

relativistic limit in more detail and show that the used prescription leads
to the right conclusion. For now, we apply the Gordon decomposition
identities shown in Eq: A.17 and Eq: A.18, we find:

iMtt

(
q2
)
= −i

4παsC (R)
q2 (2m)2 δs,s′δr,r′ ⇒ Ṽtt

(
q2
)
= −4παsC (R)

q2 (10.14)

The LO relativistic correction

Here, we compute the leading order relativistic correction to the spinor
structure a from the previous subsection, which proves the validity of our
adhoc prescription that brought us to Eq: 10.14. Furthermore, it shows us
when we need to start worrying about relativistic effects.

The static potential is derived from the scattering amplitude M
(
q2)

instead of the squared scattering amplitude
∣∣∣M

(
q2)
∣∣∣
2

and therefore we

need to choose a basis for our us (p) and vr (k) spinors. This is the only
instance where the specifications for the spinors given in App: A are not
enough.

We use the basis of spinors that are eigenspinors of the spin opera-
tor in the z-direction in the static limit from Ref. [17, ch. 38]. We use a
transformation matrix to boost the static spinors in an arbitrary direction
to obtain spinors with arbitrary momenta, which is shown in Ref. [17,
ch. 38] namely Eq: 38.11. For convenience we reproduce these definitions.
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The static spinors from Ref. [17, ch. 38] Eq: 38.6 are given by:

u+ (0) =
√

m




1
0
1
0


 , u− (0) =

√
m




0
1
0
1




v+ (0) =
√

m




0
1
0
−1


 , v− (0) =

√
m




−1
0
1
0




(10.15)

The expression Eq: 38.12 in Ref. [17, ch. 38] boosts these spinors in the
p or k direction in terms of the boost matrix K j = i

2 γjγ0 and the rapidity

η ≡ sinh−1
(
|p|
m

)
, we find:

us (p) = exp (iηp̂ ·K) us (0)
vs (p) = exp (iηp̂ ·K) vs (0)

(10.16)

We now expand the on-shell momentum four-vector up until the lead-
ing velocity-dependent term in each component and find: p0 = m + 1

2 mv2

and p = mv for |v| � 1. In polar coordinates we parametrise each velocity
vector as:

v =




sin θ cos φ
sin θ sin φ

cos θ


 ⇒ v̂ · σ =

(
cos θ e−iφ sin θ

eiφ sin θ cos θ

)
(10.17)

The transformation matrix in Eq: 10.16 is brought in a more convenient
form:

exp (iηp̂ ·K) = exp
(
−η

2

(
v̂ · σ 0

0 −v̂ · σ
))

(10.18)

We expand the exponent in a Taylor series and separate the odd from
the even terms, we find:

(
v̂ · σ 0

0 −v̂ · σ
)2

= v̂i v̂j
( 1

2{σi, σj} 0
0 1

2{σi, σj}

)
= 14 (10.19)

⇒ exp (iηp̂ ·K) = cosh
(η

2

)
14 + sinh

(η

2

)(−v̂ · σ 0
0 v̂ · σ

)
(10.20)

We go to the non-relativistic limit by expanding the hyperbolic func-
tions in terms of η up to leading order in |v|:
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10.2 The LO static toponium potential 161

|v| = sinh η ⇒ cosh η =
√

1 + v2 = 1 +
1
2

v2 +O
(

v4
)

cosh
(η

2

)
=

√
cosh (η) + 1

2
=

√
1 +

v2

4
+O (v4) = 1 +O

(
v2
)

sinh
(η

2

)
=

√
cosh (η)− 1

2
=

√
v2

4
+O (v4) =

v
2
+O

(
v2
)

(10.21)

We now write down the transformation matrix of the spinor with the
leading order relativistic correction:

exp (iηp̂ ·K) =

(
12 − v · σ 0

0 12 + v · σ
)
+O

(
v2
)

(10.22)

We now use the above expression in Eq: 10.22 to find the leading order
relativistic correction to the static spinors shown in Eq: 10.15 and with
our definition of the γ-matrices in App: A we can determine the leading
order relativistic correction to a . The only leftover issue is that there are
still four free spins and nine free parameters related to the magnitude and
direction of the incoming and outgoing momenta in a .

We first align the z-axis to the spin-direction of particle i ∗, then particle
i is fixed to have spin up s → +. A rotation around the z-axis allows us
to eliminate the initial azimuthal angle φi → 0 of particle i. Additionally
we decide to look at a in the center-of-mass frame which is defined by:
k + p = 0 and k′ + p′ = 0.

This convenient reference frame allows us to parametrise a (s, s′, r, r′)
in terms of the magnitude of the velocity of particle i and three angles.
The first angle and initial direction θi is the angle between the z-axis and
the velocity direction of particle i. The second and third angle are the
declination and azimuth of particle j, the final direction denoted as θ f and
φ f .

After this reparametrisation we find two spin combination that do not
flip spins and contribute to the static potential:

∗Here, we label the particles in Fig: 10.3 by their colour index letter: i, j, l or k.
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− 1
4m2 a (+ +++) = 1+

[
1− 3

2

(
cos (2θi) + cos

(
2θ f

))
+ cos φ f

×
(

cos
(

θ f − θi

)
− cos

(
θi + θ f

)) ]
v2 +O

(
v4
)

− 1
4m2 a (+ +−−) = 1+

[
1 +

1
2

(
cos (2θi) + cos

(
2θ f

))
+ 2

(
1− 3

2
e−iφ f

)
cos

(
θi + θ f

)

+ 2
(

1 +
3
2

eiφ f

)
cos

(
θ f − θi

) ]
v2 +O

(
v4
)

(10.23)

The instances that do flip spin are of order O
(
v2) with a pre-factor

involving θi, θ f and φ f . The static potential remains accurate as long as
v2 � 1 and thus the q momentum that is transferred need not be zero for
the validity of Eq: 10.14.

The potential in position space

We have computed the amplitude for a quark scattering of an anti-quark,
from which we obtained the toponium potential in momentum space, as
shown in Eq: 10.14. We then demonstrated the validity of this potential
in the non-relativistic limit by determining the leading-order relativistic
corrections. Now, we make contact with the Coulomb potential in QED
by determining its QCD analogue for a quark anti-quark singlet.

We take the Fourier transform of Eq: 10.14 and reintroduce the implicit
’−iε’-term in the gluon propagator to obtain the quarkonium potential in
position space. Also, in the non-relativistic limit we have q2 = (p− p′)2 =

(p− p′)2 = q2.

Vtt (r) = −4παsC (R)
∫ d3q

(2π)3
eiq·r

q2 − iε
= −αsC (R)

π

∫ ∞

0
dq

q2

q2 − iε

∫ π

0
dθ sin θ eiqr cos θ

= −2αsC (R)
πr

∫ ∞

0
dq

q sin (qr)
q2 − iε

= −αsC (R)
iπr

∫ ∞

−∞
dq

qeiqr

q2 − iε
(10.24)

The above integral has complex poles at q2 = iε ⇒ q± = ±ei π
4
√

ε. The
integration contour from q = −∞ to q = ∞ can be closed via the positive
complex half-plane. This contour envelops only the pole at q+.

Vtt (r) = −
αsC (R)

2iπr

∫

C
dq

eiqr

q− q+
= −αsC (R)

r
(10.25)

We can associate a distance to the non-relativistic limit |v| � 1 from
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10.3 Renormalons in the toponium potential 163

the previous subsection. The relativistic modes correspond to q ∼ 2m
since q = 2mv. When these modes oscillate rapidly in the exponent of the
Fourier transform they do not contribute to the potential in position space,
therefore we require:

qr � 1 ⇒ 2mr � 1 ⇒ r � 1
2m

(10.26)

10.3 Renormalons in the toponium potential

Here, we use the running coupling prescription to find the renormalon
contribution to the static toponium potential in both momentum and po-
sition space. The renormalons further constrain the range where the po-
tential formulation is adequate.

The renormalon contribution in momentum space

We first make the replacement αs (µ)→ αs
(
q2)which in the non-relativistic

limit amounts to αs (µ)→ αs
(
q2) since in that case we have q2 = q2.

Ṽtt

(
q2
)
= −4παs (µ)C (R)

q2

∞

∑
n=0

(
β0αs (µ)

2
ln

q2

µ2

)n

(10.27)

As before, this summation can be resummated by the Borel transform:

B
[
Ṽtt

(
q2
)]

(t) = −8πC (R)
|β0|

1
q2

(
q2

µ2

)t
(10.28)

The renormalon contribution in position space

The Fourier transform of Eq: 10.27 simply diverges, but the divergence is
regularised by the Borel transform. We thus take the Fourier transform of
Eq: 10.31 first, the inverse Borel transform gets us back to the toponium
potential in position space with a renormalon induced ambiguity.

The Fourier transform of Eq: 10.31 equals:

B [Vtt (r)] (t) = −
8πC (R)
|β0|

µ−2t
∫ d3q

(2π)3
eiq·r

q2(1−t)
= − 2C (R)

iπ|β0|r
µ−2t

∫ ∞

−∞
dq

eiqr

q1−2t

= −4C (R)
|β0|r

(µr)−2t

b︷ ︸︸ ︷[
1

2πi

∫ ∞

−∞
dx

eix

x1−2t

]
(10.29)
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The integral b is evaluated with Mathematica [37] for a restricted range
of the Borel parameter t:

b =
1
π

∫ ∞

0
dx

sin x
x1−2t =

Γ (2t) sin (πt)
π

, −1
2
< Re [t] <

1
2

(10.30)

The divergence at t = −1
2 corresponds to the leading order IR-renormalon

that also appeared in the top quark pole mass in Sec: 10.1. We rewrite this
integral exclusively in terms of Γ-functions and we also analytically con-
tinue the integral to the full domain of the Borel parameter t. We then find
for the Borel transform of the static toponium potential in position space:

B [Vtt (r)] (t) = −
2C (R)
π|β0|r

(µr)−2t
Γ
(

1
2 − t

)
Γ
(

1
2 + t

)

Γ (1− 2t)
(10.31)

We again need a prescription on how to integrate around the poles at
t = −

(
1
2 + k

)
for k ∈ N to apply the inverse Borel transform. Since there

is no preferred way to deform the integration contour away from the poles
via either Im (t) > 0 or Im (t) < 0, we obtain a theoretical ambiguity. This
is again the renormalon ambiguity we encountered in Sec: 10.1, which is
defined to be as big as half the pole residue.

Figure 10.4: This figure shows the complex plane of the Borel parameter t, the
Borel plane. The location of the singularities in B [Vtt (r)] (t) are denoted with
stars. The toponium potential is only affected by IR-renormalons, which lie at
t = −

( 1
2 + k

)
for k ∈ N.
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10.3 Renormalons in the toponium potential 165

For the leading order and sub-leading IR-renormalons, we expand the
Borel transformed potential around t = −1

2 and t = −3
2 respectively, we

find:

lim
t→− 1

2

B [Vtt (r)] (t) = −
2C (R) µ

π|β0|
1

t + 1
2
+ n.p.

lim
t→− 3

2

B [Vtt (r)] (t) =
C (R) µ

3π|β0|
(µr)2 1

t + 3
2
+ n.p.

(10.32)

The other poles of B [Vtt (r)] (t) with k ∈ N have the following residues
with relative sizes:

Res
[

B [Vtt (r)] (t) ; t = −
(

1
2
+ k
)]

=
(−1)k+1

1 + 2k

(
2C (R) µ

π|β0|

)
(µr)2k

(2k)!

Res
[

B [Vtt (r)] (t) ; t = −
(

1
2 + (k + 1)

)]

Res
[

B [Vtt (r)] (t) ; t = −
(

1
2 + k

)] = − (µr)2

(2 + 2k) (3 + 2k)

(10.33)

We now use the inverse Borel transform to determine the theoretical
uncertainty δ (Vtt (r)):

Vtt (r) = Re
[∫ 0

−∞
dt B [Vtt (r)] (t) e

2t
αs(µ)|β0 |

]
= Re



∫ 0

−∞
dt B

[
Vqq (r)

]
(t)

(
Λ2

QCD

µ2

)−t



(10.34)

For r � 1
ΛQCD

the ambiguity caused by the pole at t = −1
2 dominates

all others by at least a factor 1

(rΛQCD)
2 � 1.

δ (Vtt (r))t=− 1
2
= 2C (R)

ΛQCD

|β0|
(10.35)

Furthermore, we can give a range of validity for the quarkonium po-
tential where relativistic correction as shown in Eq: 10.26 and sub-leading
IR-renormalons are small. This shows us that for m ∼ ΛQCD the potential
formulation is wholly inadequate.

1
2m
� r � 1

ΛQCD
(10.36)
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10.4 The Toponium Spectrum

The toponium potential is affected by a renormalon ambiguity with a mag-
nitude of about ΛQCD. This ambiguity affects the precision by which we
can extract the the pole mass mpole from the toponium energy or mass
spectrum. We review some non-relativistic quantum mechanics to under-
stand how one would extract the pole mass from the toponium spectrum
and how the renormalon ambiguity affects the precision by which this is
possible.

This discussion is not fully applicable to the toponium system, because
it ignores the weak decay of the top quark which stops the formation of
bound states. We still include the discussion since it motivates the def-
inition of a renormalon-free mass. The proper way of treating the topo-
nium system at threshold in the non-relativistic limit to obtain the tt cross-
section up to leading-logarithmic order (LL) is described in Ref. [6].

The Schrödinger equation for toponium

In non-relativistic quantum mechanics particles are described by wave
functions and the evolution of these wave-functions is described by the
Schrödinger equation. A wave-function is a complex valued probability
amplitude from which observables are computed. Unlike the spinor am-
plitudes that we encountered previously this wave function is normalised
to one:

∫
d3r |Ψ (r, t) |2 = 1 (10.37)

The Schrödinger equation describes the evolution of these wave func-
tions in terms of the hamiltonian operator Ĥ:

i
∂

∂t
Ψ (r, t) = ĤΨ (r, t) (10.38)

In the bound-state problem of toponium, we are interested in the en-
ergy spectrum. This corresponds to wave function that are eigenfunctions
of the hamiltonian operator with as eigenvalues the energy of the sys-
tem Ebind. Through separation of variables, we define time-independent
Schrödinger equation as:

Ψ (r, t) ≡ ψ (r) e−iEt (10.39)

Ĥψ (r) = Ebindψ (r) (10.40)
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10.4 The Toponium Spectrum 167

The hamiltonian operator is defined as the hamiltonian energy func-
tion under the replacements p → p̂ and r → r̂. The operators p̂ and r̂ are
again defined in terms of r as p̂ = −i∇ and r̂ = r. For quarkonium, a
system with two particles and a potential, we find the hamiltonian:

H =
1
2

mpolev2
1 +

1
2

mpolev2
2 + Vtt (|r1 − r2|) (10.41)

The above hamiltonian is a function of the three spatial and three ve-
locity coordinates of particle one and the three spatial and velocity coor-
dinates of particle two; twelve coordinates in total. The potential only
depends on the inter-particle separation and we are only interested in
the mass eigenstates of toponium and not the translational kinetic energy
of the whole system. We thus consider the system in the centre-of-mass
frame, which means that we only need the relative velocities and positions
and this reduces the number of coordinates to three spatial coordinates
and three velocity coordinates.

We introduce the relative coordinates r and v:

r ≡r1 − r2

v ≡v1 − v2
(10.42)

The centre-of-mass frame conditions allow us to simplify these state-
ments:

mpoler1 + mpoler2 =0 ⇒ r =
1
2

r1 = −1
2

r2

p1 + p2 =mpolev1 + mpolev2 = 0 ⇒ v =
1
2

v1 = −1
2

v2

(10.43)

In terms of the new coordinates the hamiltonian becomes:

H =
1
4

mpolev2 + Vtt (|r|) (10.44)

The hamiltonian in Eq: 10.44 in terms of the relative coordinates equals
the hamiltonian of one particle with a reduced mass of mred =

mpole
2 that

moves around in a potential fixed at the origin.

Now we replace the coordinates p = mredv and r by their operators p̂
and r̂ to obtain the hamiltonian operator. This gives us a differential equa-
tion that needs to be solved to find the spectrum of energy eigenvalues.
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Ĥ =
p̂2

2mred
+ Vtt (|r̂|) = −

∇2

mpole
+ Vtt (|r|)

⇒
(
− ∇

2

mpole
+ Vtt (|r|)− Ebind

)
ψ (r) = 0

(10.45)

It is an enormous task to find all the eigenfunction ψi (r) and corre-
sponding eigenvalues Ei for a general radial potential. Especially, when
we are only interested in the spectrum of binding-energy eigenvalues Ei
and not in the expressions for ψi (r). We assume that there exists a com-
plete set of orthonormal eigenfunctions ψi (r), in this case any quantum
state ψ (r) is a linear combination of ψi (r)’s.

completeness: ∑
i

ψ∗i (r)ψi
(
r′
)
= δ3 (r− r′

)

orthonormality:
∫

d3r ψ∗i (r)ψj (r) = δij

(10.46)

Because the eigenfunctions ψi (r) solve the differential equation in Eq:
10.45, the solution of the following differential equation is also known:

(
− ∇

2

mpole
+ Vtt (|r|)− Ebind

)
G
(
r, r′, Ebind

)
= δ3 (r− r′

)

⇒ G
(
r, r′, Ebind

)
= ∑

i

ψ∗i (r)ψi (r′)
Ei − Ebind

(10.47)

If we find the so-called Green’s function G (r, r′, E) by solving the dif-
ferential equation in Eq: 10.47 then the poles of this function at E = Ei give
us the spectrum of energies. If it is possible to solve Eq: 10.47 instead of
Eq: 10.45, it spares us the effort of having to compute all the eigenfunctions
ψi (r), but we can do better still.

For a radial potential that does not depend on the specific direction of
r such as our toponium potential Vtt (r) where r ≡ |r|, we notice that our
differential equation in Eq: 10.45 is rotationally invariant. It is possible to
rewrite ∇2 in radial coordinates and use separation of variables on ψ (r)
to solve the angular part, as is demonstrated in Ref. [38, ch. 4].

We separate variables and write our eigenfunctions as
ψi (r) = unl(r)

r Ym
l (θ, φ) with the set i = {n, l, m} in terms of the standard

spherical harmonics that have the following normalisation.

∫ 2π

0
dφ
∫ π

0
sin θ dθ [Ym

l (θ, φ)]∗
[
Ym′

l′ (θ, φ)
]
= δll′δmm′ (10.48)
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10.4 The Toponium Spectrum 169

The function unl (r) is normalisation and satisfies a radial differential
equation, compared to Eq: 10.45 this equation has an additional centrifu-
gal term.

∫ ∞

0
dr |u (r) |2 = 1 ,

(
− 1

mpole

∂2

∂r2 +

[
Vtt (r) +

l (l + 1)
mpoler2 − Ebind

])
u (r) = 0 (10.49)

Finally, we use the decomposition of ψi (r) in Eq: 10.47, choose r and
r′ to be aligned and then integrate over all angles. This yields a Green’s
function g (r, r′, Ebind) in terms of fewer parameters and which still has
poles at Ebind = Ei ≡ Enl.

(
− 1

mpole

∂2

∂r2 +

[
Vtt (r) +

l (l + 1)
mpoler2 − Ebind

])
g
(
r, r′, Ebind

)
= rr′δ

(
r− r′

)

⇒ g
(
r, r′, Ebind

)
= ∑

nl

u∗nl (r) unl (r′)
Enl − Ebind

(10.50)

The differential equation in Eq: 10.50 corresponds to the result in Eq:
4.4 of [6] for l = 0 ∗ and ΓCM 6= 0, which also gives some hints on how to
solve for g (r, r′, Ebind). The Green’s function g (r, r′, Ebind) illustrates that
for a radial potential Vtt (r) the solution of the angular part of G (r, r′, Ebind)
in Eq: 10.47 can be written down immediately, which saves effort. In what
comes, we shall not make further use of Eq: 10.50 and g (r, r′, Ebind).

Extraction of the pole mass

We first need to measure the required centre-of-mass energy
√

s = Ebind +
2mpole, that is necessary to produce the different {n, l} toponium states,
the experimental input. On the theory side, we need to further solve Eq:
10.50 to find the bound-state eigenvalues Enl for different values of {n, l}.

We replace the binding energy Ebind in Eq: 10.47 by the relativistically
invariant centre-of-mass energy

√
s.

(
− ∇

2

mpole
+ 2mpole + Vtt (|r|)−

√
s

)
G
(

r, r′,
√

s− 2mpole

)
= δ3 (r− r′

)
(10.51)

The advantage of this representation is that the poles of the Green’s
function in

√
s corresponds to the invariant toponium mass states. The

combination 2mpole +Vtt (|r|) corresponds to the static energy Estatic of the
toponium system.
∗The tt cross-section as treated in [6] in the non-relativistic limit is dominated by the

l = 0 or 1S state.
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The renormalon contribution in Vtt (r) is included through Eq: 10.34.
The ambiguity due to the leading order IR-renormalon makes that it is not
possible to obtain mpole with an accuracy better than:

δ
(

mpole

)
=

1
2

δ (Vtt (r)) = C (R)
ΛQCD

|β0|
(10.52)

This result coincides with what we found in Sec: 10.1 and Eq: 10.8,
where we determined the renormalon induced ambiguity in the definition
of the top pole mass.

Although both the pole mass and the toponium potential are ambigu-
ous due to IR-renormalons the toponium spectrum is not. The toponium
spectrum depends on the combination Estatic = 2mpole + Vtt (|r|), which is
free of the ∝ ΛQCD renormalon, which was first observed by Refs. [1, 39].
The expansion around t = −1

2 of the Borel expansions, shown in Eq: 10.32
and Eq: 10.4, cancel up to finite terms:

lim
t→− 1

2

B [Estatic] (t) =2

(
C (R)mMS (µ)

π|β0|

(
m2

MS
µ2

)− 1
2 1

t + 1
2
+ n.p.

)

+

(
−2C (R) µ

π|β0|
1

t + 1
2
+ n.p.

)
= n.p.

(10.53)

10.5 The Potential-Subtracted Mass

The observation that Estatic is free of the ∝ ΛQCD IR-renormalon due to a
cancellation of contributions to both mpole and Vtt (r) motivates the defini-
tion of the potential-subtracted mass or PS mass. We work out the definition
of the PS mass and show that it is indeed unaffected by the leading-order
IR-renormalon and allows for a more precise determination of the MS
mass.

The definition of the potential-subtracted mass

The PS mass for a heavy quark is defined by adding the IR part of the
relevant static toponium potential to the pole mass following Ref. [1].
There is a certain arbitrariness in what we choose as the IR part of the
potential parametrised by a momentum scale µ f which is known as the
factorisation scale.
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10.5 The Potential-Subtracted Mass 171

mPS ≡ mpole −∆m
(

µ f

)
with ∆m

(
µ f

)
= −1

2

∫

|q|<µ f

d3q

(2π)3 Ṽtt

(
q2
)

(10.54)

The mass correction ∆m
(
µ f
)

is not exactly equal to half the IR part
of the static toponium potential because we have approximated eiq·r ∼
1. Therefore ∆m

(
µ f
)

only corresponds to the contribution of the IR part
of the potential when r � 1

µ f
. The details of the definition are not that

essential though, one could choose not to do the approximation eiq·r ∼ 1
at the expense of making the calculation of ∆m

(
µ f
)

harder.
The important thing to verify is that the leading order IR-renormalon

in the pole mass is being cancelled, and that thus the PS mass is renor-
malon free. We evaluate ∆m

(
µ f
)

in Borel space with the expression for

B
[
Ṽtt
(
q2)] (t) given in Eq: 10.31 to show the cancellation:

B
[
∆m

(
µ f

)]
(t) =− 1

2

∫

|q|<µ f

d3q

(2π)3 B
[
Ṽtt

(
q2
)]

(t)

=
4πC (R)
|β0|

∫

|q|<µ f

d3q

(2π)3
1

q2

(
q2

µ2

)t

=
2C (R)
π|β0|

∫ µ f

0
dq
(

q2

µ2

)t

=
2C (R) µ

π|β0|
1

2t + 1

(
q
µ

)2t+1
∣∣∣∣∣

µ f

0

=
C (R) µ

π|β0|
1

t + 1
2

(
µ f

µ

)2t+1

(10.55)

We see that B
[
∆m

(
µ f
)]

(t) becomes independent of µ f in Borel space
exactly at the leading order IR-renormalon at t = −1

2 . When we expand
B
[
∆m

(
µ f
)]

(t) we see that it has the same expansion up to non-pole terms
as ∆m (µ, t) in Eq: 10.4, and therefore there is a cancellation.

lim
t→− 1

2

B
[
∆m

(
µ f

)]
(t) =

C (R) µ

π|β0|
1

t + 1
2
+ n.p. (10.56)

Constraining the factorisation scale

We only need ∆m
(
µ f
)

to cancel the IR-renormalon at t = −1
2 but the mass

correction contributes in the whole integration. The mass correction does
not cancel the subleading renormalons at t = −

(3
2 + k

)
for k ∈ N in Borel

space.
It is possible to choose µ f in such a way that the residual finite contri-

bution of the mass correction to the PS mass from the integration range
from t = −∞ to the first subleading renormalon at t = −3

2 is finite and not
bigger than the leading order renormalon in size.
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We plug the Borel transform of the mass correction ∆m
(
µ f
)

in the in-
verse Borel transform with a modified integration range from t = −∞ to
t = −3

2 :

∫ − 3
2

∞
dt B

[
∆m

(
µ f

)]
(t) e

2t
αs(µ)|β0 | =

∫ − 3
2

∞
dt B

[
∆m

(
µ f

)]
(t)

(
Λ2

QCD

µ2

)−t

=
C (R) µ f

π|β0|
∫ − 3

2

−∞

dt
t + 1

2

(
Λ2

QCD

µ2
f

)−t (10.57)

We do a linear coordinate transformation s = t + 1
2 followed by r = −s

and then u = ln
(

µ2
f

Λ2
QCD

)
r:

=
C (R)ΛQCD

π|β0|
∫ −1

−∞

ds
s

(
Λ2

QCD

µ2
f

)−s

= −C (R)ΛQCD

π|β0|
∫ ∞

1

dr
r

e
− ln

(
µ2

f
Λ2

QCD

)
r

=− C (R)ΛQCD

π|β0|
∫ ∞

ln

(
µ2

f
Λ2

QCD

) du
u

e−u =
C (R)ΛQCD

π|β0|
Ei

[
− ln

(
µ2

f

Λ2
QCD

)] (10.58)

We demand this to be smaller in absolute value than the ambiguity of
the leading order renormalon shown in Eq: 10.8:

∣∣∣∣∣
C (R)ΛQCD

π|β0|
Ei

[
− ln

(
µ2

f

Λ2
QCD

)] ∣∣∣∣∣ <
C (R)ΛQCD

|β0|
⇒ µ f > 1.013 ΛQCD

(10.59)

The function Ei [x] is the exponential integral which has a singularity
at x = 0, it is the reason why the residual piece of the mass correction is
already smaller than the dominant IR-renormalon ambiguity at the given
value for µ f ∼ ΛQCD. In Fig: 10.5 we see that µ f must be larger than ΛQCD
though it need not be very much larger.

Extraction of the potential-subtracted mass

Since the potential-subtracted mass is free of the renormalon ambiguity,
it is expected that it can be extracted from the toponium spectrum with
better accuracy than the pole mass through Eq: 10.51. After a few modifi-
cations in Eq: 10.51 we solve for the bound-state eigenvalues Enl in terms
of mPS

(
µ f
)

instead of mpole.
To replace all the occurrences of the pole mass in Eq: 10.51 by the

potential-subtracted mass we introduce the subtracted potential Vtt
(
r, µ f

)
:
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10.5 The Potential-Subtracted Mass 173

Figure 10.5: This figure shows the absolute size of the residual mass correction
in units of δ

(
mpole

)
t=− 1

2
, the dominant IR-renormalon ambiguity at t = − 1

2 , in
terms of µ f /ΛQCD.

Vtt

(
r, µ f

)
= Vtt (r) + 2∆m

(
µ f

)
(10.60)

We also replace mpole → mPS in the kinetic term, which introduces
corrections that are given by:

− ∇
2

mpole
= − ∇

2

mPS


1−

∆m
(

µ f

)

mPS
+O







∆m
(

µ f

)

mPS




2



 (10.61)

We want to neglect the correction that we show in Eq: 10.61, which is
only possible when ∆m

(
µ f
)
� mPS. We assume that the leading order

potential, shown in Eq: 10.14, is the dominant contribution to ∆m
(
µ f
)
.

This allows us to estimate the size of ∆m
(
µ f
)

as a function of µ f :

∆m
(

µ f

)
∼ 2παs (µ)C (R)

∫

|q|<µ f

d3q

(2π)3
1

q2 =
αs (µ)C (R)

π

∫ µ f

0
dq =

αs (µ)C (R)
π

µ f

(10.62)

This result agrees with the first term in the NNLO expression that is
computed by Ref. [2]. If we neglect factors of order unity we see that
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∆m
(
µ f
)
∼ αs (µ) µ f and our constraint amounts to αs (µ) µ f � mPS. This

upper constraint is still too loose according to Ref. [1], they give a stricter
upper bound for µ f < mPSv by assuming αs (µ) ∼ v.

We perform the replacement mpole → mPS and neglect the corrections
in the kinetic term by a suitable small choice for the factorisation scale.
The equation of which the solution yields us the bound-state eigenvalues
Enl is thus given by:

(
− ∇

2

mPS
+ 2mPS + Vtt

(
|r|, µ f

)
−
√

s
)

G
(
r, r′,
√

s− 2mPS
)
= δ3 (r− r′

)
(10.63)

If the top quark were less massive, than this method of determining en-
ergy levels of the toponium bound-system would predict at which centre-
of-mass energies

√
s the top anti-top scattering cross-section peaks. In real-

ity the spectrum is smeared out by the strong weak decay of the top quark,
which renders the above method inadequate for top anti-top scattering.

Nevertheless, the threshold cross-section of the top quark can still be
computed by use of perturbative QCD and effective field theory methods
as was done by Ref. [6] at LL in terms of mpole, by Ref. [2] at NNLO in
terms of both mpole and mPS

∗ as shown in Fig: 10.6 and by Ref. [15] at
NNNLO using mPS as was shown in Fig: 1.5. In Fig: 10.6, we see an im-
proved convergence of the peak in the cross-section in terms of mPS ∼ mPS
with respect to mpole, this implies that the renormalon-free mass definition
can be extracted from a fit with better precision.

Figure 10.6: These plots have been taken from Ref. [2]. They show as a function of
centre-of-mass energy

√
s the threshold behaviour of e+e− → tt in terms of mpole

(left) and mPS (right) at LO (dashed-dotted), NLO (dashed) and NNLO (solid) for
mMS

(
mMS

)
= 160 GeV, 165 GeV and 170 GeV.

∗The mPS definition is very similar to the mPS definition. It subtracts an extra relativis-
tic and non-abelian correction compared to the regular potential-subtracted mass.
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10.5 The Potential-Subtracted Mass 175

We expand mPS
(
µ f
)
= mpole −∆m

(
µ f
)

up until a given order in per-
turbation theory to use measurements of mPS

(
µ f
)

to determine the the-
oretical mass parameter mMS. This power series in αs (µ) is expected to
have better convergence properties than the power series of mpole.
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Appendix A
γ-matrix and spinor identities

Here we give a list of γ-matrix and spinor identities with their proofs. The
γ-matrices that were first introduced in Sec: 2.1 were defined as four inde-
pendent traceless 4× 4-matrices that satisfy the following Clifford algebra:

{γµ, γν} ≡ γµγν + γνγµ = −2ηµν (A.1)

The explicit matrix representation of the gamma matrices in terms of
the σi Pauli matrices is given by:

γ0 =

(
0 12
12 0

)
, γi =

(
0 σi

−σi 0

)
(A.2)

For convenience we define a fifth γ-matrix:

γ5 = iγ0γ1γ2γ3 =

(−12 0
0 12

)
(A.3)

By applying Eq: A.1 to commute individual γ-matrices we can show
the following properties of γ5:

(
γ5
)2

= 1 (A.4)
{

γ5, γµ
}
= 0 (A.5)

Spinors were defined in Sec: 2.1 such that the spin-½ fermion field
Ψ (x) satisfies the Dirac equation. This implies for the spinors that they
satisfy:

(/p + m) us (p) = 0 (−/p + m) vs (p) = 0
us (p) (/p + m) = 0 vs (p) (−/p + m) = 0

(A.6)
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178 γ-matrix and spinor identities

We also normalise the spinors according to:

us′ (p) us (p) = 2mδs,s′ us′ (p) vs (p) = 0
vs′ (p) vs (p) = −2mδs,s′ vs′ (p) us (p) = 0

(A.7)

Explicit expressions for the eigenspinors of the z-component of the spin
matrix can be constructed and boosted to an arbitrary value of the mo-
mentum as shown in [17, ch. 38], [18, ch. 3]. The explicit solutions that are
stated in [18, ch. 3] verify the following spin sums:

∑
s=±

us (p) us (p) = −/p + m

∑
s=±

vs (p) vs (p) = −/p −m
(A.8)

Identities involving contractions of γ-matrices

γµγµ = −d (A.9)

To show this we contract the Eq: A.1 with the metric.

(γµγν + γνγµ) ηµν = −2ηµνηµν

2γµγµ = −2d

/p/p = −p2 (A.10)

To show this one contracts Eq: A.1 with two vectors, the result follows
from the fact that the term is symmetric under interchange.

/p/p =
1
2

pµ pν {γµ, γν} = −pµ pνηµν = −p2

γµγργµ = (d− 2) γρ γµ
/pγµ = (d− 2) /p (A.11)

To show this we use Eq: A.1 to commute the γ-matrices and Eq: A.9 to
simplify the result:

γµγργµ = γµγργνηµν = γµ (−γνγρ − 2ηνρ) ηµν = −
[
γµγµ

]
γρ − 2γρ = (d− 2) γρ

/p/l /p = p2/l − 2(p · l)/p (A.12)

To show this we use Eq: A.1 in combination with Eq: A.10:
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/p/l /p = /plµ pνγµγν = /plµ pν (−γνγµ − 2ηµν)

= /p (−/p/l − 2 (p · l)) = p2/l − 2 (p · l) /p

For longer strings of γ-matrices the basic strategy is to use Eq: A.1 to
interchange the γ-matrices until one can simplify them by means of one of
the above relations.

Identities involving traces of γ-matrices

Tr
[
γ5
]
= 0 (A.13)

To show this we use the cyclic identity to put γ3 in front, then we com-
mute it back onto its place:

Tr
[
γ5
]
= iTr

[
γ0γ1γ2γ3

]
= iTr

[
γ3γ0γ1γ2

]
= −iTr

[
γ0γ1γ2γ3

]
= −Tr

[
γ5
]

⇒ Tr
[
γ5
]
= −Tr

[
γ5
]

Tr [γµ1 γµ2 ...γµ2n+1 ] = 0 with n ∈ N (A.14)

To show this we first add 1 =
(
γ5) and the cyclic identity of the trace:

Tr
[
γi1 γi2 ...γi2n+1

]
= Tr

[
γi1 γi2 ...γi2n+1

(
γ5
)2
]
= Tr

[
γ5γi1 γi2 ...γi2n+1 γ5

]

Now we anti-commute the other γ5 matrix towards the beginning pick-
ing up 2n + 1 minus signs:

Tr
[
γ5γµ1 γµ2 ...γµ2n+1 γ5

]
= (−1)2n+1 Tr

[(
γ5
)2

γµ1 γµ2 ...γµ2n+1

]
= −Tr [γµ1 γµ2 ...γµ2n+1 ]

⇒ Tr [γµ1 γµ2 ...γµ2n+1 ] = −Tr [γµ1 γµ2 ...γµ2n+1 ] = 0

Tr [γµγν] = −4ηµν (A.15)

To show this use the cyclic property of the trace on half of the factor in
the trace:

Tr [γµγν] =
1
2
(Tr [γµγν] + Tr [γνγµ]) =

1
2

Tr [{γµ, γν}] = −ηµνTr [14] = −4ηµν

Tr [γµγνγργσ] = 4 [ηµνηρσ − ηµρηνσ + ηµσηνρ] (A.16)
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180 γ-matrix and spinor identities

• If all indices in Eq: A.16 were different then the trace is proportional
to the trace of the γ5 matrix which vanishes by Eq: A.13.

• If µ = ν then we are left with −ηµνTr [γργσ] = 4ηµνηρσ

We thus have three situations to discern: µ = ν, µ = ρ or µ = σ. We
know from the above that µ = ν comes with a plus sign, similarly µ = σ
should come with a plus sign due to the cyclic identity of the trace. If
we use the defining Clifford algebra identity of Eq: A.1 to switch γρ and
γν, we get two terms: the first one involves only three γ-matrices so it
vanishes and the second comes with a minus sign.

Identities involving spinor contractions

us′
(
p′
)

γµus (p) =
(

pµ + p′µ
)

δs,s′ +
iqν

m
us′
(
p′
)

Sµνus (p) (A.17)

This is the Gordon decomposition for the us (p) type spinors, to show
it we use the Eq: A.6 and Eq: A.7, the vector q ≡ p′ − p and the tensor
object Sµν ≡ i

4 [γ
µ, γν]:

us′
(
p′
)

γµus (p) = −
1

2m
[
us′
(
p′
)

/p′γµus (p) + us′
(
p′
)

γµ
/pus (p)

]

= − 1
4m

(
pν + p′ν

)
us′
(
p′
)
{γµ, γν} us (p)−

qν

4m
us′
(
p′
)
[γµ, γν] us (p)

=
(

pµ + p′µ
)

δs,s′ +
iqν

m
us′
(
p′
)

Sµνus (p)

vr (k) γµvr′
(
k′
)
=
(
kµ + k′µ

)
δr,r′ −

iqν

m
vr (k) Sµνvr′

(
k′
)

(A.18)

This is the Gordon decomposition for the vr′ (k′) type spinors, to show
it we use the Eq: A.6 and Eq: A.7, the vector q ≡ k′ − k and the tensor
object Sµν ≡ i

4 [γ
µ, γν]:

vr (k) γµvr′
(
k′
)
=

1
2m

[
vr (k) /kγµvr′

(
k′
)
+ vr (k) γµ /k′vr′

(
k′
)]

=
1

4m
(
kν + k′ν

)
vr (k) {γµ, γν} vr′

(
k′
)
+

qν

4m
vr (k) [γµ, γν] vr′

(
k′
)

=
(
kµ + k′µ

)
δr,r′ −

iqν

m
vr (k) Sµνvr′

(
k′
)
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Appendix B
The Feynman parameter trick

The Feynman parameter trick is a mathematical procedure by which one
can combine denominators by introducing additional parameters over which
one needs to integrate. This method is applied almost anytime in momen-
tum integrals that are products of different denominators.

Generally for any number of different denominator we make use of Eq:
B.1. The xi are the Feynman parameters.

1
Aα1

1 Aα2
2 ...Aαn

n
=

Γ (α1 + α2 + ... + αn)

Γ (α1) Γ (α2) ...Γ (αn)

∫ 1

0
dx1dx2...dxn

xα1−1
1 xα2−1

2 ...xαn−1
n δ (1− x1 − x2 − ...− xn)

(x1 A1 + x2 A2 + ...xn An)
α1+α2+...+αn

(B.1)

For the case n = 2, α1 = α2 = 1 and A1 = A, A2 = B:
1

AB
=
∫ 1

0
dx

1

(xA + (1− x) B)2 (B.2)

For the case n = 3, α1 = α2 = α3 = 1 and A1 = A, A2 = B, A3 = C:
1

ABC
= 2

∫ 1

0
dx
∫ 1−x

0
dy

1

(xA + yB + (1− x− y)C)3 (B.3)

For the case n = 3, α1 = 1, α2 = 2 and A1 = A, A2 = B:
1

AB2 = 2
∫ 1

0
dx

1− x

(xA + (1− x) B)3 (B.4)

An example application and additional details can be found in [18,
sec. 6.3]. A more elaborate treatise with details about this and a related
parametrisation known as the α-parametrisation is given in [40, ch. 2].
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Appendix C
Momentum integral identities

Here we give a list of identities that can be used to simplify or fully evalu-
ate momentum integrals in dimensional regularisation, which implies that
d = 4− ε. In the following f (q) or f

(
q2)will be an arbitrary well-behaved

function dependent on q resp. q2.

C.1 Lorentz invariant simplifications

∫
ddq qµ f (q, p) =

pµ

p2

∫
ddq (p · q) f (q, p) (C.1)

To show this we use the fact that the result of the momentum integral
is a vector independent of q, since there is only one such constant vector
around we find for a still undetermined constant a:

∫
ddq qµ f (q, p) = apµ

We now contract with the constant vector pµ:

∫
ddq (p · q) f (q, p) = ap2 ⇒ a =

1
p2

∫
ddq (p · q) f (q, p)

∫
ddq qµqν f

(
q2
)
=

ηµν

d

∫
ddq q2 f

(
q2
)

(C.2)

To show this we use the fact that the result of the momentum integral is
a symmetric two-indexed object independent of q, since there is only one
such object around we find for a still undetermined constant a:
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184 Momentum integral identities

∫
ddq qµqν f

(
q2
)
= aηµν

We now contract with ηµν to evaluate a:

∫
ddq q2 f

(
q2
)
= da⇒ a =

1
d

∫
ddq q2 f

(
q2
)

C.2 Analytic continuations

∫
ddq f (q) = −1

d

∫
ddq qµ

(
∂

∂qµ f (q)
)

(C.3)

To make this procedure reasonable, let us consider the chain rule:

∫
ddq

∂

∂qµ (qµ f (q)) =
∫

ddq qµ

(
∂

∂qµ f (q)
)
+ d

∫
ddq f (q)

Here we used that ∂qµ

∂qµ = d. The left-hand side is a surface term that
can be dropped if f (q) vanishes sufficiently rapidly at infinity. The point
of an analytic continuation is that we drop the surface term regardless of
the asymptotic behaviour.

We can now consider the case that f (q) = 1
(q2+m2)

α which gives:

∫
ddq

1
(q2 + m2)

α =
2α

d

∫
ddq

q2

(q2 + m2)
α+1 (C.4)

Writing q2 =
(
q2 + m2)−m2 gives after some rearranging:

∫
ddq

1
(q2 + m2)

α =
αm2

α− d
2

∫
ddq

1

(q2 + m2)
α+1 (C.5)

C.3 Wick rotation

Here, we largely follow [17, ch. 14]. Let us consider a momentum integral
that we encounter often such as, for an arbitrary positive integer value for
α:

∫
ddq

1
(q2 + m2)

α

184
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C.4 Full evaluation 185

When we would try to perform the q0 integral from −∞ to +∞ we see
that there are two singularities in the integration domain at
q0 = ±

(√
q2 + m2 − iε

)
, where we reintroduced the ’−iε’-prescription

m2 → m2 − iε.
We now use some elementary results from complex analysis to deform

the integration contour of q0 from −∞ to +∞ towards −i∞ to i∞. This
procedure is called a Wick rotation and it does not change the value of the
integral, as long as the contribution of the arcs of the contours at infinity in
the first and third quadrant vanish and the contours are not deformed in
such a way that they cross a singularity. We also perform a coordinate shift
to introduce Euclidean coordinates, coordinates with an Euclidean metric,
via q0 → qd, qj → qj and the measure ddq → iddq. For the momentum
integrals, that we consider:

∫
ddq

1
(q2 + m2 − iε)α = i

∫
ddq

1(
q2 + m2 − iε

)α (C.6)

The validity of Eq: C.6 is guaranteed for 1
(q2+m2−iα)

α → 0 ∗ faster than
1
qd as q→ ∞. In other words, this formula holds only for α > d.

C.4 Full evaluation

After we have simplified, analytically continued and Wick rotated our mo-
mentum integral, we are often in the position to fully evaluate our inte-
gral. We first introduce radial coordinates, evaluate the angular integrals
and then do the radial integral, if d were integer-valued. For non-integer
values for d we need to generalise the result of the calculation for integer-
value d to the non-integers. This is possible by essentially replacing facto-
rials by the Euler gamma function.

The result of taking the above actions is stated in Eq: C.7, furthermore
we give some properties of the Euler gamma function for a nonnegative
integer n and infinitesimal value for ε:

∫ ddq

(2π)d
1(

q2 + m2
)α =

Γ
(

α− 1
2 d
)

(4π)
d
2 Γ (α)

(
m2
)−(α− 1

2 d)
(C.7)

with Γ (x) satisfying:

∗Note that q2 = −q2
0 + q2

1 + ... + q2
d−1 = q2

d + q2
1 + ... + q2

d−1 = q2
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186 Momentum integral identities

Γ (n + 1) = n! (C.8)

Γ

(
n +

1
2

)
=

(2n)!
n!22n

√
π (C.9)

Γ (−n + ε) =
(−1)n

n!

[
1
ε
− γE +

n

∑
k=1

1
k
+O (ε)

]
(C.10)

where γE ≈ 0.5772... is the Euler-Mascheroni constant.

C.5 Useful series expansions

Here, we provide some useful series expansions of certain integrals that
repeatedly come up in calculations that involve a small regularisation pa-
rameter. These series expansions were determined using the python li-
brary for symbolic mathematics called Sympy [23].

lim
κ→0

∫ 1

0
dx ln

(
x2 + (1− x) κ

)
≈ −2 + π

√
κ −

(
1− 1

2
ln κ

)
κ +O

(
κ

3
2

)
(C.11)

lim
κ→0

∫ 1

0
dx x ln

(
x2 + (1− x) κ

)
≈ −1

2
− 1

2
(1 + ln κ) κ +O

(
κ

3
2

)
(C.12)

lim
κ→0

∫ 1

0
dx

x (1− x)
x2 + (1− x) κ

≈ −1− 1
2

ln κ +
3
4

π
√

κ −
(

3
4
− 1

2
ln κ

)
κ +O

(
κ

3
2

)
(C.13)

lim
κ→0

∫ 1

0
dx

x2 (1− x)
x2 + (1− x) κ

≈ 1
2
− 1

2
π
√

κ −
(

1
2
+ ln κ

)
κ +O

(
κ

3
2

)
(C.14)
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Appendix D
Asymptotic Series

Here, we give some explanation about asymptotic series in contrast with
convergent series. This concept is important in perturbation series since
both the QED and QCD perturbation series are asymptotic. This is already
seen in the subset of bubble chain diagrams in QED of which the Borel
transform has poles on the positive real axis. The all-order resummation
of this set of diagrams is therefore divergent. We demonstrate the concept
of an asymptotic series by the following mathematical example.

D.1 Formal definition of asymptotic series

Two functions f (z) and g (z) with z, z0 ∈ C are asymptotically equal, de-
noted as f (z) ∼ g (z) as z→ z0, when:

lim
z→z0

f (z)
g (z)

= 1

Depending on the value of z0 one typically expands f (z) in terms of
a different local series of linear independent functions φn (z). For three
typical values of z0 the following functions are typically used to expand:

φn (z) =

{
(z− z0)

n if z0 6= ±∞
1
zn if z0 = ±∞

It is usually possible to make a reparametrisation such that it is possible
to pick either of these sets of functions or yet an entirely different set of
functions. A Taylor expansion around the point z = z0 with z0 6= ±∞
uses precisely φn (z) = (z− z0)

n the above given sets of functions with
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188 Asymptotic Series

the coefficients an = f n(z0)
n! . As we will see in the example sometimes a

different more natural expansion exists. Any expansion such as:

f (z) ∼
n

∑
k=0

akφk (z)

is valid when the following condition is met:

lim
z→z0

1
φn (z)

[
f (z)−

n

∑
k=0

akφk (z)

]
= 0

From this we learn that the coefficients an are given by:

an = lim
z→z0

1
φn (z)

[
f (z)−

n−1

∑
k=0

akφk (z)

]

Furthermore it tells us that the absolute value difference between the
function f (z) and the series expansion up until orderO (φn (z)) is of order
O (φn+1 (z)) close to z0.

lim
z→z0

∣∣∣ f (z)−
n

∑
k=0

akφk (z)
∣∣∣ = |an+1φn+1 (z)| = O (φn+1 (z))

We give a few characteristics of asymptotic series:

• A given function f (z) has a unique expansion around z = z0 in
terms of a series of functions φn (z).

• An asymptotic expansion around z = z0 does not uniquely define a
particular function f (z).

• The asymptotic expansion of a product of functions f (z) and g (z)
that both have an asymptotic expansion f (z) ∼ ∑n

k=0 anφn (z) and
g (z) ∼ ∑n

k=0 bnφn (z) around z = z0 in terms of the same series of
functions φn (z) is given by f (z) g (z) ∼ ∑n

k=0 cnφn (z) with cn =
∑n

k=0 akbn−k.

• A convergent (power) series is always an asymptotic series though
an asymptotic series need not be convergent, it can be divergent in
any neighbourhood of z = z0 except for at z = z0.

It is possible for an asymptotic series (such as a QFT) that the first few
orders converge to the f (z) after which subsequent higher order calcula-
tions diverge from f (z) we will see an example of this in the what comes
next.

188
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D.2 Example of asymptotic series 189

D.2 Example of asymptotic series

A nice example of a divergent asymptotic series is given by the error func-
tion, the integral over a normalised gaussian which often appears in statis-
tics since it describes the normal distribution.

Erf (x) =
2√
π

∫ x

0
dt e−t2

= 1− 2√
π

∫ ∞

x
dt e−t2

The error function Erf (x) has a natural expansion for x → ∞ which is
constructed by repeated partial integration of the above integral:

∫ ∞

x
dt

e−t2

tn =
e−x2

2xn+1 +
(−1) (n + 1)

2

∫ ∞

x
dt

e−t2

tn+2

Repeated application of the above formula allows us to expand the

error function in terms of a series of functions φn (x) = e−x2
√

π

(
1

x2n+1

)
and

coefficients an = (−1)n+1 (2n−1)!!
2n :

Erf (x) ∼ 1 +
e−x2

√
π

∞

∑
n=0

(−1)n+1 (2n− 1)!!
2n

1
x2n+1

∼ 1 +
∞

∑
n=0

anφn (x)

This alternating asymptotic series diverges as can be confirmed using
the ratio test, the ratio between the coefficients an+1 and an diverges for
n → ∞. Furthermore the absolute difference between the error function
and asymptotic series up to O (φn (x)) is of order O (φn+1 (x)). The ac-
curacy by which the asymptotic series approximates the error function is
shown in Fig: D.1(a).

In Fig: D.1(a) one sees that for a given x > 0.43 the approximations
of the fn (x) first converge towards the error function, but eventually a
maximum in accuracy will be reached and the approximations begin to
diverge again. In contrast one sees that for the convergent Taylor series in
Fig: D.1(b) around x = 0 every approximation is better than the previous
one.
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10−1

100

∆

|Erf(x)− fn(x)|
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f1(x)

f2(x)

f3(x)

f4(x)

f5(x)

f6(x)

f7(x)

f8(x)

f9(x)

(a) The divergent asymptotic series.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

x

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

∆

|Erf(x)− gn(x)|

g0 (x)

g1 (x)

g2 (x)

g3 (x)

g4 (x)

g5 (x)

g6 (x)

g7 (x)

g8 (x)

g9 (x)

(b) The convergent Taylor series with the
asymptotic series as a comparison.

Figure D.1: This figure shows the accuracy and divergent behaviour of the
asymptotic series of the error function and the accuracy and convergent be-

haviour of the Taylor series of the error function around x = 0. ∆ =
∣∣∣Erf (x)−

fn (x)
∣∣∣ or ∆ =

∣∣∣Erf (x) − gn (x)
∣∣∣ as a function of x for consecutive approxima-

tions.
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