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Abstract

A holographic model of a QCD-like theory in a magnetic background is
studied in the limit of an infinite number of colors Nc and infinite massless
quark flavors Nf , where the ratio x = Nf/Nc is kept constant at 1. The
gravitational model contains two scalar bulk fields, namely a dilaton λ,
which is the source of trF 2, with F the gluon field tensor, and a tachyon
sourcing the chiral condensate 〈q̄q〉. This model is used to compute both
the chiral and the deconfinement phase transition temperatures, as well as
the chiral condensate. This leads to a computation of the phase diagram
of QCD in the (T,B)-plane, as well as the observation of inverse magnetic
catalysis of the chiral condensate by the magnetic field, in qualitative
agreement with lattice results.
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1 Introduction

Quantum Chromodynamics (QCD) is the theory describing the strong interac-
tions. Developed in the mid-twentieth century, it describes hadrons in terms of
smaller constituent particles called quarks and gluons. Mathematically, it is a
Yang-Mills (YM) theory based on the Lie group SU(3), where 3 is the number
of colors of the theory. Its predictions made using perturbative QCD have all
been verified in particle accelerator experiments. However, in recent years, it
has been confirmed at RHIC in Brookhaven and at the LHC in Geneva, that
there are also strong phenomena which cannot be described in the weak coupling
limit. Next to the known hadronic bound states, it turns out that the theory
includes a new state of matter, in which quarks are not bound together in sets
of two or three, but instead propagate freely. This deconfined state is called
a Quark Gluon Plasma (QGP), and it is well-described using hydrodynamics,
which indicates that strong coupling effects are important.

An interesting problem is what happens if a magnetic field1 is applied to
QCD matter. This has a few interesting consequences. Firstly, the Landau
levels will shift, causing the masses of the excitations of the vacuum to change.
Another is the appearance of anomalous transport phenomena and quantum
anomalies, such as the generation of an electric current as a consequence of the
magnetic field, called the Chiral Magnetic Effect. Effects indicating this, as well
as a related phenomenon called the Chiral Vortical Effect, have been seen in
heavy ion experiments[1]. Also, the CME has also been observed in condensed
matter systems[33]. Another thing one can look at is the phase diagram of QCD
in the (T,B)-plane, looking in particular at the effects of the magnetic field
on the phase transition temperature between the confined and the deconfined
phases. Lastly, the effect on chiral symmetry breaking can be studied. The
order parameter describing this transition, called the chiral condensate, can
either increase with increasing B, or it can decrease. In the first case we call it
magnetic catalysis, in the latter inverse magnetic catalysis.

The latter two, namely the phase diagram and the (inverse) magnetic catal-
ysis, is what this thesis will focus on. In the weak coupling limit, it is possible to
show that magnetic catalysis occurs[35]. At strong coupling, it is not possible to
do perturbative calculations. In this situation, there are two ways to proceed, of

1Here, and in the entire thesis, this will denote an electromagnetic magnetic field, not a
gluonic magnetic field.
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which the first is to do lattice QCD computations. In this method, space-time is
assumed to be discrete, allowing a Monte Carlo approximation of the Euclidean
path integral. It has been used successfully to compute both (inverse) magnetic
catalysis effects and the temperature dependence of the deconfinement tempera-
ture. Although these computations are still not confirmed by experiments, they
are generally regarded as reliable, since they make no additional assumptions
other than the QCD Lagrangian. The other method, the one we will be using,
is to use the holographic principle to try to come up with a dual gravitational
theory in which the results can be computed more readily.

The above leads to the following problem statement: Can we, using holo-
graphic methods, find out what happens in QCD at strong coupling, and par-
ticularly, what the dependence on a background magnetic field is? Is it possible
to understand the lattice results in a holographic setting? If so, then this would
be a step forward, since this would mean a step closer to an analytic under-
standing of these phenomena.2 For vanishing B, several holographic results are
already known[2], and in recent weeks there has also been a publication, using
a different model from the one in this thesis, for non-zero B[20].

These questions are not just academic ones, but they also possibly influence
experimental results. Strong magnetic fields of the order of 1019 Gauss can be
found at the center of heavy ion collision experiments. In these experiments,
heavy atoms such as gold (RHIC, Brookhaven, NY) or lead (LHC, Geneva) are
stripped of their electrons, and collided at energies high enough to create a QGP.
Most of these collisions are off central collisions such as the one shown in figure
1. The parts which do not participate directly in the collision process are highly
charged, and they move at almost the speed of light, so the magnetic fields
generated are indeed enormous. These large fields only exist in a very small
region for a very short amount of time, but its location and time of existence
overlap with the location and moment in which the QGP exists. Understanding
the QGP in this setting will require an understanding of the influence of these
magnetic fields on the QCD dynamics. Since the QGP is governed by strong
interactions, it requires non-perturbative methods to address these questions,
such as lattice QCD and the AdS/CFT correspondence.

As mentioned before, we will study this problem by using holography, or
the AdS/CFT correspondence. The holographic principle was inspired by the
early results of Hawking and Bekenstein that black holes have a temperature
and an entropy, the latter of which is proportional to its area[28, 8]. It was then
proposed by ’t Hooft[39] and Susskind[37] that the description of a region of
space can be encoded on the boundary of such a space. A more rigorous theory
relating a 4D super Yang-Mills theory to a gravitational model in 5D was sub-
sequently proposed by Maldacena[34]. Today, the correspondence is developed
enough so that we can use it to relate a QCD-like theory to a gravitational
model in 5 dimensions. Note that this QCD-like theory will not be exactly
QCD, but it is believed that the resemblance is good enough so that results will
be applicable to QCD.

The rest of this thesis has the following structure: First prior results on (in-
verse) magnetic catalysis will be discussed in more detail, then the AdS/CFT
correspondence will be discussed in detail, as well as an improvement over classic

2The methods used are mostly analytic, only the equations of motion are solved numeri-
cally.
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Figure 1: Schematic of an off central heavy ion collision. It can be seen that
the overlapping parts of the ions interact to form a QGP, while the other parts
continue moving. Being charged with many elementary charges and moving at
very high speeds, these result in large magnetic fields of the order of 1019 Gauss.
This image was taken from [32].
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AdS/CFT that we will be using, called Improved Holographic QCD (IHQCD).
Next, the gravitational model we use will be introduced. This includes a discus-
sion of the action, the equations of motion and its symmetries, and the on-shell
action. The equations of motion will be solved with the appropriate boundary
conditions, and the thermodynamics of the model will be extracted from the
solutions. This in turn enables us to use the solutions to construct the phase
diagram, and to do a computation of the chiral condensate, which enables us
to draw conclusions on the problem statement. Finally, an outlook on potential
further research will be given. Wherever the computations get very involved, the
computations have been moved to an appendix. Care has been taken to make
sure the main text is independent of the details discussed in the appendices.

Of these subjects, my personal contributions have been to derive the equa-
tions of motion, its symmetries, on-shell action and near-boundary expansion,
as well as a modification to the w potential, which is to be introduced along
with the action and which causes the observed effect to be more pronounced. In
addition to this, other contributions are to apply the techniques from [2] to this
new model, and to develop the new method of computing the chiral condensate
detailed in appendix B. Last among these contributions are the algorithms for
finding the exact phase transitions shown in appendix C. Of these contribu-
tions, several are of mathematical interest. These are the large derivations such
as that of the equations of motion and the on-shell action, the near-boundary
expansion and the numerical techniques used in appendices B and C. Wherever
these mathematically interesting parts occur outside of the appendices, they
will be emphasized as such.

2 (Inverse) magnetic catalysis

As was mentioned in the introduction, (inverse) magnetic catalysis is one of the
two phenomena which will be studied in this thesis. This section will discuss
chiral symmetry breaking and why it can be expected that an external magnetic
field influences this effect. After this, different methods of computing (inverse)
magnetic catalysis will be discussed, and the section will end with a lattice QCD
result that this thesis will attempt to match with a different method.

Chiral symmetry breaking is an example of spontaneous symmetry breaking,
involving the condensation of quark-antiquark pairs, so that 〈q̄q〉 attains a non-
zero value. This condensate is responsible for the generation of most of the mass
present in hadrons. Since magnetic fields tend to align spins, the formation of
pairs is expected to be influenced by such an external magnetic field. For a
precise computation, several methods are available. Examples are perturbative
models and, more recently, lattice models and holography.

Historically, the first of these to be used were perturbative models. Of these,
perturbative QCD is of course used, but also effective theories like the Nambu-
Jona-Lasinio (NJL) model[27]. In these models, it is found that the presence of a
magnetic field increases the chiral condensate, so this means that in these models
magnetic catalysis is observed[35]. As an example, in 2 spatial dimensions, at
tree level one has the following expression for the chiral condensate.

〈q̄q〉 = − lim
u→u′

tr[S(u, u′)],

with S the fermion propagator, which in Euclidean space has the following
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Fourier transform:

S̃E(k) = −i
∫ ∞

0

ds exp

[
−s
(
m2 + k2

3 + k2 tanh(eBs)

eBs

)]
×
(
−kµγEµ +m+ i(k2γ

E
1 − k1γ

E
2 ) tanh(eBs)

) (
1 + iγE1 γ

E
2 tanh(eBs)

)
.

This leads to the following expression for the condensate:

〈q̄q〉 = − 4m

(2π)3

∫
dk3 d2k

∫ ∞
1/Λ2

ds exp

[
−s
(
m2 + k2

3 + k2 tanh(eBs)

eBs

)]
,

with Λ an ultraviolet cutoff, and m the quark mass. Assuming zero quark mass
and taking the limit Λ→∞, one then obtains

〈q̄q〉 = −|eB|
2π

sign(m).

Note that although the condensate becomes more negative with increasing mag-
netic field, this still indicates magnetic catalysis, because the absolute value of
the condensate still increases.

Analogously, one can obtain a similar result in 3 spatial dimensions:

〈q̄q〉 = 〈q̄q〉0

(
1 +

|eB|2

3〈q̄q〉20 log(Λ/
√
〈q̄q〉0)2

)
,

In perturbative QCD, computations analogous to the one above can be done
with the same conclusion. Hence there is magnetic catalysis in perturbative
QCD. with 〈q̄q〉0 the chiral condensate in the absence of a magnetic field. How-
ever, these computations all assume weak coupling, and we know that the quark
gluon plasma is strongly interacting, which means that perturbative methods
are not well-suited to compute these properties.

One solution to this problem is to use lattice QCD. Conceptually, this is a
very simple approximation, which assumes space-time to be discrete. Operators
in the theory can then be computed by means of the Euclidean path integral,
which can be evaluated by means of a Monte Carlo simulation. This method
has a clear advantage, namely that it makes no additional assumptions over
the QCD action, and that it is non-perturbative. This gives a high degree of
credibility to its results in the strong coupling regime. There are also difficulties
though, the most major being that this type of simulation is very memory-
intensive. This severely limits the lattice sizes used, and to extract useful results
multiple lattice sizes have to be computed, and the continuum limit has to be
extracted from all of them. Also, in taking this continuum limit, care must be
taken to renormalize the theory so that it matches the renormalization used in
perturbative QCD computations.

Lattice QCD has indeed been used to compute (inverse) magnetic cata-
lysis[13, 12, 9, 17, 18, 6, 5, 7, 16, 29, 30, 15, 10, 11], and a result is shown
in figure 2. In this result, the deconfinement transition temperature is shown.
This is the phase transition between the deconfined QGP phase and the confined
hadronic phase. Lattice results show that the deconfinement transition and the
chiral transition where chiral symmetry are broken coincide.3 This means that

3Note that for massive quarks the transitions become cross-overs, but the approximate
locations of the cross-overs coincide approximately.
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Figure 2: Inverse magnetic catalysis as computed by means of lattice QCD.
It can be seen that three different lattice sizes have been used, and that the
continuum limit has been estimated. Figure taken from [6].
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we can also interpret the result in figure 2 as the chiral transition. In this
picture, at temperatures below the transition, chiral symmetry is broken and
excitations become massive. Above the transition, chiral symmetry is preserved,
and excitations are massless.4 This means that the lattice result shows inverse
magnetic catalysis at finite T , since if we start in the chirally broken phase and
increase the magnetic field while keeping the temperature constant, the chiral
condensate will decrease and eventually disappear as we cross the chiral tran-
sition. Note though that at T = 0, lattice QCD also shows magnetic catalysis,
in accordance with the perturbative result. Also note that the lattice results
depend on the quark masses. Only if these are taken to be small, one observes
inverse magnetic catalysis. Otherwise one observes magnetic catalysis[17, 18].

As mentioned in the introduction, we will use holography to try to reproduce
this result. In the next section, holography will be introduced.

3 The AdS/CFT correspondence

As was already mentioned in the introduction, AdS/CFT provides a duality
between a quantum field theory in 4 dimensions on the one hand, and a gravi-
tational theory with bulk fields in 5 dimensions. In this section, the AdS/CFT
correspondence will be motivated by the historical arguments which led to it.
Next, the correspondence will be posed, and it will be explained in which limit
the gravitational theory simplifies to classical GR. Also, it will be explained
how to compute expectation values of operators in the QFT in terms of the
bulk fields in the gravitational theory. Some other things which need to be in-
troduced in order to apply the correspondence to a theory resembling QCD at a
finite temperature are naturally how to introduce a finite temperature, but also
how to see whether the theory at that temperature is confining or not. Lastly
it will be discussed how to introduce flavor into the model.

As was mentioned in the introduction, the first hint of the holographic prin-
ciple was given by the fact that the entropy of black hole is proportional to
the area of its event horizon. In order to not have any conflict with the second
law of thermodynamics, the entropy of a black hole must be the maximum en-
tropy that that given volume of space-time can have. Since the entropy encodes
the amount of information in the system, this means that the information of
that region of space-time must be somehow encoded on its boundary. Another,
seemingly unrelated, idea is the ’t Hooft large Nc approximation[38]. In this
approximation, computations in an SU(Nc) gauge theory are performed by ex-
panding the result in powers of 1/Nc, keeping the coupling constant λ = g2Nc
constant.5 For QCD, even though Nc is only 3, this seems to work well. The
remarkable thing is that the perturbation expansion is now not in the number
of loops in the Feynman diagrams, but rather the genus of the surfaces in which
the Feynman diagrams can be embedded without any lines crossing. This is very
similar to the worldsheet expansion in string theory, and the limit required by it
turns out to be the same limit that will be required to simplify the gravitational
side of the AdS/CFT correspondence.

4This is not entirely true since quarks have a small mass. However, in hadrons most of
the mass comes from chiral symmetry breaking, and in the holographic computations in this
thesis quarks will therefore be assumed to be exactly massless.

5Here g is the Yang-Mills coupling constant.
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This makes it come as no surprise that AdS/CFT as formulated by Malda-
cena[34] and others [40, 21] is derived from string theory. Its ingredients are
D-branes in type IIB string theory. D-branes are non-perturbative membrane-
shaped excitations of string theory on which open strings end, which in type IIB
string theory come in 1, 3, 5 and 7 dimensions. An important observation for the
AdS/CFT correspondence is that if we take Nc parallel coinciding Dp-branes,
in the low energy limit we find a U(Nc) gauge theory with 9− p scalar fields in
the adjoint representation of U(Nc)[14]. In particular, if we take these branes
to be D3-branes, then the low energy theory is precisely N = 4 supersymmetric
Yang-Mills (SYM) theory with U(Nc) as its gauge group. It turns out that the
diagonal U(1) subgroup of U(Nc) decouples from the rest, and can be integrated
out. The leftover gauge group is then precisely the required SU(Nc). Also,
since the D3-branes have 3 spatial dimensions, in the low-energy limit, the
open strings are effectively constrained to these 3 + 1 dimensions, so that we’re
left with a 4-dimensional SYM theory with SU(Nc) as its gauge group. The
interesting part is now that because string theory is a theory including gravity,
we know that these branes must gravitate. The supergravity equations are
exactly solvable, and it turns out that the resulting geometry is that of AdS5×
S5. This means that we have two different descriptions of the D3-branes, and
therefore the low-energy limits should match in particular[14]:

{N = 4SU(Nc) SYM theory} = {type IIB string theory in AdS5 × S5} .

We will next make this more precise, but first consider figure 3. This is a

Figure 3: Intuitive picture of the AdS/CFT correspondence. The quantum field
theory can be thought of as living on the boundary of the AdS space.

convenient way of thinking about AdS/CFT. The quantum field theory can be
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thought of as living on the boundary of the AdS space, where the boundary is
defined as the hyperplane where r = 0 in the following AdS5 metric:

ds2 =
R2

r2

(
ηµν dxµ dxν + dr2

)
.

where R is the AdS radius. The extra dimension r can in this picture be
identified with the energy scale of the theory. In the quantum field theory,
there are two important parameters, namely the number of colors Nc and the
’t Hooft coupling λ = g2Nc. It turns out that these can be related to the
two important parameters in the string theory picture. These are the string
length `s, which determines how important the excitations of the strings are,
and the string coupling, which is related to the gravitational constant G and
which determines how important string interactions are. We have the following
relations[14]:

G

R8
∝ 1

N2
c

,
`2s
R2
∝ 1√

λ
.

This means that the string theory side reduces to classical GR in the limit where
Nc →∞ and λ→∞. Note that this is quite remarkable; As the interactions in
the QFT get larger, the dual theory becomes easier. The price we have to pay
for this is that we also have to take Nc →∞. However, as remarked earlier, for
QCD this limit has little effect on the results.

The next thing to discuss is the way in which we can compute expectation
values of operators in the quantum field theory in terms of the bulk gravitational
theory. This method is called the operator-field correspondence. Say we have an
operatorO(x) in the quantum field theory which is sourced by a field φ(x). Then
the gravitational theory will have a field Φ(r, x) such that near the boundary
we have

Φ(r, x) ≈ φ(x)rd−∆ +
〈O(x)〉

2ν
r∆,

with

∆ =
d

2
+ ν, ν =

√
m2R2 +

d2

4
,

and with m the mass of the bulk field. In words, the bulk field dual to the
operator O has two boundary modes: one non-renormalizable term which con-
tains the source of the operator, and one renormalizable term which contains
the vacuum expectation value of the operator in the presence of the source. A
few examples of operators and their corresponding bulk fields are given in table
1. These examples are all operators/fields which will appear in the holographic
model to be introduced in the next section.

Until now there has been an important ingredient missing, namely a finite
temperature. This can be introduced by introducing Euclidean time t → −itE
and replacing the AdS metric with a metric such as this one:

ds2 =
R2

r2
(f(r) dt2E + dx2

1 + dx2
2 + dx2

3) +
R2

r2f(r)
dr2,

with f(0) = 1 and f(rh) = 0 for some horizon value r = rh. In other words,
it is a metric which is AdS near the AdS boundary at r = 0, but it also has
a black hole horizon. In this picture, the black hole horizon contains both
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QFT operator Bulk field

Tµν gµν
trF 2 φ
q̄q τ

Table 1: Examples of operators and their corresponding fields, which are related
through the operator-field correspondence. The stress-energy tensor is dual to
the metric, the trace of the gluon field tensor squared is dual to the dilaton
field (to be introduced in the next section), and the quark-antiquark correlator,
the vacuum expectation value of which is the chiral condensate, is dual to a
tachyonic scalar field.

the temperature and the entropy. The temperature is given by the Hawking
temperature of the black hole, and the entropy is given by the Bekenstein-
Hawking temperature:

T =
−1

4π

∂f

∂r

∣∣∣∣
r=rh

, S = e3A.

Another quantity for which the gravitational dual becomes clear in this picture
is the Helmholtz free energy. As the partition functions of the quantum field
theory and its gravitational dual are equal by the correspondence, it makes sense
that the on-shell actions of the Euclidean action are also equal. This leads to
the identification of the free energy of the quantum field theory with the on-shell
action of the Euclidean gravitational action. Another property of QCD, namely
confinement, is closely related to that of introducing finite temperature. It turns
out that black hole solutions are deconfined, while those without a black hole are
confined. In this way, the confined solutions correspond to the zero-temperature
solutions. These confined solutions are also denoted as thermal gas solutions.

The discussion in the previous paragraph immediately leads to one of the
phase transitions that will be considered in this thesis, namely the deconfine-
ment transition. Confined solutions, although they correspond to the zero-
temperature solutions since they don’t have a black hole, exist for any temper-
ature, and, as it turns out later, also for any magnetic field B. This means that
for each (T,B)-pair we will be able to look whether the system is confined or
not. If a black hole solution for that pair exists and its free energy is lower than
that of a thermal gas solution, then the system will be deconfined. Else it is
confined. Obviously the boundary between these two situations corresponds to
the deconfinement transition temperature Tc(B).

Another ingredient that we will need in this thesis is flavor. Until now all
fields have transformed under the adjoint representation of the gauge group,
while quarks in QCD are known to transform under the fundamental represen-
tation. It turns out that flavor can be introduced by introducing Nf D-brane
probes, where Nf is the number of flavors. In QCD in the regime we’re looking
at, the number of flavors is 3, since the heavier c, b and t quarks are too heavy
to participate. Taking Nf to be some fixed value, in the holographic picture we
arrive at Nf � Nc, which is called the ’t Hooft limit. In fact, in the holographic
picture, it is not straightforward what Nf should be. Since Nc is also 3 in QCD,
we have two options. The first is the ’t Hooft limit as discussed above, while the
second keeps not Nf , but x ≡ Nf/Nc, constant. This is called the Veneziano
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limit. In this thesis, we will take this limit, and we will also set x = 1, which
keeps the ratio between Nf and Nc fixed at what it is in ordinary QCD. How-
ever, there is no rigorous argument why this is the correct number, and indeed
many other possibilities have been explored[3].

This ingredient leads to the other phase transition, called the chiral transi-
tion. As was already seen before in table 1, the vacuum expectation value 〈q̄q〉
is called the chiral condensate. It is the order parameter of chiral symmetry
breaking. Of the black hole solutions, some solutions will have 〈q̄q〉 = 0, cor-
responding to chiral symmetry being preserved, and others will have 〈q̄q〉 6= 0,
corresponding to chirally broken solutions. As before, if multiple such solutions
exists, one should check which has the lowest free energy. This solution will
be the dominant phase. Also as before, the boundary between where chirally
symmetric solutions dominate and where chirally broken solutions dominate
corresponds to the chiral transition temperature Tχ(B).

Finally, there is the issue of constructing the gravitational action. There are
two approaches for this. It is possible to start from string theory and construct
the theory there. Subsequently one would derive both the corresponding QFT
and the corresponding bulk theory. This has one major disadvantage though,
namely that it is very difficult to arrive at a QFT resembling QCD this way.
Luckily, there is another way, which is the method we will be using. In this
approach, we start from the gravitational theory right away, and construct a
general action. Such an action will contain several potential functions, the
shapes of which influence properties of the quantum field theory. By matching
these to known properties of QCD, we can constrain the potential functions to
arrive at a good gravitational analog for QCD. In this thesis, the starting point
has been the potential functions as defined in [2], which are known to give a
good analog for QCD at zero magnetic field and even also in the presence of a
quark chemical potential.

3.1 Improved Holographic QCD

The previous discussion has been a general discussion on the AdS/CFT corre-
spondence. In this section, we’ll discuss a particular class of holographic models
called Improved Holographic QCD (IHQCD), of which the model we use is a
particular example. The defining feature of IHQCD is how these models break
conformal symmetry. AdS/CFT stands for Anti-de Sitter/Conformal Field the-
ory, which comes from the fact that the quantum field theory side possesses
conformal symmetry. On the other hand, QCD has massive excitations and
a running coupling, so it clearly does not possess conformal symmetry, except
in its high energy limit. This means that in order for a holographic model to
describe QCD, conformal symmetry will have to be broken. In black hole solu-
tions, it turns out there is a mechanism which breaks this symmetry, namely the
black hole horizon. Since the extra dimension can be identified with the energy
scale, the horizon acts like an IR cutoff. This clearly breaks the conformal sym-
metry, and it turns out that it breaks supersymmetry as well. It is, however, a
very crude way to break conformal symmetry, since it breaks it abruptly, which
is not what happens in QCD.

The solution to this problem given by IHQCD is to introduce a dilaton with
a non-trivial potential to replace the cosmological constant in other models[22,
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25, 23, 24]. In the gravitational description this means that the action[14]

Sgrav = M3N2
c

∫
d5x
√
g

(
R+

12

R2

)
,

in which R is the Ricci scalar and R is the AdS radius, is replaced by[26]

Sgrav = M3N2
c

∫
d5x
√
g

(
R− 4

3

(∂λ)2

λ2
+ Veff(λ)

)
.

The potential Veff is chosen so that near the AdS boundary the original action
is recovered. This dilaton turns out to behave like a running coupling, and the
potential Veff now determines specifics of the model. Also note that the dilaton
is identified with the ’t Hooft coupling λ = g2Nc.

In order to have a theory consistent with QCD, it turns out that Veff should
satisfy several properties. Firstly it should be a monotonic function, and it
should also have an expansion as follows in the UV, which corresponds to the
AdS boundary at r = 0 or λ = 0[26]:

Veff(λ) =
12

R2
(1 + v0λ+ v1λ

2) +O(λ3).

Since the dilaton behaves like the running coupling of QCD, we can match these
coefficients to its beta function:

β(λ) = −b0λ2 − b1λ3 +O(λ4).

In this matching, one obtains

b0 =
9

8
v0, b1 =

9

4
v1 −

207

256
v2

0 .

These beta function coefficients will, through this potential, also enter in the
near-boundary expansion of the solutions to our holographic model. In the IR,
we want the theory to be confining. It turns out that this also doesn’t happen
for all asymptotics of Veff as λ→∞. For the potentials in this paper, as can be
seen in the results, this condition is satisfied.

A particular example of such a potential is given in [24]:

Veff(λ) =
12

R2

{
1 + V0λ+ V1λ

4/3
[
log
(

1 + V2λ
4/3 + V3λ

2
)]1/2}

, (1)

with

V0 =
8

9
b0, V1 = 14, V2 = b40

(
23 + 36b1/b

2
0

81V1

)2

, V3 = 170,

and

b0 =
22

3(4π)2
,

b1
b20

=
51

121
.

With this potential, the model has three phases, namely one thermal gas phase,
and two deconfined phases. Of the latter two, one is characterized by a small
black hole, and the other by a big black hole. This distinction between two black
hole phases is made because for each temperature there are multiple solutions,
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Figure 4: Free energy as a function of temperature in the IHQCD model de-
scribed by (1). It can be seen that there are two branches. The branch with
positive free energy for all T is the small black hole phase, while the branch
which has negative free energy above T = Tc is the big black hole phase.
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as can be seen in figure 4. Since the thermal gas solution has no black hole,
it can be approximated by the small black hole phase. This can be seen in
figure 4, since the small black hole phase approaches zero free energy for large
temperatures, which in this model and this phase corresponds to a shrinking
black hole. Since the free energy is defined relative to the thermal gas solution,
the figure also shows that the small black hole phase is never dominant. The
big black hole phase is dominant above a critical temperature T = Tc, while
below this temperature the thermal gas solution is dominant. Hence the phase
diagram for this model is a deconfined phase above Tc, and a confined phase
below Tc.

Studies show that the model discussed in the paragraph above agrees well
with lattice data[36]. Examples of this are shown in figures 5, 6 and 7 for the
energy density, entropy density, and pressure, respectively. In these figures, two
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Figure 5: Energy density as a function of temperature, both for lattice data and
the IHQCD model described by (1).

important observations can be made. The first is that the number of colors Nc
used in the lattice simulation doesn’t appear to influence the results much. This
is an indication that the limit Nc → ∞ still describes the qualitative behavior
of QCD well. The second is that the IHQCD model discussed above appears
to fit the lattice data very well. This indicates that it likely describes the glue
sector of QCD well.

When flavor is introduced, the gravitational action typically gets a contri-
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Figure 6: Entropy density as a function of temperature, both for lattice data
and the IHQCD model described by (1).

16



0.5 1 1.5 2 2.5 3 3.5
T / T

c

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
 /

 T
 4

, 
n
o
rm

al
iz

ed
 t

o
 t

h
e 

S
B

 l
im

it

SU(3)

SU(4)

SU(5)

SU(6)

SU(8)

improved holographic QCD model

Pressure

Figure 7: Pressure as a function of temperature, both for lattice data and the
IHQCD model described by (1). Note that pressure is equal to minus the free
energy.
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bution from a Dirac-Born-Infeld (DBI) term[31, 3, 2]:

Sflavor = xM3N2
c

∫
d5x
√
gVf (λ, τ)

√
det(gµν + w(λ, τ)Vµν + κ(λ, τ)∂µτ∂ντ),

where τ is a tachyonic field sourcing q̄q, and Vµν is an external potential. Also,
x = Nf/Nc is the ratio between the number of flavors and the number of colors.
Also, there are a few new potentials, namely Vf , κ and w. These potentials can,
just as Veff, be matched to properties of QCD. Details on how Vf and κ can be
chosen for B = 0 can be found in [3]. In this thesis, we chose w to match the
result in figure 2.

The external potential can also be used to turn on a chemical potential.
This has been done in [2]. There, they use the same potentials as the ones
introduced in the next section, with the constant C = 1. This leads to the
phase diagram in the (T, µ)-plane shown in figure 8. As can be seen, the model

Hadron

   gas
  ΧSB  plasma

Chirally symmetric plasma

0.0 0.1 0.2 0.3 0.4 0.5
Μ

0.05

0.10

0.15

0.20
T

Figure 8: Phase diagram in the (T, µ)-plane for the IHQCD model in [2]. It can
be seen that next to the deconfinement transition there is another transition
within the deconfined phase.

has three distinct phases, but these are not the same phases as for the pure glue
model. In this model, there is a thermal gas as before, which corresponds to
the confined phase, and there are two black hole phases, both corresponding to
a big black hole phase. As before, there are also small black hole phases, and
they are again never dominant. The two black hole phases are distinguished by
chiral symmetry, which is broken in the chirally broken phase, and unbroken in
the chirally symmetric phase. As was discussed before, the chiral condensate
is the order parameter of the chiral transition, so that we have 〈q̄q〉 = 0 in the
chirally symmetric phase, and 〈q̄q〉 6= 0 in the chirally broken phase.
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4 The holographic model and its solutions

4.1 Action and equations of motion

The gravitational action of the Veneziano QCD model used in this thesis is a
modification6 of the one in [2] given by

S = M3N2
c

∫
d5x

[
√
g

(
R− 4

3

(∂λ)2

λ2
+ Vg(λ)

)
− xVf (λ, τ)

√
det(gµν + w(λ)Vµν + κ(λ)∂µτ∂ντ)

]
. (2)

Here the first term contains the fields dual to the gluon content of the theory,
and the second part, which is a Dirac-Born-Infeld (DBI) action, contains the
flavor content. Of the fields appearing in the action, λ = eφ is the dilaton field,
τ is a tachyon, and Vµν is the electromagnetic field tensor, which is taken to
be a constant magnetic field. Also, R is the Ricci scalar and x = Nf/Nc is the
ratio between the number of flavors and the number of colors. Note that from
(2) it is clear that the scaling w(λ) 7→ Dw(λ) effectively scales Vµν , and hence
B. The ansatz for the black hole vacuum solution of the metric is given by

ds2 = e2A(r)

(
dr2

f(r)
+ f(r) dt2 + dx2

1 + dx2
2 + e2W (r) dx2

3

)
,

and the potential functions are given as in [2]:

Vg(λ) = 12

[
1 +

88λ

27
+

4619λ2

729

√
1 + log(1 + λ)

(1 + λ)2/3

]
,

xVf (λ, τ) =
[
W0 +W1λ+W2λ

2
]
e−

3
2 τ

2/L2
UV ,

κ(λ) =
[1 + log(1 + λ)]

−1/2[
1 + 609−96x

216 λ
]4/3 , w(λ) = κ(Cλ),

with C = 0.25, and

LUV =

(
1 +

7x

4

)1/3

, W0 = 12

(
1− 1

L2
UV

)
,

W1 =
96

27L2
UV

(
11L2

UV − 11 + 2x
)
,

W2 =
12

729L2
UV

(
4619L2

UV − 4619 + 1714x− 92x2
)
.

In the metric ansatz, there appears a factor of exp(2W ), which, if non-zero,
breaks rotational symmetry. This is exactly as expected, given that the magnetic
field breaks it as well.

6It is the same action symbolically, but the expression for Vµν is different in this case.

19



4.1.1 Equations of motion and on-shell action

There are six equations of motion, four of which come from the Einstein equa-
tions, and the other two come from the variations of the dilaton and the tachyon.
Since there are only five degrees of freedom, one of these equations is superflu-
ous, but this extra equation will still be needed to write the on-shell action in
a simple form. Note that this derivation is a very lengthy one if done by hand,
which makes mistakes likely. To make sure the equations below are correct,
they have been computed both by hand and using Mathematica. Also, they
have been compared to an independently computed derivation.

The Einstein equations yield

3Ä+
2

3

λ̇2

λ2
+ 3Ȧ2 + (3Ȧ− Ẇ )

ḟ

2f
+
xVfGe

2A

2Qf

(
2Q2 − 1

)
− e2AVg

2f
= 0, (3)

Ẅ +
Ẇ ḟ

f
+ Ẇ 2 + 3ȦẆ +

xVfGe
2A

2Qf

(
1−Q2

)
= 0, (4)

f̈ + (3Ȧ+ Ẇ )ḟ +
xVfe

2AG

Q

(
1−Q2

)
= 0, (5)

2

3

λ̇2

λ2
− (3Ȧ+ Ẇ )

ḟ

2f
− 6Ȧ2 − 3ȦẆ +

e2AVg
2f

− xVfQe
2A

2Gf
= 0, (6)

where a dot denotes a derivative with respect to r, and the arguments of the
potential functions are omitted for brevity. In the above, the abbreviations

G =
√

1 + e−2Aκfτ̇2, Q =
√

1 + w2B2e−4A

were used. Also note that the last of these four equations is the superfluous
equation mentioned before. The dilaton and tachyon equations of motion are
given by

0 =
λ̈

λ
− λ̇2

λ2
+

(
3Ȧ+ Ẇ +

ḟ

f

)
λ̇

λ
+

3

8

λe2A

f
∂λVg (7)

− 3xB2e−2AGλVfw

8fQ
∂λw −

3xe2AGλQ

8f
∂λVf −

3xλQVf τ̇
2

16G
∂λκ,

0 = τ̈ − e2AG2

fκ
∂τ log Vf (8)

+ e−2Afκτ̇3

(
Ẇ +

ḟ

2f
+ 2Ȧ

1 +Q2

Q2
+
λ̇

2
∂λ log

(
κV 2

f

)
−
λ̇
(
1−Q2

)
Q2

∂λ logw

)

+ τ̇

(
Ȧ

2 +Q2

Q2
+ Ẇ +

ḟ

f
+ λ̇∂λ log(Vfκ)−

λ̇
(
1−Q2

)
Q2

∂λ logw

)
.

From the AdS/CFT correspondence, we know that the Helmholtz free energy
is proportional to the on-shell gravitational action. The latter can be computed
in two simple steps. First, taking the trace of the Einstein’s equations, we find
that

R =
4

3

(∂λ)2

λ2
− 5

3
Vg +

2xVf
3

(
G

Q
+QG+

Q

2G

)
.
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Using this, and recognizing that the square root appearing in (2) is equal to
QG, one obtains

Son-shell = M3N2
c

∫
d5xe5A+W

[
−2

3
Vg + xVf

(
2G

3Q
− QG

3
+

Q

3G

)]
.

Subsequently using equations(3–6) the potential functions can be eliminated, a
Gibbons-Hawking term can be added, and the resulting expression then becomes

Son-shell = −2M3N2
c βV

∫ rh

0

∂

∂r

[
e3A+W f(Ȧ+ Ẇ )

]
,

= 2M3N2
c βV e

3A+W f(Ȧ+ Ẇ )
∣∣∣
r=0

.

with rh the location of the black hole horizon, β is the size of the compactified
dimension and V is the volume of the 3 dimensional space. Because Ȧ diverges
at the AdS boundary, it is clear that this expression will need to be regularized
if it is to be used to obtain the free energy. This is why in the following a
different method to obtain it will be employed. Note that the derivation of the
on-shell action is another computation of mathematical interest.

Because the boundary coordinate singularity is numerically difficult to han-
dle, the equations of motion are rewritten to use A as the independent variable
using the auxiliary variable q = eA∂r/∂A[2]. Equations (3–6) then transform
to

6− 3q′

q
+

2

3

λ′2

λ2
+ (3−W ′) f

′

2f
+
xVfGq

2

2Qf

(
2Q2 − 1

)
− q2Vg

2f
= 0, (9)

W ′′ +W ′
(

4− q′

q
+
f ′

f

)
+W ′2 +

xVfGq
2

2Qf

(
1−Q2

)
= 0, (10)

f ′′ + f ′
(

4− q′

q
+W ′

)
+
xVfGq

2

Q

(
1−Q2

)
= 0, (11)

2

3

λ′2

λ2
− (3 +W ′)

f ′

2f
− 6− 3W ′ +

Vgq
2

2f
− VfQq

2

2Gf
= 0, (12)

respectively. Note that a prime denotes a derivative with respect to A, and that
one now has

G =

√
1 +

κfτ ′2

q2
.

The dilaton and tachyon equations (7–8) transform to

0 =
λ′′

λ
− λ′2

λ2
+

(
4− q′

q
+W ′ +

f ′

f

)
λ′

λ
+

3

8

λq2

f
∂λVg (13)

− 3xB2e−4Aq2GλVfw

8fQ
∂λw −

3xGλQq2

8f
∂λVf −

3xλQVfτ
′2

16G
∂λκ,

0 = τ ′′ − q2G2

fκ
∂τ log Vf (14)

+
fκτ ′3

q2

(
W ′ +

f ′

2f
+ 2

1 +Q2

Q2
+
λ′

2
∂λ log

(
κV 2

f

)
−
λ′
(
1−Q2

)
Q2

∂λ logw

)

+ τ ′

(
1− q′

q
+

2 +Q2

Q2
+W ′ +

f ′

f
+ λ′∂λ log(Vfκ)−

λ′
(
1−Q2

)
Q2

∂λ logw

)
.
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4.1.2 Expansion near the boundary

Near the boundary at r = 0, equations (3–6) and (8) lead to the following
expansions:

A = log
LUV

r
+

4

9 log(Λr)
(15)

+

1
162

(
95− 64V2

V 2
1

)
+ 81 log(− log(Λr))

(
−23 + 64V2

V 2
1

)
log(Λr)2

+O
(

1

log(Λr)3

)
,

λ = − 8

9V1 log(Λr)
+

log(− log(Λr))
(

46
81 −

128V2

81V 2
1

)
log(Λr)2

+O
(

1

log(Λr)3

)
, (16)

f = 1 +
Cr4

4L3
UV

+O
(
r5
)
, W =

Dr4

4L3
UV

+O
(
r5
)
, (17)

τ

LUV
= mqr (− log(Λr))

−γ0/b0 + 〈q̄q〉r3 (− log(Λr))
γ0/b0 , (18)

with Λ, C, D, γ0/b0, mq and 〈q̄q〉 integration constants and

V1 =
88− 16x

27
,

V2

V 2
1

=
1

64

(
23 +

54(34− 13x)

(11− 2x)2

)
,

γ0

b0
=

9

22− 4x
.

The constants mq and 〈q̄q〉 correspond to the quark mass and chiral condensate,
respectively. These expansions will be used as boundary conditions in the next
section. Also, note that these boundary expansions are identical to those in [3],
which were computed for a different holographic model. Lastly, note that this
is another result of mathematical interest.

4.2 Numerical solution to the equations of motion

To obtain solutions to the equations of motion, the equations need to be inte-
grated numerically. This is done by means of the Dormand-Prince algorithm.
This algorithm is O(h5) accurate, where h is the step size. The step size itself
is dynamically chosen by the algorithm to keep errors within a specified bound.
Details on this method are given in appendix A.

Solutions to the equations of motion are subject to the near-boundary ex-
pansions (15–18). Since only black hole solutions will be considered, this is
complemented by the condition that f(r) = 0 for some r ∈ R. Also, quarks will
be assumed massless, so that it is also required that mq = 0. The exact method
for making sure that these boundary conditions are satisfied can be found in
appendix B.

One particular solution to the equations of motion is shown in figure 9. Once
a solution has been obtained, the temperature is identified with the Hawking
temperature of the 5-dimensional black hole, and the entropy is identified with
its Bekenstein-Hawking entropy:

T

Λ
=
−ḟh
4π

,
S

Λ3
= exp(3Ah +Wh).

The details on how this is done are given in appendix B. In this appendix it is
also explained how mq and 〈q̄q〉 are extracted. As is noted in the figure, B is
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Figure 9: Solution to the equations of motion for λh = 2, B̃ = 3 and
τh = 0.873685, where a subscript h indicates a value at the horizon. B̃ is
an unphysical input parameter. Its precise definition is explained in appendix
B. The thermodynamics extracted from this solution are T/Λ = 0.0686755,
S/Λ3 = 0.37702, B/Λ2 = 14.7928.
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also extracted, since this method does not give direct control over the value of
B. Instead, the related value B̃ can be directly controlled. The relation between
B and B̃, as well as the extraction of the former, are explained in appendix B.

4.3 Chiral transition
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deconfinement transition

Figure 10: Location of both the chiral and the confining transition in the (λh, B̃)-
plane. Note that the deconfinement transition for large B̃ shows behavior which
looks like it’s not right. This behavior also causes the irregularities in figure 11.
However the final result given in figure 11 has been cross-checked with a different
method. It was found that for small B̃ there is good agreement, and for large
B̃ there is at least qualitative agreement.

One of the boundary conditions is that mq = 0. To realize this, note that
the equations of motion imply that if τh = τ̇h = 0,7 then τ = 0 for all r. This
yields the chirally symmetric solution. There also is the possibility of finding
a τh 6= 0 such that mq = 0. This is called the chirally broken solution. The
algorithm to find such a τh is given in appendix B.

For both these possibilities, note that there are only certain (λh, B̃)-pairs
which admit such a solution. It turns out that whenever multiple solutions
exists, the free energy for the one with the largest τh is lower, so that the
chirally broken phase dominates whenever it exists[2]. This implies that the
chiral transition between the chirally broken and the chirally symmetric phase is
given by the boundary of the area in the (λh, B̃)-plane where the chiral solution
exists. This line is given in figure 10, and the corresponding values for T and

7As can be seen in appendix B, τh = 0 implies τ̇h = 0 as well.
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B are given in figure 11. The exact procedure used to obtain this transition is
given in appendix C.
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Figure 11: Chiral (Tχ) and confining (Tc) transition temperatures as a function
of B. Note, as in figure 10, that there appears to be some numerical noise for
large B. The result has been cross-checked with a different method though, and
it is still in qualitative agreement.

4.4 Deconfinement transition

To find the confining transition, recall that the free energy of the confined
phase is independent of temperature, and that the confined phase has the same
geometry as a black hole solution in which the black hole is small, i.e. λh � 1.
We can, however, not guarantee that the free energy of the confined phase is
independent of magnetic field strength. This means that to determine whether
a black hole solution is in the dominant phase, we need to compare its free
energy to another black hole solution with the same B and λh � 1. This can
be done by means of integrating the free energy dF = −S dT along a line of
constant B. The algorithm used to do this is described in appendix C, and by
using this algorithm to find where F = 0, we find the confining transition. The
result of this is shown in figures 10 and 11.

4.5 Phase diagram

Having calculated the two transitions in the system, it is possible to present
the phase diagram. It turns out that chirally broken solutions exist only for
temperatures below Tχ(B), and that the free energies of points below Tc(B) are
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Figure 12: Phase diagram for this section’s model. Note that Λ has been chosen
in such a way that for B = 0 we get approximately Tχ = 159 MeV.

negative compared to their corresponding thermal gas solutions. This means
that every point below Tc(B) is in the confined phase, every point below Tχ(B)
but above Tc(B) is in the chirally broken phase, and every point above both
transition temperatures is in the chirally symmetric phase. The resulting phase
diagram is shown in figure 12. Note that in this figure, Λ has been chosen
in such a way that the result agrees approximately with the lattice result of
Tχ(B = 0) = 159 MeV. Note also that the shape of Tχ(B) is similar to that of
the lattice result in figure 2. In particular, we indeed see that the magnetic field
inversely catalyzes chiral symmetry breaking. The shape of Tc(B) is similar to
that of Tχ(B), so we can also conclude that the magnetic field inversely catalyzes
hadronization.

The most striking difference between this result and the lattice result is that
for the lattice result there is only one transition, because on the lattice it is
found that the chiral- and deconfinement transitions occur at the same place.
In this model this is clearly not the case. There are also holographic models
[4] for which, if they are extended to incorporate an external magnetic field,
there is only a deconfinement transition, but nevertheless it is still interesting
to study this model, since in this model there is a deconfined chirally broken
phase, in which it is possible to measure inverse magnetic catalysis of the chiral
condensate directly, as can be seen in the next subsection. In the absence of a
deconfined chirally broken phase, one can only study the chiral condensate in
the confined phase. This can be done, but then temperature dependence of the
chiral condensate is lost, in contrast to the lattice results. Another aspect in
which the phase diagram disagrees with 2 is the scale of B, as the decrease of
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the transition temperatures in our model occurs at smaller B than in the lattice
result. As mentioned before, this can be easily changed by using the fact that
the scaling w(λ) 7→ Dw(λ) effectively scales B. The reason why this has not
been done is because such a change is incompatible with other known properties
of QCD, which are outside the scope of this thesis.

4.6 Chiral condensate
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Figure 13: Contour plot of the chiral condensate of the chirally broken phase.
Note that the condensate clearly decreases with increasing B. Also note that
some of the contours near the chiral transition are not continuous. This is caused
by the fact that this figure has been created by means of a grid, and near the
chiral transition, points are missing from this grid, since on the other side of
the transition the chirally broken solution doesn’t exist. Because of this the
contours near the chiral transition cannot be calculated everywhere. A solution
would be to use a finer grid, but since the computational load scales with the
squared inverse of the grid spacing this quickly becomes insurmountable. It
took 3 days to compute this on a 50× 50 grid, so to compute this on the next
logical size, 100× 100, would take almost 2 weeks.

Next to the phase diagram, there is also another interesting quantity which
can be studied, namely the chiral condensate 〈q̄q〉, which can be extracted by
means of equation (18). The precise details on how this is done can be found in
appendix B, and the result is shown in figure 13. In this figure, as was also seen
in the chiral transition temperature, one can see that the chiral condensate is
inversely catalyzed by the magnetic field. It can also be seen that it appears that
the chiral condensate goes to zero near the chiral transition. This is confirmed

27



in figure 14, where 〈q̄q〉 is shown on the chiral transition line. Note here that
B has been used to parameterize this line. It can be seen that the condensate
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Figure 14: Chiral condensate of the chirally broken phase at the chiral transition.
Note that this is close, but not equal, to zero.

is not exactly zero. However, it turns out that this is due to the fact that the
algorithm described in appendix C only makes sure that we’re close to the chiral
transition, but how close exactly can be set by hand.

5 Conclusions and outlook

From our model we obtain a phase diagram in which there are two phase tran-
sitions. This might seem like a trivial statement, but there are also choices for
the potentials[4] for which the chiral transition is not relevant because the black
hole solutions at that transition have positive free energy compared to a thermal
gas solution, which effectively hides the chiral transition. In the phase diagram
(figure 12), it is clearly visible that both transition temperatures decrease as a
function of magnetic field. In the case of the chiral transition, this means that
we see inverse magnetic catalysis of the chiral condensate by the magnetic field,
in agreement with the lattice model of [6]. This effect is also clearly visible in the
chiral condensate as a function of T and B (figure 13). There we can see that if
at fixed T we increase B, then the condensate becomes smaller. For the decon-
finement transition, there is also agreement with the lattice results in a sense
that the transition temperature decreases with increasing B. This is true since
lattice results see that the two transitions occur at the same place. This means
that we do see a decrease in transition temperature, but that it is not possible to
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make both transitions match the lattice results at the same time. Summarizing
these statements, the most important conclusion we can draw from this thesis
is that we observe inverse magnetic catalysis in qualitative agreement between
the holographic model and the lattice model of [6]. This means that we can
answer the questions posed in the introduction affirmatively.

Another important thing to mention is the robustness of this result. Sev-
eral things have been computed in more than one way, and this yielded similar
answers in all cases. One example of this has already been given, namely the
two different methods to compute the chiral condensate. However, one of our
collaborators, Matti Järvinen, has computed the deconfinement transition in a
different way, and found the same answer. With the introduction of the equa-
tions of motion it was also mentioned that the Helmholtz free energy needs
renormalization before it can be used directly. This turned out to be too dif-
ficult to do numerically. The solution in this thesis has been to integrate a
thermodynamical identity along a line of constant B, and there is a good rea-
son for this. If dB 6= 0, then the magnetization of the system appears in the
integral, and the magnetization is also divergent, and needs to be renormal-
ized. Our collaborator’s solution has been to integrate along a straight line in
the (λh, B̃)-plane, taking the magnetization into account. This was possible
because the magnetization diverges less than the free energy, and the result for
the deconfinement transition turned out to be similar to the one found by the
methods in this thesis. This, among other things, leads to the belief that the
results are robust and can hence be trusted.

For future work, what could be done is to change some parameters in the
potentials, and potentially use different potentials altogether, like for example
the ones in [4]. For this thesis, we chose potentials which matched the lattice
results best, but it is interesting to study what happens in different settings, to
see whether inverse magnetic catalysis is only seen in this specific case, or that
perhaps it is a general property of theories with an action of the form that we
have taken. In line with this, it also makes sense to change the ratio x = Nf/Nc.
As was mentioned before, there is no sound argument why it should be set
to unity, so different values would be an interesting target of future research.
Lastly, there is something that this thesis has not looked at, and that is the
excitations of the vacuum. As was mentioned in the introduction, interesting
things may happen to the excitations as a magnetic field is applied. This, too,
could be a direction of future study.
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A Dormand-Prince method

To solve various differential equations found throughout this thesis, the Dormand-
Prince (DP) method was employed. This is a fifth order Runge-Kutta method
with adaptive step size. In general, such methods can be used to solve non-linear
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ODEs with initial conditions of the form

ẏ = f(t, y), y(t0) = y0,

where y is a vector and f is smooth. Note that higher order ODEs can always
be written in this form by introducing extra variables equal to the derivatives.
As an example, the ODE given by ẍ = f(x) + g(ẋ) can be written as(

ż
ẋ

)
=

(
f(x) + g(z)

z

)
.

A Runge-Kutta (RK) method is a generalization of the explicit Euler method,
where yn := y(tn) is given by the following iterative approximation:

yn+1 = yn + hf(tn, yn),

with h the step size. RK methods use a more sophisticated approximation,
namely

yn+1 = yn + h

o∑
i=1

biki,

with o the number of stages of the RK method and

ki = f

tn + cih, yn + h

i−1∑
j=1

aijkj

 .

Here, bi, ci and aij are coefficients specific to the particular RK method used.
These coefficients can be matched to an o-th order polynomial which solves the
differential equation to order O(hn), with n the order of the method, and if
the coefficients match this solution, the RK method will approximately solve
the differential equation. In our case, f is a very complicated function, so we
can assume that most of the CPU time will be spent on evaluating it. In this
approximation, an o-th order RK method will take about o times as long for a
single step as the Euler method, which is in effect a 1st order RK method. As
it turns out, if the RK coefficients are well chosen, an o stage RK method will
be a lot more accurate then the Euler method with a step size o times as small.
This is the main reason for using an RK method: for any required accuracy, the
RK method will take less time than the Euler method.

The DP method is a fifth order RK method with adaptive step size. How
this works is essentially that the DP method has two sets of coefficients bi, the
second of which we call b′i. As mentioned before, both these sets of coefficients
are chosen such that the RK method based on them approximately solves the
differential equation, and since these two sets produce two different values for
yn+1, the difference ∆yn+1 between those values can be taken as an error es-
timate. The values for bi and b′i are chosen with this in mind. The first set,
bi, solves the differential equation locally to order O(h5), and yields the most
accurate of the two estimates. The second set, b′i, solves the differential equation
locally only to order O(h4), and is less accurate. Also, the first set is optimized
so that its local truncation error is minimal. Because of this, the estimate ob-
tained from bi is taken to be the next estimate, and b′i is purely used for the

30



error estimation. More about the derivation of these coefficients can be found
in [19].

As mentioned earlier, the error estimate is taken to be the difference ∆yn+1

between the two computed values for the next iteration. To determine whether
the step size should increase or decrease, the following number is computed:

s = 4

√
hε

2|∆yn+1|
,

with ε the user-specified error tolerance per unit t. This means that if, for
instance, we integrate the equation from t = 0 to t = 1, we expect an error
no greater than ε. If our y is a vector, s is computed for each component, and
the minimum is taken to reflect the error in the worst variable.8 Then, the DP
algorithm behaves differently based on the value of s:

• If s < 1, the error is outside the tolerances, so we reject the current step,
halve the step size, and try again.

• If 1 ≤ s < 2, the error is within tolerances, so we accept the current step,
and leave the step size untouched.

• If s ≥ 2, the error is well within tolerances, so we accept the current step,
and double the step size.

This approach has two distinct advantages over a fixed step size: The first is that
in places where the variables change a lot, the step size automatically decreases
to make sure no accuracy is lost. The second is that in places where there is
not much happening, the computer is not wasting CPU time computing steps
with a smaller step size than needed. Therefore we get the best of both worlds:
speed and accuracy.

k bk b′k ck
1 35/384 5179/57600 0
2 0 0 1/5
3 500/1113 7571/16695 3/10
4 125/192 393/640 4/5
5 -2187/6784 -92097/339200 8/9
6 11/84 187/2100 1
7 0 1/40 1

Table 2: Numerical values for ck, as well as both bk and b′k.

The coefficients of the DP method are given in tables 2 and 3. Note that
k7 is equal to k1 of the next step, and that we don’t have to evaluate f any
extra times to get the error estimation. This means that we use in essence six
evaluations per step.

8Note that in general one could make ε different for each variable. However, in this analysis,
this was not done for simplicity.
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i\j 1 2 3 4 5 6

2 1/5
3 3/40 9/40
4 44/45 -56/15 32/9
5 19372/6561 -25360/2187 64448/6561 -212/729
6 9017/3168 -355/33 46732/5247 49/176 -5103/18656
7 35/384 0 500/1113 125/192 -2187/6784 11/84

Table 3: Numerical values for aij .

B Numerical Method

B.1 Boundary conditions

As was previously mentioned, solutions must satisfy boundary conditions both
at the horizon, where f = 0 by definition, and at the AdS boundary, where
the geometry must be asymptotically AdS. On top of this, we need a way to
parameterize solutions. One of the variables used for this is λh, or the value of
the dilaton at the horizon. These requirements present us with a problem: To
solve the differential equations, we need a point to start the computation from,
and at this point the vector y(t0) from appendix A, which contains q, W , W ′, f ,
f ′, λ, λ′, τ and τ ′, must be completely specified. We have boundary conditions
at both ends of the region where the solution is to be computed, but at neither
end do the conditions completely specify the required variables. On top of this,
the equations of motion (9–14) contain f in the denominator in multiple places,
potentially preventing the solution from being regular at the horizon.

The solution to both of these problems is to use symmetries of the equa-
tions of motion. It is easily seen that (9–14) are invariant under the following
symmetries:

• Scaling of f :

f → f

δ2
f

, q → q

δf
,

• Shift of A:
A→ A+ δA, B → Be2δA ,

• Shift of W :
W →W + δW .

It turns out that the requirement that the geometry must be asymptotically
AdS, i.e. that for large A the expansions (15–18) hold true, can be satisfied by
using these symmetries. Since the symmetries leave the equations of motion in-
variant, regularity at the horizon is preserved, as is the boundary condition that
f = 0 at the horizon. One can also see that λh is preserved under the symme-
tries. This is the reason why we use it to parameterize solutions. However, it is
also evident that the magnetic field is not invariant under the transformations,
which explains the earlier statement that we don’t have direct control over it.

The procedure to obtain a solution is hence as follows:
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1. Enforce boundary conditions at the horizon setting λh by choice, and also
choosing the magnetic field equal to B̃. These two quantities parameter-
ize the solutions. In figure 10, it can be seen for which choices of (λh, B̃)
the phase transitions occur. These can therefore be considered as typical
values, but it must be noted that for the computation of the deconfine-
ment transition much larger values for λh (typically 50) are needed. After
setting λh and B̃, τh is set to either 0 if we want a chirally symmetric so-
lution, or it is set to a specific non-zero value if we want a chirally broken
solution. How this value is determined is detailed in the next subsection.
In the latter case, we get mq 6= 0 in general, and with the algorithm in the
next subsection we can choose τh in such a way that mq = 0. After setting

Ãh = 0, f̃h = 0, f̃ ′h = 1 and W̃h = 0,9 the other boundary conditions are
set by requiring regularity as follows:

q̃h = −

√√√√ 3f̃ ′h

Vg(λh) +
Vf (λh,τh)

2Q̃h
(3− 5Q̃2

h)
,

W̃ ′h =
Vf (λh, τh)q̃2

h

2Q̃hf̃ ′h

(
1− Q̃2

h

)
,

λ′h =
3q̃2
hλ

2
h

8f ′h

(
B̃2Vf (λh, τh)w(λh)

Q̃h

∂w(λh)

∂λ
+ Q̃h

∂Vf (λh, τh)

∂λ
− ∂Vg(λ)

∂λ

)
,

τ ′h =
q̃2
h

f̃ ′hκ(λh)

∂ log Vf (λh, τh)

∂τ
,

with

Q̃h =

√
1 + w (λh)

2
B̃2

2. Use the DP algorithm to obtain a solution {q̃, W̃ , f̃ , λ̃, τ̃}, which is com-
puted up to some large value Amax. Note that this is where the notation
B̃ originates, namely that it is the magnetic field of the solutions which
have not yet been rescaled. Such a solution is given in figure 15.

3. Use the symmetries to rescale the solution so that it satisfies the boundary
conditions at the AdS boundary. The new solution will be denoted the
same as the old one, but without the tildes. In particular, this means

that to obtain fmax = 1 we apply scaling of f by δf =

√
f̃max, where a

subscript ‘max’ denotes evaluation at Amax. The required shift of W to
obtain Wmax = 0 is δW = −W̃max.

To compute the required shift in A is a bit less obvious. To do this, one
needs to substitute equation (16) into (15) to obtain the following:

A = log(LUVΛ) +
1

b0λ
+
b1
b20

log(b0λ) +O(λ),

with

b0 =
9V1

8
,

b1
b20

=
16

9

(
V2

V 2
1

− 23

64

)
.

9Setting Ãh = 0, f̃ ′h = 1 and W̃h = 0 is arbitrary, as these values will eventually be set by
the symmetries anyway.
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Figure 15: Solution to the equations of motion before rescaling, for the same
λh, B̃ and τh as in figure 9. Note that the boundary conditions at the AdS
boundary are not yet satisfied. This is particularly clear for f , which clearly
doesn’t equal 1 at large A.

34



Since λ is invariant under a shift in A, it becomes clear that we need

δA = −Ãmax + log(LUVΛ) +
1

b0λmax
+
b1
b20

log(b0λmax).

This procedure can improved slightly by extrapolating Amax →∞, which
is the same limit as λmax → 0. The way this is done is simply by calculating
δA by the above formula for both Amax and 0.9Amax. We’ll denote the
corresponding values for δA by δAmax

and δA0.9max
, and the improved δA

is then given by linear extrapolation:

δA,improved = δAmax − λmax ·
δAmax − δA0.9max

λmax − λ0.9max
. (19)

In figure 16, one can see that indeed such a linear extrapolation is valid,
since near λmax the graph is linear.
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Figure 16: δA viewed as a function of Amax, and plotted against λmax. One can
see that the graph is linear, so that linear extrapolation likely works well.

By applying these three transformations, the solution in figure 9 is obtained,
which satisfies all required boundary conditions. Note that it also satisfies mq =
0, and how that is guaranteed is explained in the next subsection.

B.2 Setting quark mass to zero

The energy of the QCD scale is much larger than the mass of the quarks par-
ticipating in the interactions. This means that to be representative of QCD,
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the quark mass in this model should be set to zero. There are two ways to do
this:10

• Set τh = 0. This ensures that τ = 0 for all A, so that mq = 0. This choice
corresponds to a phase in which chiral symmetry is not broken.

• Set τh to the largest possible non-zero value such that mq = 0. This
corresponds to a phase in which chiral symmetry is broken.

Note that neither of these solutions is guaranteed to exist at every (λh, B̃)-pair.
For the chirally symmetric solution, it is possible that asymptotes appear before
the AdS boundary is reached, and for the chirally broken phase it is possible
that there exist no non-zero τh such that mq = 0.

From the main portion of this thesis, it is known that it is required to find
the largest τh such that mq = 0 to get the most stable phase. To check for the
existence of a chirally symmetric solution, one can simply check whether setting
τh = 0 reaches the AdS boundary without encountering any asymptotes. One
can subsequently check for the existence of chirally broken solutions by the
following steps, which automatically find the largest τh such that mq = 0[2]:

1. Start at τh = 1, and check to see if there is a solution. If there is no
solution, double τh and try again. Repeat this step until a solution is
found, and define τexists = τh at this point.

2. Do a binary search in the interval [0, τexists] to find a τh such that mq < 0.
Define τmin = τh at this point. After a number of such steps (20 in this
thesis), the algorithm gives up and concludes there doesn’t exist such a
τmin. This automatically means that the chirally broken solution doesn’t
exist for this (λh, B̃)-pair.

3. Starting at τmin, double τh until a τh is found such that mq > 0. Define
τmax = τh at this point.

4. Now a zero of mq(τh) is guaranteed to exist in the interval [τmin, τmax].
This step checks that it is the largest such zero. First define the step
length ∆τh = τmin(( τmax

τmin
)10−4 − 1). Then the following is repeated until it

is found that mq rises exponentially as a function of τh.

(a) Compute y1 = mq(τmin), y2 = mq(τmin + ∆τh) and y3 = mq(τmin +
2∆τh). Before checking for zeroes, τmin is incremented by 2∆τh for
the next iteration.

(b) If the three values for mq don’t all have the same sign, a zero has
been found, and the two values for τh bracketing the solution are
saved. Also, the step length is updated to be the distance between
the two values for τh bracketing the solution, divided by 5.

(c) If no zero is found, fit a parabola through the three points. If this
parabola has zeroes, update the step length to be the distance be-
tween these zeroes. If not, double the step size.11

10How exactly the quark mass is extracted from the solutions is detailed in the next sub-
section. This information, however, is not needed to understand this subsection.

11This departs from the procedure in [2], and is done to speed the computation up. I haven’t
observed any cases where this results in missed solutions, which justifies this change.
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The iteration is stopped once the following conditions are met in a single
step:

• y3 > 0,

• y3 > y1,

• y3 > 100C, where C is the largest mq computed in any previous step.

5. Having two values for τh which bracket the largest zero, Brent’s algorithm
is guaranteed to find the correct root.

Note that within this algorithm there are several arbitrary choices made to
ensure a good balance between accuracy and speed. Taking as an example the
number of steps after which the search for τmin is abandoned, we might imagine
that after 30 steps, we would have found a solution if we hadn’t stopped after
20 steps. After experimenting with these values to see how they influence the
results, it looks like these settings are good, providing both sufficient speed
and sufficient accuracy. Another speed improvement made has to do with the
accuracy setting of the Dormand-Prince algorithm. It turns out that the result
doesn’t change appreciably if, during steps 1–3 of the above listing, a lower
accuracy setting is used. This speeds these three steps up dramatically, and can
be felt especially in cases where we’re not interested in the full computation,
but only on the question of whether a chirally broken solution exists for a given
(λh, B̃)-pair. Examples of this can be found in appendix C.

B.3 Extraction of thermodynamical quantities

Of the thermodynamical quantities, the temperature, entropy and magnetic
field are easiest to extract. Recall that the temperature equals the Hawking
temperature of the black hole, i.e.:

T

Λ
=
−ḟh
4π

=
−f ′h exp(Ah)

4πq
=
−f̃ ′h exp(Ãh + δA)

4πq̃hδf
=
− exp(δA)

4πq̃hδf
,

where it turns out everything can be written in terms of unrescaled quantities at
the horizon and the AdS boundary. This is true for all quantities we’ll extract,
and it is an important point, because it means that we don’t need to save the
entire solution for the extraction of these quantities. This ensures that the
whole process is very memory friendly. The entropy is given by the Bekenstein-
Hawking entropy, i.e.:12

S

Λ3
= exp(3Ah +Wh) = exp(3Ãh + 3δA + W̃h + δW ) = exp(3δA + δW ).

For the magnetic field, recall that we didn’t have direct control over the magnetic
field, but rather we were able to set B̃, the unrescaled magnetic field. To
compute the real magnetic field, we simply rescale B̃:13

B

Λ2
= B̃e2δA .

12It is actually proportional to this value, but for all results in this thesis this proportionality
constant will be unimportant.

13Note that the factor Λ2 appears in the computation of δA.
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The other quantities, namely the quark mass mq and the chiral condensate
〈q̄q〉, are harder to extract. Both are extracted from (18) with the help of (15).
For mq, we can ignore the 〈q̄q〉 term in (18) since the mq term dominates more
and more as A→∞. Making this approximation and using A = log(LUV/r) as
an approximation of (15),14 we obtain

τ = mqL2
UVe

−A (A− log(LUVΛ))
−γ0/b0 ,

= mqL2
UVe

−Ã−δA
(
Ã+ δA − log(LUVΛ)

)−γ0/b0
,

where this identity is valid in the limit A→∞. From it, we can extract mq:

mq = lim
A→∞

τL−2
UVe

Ã+δA
(
Ã+ δA − log(LUVΛ)

)γ0/b0
.

In practice, this limit is computed by means of computing the expression in
the limit both for A = Amax and for A = 0.9Amax, and using an extrapolation
method analogous to the one used in (19). Figure 17 is analogous to figure 16,
but now for mq instead of δA. Here the situation is not as clear as in figure 16,
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Figure 17: mq as a function of Amax, plotted against λmax. One can see that
the graph is not perfectly linear near its end point.

since it is not clear that the graph is linear. This is no coincidence however,
since this this plot satisfies the boundary condition that mq = 0. This means
that the cubic 〈q̄q〉 term is important, and destroys linearity. However, it is
clear from this figure that we have succeeded in finding a τh such that mq ≈ 0,
since clearly the graph levels off near 0.

14This is a good approximation for A→ ∞.
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The extraction of the chiral condensate requires a bit more thought. We
cannot just use the same method as in the previous paragraph on the 〈q̄q〉 term,
since the mq term dominates. Recalling that one of our boundary conditions is
that mq = 0, this may sound strange, but of course it is numerically impossible
to make sure that mq is exactly equal to zero by the method described in the
previous paragraph, since in the end it relies on approximating a zero of a
function. In practice we can only get it to be very small, but then still it
prohibits a simple extraction of the condensate. There are two ways around
this. The first relies on the fact that a bit further from the AdS boundary, the
〈q̄q〉 term dominates, and there it can be matched to a second solution. This
second solution is computed from the boundary, enforcing mq = 0 exactly. Close
to the AdS boundary, the τ equation decouples from the others and becomes
approximately linear. This allows for the matching mentioned above. More
details on this precise procedure can be found in appendix E of [3]. The second
way to solve this problem is to divide by the term multiplying mq so that mq

appears in the equation as a constant. This then allows for the removal of mq

entirely through differentiation, and the resulting equation can be rearranged
to yield the following expression for 〈q̄q〉:

〈q̄q〉 = lim
A→∞

exp(2A) (A− log(LUVΛ))
−γ0/b0

2L3
UV

(
γ0
b0
−A+ log(LUVΛ)

)
×
[
exp(A)

(
γ0

b0
+A− log(LUVΛ)

)
τ + LUV(−A+ log(LUVΛ))τ ′

]
.

After making the substitution A→ Ã+ δA, this can be written in terms of the
unrescaled solution, and the limit can be evaluated by the same extrapolation
method as before. As before, a plot showing this extrapolation is shown in figure
18. It can be seen that this figure, too, is not perfectly linear. As in figure 17,
this is due to the presence of the other term, namely the mq term. Near λ = 0
the mq term dominates and causes the deflection. The solution to this used in
this thesis is to extrapolate from the linear part.

The two methods mentioned above have been compared, and for the poten-
tials in this thesis they agree to within 10%, where the 10% appears to be an
overall factor. This means that at least for qualitative measurements, the two
methods agree. When changing the potentials, however, the second method can
sometimes fail to work altogether. Hence although computationally simpler, in
general the first method is probably better in most cases.

C Transition finding algorithms

C.1 Chiral transition

Recall that the chiral transition is given by the boundary ∂V of the area A in
the (λh, B̃)-plane where a chirally broken solution exists. One might note that
we really need to look at the boundary ∂W of the area W in the (T,B)-plane
where such a solution exists, because in principle it could be that there exists
a line in the interior of V which maps to the boundary of W . In fact, it turns
out that for our system, there is indeed such a line. However, it also turns out
that that line is not in the dominant phase because it is dominated by confined
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Figure 18: 〈q̄q〉 as a function of Amax, plotted against λmax. As can be seen
here, the graph is linear for a while, and then it deviates.

solutions. This means that indeed we need to find ∂V . Note that once ∂V is
found, ∂W can easily be found by the means described in the previous section.

This was done in two steps. First, the (λh, B̃)-plane was explored using a
grid to get a general idea of the shape of the area V . This is necessary because
the next step requires a parameterization (x, y) of the (λh, B̃)-plane such that
for each x there is precisely one y which lies on ∂V . In the course of this thesis,
as different potentials were tried, three different parameterizations were used,
namely

• Cartesian coordinates x = B̃ and y = λh,

• Polar coordinates around λh = 1, B̃ = 0, with x = r and y = θ,

• ‘Scaled’ polar coordinates, in which the radius is given by r2 = 9λ2
h + B̃2,

again with x = r and y = θ.

For the potentials given in the final version of this thesis, the second option was
used.

The second step is simple, but to obtain a solution within a reasonable
time frame requires some work. Since ∂V is defined by existence of a chirally
broken solution, it can, for each x, be found by using a binary search in y. The
interesting question is with what bounds to start the search. Too large a bound
will make the computation take a long time, while too small a bound might
cause no solution to be found since the solution doesn’t lie within the bound.
The solution used in this thesis is to first compute a starting point for x = 0
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with a known bound, and then use the following algorithm for other x, which
are chosen in a regular grid:

1. Locate the closest known point on ∂W .15 The bound is then estimated
to be centered around the same y as the closest known point. This is
another reason why it is important to choose a reasonable parameteriza-
tion. For a reasonable parameterization, this guess will often be close to
the point we’re looking for. The size of the bound is then estimated as a
linear function of the distance in units of x to the point used to make the
estimate.

2. Check that for the lowest y in the bound there is no chirally broken so-
lution, and that for the highest y in the bound there is a chirally broken
solution. If this is true, we know that the point we’re looking for lies
somewhere in the middle, so we proceed to step 3. If not, then by the
construction of the parameterizations, we can deduce from existence on
either side of the bound whether we should increase or decrease y. If for
both ends there is no chirally broken solution, then we move the new bot-
tom of the bound to the top of the old one, and we double the size, so that
if we’re really far away from the correct solution, it will take less time.16

Likewise, if both ends exist, we move the new top of the bound to the
bottom of the old one, and also double the size. Note that in each param-
eterization we must take care not to end up in situations where λh ≤ 0.
This step is repeated until we have existence at the top of the bound and
non-existence at the bottom.

3. Do a binary search within the bound to find the desired point to within
the desired accuracy.

C.2 Deconfinement transition

The deconfinement transition is a bit more difficult to compute. As was men-
tioned in the main body of the text, the confining transition occurs where the
free energy of a solution is the same as that of a thermal gas solution with the
same magnetic field. It was also mentioned that thermal gas solutions can be
taken to be solutions with a small black hole, i.e. Ah � 1. It also turns out
that this corresponds to solutions with λh � 1. Lastly, we can use the relation
dF = −S dT for fixed B. Putting this together, we can conclude that

F = −
∫
γ

S(γ(t))
∂T (γ(t))

∂t
dt,

where and γ(t) is a path along which B is constant, where the end of the path
corresponds to the point we want to know the free energy of, and the start of
the path corresponds to the point of large λh. Note that this integral is well-
approximated if we truncate it at some large λh, since those solutions have a
small black hole, and so S becomes small in that limit. In this thesis doubling

15This is not always the adjacent point in the grid, since the algorithm is multi-threaded to
take advantage of the parallel nature of modern CPUs.

16This obviously takes more time in other solutions, but from testing this turned out to be
fastest.
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or halving the truncation point revealed no discernible change in F , indicating
that the integration is accurate. The remaining question is how such a path
can be found, and the answer used in this thesis is to determine the derivative
DB(λh, B̃) by looking at nearby points, and using it to find the direction along
which B is constant and λh increases.17 Note that by doing this integration,
one calculates the free energies of every point on the integration path, so we can
also easily determine where it is zero, yielding the deconfinement transition. In
practice, for these potentials, we start the integration from the chiral transition.
This has as an advantage that it handles the following exception well, which
occurs for large B, and may be physical or just due to numerical error. For
large enough B the above method will yield no zeros, and the chiral transition
line will turn out to have a positive free energy compared to the point with large
λh. This means that the chiral transition in this case is not in the dominant
phase, but from it, we can integrate further from the chiral transition into
the direction in which λh decreases, namely in the chirally symmetric phase.
This we can do because it turns out that the values for τh near the chiral
transition approach zero, which means that the solutions continuously approach
the chirally symmetric ones. After continuing the integration we then find
the deconfinement transition, where now the deconfinement transition doesn’t
separate the confined phase from the chirally broken phase, but the confined
phase from the chirally symmetric phase.
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