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Abstract

A new slow-roll paradigm in multifield inflation

by Iñaki Urzainki

Increasing effort has been put over the past few years to understand the consequences of the presence
of several scalar fields in an early inflationary phase, since theories beyond the Standard Model gener-
ically predict such scenarios. The wealth of experimental information that can be obtained from the
Cosmic Microwave Background is not yet conclusive about whether cosmic inflation was driven by one
or by many scalar fields. Nevertheless, multifield inflationary models produce a great diversity of fea-
tures that will potentially be measurable in the foreseeable future. In this thesis we wonder about the
following elemental question regarding the widely used slow-roll approximation in multifield models:
what are the conditions for multifield inflation? As surprising as it might seem, that question, which
could be considered as a prior to further developments, did not have a closed answer in the literature
on the subject. In this work we give the correct interpretation of the slow-roll approximation in mul-
tifield models of inflation and present some interesting new phenomena that arise from this improved
understanding.
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1

Preamble

Was inflation driven by a single scalar field or by many of them? This is one of the most primordial
questions that one can ask in the context of inflationary models. It is also the question we had in the
back of our minds while working in this thesis.

There are some good reasons why one should care about multifield models of inflation. One of them is
that theories that go beyond the Standard Model (those that try to explain the fundamental physics at
the high energy scales at which inflation operated) such as string theories or quantum gravity theories
generically predict the presence of more than one scalar field. Therefore, chances are that multiple
fields were present at the time inflation happened. Moreover, current experimental data, albeit largely
improved over the past few decades, is not yet accurate enough to discard any of the two classes of
models. Multifield models of inflation allow for new phenomena that cannot be produced by a single
field.

Soon after we began to try to answer the elemental question, we realized that it was imperative to
properly understand the slow-roll approximation in multifield models of inflation. This approximation
gives rise to the most popular class of paradigm to model inflation, the one that is systematically
corroborated (or at least not ruled out) by experiments. Thus, understanding the multifield slow-roll
approximation could as well be considered as a prior to further developments. As surprising as it
might sound, we did not find any clear account in the literature on the subject.

What is more, after completing this work we can affirm that that the usual treatment of the slow-roll
approximation in multifield models, which is nothing more than a naive extension of the single field
one, is not general enough. This conventional approach oversaw a whole new set of models in which
the background trajectory of the fields differs significantly from that of the single field case. The aim
of this work is to explore this new paradigm in detail and to expound some of its most immediate
consequences.

The thesis is organized as follos:

• Chapter 1: We give a general introduction to Cosmology, with an emphasis in the need for a
primordial inflationary phase.

• Chapter 2: One of the most exciting predictions of inflation has to do with the small inhomo-
geneities observed in the Cosmic Microwave Background (CMB). In this chapter we review the
basics about the study of quantum fluctuations in Cosmology.

• Chapter 3: We discuss the slow-roll approximation in single field models of inflation, fol-
lowed up by analogous calculations for the multifield scenario. Here we present our improved
understanding of the slow-roll approximation. The correct potential slow-roll parameters are
computed, and a new kind of trajectory, the slow-descent trajectory, arises.

• Chapter 4: A toy model that serves as an example of the new features introduced in the
previous chapter is presented.
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Notation
We will use natural units throughout the thesis, i.e.,

c = ~ = kB = 1. (1)

Except where otherwise stated, we will also take Planck’s mass to be equal to one, this is,

MP = 1. (2)

The signature of the spacetime metric is the usual in Cosmology: (−,+,+,+).

Commas shall be interpreted as partial derivatives: A(x),x ≡ ∂A(x)
∂x .

There is one acronym that will keep appearing: CMB stands for Cosmic Microwave Background.

Without further ado, let us begin with the introduction to Cosmology.
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Chapter 1

Lightning introduction to
Cosmology

This thesis begins with a brief review of the fundamental postulates of Cosmology and how they lead
to the basic ideas developed in the XX century, which make up the Big Bang model. Further on, in
section 1.2 the classic criticisms to the Big Bang model are expressed and, in section 1.3, Inflation is
presented as the most elegant and suitable candidate to account for those flaws. Some elements of the
simplest inflationary model, the single field model, are explored as well.

1.1 Lightning introduction to Cosmology

We tend to imagine the universe as an extrapolation of what we see when we look up at the night sky –
gigantic inflamed gaseous spheres and a bunch of other bright objects surrounded by dark nothingness.
We know that the universe is made out of many more galaxies like ours, and the stars in our night
sky are interchanged by them in our imagination. So, there we go: the universe is a very dark place
with occasional gigantic inflamed gaseous galaxies popping up. Is this a good picture?

The answer is twofold: Yes. And no.

Yes: at the scales we are used to (inside our own galaxy, even when we take the nearby clusters of
galaxies) it looks like that, no doubt. And no: when we zoom out enough, the universe seems to be
surprisingly smooth and uniform. Figure 1.1 shows the distribution of galaxies over large scales as
seen from Earth. The larger the distance, the less clumpy it gets. And this is true no matter which
direction we point our telescopes into –in one word: as seen from Earth, the Universe is isotropic on
large scales.

If the history of science has taught us anything, it is that anthropocentric views do not help us
grasp the nature of the universe. There are no reasons to think that we are living in a special part
of the cosmos, or that we are some kind of privileged observers in any sense. Thus, if we accept
isotropy, we are lead to conclude that the universe should appear isotropic around every point, that
is, homogeneous.

One should be skeptical about such statements, specially when the small fraction of the universe we
observe every night is not homogeneous at all. But at the same time, accepting them as working
hypotheses is a sensible strategy. In fact, it turns out that homogeneity of the cosmic plasma is the
fundamental principle of Cosmology. And it works much better than any other picture of the universe
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Figure 1.1: The distribution of galaxies tends to become uniform in large scales -or
early times.

envisaged so far. Thus, let us treat it as a general truth: at large scales the universe is a homogeneous
fluid.

In this section we will explore how a much sharper description of the universe arises from such a
simple statement.

FLRW, a metric that describes the universe

It is already close to impossible to find a metric that describes the Earth, an imperfect sphere as it is,
in full precision. What hope do we have then in finding a metric that describes the whole universe?

This apparently impossible task is greatly simplified if we adjust our strategy and look for a metric
that suits the principle of homogeneity. In fact, the simple metric

ds2 = −dt2 + a2(t)
(

dr2

1− κr2 + r2 (dθ2 + sin2 θdφ2)) (1.1)

is the most general representation of a homogeneous and isotropic universe.

Instead of using spherical coordinates, we can write the metric in terms of the comoving coordinates
xi,

ds2 = −dt2 + a2(t)γijdxidxj , (1.2)
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where the information about the curvature is now included in the spatial metric γij . This metric,
in either of the two forms (A.1) or (A.3), is known as the FLRW (Friedmann-Lemaître-Robertson-
Walker) metric.1

Its simplicity is remarkable. The ten initial independent components of the metric have been reduced,
due to homogeneity, to a function of time a(t) and a constant κ. Note that introducing any other term
such as a g0i component, or making a(t) depend also on the position xi, would break the required
symmetry.

One of the consequences of homogeneity and isotropy is that the spatial hypersurfaces must have
constant curvature. It is the curvature parameter κ that realizes the three possible options: κ = 0
corresponds to flat slices and κ±1 to positive and negative curvature, respectively. Any other value of
κ can be absorbed into the scale factor by a redefinition of r. To see this, take κ→ α2κ and redefine
r′ = αr. The metric then would look like

ds2 = −dt2 + α−2a2(t)
(

dr′2

1− κr′2 + r′2
(
dθ2 + sin2 θdφ2)) , (1.3)

and we could define a new scale factor a′ = αa, thus maintaining the form of the metric given above.
Latest CMB and Large Scale Structure observations[1] strongly favor a universe which is almost flat,
and for the rest of this work we will set κ = 0, unless otherwise stated.

The other parameter, the scale factor a(t), gives the relative size of the universe as a function of the
cosmic time2 t. It is customary to make the choice that the scale factor is equal to one now, i.e.,

a(tnow) ≡ a0 = 1. (1.4)

Energy-momentum tensor and Einstein Equations

Homogeneity and isotropy also put constraints on the energy momentum tensor, requiring it to take
the form of a perfect fluid,

Tµν =


−ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 . (1.5)

Its conservation equation yields

∇µTµν = 0 =⇒ ρ̇+ 3H(ρ+ p) = 0, (1.6)

where H ≡ ȧ(t)
a(t) is the Hubble parameter.

1 The FLRW metric is also called FRW, or even RW, deliberately forgetting about some great physicists that were
somehow involved in its discovery.

2The fact that there exists a unique and general “clock” to assign time to any event seems quite a big assumption
from the point of view of General Relativity. But this is again a consequence of the universe being isotropic and
homogeneous throughout its history: spacetime can be partitioned into foliations of non-intersecting global hyperplanes
that are orthogonal to the timelike geodesics. Since they do not intersect each other, there is one single parameter, the
cosmic time, that can describe time in any of the foliations.
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In this simple universe, only two of the Einstein Equations are linearly independent. They form a
system of non-linear differential equations, known as Friedmann Equations,

H2 = ρ

3M2
P

− κ

a2 (1.7)

ä

a
= −ρ+ 3p

6M2
P

, (1.8)

where MP ≡
( ~c

8πG
)1/2 ' 2.4 · 1018GeV is the reduced Planck mass, often set to one in the remainder

of this work, except when specifically indicated otherwise.

Constituents of the universe

To make some progress in the description of the universe we can choose an equation of state to
characterize the fluid. The perfect fluids relevant to cosmology obey the simple equation of state

ρ = wp, (1.9)

where w is a time-independent constant. The continuity equation (1.6) can then be integrated to give

ρ ∝ a−3(1+w). (1.10)

What kind of things can be found out there? Well, there is matter such as the visible nuclei and
electrons that make up stars and galaxies. Its pressure can be neglected and therefore ρm ∼ a−3.
We also have to account for massless particles like photons, gravitons (if any), or highly relativistic
particles like neutrinos (at least until they slow-down enough to become non-relativistic. The exact
time depends on their mass, but it is around z = 100.). These form what is known as radiation,
which is characterized by w = 1/3. Thus, in a radiation-dominated universe the energy density falls
of slightly faster than in the matter-dominated case, ρr ∼ a−4. This goes together with the idea that,
as the universe expands, photons get redshifted so that their energy density decays faster than that
of matter 3.

Interestingly enough, we have recently discovered that matter and radiation are not enough to describe
the evolution of the universe. The fact that the expansion of the universe is currently accelerating
implies that the energy density must be dominated by a mysterious fluid, fairly enough called dark
energy, with w = −1 and therefore constant energy density ρΛ ∼ a0. But there is even more to this.
Experiments show that the amount of matter that we can observe (called ’baryonic’ matter despite
the fact that some leptons are included) is not enough to account for all the matter-like energy density.
For instance, astronomical objects move with a larger peculiar velocity and attract each other more
violently than if there was only ordinary matter.

Measuring distances

The fact that the universe as a whole is changing its size makes measuring distances in it a bit involved.
One option is to take the distance between two points (say, two galaxies) to be fixed on an imaginary

3For the time being, we are accepting that the universe is expanding as a general truth. We will get to the evidence
that points towards such statement in section 1.2.
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Figure 1.2: In this example, the comoving distance between two points of the grid
is equal to 1 at any time, whereas the physical distance gets larger as time evolves.

Image taken from [2].

grid, while the grid expands or contracts. In this case, the distances are measured by the recently
introduced comoving coordinates xi. Another option is to use the physical distance, defined as

xiphysical = a(t)xi, (1.11)

which gets larger or shorter as time evolves. These two distances are schematically explained in Figure
1.2.

A comoving time that will be of particular interest later on is the comoving particle horizon, which
gives the total distance a free photon could have traveled since t = 0. Since we have set c = 1, the
comoving distance light travels in a time dt is dx = dt/a. Thus, the particle horizon is

η =
∫ t

0

dt′

a(t′) . (1.12)

The reason this distance deserves a special commentary is because regions of the universe separated
a distance greater than η apart cannot be causally connected. This concept will be crucial for our
discussion about the Big Bang model and inflation.

A brief history of the Universe

As the old slogan goes, looking far away in space means looking back in time. This makes Cosmology
be, rather than the branch of science that studies the universe, the one that cares about its history.

In this section I will review what is known about what has happened in these 13.8 ·109 years, but also
will point out the shortcomings in our understanding. We will take Table 1.1, which displays some
benchmarks in the history of the universe, as our tourist guide.

But before, let us take a small digression so that we can agree on how to describe time. There are
basically four ways to characterize any epoch in the history of the universe. First of all, we have
the obvious cosmic time t, the proper time of comoving observers, which is very useful to realize at
a qualitative level how terribly big -or small- the time scales involved are, but not as much to talk
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about physical processes. Second of all, we can use the value of the scale factor a(t), or even more
commonly, the redshift z, given by

z(t) = 1
a(t) − 1. (1.13)

We can also use the temperature of the cosmic fluid as an indicator. The wavelengths of the photons
get redshifted as the universe expands, which makes their temperature scale as T ∼ a−1. We can use
the temperature we measure now to obtain

T = T0

a(t) , (1.14)

where T0 ' 2.725K.

Last but not least, we might as well talk about the energy of the fluid, given simply by kBT , which
is the reason why I will abuse of the language and use the two interchangeably. These energy scales
are much more useful to unveil the physics behind them. As an example, the values today would be
t0 ' 13.8 · 109 years; a0 = 1 or z0 = 0 (by definition); T0 = 2.725K; and kBT0 = 2.35 · 10−4eV .

Having set the stage, we are now ready to make the leap and start from the beginning –the beginning
of it all, in fact.

Cosmic time Energy Redshift

Planck epoch (?) < 10−43 s 1018 GeV
String scale (?) & 10−43 s . 1018 GeV
Inflation (?) & 10−34 s . 1015 GeV
Baryogenesis (?) < 10−10 s > 1 TeV

Electroweak unification 10−10 s 1 TeV
Quark-hadron transition 10−4 s 150 MeV
Dark matter freeze-out (?) ? ?
Neutrino decoupling 1 s 1 MeV
Electron-positron annihilation 6s 0.5 MeV
Big Bang Nucleosynthesis (BBN) 3 min 100 keV ∼ 108

Matter-Radiation Equality 104 yr 1 eV 104

Recombination 260-380 kyr 0.26-0.33 eV 1100-1400
Photon decoupling (CMB) 380 kyr 0.23-0.28 eV 1000-1200
Reionization 100-400 Myr 2-7 meV 25-6
Galaxy formation 600 Myr 1 meV ∼ 10
Dark energy-matter equality 109 yr 0.33 meV 0.4
Now 13.8 Gyr 0.24 meV 0

Table 1.1: Brief summary of the history of the Universe. The events marked with a
question mark are either based on more speculative ideas, or fewer details are known

about them.

The history of the universe since the first 10−10 seconds to today is governed by physical processes
that are well known and established by experiments. But beyond that time, energy scales that have
yet not been probed in particle accelerators (& 1TeV) start being relevant, and we cannot rely on
the known physics anymore. This is certainly a drawback, but it can also be regarded as good news:
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exploring the very beginning of the universe could shed some light on the exciting and unknown high
energy physics.

Very little is known about the laws of physics around the string scale or grand unification epochs;
hence the question marks in Table 1.1. The unanswered questions about inflation, on the other hand,
are of a very different kind. Of course, inflation is the main topic of this Master’s Thesis, and as
such, it will be explained in detail in due course. For the time being, it is enough to point out that
although the full details of the process are still obscure, there is a general consensus in regarding the
inflationary theory as a well established fact about the history of our universe.

Some more unanswered questions surround baryogenesis. There is no reason to suppose a primordial
matter/anti-matter asymmetry, but we do observe an overabundance of matter over anti-matter today.
Although many ideas to predict the observed amounts of matter and anti-matter exist, none of them
is singled out by experiment, and so the question remains open.

Further down the energy scale we begin stepping on solid, experimentally tested ground. Around
100GeV the electroweak symmetry is broken and the gauge bosons of the weak interactions W±

and Z receive their masses through the Higgs mechanism. At temperatures below 100MeV we find
ourselves at the energy scale of the strong interactions, where quarks and gluons are able to form
bounded systems such as baryons and mesons. Before that, the universe is too hot to let these
bounded systems come to birth; every time one baryon or meson is created, the high temperature
of the plasma excites it back to the unbounded state. From here on, our arguments will follow that
simple logic: particles that we observe today as bounded states will only be formed when the energy
of the cosmic plasma drops below their binding energy.

Dark matter freeze-out is the next one on the list. As was already mentioned, little is known about
its properties, but since it interacts with ordinary matter very weakly, we expect it to have decoupled
relatively early on. For instance, the popular WIMP (Weakly Interacting Massive Particle) models
explain the observed relic amount of dark matter surprisingly well, and they would freeze out around
1MeV.

It is a consequence of the electroweak phase transition that the strength of the weak interactions
decrease as the temperature of the universe drops. As a result, particles that only interact with the
plasma through weak interactions, the case of neutrinos, stop interacting with it at around 1MeV.

Shortly after neutrinos have decoupled from the primordial plasma, the energy drops below 500keV,
allowing electrons and positrons to start annihilating each other. The energy created in such reactions
is transmitted to photons, still coupled to the plasma, but not to the neutrinos.

Three minutes later, light elements (almost exclusively hydrogen and helium) are created because the
energy needed to separate them is above 100keV. This process is known as Big Bang Nucleosynthesis
(BBN).

We have to wait thousands of years until the next relevant event takes place. Until ∼ 1eV photons,
electrons and protons are tightly coupled together via Compton and Coulomb scattering, and almost
all hydrogen is ionized. Energetics favors the production of neutral hydrogen, that has a binding energy
of ε0 = 13.6eV, but there are so many more photons than protons that the production of hydrogen
atoms is delayed until 0.1eV. From this moment on, photons do not interact anymore with the plasma
and simply free stream. This turns out to be a key process to understand modern Cosmology. We,
observers that live 13.7 · 109 years in the future, can observe those last-scattered photons now in
the night sky. Due to the massive expansion of the universe, the light has been redshifted into the
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microwave frequency, and hence the name of that last-scattering surface is the Cosmic Microwave
Background (CMB). The great majority of improvements in Cosmology in the last few decades have
come from more and more detailed observation of those ancient photons.

Our historical review might as well end up here. Being aware as we are that we forgot to comment on
some important events such as reionization or galaxy formation, we hope that the reader has gained
by now a general understanding of the context in which this thesis is set.

Before finishing, there were two items of the table that went unnoticed so far on which I would
like to comment now: the epochs of matter-radiation and matter-dark energy equality. Before 1eV
most of the constituents of the universe behaved as the radiation mentioned earlier, so that the total
energy density was dominated by radiation, i.e., ρ ' ρr ∼ a−4. Around 1eV non-relativistic matter
starts playing an important role and ρm ≈ ρr. From that moment on and until a very short –in the
cosmological sense– time ago, the universe was dominated by matter. But at an energy of around
0.33MeV , the energy density of the universe began to be dominated by the mysterious dark energy.

Satisfactory, isn’t it? We seem to know a lot of stuff about how we got here. But beware! Don’t count
the chickens before they’re hatched. It is the aim of the following sections to explain why this is an
incomplete and rather problematic view of the history of our universe –as well as to give an elegant
solution.

1.2 The Big Bang theory

Besides being a popular sitcom where a theoretical physicist is the main character, the Big Bang
theory is also the name given to an equally popular scientific theory developed in the XX century. In
the following sections we will go over the main ideas, and also find out why it does not work. But
before criticizing it for the flaws it might have, let us take a minute to admire what it got right.

1.2.1 Successes

The birth of the Big Bang theory is usually related to an experimental discovery by Hubble in 1929.
He found out that galaxies are receding away from us at a speed proportional to their distance, that
is,

v = H0xphys, (1.15)

where xphys is the physical distance the galaxy is at, and H0 is the Hubble parameter at the time of
the observation. The original plot that appeared in the historic article [3] is shown in Figure 1.3. This
observation is corroborated by modern experiments.

It was a decisive discovery in the way we understand the evolution of our universe because it taught
us two important things. First of all, that the universe is expanding; it is not static. Second, that
if objects are receding away from us and we play the film backwards, then we should see how the
universe shrinks. Thus, the universe should have been denser and therefore hotter in the past.4

These ideas can be regarded as the starting point of a cosmological model that has the power to
explain all of what we discussed in the previous sections. In sum, it successfully explicates for the
expansion of the universe understood as a homogeneous fluid, it can explain the abundance of light

4These ideas were not easy to swallow: the expanding view of the universe was not accepted until the seventies,
when the CMB was measured for the first time.
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Figure 1.3: Hubble’s discovery: the velocity at which distant objects recede from
us is proportional to their distance. Taken from [3].

elements and can account for the formation of structure. There were not many questions that escaped
from being answered by this model.

However, another experiment carried out in 1965, this time by Penzias and Wilson [4], was about to
change things5. Almost unintentionally, they discovered and measured the radiation coming from the
CMB. What they saw is simulated in Figure 1.4. No matter where they pointed their telescopes into,
the measurement was the same: a constant background noise. The homogeneity of the CMB has been
corroborated by more precise measurements, the last of which [1] took a beautiful picture of the CMB
shown in Figure 1.5.

Actually, to some extent, this was a great success of the predictive power of the Big Bang model.
Dicke, Peebles and Wilkinson, from Princeton, had already concluded, before the experiment, that
such a microwave background is a direct consequence of the massive energy blast of the Big Bang.
However, it also hid a more deep and problematic puzzle. The tremendous uniformity of the radiation
made themselves wonder: why is the CMB so homogeneous?

1.2.2 Problems

To understand why the question posed above is pointing at a flaw of the Big Bang model, we will
discuss two problems related to the homogeneous initial conditions.

Horizon problem

First of all, let us analyze the question we want to answer. The universe today, 13.7 · 109 years after
the last scattering, is quite homogeneous. And inhomogeneities are gravitationally unstable, growing
in time –denser regions of space attract more matter. Therefore, the universe in the time of the CMB
should have been extremely homogeneous. In principle there is nothing wrong with that.

The worries arise when we learn that images like the one shown in Figure 1.4 encompass a large
number of causally disconnected regions of space. This means that photons in two separated parts of

5The history behind the discovery is certainly worth a look. For instance, the book 3K:The Cosmic Microwave
Background Radiation by R.B.Partridge covers it.
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the CMB could not possibly interact, and therefore it is surprising how they knew that they should
thermalize with each other. Let us put this in more precise terms. We begin by taking the comoving
particle horizon defined in eq.(1.12) and writing it in the following way

η =
∫ ln(a)

ln(ai)
d ln a′(a′H)−1, (1.16)

where by the subscript i we mean the initial value, at t = 0. We interpreted it as the total length
light has traveled since the beginning of the universe. Therefore, we argued, objects that are further
apart than η could never have communicated.

Figure 1.4: A view of the sky as would have been seen by the microwave receiver
of Penzias and Wilson, if it could have surveyed the whole sky. The white blurred
line is due to the radiation of our own galaxy. It is a simulated image taken from
http://wmap.gsfc.nasa.gov/, the official NASA web page of the WMAP mission.

Figure 1.5: Last image of the CMB, as got by the Planck satellite in 2015. Despite
the heterogeneous appearance, the difference in temperature between the differently
colors is around 10−5K. Perhaps, the most perfect blackbody spectrum known to
date. (Radiation coming from our own galaxy has been removed). Image taken from

http://planck.cf.ac.uk/science/cmb.

To make the following point clearer, it is useful to introduce another comoving distance with a similar
interpretation. (aH)−1 is called the Hubble radius, and it is the distance that photons can travel
within one Hubble time. Therefore, if two particles are further apart than (aH)−1, then they cannot
talk to each other now.

Combining the Friedmann equation (1.7) with eq. (1.10) we get

http://wmap.gsfc.nasa.gov/
http://planck.cf.ac.uk/science/cmb
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Figure 1.6: The horizon problem in the Big Bang model. p and q are two points in
opposite directions in the CMB. There is not enough time for their past light cones
to intersect, and therefore they were not in causal contact. The same applies to any
two points that are separated by more than 1 degree on the sky. Picture taken from

[2]

(aH)−1 = 1
H0

a
1+3w

2 . (1.17)

All common sources of energy (except dark energy, but that only dominates at the very end) satisfy
the Strong Energy Condition, i.e., 1 + 3w > 0, and so it is quite reasonable to assume that the
Hubble radius increases monotonically as the universe expands. Thus, the integral in eq. (1.16) will
be dominated by the latest contribution. Indeed, in the limit t→ 0 we have that ai → 0 and we get,
at any time t

η = 2
1 + 3w (aH)−1. (1.18)

So, the comoving particle horizon is proportional to the Hubble radius, and thus it increases as the
universe expands. This automatically implies that regions of the universe that are beginning to be
in causal contact now were not able to communicate in the past. In particular, there is no way in
which photons from the last scattering that we observe today in the CMB could have reached thermal
equilibrium. Figure 1.6 shows this problem schematically.

In fact, just to mention some numbers, the CMB is made up of about 104 causally disconnected
patches. Yet observations say that the CMB is an almost perfect blackbody spectrum, with a relative
difference in temperature of O(10−4)K. This is known as the Horizon problem.

Flatness problem

It is somewhat confusing per se that our universe is very close to being exactly flat now. Given
that matter affects curvature and that the universe is such a “dynamic” place, it seems too big a
coincidence. But this issue gets thornier early on.

Looking again at the Friedmann equation (1.7) and defining a critical density ρcrit ≡ 3H2, we see that
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∣∣∣∣1− ρ

ρcrit

∣∣∣∣ = κ

(aH)2 . (1.19)

Here too, as we saw in the preceding section, the Hubble radius (aH)−1 increases with time. But then
this means that

∣∣∣1− ρ
ρcrit

∣∣∣ must diverge with time, or, in other words, the universe must have been
much flatter in the distant past. Putting some numbers into the mix, the amount of homogeneity we
measure today implies that at the time of the BBN the left hand side must have been of O(10−16).

This extremely fine tuning at the beginning of the universe is hard to swallow. It somehow implies
that all massive objects had just the right amount of initial velocity: if they had been slower, the
universe would have recollapsed very quickly, while if they had been too fast, the universe would have
expanded too much and would have become almost empty. This is what we call the flatness problem.

A small philosophic digression

It is worth pointing out that the horizon and flatness problems are not, strictly speaking, faults of
the theory. The Big Bang model is able to predict the flatness we observe today, and even the very
homogeneous CMB. The only caveat is that in order to do so it needs a really precise and fine-
tuned set of initial conditions. In fact, the underlaying question is profound: should we consider the
initial conditions as part of a physical theory? For instance, Maxwell’s equations do not give us any
information about what the initial state is; they rather let us evolve a given set of initial conditions.

But still, needing fine-tuned values for the beginning of our universe is somewhat disappointing. The
reason might be that we have been brought up being skeptical about improbable accidents –especially
when that accident results in our universe and ourselves.

No need to worry too much, though. Inflation is an elegant mechanism that explains the homogeneity
from a quite general set of initial conditions. The skeptical reader will sigh in relief.

1.3 A first look at inflation

An early stage of inflation was first proposed by Starobinsky [5] and Guth [6]. These first attempts
explained that inflation could solve the horizon and flatness problem, but the specific models were
sligtly problematic. Shortly afterwards, slow-roll inflation was proposed independently by Linde[7]
and by Albrecht and Steinhardt[8].

These two ideas, namely how inflation fixes the problems of the Big Bang theory and what slow-
roll inflation is, will be presented in this section. Once they have been introduced, we will have
covered, albeit rather superficially, most of what is known as the ΛCDM model, the Standard Model
of Cosmology.

1.3.1 A shrinking Hubble radius

As promised, we are about to give the beautiful idea that cures the weaknesses of the Big Bang model.
The title of this section says it all: let us postulate an initial epoch where the Hubble radius shrank.
Still not convinced? Let me rephrase it a bit: Particles that do not communicate today were inside
the comoving particle horizon long ago, and thus in causal contact.
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To see why we need an era of shrinking Hubble radius to account for such a behavior, let us look at
eq. (1.16) again. It is possible that η is larger than (aH)−1 now, so that particles that are not in
causal contact today were in the past. In order to achieve this we need that (aH)−1 was once bigger
than it is now, so that η got most of its contribution from early times.

Such a situation is depicted in Figure 1.7. It should be said that what we called the initial singularity
at t = 0 is not a singularity anymore; it just indicates the transition point between an inflationary era
and the standard Big Bang evolution.

Figure 1.7: Inflationary solution to the horizon problem. The comoving Hubble
radius (called “sphere” here) shrinks during inflation. All points in the CMB were in

causal contact at some point. Picture taken from [2]

So we have solved the Horizon problem! Now the homogeneity of the CMB is a natural consequence:
temperature is uniform because distant photons did interact in the past and could reach equilibrium.

What about the Flatness problem? Well, let us look again at eq.(1.19). If the Hubble radius (aH)−1

shrinks, then inflation drives the universe toward flatness; independently of what the fraction ρ/ρcrit
was before inflation, it will be very close to zero after it. Second problem solved, then.

Let us examine this idea of the shrinking Hubble radius more mathematically and see what specific
conditions are needed for it.

1.3.2 Equivalent conditions for inflation

A decreasing Hubble radius means that

d

dt

(
1
aH

)
< 0. (1.20)

Manipulating this expression we see
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d

dt

(
1
aH

)
= d

dt
(ȧ−1) = − ä

ȧ2 < 0, (1.21)

and, therefore

ä > 0 (1.22)

gives an inflationary solution. Inflation is indeed an epoch of accelerated expansion.

Another way of looking the same calculation is in terms of H

d

dt

(
1
aH

)
= d

dt
(ȧ−1) = 1

a
(ε− 1) < 0, (1.23)

where we have defined ε to be
ε ≡ − Ḣ

H2 . (1.24)

Thus, inflation exists if and only if
ε < 1. (1.25)

This explains the other name given to inflation: the quasi-de Sitter expansion. The purely de Sitter
limit is ε→ 0, i.e., H = constant.

What kind of fluid does support inflation? Take a look at eq. (1.8). As a(t) is always positive, an
inflationary regime with ä > 0 requires −(ρ+ 3p) > 0, i.e.,

p <
−ρ
3 . (1.26)

But this is a rather strange fluid because a) it violates the SEC mentioned above and b) its pressure is
negative. As we will see in section 1.3.3, these conditions are quite easy to fulfill in a physical theory.

How much inflation?

We have repeatedly said that we appear to live in a homogeneous universe. If inflation is to solve the
Horizon problem, then it should explain the uniformity on temperature of the most distant points we
are able to see today. True, probably the universe is homogeneous at even larger scales, but without
further speculations we can only set a lower bound on the amount of time inflation should have lasted.
So, in order to solve the Horizon problem we need that, at the very least, the observable universe
today fits in the Hubble radius at the beginning of inflation, i.e.,

(a0H0)−1
< (aIHI)−1

, (1.27)

where the subscript I stands for the beginning of inflation.

The ratio in temperature (or energy) since inflation ended until today is

T0

Te
' 10−28, (1.28)
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where the subscript e labels the end of inflation.6

Now, in order to simplify the calculations, let us suppose that after inflation the universe has been
always dominated by radiation. This is a crude approximation since, as we have seen, there have
also been epoch dominated by matter or by dark energy, in which the universe evolved differently.
However, it turns out that this computation gives a pretty good estimation of the time inflation needed
to last. As we saw earlier in this introduction, during radiation era we have that H ≡ ȧ

a ∝ a
−2. This

allows us to relate the Hubble radius to the ratio of temperature of eq. (1.28) quite easily:

T0

Te
= ae
a0

= a0H0

aeHe
. (1.29)

Combining equations (1.27) and (1.29) we see that

(aIHI)−1 & 1028(aeHe)−1. (1.30)

Hence, to be able to explain the horizon and flatness problems, the Hubble radius during inflation
had to shrink about 1028 times. Furthermore, supposing a purely de Sitter inflation, that is, ε = 0 or
H = const., we get that

ae
aI

& 1028. (1.31)

These huge numbers makes us favor logarithmic scales. The number of efolds N are defined as follows:

dN ≡ ±Hdt, or Ne −NI ≡ ± ln
(
ae
aI

)
(1.32)

where the plus and minus signs refer to two different conventions: either the number of efolds increases
(plus) or decreases (minus) as time goes on.

With this definition, we get that the number of efolds that inflation should have lasted is

ln
(
ae
aI

)
= |Ne −NI | & 64. (1.33)

1.3.3 Single field inflation

Single field inflation is a really simple physical model that can account for a inflationary regime. It is
worth noting that, as simple as it might be, it is not yet ruled out by experiments –to some extent, it
is even favored by them.

The model consists of a scalar field φ(t), called the inflaton, which is minimally coupled to gravity.
The action, therefore, should be the sum of the Einstein-Hilbert action and the action for a scalar
field with a canonical kinetic term:

S =
∫
d4x
√
−g
[
R

2 + 1
2g

µν∂µφ∂νφ− V (φ)
]
. (1.34)

6The precise values depend on the specific details of reheating and the post-inflationary thermal history of the
universe. The numbers we use here are a rough estimation.
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The potential accounts for the self-interaction of the inflaton. Here we will not ask ourselves about the
nature of the field φ; instead, we will use it as a clock that parametrizes the evolution of the energy
density. Although in principle the inflaton could depend also on the position, φ(x, t), the symmetries
of the FLRW metric require that it must be homogeneous, i.e., φ(t).

Varying the action with respect to the metric we get the Friedmann equations for single field inflation

3M2
PH

2 = φ̇2

2 + V (φ) (1.35)

M2
P Ḣ = − φ̇

2

2 . (1.36)

We can also infer what the density and the pressure are in terms of φ by identifying T 0
0 = ρ and

T ij = −pδij (cf. eq.(1.5)):

ρ = φ̇2

2 + V (φ) (1.37)

p = φ̇2

2 − V (φ). (1.38)

On the other hand, the variation of the action with respect to φ gives the Klein-Gordon equation

φ̈+ 3Hφ̇+ V,φ = 0, (1.39)

where we the notation with the comma means, as usual,

V,φ≡
∂V

∂φ
. (1.40)

Now, let us prove that this model does indeed support inflation. In eqs.(1.22), (1.25) and (1.26) we
wrote down three equivalent conditions an inflationary regime should fulfill. The one involving ε is
the most useful one. In single field inflation it becomes

ε = φ̇2

2M2
PH

2 < 1. (1.41)

Therefore, making use of the Friedmann equation (1.35), we see that the condition for inflation is to
have a potential energy that dominates over the kinetic one, that is:

ε = 3φ̇2

φ̇2 + 2V
' 3φ̇2

2V , (1.42)

where the fact that ε < 1 implies that the potential energy must dominate in the denominator;
the approximation follows without further physical assumptions. Figure 1.8 shows an example of a
potential that supports inflation.

So far, so good. But, as we recently showed, there is a further requirement: inflation should last long
enough, i.e., about 60 efolds. It is obvious that if we want to keep ε < 1 then it must not increase too
quickly. In more precise terms, ε should not change much in one Hubble time, which means that the
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Figure 1.8: Example of a potential. Inflation may happen in the shaded region,
where the kinetic energy of the field is much smaller than its potential energy. Picture

taken from [2]

quantity ε̇
εH must be small. We can push this condition a bit further to realize that

ε̇

εH
= 2

(
φ̈

φ̇H
+ ε

)
. (1.43)

We see that if we wanted to sustain inflation for a long period of time then we would need both ε� 1
and

η ≡ φ̈

φ̇H
� 1, (1.44)

where we introduce a second parameter called η, in order to keep track of the rate at which ε changes.

Slow-roll approximation

So far no approximations have been made. We only pointed out that in a regime where both ε � 1
and η � 1, inflation occurs and persists in time. In particular, there could be more models where
these conditions were not realized, as inflation only needs ε < 1. However, this regime of (ε, η) � 1
looks very natural if we are to ask a prolonged epoch of inflation.

The Slow-roll approximation consists in using these conditions to simplify the equations of motion.
ε� 1 implies that 1

2 φ̇
2 � V , and η � 1 that φ̈� φ̇H. These two result in the following approximated

forms of the Friedmann equation (1.35) and the equation of motion for φ(t), eq.(1.39):

3M2
PH

2 ' V, (1.45)

3Hφ̇ ' −V,φ . (1.46)

Surprisingly enough, ε and η are called slow-roll parameters. The sentence “at first order in slow-roll”,
which will keep coming up in this work, means that terms proportional to second and higher powers
of the slow-roll parameters have been neglected.
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Although the slow-roll approximation is not the only possible mechanism for inflation (recall that
the requirement for inflation is that ε < 1; (ε, η) � 1 is a further supposition), it is by far the most
popular and well established one, perhaps because the resulting equations are very simple, but also
because so far it is in agreement with the observations. In this work only these types of models will
be considered.

Other models of inflation

When thinking about inflation, it has to be taken into account that it could have operated at a energy
scale as high as 1015GeV, far away from the physics reproducible in our accelerators7. That is why,
despite the theoretical effort in, for instance, working out effective field theories of inflation, or trying
to derive fundamental properties from string theory, the basic questions are still a mystery: what is
the inflaton? Why did the universe start in such a high energy state? Our ignorance can be measured
in the great number of available inflationary models that agree with observations. Although single
field inflation is by far the simplest model, it is not the only way in which an inflationary epoch can
be physically realized.

Let us, for instance, question the assumptions that were implicitly made in the single field action,
eq. (1.34). Why should the field couple minimally to gravity? And why should we suppose that the
field has a canonical kinetic term? Or, for that matter, why should we use Einstein gravity, given the
extremely high energy scales involved? All these questions result in different models of single field
inflation, none of which will play an important role in this thesis.

There is one group of models, though, around which this work will revolve considerably: multifield
inflation. Of course, assuming the inflaton was the only dynamically relevant field during inflation
was no more than a hypothesis, and there is no reason why we shouldn’t, instead of eq.(1.34), consider
an action that looks like

S =
∫
d4x
√
−g
[
R

2 + 1
2g

µν∂µφ
I∂νφI − V (φI)

]
, (1.47)

where the capital Latin index I labels the different possible fields.

There will be enough time to go deeper into multifield models of inflation later. For now, it is enough
to bear in mind that several models of inflation are able to overcome the classical problems of the
Big Bang model. In order to try to elucidate which one is the model that best suits our universe, we
should make some more measurable predictions out of these theories. That is precisely the aim of the
upcoming chapter.

7To be precise, the energy scale at which inflation happened is not constrained at all: It could range from 103GeV
to 1015GeV.
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Chapter 2

Quantum fluctuations in inflation

We have presented inflation as a simple and elegant mechanism that allowed us to overcome the issue
of the homogeneity and flatness of the universe without requiring a fine-tuned set of initial conditions.
But what about the inhomogeneities? After all, the universe is not completely homogeneous –the fact
that we, highly inhomogeneous carbon-based beings, exist is a undeniable proof. Perhaps the most
exciting aspect of the inflationary theory is that, being introduced to explain homogeneity, is also able
to explain the small inhomogeneities.

The general idea goes as follows. Quantum fluctuations δφ(x, t) around the classical background of the
inflaton field φ(t) make some regions of the universe end inflation slightly later or sooner than others.
Thus, different parts undergo different evolutions; the quantum-level inhomogeneities are stretched
by the great expansion of the universe and inhomogeneities become arbitrarily big. Hotter or colder
spots in the CMB sky are the consequence of those quantum fluctuations in the early universe.

Before going into detail, a remark about the scope of the theory is in order here. As in any physical
theory, one could start by expanding around the homogeneous universe up to first order. Linear
treatment of the perturbations, nevertheless, ceases to be valid on small scales in the recent past.
As S. Dodelson puts it, “we can never hope to understand cosmology by carefully examining rock
formations on Earth”[9], but even the processes at intermediate scales –collapse of matter into a
galaxy, star formation, etc.– are much too complicated to allow comparison between linear theory
and observations. The best probe of small inhomogeneities with which our linear theories can make
contact is again the CMB. And so our efforts will be directed towards trying to explain the small
fluctuations in the Cosmic Microwave Background. How these fluctuations become galaxies and stars
(eventually also rocks on Earth) is the concern of a different branch of Cosmology, and is out of the
scope of the present work.

All these points will become much clearer in this chapter, which is largely based on [10], [11] and [12].
Although single field models of inflation are at the back of our minds for most of this chapter, many
of the results are also valid in multifield scenarios. The latter will be discussed separately in section
2.4. But let us now begin from the beginning which is, as usual in physics, the harmonic oscillator.

2.1 Quantization of a massless scalar field in de Sitter

Although its title may suggest it, this is not merely an academic section. In section 2.3.3 it will be
shown how cosmological perturbations can be related to the simpler problem of quantizing a massless
scalar field in de Sitter. Thus, this section will provide most of the results needed to understand the
relevant physics behind the origin of structure.
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The action for the massless scalar field is given by

S =
∫
d4x
√
−g
(
−1

2∂µφ∂
µφ

)
. (2.1)

It will turn out to be more convenient to write the metric in terms of a conformal time τ instead of
the cosmic time t, defined by

τ =
∫

dt

a(t) , (2.2)

where in the de Sitter case a(t) = e−Ht, and thus

τ = − 1
aH

. (2.3)

The de Sitter metric with this conformal time is

ds2 = a2(τ)
(
−dτ2 + dx2) , (2.4)

The action for the massless scalar field in de Sitter spacetime is then

S = 1
2

∫
dτd3x a2 (φ′2 − (∇φ)2) , (2.5)

where a prime denotes a derivative with respect to the conformal time τ .

It is very similar to a harmonic oscillator. Thus, motivated by the fact that we know everything about
harmonic oscillators in Minkowski spacetime, we try to get rid of the annoying scale factor a with the
change of variables

u ≡ aφ. (2.6)

At first sight, it seems that have generated an unwanted term proportional to uu′, but that can be
fixed with an integration by parts, after which the action reads

S = 1
2

∫
dτd3x

(
u′2 − (∇u)2 + a′′

a
u2
)
. (2.7)

Now the first two term are the same as in Minkowski spacetime, and the fact that this scalar field is
living in a de Sitter spacetime is represented by the third term, which can be seen as a time dependent
effective mass m2

eff = −a′′/a. The Fourier conjugate1 of the field u is

u(τ,x) =
∫

d3k

(2π)3uk(τ)eik·x. (2.8)

The function uk(τ) has to satisfy the classical equation of motion in Fourier space. It turns out to be
the equation for a harmonic oscillator with a time-dependent mass:

u′′k +
(
k2 − a′′

a

)
uk = 0. (2.9)

By virtue of eq.(2.3) we have that
a′′

a
= 2
τ2 . (2.10)

1See section 2.3.1 to look at our choice of normalization of the Fourier conjugates.
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Thus, the mode equation is

u′′k +
(
k2 − 2

τ2

)
uk = 0. (2.11)

Let us continue by employing the standard quantization techniques upon the field u. First, we promote
it to a quantum field û and we expand it in Fourier space,

û(τ,x) =
∫

d3k

(2π)3 {uk(τ)âke
ik·x + u∗k(τ)â†ke

−ik·x}. (2.12)

Alternatively, the Fourier components uk are promoted to operators and expressed as

uk → ûk = uk(τ)âk + u∗−k(τ)â†−k, (2.13)

where â† and â are the usual creation and annihilation operators, satisfying the canonical commutation
relations

[âk, âk′ ] =
[
â†k, â

†
k′

]
= 0 and

[
âk, â

†
k′

]
= (2π)3δ(k − k′). (2.14)

These commutation relations are satisfied if and only if the mode functions uk are normalized as
follows:

〈uk, uk〉 ≡
i

~
(u∗ku′k − u∗′k uk) = 1. (2.15)

Our aim is to solve the equation (2.11). As is the case for any second order differential equation, we
need two boundary conditions. The first is given by eq.(2.15), but we still need another one. Let us
look for more information in the vacuum states.

The vacuum state |0〉 is the state annihilated by âk, i.e.,

âk|0〉 = 0. (2.16)

As we just said, the mode functions uk(τ) are not completely specified by the solution of their equation
of motion. Thus, there is no unique notion of the vacuum; different choices for u(τ) give different
vacuum solutions. Or, in other words, the choice of vacuum is our second boundary condition.

What vacuum should we choose? Well, to make a proper choice we should have more information about
the physics involved in the problem. This will become clear later, when we discuss the cosmological
perturbations. So the question remains open for the time being.

There is one last thing we can compute now that will become handy later on. The mean square
expectation value of the operator ûk in the ground state, i.e., the zero-point function, is

〈|û2
k|〉 = 〈0|û†kûk|0〉 (2.17)

= 〈0|
(
uk(τ)âk + u∗−k(τ)â†−k

)(
u∗−k(τ)â†−k + uk(τ)âk

)
ûk|0〉 (2.18)

= |uk(τ)|2, (2.19)

where in the second line we have used eq.(2.13), and in the third line we played with the commutation
relations of the creation-annihilation operators.



24 Chapter 2. Quantum fluctuations in inflation

Enough warming-up. It is time to tackle the real physical problem, that is, how to describe cosmo-
logical perturbations. The driver warns you: it is quite a long trip. Are you ready?

2.2 Cosmological perturbation theory

In order to study cosmological perturbations we can split all quantities X(t,x) into the background
value X̄(t) and small perturbations δX(t,x), that is,

X(t,x) = X̄(t) + δX(t,x). (2.20)

What kind of quantities should we perturb? Well, there are some that come quickly to our mind.
The energy density ρ, whose perturbations δρ are observed in the CMB is perhaps the most obvious
one. We also have the pressure p or the inflaton φ. Anything else? Sure thing. Einstein Equations
tell us that matter (or rather the energy-momentum tensor Tµν) is coupled to gravity. Therefore, a
consistent approach must take into account both perturbations to the energy-momentum tensor and
to the metric. This is getting complicated.

Let us try to simplify the problem. At the time of recombination the universe was even more homo-
geneous and flatter than what it is now, so supposing background homogeneity and flatness is all the
more justified. Moreover, given that the observed perturbations in the CMB are so small, expanding
the Einstein Equations at linear order,

δGµν = 8πG δTµν . (2.21)

will certainly approximate the full solution to very high accuracy.

So now we have a strategy: write the linearized version of the Einstein Equations and try to solve
them. Following the notation used in Chapter 5 of S. Weinberg’s Cosmology book [10], the most
general perturbed metric can be written as2

ds2 = −(1 + E)dt2 + aJidx
idt+ a2 [(1− 2ψ)δij +Hij ] dxidxj , (2.22)

where some properties of the new functions introduced will be detailed below. The full metric is a
sum of the homogeneous FLRW metric and a linear perturbation hµν , i.e.,

gµν = ḡµν + hµν . (2.23)

On the other hand, perturbations to the energy-momentum tensor after inflation are

δTij = p̄ hij + a2δijδp, δTi0 = p̄ hi0 − (ρ̄+ p̄)δui, δT00 = −ρ̄ h00 + δρ (2.24)

With these complicated forms it is not yet easy to see why solving the linearized Einstein Equations
is the good strategy to follow. It is the aim of the following sections to show how calculations can be
sweetened up.

2As most of the computations involved are algebraically quite heavy, I encourage the interested reader to check S.
Weinberg’s text whenever this one becomes too vague.
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2.2.1 SVT decomposition

We have an ace up the sleeve: the FLRW background is highly symmetric. If we decompose all the
quantities we have introduced into scalar (S), vectors (V) and tensors (T), then homogeneity and
isotropy of the background ensure that the perturbations of each type evolve independently, i.e., they
are not coupled in the equations of motion.3

The SVT decomposition for the vectors and tensors in the metric is the following:

Ji = ∂iF −Gi, with ∂iGi = 0 (2.25)

Hij = ∂ijB + ∂iCj + ∂jCi +Dij , (2.26)

where
∂iCi = 0, Dij = Dji, Di

i = 0, ∂iDij = 0. (2.27)

The decomposition of the vector, sometimes called Helmholtz decomposition, splits the 3 degrees of
freedom of the spatial vector into a divergence-free vector, Gi, and a rotational-free part, ∂iF . The
tensor Hij has been decomposed into a symmetric, traceless and transverse tensor Dij , a divergence-
free vector Cj and a scalar B. We can do a quick check to verify that the ten degrees of freedom of the
original metric δgµν are still there. After the decomposition we have four scalars, two divergence-free
vectors and one symmetric, traceless and transverse tensor. In total, (4 × 1) + (2 × (3 − 1)) + (1 ×
(6− 1− 3)) = 10 degrees of freedom.

The decomposition for the vectorial and tensorial quantities appearing in the perturbation to the
energy-momentum tensor is completely analogous. Following Weinberg [10], we get

δT00 = −ρ̄h00 + δρ (2.28)

δTi0 = p̄hi0 − (ρ̄+ p̄)
(
∂iδu+ δuVi

)
(2.29)

δTij = p̄hij + a2 [δijδp+ ∂i∂jπ
S + ∂iπ

V
j + ∂jπ

V
i + πTij

]
. (2.30)

As mentioned, once the perturbations have been decomposed this way, the Einstein Equations decouple
in the three modes and it is easier to study them. Vector perturbations such as Gi, Ci or δuVi are not
created by inflation, and even if they were, they decay with the expansion of the universe. Hence, we
will ignore them in this work. Tensor fluctuations are the cause of primordial gravitational waves we
are still eager to observe, for instance, via polarization of the CMB. In fact, there is only one Einstein
Equation for the tensor modes and it is the wave equation for gravitational radiation,

− 16πGa2πTij = ∇2Dij − a2D̈ij − 3aȧḊij . (2.31)

The scalar modes, on the other hand, are the most complicated, involving eight scalars and several
Einstein Equations relating them. One can check Weinberg [10] to see that the equations for the
scalar perturbations, even after the SVT decomposition, are still fearsomely complicated. But we are
very interested in solving them: the will to explain density fluctuations in the CMB, which are scalar
fluctuations of the density, is what brought us here. The following sections are all about trying to get
an equation of motion for the scalar perturbation, something analogous to eq. (2.31).

3There are some ways to proof this statement, each one with a higher degree of sophistication. Baumann gives a
proof in the appendix of [11], and Weinberg[10] just writes all the equations of motion and checks there is no coupling
between the different modes.
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2.2.2 Gauge freedom

There are more degrees of freedom in the background plus perturbations equations than there are
physical degrees of freedom. We would like to identify which of those are truly physical.

This problem did not exist before, when we only considered the homogeneous universe, because the
symmetries of the FLRW made the coordinate choice so distinguished that we never worried about
it. Actually, in any other system of coordinates than the one we chose the universe would not look
homogeneous nor isotropic. But now that the perturbations introduce inhomogeneities, there is no
preferred reference frame. Furthermore, if we are not careful with the choice of coordinates, we can
produce unphysical or fictitious perturbations. To make this point sharper, let us consider a universe
where the energy density is only a function of time in some coordinates, ρ(t,x)=̇ρ(t), that is, it is
homogeneous and isotropic. Let us introduce some new spatial coordinates x̃ = x + δx(t,x). The
homogeneous and isotropic universe is not so in the new reference frame, since ρ̃(t, x̃) = ρ(t,x(t,x)).
These perturbations are not physical, but only due to the inappropriate choice of coordinates.

Coordinate transformations can also be seen, from a different perspective, as gauge transformations of
the fields. For instance, under a infinitesimal coordinate transformation (we here drop the spacetime
indices for clarity)

x→ x′ = x+ ε(x), (2.32)

where ε(x) is small in the same sense that the perturbations are small4, a scalar field ρ(x) changes as

ρ(x)→ ρ′(x′) = ρ(x(x′)) = ρ(x′ − ε(x′)). (2.33)

At linear order in perturbations the Taylor expansion gives, after dropping the primes,

ρ(x)→ ρ′(x) = ρ(x)− ε(x)∂xφ(x), (2.34)

so the coordinate transformations can be seen as a transformation of the field while leaving the coordi-
nates untouched. It is more useful to think about coordinate transformations as gauge transformations
in disguise, as the latter only affect the perturbations, while the former affect both the perturbations
and the background.

Let us use the gauge freedom to simplify our task as much as we can. There are several gauge choices
one can make. I will mention some of them here, which will be of particular interest for later reference.

• Uniform density gauge As its name suggests, it is defined by

δρ = 0 and B = 0. (2.35)

• Comoving gauge This is the gauge in which the scalar momentum density vanishes

δu = 0 and B = 0. (2.36)

In this gauge the inflaton is spatially uniform, that is,

δφ(t,x) = δφ(t), (2.37)
4This ε does not have anything to do with the slow-roll parameter introduced in the previous chapter. Well, it does:

both have to be small.
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and all the spatial perturbations are described by the metric.

• Flat gauge The gauge where the spatial part of the metric is flat, i.e.,

ψ = 0 and B = 0. (2.38)

Fixing the gauge is not the only possibility: there is another –complementary– strategy we can follow
in order to avoid the pitfall of fictitious gauge modes. We can work with gauge invariant quantities
which, by definition, are equivalent in any gauge. The two crucial gauge invariant quantities to
describe cosmological perturbations created by inflation are ζ and R.

2.2.3 The curvature perturbations ζ and R

Definitions and choices

As we shall learn later in this chapter, the curvature perturbation ψ becomes very important when
describing the origin of structure from quantum fluctuations during inflation. It seems reasonable that
in different gauges this quantity will take different values, and it is customary to give them special
names. They are usually denoted by ζ and R.

A quick skim through the literature shows that there is no consensus in the question of what gauge
should each one correspond to. Up to now, for the reasons mentioned in the introduction to section
2.2, we have worked up to linear order in perturbations. Those reasons are still valid now, and will
be throughout the remaining of this thesis. Nevertheless, for some calculations related with non-
gaussianities of the power spectrum –these terms may sound strange to the unexperienced reader, but
they will be properly presented in section 2.3.1– it is necessary to have ζ and R defined at least up to
second order. While the focus of this work will be on calculations where the linear order is enough, it
is still interesting to explore the possible conventions at all orders and adopt the one that we think is
the most natural.

We will employ the notation

g = g0 + g1 + 1
2g2 (2.39)

to split a generic quantity g into its background value and first and second order perturbations.

Here comes our definition: we shall denote by ζ1 the curvature perturbation at linear order in uniform
density gauge, and by R1 when in the comoving gauge. More explicitly:

−ζ1 = ψ uniform-density gauge
1 (2.40)

R1 = ψcomoving gauge
1 . (2.41)

Up to this point, and up to the minus sign, the majority of authors agree (see, however, [13]). The
divergence in the definitions comes at second and higher order in perturbation theory. The one we
find more robust and enticing is the one introduced by Salopek and Bond [14] and thereafter used by
many more authors, which consists on identifying ζ and R with ψ (give or take a minus sign) also at
higher orders in perturbation theory.
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For such an identification to make sense, we need a perturbed metric that is also valid at higher order
in perturbation theory. We can write the spatial part of the metric in the form

γij = a2(t)e−2ψδij , (2.42)

where at first order
e−2ψ = 1− 2ψ +O(ψ2) (2.43)

and we recover the spatial part of the metric as given at linear order in eq.(2.22).

Thus, our definitions at all orders are simply

ζ ≡ −ψuniform-density gauge (2.44)

R ≡ ψcomoving gauge, (2.45)

together with the right form of the metric (2.42). To be completely explicit, the spatial part of the
metric in the uniform-density gauge would read

γij = a2(t)(1 + 2ζ)δij (2.46)

at first order in perturbations, and

γij = a2(t)(1 + 2ζ + 2ζ2)δij (2.47)

at second order. Analogous expressions follow for the comoving gauge by interchanging ζ by −R.

As was mentioned above, this thesis will only use the first order results. Nevertheless, the discrepancy
in notations found in the literature makes a clear-cut definition almost necessary. As an example of
different notation, some other authors (see for instance [15]) choose to use (2.46) as a definition of ζ
even at higher orders.

Gauge invariant expressions

Once ζ and R have been properly defined, we can give their gauge invariant expressions.

The gauge-invariant quantity for ζ at first order is

ζ1 = −ψ1 −H
δρ1

ρ̇0
, (2.48)

and that for R1 is
R1 = ψ1 −H

δφ

φ̇
, (2.49)

where the subscripts have the meaning given in eq. (2.39).

This statement can be proven by noting that, under an infinitesimal coordinate transformation

xµ → x′µ = xµ + εµ(x) (2.50)
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the quantities involved transform as follows[16],[10]:

ψ1 → ψ1 −Hε0 (2.51)

δρ1 → δρ1 + ρ̇0ε0. (2.52)

Thus, under a general coordinate transformation

ζ = −ψ1 −H
δρ1

ρ̇0
→ −ψ1 +Hε0 −

H

ρ̇0
(δρ1 + ρ̇0ε0) = (2.53)

= −ψ1 −H
δρ1

ρ̇0
(2.54)

is invariant. Similar computations follow for R.

If one is a thrill-seeker and is smart enough to add and subtract the right quantities, it is possible to
find the second order gauge invariant quantity, as they did in [17]:

ζ2 = −ψ2 −H
δρ2

ρ′0
+ 2Hδρ1

ρ′0

δρ′1
ρ′0

+ 2δρ1

ρ′0
ψ′1 −

(
Hδρ1

ρ′0

)2(
ρ′′0
Hρ′0

− H
′

H2 − 2
)
. (2.55)

Note that this expression still obeys our definition (2.44), since ζ2 = −ψ2 in the uniform-density
(δρ = 0) gauge.

Conservation outside of the horizon

In section 1.3 we introduced the concept of the Hubble radius or Hubble horizon. We will use the terms
inside and outside the horizon5 to describe length scales which are causally connected or disconnected
at given time, i.e., smaller or bigger than the Hubble horizon (aH)−1. It is much more common to
think about this concepts in terms of the Fourier conjugates of the length, the wavenumbers k:

subhorizon: k > aH superhorizon: k < aH. (2.56)

We defined inflation as an epoch of shrinking Hubble radius. The idea is that virtually all perturbations
that begin inside exit the horizon at some given time. Those modes remain unaffected by causal physics
until the Hubble radius grows enough and they re-enter.

Here comes the crux of the matter. As we will show in a second, ζ and R are conserved outside of the
horizon. In particular, they are not affected by the unknown physics of Reheating. Hence, if we could
measure any quantity that is related to ζ or R nowadays, we would be able to trace the information all
the way back into the quantum fluctuations during inflation. And, in fact, there is something related
to the spatial scalar perturbations that we can measure: the CMB anisotropies.

Let us go with the proof. The first who realized that R and ζ were conserved in superhorizon scales
was S. Weinberg6. It is worth taking a look at his proof either in his book [10] or in [16]. We
will, however, follow a simpler reasoning mentioned, for instance, in [18]. They show that at first

5In this section, and almost throughout the whole thesis, we will use the word “horizon” as a synonym for Hubble
horizon. Do not confuse it with the particle horizon; the whole point of inflation was to make them different!

6Actually, the conservation of these specific quantities on superhorizon scales was discovered by Salopek and Bond
in the 1980s. Weinberg formulated a theorem that generalized their result.
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order in perturbations and in gradient expansion,7 and with the adiabaticity condition p = p(ρ), the
conservation equation reads

ρ̇+ 3
(
H + ψ̇1|B=0

)
(ρ+ p) = 0, (2.57)

where the gauge condition B = 0 has been specified. (Note that the gauge is not completely fixed
yet, and that the expression is valid at all three gauges (2.35), (2.36) and (2.38).) At zeroth order in
perturbations it is just the continuity equation, eq. (1.6). Therefore, the equation at first order in
perturbations is

ψ̇1|B=0 = 0 outside of the horizon. (2.58)

In the uniform-density and comoving gauges, using the definitions (2.40) and (2.41) we get the im-
portant result that, provided the adiabatic condition p = p(ρ) is satisfied, ζ1 and R1 are conserved
outside the horizon.

2.3 Contact with observations

2.3.1 Statistics

The normalization of the Fourier transform we use is the following:

fk =
∫
d3x e−ik·xf(x), (2.59)

f(x) =
∫

d3k

(2π)3 e
ik·xfk. (2.60)

This implies that the Dirac delta function is

δD(k) =
∫

d3x

(2π)3 e
±ik·x. (2.61)

We will make use of two-point correlation functions of a quantity R(x),

ξR(r) ≡ 〈R(x)R(x + r)〉. (2.62)

Note that by homogeneity ξ depends only on the distance, not the direction of r, i.e.,

ξR(r) = ξR(r) (2.63)

We now consider the correlation function 〈RkRk′〉 , related to the real space one by a Fourier trans-
formation8

7The gradient expansion method is a prescription to expand superhorizon quantities perturbatively in an orderly
fashion. The expansion is performed in powers of the ratio ε ≡ k

aH
, which is considered to be small. Thus, by “first

order in gradient expansion” what is meant is “linear approximation on superhorizon scales”.
8It is worthwhile mentioning that it is spatial homogeneity what makes the Fourier transformation of a correlation

function to be proportional to a delta function, that is,

〈R(x1) · · ·R(xn)〉 = 〈R(x1 + z) · · ·R(xn + z)〉 =⇒ 〈Rk1 · · ·Rkn 〉 ∝ δD (k1 + · · ·+ kn) . (2.64)
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〈RkRk′〉 =
∫
d3xe−i(k+k′)·x

∫
d3rξR(r)e−ik·r (2.65)

= (2π)3δD(k + k′)
∫
d3rξR(r)e−ik·r. (2.66)

The power spectrum of a quantity R is defined as the Fourier transform of the two point correlation
function

PR(k) ≡
∫
d3rξR(r)e−ik·r. (2.67)

And so, we get
〈RkRk′〉 = (2π)3δD(k + k′)PR(k). (2.68)

It is also usual to work with the quantity

∆2
R(k) ≡ k3

(2π)2PR(k). (2.69)

For Gaussian perturbations all high order correlation functions can be expressed in terms of the two-
point function, and therefore all the information is contained in the power spectrum. The lowest order
non-Gaussian features can be measured by the three point function

〈Rk1Rk2Rk3〉 = (2π)3BR(k1, k2, k3)δD(k1 + k2 + k3), (2.70)

known as the Bispectrum. Non-Gaussian features of the CMB lie outside the scope of the present
work.

2.3.2 Measurable quantities and numerical values

The measurable quantities have to do with the correlation functions introduced in the previous section.
We now list the most useful parameters that we can get from experiment, and their numerical values
as measured by the Planck Collaboration [19].

• Scalar power spectrum ∆2
s. Planck value:

ln(1010∆2
s) = 3.089± 0.036 (68%CL), (2.71)

this is,
∆2
s ' 2.2× 10−9. (2.72)

• Scalar spectral tilt ns − 1.

It is defined by

ns − 1 ≡ d ln ∆2
s

d ln k , (2.73)

where the minus one appears there for historical reasons. Note that if the spectrum was scale
invariant then ns = 1.

Planck value:
ns − 1 = −0.0345± 0.0062 (68%CL), (2.74)
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which corresponds to an almost scale invariant power spectrum.

This is the most conclusive measurement in favor of slow-roll models. Further down in this
chapter we see (take a look at eq. (2.106)) that slow-roll models predict a small deviation from
scale invariance, agreeing with this observational result. It is also the most powerful reason to
why the second slow-roll parameter η is constrained to be so small.

• Tensor to scalar ratio, r. It is defined by

r ≡ ∆2
t

∆2
s

. (2.75)

Constraints coming from Planck, BICEP and Keck array together give the upper bound of

r < 0.07 (95%CL). (2.76)

• Tensor spectral tilt. Similarly, it is given by

nt ≡
d ln ∆2

t

d ln k , (2.77)

this time without the minus one sign. Of course, primordial gravitational waves have not been
observed yet, but other measurements constrain it to be

nt < 0.014(95 (2.78)

• Running of the tilt. Planck value

dns
d ln k = −0.0057± 0.0071 (68%CL) (2.79)

2.3.3 Theoretical results in single field slow-roll

The moment to gather all the information laid down in the previous –quite boring, I’m afraid– sections
and to build something useful out of it has arrived.

Let us begin by counting the scalar degrees of freedom there are. We have four in the perturbed metric
(E, F , ψ and B), and four more on the matter side. But they are related via six Einstein Equations,
so that only two of them remain unspecified. Then, as we are working on single field inflation, we
have δφ (if we were considering multifield inflation with N scalar fields, then we would have all the N
scalar degrees of freedom δφ1 · · · δφN ). By fixing the gauge in any of the ways shown in section 2.2.2
we kill two more scalar degrees of freedom. Hence, the counting goes as presented in Table 2.1.

Metric Inflaton Gauge choice Constraints True d.o.f
Scalars 4 1 -2 -2 1
Tensors 2 0 0 0 2

Table 2.1: Counting scalar and tensor degrees of freedom.

After all this work we have learnt that scalar cosmological perturbations are described by a single
degree of freedom, and that tensorial perturbations by two. The interpretation of the tensorial d.o.f.
is clear: they correspond to the two polarizations modes of the primordial gravitational waves. The
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objective now is to characterize the scalar degree of freedom, find its equation of motion and, if
possible, relate it to the observed phenomena. We have a couple of really good candidates to do the
job: ζ and R. Any of the two could be used , since we only have to calculate their values when they
crossed the horizon, for they remain unaltered until horizon re-entry. The references we follow, [11]
and [10] choose to use R, and we will stick to that choice.

Weinberg, in chapter 10 of his book [10] does all the work for us. It is a bit too heavy on the algebraic
side, and thus we prefer to leave it to the interested reader. He finds the following equation governing
the sub horizon evolution of R

R′′k + 2z
′

z
R′k + k2Rk = 0, (2.80)

sometimes called the Mukhanov-Sasaki equation.

Introducing the Mukhanov variable

v ≡ zR, where z2 ≡ a2 φ̇
2

H2 (2.81)

and Fourier-expanding it with the normalization given in section 2.3.1, we arrive at

v′′k +
(
k2 − z′′

z

)
vk = 0. (2.82)

This equation should ring a bell. It has the same form as the equation for the massless field in de
Sitter, eq. (2.11)!

Power spectrum of scalar perturbations

So far, we have been hopping between references [10] and [11]. But now we have to make a choice,
as their methods for the computation of the power spectrum diverge. The two possible paths are the
following:

Since equation (2.82) is impossible to solve for a general z(τ), Baumann [11] takes the purely de Sitter
limit, where

z′′

z
= a′′

a
= 2
τ2 . (2.83)

We thus have
v′′k +

(
k2 − 2

τ2

)
vk = 0, (2.84)

which is exactly equation (2.11).

However, the reader might be concerned about the fact that inflation is not necessarily described by
a purely de Sitter spacetime (ε = 0), as was shown in 1.3.2, but rather by ε � 1. Baumann argues
that taking the purely de Sitter limit is justified if the quantities appearing in the power spectrum are
evaluated at horizon crossing, but it is not trivial to see why this should be the case. On the other
hand, Weinberg writes and solves equation (2.80) at linear order in slow-roll parameters, i.e.,

R′′k −
2(1 + η + ε)

τ
R′k + k2Rk = 0. (2.85)
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We will stick to the easier-to-follow de Sitter limit Baumann takes. (For the full computation using
eq.(2.85) and its solution in terms of Hankel functions, the reader is encouraged to check chapter 10
of [10]). Of course, the resulting power spectrum is the same no matter which way it is calculated.

One of the reasons of going for the de Sitter approximation is that in section 2.1 we already did most
of the work. We stopped because we needed physical information to choose a vacuum, but we can get
that information now. Note that the wavelength associated with a given mode k can always be found
inside the Hubble radius provided one goes sufficiently backwards in time, since the comoving Hubble
radius was shrinking during inflation. For a wavelength smaller than the Hubble radius the influence
of the curvature can be neglected and the mode evolves as if it was in Minkowski spacetime. In other
words, for τ → −∞ or k � aH, eq.(2.82) gives

v′′k + k2vk = 0, (2.86)

which is nothing but the equation of a simple harmonic oscillator. Finally, an equation we know how
to solve! From the two solutions we choose the one with the positive frequency. Our second boundary
condition will be

lim
τ→−∞

vk = e−ikτ√
2k

, (2.87)

which in the jargon of quantum field theory on curved spacetimes is called Bunch-Davies vacuum.

Let us look back to the equation we want to solve, eq.(2.82). It can be checked that

vk = α
e−ikτ√

2k

(
1− i

kτ

)
+ β

eikτ√
2k

(
1 + i

kτ

)
(2.88)

is a solution to the equations. The two boundary conditions, eqs.(2.15) and (2.87), impose that α = 1
and β = 0, so that the unique mode functions are

vk = e−ikτ√
2k

(
1− i

kτ

)
. (2.89)

We now have all the ingredients to calculate the power spectrum of Rk. First note that

〈RkRk′〉 = H2

φ̇2
〈vkvk′〉
a2 , (2.90)

because only the modes vk depend on k. So we only need to calculate 〈vkvk′〉 to get the two-point
correlation function of Rk. Using our brand new solution, eq.(2.89), we get

〈vkvk′〉
a2 = (2π)3δD(k + k′) H

2

2k3 (1 + k2τ2). (2.91)

On superhorizon scales , k � aH or |kτ | � 1 this approaches a constant

〈vkvk′〉
a2 → (2π)3δD(k + k′) H

2

2k3 . (2.92)

〈RkRk′〉 = (2π)3δD(k + k′) H4
∗

2k3φ̇2
∗
, (2.93)

where the subscript ∗ denotes that quantities should be evaluated at horizon crossing a(t∗)H(t∗) = k.
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Together with eq.(1.41) and definitions (2.68) and (2.69) we get

∆2
s ≡ ∆2

R = 1
8π2

H2
∗

M2
P

1
ε∗
, (2.94)

where we have used the label s to denote scalar perturbations and we reintroduced the Planck mass
for later convenience.

Power spectrum of tensor perturbations

The hard work is already done; the calculation of the power spectrum of the tensor modes will appear
almost trivial. For scalar field theories the anisotropic inertia πTij appearing in equation (2.31) vanishes.
Then, in Fourier space we have

D̈k + 3HḊk + k2

a2Dk = 0. (2.95)

In terms of the conformal time defined in eq.(2.2) we get the by now familiar equation

D′′k + 2a
′

a
D′k + k2Dk = 0. (2.96)

Yes, it is the Mukhanov-Sasaki equation (2.80), except that z is replaced with a. Performing the change
of variables vk ≡ aDk we once again get eq. (2.9). The computation of the power spectrum proceeds
in complete analogy to the scalar sector with one small caveat: there are two polarization modes,
and therefore we should add up their contributions. The power spectrum of the tensor fluctuations
created by inflation is

∆2
t = 2× 1

π2
H2
∗

MP
. (2.97)

Other quantities

We now compute some of the quantities mentioned in section 2.3.2 in the slow-roll approximation.

The most straightforward to compute is the tensor to scalar ratio, defined in eq.(2.75). It is given by

r = 16ε∗, (2.98)

where the star denotes, once again, that the quantity is to be evaluated at horizon crossing.

We can also compute the spectral tilts at first order in slow-roll. The scalar spectral tilt, defined in
eq.(2.74) can be calculated via

ns − 1 = d ln ∆2
s

dN

dN

d ln k , (2.99)

where N is the number of efolds, defined in (1.32). The first term is easy to compute. Using the result
of eq.(2.94) it follows that

d ln ∆2
s

dN
= 2d lnH

dN
− d ln ε

dN
. (2.100)

Now, the first term is just −2ε, as is clear by using the definition of N and ε:

2d lnH
dN

= 2d lnH
dt

dt

dN
= 2 Ḣ

H2 = −2ε. (2.101)



36 Chapter 2. Quantum fluctuations in inflation

For the second one we need to recall the definition of the second slow-roll parameter η, given in
eq.(1.44):

d ln ε
dN

= ε̇

εH
= 2ε+ 2η. (2.102)

So that the first term of eq.(2.99) is

d ln ∆2
s

dN
= −4ε− 2η. (2.103)

The second term of that same equation is computed by recalling that we are evaluating the quantity
at horizon crossing, i.e., k = aH. Hence, we have

ln k = N + lnH, (2.104)

and
dN

d ln k =
(
d ln k
dN

)−1
= (1− ε)−1 = 1 + ε+O(ε2). (2.105)

Thus, at first order in slow-roll we find

ns − 1 = −4ε∗ − 2η∗. (2.106)

Analogous computations lead to a similar result for the tensor spectral tilt:

nt = −2ε∗. (2.107)

It is interesting to note that the single field slow-roll models satisfy the consistency relation

r = −8nt, (2.108)

which will be of some relevance below.

2.4 Multifield. δN formalism

When calculating the power spectrum from quantum fluctuations during inflation, there is a crucial
difference between single field and multifield models. In section 2.2.3 we stressed that the curvature
perturbations ζ and R are conserved outside of the horizon only if the so-called adiabaticity condition
p = p(ρ) is satisfied. It turns out that this condition is not satisfied when the universe is filled
with more than one scalar field. And so, we need to find a procedure to take into account their
evolution when they leave the horizon, that lead to non-adiabatic perturbations that leave potentially
measurable traces on the power spectrum.

In this section we present the δN formalism, which will turn out to be a powerful technique to calculate
not only the Gaussian quantities in multifield inflation, but also deviations from gaussianity such as
the bispectrum. We do so by following [20], [18] and [21].

Our starting point will be the ADM (Arnowitt-Deser-Misner) metric[22], another standard way to
decompose the metric

ds2 = −α2dt2 + γij(dxi + βidt)(dxj + βjdt), (2.109)
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where γij can be decomposed as
γij = a2e−2ψ(eh)ij (2.110)

without loss of generality. The scale factor a and its scalar perturbation ψ are the same quantities
introduced above. The traceless tensor hij can be further decomposed as

hij = ∂iCj + ∂jCi −
2
3δij∂kC

k + h
(T )
ij , (2.111)

where Ci contains both scalar and vector perturbations and h(T )
ij is the part containing tensor pertur-

bations.

In this setting the flat and uniform-density gauges defined in section 2.2.2 become

flat gauge: ψ = Ci = 0, (2.112)

and

uniform-density gauge: δρ = Ci = 0. (2.113)

The generic definition of ζ given in eq. (2.44) still holds, i.e., it is the value, up to a minus sign, of
the curvature perturbation ψ in the uniform-density gauge. In the ADM metric this means

ζ ≡ −ψ|δρ=Ci=0. (2.114)

It is time to prove the core idea of the δN formalism: ζ and the number of efolds are related by a
gauge transformation from the flat gauge to the uniform-density gauge.

Under a change of coordinates given by t→ t̂ and xi → x̂i, the number of efolds defined in eq.(1.32)
changes simply as

N = ln
(
a(t)
a(ti)

)
→ N̂ = ln

(
a(t̂ )
a(t∗)

)
, (2.115)

where ti is an arbitrary initial time and the hat denotes that the quantity is evaluated in the uniform-
density gauge. We call δN to the difference between the number of e-folds computed in the flat gauge
and that computed in the uniform-density gauge, this is,

δN ≡ N − N̂ , (2.116)

On the other hand, in [18] they show that the spatial part of the metric transforms, on large scales,
in the following way

γij |Ci=0(t,x) = γ̂ij |Ci=0(t̂, x̂), (2.117)

where the condition Ci = 0, common to both gauges, has already been applied.

Remembering the decomposition of eq.(2.110) and taking determinant and logarithm in both sides of
eq. (2.117) we find that

ψij |Ci=0(t,x) = ψ̂ij |Ci=0(t̂, x̂) + ln
(
a(t)
a(t̂ )

)
. (2.118)
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Specializing this result for a gauge transformation from the flat gauge to the uniform density gauge

ψ̂ij |δρ=Ci=0(t̂, x̂) = ln
(
a(t̂ )
a(t)

)
. (2.119)

Equations (2.115) and (2.119) are remarkably similar. They imply that the relation between ζ and
δN is very simple:

ζ ≡ −ψ̂ij |δρ=Ci=0(t̂, x̂) = ln
(
a(t)
a(ti)

)
− ln

(
a(t̂ )
a(ti)

)
= N − N̂ ≡ δN. (2.120)

Let us connect this result with the scalar perturbations created during inflation. One can take t∗ as
the time, during inflation, at which some scale k exited the Hubble radius, that is, k∗ = a(t∗)H(t∗),
and te as the time when inflation ends9. With this in mind, eq.(2.116) becomes

δN(t∗, te,x) = N(t∗, te)− N̂(t∗, te,x). (2.121)

Now, N̂ can be seen as a function of the fields φI(t∗,x) on the flat hypersurface. In principle, and
this is an important comment in the present work, it could also depend on the velocities of the fields,
φ̇I(t∗,x), but it is assumed that during inflation every field obeys an equation of motion in the slow-roll
approximation, that is,

3Hφ̇I ' −∂V (φI)
∂φI

(2.122)

Indeed, if this is the case, we can trade φ̇I for φI by using eq.(2.122), and therefore N(φI , φ̇I) = N(φI).
One of the conclusions of this thesis questions the validity of this assumption in the broader multifield
slow-roll scenario that will be introduced below. But, for the time being, let us accept it and see
where it takes us to.

Moreover, one can split the fields into a homogeneous background and a perturbation

φI(t∗,x) = φI(t∗) + δφI(t∗,x). (2.123)

Then, it is a matter of expanding δN in series of the initial field perturbations δφI(t∗,x):

ζ = δN(tc, t∗,x) =
∑
I

∂N

∂φI∗
δφI∗ + 1

2
∑
I,J

∂2N

∂φI∗∂φ
J
∗
δφI∗δφ

J
∗ +O(δφ3). (2.124)

This is the δN formalism, which allows us to relate ζ to the initial perturbations of the scalar fields,
provided that we know the derivatives of the number of efolds with respect to the fields.

Now we can compute the power spectrum. Taking each δφI to be uncorrelated with one another at
early times, we get

〈δφIkδφJk′〉 = (2π)3 δIJ δD(k + k′)P∗(k), where P∗(k) = H2
∗

2MP k3 (2.125)

and where the Kronecker delta appears because they are uncorrelated.
9By setting te to be the time after inflation ends we are assuming that the quantities that we observe are not

affected by whatever happens after inflation. In particular, they are blind to the specific process of reheating. Further
information available in [21].
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The power spectrum for ζ is defined analogously,

〈ζkζk′〉 = (2π)3 δD(k + k′)Pζ(k). (2.126)

Using eq.(2.124) we get that
〈ζkζk′〉 =

∑
I,J

NINJ〈δφIkδφJk′〉, (2.127)

where a comma stands for a partial derivative, that is,

N,I ≡
∂N

∂φI
. (2.128)

This gives the following result for the power spectrum of the scalar fluctuations:

∆2
ζ ≡ ∆2

s =
∑
I

N2
,I∆2
∗ =

∑
I

N2
,I

H2
∗

4π2 . (2.129)

Another interesting quantity is the scalar spectral tilt, which was defined in eq.(2.73). Following the
same steps as in section 2.3.3 we get, to first order in slow-roll,

ns − 1 ≡ d lnPs
d ln k = d lnPζ

d ln k '
1
H

d lnPζ
dt

. (2.130)

Using eq.(2.129) and interchanging each time derivative for a derivative with respect to the fields, this
is,

d

dt
=
∑
J

φ̇J
∂

∂φJ
, (2.131)

one obtains

ns − 1 = −2ε+ 2
H

∑
I,J φ̇

JN,IJN,I∑
K N

2
,K

. (2.132)

One of the main appeals of the δN formalism is its power to compute non-Gaussianities in a simple
manner. For instance, the bispectrum, defined in (2.70) gives

B(k1, k2, k3) = 4π2P2
ζ

∑
i k

3
i∏

i k
3
i

 −F(k1, k2, k3)
4M2

P

∑
K N

2
,K

∑
i k

3
i

+
∑
I,J N,IN,JN,IJ(∑

K N
2
,K

)2

 , (2.133)

where F has the following form

F(k1, k2, k3) = −
∑
i 6=j

kik
2
j −

8
k1 + k2 + k3

∑
i>j

k2
i k

2
j +

∑
i

k3
i . (2.134)

As was mentioned, this is not a big part of the present work, and we only show the result. Further
details may be found in [21].
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2.5 Summary and discussion

Quite a lot of work has been done in this chapter. But, at the end of the day, the relevant quantities
can be counted on the fingers of one hand. For single field slow-roll models, we got the scalar and
tensorial power spectra, given in equations (2.94) and (2.97), as well as their spectral tilts, in eqs.
(2.106) and (2.107). On the multifield side we computed, once again, the power spectrum for scalar
fluctuations and its tilt, as can be read out in equations (2.129) and (2.132), by means of the δN
formalism10.

These are the most important results because, as we learnt in section 2.3.2, they are the ones that
can be compared with observations. And what do observations say? Can we answer the primordial
question of whether it was a single field or multiple fields that drove inflation? The answer is no... yet.
Presently, the measurements are not conclusive in favoring single or multifield. However, the hope is
that in the near future improved measurements will allow us to make much more precise statements
about the origin of the universe. In particular, there are some measurements that would falsify single
field inflation: large non-gaussianity, this is, a sizeable contribution from the bispectrum, non-zero
isocurvature perturbations11, and/or violating the single field consistency relation given in equation
(2.108).

Let us focus in the last one, for both r and nt are already constrained by experiment, as can be
checked in section 2.3.2. For convenience, let us rephrase here what we said earlier in the text. By
comparing eqs.(2.98) and (2.107), the following consistency relation for single field slow-roll models
arises:

r = −8nt. (2.135)

Can we derive a similar constraint for multifield inflation? The answer is affirmative, and can have far-
reaching consequences. The necessary computations are carried out in Appendix A, and the resulting
multifield consistency relation is given by equation (A.5):

r = −8nt cos2 α, (2.136)

where α is the angle between the gradient of the number of efolds and the velocity of the fields.

This result is thought-provoking. First of all, does it make sense to introduce such an angle? Well, as
we are dealing with multifield models that evolve along the gradient of the potential (cf. eq. (2.122)),
the number of efolds until the end of inflation N(φ) can be computed for any value of φ. Furthermore,
multifield inflation can be defined to be precisely the set of models in which α 6= 0. This might be
striking at first glance, as one tends to think about multifield inflation as the models in which more
than one scalar fields are present in the action. But what if all scalar fields are extremely light and do
not change at all the way inflation happens? Those models, although based on multiple fields, behave
effectively as single field models. The definition we propose here does precisely that: it distinguishes
between effective models of single and multiple fields by introducing the angle α.12

10The power spectrum for tensorial fluctuations and its tilt are the same in multifield and single field models of
inflation. The reason for this is that scalar and tensorial modes decouple with the SVT decomposition, and thus, adding
more scalar fields does not affect the equations of motion for the tensorial fluctuations, eq.(2.96).

11These perturbations, also called non-adiabatic, are the ones that happen in the perpendicular directions to which
the field is moving. Of course, such fluctuations are only possible in multifield models of inflation (in single field there
is only one direction in field space). Although it was not mentioned in the text explicitly, they can be computed by
employing the δN formalism.

12This suggestive idea is not followed in the rest of the text, and multifield inflation is defined in the usual “more
than one scalar field in the action” way.
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The second immediate conclusion is that this is a relation that could be experimentally tested in the
upcoming future. New measurements could be able to tell if the relation (2.135) holds or if, on the
contrary, it is suppressed by the cosine factor in eq.(2.136).

The last reason why equation (2.136) is exciting is that it is new. As far as we know, it has never
been mentioned in the literature before.
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Chapter 3

Multifield slow-roll under suspicion

In this chapter we first review some multifield slow-roll paradigms appeared in the literature. Following
I.-S. Yang’s work [23], we discuss why none of them is completely satisfactory. This criticism results
in a better understanding of the slow-roll trajectories in multifield models of inflation, and our own
interpretation of the right parameters –which differs from that given by I.-S. Yang– is presented at
the end of the chapter.

3.1 Reviewing the slow-roll conditions

This section starts by delving further into the single slow-roll inflation that was presented in 1.3.3,
introducing the potential slow-roll parameters. Afterwards, a generalization to multifield models
based on [23] is performed. It will be argued why such a generalization is not trivial, and some choices
appeared in the literature will be analyzed.

3.1.1 Single field inflation

What we learnt there was that our focus is on models of inflation where the first two slow-roll conditions

ε ≡ − Ḣ

H2 = φ̇2

2H2 '
3
2
φ̇2

V
� 1 and η ≡ φ̈

φ̇H
� 1, (3.1)

also known as Hubble slow-roll conditions, are satisfied. Note that the approximation in ε follows
directly by using the Friedmann equation (1.35) and by the requirement that ε� 1; no other assump-
tions are involved.

In section 1.3.3 we learnt that within the slow-roll approximation the equation of motion of the fields
becomes

φ̇ ' − V
′

3H . (3.2)

One of the consequences of the slow-roll approximations is that the slow-roll parameters can be written
only in terms of the potential. When they are written in such a way they are called potential slow-roll
parameters.
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The first potential slow-roll parameter can be computed using (3.1) and (3.2):

ε = φ̇2

2M2
PH

2 '
M2
PV
′2

2V 2 ≡ εV . (3.3)

On the other hand, requiring the approximation 3.2 to be consistent with the field equation of motion,
eq.(1.39), implies that

φ̈ = −∂t
(
V ′

3H

)
� V ′, (3.4)

which leads us to
1
3

(
V ′′

V
− ε
)
� 1. (3.5)

Thus, it is natural to define

ηV ≡M2
P

V ′′

V
� 1 (3.6)

as the potential second slow-roll parameter.

The fact that the slow-roll parameters can be expressed in terms of the potential is one of the main
reasons why slow-roll models are so popular: given any potential it is straightforward to determine
whether or not the slow-roll parameters are small at a given point, and hence whether or not inflation
is supported. Thus, it makes the study of specific models of inflation almost trivial when the derivative
of the potential are known.

A small warning note is in order here. The Hubble and potential slow-roll parameters are not equiv-
alent. While ε < 1 is the definition of inflation, εV < 1 is a necessary but not sufficient condition. To
make this statement more clear, consider a case in which εV < 1, yet the kinetic energy of the field is
larger than the potential. In such a case, inflation does not happen because, no matter what εV is, ε
is greater than 1. A similar reasoning leads one to conclude that a small ηV does not necessarily make
ε stay small during inflation. The statement, then, is that Hubble and potential slow-roll parameters
contain the same information whithin the slow-roll approximation, this is, when the approximated
equation of motion (3.2) accurately describes the behavior of the field.

3.1.2 A generalization to multifield inflation

A generalization of the slow-roll parameters will be carried out in this section following I.-S. Yang’s
cited work. As will become clear in section 3.2.2, from our point of view this is not a correct way of
understanding the multifield slow-roll paradigm. However, it is very instructive to see this approach
first.

The multifield models that we are going to treat in this section have a canonical kinetic term and
minimal coupling. These models of inflation arise from an action that was already written down in
1.3.3: eq. (1.47). This time each field φI evolves according to the single field equation of motion
(1.39), i.e.,

φ̈I + 3Hφ̇I + δIJV,J = 0, (3.7)

where the fact that the kinetic term is canonical (as opposed to some models we will consider later)
is represented by the delta function and the partial derivatives. The Friedmann equations are now,
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3M2
PH

2 = φ̇I φ̇JδIJ
2 + V (φI), (3.8)

M2
P Ḣ = − φ̇

I φ̇JδIJ
2 , (3.9)

which are very similar to the single field equations (1.35) and (1.36).

The first slow-roll condition in its Hubble version is a trivial generalization of the single field case:

ε ≡ − Ḣ

H2 = (φ̇I)2

2M2
PH

2 . (3.10)

Although φ̇I is a vector now, we only care about its magnitude. Something similar must happen with
the potential version of the parameter,

ε ' M2
P

2
(V,I)2

V 2 ≡ εV . (3.11)

Once more, we only care about the magnitude of V,I .1

However, when considering the same generalization for the second slow-roll parameter, a problem
arises. While for ε and εV it was clear that the norms of the vectors φ̇I and V,I must be taken, it is
not clear how should η and ηV in eqs.(3.1) and (3.6) be generalized to the multifield case.

Well, η still has the phenomenological meaning we gave to it on section 1.3.3, namely that of ensuring
that ε stays small long enough. In other words, η is a parameter that makes

ε̇

εH
� 1. (3.12)

Thus, one can compute an equation analogous to the single field relation (1.43):

ε̇

εH
= 2ε+ Ḧ

ḢH
= 2

(
ε+ φ̈I φ̇JδIJ(

φ̇K
)2
H

)
, (3.13)

and so it is natural to identify η with the quantity

η ≡ φ̈I φ̇JδIJ(
φ̇K
)2
H
. (3.14)

Note that this relation reduces to that of eq.(3.1) for a single field.

The real trouble comes with ηV . Equation (3.6) cannot be generalized right away to the multifield
case, since what in single field was V ′′ is now a matrix, ∂I∂JV . It is not clear what part of that matrix
should be taken to be small.

One of the main points of this thesis is to work out what the proper slow-roll parameters are. By
learning to interpret them we might as well learn something new about the dynamics of multifield
inflation. For now, let us follow I.-S. Yang’s criticism of a couple of conditions appeared in the
literature.

1Beware! This expression is in contradiction with what we think is the true first potential slow-roll parameter, which
will be introduced in ??
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3.1.3 Bad choices appeared in the literature

Sasaki and Stewart, in their ground-breaking work [20], suppose that the trace of the matrix ∂i∂jV
needs to be small, i.e.,

M2
P

√
(∂I∂JV )(∂J∂IV )

V
� 1. (3.15)

This condition is sufficient but not necessary, as I.-S. Yang shows with the following example.

Take a two field potential of the form

V (φ, ψ) = V (φ) + m2

2 ψ2, (3.16)

where V (φ) is a potential that supports the usual single field slow-roll inflation. In such a case, a
large mass term m2 at points where ψ = 0 ruins the condition (3.15) right away. And yet, we know
that ordinary single field inflation will happen via the potential V (φ).

Another popular –yet still incorrect– condition is the one that states that each component of the
acceleration in eq. (3.7) should be negligible , this is,

|φ̈I | � |3Hφ̇I | or |V,I |, for every component I. (3.17)

Understanding why this condition is wrong is a crucial issue in this thesis. Without specifying a
specific coordinate system, each component of the vector is physically meaningless. To make this
point sharper, let us consider two reference frames (φ, ψ) (φ′, ψ′) rotated with respect to each other.
Let us choose the gradient of the potential, ∇V , to be along the φ axis. Say that the condition (3.17)
works when we describe the problem in the primed fields. Nevertheless, it cannot work in the (ψ, φ)
frame. Here is why: as the gradient of the potential goes along the φ axis, |V,ψ| = 0, and there is
no way in which |ψ̈| � |V,ψ|. We conclude that condition (3.17) is a condition that depends on the
choice of the coordinate frame, and therefore not applicable in general.

It was this idea that triggered our investigation process. Could we describe multifield inflation in a
framework that was invariant under general field redefinitions? If that was the case, perhaps we would
be able to say something about the slow-roll conditions that could apply to any reference frame.

3.2 Covariant multifield formalism

In this section, based on the work [24], we will present a framework that allows to write the expressions
involved in multifield modes of inflation in a covariant way. Eventually, we will also present our
thoughts and computations for the slow-roll conditions in multifield inflation.

3.2.1 A large class of multifield models

Let us try to write the most general multifield action that we can think of. The only constraints that
we put are (i) that we are going to rely on Einstein gravity –even if it is not a true theory in the
highest energy scale, we can still think of it as a very precise low-energy effective theory–, and (ii)
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that we will only consider scalar fields. With that information, the most generic multifield action we
can write is

S =
∫
d4x
√
−g
(
R

2 + P (X,φI)
)
, (3.18)

where P is an arbitrary function of the N scalar fields φ1 · · ·φN and of the kinetic term

X ≡ −1
2GIJ g

µν∇µφI∇νφJ . (3.19)

There are already some interesting features that can be discussed at this point. One of them is that
this action allows for non-trivial kinetic terms. Indeed, it is a generalized version of k-inflation or
the DBI inflation. The potential is also encoded in the function P (X,φI), and there are no a priori
restrictions on it. But the most enticing feature for our purposes is the field-space metric GIJ . The
logic works pretty much in the same way as it does with spacetime coordinates in General Relativity:
redefinitions of the fields also transform the metric in a certain way, so that all expressions we may
write down are invariant under general transformations of the fields.

A quick note on the notation employed: gµν is the spacetime metric (which we will assume to be of
the FLRW form soon enough) and the usual Greek indices are used for spacetime coordinates, whilst
the lower case Latin characters i, j, k, · · · = 1, 2, 3 are the spatial indices. On the other hand, GIJ is
the mentioned metric in the field space and the capital Latin letters I, J,K, · · · = 1, · · · , N are field
indices. Moreover, ∇µ stands for the covariant derivative in spacetime sector.

With some effort, one can compute the equations of motion that the action (3.18) produces. From
the variation of the action with respect to φI one finds

∇µ(P,XGIJ∇µφJ)− 1
2(∇µφK)(∇µφL)∂IGKL + P,I = 0, (3.20)

where P,X and P,I are the partial derivatives of P with respect to X and φI , respectively.

The energy-momentum tensor is of the form

Tµν = Pgµν + P,XGIJ∇µφI∇νφJ . (3.21)

In FLRW spacetime the energy-momentum tensor reduces to the perfect fluid form of eq.(1.5) with
an energy density

ρ = 2XP,X − P (3.22)

and pressure P –hence the name of the function.

Scalar fields must have an homogeneous background, so that φI(t,x) = φI(t) and

X = 1
2GIJ φ̇

I φ̇J . (3.23)

The Friedmann equations are also slightly altered

H2 = 2XP,X − P
3M2

P

(3.24)

M2
P Ḣ = −XP,X . (3.25)
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And the equations of motion for the fields, given in eq.(3.20) become

φ̈I + ΓIJK φ̇J φ̇K +
(

3H + Ṗ,X
P,X

)
φ̇I − GIJP,J

P,X
= 0, (3.26)

where ΓIJK are the Christoffel symbols associated to the field-space metric GIJ , and their definition
is analogous to the customary in General Relativity:

ΓIKL ≡
1
2G

IJ(∂KGIL + ∂LGIK − ∂IGKL). (3.27)

Motivated by the fact that the first two terms of eq.(3.26) are very similar to the components of
the acceleration in curved coordinates, it is appealing to define a new derivative, analogous to the
directional covariant derivative of General Relativity:

DtV
I ≡ DV I

dt
≡ ∂tV I + ΓIJKV J φ̇K , (3.28)

where V I is a general vector. Another way of looking at it is

DtV
I = dφJ

dt
∇JV I , (3.29)

where ∇J is the usual covariant derivative, but acting on the field space. In other words, this is the
covariant derivative along the curve φJ(t), the background field trajectory, where t is the parameter
that parametrizes the curve.

The resemblance with General Relativity is not superficial, and one can use all the machinery available.
For instance, the vector V I is parallel transported along the path φJ(t) when its directional covariant
derivative along that curve vanishes, i.e.,

DtV
I = 0 or ∂tV

I + ΓIJKV J φ̇K = 0. (3.30)

This derivative has a couple convenient features. First of all, it is metric-compatible with respect to
the field space metric, i.e.,

DtG
IJ = 0. (3.31)

Second of all, it acts as an ordinary time derivative on field space scalars (this is, quantities without
field space indices):

DtX = ∂tX. (3.32)

Making use of this derivative equation (3.26) becomes

Dtφ̇
I +

(
3H + Ṗ,X

P,X

)
φ̇I − GIJP,J

P,X
= 0, (3.33)

or in an even more compact form,
a−3Dt(a3P,X φ̇I) = P,I . (3.34)

Thus, it is natural to interpret eq. (3.33) as the geodesic equation for a particle in field space in the pres-
ence of two external forces: a frictional force proportional to the velocity of the fields,

(
3H + Ṗ,X

P,X

)
φ̇I ,

and a conservative force GIJP,J

P,X
.
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Slow-roll parameters

Once this general framework has been set up, we can ask ourselves what the true multifield slow-
roll conditions are like. From equations (3.8) and (3.9) we can compute the first Hubble slow-roll
parameter

ε ≡ − Ḣ

H2 = 3XP,X
2XP,X − P

. (3.35)

And the second follows from
ε̇

εH
= 2ε+ ∂t(XP,X)

HXP,X
, (3.36)

where we can identify η as
η ≡ ∂t(XP,X)

HXP,X
. (3.37)

The meaning behind these equations is somewhat obscured by the presence of the arbitrary function
P (X,φI). Since non-trivial kinetic terms do not seem to add anything essential to our discussion
about the slow-roll parameters, we had better simplify all these equations to the case with a trivial
kinetic term: P (X,φI) = X + V . Then again, sticking to the covariant notation will prove to be
helpful.

3.2.2 P (X,φI) = X + V

In this simple and habitual case, the action of eq.(3.18) simplifies to

S =
∫
d4x
√
−g
(
R

2 + 1
2GIJ φ̇

I φ̇J − V (φI)
)
, (3.38)

which can be understood as a generalization of the single field action (1.34) to the multifield case.

With P (X,φI) = X + V we also get that P,X = 1, and so the new forms of the main equations
presented in the previous section are, in units where

3H2 = 2X − P, (3.39)

Ḣ = −X, (3.40)

for the Friedmann equations, and

Dtφ̇
I + 3Hφ̇I +GIJV,J = 0, (3.41)

for the field equations of motion.

The key insight will be obtained by taking the dot product of φ̇I times each one of the equations of
motion (3.41). This gives

Ẋ + 6HX + V,K φ̇
K = 0, (3.42)

which is the same equation as the energy conservation equation (1.6) with ρ = X−V and P = X+V .
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Slow-roll conditions

The slow-roll parameters of equations (3.35) and (3.37) particularize to

ε = 3X
X + V

' 3X
V
, (3.43)

η = Ẋ

XH
, (3.44)

where the approximation in eq.(3.43) follows only from knowing that ε must be small. As was the
case in single field, no further assumptions are involved.

Equation (3.44) tells us that the proper multifield slow-roll approximation is to drop the first term in
the equation of motion (3.42), i.e.,

Ẋ � 6HX ' −V,K φ̇K . (3.45)

In particular, it should be noted that this is not the same as dropping the first term of equation (3.41),
since

Ẋ = GIJ φ̇
IDtφ̇

J , (3.46)

and so there are two ways to make this quantity small. One is the typical slow-roll approach, where
Dtφ̇

I is small in norm; the other one is that, without being small, its projection onto φ̇I is small. This
equation is, in our opinion, the correct multifield slow-roll approximation.

Potential slow-roll parameters

We can try to compute the slow-roll parameters in terms of the potential, as we did in single field.
The upshot of this treatment is the same as in single field models: we would be able to tell, just by
looking at the potential, if inflation will or won’t happen.

In the previous section we learnt that the equation of motion that gives meaningful answers to these
kind of questions is eq. (3.42), which in the slow-roll approximation is (3.45). In close analogy to
the single field case, we can always solve the field equation of motion to find φ̇I in terms of V in the
slow-roll regime:

|φ̇|2 ' −V +
√
V 2 + 2

3 |V
′|2 cos2 ϕ, (3.47)

where the other solution for |φ̇| is negative and thus unphysical. The angle ϕ that we just introduced
is the angle between φ̇I and the gradient of the potential, i.e.,

cosϕ ≡ φ̇IV,I

|φ̇||V ′|
. (3.48)

Now we can compute the first potential slow-roll parameter. Combining eq.(3.43) and the solution
(3.47)

ε ' 3X
V
' 3

2V

(
−V +

√
V 2 + 2

3 |V
′|2 cos2 ϕ

)
, (3.49)
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where we have used that X = |φ̇|2
2 . Taking a look at eq.(3.49) we see that the only way in which ε can

be small is that the potential V dominates the square root. Then, performing a Taylor expansion,

ε ' 1
2
GIJVIVJ

V 2 cos2 ϕ ≡ εV . (3.50)

This is our multifield version of the first potential slow-roll parameter, and it is one of the main result
of this thesis. It has two interesting features. The first is its connection with the single field result
(3.3). In single field there is only one possible direction in field space, that is, all vectors are parallel to
each other. In particular, cosϕ = 1 and we recover eq.(3.3). The second is that, due to the presence
of the cosine, εV can be arbitrarily small without the usual ratio |V ′|/V being small. This feature is
genuine to multifield inflationary models, and it turns out to be a rather deep an thought-provoking
result. We will comment on it extensively at the end of this chapter.

We can also try to compute a multifield version of ηV in a similar way. Following the same steps as
in single field (cf. eq.(3.4) and below), we seek a consistency relation when we ignore the acceleration
term in eq.(3.42):

Ẋ ' −∂t
(
V,K φ̇

K

6H

)
. (3.51)

Then, we can plug this back into the definition of η, eq.(3.44):

η ≡ Ẋ

HX
' ε−

∂t
(
|V ′||φ̇| cosϕ

)
6H2X

, (3.52)

where we have used the definition of the cosine, eq.(3.48). Since ε � 1, the only way in which η can
be small is if the second term is small by itself. Let us compute it by systematically using eq.(3.45).
We get

η ≡ Ẋ

XH
' ε+ ∂t|V ′|

H|V ′|
+ ∂t cosϕ
H cosϕ + Ẋ

2XH . (3.53)

Thus,

η ≡ Ẋ

HX
' 2ε+ 2

(
∂t|V ′|
H|V ′|

+ ∂t cosϕ
H cosϕ

)
, (3.54)

so that, in close analogy to what we did in single field, it is natural to define the second term as the
second potential slow-roll parameter:

ηV ≡
∂t|V ′|
H|V ′|

+ ∂t cosϕ
H cosϕ.� 1 (3.55)

Its interpretation is clear: neither the cosine nor the norm of the gradient of the potential should
change much during one Hubble time. This second slow-roll condition has the appealing feature that,
when evaluating it for the single field case we get

ηV = V ′′φ̇

V ′H
= −M2

P

V ′′

V
, (3.56)

where the approximated equation (3.2) has been used once more. It is immediate to see, by looking
at eq.(3.6), that this is the correct result in single field. We conclude that equation (3.55) gives the
correct definition for the second potential slow-roll parameter in multifield models of inflation.
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3.3 Discussion

There are two major results in this chapter. On the one hand, we learnt how to understand the
multifield slow-roll approximation. This was accomplished by writing the equations of motion invariant
in form under an arbitrary transformation of the fields, i.e., using the covariant approach. The meaning
of the second Hubble slow-roll condition, given by eq.(3.44), has now become clear: the equation of
motion (3.42) suggests that the approximated equation (3.45) is the correct multifield version of the
good old single field slow-roll equation of motion (1.46). It is clear by virtue of eq.(3.46) that making
the acceleration of the fields small in norm is not the only way of realizing a slow-roll trajectory.
Indeed, as long as the projection of the acceleration onto the velocity is small, we are safe.

On the other hand, we computed the new potential slow-roll conditions for multifield models of infla-
tion, given by equations (3.50) and (3.55). They are the generalization of the single field parameters
(3.3) and (3.6). One of their important features is that, contrary to what happened in single field,
they not only depend on the potential, but also on the angle between its gradient and the velocity of
the fields. These new parameters, which we believe to be correct, are in contradiction with some of
the parameters seen in the literature (see, for instance, eqs.(3.11), (3.15) and (3.17)).

The two conclusions are closely related. What happened in single field was that, once in the slow-roll
regime, the equation of motion reduced to the first order differential equation (1.46). Thus, once the
value of the field φ(t) was known, the whole trajectory was determined. In particular, the number of
efolds before the end of inflation was completely specified. When inflation is driven by multiple fields
the situation is different. We learnt that neglecting the acceleration term in equation (3.33) is not the
correct slow-roll approximation. In fact, Dtφ̇

I does not need to be small as long as it stays orthogonal
to its velocity. Then, it follows that the equation of motion in the slow-roll approximation is truly
a second order differential equation. And hence, specifying the values of the fields is not enough to
determine the trajectory and/or the number of efolds until inflation ends: we also need to know their
velocities.

Once again, in single field the only possibility for the fields to move in the slow-roll approximation was
to follow the gradient of the potential. This is best understood by noticing that the slow-roll equation
of motion implies that φ̇ ∝ −V ′. That is why the slow-roll parameters can be written solely in terms
of the potential. Meanwhile, in multifield inflation, it doesn’t necessarily follow from eq.(3.45) that
the fields must follow the gradient of the potential. As a consequence, we need at least one more
parameter to be able to tell if they are in a slow-roll trajectory or not. Because the term slow-roll
originally comes from the idea of slowly rolling the potential hill, we like to call these trajectories that
do not follow the gradient of the potential slow-descent trajectories.

Are slow-descent trajectories stable? Or do they decay to the usual slow-roll trajectory after a short
amount of time? We studied a simple model both analytically and numerically to try to answer those
questions. It is presented in the upcoming chapter.
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Chapter 4

Slow-descent toy model

4.1 Introduction

In this chapter we present a toy model that serves as an example of a slow-descent trajectory. Some
of the conclusions we drew in the last section will be most dramatically reaffirmed if two key points
are satisfied.

First of all, we would like to proof that, driven by the same potential, two different slow-roll trajectories
can be obtained by changing the initial conditions. One of them should, as usual, follow the gradient
of the potential; the other, the new slow-descent trajectory, should not. That kind of setting would
proof not only that slow-descent trajectories are possible, but also our claim that in multifield inflation
it is not enough to specify the value of the field to determine a trajectory, we also need its velocity.

Second of all, we would be all the more delighted if such a slow-descent model could reproduce the
experimental measurements of quantities such as the power spectrum or the spectral tilt. However, it
should be kept in mind that our main focus is not on building a realistic model, but rather to show
the validity of the general features of multifield inflation discussed in the previous section.

Having said this, let us begin to construct the slow-descent model. The main idea, as was previously
commented, arises from trying to make Ẋ in eq.(3.42) small without the acceleration being small, i.e.,

Ẋ = GIJ φ̇
IDtφ̇

J ' 0→ φ̇I ⊥ Dtφ̇
I . (4.1)

Such a trajectory, where the velocity is perpendicular to the acceleration, is familiar to us as a circular
orbit. In order to obtain a circular trajectory only two fields are necessary, and for the sake of simplicity
we will only use two. In principle we could add as many fields as we wanted, but it is not expected
that the basic features would change.These two fields will be called r(t) and θ(t), pointing out the
complete resemblance with the motion of a particle in a circular trajectory. This kind of model was
introduced by I.-S. Yang in his work [23]. This chapter will revise and complete that model.

That is all we need to know to start computing. Let’s go!

4.2 Analytics

We have a circular trajectory in mind. In order to describe it, we write the field space metric as the
one for polar coordinates:
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GIJ =
(

1 0
0 r2

)
, (4.2)

where, as was mentioned, the fields are called r(t) and θ(t).

The equation of motion for the fields are given by equation (3.41). By components they read

r̈ − rθ̇2 + 3Hṙ + V,r = 0 (4.3)

θ̈ + 3Hθ̇ + 2ṙθ̇
r

+ V,θ
r2 = 0, (4.4)

where, for simplicity, we opted for a sum separable potential V (r, θ) = V (r)+V (θ). The explicit form
of the potential will be fixed below.

The circular trajectory is given by the following solution of these equations of motion,

rsol ≡ R = const. =⇒ Ṙ = R̈ = 0 (4.5)

θ̇sol ≡ θ̇0 = 0 =⇒ θ̈0 = 0. (4.6)

Within this regime the equations of motion read

Rθ̇2
0 = V,r (4.7)

3HR2θ̇0 = −V,θ. (4.8)

In order to have a solution with constant r, the force in the r axis, proportional to V,r, must be
compensated by a term that can be interpreted as a centripetal force. On the other hand, if the
velocity in the θ direction is meant to be constant then we need a force (proportional to V,θ) that
counteracts the friction 3HR2θ̇.

For the solution given by eqs. (4.8) and (4.7) to exist, we need the kinetic term to be positive and the
two equations to be consistent with each other, this is,

θ̇2
0 > 0 =⇒ V,r

R
> 0 (4.9)

V,r =
V 2
,θ

3HR2 , (4.10)

where the second equation is obtained by equalizing θ̇0 in (4.7) and (4.8).

Thus, solutions with this form always exist, provided that the conditions (4.9) and (4.10) are fulfilled.
One problem, however, could be that, due to the friction to which the system is subjected, the
particle would slow down and start following the gradient in the r direction. That is why we perform
the following stability analysis.

Stability analysis

We suppose that the system is subjected to the trajectory given by eqs. (4.7) and (4.8), and introduce
a small perturbation around those solutions, i.e., (R, θ0) → (R + δr, θ0 + δθ). The next step is to
realize that equation (4.4) can be written as
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∂t
(
r2θ̇a3 + V,θ t

)
= 0. (4.11)

The perturbations to the Hubble parameter are slow-roll suppressed, and we can safely set δH ∼ δa

to zero.

With this in mind, eq.(4.11) implies that at linear order

δθ̇ = −2θ̇0

R
δr. (4.12)

Now, plugging this back into the linearized version of eq. (4.3), i.e.,

δr̈ − 2Rθ̇0δθ̇ − θ̇2
0δr + 3Hδṙ + V,rrδr = 0, (4.13)

we get a simple harmonic oscillator equation for δr:

δr̈ + 3Hδṙ + (3θ̇2 + V,rr )δr = 0. (4.14)

We can solve this equation by making the ansatz δr = Aeiωt. For the system to be stable we need
that ω ∈ R, which turns out to be the case if and only if

3θ̇2 + V,rr > 0. (4.15)

Thus, this is the condition for a stable trajectory.

Slow-descent regime

We can compute the slow-roll parameters to see under what conditions a circular trajectory of this
sort would be able to support inflation.

The Hubble slow-roll parameters are computed from eqs.(3.43) and (3.44), giving

ε = 9
2
R4V 2

,r

V 2
,θ

� 1 (4.16)

η ' 0, (4.17)

where the two quantities have been computed for the background values (R, θ0).

The cosine of the angle between the velocity and the gradient of the potential is

cos2 ϕ =
(

1 + V,2r R
2

V,2θ

)−1

. (4.18)
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The potential slow-roll parameters of eqs. (3.50) and (3.55) give

εV =
V 2
,θ

2R2V 2 (4.19)

ηV = V,θθ

R2
(
R
V,r

2 + V
) . (4.20)

To make later results sharper, we can also explicitly compute the first potential slow-roll condition
that is frequently used in the literature, here given by eq. (3.11):

εsrV = 1
2
V 2
,θ +R2V 2

,r

R2V 2

= εV + 1
2

(
V,r
V

)2
, (4.21)

where the label sr indicates that this expression is only valid on the usual slow-roll approximation, but
not in the slow-descent regime we are investigating. It is interesting to see how it can be written down
in terms of what we consider to be the adequate parameter, εV . Clearly, if V,r > V then εsrV > εV and
will not be a good quantity to parametrize inflation.

The slow-descent regime we want to build requires both ε � 1 and cosϕ � 1. Note that imposing
the cosine of ϕ to be small is equivalent to asking that the gradient of the potential goes in the r
direction, i.e.,

cosϕ� 1 =⇒ RV,r� V,θ . (4.22)

Combining the two conditions in one line:√
9
2R

2V,r� V,θ� RV,r . (4.23)

It is now time to choose a potential. It turns out, as will become clear soon, that a potential as simple
as

V (r, θ) = 1
2m

2r2 + c
√
b2 + θ2 (4.24)

can, for certain values of the parameters m2, c and b, drive a slow-descent trajectory. Although it may
seem strange at first, the θ dependence of the potential is quite simple and easy to understand. In the
limit where θ is large it becomes linear V (θ) ' cθ. On the other hand, when θ is small, V (θ) ' cb,
which is a cosmological constant. This is a choice that ensures linear behavior in a region of our
interest, and at the same time no singularity at the origin (that would appear if we had written down
the simpler V (θ) = cθ). It is also important to notice that in our simulations θ does not run from 0
to 2π, but rather θ ∈ R.

With this potential, the conditions (4.23) read, in the region where b� θ.√
9
2m

2R3 � c� m2R2, (4.25)

which can be satisfied for certain values of m2, c and R, as will be clear below.

We gathered enough analytic information to properly understand the simulations. The next section
presents our results.



4.3. Numerics 57

4.3 Numerics

Before doing anything else, it is wise to use the number of efolds N as the time variable to express
the equations of motion we want to solve, eqs. (4.3) and (4.27). They become

r′′ + εr′ − rθ′2 − 3r′ + V,r
H2 = 0 (4.26)

θ′′ + εθ′ − 3θ′ + 2r′θ′

r
+ V,θ
r2H2 = 0, (4.27)

where the primes denote derivatives with respect to the number of efolds, and the convention in which
the number of efolds decreases has been used, i.e., dN = −Hdt. As we know inflation has to last
about 60 efolds the choice of writing the equations of motion in terms of N is a wise one: inflation
simply starts around N = 60 and ends at N = 0.

We evaluated the full equations of motion (4.3) and (4.4) with the following initial conditions and
values of the parameters:

• Initial conditions

r(60) = 6.7× 10−5MP

r′(60) = 1.9× 10−7MP

θ(60) = −1.4× 105

θ′(60) = 1.6× 103

• Parameters

m2 = 5× 10−4MP

c = 1.8× 10−14

b2 = 103

A handful of things may be noted about these choices.1 First of all, notice that the field r has sub-
Planck values. The same happens with the cosmological constant ∼ cb. One can check that all the
conditions derived above are satisfied. Most importantly, this values lay in a regime where eqs. (4.15)
and (4.25) are satisfied.

Figure 4.1 shows the circular trajectory that was expected in the (x, y) ≡ (r cos θ, r sin θ) plane. The
particle moves slower in the beginning of inflation (red line) than in the end (blue line). Also, notice
that the radius r increases during inflation. The cause of both things is that the field is rolling down
the potential in the V,θ direction, and so θ̇ is becoming bigger as time goes by. The larger θ̇ is, the
larger r needs to be to maintain a stable circular orbit.

Another way of parametrizing that the trajectory the fields follow is the one that we expected to be is
to check whether cosϕ, as defined in eq.(3.48) is small. As Figure 4.2 shows, this is indeed the case.

1Our actual computation began with different initial conditions, thousands of efolds before the condition ε = 1 was
reached. All the discussion in this section, including the values mentioned, correspond to 60 efolds before inflation
ended.
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Figure 4.1: Circular trajectory of the particle at different stages of inflation. The
fields x and y are defined as the usual Cartesian coordinates: (x, y) ≡ (r cos θ, r sin θ).
The legend shows the initial number of efolds of the lines, and all of them correspond
to 0.003 efolds. The dotted green line shows to a usual slow-roll trajectory, where the

fields simply follow the gradient of the potential.

We can conclude that the particle stays in an almost perfect circular orbit, whose radius is increasing
slowly.

The Hubble and the potential slow-roll parameters are shown in Figure 4.4. This is perhaps the most
important plot of this section. It shows how the new potential slow-roll conditions εV and ηV , that
were derived above, stay small in this new paradigm of slow-descent inflationary trajectories.

On the other hand, we plotted the incorrect potential slow-roll parameter εsrV , defined in eq. (3.11).
As we can see in Figure 4.5, it is obviously not the proper parameter to judge whether an inflationary
trajectory will happen or not.

Last but not least, we computed the scalar power spectrum using the naive single field result of eq.
(2.94), and it is shown in Figure 4.6. One should not take this result too seriously; it is only useful as
a rough estimate of the normalization of the power spectrum.

4.4 Discussion

Several conclusions can be drawn from these results.

First of all, we have shown that a stable inflationary trajectory that does not follow the gradient of the
potentials exists. This is already quite remarkable, as these kind of trajectories are never considered
in the standard literature we have come across. Even more, we did so employing a potential that
clearly accepts usual slow-roll trajectories. This points towards the direction of what we concluded
in the previous section: to unambiguously characterize a multifield inflationary trajectory we need
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Figure 4.2: The cosine of the angle between the gradient of the potential∇V ' V,rûr
and the velocity of the fields φ̇I ' −rθ̇ûθ, where ûr and ûθ are unit vectors in the

directions of r and θ, respectively.

Figure 4.3: The Hubble slow-roll parameters ε and η.

Figure 4.4: Hubble and potential slow-roll parameters. It is aparent how the po-
tential slow-descent parameters stay small until inflation ends ε = 1.
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Figure 4.5: The incorrect parameter εsrV . If we were only paying attention to this
parameter, we would never say that this plot corresponds to an inflationary trajectory,

as εV is bigger than 1 the whole time.

Figure 4.6: Matter power spectrum, ∆2
s(k), for our toy model. We can see that it

loosely fits the experimental value of ∆2
s(k = 0.05Mpc) ' 2.2 × 10−9 measured by

Planck [1].
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to specify both the value of the field and its velocity at some given time. This is, as was mentioned
above, one of the main results of the present work.

Nevertheless, our toy model did present an inconvenience to this respect. The dotted green line of
Figure 4.1 is not exactly an inflationary trajectory in the sense that the usual slow-roll trajectories end
inflation at larger values of the r field, this is, higher in the potential. Therefore, we did not find two
intersecting inflationary trajectories. Although it may sound like it, it is not a major drawback; we
can simply argue that either two intersecting inflationary trajectories might exist for other values of
the parameters and for a different set of initial conditions, or that our potential was too naive (which
certainly was) and that in more complex models, which could include more fields, trajectories could
cross one another. That is our opinion: there must be multifield models in which the usual slow-roll
and the new slow-descent inflationary trajectories intersect each other.

Another relevant conclusion is that for slow-descent trajectories the right potential slow-roll parameters
were the ones we derived in section 3.2.2. We also saw that the parameters proposed until now in the
literature lead to the wrong conclusions about the inflationary nature of the trajectories. Indeed, if
the parameter εsrV of eq. (3.11) (which in this particular model is given by eq. (4.19)) was the correct
one to decide whether a given trajectory inflates or not, then its values in Figure 4.5 should be smaller
than one.

As a last remark, the power spectrum of Figure 4.6 should not be taken too seriously. Instead of
computing the fluctuations of the two fields, we simply used the single field expression (2.94). Thus,
its interest (if it has any) is that the normalization of the power spectrum loosely coincides with
the experimental measurement (cf.equation (2.72)). Although this model was a toy model without
further pretensions than to demonstrate that the ideas developed above were not mere speculations,
the normalization of the power spectrum is acceptable. This fact does nothing but support the idea
that these kind of slow-descent inflationary trajectories are not only mathematically possible, but
probably also physical.
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Outlook and further research

Several partial results were obtained in the present work. The most direct and obvious one is the
correct interpretation of the multifield slow-roll conditions, determined in eq. (3.45). With that im-
proved understanding, two concrete features were discovered. On the one hand, the correct multifield
potential slow-roll parameters were found, as shown in eqs. (3.50) and (3.55). These do not depend
only on the potential anymore, but are also a function of another parameter: the angle ϕ between
the velocity of the fields and the gradient of the potential. On the other hand, we realized that a
new kind of slow-roll trajectory, the slow-descent trajectory, was possible. These kind of trajectories
do not follow the gradient of the potential, as is the case in the usual slow-roll scenario. The two
ideas are closely related, since the angle ϕ is necessary to parametrize the smallness of εV and ηV in
slow-descent models of inflation.

These points are most dramatically strengthened by the toy model that was presented in Chapter
4. Figure 4.1 shows the two possible trajectories for the fields, and by comparing Figures ?? and
4.5 it can be concluded that the potential slow-roll parameters introduced do a much better work.
Moreover, we showed that this example realized a stable slow-descent trajectory.

There was another interesting result, discussed in section 2.5, that was less highlighted because it
fell outside the main scope of the thesis. By considering multifield models that did evolve along the
traditional slow-roll trajectories, equation (2.136) was obtained. The angle between the gradient of the
number of efolds and the velocity of the fields, α, can be interpreted as the quantity that parametrizes
the presence of more than one field. In fact, α = 0 reduces to the single field consistency relation
(2.135), whereas α 6= 0 is only possible if more dimensions are available in field space. The interest of
this result resides in its potential measurability in the near future. Improved experimental constraints
on the tensor to scalar ratio r and the tensorial tilt nt could therefore disprove or validate single field
models of inflation.

Harkening back to the main theme of this thesis, there are some more speculative and far reaching
ideas that suggest the direction towards which further research could point. When the δN formalism
was introduced in section 2.4, one of the assumptions we made was that eq.(2.122) was a good
approximation of the trajectory of the fields. Using that equation, we were able to write the number
of efolds, which is in principle a function of both the values and the velocities of the fields, as a function
of the fields only, this is, N(φI , φ̇I) = N(φI). But we have seen that this is not the most general
slow-roll approximation, and one should be more careful when making that assumption. In fact, we
showed that two inflationary trajectories can intersect in multifield inflation (see, once again, 4.1,
i.e., two trajectories can have different φ̇I for the same φI . One of the future tasks to complete this
work would be to extend the δN formalism, a crucial tool to compute the power spectra in multifield
models, to the most generic slow-roll conditions described here.

There is another direction in which further research could go. Our slow-roll parameter εV indicates
that provided cosϕ2 � 1, inflation can happen for any shape of the potential. If such a condition was
naturally realized in multifield inflation for a large class of potentials, it could be an argument in favor
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of these kind of models: the likelihood of our universe having undergone an inflationary phase would
be greater in the case of multifield models, where inflation could happen for any potential, than in
the single field one, where the potential has to have a concrete shape in order to inflate. In order to
gain some analytic insight, we compute in Appendix B the average of the square of the cosine between
two random vectors in N dimensions. The result, given in eq. (B.6) is stimulating. It insinuates that
〈cos2 ϕ〉 = 1/N and therefore εV can be made arbitrarily small simply by adding fields.

It goes without saying that φI and V ,I are not random vectors, but rather quantities that are de-
termined by some equations of motion. Hence, the naive result of Appendix B does not directly
apply here. Anyway, it would be interesting to evaluate that quantity more realistically. The only
way we can think of is using numerical methods together with an effective implementation of random
potentials to solve the full equations of motion.

The primordial question that motivated us to do this work, whether inflation was driven by a single
or by many scalar fields, is, sadly enough, unanswered yet. Nevertheless, it is comforting to think
that we have taken some small steps in what hopefully is the right direction. Although, giving it a
second thought, perhaps it is not so sad. Knowing the answer to those kind of questions would
prevent us from giving our best to solve the conundrum, which is, after all, the physicist’s most

natural state.

THE END
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Appendix A

Multifield slow-roll consistency
relation

In this short appendix we compute the relation between the tensor to scalar ratio and the tensorial
tilt for multifield slow-roll models of inflation.

The power spectrum for the tensorial perturbations and its tilt are still given by eqs. (2.97) and (2.107)
in multifield inflation, as introducing more scalar degrees of freedom does not affect the tensorial part
of the equations (remember the SVT decomposition!). Now, to compute the tensor to scalar ratio r
we can use equation (2.129) to see that

r ≡ ∆2
t

∆2
s

= 8
N,IN,JGIJ

, (A.1)

with summation over indices understood.1 The quantity in the denominator is the norm of the gradient
of the number of efolds squared. We can rewrite eq. (A.1) as

r = 8
|N ′|2

. (A.2)

Moving on, the following relation will be useful

H ≡ dN

dt
= ∂N

∂φI
∂φI

∂t
= |N ′||φ̇| cosα, (A.3)

where we have used the definition of the number of efolds dN ≡ Hdt, and we have introduced α,
the angle between the gradient of the number of efolds and the velocity of the fields. Using equation
(A.3), we can rewrite equation (A.2) as follows:

r = 8|φ̇|2 cos2 α

H2 = 16ε cos2 α, (A.4)

where equation (3.35) has been used to write it in terms of ε.

Despite its simplicity, it is a rather interesting result that has not, as far as we know, been computed in
the literature before. In one line, it states that in multifield slow-roll there is an analogous consistency
relation to that of single field inflation, derived in eq.(2.108), and it is given by

1For the readers that are coming here directly from Chapter 2, it should be noted that multifield models with
non-trivial field space metric GIJ are introduced in Chapter 3.
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r = −8nt cos2 α. (A.5)

Its implications are discussed in the closure of Chapter 2.
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Appendix B

〈cos2ϕ〉 between two random vectors
in N dimensions

In this appendix we compute the average of the cosine squared of an angle between two random vectors
in N dimensions. As a warm up, let us perform the calculations in 3 dimensions. We can always fix
one of the vectors to point in the zenith direction, so that the angle between this one and the other
will be given by the inclination ϕ.

We first want to compute the probability density function. The area element of the unit sphere is
sinϕdϕdθ. To turn this into a probability density function we have to divide it by the total area of
the unit radius sphere (the vectors are unitary), this is, 4π. The probability density function then is

f(ϕ) = 1
4π

∫ 2π

0
sinϕdθ = 1

2 sinϕ. (B.1)

We can check that this is indeed a well defined probability density function by noting that∫ π

0
f(ϕ)dϕ = 1. (B.2)

Let us now generalize this computation to N dimensions. The perimeter of a circle of radius sin θ is∫ 2π

0
sinϕdθ. (B.3)

In order to obtain an expression analogous to (B.1) in N dimensions, we should take the surface of
an N − 2 sphere of radius sinϕ and divide it by the surface of a N − 1 sphere. We get

f(ϕ) = SN−2

SN−1
sinN−2 ϕ = π−1/2 Γ

(
N
2
)

Γ
(
N−1

2
) sinN−2 ϕ. (B.4)

Once the probability density function is computed, calculating the following quantities does not require
too much work:

〈cosϕ〉 =
∫ π

0
cosϕf(ϕ)dϕ = π−1/2

n− 1
Γ
(
N
2
)

Γ
(
N−1

2
) sinN−1 ϕ

∣∣∣π
0

= 0 (B.5)
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〈
cos2 ϕ

〉
=
∫ π

0
cos2 ϕf(ϕ)dϕ = π−1/2 Γ

(
N
2
)

Γ
(
N−1

2
) π1/2Γ

(
N−1

2
)

2Γ
(
N
2 + 1

) = 1
N
. (B.6)

This computation will become useful when discussing possible values of the new slow-roll parameter
εV . (See conclusion chapter).
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