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Abstract

We study the singularity theorems of Hawking and Penrose in spacetimes with non-vanishing torsion (Einstein-
Cartan theory). Assuming that test particles move on geodesics we manage to generalize those theorems to
the case of totally anti-symmetric torsion. In doing so we derive the generalized Raychaudhuri equation for
timelike geodesics and arbitrary torsion. For totally anti-symmetric torsion we �nd that the vorticity of a
geodesic is directly related to the torsion. We �nd that the theorems are not directly extendable to spacetimes
that have non totally anti-symmetric torsion; other arguments are needed. However, we formulate a con-
struction that enables one to create a null geodesically incomplete spacetime with vectorial torsion starting
from a spacetime that is null geodesically incomplete with respect to the Levi-Civita connection.

The geometric assumptions of the singularity theorems can be translated to assumptions on the matter
content of spacetime via the equations of motion of the theory. We studied the two ways of deriving these
equations. It turns out that for totally anti-symmetric torsion the metric formalism, in which one takes the
metric and torsion as dynamical variables and assumes metric compatibility, is equivalent to the metric-a�ne
formalism, in which one takes the metric and connection as dynamical variables and does not assume metric
compatibility. Matter in the Standard model induces totally anti-symmetric torsion. We also generalize the
Bianchi identity and conservation of the energy-momentum tensor in general relativity to Einstein-Cartan
theory.

We examine the singularity theorems in FLRW spacetimes (assuming vanishing torsion). We argue that
one should not use the general de�nition of a singularity in these spacetimes but should de�ne a singularity
as a comoving geodesic that is incomplete. We prove theorems for FLRW spacetimes about the relation
between conjugate points and a singularity. In particular we show that for a class of singular spacetimes all
points on certain geodesics are conjugate to the point at the singularity. Also when every point on a geodesic
is conjugate to a certain point, one must have a singularity. Lastly we show under which condition a geodesic
in an FLRW spacetime with �at spacelike three-surfaces has conjugate points.
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Introduction

Einstein's theory of general relativity has been around for over a 100 years now. There has been a lot
of experimental evidence that proves the validity of this theory on macroscopic scales. Within the solar
system (weak �eld limit), precession of perihelia of planets, de�ection of light and gravitational redshift
can be explained with general relativity. The theory has also been tested on larger scales, by explaining
gravitational lensing e�ects that can be observed in distant astrophysical sources and for stronger �elds, by
explaining periapsis precession of pulsars around other stars.

Some intriguing objects predicted by general relativity are singularities. Loosely speaking they are points
where spacetime stops being a manifold and that can be reached by objects or light rays in a �nite amount
of time. Massive particles and photons move on timelike geodesics and null geodesics respectively, so a more
rigorous de�nition of a singularity is that there exists a non-spacelike geodesic for which the a�ne parameter
cannot be extended to in�nity (we call a geodesic incomplete if that is the case). Solutions in general relativity
that are singular are for instance the Schwarzschild metric, the Reissner-Nordström metric, the Kerr metric
and the Kerr-Newman metric which all describe black holes. The big bang at the beginning of the universe is
also an example of a singularity. Although these singular solutions theoretically exist, it is not immediately
clear that they really exist in our physical universe. If one considers the collapse of a star to a black hole,
in principle it would be possible that rotation of that star counteracts the collapse and keeps the singularity
from forming. This changed with the theorems of Hawking and Penrose [1, 2, 3]. They proved theorems for
general relativity that under reasonable conditions on the matter content of the universe singularities will
always form. In the example of the collapse of the star, the theorems state that it is impossible to prevent the
singularity from forming once an event horizon is formed. The presence of an event horizon (or a black hole)
can be observed from the interaction with the matter around it. The gas falling into a black hole will form
a disk-like structure (accretion disk) because of angular momentum conservation. Due to friction within the
disk angular momentum is transported outward such that matter can fall into the black hole. This releases
potential energy causing the gas near the black hole to become so hot that it emits enough radiation to be
detected by telescopes. Many of the more energetic phenomena in the universe are explained by accretion
disks of black holes. The active galactic nuclei are such phenomena. It is now widely accepted that nearly all
galaxies have a super massive black hole at the center (masses 105 − 109 MSun, where MSun is a solar mass)
(e.g. [4]). Recently gravitational waves have been detected directly by the Advanced Ligo team [5]. Those
waves were generated from a black hole merger, so besides being the observation of gravitational waves, this
was also the �rst direct detection of a binary black hole merger.

Besides its successes, general relativity is not complete yet. On large scales, cosmological observations
imply that roughly 95 percent of the universe that is measured via its gravitational interaction must be
dark matter or dark energy, which basically means that it is unknown what it is. If the Standard model is
complete, general relativity has to be adapted on large scales to account for this extra energy. If general
relativity should be trusted, there is a need for extra particles to be added to the Standard model. A second
problem appears when one wants to combine general relativity with another main pillar of modern physics:
quantum mechanics. Both theories have to be applied at the same time when one considers large energy on
small scales, for instance when one studies black holes. Unfortunately, we are still far from a concrete theory
that uni�es relativity with quantum mechanics.

The above mentioned sources of trouble with general relativity motivate to examine modi�cations of the
theory in such a way that its predictions on the solar system scale do not change. In general relativity the
metric gµν is �xed by the matter content of spacetime. The connection Γρµν is fully expressed in terms of the
metric by requiring metric compatibility and vanishing torsion Sρµν = 2Γρ[µν]. One modi�cation one can make
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INTRODUCTION

in general relativity is to loosen these restrictions. Metric compatibility makes sense from a physical point of
view: the inner product of two vectors that do not change, should stay the same. Vanishing torsion however,
cannot be motivated in such a way. This has been put to zero originally because torsion only modi�es gravity
on small scales [6], scales that so far are out of reach of experiments. Because of the problems that appear
when combining general relativity with quantum mechanics, modi�cation on small scales is exactly what we
are looking for, which motivates to examine the theory with non-vanishing torsion. In general relativity,
the geometric quantity that describes curvature is coupled to the energy-momentum tensor of matter, which
describes the distribution of energy. One can couple torsion to the spin tensor of matter:

Π µν
ρ =

−4√
−det g

δSm

δSρµν
, (1)

where Sm is the matter action. It turns out that the spin tensor is only non-vanishing (for matter from the
Standard model) for particles with spin, therefore we can say it describes the distribution of spin. We want
to stress that torsion is not coupled to the spin of macroscopic objects as planets, it is merely coupled to
some intrinsic property of matter. The theory which has torsion and the metric as dynamical variables was
�rst proposed by E. Cartan [7, 8] and in other works [9, 10] and it has the name Einstein-Cartan theory.

In this thesis we will study what happens with the singularity theorems of Hawking and Penrose when
one considers Einstein-Cartan theory. One question that needs to be answered is what trajectories we want
to consider for the de�nition of a singularity. In general relativity we use the trajectories of massive particles
and light as motivation to de�ne a singularity as an incomplete non-spacelike geodesic. It is not clear that
when torsion is non-vanishing particles and light still move on geodesics. In the literature there have been
two opinions:

1. particles and light move on geodesics, e.g. [11, 12];

2. particles and light move on curves of maximal length, e.g. [6, 13].

When torsion is totally anti-symmetric, the set of maximal curves and the set of geodesics are the same, but
for more general torsion this is not the case. When one assumes the second case, there is an easy extension
of the singularity theorems (e.g. [14]) by using that one can integrate out torsion from the equations (all of
this will become more clear in this thesis). However, we will use a more cumbersome approach by directly
considering all of the propositions needed to prove the singularity theorems for general relativity and see
whether we can generalize them. We do this for two reasons: �rstly because this will give a di�erent proof of
what already has been done in [14], secondly because we also want to see what happens when one assumes
opinion 1). We will give the full proof for totally anti-symmetric torsion and then discuss the case of more
general torsion. We will give a way to construct a null geodesically incomplete spacetime with vectorial
torsion.

The singularity theorems are geometrical in nature and to see whether their assumptions make sense, we
need a translation to the matter content of spacetime. This translation happens via the equations of motion
of Einstein-Cartan theory. There are however di�erent ways of deriving these equations. In the metric
formalism, the metric and torsion are treated as dynamical variables and metric compatibility is assumed.
In the 'more natural' metric-a�ne formalism the metric and connection are treated as dynamical variables
and one has to see whether metric compatibility is enforced by nature via the equations of motion. We
will actually see that for totally anti-symmetric torsion the two formalisms are equivalent. We will also see
that matter of the Standard model only induces totally anti-symmetric torsion. In general relativity one
has the Bianchi identity and conservation of the energy-momentum tensor of matter. We will also derive
generalizations of those identities.

The Friedmann-Lemaître-Robertson-Walker (FLRW) metric is the metric that describes a spatially ho-
mogeneous, isotropic spacetime. This metric is a good description of our universe, since from experiments as
WMAP and Planck, it follows that our universe is spatially homogeneous and isotropic when averaged over
large scales. Torsion can be introduced in an FLRW spacetime as an energy density. Since this spacetime
has a lot of symmetry it can be used to study the singularity theorems in this spacetime. We will discuss the
de�nition of (initial or big bang) singularities in this spacetime. It actually turns out that we should forget
about certain geodesics when looking for incomplete ones, since the particles that follow those geodesics have
an energy that becomes arbitrarily large when going back in the past. This means that their energy will
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become larger than the Planck energy at some time in the past and when that happens, a black hole will
form, breaking the description of that particle.

One of the assumptions of all the singularity theorems implies that when a geodesic is complete it has
conjugate points. Having conjugate points basically means that there is a one-parameter family of geodesics
that leaves from one of those points and comes back to the other point. We will study this occurrence of
conjugate points in FLRW spacetimes with and without initial singularity. We prove theorems that show
that for a certain class of singular FLRW models all points on certain geodesics are conjugate to the point of
the geodesic at the singularity. We also argue that when it happens that all points are conjugate to one point,
one must have a singularity. Lastly, we prove a theorem that gives the conditions under which a geodesic
in an FLRW spacetime with �at spacelike three-surfaces has conjugate points. After proving these theorems
we introduce torsion in FLRW spacetimes and see what happens in combination with a perfect matter �uid
and a perfect radiation �uid. We will �nd that a singularity is avoided.

As far as we know, the following results in this thesis are new:

• The direct generalization of the Einstein-Penrose singularity theorems to totally anti-symmetric torsion,
but we want to stress once again that the generalized theorems can also be proven in another way.

• The construction of null geodesically incomplete spacetimes with vectorial torsion.

• A derivation of the Raychaudhuri equation for timelike geodesics and arbitrary torsion. This equation
is needed for the proof of the singularity theorems. We �nd an extra term with respect to the literature,
because we use a di�erent approach.

• Section 6.2 about the de�nition of a singularity in FLRW spacetimes. This section can also be found
in our paper [15].

• Section 6.3 in which we prove several theorems relating conjugate points to singularities in FLRW
spacetimes.

The thesis is organized as follows. In Chapter 1 we give a review of general relativity, introduce Einstein-
Cartan theory and discuss the de�nition of singularities. In Chapter 2 and 3 we generalize propositions that
are needed to prove the singularity theorems for totally anti-symmetric torsion. In Chapter 2 we do this
with propositions related to conjugate points and in Chapter 3 with propositions related to the length of
geodesics. After that, in Chapter 4 we review the metric and metric-a�ne formalisms and examine when
they are equivalent. We also derive the generalizations of the Bianchi identity and conservation of the energy-
momentum tensor in general relativity. In Chapter 5 we �nally state the singularity theorems, discuss their
assumptions and extendibility to non totally anti-symmetric torsion and give a construction to �nd null
geodesically incomplete spacetimes with vectorial torsion. In Chapter 6 we study singularities in FLRW
spacetimes, prove some theorems about the relation between conjugate points and singularities and treat
torsion introduced as an energy density as example. We end with a conclusion, where we will also discuss
some possibilities for future work.
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Notation and Conventions

• Units are such that ~ = c = 1.

• Lorentzian metrics gµν will have signature (−1, 1, 1, 1) .

• Index summation notation:

T...µ...Y
...µ... =

∑
µ

T...µ...Y
...µ....

• Symmetrization and anti-symmetrization:

T(µν) =
1

2
(Tµν + Tνµ) ;

T[µν] =
1

2
(Tµν − Tνµ) .

• Determinant of the metric gµν is det g.

• Geodesics are denoted by γ(τ) where τ is an a�ne parameter. Also

γ̇ =
d

dτ
γ.

• The covariant derivative is denoted by ∇ and the covariant derivative along a curve (or parametrized
vector �eld) parametrized by τ by ∇γ̇ = Dτ .

• Riemann curvature tensor

Rρλµν = ∂µΓρνλ + ΓβνλΓρµβ − ∂νΓρµλ − ΓβµλΓρνβ .

• Torsion:

Sρµν = 2Γρ[µν];

Sν = Sρρν .

• Quantities with respect to the Levi-Civita connection

Γρµν = {ρµν} ≡
1

2
gρλ (∂µgνλ + ∂νgµλ − ∂λgµν)

are denoted by ,̆ e.g. R̆µν are the components of the Ricci tensor with respect to the Levi-Civita
connection.

• Energy-momentum tensor:

Tµν =
−2√
−det g

δSm

δgµν
.
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• Spin tensor:

Π µν
ρ =

−4√
−det g

δSm

δSρµν
;

Πν = Π ρν
ρ .

• Variation of the matter action with respect to the connection:

∆ µν
ρ =

−2√
−det g

δSm

δΓρµν
.
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Chapter 1

Review of the Theory

In this chapter we brie�y review the theory. We �rst look at general relativity in Section 1.1 where we
introduce a lot of geometric quantities needed in the rest of this thesis. After that we will also consider the
matter content of the universe. In Section 1.2 we then introduce Einstein-Cartan theory. Lastly, in Section
1.3 we give the de�nition of a singularity and compare this de�nition with other possibilities.

1.1 General Relativity

With the theory of General Relativity Einstein tried to explain gravity by curvature of spacetime. The
mathematical model that is used for spacetime is a pair (M, g) where M is a connected four-dimensional
smooth manifold and g is a Lorentz metric on M , i.e. a metric with signature (1,3). We will denote the
tangent space of M by TM and a local frame of TM induced by a coordinate system, by ∂µ. For some more
background on manifold theory, see the appendix.

Spacetimes (M, g), (M ′, g′) are equivalent when there is a di�eomorphism φ : M →M ′ such that φ∗g
′ = g.

Such a function is also called an isometry. A pair (M ′, g′) is an extension of (M, g) if there is an isometric
imbedding φ : M → M ′. We require the model to be inextendible, so if an extension exists we should have
that φ(M) = M . This is to ensure that all non-singular points of spacetime are included.

A vector �eld is a section of the tangent bundle. We will denote the space of vector �elds on the manifold
by T (M) and the space of vector �elds along a (smooth) curve γ : [τi, τf ] → M by T (γ). To di�erentiate
vector �elds in a coordinate independent way, a connection ∇ is introduced. Let now {Eµ} be a local frame
for TM . The well-known Christo�el symbols Γρµν are then de�ned as

∇EµEν = ΓρµνEρ. (1.1)

Di�erentiation of a vector �eld V = V β∂β along the vector �eld X = Xα∂α yields

∇XV = Xµ∇∂µ(V ν∂ν) = Xµ (∂µV
ν) ∂ν +XµV νΓρµν∂ρ. (1.2)

So in coordinates we get
∇µV ρ ≡ (∇V )

ρ
µ = ∂µV

ρ + ΓρµνV
ν . (1.3)

It can be shown that when p ∈M, ∇XV (p) only depends on X(p) and on the value of V in a neighborhood
of p. If we di�erentiate along a curve γ(τ) or a parametrized vector �eld we will use the notation Dτ for the
covariant derivative. A useful construction is parallel translation. We say that a vector �eld V along a curve
γ is parallel along γ if DτV = 0. A curve γ(τ) is called a geodesic curve when Dτ γ̇ = fγ̇ and a curve is called
a geodesic when

Dτ γ̇ = 0, (1.4)

or in other words: when its tangent vector �eld is parallel along the curve. The parametrization τ of a
geodesic is de�ned by (1.4) up to an a�ne transformation: τ ′ = ατ +β, where α, β are constants. A geodesic
curve can always be reparametrized such that it becomes a geodesic and vice versa. Writing Eq. (1.4)
in coordinates one �nds a 2nd order linear di�erential equation and such an equation can always be solved
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CHAPTER 1 REVIEW OF THE THEORY

locally. So let p ∈M and X ∈ TpM then there is a geodesic γ(τ) such that γ(0) = p and γ̇(0) = X; we denote
this geodesic with γX . It can be proven that there is a neighborhood N0 of 0 ∈ TpM that is di�eomorphic
to a neighborhood Np of p via the exponential map expp(X) = γX(1). Furthermore, Np can be chosen such
that all points q, r ∈ Np can be connected by a unique geodesic that lies in Np; such a neighborhood will be
called a convex normal neighborhood.

Using the connection we can de�ne the torsion tensor:

S : T (M)× T (M)→ T (M) S(X,Y ) = ∇XY −∇YX − [X,Y ]. (1.5)

In components we get

Sρµν = S(∂µ, ∂ν)(dxρ) = Γλµν∂λ(dxρ)− Γλνµ∂λ(dxρ) = Γρµν − Γρνµ. (1.6)

Torsion can be decomposed as
Sρµν = V Sρµν + ASρµν + TSρµν , (1.7)

where the vectorial part V Sρµν , totally anti-symmetric part ASρµν and traceless part TSρµν are de�ned as

V Sρµν =
1

3

(
δρµSν − δρνSµ

)
;

ASρµν = gρλS[λµν]; (1.8)

TSρµν =
2

3

(
Sρµν − S

ρ
[µν] − S[νδ

ρ
µ]

)
.

Notice that all of these parts de�ne a torsion by itself.
We can also de�ne the Riemann curvature tensor R:

R : T (M)× T (M)× T (M)→ T (M) R(X,Y )Z = ∇X(∇Y Z)−∇Y (∇XZ)−∇[X,Y ]Z. (1.9)

Components are de�ned as

Rρλµν = (R(∂µ, ∂ν)∂λ)
ρ

= [∇µ (∇ν∂λ)−∇ν (∇µ∂λ)]
ρ

=
[
∇µ (Γανλ∂α)−∇ν

(
Γαµλ∂α

)]ρ
= ∂µΓρνλ + ΓβνλΓρµβ − ∂νΓρµλ − ΓβµλΓρνβ . (1.10)

Contracting the curvature tensor, one can de�ne the Ricci tensor Ric as the tensor with components

Rλν = Rρλρν . (1.11)

Taking the trace of the Ricci tensor we �nd the Ricci scalar

R = Rµµ = gµνRµν . (1.12)

In the discussion of the connection so far, we have not been talking about the metric. Since we normally
de�ne the angle between two vectors via the metric, it seems natural to require that the 'inner product' does
not change under parallel translation along a curve γ. Or in other words we require

d

dτ
g(V,W ) = g(DτV,W ) + g(V,DτW ) (1.13)

for an arbitrary curve γ and V,W ∈ T (γ). This property is equivalent to

∇Xg = 0 (1.14)

for all X ∈ T (M) and using this equation it is possible to express the Christo�el symbols via the torsion and
metric:

Γρµν = {ρµν} − S
ρ

(µν) +
1

2
Sρµν , (1.15)

14



CHAPTER 1 REVIEW OF THE THEORY

where

{ρµν} =
1

2
gρλ(∂µgνλ + ∂νgµλ − ∂λgµν) (1.16)

is the Levi-Civita connection. Indeed, using Eq. (1.14) we can write

0 =
1

2
gρα (∇µgαν +∇νgαµ −∇αgµν)

= {ρµν} −
1

2
gρα

(
Γβµαgβν + Γβµνgαβ + Γβναgβµ + Γβνµgαβ − Γβαµgβν − Γβανgµβ

)
= {ρµν} −

1

2

(
gραSβµαgβν + Γρµν + gραSβναgβµ + Γρνµ

)
= {ρµν} −

1

2

(
2Γρµν − Sρµν + S ρ

νµ + S ρ
µν

)
. (1.17)

Hence

Γρµν = {ρµν}+
1

2

(
Sρµν − S ρ

νµ − S ρ
µν

)
= {ρµν} − S

ρ
(µν) +

1

2
Sρµν . (1.18)

Apart from metric compatibility, in General Relativity we also assume that the torsion is zero. So the
connection reduces to the Levi-Civita connection, which is completely determined by the metric.

Using the metric, the vectors in TpM at a point p ∈M can be divided into three classes:

De�nition 1.1.1. A vector X ∈ TpM is called timelike if g(X,X) < 0, it is called spacelike if g(X,X) > 0
and it is called a null vector if g(X,X) = 0. Timelike, spacelike and null curves are then de�ned as curves γ
such that g(γ̇, γ̇) is negative, positive or zero respectively for the tangent vector �eld along the curve.

Notice that with metric compatibility, the norm of the tangent vector of a geodesic γ is constant:

∂τg (γ̇, γ̇) = 2g (Dτ γ̇, γ̇) = 0. (1.19)

This implies that we can de�ne timelike, null and spacelike geodesics. We can also choose (using the freedom
of an a�ne transformation) the parametrization of the geodesic such that g (γ̇, γ̇) = −1 for timelike geodesics,
g (γ̇, γ̇) = 1 for spacelike geodesics and g (γ̇, γ̇) = 0 for null geodesics. De�ning the length of a timelike curve
γ between γ(τ0) and γ(τ1) as

L(γ) =

ˆ τ1

τ0

√
−g(γ̇, γ̇)dτ, (1.20)

we see that for a timelike geodesic with parameter such that g (γ̇, γ̇) = −1, we get that

L(γ) = τ1 − τ0, (1.21)

which is why we call this parameter τ the proper time, or length of the geodesic.

So far we have only talked about the geometry of spacetime, but in the real world everything is made
out of matter. Matter is described via �elds on M (for instance a complex function or a vector �eld) and
these �elds obey equations which can be expressed as relations between tensors or spinors on M . We will
now discuss three postulates for a spacetime:

Local causality

The equations that describe the matter �eld must be such that in a convex normal neighborhood U a signal
between points p, q ∈ U can only be send when p and q can be connected by a curve that is either timelike
or null; such a curve is called non-spacelike.
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Local conservation of energy and momentum

For the matter �elds one can de�ne a tensor T , the energy-momentum tensor, which depends on the �elds,
their covariant derivatives and the metric, and which has the properties:

1. T vanishes on an open set U if and only if all the matter �elds vanish on U ;

2. T obeys the equation ∇µTµν = 0;

3. Tµν = T νµ.

The �rst property is that every �eld has a non-zero energy, the second property makes sure that energy and
momentum are locally conserved.

Field equations

The following equation holds on M in general relativity:

Rµν −
1

2
Rgµν + Λgµν = 8πGNTµν , (1.22)

where Λ is the so called cosmological constant (so it is a constant) and GN is Newton's constant. This is
the Einstein equation and the predictions of this equation agree, within the experimental errors, with the
observations done so far. Notice that in general relativity, we can �nd the metric when we know the energy-
momentum tensor (and have suitable boundary conditions), but the metric in�uences how particles move,
such that the energy-momentum tensor changes. So in general, Eq. (1.22) is hard to solve. Only in situations
with a lot of symmetry, this equation can be solved analytically.

1.2 Einstein-Cartan Theory

As mentioned before, in general relativity, the torsion tensor Eq. (1.5), is assumed to be vanishing. The
theory with non-vanishing torsion is Einstein-Cartan theory [7, 8]. At the geometric side, the only di�erence
with general relativity is in the connection that is now given by Eq. (1.15). The introduction of torsion is
motivated because it modi�es gravity only on small scales [6] where we encounter problems when we try to
combine general relativity with quantum mechanics. On large scales where general relativity is experimentally
con�rmed, Einstein-Cartan theory predicts the same as Einstein's theory. In a theory with torsion the
singularity at the beginning of the universe can be avoided [16]. Since the torsion is an extra component to
the theory, we need an equation that relates the torsion to the matter �eld. A derivation of the new equations
of motion that one gets in Einstein-Cartan theory can be found in Chapter 4.

1.3 Singularities1

There are many possible ways to de�ne a singularity in spacetime, a �rst guess by analogy with electrody-
namics would be to de�ne them as a point where the metric tensor is not de�ned anymore or not di�erentiable
enough. Unfortunately, those points should not be regarded as part of spacetime because one cannot do any
experiments when the laws of physics are not de�ned anymore. This is also why we de�ned spacetime as
smooth and not extendable. Spacetime without those points would be non-singular.

The question of determining of a spacetime is singular now becomes a question whether any singular
points have been cut out. You would expect that this can be determined by the completeness of spacetime in
any sense. Riemannian geometry, where the metric is positive de�nite, has two forms of completeness. First
of all, one can de�ne a distance function d(x, y) : M ×M → R where d(x, y) is the greatest lower bound
of the length of curves from x to y, where the length of a curve γ, with γ(τ0) = x and γ(τ1) = y is de�ned
(notice the analogy with Eq. (1.20)) as

L(γ) =

ˆ τ1

τ0

√
g(γ̇, γ̇)dτ. (1.23)

1This section is based on section 8.1 of [3].
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Spacetime (M, g) is metrically complete if every Cauchy sequence with respect to the distance function
converges to a point in M. There also exists a de�nition based on geodesics. As we mentioned before, for
every point p ∈M , X ∈ TpM there exists a geodesic γ : U →M , where U ⊂ R is a neighborhood of 0, such
that γ(0) = p, γ̇(0) = X. If we can expand the domain of the geodesic to R the geodesic is called complete.
In Riemannian geometry one has geodesic completeness if and only if one has metric completeness.

It is hard to �nd an analogy for metric completeness in Lorentzian geometry. One cannot de�ne a distance
function as in Riemannian geometry because if one de�nes the length of curves as in (1.20) this length can be
positive and negative. Hence, one is left with geodesic completeness. There actually are 3 di�erent kinds of
geodesic completeness: null, spacelike and timelike geodesic completeness. One would hope the three forms
of geodesic completeness are equivalent, but that is not the case [17]. One can construct examples that are
incomplete in one of the three ways and complete in the other two. From a physical perspective only timelike
and null geodesic completeness are really interesting. Massive test particles in general relativity are believed
to follow timelike geodesics. So when such a geodesic is incomplete, that means that that test particle reaches
the end of its trajectory in a �nite time. This seems like a quite objectionable feature of spacetime and that
is why such a spacetime can be regarded singular. Photons are believed to follow null geodesics and while the
a�ne parameter of such a geodesic does not have the same interpretation as the a�ne parameter of a timelike
geodesic, one should probably also regard spacetimes that have an incomplete null geodesic as singular. This
can be motivated because the Reissner-Nordström solution that describes a charged black hole is timelike
complete but not null geodesically complete.

When torsion is non-vanishing in most literature the opinion is that test particles follow extremal curves
(curves of maximal length) with their tangent vector parallel transported with respect to the Levi-Civita
connection (i.e. [6, 13]). In [12] it is claimed that the trajectories of point particles must be geodesics with
respect to the full connection in order to obtain a consistent path integral. In [18] a new variational method
is found that indeed yields these trajectories. Unfortunately, it is impossible up to now to falsify one of these
claims experimentally. In this thesis, we will mainly use the second opinion in which we consider geodesics
with respect to the connection with torsion. However, we will only be able to give full proofs for totally
anti-symmetric torsion in which case both sets of trajectories are the same. We now de�ne a singularity in
the following way:

De�nition 1.3.1. A spacetime has a singularity if it contains a non-spacelike incomplete geodesic.

For generality relativity, theorems have been proven [1, 2, 3] that state the existence of these singularities
under rather general assumptions. We would like to generalize these results to spacetimes with torsion.

There still are some spacetimes that are geodesically complete, but should be considered singular. For
example [19] constructed an example that is geodesically complete but contains an inextendible timelike curve
of bounded acceleration and �nite length. An observer with a suitable rocket ship can reach a point that is
not in the manifold anymore in a �nite amount of time. This is why one should actually de�ne a singularity
in such a way that also these kind of spacetimes are included. To do that one needs a generalization of the
a�ne parameter to all continuously di�erentiable curves. This is indeed possible [20, 21], but we will not
dive into this since we will not use it in the remainder of this thesis. Of course we have that non-spacelike
geodesic incompleteness implies this kind of incompleteness.

As one might remember from a course on general relativity, singularities are mostly seen as points where
one of the contractions of the Riemann curvature tensor (e.g. the Ricci scalar) blows up. Unfortunately, the
singular point is excluded from the manifold, so it is hard to give a precise de�nition of this statement. It
becomes even harder to prove theorems with such a de�nition. When one already has incomplete curves,
one can use such a curve to give a statement about the blowing up of a contraction of curvature near a
certain point (end of the curve). However, the Riemann curvature tensor is not completely determined by its
contractions (Penrose pointed out that for plane-wave solutions all these contractions are zero, but curvature
is not). Thus in principle it is possible that all contractions are �nite but that curvature still blows up.
Instead, one can use the blowing up of components of the curvature tensor in a parallel translated basis
along a curve as de�nition for a singularity. In this thesis however, a singularity is de�ned as a non-spacelike
geodesic that is incomplete.
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Chapter 2

Conjugate points

It will be important for the proofs of the singularity theorems that families of geodesics that start from one
point or start from one surface will start converging again in a sense that will be made precise later by the
de�nition of conjugate points. That is why in this chapter, we study the behavior of families of geodesics and
prove that under certain conditions we always have those conjugate points. Everything will be developed in
dimension 4, but most of the results can easily be generalized to Lorentzian manifolds of other dimensions.
We will mainly try to follow arguments from [3] and [22] (where they derived the results for vanishing torsion)
and expand them where needed.

This chapter is organized as follows. We consider conjugate points on timelike geodesics, to a spacelike
hypersurface, on null geodesics and to spacelike two-surfaces in Sections 2.1, 2.2, 2.3 and 2.4 respectively.
Before that we derive some theory that is needed in all sections. In particular we will derive a generalized
Jacobi equation. In Section 2.1 we will start with general torsion, but after that we will assume totally anti-
symmetric torsion. We will also assume totally anti-symmetric torsion in Sections 2.2, 2.3 and 2.4. The main
results of this chapter are the propositions that we prove (and are needed for the proofs of the singularity
theorems in Chapter 5). Also the derivation of the Raychaudhuri equation, Eq. (2.32), for timelike geodesics
and torsion is very interesting because as far as we know nobody used this more mathematical approach.
This results in an extra term with respect to the literature.

In this thesis we will be using one-parameter families of geodesics that are de�ned as follows.

De�nition 2.0.1. Let γ : [τi, τf ] → M be a non-spacelike geodesic segment. A variation of γ is a smooth
function Γ : (−ε, ε) × [τi, τf ] → M , such that Γ(0, τ) = γ(τ) for all τ ∈ [τi, τf ]. The variation �eld of Γ is
the vector �eld J(τ) = ∂wΓ(w, τ)|w=0 along γ. We say that Γ is a variation through geodesics if every curve
Γ(w0, τ) is a geodesic segment. We will often use T (w, τ) ≡ ∂τΓ(w, τ) and W (w, τ) ≡ ∂wΓ(w, τ).

Proposition 2.0.1. If a variation Γ is a variation through geodesics then its variation �eld J(τ) obeys the
Jacobi equation:

D2
τJ +DτS(J, γ̇) +R(J, γ̇)γ̇ = 0. (2.1)

Proof. Starting with a variation through geodesics, we have that

DτT = 0. (2.2)

It can be shown (the proof in [23] is also valid in this case) that for a smooth vector �eld V along γ

DwDτV −DτDwV = R(W,T )V. (2.3)

Using this we �nd that

0 = DwDτT

= DτDwT +R(W,T )T

= DτDτW +DτS(W,T ) +R(W,T )T, (2.4)
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where in the last line we have used that:

DwT −DτW = S(W,T ) + [W,T ] = S(W,T ). (2.5)

If we evaluate this at w = 0 we �nd that:

D2
τJ +DτS(J, γ̇) +R(J, γ̇)γ̇ = 0. (2.6)

The name Jacobi equation is usually given to the equation for vanishing torsion, but we will keep the
same name. It can be shown that if J(τ) is a vector �eld along γ that obeys Eq. (2.1), there exists a variation
through geodesics with J as variation �eld [23].

De�nition 2.0.2. A vector �eld J along a geodesic γ : [τi, τf ]→M that satis�es the Jacobi equation

D2
τJ +DτS(J, γ̇) +R(J, γ̇)γ̇ = 0 (2.7)

will be called a Jacobi �eld.

Notice that Eq. (2.1), when written in coordinates, is a linear system of second order di�erential equations.
Hence, we know that a unique solution is de�ned for all initial conditions J(τi) and DτJ(τi) and therefore
the Jacobi �elds form an eight dimensional subspace of T (γ), the vector �elds along γ.

Using Eq. (2.5) we also have that

DτW = −S(W,T ) +DwT (2.8)

and evaluating at w = 0 yields
DτJ = −S(J, γ̇) +∇JT |w=0 (2.9)

which in coordinates is equal to

(DτJ)
ρ

= −Sρµν γ̇νJµ + Jµ∇µT ρ|w=0

=
(
Sρνµγ̇

ν +∇µT ρ|w=0

)
Jµ. (2.10)

2.1 Timelike Geodesic

Assume now that γ is timelike. Let N(γ(τ)) denote the 3 dimensional subspace of Tγ(τ)M that consists of
vectors orthogonal to γ̇(τ) and denote by P : Tγ(τ)M → N(γ(τ)) the projection onto this space. Let

N(γ) =
⊔
τ

N(γ(τ)) (2.11)

denote the orthogonal bundle. We will now make the statement made in the beginning of this chapter about
geodesics that start converging again more precise.

De�nition 2.1.1. If γ is a timelike geodesic segment joining p, q ∈ γ, p is said to be conjugate to q along γ
if there exists a Jacobi �eld J along γ with non-vanishing orthogonal part P (J) such that P (J) is zero at p
and q.

If we now look at the Jacobi equation, Eq. (2.1), we see that the component of the Jacobi �eld parallel to
γ̇ has no in�uence on the components perpendicular to γ̇. That is why the projected Jacobi �eld also obeys
the equation

D2
τ (PJ) +DτPS(PJ, γ̇) +R(PJ, γ̇)γ̇ = 0. (2.12)

Let V be a vector �eld that lives in N(γ) and obeys Eq. (2.12). Then

J = V −
ˆ τ

τi

g(S(V, γ̇), γ̇)dτ ′γ̇ (2.13)
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is a Jacobi �eld with V = PJ . That is why we will also refer to vector �elds that live in N(γ) and obey Eq.
(2.12) as Jacobi �elds.

To simplify notation, we introduce

Rγ(v) = R (v, γ̇(τ)) γ̇(τ);

Sγ(v) = S (v, γ̇(τ)) . (2.14)

Let A : N(γ) → N(γ) be a smooth tensor �eld. Since g (R (v, γ̇(τ)) γ̇(τ), γ̇(τ)) = 0 we can de�ne maps
RγA : N(γ(τ))→ N(γ(τ)), PSγA : N(γ(τ))→ N(γ(τ)) by

RγA(τ)(v) = Rγ (A(τ)(v)) ; (2.15)

PSγA(τ)(v) = P [Sγ (A(τ)(v))] . (2.16)

To study conjugate points we will introduce Jacobi tensors:

De�nition 2.1.2. A smooth (1, 1) tensor �eld A : N(γ)→ N(γ) is called a Jacobi tensor �eld if it satis�es

D2
τA+Dτ (PSγA) +RγA = 0, (2.17)

Ker(A(τ)) ∩Ker(DτA(τ)) = {0} (2.18)

for all τ ∈ [τi, τf ]. Here Ker(A(τ)) is the kernel of A(τ).

If V ∈ N(γ)\{0} is a parallel transported vector �eld along γ, i.e. DτV = 0, and A(τ) a Jacobi tensor
�eld, de�ne J(τ) = A(τ)V (τ). Substitution in Eq. (2.12) gives

D2
τ (J(τ)) +DτPSγ(J(τ), γ̇) +Rγ(J(τ), γ̇)γ̇ = Dτ (Dτ (A)V +ADτV ) +Dτ (PSγA)V

+PSγADτV +RγAV

= D2
τ (A)V +Dτ (PSγA)V +RγAV

=
(
D2
τ (A) +Dτ (PSγA) +RγA

)
V

= 0. (2.19)

Hence J(τ) is a Jacobi �eld. Condition (2.18) guarantees that J is non-trivial. Therefore A can be seen as
describing di�erent families of geodesics at the same time. In the end we will de�ne a Jacobi tensor �eld
that describes all solutions to Eq. 2.12 that vanish at γ(τi) to see under what conditions we have a conjugate
point to γ(τi) but we �rst derive some more general theory for a Jacobi tensor �eld.

In a similar way as in Eq. (2.10) we can write for a Jacobi tensor �eld A that

DτA
ρ
λ =

(
Sρνµγ̇

ν +∇µT ρ|w=0

)
Aµλ. (2.20)

This T here is not well de�ned, it depends on which Jacobi �eld we consider. We will only use this equation
and the following analysis to motivate a de�nition, but we will not use it in the rest of the thesis. The tensor
A expresses how nearby geodesics change, for instance the separation of these curves from γ and some sort
of volume that is marked out by nearby geodesics. The expression within the brackets,

Sρνµγ̇
ν +∇µT ρ|w=0, (2.21)

can therefore be seen as the rate these characteristics change. We have that

Sρνµγ̇
ν +∇µT ρ|w=0 = DτA

ρ
λ

(
A−1

)λ
µ
, (2.22)

so that motivates the de�nition of the tensor

BA = (DτA)A−1 (2.23)

at points where detA 6= 0. Then we can de�ne the following quantities:

De�nition 2.1.3. Let A be a Jacobi tensor �eld and BA = (DτA)A−1 at points where detA 6= 0
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1. The expansion θA is

θA = tr(BA). (2.24)

2. The vorticity tensor ωA is

ωA =
1

2
(BA −B†A). (2.25)

3. The shear tensor σA is

σA =
1

2
(BA +B†A)− θA

3
I, (2.26)

where I is the identity matrix.

Notice that

BA = ωA + σA +
θA
3
I. (2.27)

Lemma 2.1.1. Singular points of a Jacobi tensor �eld A are precisely given by points where |θA| → ∞.

Proof. We �nd that

θA = tr
(
(DτA)A−1

)
= (detA)−1tr ((DτA) adj(A)) = (detA)−1

∑
i,j

(DτA) ijCij , (2.28)

where adj(A) is the adjungate of A and Cij is the (i, j)th cofactor of A (Cramer's rule). Now:

∂τ (detA) =
∑

i1,...,in

∂τ (εi1,...inA1i1A2i2 ...Anin)

=
∑

i1,...,in

[
∂τ (A1i1) (εi1,...inA2i2 ...Anin) + ...+ ∂τ (Anin)

(
εi1,...inA1i1 ...A(n−1)in−1

)]
=
∑
i,j

(∂τAij)Cij , (2.29)

where εi1,...in is the Levi-Civita symbol. Using an orthonormal parallel transported basis Ei (i.e. g(Ei, Ej) =
δij) for N(γ) we �nd that

∂τAij = ∂τg (A(Ej), Ei) = g ((DτA) (Ej), Ei) = (DτA)ij . (2.30)

With Eqs. (2.28), (2.29) and (2.30) we get

θA = (detA)−1∂τ (detA) (2.31)

and since det(A) does not depend on the coordinate system chosen, this holds in every coordinate system. We
approach a singular point of A exactly when detA will go to zero. The Jacobi tensor �eld A obeys Eq. (2.17),
which is a system of linear di�erential equations in the components of A. This implies that A is well-de�ned as
long as the Riemann curvature tensor and torsion are well de�ned. Therefore we cannot have that ∂τ (detA)
blows up. This implies that when θA blows up, we have a singular point. Since θA = ∂τ (log(detA)) and
singular points of A should be isolated, we have a singular point exactly when |θA| → ∞.

Proposition 2.1.1. The derivative of the expansion of a Jacobi tensor �eld A is given by

θ̇A = −Ric(γ̇(τ), γ̇(τ))−tr (Dτ (PSγ))−tr(PSγωA)−tr(PSγσA)− θA
3

tr(PSγ)−tr(ω2
A)−tr(σ2

A)− θ
2
A

3
. (2.32)
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Proof. Di�erentiating I = A−1A we �nd that

0 = Dτ (A−1)A+A−1DτA. (2.33)

Hence

DτBA = Dτ (A′A−1) =
(
D2
τA
)
A−1 − (DτA)A−1 (DτA)A−1

= −Rγ −Dτ (PSγA)A−1 −BABA
= −Rγ −Dτ (PSγ)− PSγBA −BABA, (2.34)

where we have used Eq. (2.17). Using Eq. (2.27) we then have that

θ̇A = tr(DτBA) (2.35)

= −tr(Rγ)− tr((PSγ)′)− tr(PSγBA)− tr(BABA)

= −tr(Rγ)− tr (Dτ (PSγ))− tr

[
PSγ

(
ωA + σA +

θA
3
I

)]
− tr

[(
ωA + σA +

θA
3
I

)2
]

= −tr(Rγ)− tr (Dτ (PSγ))− tr(PSγωA)− tr(PSγσA)− θA
3

tr(PSγ)− tr(ω2
A)− tr(σ2

A)− θ2
A

3

because ωA, σA and ωAσA are traceless. Now choose an orthonormal basis Ei = Eµi ∂µ of Tγ(τ)M (e.g.
g(Ei, Ej) = ηij) such that E0 = γ̇. Then

tr(Rγ) =

3∑
i=1

g(R(Ei, γ̇(τ))γ̇(τ), Ei)

= ηijg(R(Eµj ∂µ, γ̇(τ))γ̇(τ), Eνi ∂ν)

= ηijEµi E
ν
j g(R(∂µ, γ̇(τ))γ̇(τ), ∂ν)

= ηijEµi E
ν
jRνρµλγ̇(τ)ργ̇(τ)λ, (2.36)

where from the second equality sign onwards, we assume the Einstein convention (as usual). From gµνE
µ
i E

ν
j =

ηij it follows that E
k
νE

ν
j = δkj . This means that ∂µ = EiµEi and implies gµν = EiµE

j
νηij. Hence η

ijEµi E
ν
j = gµν

and
tr(Rγ) = ηijEµi E

ν
jRνρµλγ̇(τ)ργ̇(τ)λ = Rµρµλγ̇(τ)ργ̇(τ)λ = Ric(γ̇(τ), γ̇(τ)). (2.37)

Substitution in Eq. (2.35) yields

θ̇A = −Ric(γ̇(τ), γ̇(τ))−tr(Dτ (PSγ))−tr(PSγωA)−tr(PSγσA)− θA
3

tr(PSγ)−tr(ω2
A)−tr(σ2

A)− θ
2
A

3
. (2.38)

When S = 0, this equation is called the Raychaudhuri equation or Ricatti equation. We will refer to Eq. (2.32)
as the generalized Raychaudhuri equation. Notice that Eq. (2.32) is slightly di�erent from the expression
found in [24] because we have found the extra term −tr(Dτ (PSγ)). That is because they considered an
expansion of ∇µγ̇ρ while we took into account the extra torsion term (see Eq. (2.22)).

To examine if there are conjugate points to γ(τi) along γ we will construct a speci�c kind of Jacobi tensor
�eld that describes all Jacobi �elds that live in N(γ), obey Eq. (2.12) and vanish at γ(τi). Let us again
introduce a parallel transported orthonormal frame {Eµ}, µ = 0, 1, 2, 3, along γ such that E0 = γ̇ (we can do
this because γ̇ is timelike). Let Ji(τ), i ∈ {1, 2, 3}, be the Jacobi �eld with Ji(τi) = 0 and DτJi(τi) = Ei(τi).
Let A be the tensor such that the components in the basis Eµare given by

Akl(τ) = (PJl(τ))k; (2.39)

A0
0 = Ak0 = A0

l = 0,

for k, l = 1, 2, 3.
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Lemma 2.1.2. The tensor �eld A as constructed in Eq. 2.39 is a Jacobi tensor �eld and a point γ(τ0) is
conjugate to γ(τi ) if and only if |θA| → ∞ for τ → τ0.

Proof. From the way this tensor is constructed, it is clear that it represents a tensor �eld on N(γ). It also
describes all Jacobi �elds that live in N(γ), obey Eq. (2.12) and vanish at γ(τi) since solutions of Eq. (2.12)
are uniquely determined once we know the V (τi) and DτV (τi) of a solution V at γ(τi). If we let v ∈ N(γ(τ))
for a τ ∈ [τi, τf ] and expand v to a parallel vector �eld V along γ such that V (τ) = v, we have that(

D2
τA+Dτ (PSγA) +RγA

)
(V ) = D2

τ (AV ) +Dτ (PSγAV ) +RγAV = 0 (2.40)

since AV is a Jacobi �eld. Suppose now that v ∈ Ker(A(τ)) ∩ Ker(DτA(τ)) for some τ ∈ [τi, τf ]. Again
expanding it to a parallel vector �eld V such that V (τ) = v, we �nd that J = AV is a Jacobi �eld such that
J(τ) = DτJ(τ) = 0 and this implies that J = 0 which is impossible for v 6= 0 since the column vectors of
A describe linearly independent Jacobi �elds so we cannot have that J = λiJi = 0 when not all λi vanish.
Hence A is a Jacobi tensor. Notice that we also have that A(τi) = 0. The span of the columns of this matrix
forms the three dimensional subspace of Jacobi �elds that vanish at γ(τi). This means that if γ(τ0) for some
τ0 ∈ [τi, τf ] is conjugate to γ(τi) along γ, that A(τ0) has to be singular. Suppose now that A(τ0)v = 0 for
some τ0 ∈ [τi, τf ], v ∈ N(γ(τ0)), v 6= 0. Let V be the unique parallel vector �eld along γ such that V (τ0) = v,
then J(τ) = A(τ)V (τ) is a non-trivial Jacobi �eld that vanishes at τi and γ(τ0). So points conjugate to γ(τi)
are exactly the points along γ(τ) where det(A(τ)) = 0 and we have seen that those points are precisely the
points where |θA| → ∞.

Totally Anti-Symmetric Torsion

From now on in this chapter and in Chapter 3 we will assume a totally anti-symmetric torsion (the other parts
of expansion (1.7) vanish): in coordinates we assume Sρµν = −Sµρν . We already had that Sρµν = −Sρνµ
which implies that PSγ = Sγ or g(S(V, γ̇(τ)), γ̇(τ)) = 0 for all vectors V ∈ Tγ(τ)M . More generally, we have
that g(S(V,W ),W ) = 0 for all vectors V,W ∈ Tγ(τ)M . Therefore

∂2
τg(J, γ̇) = g(D2

τJ, γ̇) = −g(DτS(J, γ̇), γ̇)− g(R(J, γ̇)γ̇, γ̇) = −∂τg(S(J, γ̇), γ̇) = 0, (2.41)

where we have used the Jacobi Equation. That implies that if g(J, γ̇) = 0 for two points on γ, it vanishes for
all points on γ. This happens in particular for the Jacobi �eld related to conjugate points, so those Jacobi
�elds have to live in N(γ).

For a totally anti-symmetric torsion we also have that

g(SγV,W ) = gαβ (Sγ)
α
µ V

µW β = − (Sγ) µβV
µW β = g(V,−SγW ) (2.42)

for arbitrary vectors V,W , which proves that

S†γ = −Sγ . (2.43)

Now let X be a tensor �eld along γ, then

g [(DτX)V,W ] = g [Dτ (XV )−X (DτV ) ,W ]

= ∂τg(V,X†W )− g(XV,DτW )− g(DτV,X
†W )

= −g(XV,DτW ) + g
[
V,Dτ

(
X†W

)]
= −g

[
V,X† (DτW )

]
+ g

[
V,
(
DτX

†)W ]+ g
[
V,X† (DτW )

]
= g

[
V,
(
DτX

†)W ] , (2.44)

which implies that
(DτX)

†
=
(
DτX

†) . (2.45)

This also implies that DτSγ is anti-symmetric. Using that and the anti-symmetry of Sγ , we �nd that Sγ ,
DτSγ and Sγσ are traceless such that Eq. (2.32) reduces to

θ̇A = −Ric(γ̇(τ), γ̇(τ))− tr(SγωA)− tr(ω2
A)− tr(σ2

A)− θ2
A

3
. (2.46)
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Lemma 2.1.3. The vorticity tensor of a Jacobi tensor �eld A that vanishes at γ(τi) is

ωA = −1

2
Sγ . (2.47)

Proof. De�ne the Wronskian of A by

W (A,A) = (DτA)
†
A−A†DτA. (2.48)

The time derivative of the Wronskian along γ is given by

DτW (A,A) = Dτ

[
(DτA)

†
]
A−A†D2

τA. (2.49)

Using property Eq. (2.45) for X = DτA, Eq. (2.49) reduces to

DτW (A,A) =
(
D2
τA
)†
A−A†D2

τA

= (−Dτ (SγA)−RγA)†A+A†(Dτ (SγA) +RγA), (2.50)

where we have used Eq. (2.17) (PSγ = Sγ). Again with Eq. (2.45) we �nd that

DτW (A,A) = −Dτ (SγA)†A−A†R†γA+A†Dτ (SγA) +A†RγA

= Dτ (A†Sγ)A+A†Dτ (SγA) +A†
(
Rγ −R†γ

)
A

= Dτ (A†)SγA+A†SγDτA+ 2A†Dτ (Sγ)A+A†
(
Rγ −R†γ

)
A. (2.51)

We will now examine Rγ −R†γ . We have that

(Rγ)
ρ
µ = Rρλµν γ̇

λγ̇ν . (2.52)

Writing
Γρµν = {ρµν}+ SΓρµν (2.53)

(SΓρµν is a tensor) and denoting the components of the curvature tensor that correspond to the vanishing

torsion case by R̆ρλµν , we �nd that

Rρλµν = ∂µ ({ρνλ}+ SΓρνλ) +
(
{βνλ}+ SΓβνλ

)(
{ρµβ}+ SΓρµβ

)
− ∂ν

(
{ρµλ}+ SΓρµλ

)
−
(
{βµλ}+ SΓβµλ

)(
{ρνβ}+ SΓρνβ

)
= R̆ρλµν +

(
∂µSΓρνλ + {ρµβ}SΓβνλ − {

β
µλ}SΓρνβ

)
−
(
∂νSΓρµλ + {ρνβ}SΓβµλ − {

β
νλ}SΓρµβ

)
+SΓβνλSΓρµβ − SΓβµλSΓρνβ

= R̆ρλµν +∇µSΓρνλ + {βµν}SΓρβλ −∇νSΓρµλ − {
β
νµ}SΓρβλ + SΓβνλSΓρµβ − SΓβµλSΓρνβ

= R̆ρλµν +∇µSΓρνλ −∇νSΓρµλ + SΓβνλSΓρµβ − SΓβµλSΓρνβ . (2.54)

Using that for totally anti-symmetric torsion (Eq. (1.15))

SΓρµν =
1

2
Sρµν , (2.55)

we �nd

(Rγ)
ρ
µ = Rρλµν γ̇

λγ̇ν

=

[
R̆ρλµν −

1

2
∇νSρµλ +

1

4
SβµλS

ρ
βν

]
γ̇λγ̇ν . (2.56)

This implies that

Rγ = R̆γ −
1

2
(DτS)γ +

1

4
SγSγ . (2.57)
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We have that

(DτS)γ (V ) = (DτS) (V, γ̇) = Dτ [S(V, γ̇)]− S(DτV, γ̇)− S(V,Dτ γ̇)

= Dτ [Sγ(V )]− Sγ(DτV )

= (DτSγ) (V ), (2.58)

where we have used that γ is a geodesic. So

Rγ = R̆γ −
1

2
DτSγ +

1

4
SγSγ (2.59)

and

Rγ −R†γ = R̆γ − R̆†γ −
1

2
DτSγ +

1

2
(DτSγ)

†
+

1

4
SγSγ −

1

4
S†γS

†
γ

= −DτSγ , (2.60)

where we used that (DτSγ)
†

= DτS
†
γ = −DτSγ . Substitution in Eq. (2.51) yields

DτW (A,A) = Dτ (A†)SγA+A†SγDτA+ 2A†Dτ (Sγ)A−A†Dτ (Sγ)A

= Dτ (A†)SγA+A†SγDτA+A†Dτ (Sγ)A

= Dτ (A†SγA). (2.61)

Considering this as a matrix equation (working in components), we have that

∂τ
(
W (A,A)−A†SγA

)µ
ν

= −γ̇ρΓµρλ
(
W (A,A)−A†SγA

)λ
ν

+ γ̇ρΓλρν
(
W (A,A)−A†SγA

)µ
λ

(2.62)

and at τi,
(
W (A,A)−A†SγA

)µ
ν
=0 since A(τi) = 0. This is a linear system of �rst-order ODEs for the

functions
(
W (A,A)−A†SγA

)µ
ν
. Such a system has a unique solution and that implies that Eq. (2.62) is

uniquely solved by (
W (A,A)−A†SγA

)µ
ν

= 0 (2.63)

and if this holds for one set of components, it should hold for the tensor. Hence

A†DτA = (DτA)
†
A−A†SγA (2.64)

or

BA = (DτA)A−1

=
(
A†
)−1

(DτA)
† − Sγ

=
(
A−1

)†
(DτA)

† − Sγ
= B†A − Sγ , (2.65)

where we have used that
(
A−1

)†
A† =

(
AA−1

)†
= I, so

(
A†
)−1

=
(
A−1

)†
. Hence

ωA =
1

2
(BA −B†A) = −1

2
Sγ . (2.66)

This implies that Eq. (2.46) for the Jacobi tensor �eld A constructed in Eq. 2.39 reduces to

θ̇A = −Ric(γ̇(τ), γ̇(τ)) +
1

4
tr(S2

γ)− tr(σ2
A)− θ2

A

3
. (2.67)

Proposition 2.1.2. Let γ : R→M be a timelike geodesic and let p = γ(τ0) for a τ0 ∈ R, let A be the Jacobi
tensor �eld, constructed as in Eq. (2.39) such that A(τ0) = 0. If for some τ1 > τ0 the expansion θA(τ1) < 0
and if Ric(γ̇, γ̇)− 1

4 tr(S2
γ) ≥ 0 for all τ ≥ τ1, there will be a point conjugate to p along γ between γ(τ1) and

γ(τ1 − 3
θA(τ1) ).

26



CHAPTER 2 CONJUGATE POINTS

Proof. Since σA is symmetric, tr(σ2
A) ≥ 0. So we �nd that all the terms at the right-hand side of Eq. (2.67)

are smaller or equal to zero such that we have

θ̇A ≤ −
θ2
A

3
. (2.68)

Integration of this inequality yields that for τ > τ1:

θA ≤
3

τ −
(
τ1 − 3

θA(τ1)

) , (2.69)

hence, θA will become in�nite for a τ1 < τ0 ≤ τ1 − 3
θA(τ1) and using lemma 2.1.2, this implies that there is a

conjugate point to p at γ(τ0).

Proposition 2.1.3. Let γ : R → M be a timelike geodesic. If Ric(γ̇, γ̇) − 1
4 tr(S2

γ) ≥ 0 for all τ and if at

some point r = γ(τ1), R̆γ 6= 0, there will be points p = γ(τ0) and q = γ(τ2), τ0 6= τ2, conjugate along γ.

Proof. A Jacobi tensor �eld A is uniquely de�ned once we know A(τ1) and DτA(τ1). Consider the set

P = {A | A Jacobi tensor field with A(τ1) = I, DτA(τ1)− (DτA)
†

(τ1) = −Sγ(τ1) and θA(τ1) ≤ 0}. (2.70)

Suppose A ∈ P , at γ(τ1):

W (A,A)−A†SγA = (DτA)
† −DτA− Sγ = 0. (2.71)

Then it follows in the same way as in lemma 2.1.3 that

ωA = −1

2
Sγ . (2.72)

This implies that θA obeys Eq. (2.67). If θA(τ1) < 0, it follows in the same way as in proposition 2.1.2
that θA → −∞ for some τ1 < τ < τ1 − 3

θA(τ1) . If θA(τ1) = 0, we see from Eq. (2.67) that θA(τ1) ≤ 0

for all τ > τ1. When θA(τ3) < 0 for some τ3 > τ1, then again it can be proven that θA → −∞ for some
τ3 < τ < τ3 − 3

θA(τ3) . Suppose now that θA(τ) = 0 for all τ ≥ τ1. Then θ̇A(τ) = 0 for all τ ≥ τ1. From Eq.

(2.67) it follows that tr(σ2
A) = 0 for all τ ≥ τ1. Since σA is symmetric, this implies that σA = 0 for all τ ≥ τ1.

Hence BA = ωA = − 1
2Sγ for all τ ≥ τ1. With Eq. (2.34) we then have that

Rγ = −DτBA −DτSγ − SγBA −BABA = 0

= −1

2
DτSγ +

1

4
S2
γ (2.73)

for all τ ≥ τ1 contradicting R̆γ 6= 0 (see Eq. 2.57). This proves that to every A ∈ P we can associate the �rst
point on γ where it becomes singular. If we start at a point τ2 > τ1 the Jacobi tensor �eld A as constructed
in Eq. (2.39) such that A(τ2) = 0 will have vorticity ωA = − 1

2Sγ . The Jacobi tensor C(τ) = A(τ)A−1(τ1)
will then have C(τ1) = I and at τ1

DτC − (DτC)
†

= (DτA)A−1 −
(
A−1

)†
(DτA)

†

= BA −B†A
= 2ωA

= −Sγ . (2.74)

The tensor C is in P , but obviously C and A are singular at the same points. We can now �nish the proof
by following the reasoning in proposition 4.4.2 of [3] working with the space of matrices DτA(τ1) such that

DτA(τ1)− (DτA)
†

(τ1) = −Sγ(τ1).
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2.2 Spacelike Surface

Let H be a smooth submanifold ofM and i : H →M be the inclusion map. We can consider TH as subspace
of TM by identifying TH with i∗TH. We can also identify i∗g and g restricted to i∗TH.

De�nition 2.2.1. A submanifold H ofM is said to be nondegenerate if for each p ∈ H and nonzero v ∈ TpH,
there exists a w ∈ TpH such that g(v, w) 6= 0.

De�nition 2.2.2. A nondegenerate submanifold H of M is said to be spacelike if g| TpH × TpH is positive
de�nite for each p ∈ H.

Nondegeneracy of a manifold implies that we can de�ne

T⊥p H = {v ∈ TpM | g(v, w) = 0 for all w ∈ TpH} (2.75)

such that T⊥p H ∩ TpH = {0}. We may de�ne the second fundamental form as follows.

De�nition 2.2.3. Let H be a nondegenerate submanifold of M . Then the second fundamental form

χ : T⊥p H × TpH × TpH → R (2.76)

is de�ned by

χ(n, x, y) = g(∇XY |p, n), (2.77)

where X,Y are local extensions of x, y.

Note that ∇XY |p only depends on value X(p) = x, so the value of the second fundamental form is
independent of the local extension X of x. Furthermore, we have that when X,Y ∈ TpH then [X,Y ] ∈ TpH
which implies that

χ(n, x, y) = g(∇XY |p, n) = g(S(x, y), n) + χ(n, y, x). (2.78)

Hence, the value of the second fundamental form is also independent of the local extension Y of y.

De�nition 2.2.4. Let H be a nondegenerate submanifold ofM . Then the second fundamental form operator
Ln : TpH → TpH is de�ned by g(Lnx, y) = χ(n, x, y) for all x, y ∈ TpH.

The second fundamental form operator may be constructed using a basis of TpH and the linearity of χ.
Consider a spacelike hypersurface H and let n denote its unit timelike normal vector �eld, i.e. g(n, n) =

−1. n de�nes a tensor �eld Ln and it can be proven [22] that

Ln(x) = −∇xn (2.79)

(the only property of the connection used in the proof is metric compatibility). The collection of unit speed
geodesics such that γ̇(0) = n (in this section τ = 0 corresponds to the geodesic at the spacelike hypersurface)
determines a congruence of timelike geodesics normal to H. Let γ be a geodesic of this congruence and let
Γ be a one-parameter family of this congruence such that Γ is a variation of γ. Let J denote the variation
vector �eld of this variation along γ. Then J is a Jacobi �eld and J(0) is a vector tangent to H which implies
that J satis�es the initial condition

DτJ(0) = S(γ̇, J) + (∇Jn) |γ(0) = S(γ̇, J)− LnJ. (2.80)

This implies that we can de�ne a conjugate point to a spacelike surface as follows.

De�nition 2.2.5. Let γ be a timelike geodesic which is orthogonal to a spacelike three-surface H. A point
q is said to be conjugate to H along γ if there exists a non-vanishing Jacobi vector �eld J along γ such that
J is orthogonal to γ̇, J vanishes at q and satis�es DτJ = S(γ̇, J)− LnJ at H.
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From the de�nition of conjugate points to a surface it follows that to study these kind of conjugate points
we can, similar to the case of a conjugate point to a point, work with a parallel orthonormal frame Eµ along
γ such that E0 = γ̇. Let now Ji be the Jacobi �eld such that Ji = Ei at H and that satis�es Eq. (2.80) at
H. Let A be the tensor �eld that in this basis has the components

Akl(τ) = (Jl(τ))k; (2.81)

A0
0 = Ak0 = A0

l = 0,

for k, l = 1, 2, 3.

Lemma 2.2.1. The tensor �eld A as constructed in Eq. (2.81) is a Jacobi tensor �eld and a point γ(τ0) is
conjugate to H if and only if |θA| → ∞ for τ → τ0.

Proof. It follows in the same way as in lemma 2.1.2 that A is a Jacobi tensor �eld. We also have that
[DτA(0)] (Ei) = DτJi(0) = S(γ̇, Ji)− LnJi = −SγAEi − LnAEi, hence DτA(0) = −Sγ − Ln. Every Jacobi
�eld J which is orthogonal to γ̇ and obeys Eq. (2.80) can then be expressed as AV where V is a parallel
vector �eld along γ such that V is orthogonal to γ̇. Therefore it follows that the points on γ conjugate to H
will be given by the singular points of A. As before A will be singular if and only if |θA| becomes in�nite.

Lemma 2.2.2. The vorticity tensor of the Jacobi tensor �eld A constructed in Eq. (2.81) is

ωA = −1

2
Sγ . (2.82)

Proof. Using Eq. (2.78) we �nd that:

g(Lnx, y) = χ(n, x, y)

= g(S(x, y), γ̇) + g(Lny, x)

= Sµνλx
νyλγ̇µ + g(Lny, x)

= Sνλµx
νyλγ̇µ + g(Lny, x)

= g(Sγy, x) + g(Lny, x). (2.83)

Thus L†n = Sγ + Ln which implies that at τ = 0 (the spacelike hypersurface)

W (A,A)−A†SγA = (DτA)
†
A−A†DτA−A†SγA

= (−Sγ − Ln)
†

+ Sγ + Ln − Sγ
= Sγ − L†n + Ln

= 0 (2.84)

such that in the same way as in lemma 2.1.3 we can derive that

ωA = −1

2
Sγ . (2.85)

By the previous two lemmas it follows that the derivative of the expansion related to the Jacobi tensor
�eld (2.81) also obeys Eq. (2.67).

Proposition 2.2.1. Let H be a spacelike hypersurface and let γ : R→M be a timelike geodesic, such that
γ(0) ∈ H and γ is orthogonal to H. If −tr(Lγ̇(0)) < 0 and Ric(γ̇, γ̇)− 1

4 tr(S2
γ) ≥ 0 for all τ ≥ 0 there will be

a point conjugate to H along γ between γ(0) and γ(− 3
θ1

).

Proof. This can be proven as in proposition 2.1.2 using the Jacobi tensor �eld A de�ned in (2.81), realizing
that at γ(0), θA = −tr(Lγ̇(0)) < 0 and using lemma 2.2.1.
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2.3 Null Geodesic

We would like to also de�ne conjugate points for a null geodesic γ : [τi, τf ] → M . Since we consider totally
anti-symmetric torsion it can be seen from Eq. (2.41) that Jacobi �elds that vanish at two points along γ
have to live in N(γ). Notice that for a null geodesic we also have that γ̇ ∈ N(γ), so since we will be interested
in the convergence of geodesics, it makes more sense to look at the projection of Jacobi �elds to a quotient
space formed by identifying vectors that di�er by a multiple of γ̇. This idea is implicitly used in [3] and
further developed in [25].

We start de�ning a pseudo-orthonormal basis for the tangent space at every point. Let E0(τi) = γ̇ and
E1(τi) = n ∈ Tγ(τi)M be a null tangent vector such that g(n, γ̇(τi)) = −1. Choose spacelike tangent vectors
E2, E3 ∈ Tγ(τi)M such that g(n,Ej) = g(γ̇(τi), Ej) = 0 for j = 1, 2 and g(Ei, Ej) = δij . Extend these vectors
to a parallel transported vector �eld along γ and de�ne

N⊥(γ(τ)) = {λ2E2(τ) + λ3E3(τ)|λj ∈ R}. (2.86)

Then N⊥(γ(τ)) ⊂ N(γ(τ)) and consists of spacelike vectors. We have the direct sum decomposition

N(γ(τ)) = N⊥(γ(τ))⊕ [γ̇(τ)] (2.87)

for all τ ∈ [τi, τf ], where
[γ̇(τ)] = {λγ̇(τ)|λ ∈ R}. (2.88)

De�ne now the bundle
N⊥(γ) =

⊔
τi≤τ≤τf

N⊥(γ(τ)). (2.89)

Obviously [γ̇(τ)] is a vector subspace of N(γ(τ)), so we can de�ne the quotient vector space

G(γ(τ)) = N(γ(τ))/[γ̇(τ)] (2.90)

and the quotient bundle

G(γ) = N(γ)/[γ̇] =
⊔

τi≤τ≤τf

G(γ(τ)). (2.91)

De�ne the projection map
π : N(γ(τ))→ G(γ(τ)) v 7−→ v + [γ̇(τ)]. (2.92)

We can see N⊥(γ(τ)) as the geometric realization of G(γ(τ)) via the isomorphism

φ : N⊥(γ(τ))→ G(γ(τ)) v 7→ v + [γ̇(τ)]. (2.93)

The inverse φ−1 of this map is constructed as follows. Given v ∈ G(γ(τ)) choose an x ∈ N(γ(τ)) such that
π(x) = v. Decompose x uniquely as x = x1 + λγ̇(τ), where x1 ∈ N⊥(γ(τ)). We de�ne φ−1(v) = x1.

We will project the metric, covariant derivative, curvature tensor and torsion tensor to G(γ(τ)). Given
v, w ∈ G(γ(τ)), let x, y ∈ N(γ(τ)) be such that π(x) = v, π(y) = w. We de�ne the projected metric by

ḡ(v, w) = g(x, y). (2.94)

This is well-de�ned, because x, y are orthogonal to γ̇.
If we let Ω(γ) denote the piecewise smooth sections of G(γ) and T⊥(γ) the piecewise smooth sections of

N(γ), we can given V̄ ∈ Ω(γ) �nd a V ∈ T⊥(γ) such that V̄ = π(V ). De�ne

Dτ V̄ = π(DτV ). (2.95)

Let V1 ∈ T⊥(γ) be such that we also have that π(V1) = V̄ , hence V1 = V + fγ̇ for some smooth function
f : [τi, τf ] → R and we get that DτV1 = DτV + ḟ γ̇. This implies that Dτ V̄ is well de�ned. This covariant
derivative on Ω(γ) is also compatible with the metric ḡ and has all the usual properties of a covariant
derivative. It can also be shown that for V̄ ∈ Ω(γ)

Dτφ
−1(V̄ ) = φ−1(Dτ V̄ ), (2.96)
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hence, covariant di�erentiation in G(γ) and N⊥(γ) are the same.
We de�ne the curvature endomorphism R̄γ : G(γ(τ))→ G(γ(τ)) by

v 7→ R̄γ(v) = π [Rγ(x)] (2.97)

where x ∈ N(γ(τ)) such that v = π(x). This does not depend on the particular x we choose.
If we let v, w ∈ G(γ(τ)), x, y ∈ N(γ(τ)) such that v = π(x), w = π(y). Then

ḡ(R̄γ(v), w) = g(Rγ(x), y). (2.98)

We de�ne the torsion tensor S̄γ : G(γ(τ))→ G(γ(τ)) by

v 7→ S̄γ(v) = π [Sγ(x)] (2.99)

which also does not depend on the particular x ∈ N(γ(τ)) we choose such that v = π(x). Notice that

ḡ
[
S̄γ(v), w

]
= ḡ [π [Sγ(x)] , w]

= g (Sγ(x), y)

= −g (x, Sγ(y))

= −ḡ
[
v, S̄γ(w)

]
, (2.100)

so
(
S̄γ
)†

= −S̄γ .

De�nition 2.3.1. A smooth section J̄ ∈ Ω(γ) is a Jacobi class in G(γ) if J̄ satis�es the Jacobi equation

D2
τ J̄ +Dτ S̄γ(J̄) + R̄γ(J̄) = [γ̇]. (2.101)

It can be shown (i.e. [22]) that given a Jacobi class J̄ ∈ Ω(γ), there is a two-parameter class of Jacobi
�elds Jλ,µ = J +λγ̇+µτγ̇ ∈ T⊥(γ), λ, µ ∈ R, such that J̄ = π(Jλ,µ). It is not always the case that there lives
a Jacobi �eld J in N⊥(γ(τ)) such that J̄ = π(J). We will prove the following useful lemma (generalizing the
proof from [22]).

Lemma 2.3.1. Let J̄ ∈ Ω(γ) be a Jacobi class such that J̄(τi) = [γ̇(τi)], J̄(τf) = [γ̇(τf)]. Then there is a
unique Jacobi �eld J ∈ T⊥(γ) such that J̄ = π(J) and J(τi) = J(τf) = 0.

Proof. There exists a Jacobi �eld Y ∈ T⊥(γ) such that J̄ = π(Y ). Then Y (τi) = c1γ̇(τi), Y (τf) = c2γ̇(τf)
with constants c1, c2. De�ne λ = (c2τi − c1τf)(τf − τi)−1 and µ = τ−1

f

[
(c1τf − c2τi)(τf − τi)−1 − c2

]
. The

vector �eld J = Y + λγ̇ + µτγ̇ ∈ T⊥(γ) is also a Jacobi �eld with π(J) = J̄ and it has J(τi) = J(τf) = 0.
Suppose now that we have two Jacobi �elds J1, J2 ∈ T⊥(γ) with J1(τi) = J1(τf) = J2(τi) = J2(τf) = 0 and
such that π(J1) = π(J2) = J̄ . X = J1 − J2 is a Jacobi �eld with π(X) = [γ̇], which implies that X = f(τ)γ̇.
We have that

0 = D2
τX +DτS(X, γ̇) +R(X, γ̇)γ̇ =

..

fγ̇, (2.102)

hence, using f(τi) = f(τf) = 0, f = 0. Therefore J1 = J2.

Using this lemma we can now make the following de�nition.

De�nition 2.3.2. Let γ : [τi, τf ]→M be a null geodesic. Let p = γ(τ1), q = γ(τ2) for τi ≤ τ1 < τ2 ≤ τf . p is
said to be conjugate to q along γ if there exists a Jacobi class J̄ ∈ Ω(γ) such that J̄ 6= [γ̇] and J̄(τ1) = [γ̇(τ1)],
J̄(τ2) = [γ̇(τ2)].

De�nition 2.3.3. A smooth tensor �eld Ā : G(γ)→ G(γ) is said to be a Jacobi tensor �eld if

D2
τ Ā+Dτ S̄γĀ+ R̄Ā = 0

Ker(Ā(τ)) ∩Ker(Dτ Ā(τ)) = {0} (2.103)

for all τ .
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CHAPTER 2 CONJUGATE POINTS

We can de�ne B̄Ā =
(
Dτ Ā

)
Ā−1 and de�ne the expansion, vorticity tensor and shear tensor:

θ̄Ā = tr(B̄Ā);

ω̄Ā =
1

2
(B̄Ā − B̄

†
Ā

); (2.104)

σ̄Ā =
1

2
(B̄Ā + B̄†

Ā
)− θ̄Ā

2
,

where there is a 2 in the de�nition of the shear tensor because G(γ(τ)) is two dimensional for all τ .

Proposition 2.3.1. The derivative of the expansion of a Jacobi tensor �eld A is given by

∂τ θ̄Ā = −Ric(γ̇, γ̇)− tr(S̄γω̄Ā)− tr(ω̄2
Ā)− tr(σ̄2

Ā)−
θ̄2
Ā

2
. (2.105)

Proof. Just as in the timelike case, we obtain Dτ B̄Ā = −R̄γ −DtS̄γ − S̄γB̄ − B̄B̄ and this leads to

∂τ θ̄A = −tr(R̄γ)− tr(Dτ S̄γ)− tr(S̄γω̄Ā)− tr(S̄γ σ̄Ā)− θ̄Ā
3

tr(S̄γ)− tr(ω̄2
Ā)− tr(σ̄2

Ā)−
θ̄2
Ā

2
, (2.106)

which gives, using that S̄γ is anti-symmetric

∂τ θ̄Ā = −tr(R̄γ)− tr(S̄γω̄Ā)− tr(ω̄2
Ā)− tr(σ̄2

Ā)−
θ̄2
Ā

2
. (2.107)

Let Ei be an orthonormal basis for N⊥(γ) at every point of γ, i ∈ {2, 3}. Expand this basis with E0 and E1

to an orthonormal basis along γ, where E0 is a timelike vector and γ̇ = (E0 + E1)/
√

2. Then

g (Rγ(E1), E1)− g (Rγ(E0), E0) = g (R(E1, γ̇)γ̇, E1)− g (R(E0, γ̇)γ̇, E0)

=
1

2
g (R(E1, E0)E0, E1)− 1

2
g (R(E0, E1)E1, E0)

= 0 (2.108)

where we used the anti-symmetry of the curvature tensor (to prove this property one only needs metric
compatibility). Hence

tr(R̄γ) =

3∑
i=2

ḡ
(
R̄γ(Ēi), Ēi

)
=

3∑
i=2

g (Rγ(Ei), Ei)

=

3∑
i,j=0

g(Ei, Ej)g (Rγ(Ei), Ei)

= ηijEµi E
ν
j g (R(∂µ, γ̇)γ̇, ∂ν)

= Ric(γ̇, γ̇), (2.109)

where the last step follows as in the timelike case. Substitution in Eq. (2.107) yields

∂τ θ̄Ā = −Ric(γ̇, γ̇)− tr(S̄γω̄Ā)− tr(ω̄2
Ā)− tr(σ̄2

Ā)−
θ̄2
Ā

2
. (2.110)

This is the generalized Raychaudhuri equation for null geodesics and totally anti-symmetric torsion.

We will now construct a Jacobi tensor �eld Ā just as we did in the timelike case. Let Ēi = π(Ei) for
i = 2, 3 be the projected basis vectors of the geometric realization of G(γ). Let J̄i for i = 2, 3 be the Jacobi
class in G(γ) with J̄i(τi) = [γ̇(τi)] and Dτ J̄i(τi) = Ēi(τi). Then the tensor that in this basis has components

Ākl =
(
J̄l
)k

(2.111)
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for l, k = 2, 3 is a Jacobi tensor �eld along γ. A point along γ will be conjugate to γ(τi) along γ if and only
if Ā is singular there which happens precisely when |θ̄| → ∞. In the same way as for the timelike case, we
can show that

ω̄Ā = −1

2
S̄γ , (2.112)

such that Eq. (2.110) reduces to

∂τ θ̄Ā = −Ric(γ̇, γ̇) +
1

4
tr(S̄2

γ)− tr(σ̄2
Ā)−

θ̄2
Ā

2
. (2.113)

Expanding now the orthonormal basis E2, E3 of N⊥(γ) with E0 and E1 to an orthonormal basis along γ,
where E0 is a timelike vector and γ̇ = (E0 + E1)/

√
2. Then

−g
[
S2
γ(E0), E0

]
+ g

[
S2
γ(E1), E1

]
= − 1√

2
g [Sγ(S(E0, E1)), E0] +

1√
2
g [Sγ(S(E1, E0)), E1]

= −g [Sγ(S(E0, E1)), γ̇]

= 0. (2.114)

Hence

tr(S̄2
γ) =

3∑
i=2

ḡ(S̄2
γ(Ēi), Ēi)

=

3∑
i=2

g(S2
γ(Ei), Ei)

=

3∑
i,j=0

g(Ei, Ej)g(S2
γ(Ei), Ei)

= ηijEµi E
µ
j g(S2

γ(∂µ), ∂ν)

= gµν
(
S2
γ

)
νµ

= tr(S2
γ). (2.115)

Thus we �nd that Eq. (2.113) becomes

∂τ θ̄Ā = −Ric(γ̇, γ̇) +
1

4
tr(S2

γ)− tr(σ̄2
Ā)−

θ̄2
Ā

2
. (2.116)

Proposition 2.3.2. Let γ : R → M be a null geodesic, and let p = γ(τ0). Let Ā the Jacobi tensor �eld
constructed as in Eq. (2.111) such that Ā(τ0) = 0. If for some τ1 > τ0 the expansion θ̄Ā(τ1) = θ̄1 < 0 and
if Ric(γ̇, γ̇) − 1

4 tr(S2
γ) ≥ 0 for all τ ≥ τ1, there will be a point conjugate to p along γ between γ(τ1) and

γ(τ1 − 2
θ̄1

).

Proof. This can be proven as in proposition 2.1.2 using Eq. (2.116).

Proposition 2.3.3. Let γ : R → M be a null geodesic. If Ric(γ̇, γ̇)− 1
4 tr(S2

γ) ≥ 0 for all τ and if at some

point r = γ(τ1) ˘̄Rγ 6= 0, there will be points p = γ(τ0), q = γ(τ2) τ0 6= τ2 conjugate along γ.

Proof. This can be proven as in proposition 2.1.3.

2.4 Spacelike Two-Surface

We also like to consider conjugate points to a spacelike two-surface P along a null geodesic that is orthogonal
to the surface. For a point p ∈ P g restricted to T⊥p P is a 2-dimensional Lorentz metric. Hence, there are two
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CHAPTER 2 CONJUGATE POINTS

null vector �elds n1, n2 orthogonal to P . These two �elds de�ne tensor �elds Lni on P . Locally we can then
de�ne a pseudo-orthonormal basis on P : E0 = n1, E1 = βn2 and E2, E3 chosen such that g(E0, E1) = −1,
g(E0, Ei) = g(E1, Ei) = 0 and g(Ei, Ej) = δij for i, j = 2, 3. The null vector �elds E0 and E1 give rise
to second fundamental form operators LE0

and LE1
which are (1, 1) tensors that are locally de�ned on

P . If γ : [τi, τf ] → M is a null geodesic such that γ̇(τi) = E0(γ(τi)) we can parallel transport the pseudo-
orthonormal basis to get such a frame along γ. The space normal to γ̇ will be spanned by E0, E2 and E3. Just
as in the previous section we can introduce the quotient space G(γ(τ)) = N(γ(τ))/[γ̇(τ)] with corresponding
quotient bundle G(γ). If π : N(γ) → G(γ) denotes the projection then π|TpH : TpH → G(γ(τi)) where
p = γ(τi) is a vector space isomorphism. Therefore we can project the second fundamental form operators
to operators L̄Ei by

L̄Ei = π ◦ LEi ◦
[
π|TpH

]−1
. (2.117)

Let now Γ be a one-parameter family of the null geodesics de�ned by the null vector �eld E0 = n1 such that
Γ is a variation of γ. Let J be the variation vector �eld of this variation, then J is a Jacobi �eld.

Lemma 2.4.1. Let J be the variation vector �eld of the variation de�ned above. Then DτJ(τi) = −Lγ̇(τi)(J(τi))−
S(J(τi), γ̇(τi)) + λγ̇(τi) for a λ ∈ R.

Proof. Since g(T, T ) = 0 we have that

0 = W (g(T, T )) = 2g(DwT, T ) = 2g(S(W,T ), T ) + 2g(DτW,T ) = 2g(DτW,T ). (2.118)

Hence, g(DτJ(τi), γ̇(τi)) = 0 and this implies that DτJ(τi) ∈ N(γ). Extend v ∈ TpH to a vector �eld
V ∈ TH along the curve w 7→ Γ(w, τi). Then

g(Lγ̇(τi)(J(τi)), v) = g (∇JV |p, T (0, τi))

= ∂wg (V, T )− g(v,DwT |(0,τi))
= −g(v, S(J, γ̇))− g(v,DτJ(τi)). (2.119)

This holds for every v ∈ TpH so we must have that DτJ(τi)|TpH = −Lγ̇(τi)(J(τi))− S(J, γ̇) and that proves
the lemma.

This implies that the Jacobi class J̄ = π(J) satis�es the initial condition

Dτ J̄(τi) = −L̄γ̇(τi)(J̄(τi))− S̄γ(J(τi)) (2.120)

and this motivates the following de�nition.

De�nition 2.4.1. Let γ : [τi, τf ] → M be a null geodesic which is orthogonal to a spacelike two-surface P
and such that γ(τi) ∈ P . A point q = γ(τ2) is said to be conjugate to P if there exists a non-vanishing Jacobi
class J̄ ∈ Ω(γ) such that J̄ vanishes at q and

Dτ J̄(τi) = −L̄γ̇(τi)(J̄(τi))− S̄γ(J(τi)). (2.121)

Proposition 2.4.1. Let P be a spacelike two-surface and let γ : R → M be a null geodesic, such that
γ(0) ∈ P and γ is orthogonal to P . If θ1 = −tr(Lγ̇(0)) < 0 and Ric(γ̇, γ̇) − 1

4 tr(S2
γ) ≥ 0 for all τ ≥ 0, there

will be a point conjugate to P along γ between γ(0) and γ(− 2
θ1

).

Proof. This can be proven using similar reasoning as in Section 2.2 that leads to proposition 2.2.1.
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Chapter 3

Variations of the Arc Length

In this chapter we will prove more propositions needed for the singularity theorems in Chapter 5. In particular
we will examine the length of non-spacelike curves, Eq. (1.20), and prove propositions related to this length.
Furthermore we will see under which conditions we have a timelike curve between points or between a surface
and a point. The propositions in this section have been proven in [3] for the case of vanishing torsion. We
will extend them to totally anti-symmetric torsion. However, in the propositions and proofs we will often not
directly reduce to this kind of torsion such that in Section 5.2 we can easily discuss the case of torsion that
is not totally anti-symmetric.

In this chapter we consider curves γ that are piecewise smooth but may have a �nite number of singular
points; we only require that the two tangent vectors ∂−τ = limτ↑τ1 γ̇ and ∂+

τ = limτ↓τ1 γ̇ at a singular point τ1
satisfy g(∂−τ , ∂

+
τ ) = −1. From now on we also assume that whenever we have a convex normal neighborhood

U of a point p ∈ M , the map expp will be restricted to the neighborhood of the origin in TpM that is
di�eomorphic to U .

Lemma 3.0.1. Let U be a convex normal coordinate neighborhood of p ∈ M . Then the timelike geodesics
through p are orthogonal to the three-surfaces of constant σ(q) = g(exp−1

p q, exp−1
p q) when σ < 0.

Proof. Notice that a curve that is given by constant σ is given by λ(w) = expp(τ0X(w)), where X(w) is
a curve in TpM such that g(X(w), X(w)) = −1 and τ0 is a constant. So we have to show that timelike
geodesics through p are orthogonal to these curves, where these are de�ned. Geodesics through p are given
by γ(τ) = expp(τX(w0)) where X(w0) is timelike. In terms of the surface α(w, τ) = expp(τX(w)) we need
to prove that

g (∂w, ∂τ ) = 0. (3.1)

Now

∂τg (∂τ , ∂w) = g (Dτ∂τ , ∂w) + g (∂τ , Dτ∂w)

= g (∂τ , S (∂τ , ∂w)) + g

(
∂τ , Dw

∂

∂τ

)
=

1

2
∂wg (∂τ , ∂τ ) = 0. (3.2)

So g(∂τ , ∂w) does not depend on τ . At τ = 0, ∂w = 0 and that proves this lemma.

Since no arguments need to be used that include torsion, we will not give the proof of the following
proposition [3].

Proposition 3.0.1. Let U be a convex normal coordinate neighborhood of p ∈ M. The points that are
connected to p by timelike (non-spacelike) curves in U are those of the form expp(X), X ∈ TpM where
g(X,X) < 0 (≤ 0)

Corollary 3.0.1. Let U be a convex normal coordinate neighborhood of p ∈M. If q ∈ U can be reached from
p by a non-spacelike curve, but not by a timelike curve, then q lies on a null geodesic from p.
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CHAPTER 3 VARIATIONS OF THE ARC LENGTH

In analogy with Eq. (1.20) the length of a non-spacelike curve γ : [τi, τf ] → M such that γ(τi) = p,
γ(τf) = q between points can be de�ned as

L(γ, p, q) =

ˆ τf

τi

[−g(γ̇, γ̇)]
1/2

dτ, (3.3)

where the integral is taken over the di�erentiable sections of the curve. Again, since we do not have to
consider torsion, we will state the following proposition (proposition 4.5.3 from [3]) without proof:

Proposition 3.0.2. Let q, p ∈ U ⊂ M where U is a convex normal neighborhood. If q and p can be joined
by a non-spacelike curve in U , the longest such curve is the unique non-spacelike geodesic in U between q
and p. Furthermore, de�ning ρ(p, q) as the length of this curve if it exists and as zero otherwise, ρ(p, q) is a
continuous function on U × U .

So far we have only been looking at curves between points that lie in the same convex normal neighborhood.
We now also want to look at more general curves and see what conditions need to be satis�ed by a longest
curve. We will do this using proper variations of a curve between two points.

De�nition 3.0.1. Let γ : [τi, τf ]→M be a timelike curve such that γ(τi) = p, γ(τf) = q. A proper variation
of this curve is a smooth map Γ : (−ε, ε)× [τi, τf ]→M such that:

• Γ(0, τ) = γ(τ);

• there is a subdivision τi = τ1 < ... < τn = τf of [τi, τf ] such that Γ is smooth on (−ε, ε) × [τi, τi+1] for
all 1 ≤ i ≤ n− 1;

• Γ(w, τi) = p and Γ(w, τf) = q

• Γ(w0, τ) is a timelike curve for each w0 ∈ (−ε, ε).

As before, we de�ne W = ∂wΓ, T = ∂τΓ and V = W (0, τ) is the variation vector �eld of Γ.

Given a vector �eld V along γ such that V (τi) = V (τf) = 0, Γ(w, τ) = expγ(τ)(wV (τ)) for w ∈ (−ε, ε) for
some ε > 0 de�nes a proper variation of γ.

Lemma 3.0.2. Under a variation of a curve γ : [τi, τf ] → M between p, q ∈ M , the derivative of the length
of the curve is equal to:

∂L

∂w
|w=0 =

n−1∑
i=1

ˆ τi+1

τi

{
[−g(S(V, γ̇), γ̇) + g(V,Dτ γ̇)] f−1 − f−2 ∂f

∂τ
g(V, γ̇)

}
dτ

+

n−1∑
i=2

g
(
V,
[
f−1γ̇

]
i

)
, (3.4)

where f(τ) = [−g(γ̇(τ), γ̇(τ))]
1/2

and g
(
V,
[
f−1γ̇

]
i

)
is the discontinuity at τi.

Proof. De�ne

f(w, τ) = [−g(T (w, τ), T (w, τ))]
1/2

. (3.5)

We get:

∂L

∂w
=

n−1∑
i=1

∂

∂w

ˆ τi+1

τi

[−g(T, T )]
1/2

dτ

= −
n−1∑
i=1

ˆ τi+1

τi

g(DwT, T )f−1dτ

= −
n−1∑
i=1

ˆ τi+1

τi

[g(S(W,T ), T ) + g(DτW,T )] f−1dτ

= −
n−1∑
i=1

ˆ τi+1

τi

[
g(S(W,T ), T ) +

∂

∂τ
g(W,T )− g(W,DτT )

]
f−1dτ. (3.6)
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Evaluating at w = 0 we get:

∂L

∂w
|w=0 = −

n−1∑
i=1

ˆ τi+1

τi

[
g(S(V, γ̇), γ̇) +

∂

∂τ
g(V, γ̇)− g(V,Dτγ)

]
f−1dτ

=

n−1∑
i=1

ˆ τi+1

τi

{
[−g(S(V, γ̇), γ̇) + g(V,Dτ γ̇)] f−1 − f−2 ∂f

∂τ
g(V, γ̇)

}
dτ +

n−1∑
i=2

g
(
V,
[
f−1γ̇

]
i

)
.(3.7)

We can choose the parameter τ such that g(γ̇, γ̇) = −1 and Eq. (3.4) reduces to

∂L

∂w
|w=0 =

n−1∑
i=1

ˆ τi+1

τi

[−g(S(V, γ̇), γ̇) + g(V,Dτ γ̇)] dτ +

n−1∑
i=2

g (V, [γ̇]i) . (3.8)

When the torsion is totally anti-symmetric, we see from Eq. (3.8) that the �rst derivative vanishes for
an (unbroken) geodesic γ, for all other curves there exists a variation such that the derivative is larger than
zero. Hence, a longest curve necessarily needs to be a geodesic. We need to consider the second derivative
to be able to say more.

De�nition 3.0.2. We de�ne a two-parameter proper variation of γ by a map Γ : (−ε1, ε1) × (−ε2, ε2) ×
[τi, τf ]→M such that:

• Γ(0, 0, τ) = γ(τ);

• there is a subdivision τi = τ1 < ... < τn = τf of [τi, τf ] such that Γ is smooth on (−ε1, ε1)× (−ε2, ε2)×
[τi, τi+1] for all 1 ≤ i ≤ n− 1;

• Γ(w1, w2, τi) = p and Γ(w1, w2, τf) = q;

• Γ(w1, w2, τ) is a timelike curve for each w1 ∈ (−ε1, ε1), w2 ∈ (−ε2, ε2).

We de�ne W1 = ∂w1
Γ, W2 = ∂w2

Γ and T = ∂τΓ and let V1 = W1(0, 0, τ), V2 = W2(0, 0, τ) be the variation
vector �elds of Γ along γ.

Given two vector �elds V1, V2 along γ such that V1(τi) = V1(τf) = V2(τi) = V2(τf) = 0, Γ = expγ(τ)(w1V1(τ)+
w2V2(τ)) is a proper variation of γ such that the variation vectors �elds are V1 and V2.

Lemma 3.0.3. Under a two-parameter variation of the geodesic timelike curve γ : [τi, τf ] → M between
points p, q ∈M , the second derivative of the length is equal to

L(V1, V2) ≡ ∂2L

∂w1∂w2
|wi=0 =

n−1∑
i=1

ˆ τi+1

τi

{
g(V2, D

2
τ [V1 + g(V1, γ̇)γ̇]) + g(V2, R(V1, γ̇)γ̇ (3.9)

+DτS(V1, γ̇))

}
dτ +

n−1∑
i=2

g (V2, [Dτ (V1 + g(V1, γ̇)γ̇)]i) .
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Proof. Starting from Eq. (3.6) we �nd that

∂2L

∂w1∂w2
= −

n−1∑
i=1

∂

∂w1

ˆ τi+1

τi

[
g(S(W2, T ), T ) +

∂

∂τ
g(W2, T )− g(W2, DτT )

]
f−1dτ

=

n−1∑
i=1

ˆ τi+1

τi

{[
− ∂

∂w1
g(S(W2, T ), T )− ∂

∂τ
g(Dw1

W2, T )− ∂

∂τ
g(W2, Dw1

T ) + g(Dw1
W2, DτT )

+g(W2, Dw1DτT )

]
f−1 + f−2 ∂f

∂w1

[
g(S(W2, T ), T ) +

∂

∂τ
g(W2, T )− g(W2, DτT )

]}
dτ

=

n−1∑
i=1

ˆ τi+1

τi

{[
− ∂

∂w1
g(S(W2, T ), T ) + g(Dw1

W2, DτT ) + g(W2, Dw1
DτT )

]
f−1

− [g(Dw1
W2, T ) + g(W2, Dw1

T )] f−2 ∂f

∂τ
+ f−2 ∂f

∂w1
[g(S(W2, T ), T )− g(W2, DτT )]

−f−2 ∂2f

∂τ∂w1
g(W2, T ) + 2f−3 ∂f

∂τ

∂f

∂w1
g(W2, T )

}
dτ

+

n−2∑
i=2

{
g
(
Dw1

W2,
[
f−1T

]
i

)
+ g

(
W2,

[
f−1Dw1

T
]
i

)
− g

(
W2,

[
f−2 ∂f

∂w1
T

]
i

)}
(3.10)

In the end we will look at w1 = w2 = 0, so we already know that some terms will go to zero, using that γ is
a geodesic parametrized such that f = 1. Though it is mathematically not correct, we will obtain the same
result if we already remove these terms:

∂2L

∂w1∂w2
=

n−1∑
i=1

ˆ τi+1

τi

{
− ∂

∂w1
g(S(W2, T ), T ) + g(W2, Dw1DτT ) +

∂f

∂w1
g(S(W2, T ), T )

− ∂2f

∂w1∂τ
g(W2, T )

}
dτ +

n−1∑
i=2

{
g (W2, [Dw1

T ]i)− g
(
W2,

[
∂f

∂w1
T

]
i

)}
. (3.11)

Calculating the derivative of f with respect to w1, we �nd that:

∂

∂w1
f =

∂

∂w1

√
−g(T, T ) =

−1√
−g(T, T )

g(Dw1
T, T ) = −f−1 [g(S(W1, T ), T ) + g(DτW1, T )] . (3.12)

We also have that

g (W2, Dw1
DτT ) = g (W2, R(W1, T )T +DτDw1

T ) = g
(
W2, R(W1, T )T +DτS(W1, T ) +D2

τW1

)
. (3.13)

Using these results and using that the torsion is totally anti-symmetric, we �nd that

∂2L

∂w1∂w2
=

n−1∑
i=1

ˆ τi+1

τi

{
g
(
W2, R(W1, T )T +DτS(W1, T ) +D2

τW1

)
+ g(W2, T )

∂

∂τ
g(DτW1, T )

}
dτ

+

n−1∑
i=2

{g (W2, [DτW1]i) + g (W2, [g(DτW1, T )T ]i)}

=

n−1∑
i=1

ˆ τi+1

τi

{
g
(
W2, D

2
τ [W1 + g(W1, T )T ]

)
+ g (W2, R(W1, T )T +DτS(W1, T ))

}
dτ

+

n−1∑
i=2

g (W2, [DτW1 + g(W1, T )T ]i) . (3.14)
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Evaluating at w1 = w2 = 0 yields:

∂2L

∂w1∂w2
|wi=0 =

n−1∑
i=1

ˆ τi+1

τi

{
g
(
V2, D

2
τ [V1 + g(V1, γ̇)γ̇]

)
+ g (V2, R(V1, γ̇)γ̇ +DτS(V1, γ̇))

}
dτ

+

n−1∑
i=2

g (V2, [Dτ (V1 + g(V1, γ̇)γ̇)]i) . (3.15)

We see that this formula only depends on the components of the variation vector �elds perpendicular to
γ̇. So this means we only have to consider variations with perpendicular variation vectors. Notice also that
by construction we must have that L(V1, V2) = L(V2, V1) and that L is linear in both arguments.

Proposition 3.0.3. Let γ : [τi, τf ]→M be a timelike geodesic such that γ(τi) = p, γ(τf) = q. When there is
a conjugate point r = γ(τ1) (τi < τ1 < τf) to p along γ there is a timelike curve between p and q that has a
larger length than γ.

Proof. Let J be the Jacobi �eld that vanishes at p and r. Extend it to τ1 ≤ τ ≤ τf by putting it to 0. De�ne
the vector �eld K such that

g(K(τ1), DτJ(τ1)) = −1 (3.16)

and K is orthogonal to γ̇. Let

V = εK +
1

ε
J, (3.17)

where ε is a constant. Notice that V is orthogonal to γ̇. With Eq. (3.9) we �nd that

L(V, V ) = ε2L(K,K) + 2L(K,J) +
1

ε2
L(J, J). (3.18)

For the Jacobi �eld J we �nd that

L(J, J) =

ˆ τ1

0

{
g(J,D2

τJ +DτS(J, γ̇) +R(J, γ̇)γ̇)

}
dτ + g (J, [DτJ ])τ=τ1

(3.19)

= 0.

because of the Jacobi equation and J(τ1) = 0. In the same way we �nd that

L(K,J) =

ˆ τ1

0

{
g(K,D2

τJ +DτS(J, γ̇) +R(J, γ̇)γ̇)

}
dτ + g (K, [DτJ ])τ=τ1

= g (K(τ1),−DτJ(τ1)) = 1. (3.20)

Hence
L(V, V ) = ε2L(K,K) + 2, (3.21)

and by taking ε small enough, L(V, V ) will be positive, such that there exists a longer curve than γ between
p and q.

We would like to prove similar results for a curve γ between a spacelike three-surface H and a point
q ∈ M. For that we can use a one-parameter proper variation of γ that is de�ned as before, except that
instead of Γ(w0, τi) = p we require Γ(w0, τi) ∈ H. We can also use two-parameter proper variations of γ that
are de�ned as before, except that instead of Γ(w1, w2, τi) = p, we require Γ(w1, w2, τi) ∈ H.

Lemma 3.0.4. Under a one-parameter proper variation of a curve γ : [τi, τf ] → M between a spacelike
hypersurface H and a point q ∈M the derivative of the length is given by:

∂L

∂w
|w=0 =

n−1∑
i=1

ˆ τi+1

τi

{
[−g(S(V, γ̇), γ̇) + g(V,Dτ γ̇)] f−1 − f−2 ∂f

∂τ
g(V, γ̇)

}
dτ+g

(
V, f−1γ̇

)
|τ=τi+

n−1∑
i=2

g
(
V,
[
f−1γ̇

]
i

)
,

(3.22)

where f(τ) = [−g(γ̇(τ), γ̇(τ))]
1/2

.
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Proof. This goes in a similar way as in lemma 3.0.2.

Using a parametrization such that f = 1 and using that we consider totally anti-symmetric torsion, we
obtain:

∂L

∂w
|w=0 =

n−1∑
i=1

ˆ τi+1

τi

g(V,Dτ γ̇)dτ + g (V, γ̇) |τ=τi +

n−1∑
i=2

g (V, [γ̇]i) . (3.23)

From this expression we can also conclude that a longest curve should necessarily be an unbroken geodesic
curve orthogonal to H.

Lemma 3.0.5. Under a two-parameter proper variation of a geodesic γ : [τi, τf ] → M between a spacelike
hypersurface H and a point q ∈M , where γ and the other geodesics of the variation are orthogonal to H, the
second derivative of the length is given by:

∂2L

∂w1∂w2
|wi=0 =

n−1∑
i=1

ˆ τi+1

τi

{
g
[
V2, D

2
τ (V1 + g(V1, γ̇)γ̇)

]
+ g (V2, DτS(V1, γ̇) +R(V1, γ̇)γ̇)

}
dτ

+

n−1∑
i=2

g (V2, [Dτ (V1 + g(V1, γ̇)γ̇)]i) . (3.24)

Proof. Starting from the result of lemma 3.0.4 we see that with respect to the result of lemma 3.0.3 we get
the extra terms

g
(
Dw1W2, f

−1T
)
|τ=τi + g

(
W2, f

−1Dw1T
)
|τ=τi − g

(
W2, f

−2 ∂f

∂w1
T

)
|τ=τi =

g
(
Dw1

W2, f
−1T

)
|τ=τi + g

(
W2, f

−1Dw1
T
)
|τ=τi + f−3g (Dw1

T, T ) g (W2, T ) |τ=τi =

f−1Dw1g (W2, T ) |τ=τi + f−3g (Dw1T, T ) g (W2, T ) |τ=τi (3.25)

Now the variation is such that at τ = τi W2 lies in H, so g(W2, T ) = 0 and that implies that these terms are
zero. Hence:

∂2L

∂w1∂w2
|wi=0 =

n−1∑
i=1

ˆ τi+1

τi

{
g
[
V2, D

2
τ (V1 + g(V1, γ̇)γ̇)

]
+ g (V2, DτS(V1, γ̇) +R(V1, γ̇)γ̇)

}
dτ

+

n−1∑
i=2

g (V2, [Dτ (V1 + g(V1, γ̇)γ̇)]i) . (3.26)

Proposition 3.0.4. Let γ : [τi, τf ]→M be a timelike geodesic from a spacelike hypersurface H to a point q
(i.e. γ(τi) ∈ H, γ(τf) = q, γ̇(τi) orthogonal to H). When there is a conjugate point r = γ(τ1) (τi < τ1 < τf)
to H along γ, there is a timelike curve between H and q that has a larger length than γ.

Proof. This follows in the same way as in proposition 3.0.3, using Eq. (3.24).

We are now interested in what conditions need to be satis�ed in order to have a timelike curve between
points in spacetime. So suppose that p, q ∈M and that we have a non-spacelike curve γ : [τi, τf ]→M such
that γ(τi) = p and γ(τf) = q. We want to know when it is possible to �nd a one-parameter proper variation
Γ(w, τ) of γ such that g(T, T ) becomes negative everywhere, hence yields a timelike curve from p to q. With
a variation Γ we get that

∂wg(T, T ) = 2g(DwT, T )

= 2g(S(W,T ), T ) + 2g(DτW,T )

= 2g(S(W,T ), T ) + 2∂τg(W,T )− 2g(W,DτT ). (3.27)

Evaluating in w = 0 gives

∂wg(T, T )|w=0 = 2g(S(V, γ̇), γ̇) + 2∂τg(V, γ̇)− 2g(V,Dτ γ̇). (3.28)
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Proposition 3.0.5. Let p, q ∈ M and let γ : [τi, τf ] → M be a non-spacelike curve which is not a null
geodesic curve such that γ(τi) = p, γ(τf) = q, then p and q can also be joined by a timelike curve.

Proof. If γ is not a timelike curve, it must have some parts where it is a null curve. The set U ⊂ [τi, τf ] where
γ is null is a closed set, so without loss of generality we can assume γ to be a null curve. If γ is not a null
geodesic curve, it either has a singular point or there must be an open interval where Dτ γ̇ is non-zero and
not parallel to γ̇. Consider �rst the second case. We then have that

g(Dτ γ̇, γ̇) =
1

2
∂τ (g(γ̇, γ̇)) = 0. (3.29)

This implies that Dτ γ̇ is a spacelike vector �eld at points where it is non-zero and not parallel to γ̇. We can
also de�ne a vector �eld X ∈ T (γ) such that g(X, γ̇) < 0. De�ne now the following functions along γ:

h1(τ) = g(Dτ γ̇, Dτ γ̇); (3.30)

h2(τ) = −g(X, γ̇); (3.31)

h3(τ) = g(X,Dτ γ̇); (3.32)

h4(τ) = g(S(Dτ γ̇, γ̇), γ̇); (3.33)

h5(τ) = g(S(X, γ̇), γ̇); (3.34)

h6(τ) =

ˆ τ

τi

1

h2(τ ′)
(h5(τ ′)− h3(τ ′)) dτ ′. (3.35)

Let Γ be the variation of γ with variation vector

V = f1X + f2Dτ γ̇, (3.36)

where

f1(τ) =
1

h2(τ)
eh6(τ)

ˆ τ

τi

e−h6(τ ′) (1 + f2(τ ′)h4(τ ′)− f2(τ ′)h1(τ ′)) dτ ′ (3.37)

and f2 is an arbitrary function on [τi, τf ] with f2(τi) = f2(τf) = 0 and such that

f1(τf) =
1

h2(τf)
eh6(τf )

ˆ τf

τi

e−h6(τ ′) (1 + f2(τ ′)h4(τ ′)− f2(τ ′)h1(τ ′)) dτ ′ = 0. (3.38)

This only does not work when h4(τ) − h1(τ) = 0 for all τ ∈ [τi, τf ]. For a totally anti-symmetric torsion
h4(τ)− h1(τ) = −h1(τ) ≤ 0. Because of condition Eq. (3.38), f1(τi) = f1(τf) = 0. We now have that:

∂τg(V, γ̇) = ḟ1g(X, γ̇) + f1∂τg(X, γ̇) + ḟ2g(Dτ γ̇, γ̇) + f2∂τg(Dτ γ̇, γ̇)

= −ḟ1h2 − f1∂τh2

= −ḣ6f1h2 −
1

h2
eh6e−h6 (1 + f2h4 − f2h1)h2

= −ḣ6f1h2 − 1− f2h4 + f2h1

= h3f1 − h5f1 − 1− f2h4 + f2h1. (3.39)

So using Eq. (3.28) we get:

1

2
∂wg(T, T )|w=0 = g(S(V, γ̇), γ̇) + ∂τg(V, γ̇)− g(V,Dτ γ̇)

= f1h5 + f2h4 + ∂τg(V, γ̇)− f1h3 − f2h1

= −1, (3.40)

which is exactly what we wanted.
Suppose now that γ̇ is continuous on segments [τi, τi+1] where 1 ≤ i ≤ n − 1 and τ1 = τi, τn = τf . If a

segment [τi, τi+1] is not a null geodesic curve, it can be varied to give a timelike curve between the points
γ(τi) and γ(τi+1). So we only have left to show that if γ is a curve that is geodesic on segments [τi, τi+1],
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we can obtain a timelike curve between p and q. The parameter τ can be taken such that Dτ γ̇ = 0 on each
segment [τi, τi+1]. Since the discontinuity ∂+

τ − ∂−τ at singular points is a spacelike vector, one can �nd a
vector �eld X along [τi−1, τi+1] such that g(X, γ̇) < 0 on [τi−1, τi] and g(X, γ̇) > 0 on [τi, τi+1]. De�ne

h7,i(τ) =

ˆ τ

τi−1

1

h2(τ ′)
h5(τ ′)dτ ′ τi−1 ≤ τ ≤ τi+1 (3.41)

Let g− = g(X, ∂−τi) < 0 and g+ = g(X, ∂+
τi) > 0. Let then Γ denote the variation with variation vector

V = f1X where

f1 =

{
1
h2

(τi+1 − τi)(τ − τi−1)eh7,i(τ) τi−1 ≤ τ ≤ τi;
g+

g−
1
h2

(τi − τi−1)(τi+1 − τ)eh7,i(τ) τi ≤ τ ≤ τi+1,
(3.42)

such that V is continuous and smooth on the two segments. Using Eq. (3.28) we �nd for τ ∈ [τi−1, τi]

1

2
∂wg(T, T )|w=0 = f1h5 − (∂τf1)h2 − f1∂τh2

= f1h5 + h2
1

h2
f1∂τh2 −

1

h2
(τi+1 − τi)eh7,ih2 − f1h2∂τh7,i − f1∂τh2

= −(τi+1 − τi)eh7,i < 0. (3.43)

In the same way we �nd for τ ∈ [τi, τi+1] that

1

2
∂wg(T, T )|w=0 =

g+

g−
(τi+1 − τi)eh7,i < 0. (3.44)

We would now like to do the same for a null geodesic γ : [0, 1]→M , but this is a bit trickier. In case of
totally anti-symmetric torsion Eq. (3.28) reduces to

∂wg(T, T )|w=0 = 2∂τg(V, γ̇). (3.45)

Since for a proper variation we need to have V (0) = V (1) = 0, the variation vector should be orthogonal to
γ̇ to yield a timelike curve (if g(V, γ̇) becomes non-zero, the derivative will be positive somewhere on [0, 1]).
So we should consider the second derivative of g(T, T ) :

1

2
∂2
wg(T, T ) = ∂wg(S(W,T ), T ) + ∂w∂τg(W,T )− ∂wg(W,DτT ). (3.46)

Using that g(S(W,T ), T ) = 0 and evaluation in w = 0 yields, using Dτ γ̇ = 0:

1

2
∂2
wg(T, T )|w=0 = ∂τ [∂wg(W,T )]w=0 − g(V,D2

τV +DτS(V, γ̇) +R(V, γ̇)γ̇). (3.47)

We would now like to generalize proposition 4.5.12 from [3] to the case of non-vanishing (totally anti-
symmetric) torsion. We will basically give the proof from [22] with a small adaptation because of the
torsion.

Proposition 3.0.6. Let p, q ∈M and γ : [0, 1]→M be a null geodesic such that γ(0) = p, γ(1) = q. Suppose
there is a point γ(τ0) = r, 0 < τ0 < 1, conjugate to p along γ. Then there is a variation of γ which will give
a timelike curve from p to q.

Proof. We will suppose that r is the �rst conjugate point to p along γ. Notice that using proposition 3.0.5,
it is su�cient to �nd a variation that will give a timelike curve between p and γ(τ) for a τ0 < τ < 1. Since
r is a conjugate point to q along γ, there exists a non-trivial Jacobi class J̄ along γ such that J̄(0) = [γ̇(0)],
J̄(τ0) = [γ̇(τ0)]. We can write

J̄(t) = f(t)Ĵ(t), (3.48)
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where Ĵ is a smooth vector class along γ such that ḡ(Ĵ , Ĵ) = 1 and f : [0, 1]→ R is a smooth function. Since
r is the �rst conjugate point to p we have that f(0) = f(τ0) = 0 and we can assume that f(τ) > 0 for all 0 <

τ < τ0. J̄ is non-trivial and J̄(τ0) = [γ̇(τ0)], so Dτ J̄(τ0) 6= [γ̇(τ0)]. Using Dτ J̄(τ) = ḟ(τ)Ĵ(τ)+f(τ)Dτ Ĵ(τ) it
follows that ḟ(τ0) 6= 0, hence f(τ) < 0 for τ ∈ (τ0, τ1] where τ0 < τ1 < 1. De�ne now the continuous function

h(τ) = ḡ
(
D2
τ Ĵ +Dτ S̄γ(Ĵ) + R̄γ(Ĵ), Ĵ

)
. (3.49)

On [0, τ1] h has a minimum value h0 such that we have a constant a ∈ R, a > 0 and

a2 + h0 > 0. (3.50)

De�ne now the vector class
V̄ = [b(eaτ − 1) + f ] Ĵ ≡ r(τ)Ĵ , (3.51)

where

b = − f(τ1)

eaτ1 − 1
(3.52)

to make sure we have V̄ (0) = [γ̇(0)], V̄ (τ1) = [γ̇(τ1)]. J̄ is a Jacobi class, hence

0 = ḡ
(
D2
τ J̄ +Dτ S̄γ(J̄) + R̄γ(J̄), Ĵ

)
=

..

fḡ
(
Ĵ , Ĵ

)
+ 2ḟ ḡ

(
Dτ Ĵ , Ĵ

)
+ fḡ

(
D2
τ Ĵ , Ĵ

)
+ ḟ ḡ

(
S̄γ(Ĵ), Ĵ

)
+ fḡ

(
Dτ S̄γ(Ĵ), Ĵ

)
+ fḡ

(
R̄γ(Ĵ), Ĵ

)
=

..

f + 2ḟ ḡ
(
Dτ Ĵ , Ĵ

)
+ fh+ ḟ ḡ

(
S̄γ(Ĵ), Ĵ

)
=

..

f + 2ḟ ḡ
(
Dτ Ĵ , Ĵ

)
+ fh. (3.53)

We have that ḡ
(
Dτ Ĵ , Ĵ

)
= 1

2∂τ ḡ
(
Ĵ , Ĵ

)
= 0, hence

..

f = −fh. (3.54)

This gives

ḡ
(
V̄ , D2

τ V̄ + R̄γ(V̄ ) +Dτ S̄γ(V̄ )
)

= rḡ
(
Ĵ ,

..
rĴ + 2ṙDτ Ĵ + rD2

τ Ĵ + rR̄γ(Ĵ) + ṙS̄γ(Ĵ) + rDτ S̄γ(Ĵ)
)

= r
..
r + r2h

= r
[
ba2eaτ +

..

f + beaτh− bh+ fh
]

= r
[
beaτ

(
a2 + h

)
− bh

]
. (3.55)

Notice that b, a2 + h > 0, so beaτ
(
a2 + h

)
− bh > b

(
a2 + h

)
− bh = ba2 > 0. So expression (3.55) is larger

than zero precisely when r is. Since f(τ) > 0 for τ ∈ (0, τ0) we have that r(τ) > 0 for τ ∈ (0, τ2) and
r(τ2) = 0, where we can choose τ0 < τ2 ≤ τ1. Let now Ṽ ∈ T⊥(γ) such that π(Ṽ ) = V̄ . Since V̄ (0) = [γ̇(0)]
and V̄ (τ2) = [γ̇(τ2)] we must have that Ṽ (0) = µγ̇(0), Ṽ (τ2) = λγ̇(τ2) for µ, λ ∈ R. De�ne

V = Ṽ − µγ̇ +
µ− λ
τ2

τ γ̇, (3.56)

then V (0) = V (τ2) = 0 and π(V ) = V̄ , hence g
[
V,D2

τV +R(V, γ̇)γ̇ +DτS(V, γ̇)
]
> 0 for all 0 < τ < τ2.

Hence we have δ ∈ R such that

0 < δ < min

{
g
(
V,D2

τV +R(V, γ̇)γ̇ +DτS(V, γ̇)
)
| τ ∈

[
1

4
τ2,

3

4
τ2

]}
. (3.57)

De�ne the function

ρ(τ) =


−δτ 0 ≤ τ ≤ 1

4τ2,

δ(τ − 1
2τ2) 1

4τ2 ≤ τ ≤
3
4τ2,

δ(τ2 − τ) 3
4τ2 ≤ τ ≤ τ2.

(3.58)
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Using the pseudo-orthonormal frame E0, E1, E3, E4 that we saw before, we can now de�ne the proper
variation Γ : (−ε, ε)× [0, τ2]→M of γ|[0,τ2] by

W (0, τ) = V (τ)

DwW (0, τ) = [g(V,DτV )− ρ(τ)]E1. (3.59)

We then have that

∂τ [∂wg(W,T )]w=0 = ∂τ [g(DwW,T ) + g(W,DwT )]w=0

= ∂τ [g(DwW,T ) + g(W,DτW )]w=0

= ∂τ [g ([g(V,DτV )− ρ(τ)]E1, γ̇) + g(V,DτV )]

= ∂τ [−g(V,DτV ) + ρ(τ) + g(V,DτV )]

=


−δ 0 ≤ τ ≤ 1

4τ2,

δ 1
4τ2 ≤ τ ≤

3
4τ2,

−δ 3
4τ2 ≤ τ ≤ τ2.

(3.60)

With Eq. (3.47) we then �nd that ∂2
wg(T, T )|w=0 < 0 such that this variation gives a timelike curve between

p and γ(τ2).

Proposition 3.0.7. Let γ : [0, 1] → M be a null geodesic between a spacelike two-surface P and a point q
(i.e. γ(0) ∈ P and γ(1) = q), such that γ is orthogonal to P . If there is a point r = γ(τ1), 0 < τ1 < 1,
conjugate to P along γ, then there is a variation of γ that gives a timelike curve from P to q.

Proof. This follows in a similar way as in proposition 3.0.6.
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Chapter 4

Equations of Motion and Generalized

Identities

In Chapters 2 and 3 we have completely focused on the geometric side of Einstein-Cartan theory. However,
when treating the singularity theorems in Chapter 5 we need to translate geometric assumptions to the
matter content of the universe. In general relativity we have the Einstein equation to do this, so to do the
same in a theory with torsion, we need to derive the equations of motion of Einstein-Cartan theory. That
is why in this chapter we derive the equations of motion that follow from the Einstein-Hilbert action plus
a matter action. In Section 4.1 we do this in the metric formalism, where metric compatibility is assumed
and the metric and torsion are taken as dynamical variables. In Section 4.2 we derive the equations in the
metric-a�ne formalism, in which metric compatibility is not assumed and the metric and connection are
taken as dynamical variables. Notice that in the latter formalism, the connection has no a priori dependence
on the metric. After deriving the equations of motion in both formalisms we will show in Section 4.3 that
they are equivalent for the Lagrangian of the Standard model and that the matter in this model induces
totally anti-symmetric torsion. This equivalence was already known in the literature (e.g. [26, 27]), but what
is done in this chapter can be seen as a nice review. When that is done, a generalized Bianchi identity and
generalized conservation of energy-momentum is derived in Section 4.4.

Before doing all of this, we need to derive some geometric identities, in particular an application of Stokes
theorem. This will be done for a manifold with dimension n.

De�nition 4.0.1. The divergence of a vector �eld V ∈ T (M) is de�ned by

d(iV dVg) = (div(V ))dVg, (4.1)

where d is exterior di�erentiation, i is interior multiplication and dVg is in coordinates equal to

√
−gdnx. (4.2)

Lemma 4.0.1. In coordinates:

div(V ) = ∂µV
µ − 1

2
gρν∂µ(gρν)V µ. (4.3)
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Proof. The left-hand side of Eq. (4.1) is in coordinates equal to

d(iV dVg) = d

(√
−det g

n∑
µ=1

(−1)µ−1dxµ(V )dx1 ∧ ... ∧ dxµ−1 ∧ dxµ+1 ∧ ... ∧ dxn
)

= d

(√
−det g

n∑
µ=1

(−1)µ−1V µdx1 ∧ ... ∧ dxµ−1 ∧ dxµ+1 ∧ ... ∧ dxn
)

=

n∑
ν=1

n∑
µ=1

(−1)µ−1 ∂
√
−det gV µ

∂xν
dνx ∧ dx1 ∧ ... ∧ dxµ−1 ∧ dxµ+1 ∧ ... ∧ dxn

=

n∑
µ=1

∂
√
−det gV µ

∂xµ
dnx

=

n∑
µ=1

[
−1

2
√
− det g

∂µ (det g)V µ +
√
− det g∂µV

µ

]
dnx. (4.4)

The derivative of the determinant of the metric can be calculated by using the identity

det g = exp(trace(log(g))). (4.5)

We �nd

∂µ (det g) = det g∂µtrace(log(g))

= det gtrace(g−1∂µg)

= (det g) gρλ∂µgρλ. (4.6)

Hence:

d(iV dVg) =

n∑
µ=1

[
1

2

√
−det ggρν∂µ (gρν)V µ +

√
−det g∂µV

µ

]
dnx

=

n∑
µ=1

[
−1

2

√
− det ggρν∂µ (gρν)V µ +

√
−det g∂µV

µ

]
dnx, (4.7)

and this implies, using the de�nition of divergence 4.1, that in coordinates

div(V ) = ∂µV
µ − 1

2
gρν∂µ(gρν)V µ. (4.8)

Normal coordinates Normally normal coordinates are de�ned for a covariant derivative that is metric
compatible and has vanishing torsion, but we will consider the general case. In this general case, geodesics γ
are still de�ned by

∇γ̇ γ̇ = 0, (4.9)

such that we have an exponential map expp at a point p ∈M de�ned by

expp : TpM →M V 7→ γV (1), (4.10)

where γV is the geodesic such that γV (0) = p and γ̇V (0) = V . This map is a di�eomorphism when restricted to
a small enough neighborhood U of 0 ∈ TpM . Using that, we can de�ne normal coordinates in a neighborhood
of p by choosing an orthonormal basis of TpM and letting expp(V ) for V ∈ U having coordinates of V in this
orthonormal basis. This immediately implies that in these coordinates

gµν(p) = ηµν . (4.11)
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Furthermore, geodesics γV for V ∈ U (in normal coordinates) are given by

γV (τ) = (τV 1, ..., τV n) (4.12)

because γV (0) = p and γ̇V (0) = V and γV (τ) = expp(τV ), which has the coordinates given above. Using the
de�ning formula for a geodesic, we �nd that in normal coordinates at p

0 = ∂τV
ρ + γ̇µV Γρµν γ̇

ν
V = Γρ(µν)V

µV ν (4.13)

for all V ∈ U , which implies that
Γρ(µν)(p) = 0. (4.14)

Now we have enough tools to prove the following lemma.

Lemma 4.0.2. Let V be a vector�eld de�ned on a manifold (M ,g) with boundary ∂M such that V |∂M = 0.
Then ˆ

M

dnx
√
−detg∇µV µ =

ˆ
M

dnx
√
−detg

(
1

2
gρν∇µ(gρν) + Sµ

)
V µ, (4.15)

where Sµ = Sννµ.

Proof. Choosing normal coordinates based on p ∈M as our particular coordinate system gives Γρ(µν) = 0 at

p. Therefore, using Eq. (4.3), it follows that at p

∇µV µ = ∂µV
µ + Γµ[µν]V

ν

= div(V ) +
1

2
gρν∂µ(gρν)V µ +

1

2
SµV

µ

= div(V ) +
1

2
gρν∇µ(gρν)V µ − 1

2
gρνΓρ[µλ]g

λνV µ − 1

2
gρνΓν[µλ]g

ρλV µ +
1

2
SµV

µ

= div(V ) +
1

2
gρν∇µ(gρν)V µ − 1

2
SλµλV

µ +
1

2
SµV

µ

= div(V ) +
1

2
gρν∇µ(gρν)V µ + SµV

µ. (4.16)

It follows from Stokes theorem thatˆ
M

dnx
√
−detgdiv(V ) =

ˆ
M

div(V )dVg =

ˆ
M

d(iV dVg) =

ˆ
∂M

iV dVg = 0 (4.17)

because V = 0 on ∂M . Using Eq. (4.16) we �nd that

ˆ
M

dnx
√
−detg∇µV µ =

ˆ
M

dnx
√
−detg

(
div(V ) +

1

2
gρν∇µ(gρν)V µ + SµV

µ

)
=

ˆ
M

dnx
√
−detg

(
1

2
gρν∇µ(gρν) + Sµ

)
V µ. (4.18)

Corollary 4.0.1. In case of metric compatibility:

ˆ
M

dnx
√
−detg∇µV µ =

ˆ
M

dnx
√
−detgSµV

µ. (4.19)

4.1 Metric Formalism

We derive the equations of motion for an action

S =
1

16πGN
SH + Sm, (4.20)
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where SH is the Hilbert action, de�ned by

SH =

ˆ
d4x
√
−detgR, (4.21)

and Sm is the matter action. We will take the variation with respect to the metric gµν and the torsion Sρµν .
We �rst de�ne some tensors for the matter part of the action:

De�nition 4.1.1. The energy-momentum tensor of matter is given by

Tµν =
−2√
−det g

δSm

δgµν
, (4.22)

and the spin tensor of matter is given by

Π µν
ρ =

−4√
−detg

δSm

δSρµν
. (4.23)

Proposition 4.1.1. The variation of the action S (Eq. (4.20)) with respect to the metric gµν leads to the
following equation of motion (e.g. [6]):

G(µν) + Sρ
(
−S(µν)ρ + Sρgµν − S(µgν)ρ

)
−∇ρ

(
−S(µν)ρ + Sρgµν − S(µgν)ρ

)
= 8πGNTµν . (4.24)

Proof. Varying SH with respect to the metric gµν yields

δgSH =

ˆ
d4x

[
δg

(√
−detg

)
R+

√
−detgRµνδgg

µν +
√
−detggρλδgRρλ

]
. (4.25)

Using that

δg

(√
−detg

)
= −1

2

√
−detggµνδgg

µν (4.26)

(this follows in the same way as in Eq. (4.6)) reduces Eq. (4.25) to

δgSH =

ˆ
dnx

√
−detg

[(
Rµν −

1

2
gµνR

)
δgg

µν + gρλδgRρλ

]
. (4.27)

With Eq. (1.10) it follows that

δgRρλ = ∂αδgΓ
α
λρ +

(
δgΓ

β
λρ

)
Γααβ + Γβλρ

(
δgΓ

α
αβ

)
− ∂λδgΓααρ −

(
δgΓ

β
αρ

)
Γαλβ − Γβαρ

(
δgΓ

α
λβ

)
= ∇αδgΓαλρ + Γβαλ

(
δgΓ

α
βρ

)
−∇λδgΓααρ − Γβλα

(
δgΓ

α
βρ

)
= ∇αδgΓαλρ −∇λδgΓααρ + Sβαλ

(
δgΓ

α
βρ

)
. (4.28)

Then by metric compatibility and Corollary 4.0.1 (the variation is as always assumed to be 0 at the boundary):

ˆ
d4x
√
−detggρλδgRρλ =

ˆ
d4x
√
−detggρλ

[
∇αδgΓαλρ −∇λδgΓααρ + SβαλδgΓ

α
βρ

]
=

ˆ
d4x
√
−detg

[
∇α
(
gλρδgΓ

α
λρ − gραδgΓ

β
βρ

)
+ gλρSβαλδgΓ

α
βρ

]
=

ˆ
d4x
√
−detg

[
Sα

(
gλρδgΓ

α
λρ − gραδgΓ

β
βρ

)
− SβραδgΓαβρ

]
=

ˆ
d4x
√
−detg

(
−Sµνα + Sαg

µν − Sβδµαgνβ
)
δgΓ

α
µν

=

ˆ
d4x
√
−detgS̃µναδgΓ

α
µν . (4.29)

where we de�ned
S̃µνα ≡ −Sµνα + Sαg

µν − Sβδµαgνβ . (4.30)
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Notice that S̃µνα is anti-symmetric in the last two indices. We calculate δgΓ
α
µν using metric compatibility:

0 =
δ

∇ρ (gµν + δgµν), where
δ

∇ is the covariant derivative de�ned by the varied connection.

0 =
δ

∇ρ(gµν + δggµν)

= ∇ρ(gµν + δggµν)− δgΓλρµ(gλν + δggλν)− δgΓλρν(gµλ + δggµλ)

= ∇ρ(gµν + δggµν)− gλνδgΓλρµ − gµλδgΓλρν
= ∇ρδggµν − gλνδgΓλρµ − gµλδgΓλρν . (4.31)

Hence

∇µδggνρ +∇νδggµρ −∇ρδggµν = gλνδgΓ
λ
µρ + gλρδgΓ

λ
µν + gλµδgΓ

λ
νρ + gλρδgΓ

λ
νµ − gλνδgΓλρµ − gλµδgΓλρν

= gλνδgS
λ
µρ + gλρδgΓ

λ
µν + gλµδgS

λ
νρ + gλρδgΓ

λ
µν − gλρδgSλµν

= 2gλρδgΓ
λ
µν + gλνδgS

λ
µρ + gλµδgS

λ
νρ − gλρδgSλµν . (4.32)

This implies

δgΓ
α
µν = gαρgρλδgΓ

λ
µν =

1

2
gαρ

(
∇µδggνρ +∇νδggµρ −∇ρδggµν − gλνδgSλµρ − gλµδgSλνρ + gλρδgS

λ
µν

)
.

(4.33)
Since we consider the variation with respect to the metric:

δgΓ
α
µν =

1

2
gαβ (∇µδggνβ +∇νδggµβ −∇βδggµν) . (4.34)

Substitution in Eq. (4.29) and application of Corollary 4.0.1 yields:

ˆ
d4x
√
−detggρλδgRρλ =

1

2

ˆ
d4x
√
−detggαβS̃µνα (∇µδggνβ +∇νδggµβ −∇βδggµν)

=
1

2

ˆ
d4x
√
−detg

(
S̃µνβ∇µδggνβ − 2S̃µνβ∇βδggµν

)
= −

ˆ
d4x
√
−detg

(
SβS̃

µνβ +∇βS̃µνβ
)
δggµν

=

ˆ
d4x
√
−detg

(
SαS̃

ρλα +∇αS̃ρλα
)
gρµgλνδgg

µν . (4.35)

We have used that

δggρλ = −gρµgλνδggµν . (4.36)

Substitution in Eq. (4.27) yields

δgSH =

ˆ
d4x
√
−detg

(
Rµν −

1

2
gµνR+ SαS̃

α
µν −∇αS̃ α

µν

)
δgg

µν . (4.37)

Hence

1√
−detg

δSH

δgµν
= R(µν) −

1

2
gµνR+ SαS̃

α
(µν) −∇αS̃

α
(µν) (4.38)

= R(µν) −
1

2
gµνR+ Sρ

(
−S(µν)ρ + Sρgµν − S(µgν)ρ

)
−∇ρ

(
−S(µν)ρ + Sρgµν − S(µgν)ρ

)
.

So for the total action

S =
1

16πGN
SH + Sm, (4.39)
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we obtain

0 =
1√
−detg

δS

δgµν

=
1

16πGN

1√
−detg

δSH

δgµν
+

1√
−detg

δSm

δgµν

=
1

16πGN

1√
−detg

δSH

δgµν
− 1

2
Tµν . (4.40)

Thus the equation that follows from variation with respect to the metric is given by:

G(µν) + Sρ
(
−S(µν)ρ + Sρgµν − S(µgν)ρ

)
−∇ρ

(
−S(µν)ρ + Sρgµν − S(µgν)ρ

)
= 8πGNTµν . (4.41)

Proposition 4.1.2. The variation of the action S (Eq. (4.20)) with respect to the torsion Sρµν leads to the
Cartan equation (e.g. [6]):

Sνµρ − Sµνρ + S µν
ρ − 2Sνδµρ + 2Sµδνρ = 8πGNΠ µν

ρ . (4.42)

Proof. To obtain the Cartan equation, we vary with respect to Sρµν . In a similar way as in proposition 4.1.1,
using Eqs. (4.27), (4.29) and (4.33), we �nd

δSSH =

ˆ
d4x
√
−detggρλδSRρλ

=

ˆ
d4x
√
−detgS̃µναδSΓαµν

=
1

2

ˆ
d4x
√
−detgS̃µνρ

(
−gλνδSλµρ − gλµδSλνρ + gλρδS

λ
µν

)
=

1

2

ˆ
d4x
√
−detg

(
2S̃µνρ + S̃ νµ

ρ

)
δSρµν . (4.43)

Hence, with Eq. (4.30):

1√
−detg

δSH

δSρµν
=

1

2

(
Sνµρ − Sµνρ + S µν

ρ − 2Sνδµρ + 2Sµδνρ
)
. (4.44)

Again considering the total action

S =
1

16πGN
SH + Sm, (4.45)

we �nd

0 =
1√
−detg

δS

δSρµν

=
1

16πGN

1√
−detg

δSH

δSρµν
+

1√
−detg

δSm

δSρµν

=
1

16πGN

1√
−detg

δSH

δSρµν
− 1

4
Π µν
ρ . (4.46)

Thus the Cartan equation is given by

Sνµρ − Sµνρ + S µν
ρ − 2Sνδµρ + 2Sµδνρ = 8πGNΠ µν

ρ . (4.47)

Corollary 4.1.1. The Cartan equation can also be written as

Sνµρ = 8πGN

(
Π[ρµ]ν −

1

2
gν[ρΠ

λ
µ]λ

)
. (4.48)
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Proof. Eq. (4.42) can be written as:

− Sνρµ + Sµρν + Sρµν − 2Sνgµρ + 2Sµgνρ = 8πGNΠρµν . (4.49)

Contracting this equation with gνρ yields

Sµ = 2πGNΠν
µν . (4.50)

Substitution of this result in Eq. (4.49) gives:

− Sνρµ + 2S(µρ)ν = 8πGN

(
Πρµν +

1

2
gρµΠλ

νλ −
1

2
gρνΠλ

µλ

)
. (4.51)

Taking the anti-symmetric part in µ, ρ gives

− Sνρµ = −Sν[ρµ] = 8πGN

(
Π[ρµ]ν −

1

2
gν[ρΠ

λ
µ]λ

)
. (4.52)

Hence

Sνµρ = 8πGN

(
Π[ρµ]ν −

1

2
gν[ρΠ

λ
µ]λ

)
. (4.53)

4.2 Metric-A�ne Formalism

Within the metric-a�ne formalism we take the variation with respect to gµν and Γρµν , where the connection
is independent from the metric.

De�nition 4.2.1.

∆ µν
ρ =

−2√
−detg

δSm

δΓρµν

Proposition 4.2.1. Variation of the action (Eq. (4.20)) with respect to the metric gµν yields the equation

G(µν) = 8πGNTµν . (4.54)

Proof. Following the derivation in proposition 4.1.1, replacing every δg by δΓ, this can be seen from Eq.
(4.27).

Proposition 4.2.2. Variation of the action (Eq. (4.20)) with respect to the connection gives the equation

−∇ρ (gµν) +
1

2
gµνgαβ∇ρ(gαβ) + δµρ

[
∇α (gαν)− 1

2
gναgβλ∇α(gβλ)

]
(4.55)

+gµνSρ − δµρ gναSα − Sµνρ = 8πGN∆ µν
ρ .

Proof. When we vary the Hilbert action with respect to Γρµν we �nd using Eqs. (4.27) and (4.28):

δΓSH =

ˆ
d4x
√
−detggρλδΓRρλ

=

ˆ
d4x
√
−detggρλ

[
∇αδΓΓαλρ −∇λδΓΓααρ + Sβαλ

(
δΓΓαβρ

)]
(4.56)

=

ˆ
d4x
√
−detg

[
∇α
(
gρλδΓΓαλρ − gραδΓΓββρ

)
−∇α

(
gρλ
)
δΓΓαλρ +∇λ

(
gρλ
)
δΓΓααρ + gρλSβαλ

(
δΓΓαβρ

)]
.
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Using lemma 4.0.2, we �nd

δΓSH =

ˆ
d4x
√
−detg

[(
1

2
gµν∇α(gµν) + Sα

)(
gρλδΓΓαλρ − gραδΓΓββρ

)
−∇α

(
gρλ
)
δΓΓαλρ +∇λ

(
gρλ
)
δΓΓααρ + gρλSβαλ

(
δΓΓαβρ

)]

=

ˆ
d4x
√
−detg

[
1

2
gµν∇α(gµν)gρβ + gρβSα −

1

2
gµν∇λ(gµν)gρλδβα

−δβαgρλSλ −∇α
(
gρβ
)

+∇λ
(
gρλ
)
δβα − Sβρα

]
δΓΓαβρ. (4.57)

Thus when we vary the total action, Eq. (4.20), with respect to the connection Γρµν , we get the equation:

−∇ρ (gµν) +
1

2
gµνgαβ∇ρ(gαβ) + δµρ

[
∇α (gαν)− 1

2
gναgβλ∇α(gβλ)

]
+gµνSρ − δµρ gναSα − Sµνρ = 8πGN∆ µν

ρ . (4.58)

We would like now to derive an expression for the covariant derivative of the metric.

Proposition 4.2.3.

∇ρ (gµν) = −1

3
gµνSρ−

1

3
δµρS

ν−Sµνρ+
8

3
πGNδ

µ
ρ∆ λν

λ +4πGNg
µν∆ λ

ρλ −
4

3
πGNg

µν∆λ
λρ−8πGN∆ µν

ρ . (4.59)

Proof. Contracting Eq. (4.55) with gµν gives

1

2
gµν∇ρ (gµν) + gµρ∇α (gαµ) = −2Sρ + 8πGN∆ µ

ρµ . (4.60)

Contraction of Eq. (4.55) with δρµ gives

3∇µ (gµν)− 3

2
gρνgαβ∇ρ(gαβ) = 2Sν + 8πGN∆ µν

µ , (4.61)

and contracting Eq. (4.61) with gρν yields

3gρν∇µ (gµν)− 3

2
gαβ∇ρ(gαβ) = 2Sρ + 8πGN∆µ

µρ. (4.62)

Using Eqs. (4.60) and (4.62), we get

3

2
gαβ∇ρ(gαβ) = 3gρν∇µ (gµν)− 2Sρ − 8πGN∆µ

µρ

= 3

(
−2Sρ + 8πGN∆ µ

ρµ −
1

2
gαβ∇ρ

(
gαβ
))
− 2Sρ − 8πGN∆µ

µρ (4.63)

or

gαβ∇ρ(gαβ) = −8

3
Sρ + 8πGN∆ λ

ρλ −
8

3
πGN∆λ

λρ. (4.64)

In the same way we �nd from Eqs. (4.61) and (4.64) that

3∇µ (gµν) =
3

2
gρνgαβ∇ρ(gαβ) + 2Sν + 8πGN∆ µν

µ

=
3

2
gνρ

(
−8

3
Sρ + 8πGN∆ λ

ρλ −
8

3
πGN∆λ

λρ

)
+ 2Sν + 8πGN∆ λν

λ

= −2Sν + 12πGN∆νλ
λ + 4πGN∆ λν

λ . (4.65)
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Or

∇α (gαν) = −2

3
Sν + 4πGN∆νλ

λ +
4

3
πGN∆ λν

λ . (4.66)

Substitution of Eqs. (4.64) and (4.66) in Eq. (4.55) yields

∇ρ (gµν) =
1

2
gµνgαβ∇ρ(gαβ) + δµρ

[
∇α (gαν)− 1

2
gναgβλ∇α(gβλ)

]
+ gµνSρ − δµρ gναSα − Sµνρ − 8πGN∆ µν

ρ

=
1

2
gµν

(
−8

3
Sρ + 8πGN∆ λ

ρλ −
8

3
πGN∆λ

λρ

)
+ δµρ

[
−2

3
Sν + 4πGN∆νλ

λ +
4

3
πGN∆ λν

λ

−1

2
gνα

(
−8

3
Sα + 8πGN∆ λ

αλ −
8

3
πGN∆λ

λα

)]
+ gµνSρ − δµρ gναSα − Sµνρ − 8πGN∆ µν

ρ

= −1

3
gµνSρ −

1

3
δµρS

ν − Sµνρ +
8

3
πGNδ

µ
ρ∆ λν

λ + 4πGNg
µν∆ λ

ρλ −
4

3
πGNg

µν∆λ
λρ − 8πGN∆ µν

ρ .

(4.67)

4.3 Equivalence Metric and Metric-a�ne Formalism

In this section we will show that for the Standard model Lagrangian (not including any renormalization
terms), the metric-a�ne formalism yields the same equations of motion as the metric formalism does. In
particular, in the metric-a�ne formalism metric compatibility follows from the �eld equations instead of
assuming it as we did in the metric formalism. We will do this separately for matter actions independent of
the connection and the Dirac action before coming to the full Standard model.

The Hilbert action is invariant under the projective transformation (e.g. [28])

Γρµν → Γρµν + δρµξν . (4.68)

This is because the Ricci tensor transforms as

Rµν → Rµν − 2∂[µξν], (4.69)

which implies that
R→ R. (4.70)

If the matter action is also invariant under this transformation, it can be seen as a gauge transformation and
it can be used to �x 4 degrees of freedom of the connection. A very convenient gauge choice is

Sµ = 0. (4.71)

This will be enough to derive equivalence of the two formalisms for the matter in the Standard model. The
observation of this equivalence is not new, it has been partly done in e.g. [26] and [27].

A problem of Eq. (4.55) is that when contracted with δρν , it yields

0 = 8πGN∆ µλ
λ . (4.72)

This can be seen as an inconsistency of Eq. (4.55), because matter for which the right-hand side of Eq.
(4.72) does not vanish cannot be described using these equations (for the matter in the Standard model the
right-hand side already vanishes). The inconsistency can be resolved by adding a term

ˆ
d4x
√
−det gBµSµ, (4.73)

to the total action, Eq. (4.20). Here, Bµ is a Lagrange multiplier. This basically results in Sµ = 0 and
an extra term in Eq. (4.55). With this extra term the Hilbert action is not invariant under projective
transformations anymore. See e.g. [26] for a discussion of the resulting action.
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4.3.1 Matter Action Independent of Connection

In this subsection we will consider actions that are independent of the connection. Two very familiar examples
are the action of a scalar �eld

Sϕ =
1

2

ˆ
d4x
√
−det g (gµν∂µϕ∂νϕ− V (ϕ)) (4.74)

and the (kinetic part of the) action of the electromagnetic �eld

SA =
1

4

ˆ
d4x
√
−det gFµνFµν , (4.75)

where
F = dA (4.76)

for a vector �eld A, such that in coordinates

Fµν = ∂µAν − ∂νAµ. (4.77)

We start with the metric-a�ne formalism. For a matter action that does not depend on the connection

∆ µν
ρ = 0. (4.78)

Independence of the connection also implies that the total action, Eq. (4.20), is invariant under the projective
transformation (4.68). Therefore we can choose the gauge

Sµ = 0, (4.79)

such that Eq. (4.59) reduces to
∇ρ (gµν) = −Sµνρ. (4.80)

The right-hand side is symmetric under interchanging µ and ν and anti-symmetric under interchanging ν
and ρ and this implies that it vanishes because

Sµνρ = Sνµρ = −Sνρµ = −Sρνµ = Sρµν = Sµρν = −Sµνρ. (4.81)

Therefore we have metric compatibility and vanishing torsion.
Vanishing torsion is also what you �nd in the metric formalism from Eq. (4.48). Since the matter action

does not depend on the connection, the energy-momentum tensor in both formalisms is the same, which
implies that the equations of motion that follow from varying with respect to the metric (Eqs. (4.24) and
(4.54) are the same). Hence, for matter actions that do not depend on the connection, the two formalisms
are equivalent. This became clear after choosing a gauge.

4.3.2 Dirac Action

Before we can explain what the Dirac action looks like in curved spacetime, we need to introduce some more
geometric tools. Normally vectors are always expressed in a basis ∂µ that is de�ned by a choice of coordinates
xµ. Of course at every point p ∈M one can choose arbitrary frames of TpM to express vectors in. A property
of a vectorbundle is that locally one can choose an orthonormal frame ei = eµi ∂µ such that g(ei, ej) = ηij .
Such a frame does not have to be related to a choice of coordinates. In this new frame, the metric has
components ηij such that we can consider it as �at spacetime. To transfer back to the coordinate frame ∂µ
we need the inverse of the matrix de�ned by eµi . Let e

j
ν = ηjigµνe

µ
i , then e

j
νe
ν
i = ηjkgµνe

µ
ke
ν
i = ηjkηki = δji

and we have found the inverse matrix. The matrix de�ned by eµi is also called a vierbein or tetrad. Using the
vierbein every tensor can now be expressed in terms of its components in this orthonormal basis. We will use
Latin indices for the orthonormal basis and Greek indices for a basis induced by a coordinate system. The
vierbein enables us to switch back and forth between Latin and Greek indices. We can even consider mixed
tensors where some of the indices are Latin and some of them Greek.
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Notice that the vierbein can be chosen in many di�erent ways, let ti denote another orthonormal frame,
then eµi = Λµνt

ν
i for some matrix Λ and eiµ = Λ ν

µ tiν . This implies that the metric in the new coordinate
system has components

gab = Λ i
a Λ j

b ηij . (4.82)

Requiring that the new frame is also orthonormal implies that the transformations Λ we consider are local
Lorentz transformations.

There are now two choices: a choice of coordinate system and a choice of orthonormal frame. Since ∂µV
a

does not transform as vector under a transformation to another orthonormal frame, we need to de�ne

∇µV a = ∂µV
a + ωaµbV

b, (4.83)

where ωaµb is called the spin connection. We will now derive a relation between ωaµb and Γρµν .

Lemma 4.3.1.

ωaµb = eνb e
a
ρΓρµν − eνb∂µ (eaν) . (4.84)

Proof. Using V = V µ∂µ = V aea we �nd

∇V = ∇µ (V ρ∂ρ) dx
µ =

(
∂µV

ρ + ΓρµνV
ν
)
dxµ ⊗ ∂ρ (4.85)

and

∇V = ∇µ (V aea) dxµ

=
(
∂µV

a + ωaµbV
b
)
dxµ ⊗ ea

=
(
∂µ (eaνV

ν) + ωaµbe
b
νV

ν
)
dxµ ⊗ (eρa∂ρ)

= eρa
(
eaν∂µV

ν + ∂µ (eaν)V ν + ωaµbe
b
νV

ν
)
dxµ ⊗ ∂ρ

=
(
∂µV

ρ + eρa∂µ (eaν)V ν + ωaµbe
ρ
ae
b
νV

ν
)
dxµ ⊗ ∂ρ. (4.86)

Comparing Eqs. (4.85) and (4.86) yields:

Γρµν = eρa∂µ (eaν) + ωaµbe
ρ
ae
b
ν (4.87)

or
ωaµb = eνb e

a
ρΓρµν − eνb∂µ (eaν) . (4.88)

Lemma 4.3.1 implies

∇µeaν = ∂µe
a
ν − Γρµνe

a
ρ + ωaµbe

b
ν = ∂µe

a
ν − Γρµνe

a
ρ + ebν

(
eλb e

a
ρΓρµλ − e

λ
b ∂µ (eaλ)

)
= 0. (4.89)

This result is sometimes mentioned as the tetrad postulate, but it is always true.
In the same way as we have a covariant derivative for tensors, we also have a covariant derivative for a

spinor ψ:
∇µψ = ∂µψ + Γµψ. (4.90)

Notice that since ∇µψ has to transform as a spinor: under a local Lorentz transformation Λ(x)

ψ → S(x)ψ = exp(− i
4
ωab(x)σab)ψ, (4.91)

where σab = i
2 [γa, γb], ω

ab constants such that ωab = −ωba and the gamma matrices γa form a representation
of the Cli�ord algebra that is de�ned by

{γa, γb} = 2ηabI. (4.92)

When
Γµ → SΓµS

−1 − (∂µS)S−1 (4.93)
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then

∇µψ → (∂µS)ψ + S∂µψ +
[
SΓµS

−1 − (∂µS)S−1
]
Sψ = S∇µψ, (4.94)

exactly what we wanted. We also have that

ψ̄ → ψ̄S−1, (4.95)

where ψ̄ = ψ†γ0. It immediately follows that with

∇µψ̄ = ∂µψ̄ − ψ̄Γµ (4.96)

∇µψ̄ →
(
∂µψ̄

)
S−1 + ψ̄∂µS

−1 − ψ̄S−1
(
SΓµS

−1 − (∂µS)S−1
)

=
(
∂µψ̄

)
S−1 + ψ̄∂µS

−1 − ψ̄S−1
(
SΓµS

−1 + S∂µS
−1
)

=
(
∇µψ̄

)
S−1. (4.97)

To derive an expression for Γµ in terms of the a�ne connection, we will roughly follow [29].

Lemma 4.3.2.

Γµ =
1

8
ωaµb[γa, γ

b]−Aµ, (4.98)

where Aµ is a multiple of the unit matrix.

Proof. Notice that

∂µ
(
ψ̄γaψ

)
= ∇µ

(
ψ̄γaψ

)
− ωaµbψ̄γbψ = ∂µ

(
ψ̄γaψ

)
− ψ̄Γµγ

aψ + ψ̄ (∇µγa)ψ + ψ̄γaΓµψ − ωaµbψ̄γbψ, (4.99)

hence

∇µγa = ωaµbγ
b + Γµγ

a − γaΓµ = ωaµbγ
b + [Γµ, γ

a]. (4.100)

Now

∇µγa =
1

2

(
∇µηab

)
γb (4.101)

[30] such that

ωaµbγaγ
b + γaΓµγ

a − 4Γµ =
1

2
γa
(
∇µηab

)
γb. (4.102)

We solve Eq. (4.102) by a solution of the form

Γµ =
1

8
ωaµbγaγ

b − 1

8
ωaµbγ

bγa −Aµ, (4.103)

where Aµ has two spinor indices and one vector index. Substitution of Eq. (4.103) in Eq. (4.102) and

γaγ
bγcγa = 2δbaγ

cγa − γbγaγcγa = 2γcγb − 2γbγc + 4γbγc = 4ηbc (4.104)

yields

1

2
ωaµbγaγ

b+
1

2
ωaµbγ

bγa−γaAµγa+4Aµ =
1

2
γa
(
∇µηab

)
γb =

1

2
γa
(
ωaµcη

cb + ωbµcη
ac
)
γb =

1

2
ωaµcγaγ

c+
1

2
ωaµcγ

cγa

(4.105)
such that

− γaAµγa + 4Aµ = 0. (4.106)

This implies that Aµ should be a multiple of the unit matrix.

In the literature (e.g. [29]) this Aµ is usually set to zero by viewing it as an extra non-gravitational �eld.
This implies that we have

Γµ =
1

8
ωaµb[γa, γ

b]. (4.107)
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Now we have all the tools to derive what the Dirac action looks like in curved spacetime. The Dirac
action in �at spacetime is given by

SD =

ˆ
d4x

(
i

2
ψ̄γa∂aψ −

i

2
∂a
(
ψ̄
)
γaψ +mψ̄ψ

)
=

ˆ
d4x
√
−det g

(
i

2
ψ̄γa∇aψ −

i

2
∇a
(
ψ̄
)
γaψ +mψ̄ψ

)
, (4.108)

where gµν = ηµν and ∇a = ∂a. Take this as the form of the Dirac action when in curved spacetime we work
in �at coordinates. We can then transform to obtain the Dirac action in curved coordinates:

SD =

ˆ
d4x
√
−det g

(
i

2
ψ̄γµ∇µψ −

i

2
∇µ
(
ψ̄
)
γµψ +mψ̄ψ

)
, (4.109)

where
γµ = eµaγ

a (4.110)

and

∇µψ = ∂µψ + Γµψ = ∂µψ +
1

8
ωaµb[γa, γ

b]ψ = ∂µψ +
1

8

(
eνb e

a
ρΓρµν − eνb∂µ (eaν)

)
[γa, γ

b]ψ;

∇µψ̄ =
(
∂µψ̄ − ψ̄Γµ

)
= ∂µψ̄ −

1

8
ωaµbψ̄[γa, γ

b] = ∂µψ̄ −
1

8

(
eνb e

a
ρΓρµν − eνb∂µ (eaν)

)
ψ̄[γa, γ

b]. (4.111)

Lemma 4.3.3. For the Dirac action

∆ µν
ρ = − i

2
edρe

ν
b e
µ
c ηadψ̄γ

[cγaγb]ψ. (4.112)

Proof. From Eq. (4.109)

∆ µν
ρ = − 2√

−detg

δSD

δΓρµν

= −2

[
i

16
ψ̄ (γµ[γρ, γ

ν ] + [γρ, γ
ν ]γµ)ψ

]
= − i

8
ψ̄{γµ, [γρ, γν ]}ψ. (4.113)

Hence:

∆ µν
ρ = − i

8
edρe

ν
b e
µ
c ηadψ̄

{
γc, [γa, γb]

}
ψ. (4.114)

Consider the following equality:{
γa, [γb, γc]

}
=

1

3

(
γa[γb, γc] + γb[γc, γa] + γc[γa, γb]

)
+

1

3

(
[γb, γc]γa + [γc, γa]γb + [γa, γb]γc

)
. (4.115)

The right-hand side is clearly anti-symmetric under interchanging a and b. Now using

γ[aγbγc] =
1

6

(
γa[γb, γc] + γb[γc, γa] + γc[γa, γb]

)
=

1

6

(
[γb, γc]γa + [γc, γa]γb + [γa, γb]γc

)
(4.116)

we �nd that {
γa, [γb, γc]

}
= 2γ[aγbγc] + 2γ[aγbγc] = 4γ[aγbγc]. (4.117)

Substitution of this result in Eq. (4.114) yields

∆ µν
ρ = − i

2
edρe

ν
b e
µ
c ηadψ̄γ

[cγaγb]ψ. (4.118)
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This implies that ∆ρµν is totally anti-symmetric such that also the Dirac action is invariant under the
projective transformation (4.68). Hence, we can �x the gauge by setting Sµ to zero. From Eq. (4.59) we
then �nd:

∇ρ (gµν) = −Sµνρ − 8πGN∆ µν
ρ . (4.119)

Taking the (anti-)symmetric part in µ and ν, we obtain

∇ρ (gµν) = −S(µν)
ρ;

S[µν]
ρ = −8πGN∆ µν

ρ . (4.120)

But even more, Eq. (4.119) implies that

∇(ρgν)µ = 0, (4.121)

such that ∇ρgνµ is anti-symmetric in its �rst 2 indices and symmetric in its last 2 indices, which implies:

− S(µν)
ρ = ∇ρ (gµν) = 0. (4.122)

So we have metric compatibility, the torsion is totally anti-symmetric and:

Sµνρ = −8πGN∆ µν
ρ . (4.123)

In the metric formalism, the only part of the connection that couples is the torsion part (since the tensor
that is coupled to the connection is totally anti-symmetric), this implies that:

∆ µν
ρ = Π µν

ρ (4.124)

and from that and Eq. (4.48) it follows that the Cartan equations in both formalisms are the same. In
the same way it turns out that the Einstein equation in both formalisms gives the same. Hence, the two
formalisms are equivalent for fermions.

4.3.3 Standard Model

The analysis of the previous two sections shows that the metric and metric-a�ne formalism are equivalent for
the Standard model, because the Lagrangian of the Standard model is build from the three speci�c actions
we considered. All extra terms in this Lagrangian that cannot be rewritten as one of the three actions do not
contain covariant derivatives and it follows from Section 4.3.1 that the two formalisms are also equivalent
for these terms. When terms from renormalization are included, the projective symmetry is possibly broken
and the two formalisms are not equivalent anymore.

4.4 Generalized Identities

In this section we generalize the Bianchi identity ∇µGµν and conservation of the energy-momentum tensor
∇µTµν = 0 that we know from general relativity. To do this, we use di�eomorphism invariance, i.e. that

ˆ
φ∗ω =

ˆ
ω, (4.125)

where ω is a 4-form and φ is a di�eomorphism. A globally de�ned vector �eld V on M de�nes a �ow
φ(τ,m) : D →M where D ⊂ R×M such that (0,m) ∈ D for all m ∈M and V (m) = ∂τφ(τ,m)|τ=0. For a
�xed τ , all m ∈M such that (τ,m) ∈ D form a set M ′ and φτ : M ′ →M m 7→ φ(τ,m) is a di�eomorphism
to its image. The idea is now that if we take τ in�nitesimally small, we get a di�eomorphism φ : M → M
such that we can calculate the di�erence of the two integrals in Eq. (4.125) which should be equal to 0.
Taking an action we obtain

0 = δφS =

ˆ (
δS

δgµν
δφgµν +

δS

δΓρµν
δφΓρµν +

δS

δϕi
δφϕi

)
, (4.126)

58



CHAPTER 4 EQUATIONS OF MOTION AND GENERALIZED IDENTITIES

where ϕi are the matter �elds in the action. When the equations of motion are obeyed:

δS

δϕi
= 0. (4.127)

Since we consider τ in�nitesimally small, we must have that

δφg|p = lim
τ→0

φ∗τgφτ (p) − g|p
τ

≡ (LV g) |p, (4.128)

where L is the Lie derivative and p ∈M . In components this is equal to (e.g. [31]):

δφgµν = (LV g)µν

= V (gµν) + gλν∂µV
λ + gµλ∂νV

λ

= V λ∇λgµν + V λΓαλµgαν + V λΓαλνgµα + gλν∇µV λ − gλνΓλµαV
α + gµλ∇νV λ − gµλΓλναV

α

= V λ∇λgµν + V λSαλµgαν + V λSαλνgµα + gλν∇µV λ + gµλ∇νV λ

= V λ∇λgµν + V λSνλµ + V λSµλν + gλν∇µV λ + gµλ∇νV λ. (4.129)

We now derive what the Lie derivative of the connection looks like

Lemma 4.4.1.

δφΓρµν = (LV Γ)
ρ
µν = ∇µ∇νV ρ − Sρνλ∇µV

λ −∇µ (Sρνλ)V λ +RρνλµV
λ. (4.130)

Proof. In the same way as we had for the metric we have that:

δφΓ|p = lim
τ→0

φ∗τΓφτ (p) − Γ|p
τ

≡ (LV Γ) |p. (4.131)

The pullback of the covariant derivative is de�ned by

(φ∗∇)X Y = φ−1
∗ (∇φ∗Xφ∗Y ) (4.132)

for arbitrary vector �elds X, Y ∈ T (M) [23]. In components this is equal to

Xµ∂µY
ρ +Xµ (φ∗Γ)

ρ
µν Y

ν =
∂
(
φ−1

)ρ
∂x′λ

∂φβ

∂xµ
Xµ

[
∂′β

(
∂φλ

∂xν
(φ−1(x′))Y ν(φ−1(x′))

)
+ Γλβα

∂φα

∂xν
Y ν
]

=
∂
(
φ−1

)ρ
∂x′λ

∂φβ

∂xµ
Xµ

[
∂2φλ

∂xα∂xν
∂
(
φ−1

)α
∂x′β

Y ν +
∂φλ

∂xν
∂
(
φ−1

)α
∂x′β

∂αY
ν + Γλβα

∂φα

∂xν
Y ν

]

= δαµX
µ ∂
(
φ−1

)ρ
∂x′λ

∂2φλ

∂xα∂xν
Y ν + δρνδ

α
µX

µ∂αY
ν +

∂
(
φ−1

)ρ
∂x′λ

∂φβ

∂xµ
∂φα

∂xν
ΓλβαX

µY ν

=
∂
(
φ−1

)ρ
∂x′λ

∂2φλ

∂xµ∂xν
XµY ν +Xµ∂µY

ρ +
∂
(
φ−1

)ρ
∂x′λ

∂φβ

∂xµ
∂φα

∂xν
ΓλβαX

µY ν . (4.133)

This implies that

(φ∗Γ)
ρ
µν X

µY ν =
∂
(
φ−1

)ρ
∂x′λ

[
∂2φλ

∂xµ∂xν
+
∂φβ

∂xµ
∂φα

∂xν
Γλβα

]
XµY ν (4.134)

for arbitrary X, Y . Hence:

(φ∗Γ)
ρ
µν =

∂
(
φ−1

)ρ
∂x′λ

(
∂2φλ

∂xµ∂xν
+
∂φβ

∂xµ
∂φα

∂xν
Γλβα

)
. (4.135)

For the in�nitesimal di�eomorphism φ we can write

φ(x) =
(
x0 + τV 0(x), ..., x3 + τV 3(x)

)
(4.136)
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such that
φ−1(x′) =

(
x′0 − τV 0(x′), ..., x′3 − τV 3(x′)

)
. (4.137)

Therefore to �rst order

(φ∗Γ)
ρ
µν (x) =

(
δρλ − τ∂

′

λV
ρ
) [
τ∂µ∂νV

λ +
(
δβµ + τ∂µV

β
)

(δαν + τ∂νV
α)
(
Γλβα(x) + τV σ∂σΓλβα(x)

)]
= (δρλ − τ∂λV

ρ)
[
τ∂µ∂νV

λ + Γλµν(x) + τV σ∂σΓλµν(x) + τΓλβν(x)∂µV
β + τΓλµα(x)∂νV

α
]

= τ∂µ∂νV
ρ + Γρµν(x)− τΓλµν(x)∂λV

ρ + τV λ∂λΓρµν(x) + τΓρλν(x)∂µV
λ + τΓρµλ(x)∂νV

λ.

(4.138)

So

(LV Γ)
ρ
µν = ∂µ∂νV

ρ − Γλµν∂λV
ρ + V λ∂λΓρµν + Γρλν∂µV

λ + Γρµλ∂νV
λ

= ∂µ
(
∇νV ρ − ΓρνλV

λ
)
− Γλµν∂λV

ρ + V λ∂λΓρµν + Γρλν∂µV
λ + Γρµλ∂νV

λ

= ∇µ∇νV ρ + Γλµν∇λV ρ − Γρµλ∇νV
λ − ∂µ (Γρνλ)V λ − Γρνλ∂µV

λ − Γλµν∂λV
ρ

+V λ∂λΓρµν + Γρλν∂µV
λ + Γρµλ∂νV

λ

= ∇µ∇νV ρ + ΓλµνΓρλαV
α − ΓρµλΓλναV

α − ∂µ (Γρνλ)V λ − Sρνλ∂µV
λ + V λ∂λΓρµν

= ∇µ∇νV ρ − Sρνλ∂µV
λ +

(
∂λΓρµν − ∂µ (Sρνλ)− ∂µΓρλν + ΓαµνS

ρ
αλ

+ΓαµνΓρλα − S
α
νλΓρµα − ΓαλνΓρµα

)
V λ

= ∇µ∇νV ρ − Sρνλ∂µV
λ −∇µ (Sρνλ)V λ − ΓαµλS

ρ
ναV

λ +RρνλµV
λ

= ∇µ∇νV ρ − Sρνλ∇µV
λ −∇µ (Sρνλ)V λ +RρνλµV

λ. (4.139)

Since LV Γ is a tensor, this is its expression in coordinates.

Expression (4.130) agrees with the one in [32], but notice that they use slightly di�erent conventions.
With Eqs. (4.126), (4.127), (4.129) and (4.130), we obtain:

0 = δφS

=

ˆ
d4x
√
−det g

[
1√
−det g

δS

δgµν
δφgµν +

1√
−det g

δS

δΓρµν
δφΓρµν

]
=

ˆ
d4x
√
−det g

[
1√
−det g

δS

δgµν

(
V λ∇λgµν + gλν∇µV λ + gµλ∇νV λ + V λSνλµ + V λSµλν

)
+

1√
−det g

δS

δΓρµν

(
∇µ∇νV ρ + Sρλν∇µV

λ + V λ∇µSρλν +RρνλµV
λ
)]
. (4.140)

Using lemma 4.0.2 we �nd that

0 =

ˆ
d4x
√
−det g

[(
1√
−det g

δS

δgµν
∇λgµν −∇µ

(
gλν

1√
− det g

δS

δgµν

)
+

[
1

2
gαβ∇µ(gαβ) + Sµ

]
gλν

· 1√
− det g

δS

δgµν
−∇ν

(
1√
−det g

δS

δgµν
gµλ

)
+

[
1

2
gαβ∇ν(gαβ) + Sν

]
1√
−det g

δS

δgµν
gµλ

+
1√
−det g

δS

δgµν
Sνλµ +

1√
−det g

δS

δgµν
Sµλν

)
V λ +

(
−∇µ

(
1√
−det g

δS

δΓρµν

)
∇νV ρ

+

[
1

2
gαβ∇µ(gαβ) + Sµ

]
1√
−det g

δS

δΓρµν
∇νV ρ −∇µ

(
1√
− det g

δS

δΓρµν
Sρλν

)
V λ +

[
1

2
gαβ∇µ(gαβ) + Sµ

]
· 1√
− det g

δS

δΓρµν
SρλνV

λ +
1√
−det g

δS

δΓρµν
V λ∇µSρλν +

1√
−det g

δS

δΓρµν
RρνλµV

λ

)]
. (4.141)
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Again with lemma 4.0.2:

0 =

ˆ
d4x
√
−det g

[
1√
−det g

δS

δgµν
∇λgµν −∇µ

(
gλν

1√
−det g

δS

δgµν

)
+

[
1

2
gαβ∇µ(gαβ) + Sµ

]
·gλν

1√
−det g

δS

δgµν
−∇ν

(
1√
−det g

δS

δgµν
gµλ

)
+

[
1

2
gαβ∇ν(gαβ) + Sν

]
1√
−det g

δS

δgµν
gµλ

+
1√
−det g

δS

δgµν
Sνλµ +

1√
−det g

δS

δgµν
Sµλν +∇ν∇µ

(
1√
−det g

δS

δΓλµν

)
−
[

1

2
gαβ∇ν(gαβ) + Sν

]
∇µ
(

1√
−det g

δS

δΓλµν

)
−∇ν

[[
1

2
gαβ∇µ(gαβ) + Sν

]
1√
−det g

δS

δΓλµν

]
+

[
1

2
gσγ∇ν(gσγ) + Sν

] [
1

2
gαβ∇µ(gαβ) + Sµ

]
1√
−det g

δS

δΓλµν
−∇µ

(
1√
−det g

δS

δΓρµν
Sρλν

)
+

[
1

2
gαβ∇µ(gαβ) + Sµ

]
1√
−det g

δS

δΓρµν
Sρλν +

1√
−det g

δS

δΓρµν
∇µSρλν +

1√
−det g

δS

δΓρµν
Rρνλµ

]
V λ.

(4.142)

We then �nd that

0 =
1√
−det g

δS

δgµν
∇λgµν −∇µ

(
gλν

1√
−det g

δS

δgµν

)
+

[
1

2
gαβ∇µ(gαβ) + Sµ

]
gλν

1√
−det g

δS

δgµν

−∇ν
(

1√
−det g

δS

δgµν
gµλ

)
+

[
1

2
gαβ∇ν(gαβ) + Sν

]
1√
−det g

δS

δgµν
gµλ +

1√
− det g

δS

δgµν
Sνλµ

+
1√
−det g

δS

δgµν
Sµλν +∇ν∇µ

(
1√
−det g

δS

δΓλµν

)
−
[

1

2
gαβ∇ν(gαβ) + Sν

]
∇µ
(

1√
−det g

δS

δΓλµν

)
−∇ν

[[
1

2
gαβ∇µ(gαβ) + Sµ

]
1√
−det g

δS

δΓλµν

]
(4.143)

+

[
1

2
gσγ∇ν(gσγ) + Sν

] [
1

2
gαβ∇µ(gαβ) + Sµ

]
1√
−det g

δS

δΓλµν
−∇µ

(
1√
−det g

δS

δΓρµν
Sρλν

)
+

[
1

2
gαβ∇µ(gαβ) + Sµ

]
1√
−det g

δS

δΓρµν
Sρλν +

1√
−det g

δS

δΓρµν
∇µSρλν +

1√
−det g

δS

δΓρµν
Rρνλµ.

This can be rewritten as

0 =
1√
−det g

δS

δgµν
∇λgµν − 2∇µ

(
gλν

1√
−det g

δS

δgµν

)
+
[
gαβ∇µ(gαβ) + 2Sµ

]
gλν

1√
− det g

δS

δgµν

−2
1√
−det g

δS

δgµν
Sνµλ +∇ν∇µ

(
1√
− det g

δS

δΓλµν

)
−
[

1

2
gαβ∇ν(gαβ) + Sν

]
∇µ
(

1√
−det g

δS

δΓλµν

)
−∇ν

[[
1

2
gαβ∇µ(gαβ) + Sµ

]
1√
− det g

δS

δΓλµν

]
+

[
1

2
gσγ∇ν(gσγ) + Sν

] [
1

2
gαβ∇µ(gαβ) + Sµ

]
1√
− det g

δS

δΓλµν
−∇µ

(
1√
− det g

δS

δΓρµν

)
Sρλν

+

[
1

2
gαβ∇µ(gαβ) + Sµ

]
1√
−det g

δS

δΓρµν
Sρλν +

1√
− det g

δS

δΓρµν
Rρνλµ, (4.144)

where we used the symmetry of gµν . Using now that for the Standard model we can work in a gauge such
that Sµ = 0 and we have metric compatibility, Eq. (4.144) reduces to:

0 = −2∇µ
(
gλν

1√
− det g

δS

δgµν

)
− 2

1√
−det g

δS

δgµν
Sνµλ +∇ν∇µ

(
1√
−det g

δS

δΓλµν

)
−∇µ

(
1√
−det g

δS

δΓρµν

)
Sρλν +

1√
−det g

δS

δΓρµν
Rρνλµ. (4.145)
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We now apply this identity to di�erent actions.

Hilbert action Using
δgρλ = −gρµgλνδgµν (4.146)

we �nd

δS

δgµν
δgµν =

δS

δgρλ
δgρλ = − δS

δgρλ
gρµgλνδgµν . (4.147)

Hence
δS

δgµν
= − δS

δgρλ
gρµgλν . (4.148)

For the Hilbert action we �nd from Eqs. (4.27) and (4.57) that in the gauge Sµ = 0

1√
−det g

δS

δgρλ
= G(ρλ);

1√
−det g

δS

δΓρµν
= −Sµνρ. (4.149)

Substitution of these results in Eq. (4.145) yields the generalized Bianchi identity for the case Sµ = ∇ρgµν = 0
(so what we have when the matter Lagrangian is the one from the Standard model):

0 = 2gλν∇µG(µν) + 2G(µν)S(νµ)λ −∇ν∇µ (Sµνλ)

+∇µ
(
Sµνρ

)
Sρλν − S

µν
ρR

ρ
νλµ. (4.150)

The second term in the right-hand side of Eq. (4.150) is zero for totally anti-symmetric torsion.

Matter action independent of connection In this case we have seen that we obtain metric compatibility
and vanishing torsion. Also

1√
−det g

δSm

δgµν
=

1

2
Tµν ;

1√
−det g

δSm

δΓρµν
= 0. (4.151)

The identity we obtain is thus

0 = ∇µTµν . (4.152)

Dirac Action Working in the gauge Sµ = 0, we found metric compatibility. Also:

1√
−det g

δSm

δgµν
=

1

2
Tµν ;

1√
−det g

δSm

δΓρµν
= −1

2
∆ µν
ρ , (4.153)

which results in the following identity:

0 = −gλν∇µ (Tµν)− TµνS(νµ)λ −
1

2
∇ν∇µ (∆ µν

λ ) +
1

2
∇µ
(
∆ µν
ρ

)
Sρλν −

1

2
∆ µν
ρ Rρνλµ

= −gλν∇µ (Tµν)− 1

2
∇ν∇µ (∆ µν

λ ) + 4πGN∇µ (∆ρµν) ∆νλρ +
1

2
∆ρµνRρνµλ. (4.154)

This means that the energy-momentum tensor corresponding to the Dirac �eld is possibly not conserved,
which implies that energy and momentum is locally not conserved.
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Chapter 5

Singularity Theorems in Einstein-Cartan

Theory

In this chapter we will �nally generalize the singularity theorems of Hawking and Penrose [1, 2, 3] to spacetimes
with totally anti-symmetric torsion. In Chapter 2 and 3 we extended all the propositions that are needed that
involve torsion. The other propositions that are used in [3] only use arguments not dependent on torsion so
do not have to be generalized, they can be found in Chapter 6 of [3]. In Chapter 4 we derived the equations of
motion for the theory that can be used to translate geometric conditions to conditions on the matter content
of the universe.

This chapter is organized as follows. In Section 5.1 we state the singularity theorems that we obtain for
totally anti-symmetric torsion and discuss their assumptions. We will also compare with a di�erent method
to prove these theorems. In Section 5.2 we discuss whether the singularity theorems can also be generalized
directly to non totally anti-symmetric torsion. In particular we give a way to construct a null geodesically
incomplete spacetime with vectorial torsion.

5.1 Totally Anti-Symmetric Torsion

For the discussion of singularities it will be useful to have a certain arrow of time. In our daily life this
seems to be well-de�ned. This makes it reasonable to believe that there is a local arrow of time de�ned
continuously at every point in spacetime. In the language of manifolds this is called an orientation and we
require that it should be possible to de�ne continuously a division of non-spacelike vectors in two classes:
future- and past-oriented. We call such a spacetime time-orientable. There are spacetimes (M, g) that are
not time-orientable but they always have a double cover that has a time orientation. From now on we will
assume that the spacetime is time-orientable or that we are dealing with its time-oriented covering space. If
there is a singularity in the cover, there should be one in the space itself. Using the time-orientability we can
say that curves are future or past directed.

To formulate the generalized singularity theorems, we need a couple of de�nitions:

De�nition 5.1.1. The chronological future I+(P ) of a set P ⊂ M is the set of all points q ∈ M such that
there is a p ∈ P and a future-directed timelike curve γ : [τi, τf ]→M such that γ(τi) = p and γ(τf) = q.

De�nition 5.1.2. The causal future J+(P ) of a set P ⊂M is the set of all points q ∈M such that there is
a p ∈ P and a future-directed non-spacelike curve γ : [τi, τf ]→M such that γ(τi) = p and γ(τf) = q.

De�nition 5.1.3. A set P ⊂M is said to be achronal if I+(P ) ∩ P = ∅, so there exists no two points in P
with timelike separation.
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De�nition 5.1.4. The future (past) horismos of a set P ⊂ M is E+(P ) = J+(P ) − I+(P ) (E−(P ) =
J−(P )− I−(P )).

De�nition 5.1.5. The future (past) Cauchy development D+(P ) (D−(P )) of a set P ⊂M , is the set of all
points q ∈M such that every past (future)-inextendible non-spacelike curve through q intersects P .

De�nition 5.1.6. A Cauchy surface is a spacelike hypersurface P which every non-spacelike curve intersects
exactly once and such that

D(P ) ≡ D+(P ) ∪D−(P ) = M. (5.1)

De�nition 5.1.7. A closed trapped surface P is a C2 closed (i.e. compact without boundary) spacelike
two-surface such that the two families ni of null geodesics orthogonal to P are converging at P , i.e. −tr(Lni)
is negative at the surface.

De�nition 5.1.8. The strong causality condition holds at a point p ∈ M if for every neighborhood U of p
there exists a neighborhood V such that p ∈ V ⊂ U and such that no non-spacelike curve intersects V more
than once.

The singularity theorems in the case of totally anti-symmetric torsion can then be stated as follows (proofs
are the same as the proofs of theorem 1, 2, 3 and 4 in Chapter 8 in [3]):

Theorem 5.1.1. A spacetime (M, g) cannot be null geodesically complete if all of the following conditions
are met:

1. Ric(K,K)− 1
4 tr(S2

K) ≥ 0 for all null vectors K;

2. There is a non-compact Cauchy surface in M ;

3. There is a closed trapped surface in M .

Theorem 5.1.2. Spacetime (M, g) is not timelike and null geodesically complete if the following conditions
all hold:

1. Ric(K,K)− 1
4 tr(S2

K) ≥ 0 for all non-spacelike vectors K;

2. The generic condition is satis�ed, i.e. every timelike geodesic γ contains a point at which R̆γ 6= 0 and

every null geodesic γ contains a point at which ˘̄Rγ 6= 0;

3. The chronology condition holds on M (i.e. there are no closed timelike curves);

4. There exists at least one of the following:

(a) A compact achronal set without edge,

(b) A closed trapped surface,

(c) A point p such that on every past (or every future) null geodesic from p the expansion θ̄Ā of the
null geodesics from p becomes negative (i.e. the null geodesics from p are focused by the matter or
curvature and start to reconverge).
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Theorem 5.1.3. The following conditions cannot all hold:

1. Every inextendible non-spacelike geodesic contains a pair of conjugate points;

2. The chronology condition holds on M ;

3. There is an achronal set P such that E+(P ) or E−(P ) is compact.

Theorem 5.1.4. If all of the following holds:

1. Ric(K,K)− 1
4 tr(S2

K) ≥ 0 for all non-spacelike vectors K;

2. The strong causality condition holds on (M, g);

3. There is some past-directed unit timelike vector W at a point p and a positive constant b such that
if V is the unit tangent vector to the past-directed timelike geodesics through p, then on each such
geodesic the expansion θA of these geodesics becomes less than −3c/b within a distance b/c from p,
where c = −g(W,V ),

then there is a past incomplete non-spacelike geodesic through p.

Notice that one can indeed use the proof of theorem 3 in Chapter 8 of [3] since for totally anti-symmetric
torsion we �nd from Eq. (2.22) that for a timelike geodesic

θA = tr (−Sγ +∇µT ρ|w=0) = tr (∇µT ρ|w=0) , (5.2)

and similarly for a null geodesic, which is what is used in the proof (notice that this is mathematically not
well-de�ned and ideally we would like a proof that uses the tensor A).

Theorem 5.1.5. Spacetime is not timelike geodesically complete if the following two conditions hold:

1. Ric(K,K)− 1
4 tr(S2

K) ≥ 0 for all non-spacelike vectors K;

2. There exists a compact spacelike three-surface P (without edge) such that the unit normals to P are
everywhere converging, i.e. −tr(Ln) < 0 (or everywhere diverging, i.e. −tr(Ln) > 0) on P .

Theorems 5.1.2 and 5.1.3 are equivalent [3]. We will now discuss some of the assumptions of the theorems.
The geometric condition

Ric(K,K)− 1

4
tr(S2

K) ≥ 0 (5.3)

that appears as assumption in every theorem has to hold for all null and/or timelike geodesics because every
non-spacelike vector corresponds to such a geodesic. Via the equations of motion the Ricci and torsion
tensors can be coupled to the matter in the universe. For the matter in the Standard model the equations
derived from the metric formalism and metric-a�ne formalism are equivalent (classically). Using that torsion
is totally anti-symmetric, Eqs. (4.24) and (4.48) can be rewritten as

R(µν) = 8πGN

(
Tµν −

1

2
gµνT

)
(5.4)

Sµνρ = −8πGNΠµνρ,

where T = gµνTµν . Using the Einstein and Cartan equations, condition (5.3) becomes(
Tµν −

1

2
gµνT − 2πGNΠα

βµΠβ
αν

)
KµKν ≥ 0. (5.5)

Since the term −2πGNΠα
βµΠβ

ανK
µKν is positive it seems that this condition is easier satis�ed than the

one for vanishing torsion
(
Tµν − 1

2gµνT
)
KµKν ≥ 0, the strong energy condition. This seems to imply that
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singularities should form 'easier' in spacetimes with totally anti-symmetric torsion. Quantum corrections can
of course cause violation of condition (5.5).

The condition
R̆γ 6= 0 (5.6)

for timelike geodesics γ can be understood for vanishing torsion using Eq. (2.1), the Jacobi equation

D2
τJ = −DτSγ(J)−Rγ(J) = −R̆γ(J). (5.7)

In Newtonian theory, the acceleration of each particle is given by the gradient of the potential Φ and the
relative acceleration of two particles with separation Jµ is given by Jµ∂µ (∇Φ). For vanishing torsion R̆γ is
analogous to ∂µ (∇Φ) . The e�ect of this term can be seen as follows. If one considers a sphere of particles
falling towards the earth, this sphere will deform because particles closer to the earth fall faster than particles
further away from the earth. Hence, we can say that R̆γ 6= 0 if the test particle moving on γ will encounter
some matter or radiation on its way. In a physical universe one can expect this to be the case. If torsion is
not vanishing, it seems to be less clear if condition (5.6) is satis�ed in a physical universe. If we want to do
a similar analysis as for the vanishing torsion case, we have that

DτSγ +Rγ 6= 0 (5.8)

at some point on γ if the test particle moving on γ will encounter some matter or radiation on its way.
However from Eq. (2.57) it follows that this is not equivalent to condition (5.6). Of course, when the test
particle encounters matter or radiation that does not induce torsion (i.e. when it encounters bosons), it is

equivalent to condition (5.6). For the condition ˘̄Rγ 6= 0 for null geodesics γ we can have a similar discussion.
So far we have treated torsion on the same footing as the metric. One can actually also use Eq. (2.54)

to expand Eq. (4.24) in terms corresponding to the Levi-Civita connection and torsion terms (e.g. [6, 13]).
Then one can use Eq. (4.48) to substitute for torsion. This way one �nds the Einstein equation of general
relativity with an adapted energy-momentum tensor (this is called 'integration out torsion'). Hence, we have
general relativity with a changed Einstein equation. If one does that, the assumption R̆γ 6= 0 is expected to
be satis�ed in a physical universe, while in our approach this is not immediately clear. So to improve upon
what we have done, one can prove propositions 2.1.3 and 2.3.3 under conditions for which it is more clear
that they are satis�ed in a physical universe. Below, we will come back to integrating out torsion since it
gives an easy and elegant way of extending the singularity theorems.

That there must be a closed trapped surface somewhere in a physical spacetime is proved in Chapter 9
of [3]. It seems that some and probably most stars with masses M > 1.5MSun will collapse when they are
gone through their stages of fusion. For spherical symmetric collapse the solution outside of the star will
be described by the Schwarzschild solution (when other matter is su�ciently far away), so when the star is
collapsed to within its event horizon we automatically have a closed trapped surface. If the collapse is not
spherically symmetric (this will happen when the star is rotating or has a non-vanishing magnetic �eld) it
can be shown [3] that if the deviations from spherical symmetry are small, one still obtains a closed trapped
surface. There are at least 109 stars in our galaxy that have masses larger than 1.5MSun and the number
of black holes in our galaxy formed by the collapse of a star is estimated to be between 107 and 109. That
means that there are a large number of trapped surfaces.

As discussed in [3], the existence of a Cauchy surface is a weakness of theorem 5.1.1. An example by
Bardeen shows that it is a necessary condition. In that example one takes the same global structure as the
Reissner-Nordström solution except that the singularity is smoothed out such that they are just the origin
of polar coordinates. The spacetime obeys all conditions of theorem 5.1.1 except for the Cauchy surface.
The existence of a Cauchy surface is a weakness of theorem 5.1.1 and that is why theorem 5.1.2 is more
convenient. In that respect is also theorem 5.1.4 very useful, since also the assumptions of that theorem are
satis�ed in a number of physical situations. However it is possible that violation of causality (e.g. in theorem
5.1.2 one can have a closed timelike curve) prevents the occurrence of a singularity. Theorem 5.1.5 shows
that not in all cases singularities can be prevented by violation of causality.

In this thesis we gave very direct generalizations of the proofs given in [3] for totally anti-symmetric
torsion, but as for instance observed in [6, 13] one can also generalize the proofs by integrating out torsion.
Using Eq. (2.54) one can write

Ric(K,K) = R̆ic(K,K) +
(
∇µSΓµνλ −∇νSΓµµλ + SΓβνλSΓµµβ − SΓβµλSΓµνβ

)
KλKν . (5.9)
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For totally anti-symmetric torsion we have

SΓρµν =
1

2
Sρµν (5.10)

and we �nd that

Ric(K,K) = R̆ic(K,K) +
1

2

(
∇µSµνλ −

1

2
SβµλS

µ
νβ

)
KλKν

= R̆ic(K,K) +
1

4
tr(S2

K). (5.11)

Realizing now that the geodesics for the Levi-Civita connection are the same as for totally anti-symmetric
torsion, we can also use the theorems from Hawking and Penrose to say something about their completeness.
In their theorems one has the assumption

R̆ic(K,K) ≥ 0 (5.12)

which is equivalent (at the geometric side) to the one we found, (5.3), which can be seen using Eq. (5.11).
Notice that tr(S2

K) ≤ 0. When using the Einstein equation to translate the left-hand side of Eq. (5.11) to
the matter content of the universe, one �nds that after integrating out torsion one has general relativity with
an adapted energy-momentum tensor (substitute Eq. (4.48) for the torsion).

[6, 13] used their method of integrating out torsion because they claim that test particles move on curves
with maximal length, hence the curves that are geodesics with respect to the Levi-Civita connection. Using
expansion (5.9) with

SΓρµν = −S ρ
(µν) +

1

2
Sρµν (5.13)

one can express the Einstein equation in terms of the metric, torsion and the energy-momentum tensor. Then
one can substitute Eq. (4.48) and one has the Einstein equation of general relativity with an adapted energy-
momentum tensor. Since the curves considered are geodesics with respect to the Levi-Civita connection, one
can apply the singularity theorems of Hawking and Penrose with an adapted energy-momentum tensor.

When one assumes that test particles also for general torsion have geodesics as their trajectories, it
becomes more complicated. That is why we generalized the proofs in the way we did it. This way it is easier
to see where things go wrong when one considers general torsion. This is what we will do in the next section.

5.2 General Torsion

For general torsion it seems hard to give a direct generalization of the proofs of the theorems in [3]. Since
for general torsion in general a geodesic between two points is not the curve between those points that has
maximal length, the proofs of theorems 5.1.2, 5.1.3, 5.1.4 and 5.1.5 directly fail because they use that fact.
For the proof of theorem 5.1.1 one needs the proof of proposition 3.0.6 (also needed in the proofs of theorems
5.1.2 and 5.1.3). This proof becomes very hard to generalize since one cannot use that g(S(W,T ), T ) = 0
which alters expression (3.47). The proof of proposition 3.0.5 that is needed in the proof of theorem 5.1.5
only does not hold when g(S(Dτ γ̇, γ̇), γ̇) = g(Dτ γ̇, Dτ γ̇) for all points on γ between the points p and q.

All the theorems also need the propositions about the existence of conjugate points. They correspond to
conditions (5.3) and (5.6). From the proof of proposition 2.1.2 and Eq. (2.32) it is clear that condition (5.3)
needs to be replaced by

Ric(γ̇(τ), γ̇(τ)) + tr(Dτ (PSγ)) + tr(PSγωA) + tr(PSγσA) +
θA
3

tr(PSγ) + tr(ω2
A) ≥ 0 (5.14)

for all timelike geodesics γ and all starting points γ(τ) (the matrix A is related to this starting point). For
totally anti-symmetric torsion we could calculate the vorticity tensor ωA, but for general torsion this seems
to be quite impossible which is why condition (5.14) is more complicated. We would also need a condition
for null geodesics, but we did not derive a Raychaudhuri equation for general torsion in that case since it
was not clear to us how to do that. Condition (5.14) seems like a rather hard condition to check for an
arbitrary spacetime and even harder to motivate from a physics point of view. There has been some work on
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singularity theorems in spacetimes with non totally anti-symmetric torsion [11], [33] and they indeed assumed
something similar to condition (5.14). They also had to assume that the length of the geodesics is maximal.
Both assumptions seem to be way too restrictive and one can doubt about how much sense it makes to do
that.

Vectorial Torsion

Despite the increasing di�culty for general torsion, we succeeded in giving a construction of a null geodesically
incomplete spacetime with a speci�c kind of torsion, namely vectorial torsion (see the decomposition (1.7)):

Sρµν = gρµAν − gρνAµ, (5.15)

where Aµ is a vector�eld. This is possible because under su�cient assumptions on Aµ, an incomplete null
geodesic with respect to ∇̆ (the connection with respect to the Levi-Civita connection) can be mapped to an
incomplete null geodesic with respect to ∇ (the connection with torsion). First of all it is interesting to see
from what sort of matter action we obtain vectorial torsion. According to the equation of motion for torsion,
Eq. (4.42) in the metric formalism, we need a matter action such that

Π µν
ρ = − 4√

−det g

δSm

δSρµν
(5.16)

satis�es

8πGNΠ µν
ρ = Sνµρ − Sµνρ + S µν

ρ − 2Sνδµρ + 2Sµδνρ

= 8g[ν
ρ A

µ]. (5.17)

One way to obtain this torsion is by a matter action that is non-minimally coupled to gravity:

Sm =

ˆ
d4x
√
−det g

(
FµνF

µν +
1

4πGN
SµA

µ

)
(5.18)

where Fµν = ∂µAv − ∂νAµ. When one integrates out torsion, using Sµ = 3Aµ, one �nds the Proca action (in
curved spacetime) that describes a massive vector �eld.

Lemma 5.2.1. Let γ1 be a null geodesic with respect to ∇̆, then we can reparametrize γ1 such that locally it
is a null geodesic with respect to ∇. Let γ1 be a null geodesic with respect to ∇, then we can reparametrize
γ1 such that it locally is a geodesic with respect to ∇̆.

Proof. For a null curve γ, we have that

(∇γ̇ γ̇)
ρ

= γ̇µ∂µγ̇
ρ + Γρµν γ̇

µγ̇ν

=
(
∇̆γ̇ γ̇

)ρ
− S ρ

(µν) γ̇
µγ̇ν

=
(
∇̆γ̇ γ̇

)ρ
+
(
gρµAν − gµνAρ

)
γ̇µγ̇ν

=
(
∇̆γ̇ γ̇

)ρ
+ g(A, γ̇)γ̇ρ. (5.19)

Therefore, when γ1 is a null geodesic with respect to ∇̆ we have that

(∇γ̇1 γ̇1)
ρ

= g(A, γ̇1)γ̇ρ1 . (5.20)

Let p = γ1(τ0) be a point on γ1 and de�ne

f(τ) = τ0 +

ˆ τ

τ0

1

Cγ1 +
´ τ ′
τ0
g(A, γ̇1)dτ ′′

dτ ′, (5.21)
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where the constant Cγ1 6= 0. This function will be well-de�ned and monotonously increasing or decreasing
for τ ∈ I1 = [τ0 − ε, τ0 + ε] for ε small enough. Let τ ∈ I2 = (τ0 − δ, τ0 + δ) where δ is chosen such that f(I2)
is a subset of the domain of de�nition of γ1 and I2 ⊂ I1. De�ning

γ(τ) = γ1(f(τ)), (5.22)

we �nd that

(∇γ̇ γ̇)
ρ

=
∂2γρ

∂τ2
+ γ̇µΓρµν γ̇

ν

=
∂

∂τ

(
ḟ γ̇ρ1

)
+ ḟ2Γρµν γ̇

ν
1 γ̇

µ
1

=
[..
f + ḟ2g(A, γ̇1)

]
γ̇ρ1

=

− g(A, γ̇1)(
Cγ1 +

´ τ ′
τ0
g(A, γ̇1)dτ ′′

)2 +

(
1

Cγ1 +
´ τ ′
τ0
g(A, γ̇1)dτ ′′

)2

g(A, γ̇1)

 γ̇ρ1
= 0. (5.23)

Hence around γ1(τ0) is γ1 a null geodesic with respect to ∇.
When γ1 is a null geodesic curve with respect to ∇ we �nd that(

∇̆γ̇1
γ̇1

)ρ
= −g(A, γ̇1)γ̇ρ1 . (5.24)

With a similar argument as before we �nd that locally γ1 is a geodesic with respect to ∇̆.

Notice that using this lemma one can construct spacetimes with vectorial torsion that are null geodesically
incomplete. To do this one starts with a spacetime that is null geodesically incomplete if we consider null
geodesics with respect to ∇̆ (e.g. choose a spacetime that satis�es the conditions of theorem 5.1.1). Therefore,
there is a maximal null geodesic γ : I → M such that I 6= R. We can assume I to be bounded from above
because if it is not, we can do an a�ne transformation τ ′ = −τ + α, where α is a constant. Choose a vector
�eld A, such that there are a τ0 ∈ I and constant Cγ such that the function

f(τ) = τ0 +

ˆ τ

τ0

1

Cγ +
´ τ ′
τ0
g(A, γ̇)dτ ′′

dτ ′ τ ∈ [τ0,∞) ∩ I (5.25)

is well-de�ned, strictly increasing and f(τ) ≥ τ. It follows from the proof of lemma 5.2.1 that γ1 : [τ0, τ1)→
M, γ1(τ) = γ(f(τ)) (where τ1 is such that f ([τ0, τ1)) = [τ0,∞) ∩ I) is a null geodesic with respect to ∇ for
τ ≥ τ0. The geodesic γ1 cannot be expanded to τ ≥ τ1 because with lemma 5.2.1 one can expand γ outside
I, which is impossible. Hence, we have an incomplete null geodesic with respect to ∇.

The function (5.25) is strictly increasing when

1

Cγ +
´ τ ′
τ0
g(A, γ̇)dτ ′′

> 0 (5.26)

is positive, hence

Cγ +

ˆ τ

τ0

g(A, γ̇)dτ ′ (5.27)

should be positive. Notice that when one chooses a vector�eld A such that
´ τ
τ0
g(A, γ̇)dτ ′ is positive and´

I∩[τ0,∞)
g(A, γ̇)dτ ′ is well-de�ned (and not ∞), we can consider αA for a constant α and get

1

.1 + α
´ τ ′
τ0
g(A, γ̇)dτ ′′

≥ 1 (5.28)
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for all τ ∈ [τ0,∞) ∩ I by choosing α small enough. Then

f(τ) ≥ τ. (5.29)

To give an example where we can apply this construction, we take the metric

ds2 = −dt2 + t

3∑
i=1

(
dxi
)2

(5.30)

for t ≥ 0. This is the FLRW metric with κ = 0 and a(t) =
√
t. We treat spacetimes with this metric

extensively in Chapter 6, but for now the only thing that is really important is that we have a singularity
when t = 0. Let a geodesic be given by γ(τ) =

(
t(τ), xi(τ)

)
and let uµ = dγµ/dτ . All geodesics will be

incomplete (when t→ 0). The geodesic equations (with respect to ∇̆) are given by

du0

dτ
+

1

2

(
ui
)2

= 0

dui

dτ
+

1

t
u0ui = 0. (5.31)

The second equation can be rewritten as
d

dτ

[
tui
]

= 0 (5.32)

with solution

ui =
Ci
t
, (5.33)

where Ci are constants. The constraint equation for null geodesics is

0 = −
(
u0
)2

+ t
(
ui
)2
, (5.34)

such that

u0 = −
√
C

t
, (5.35)

where C =
∑
i C

2
i . This can be solved by

t =

(
1− 3

2

√
Cτ

)2/3

, (5.36)

choosing τ = 0 to correspond to t = 1. For an arbitrary vector A we then get

g(A, γ̇) = A0

√
C

t
+AiCi (5.37)

Integration yields

ˆ τ ′

τ0

g(A, γ̇)dτ ′′ = −
ˆ t

t0

(A0 +

√
t√
C
AiCi)dt

′ = −A0(t− t0)− 2

3

AiCi√
C

(
t3/2 − t3/20

)
(5.38)

which is well-de�ned when t→ 0 and A and t0 can be chosen such that this is positive for all t < t0 (e.g. by
choosing A0 > 0 and Ai such that AiCi > 0). Hence, we have seen that we can construct a spacetime with
vectorial torsion that is null geodesically incomplete.
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Chapter 6

FLRW Spacetime

In this chapter we will study singularities and torsion in spacetimes that are spatially homogeneous and
isotropic, but evolving in time. The most general metric that corresponds to such a spacetime is given by
the Friedmann-Lemaître-Robertson-Walker (FLRW) metric:

ds2 = −dt2 + a(t)2

[
dr2

1− κr2
+ r2

(
dθ2 + sin2(θ)dϕ2

)]
, (6.1)

where we use spherical coordinates, κ represents the (constant) curvature of spacelike 3-surfaces and a :
R ⊃ I → R≥0 (I connected) is the scale factor. The interval I has the form [t0, t1], t0, t1 ∈ R, when
a(t0) = a(t1) = 0 and a(t) > 0 on (t0, t1). It has the form [t0,∞), t0 ∈ R, when a(t0) = 0 and a(t) > 0
for t > t0 and it has the form (−∞, t0] when a(t0) = 0 and a(t) > 0 for t < t0. This metric is a good
description of our universe, since from experiments as WMAP and Planck, it follows that our universe is
spatially homogeneous and isotropic when averaged over large scales.

This chapter is organized as follows. In Section 6.1 we describe the geodesics in an FLRW spacetime using
its symmetries. Then we argue in Section 6.2 that such a spacetime contains an initial singularity if and only
if a(t) vanishes for a certain t ∈ I (one can do the same for a future singularity, but we restrict our attention
to singularities in the past). Then in Section 6.3 we examine the relation between the existence of conjugate
points and singularities in this spacetime. One of the conditions of the singularity theorems in Chapter 5
implies that if a geodesic is complete, it contains conjugate points. We will show that for certain FLRW
spacetimes with κ ≤ 0 the existence of a singularity implies that all points on a geodesic are conjugate to the
point of the geodesic at the singularity. To do this we slightly adapt the de�nition of conjugate points. All
the points on a geodesic conjugate to a certain point also implies a singularity. Lastly we give a condition for
a geodesic in a spacetime with κ = 0 to have conjugate points. In the �rst sections we will put torsion to zero,
however in Section 6.4 we will model torsion as an energy density and combine it �rst with a perfect radiation
�uid and then with a perfect matter �uid. We will see that in this case a singularity at the beginning of the
universe is avoided. As far as we know, the work done in this chapter is new.

6.1 Geodesics

In this section we will study the geodesics in an FLRW spacetime using the symmetry of this spacetime.
This spacetime has 6 Killing vectors ξ, given by

ξt = 0

ξr =
√

1− κr2 {sin(θ) [cos(ϕ)a1 + sin(ϕ)a2] + cos(θ)a3} (6.2)

ξθ =

√
1− κr2

r
{cos(θ) [cos(ϕ)a1 + sin(ϕ)a2]− sin(θ)a3}+ sin(ϕ)b1 − cos(ϕ)b2

ξϕ =

√
1− κr2

r

1

sin(θ)
[cos(ϕ)a2 − sin(ϕ)a1] + cot(θ) [cos(ϕ)b1 + sin(ϕ)b2]− b3,
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where ai and bi are six constants [34]. Let γ be a geodesic, then we can use 2 of the 3 rotation symmetries
to choose coordinates such that θ = π/2 for γ. The quantity ξµγ̇

µ is conserved along γ when ξ is a Killing
vector. The Killing vectors that give non-vanishing ξµγ̇

µ are

ξt = 0

ξr =
√

1− κr2 [cos(ϕ)a1 + sin(ϕ)a2]

ξθ = 0 (6.3)

ξϕ =

√
1− κr2

r
[cos(ϕ)a2 − sin(ϕ)a1]− b3.

With ∂ϕ as Killing vector we �nd the conserved angular momentum

L = a2r2γ̇ϕ. (6.4)

Choosing a1 = 1 and a2 = b3 = 0 in (6.3) we �nd the conserved quantity

K1 =
a2 cos(ϕ)√

1− κr2
γ̇r − ra2

√
1− κr2 sin(ϕ)γ̇ϕ

=
a2 cos(ϕ)√

1− κr2
γ̇r − L

√
1− κr2

r
sin(ϕ) (6.5)

and choosing a2 = 1 and a1 = b3 = 0 in (6.3) we �nd the quantity

K2 =
a2 sin(ϕ)√

1− κr2
γ̇r + ra2

√
1− κr2 cos(ϕ)γ̇ϕ

=
a2 sin(ϕ)√

1− κr2
γ̇r + L

√
1− κr2

r
cos(ϕ). (6.6)

Vanishing angular momentum L = 0 corresponds either to a radial geodesic or to a geodesic that has constant
r, θ, ϕ (a comoving geodesic). When the geodesic passes the point that corresponds to r = 0, we can choose
di�erent coordinates from the start such that γ is not radial. Hence for a geodesic that is not comoving, we
can always choose coordinates such that L > 0 for γ.

With Eqs. (6.5) and (6.6) we �nd that

γ̇r =

√
1− κr2K1r + L(1− κr2) sin(ϕ)

a2 cos(ϕ)r
=

√
1− κr2K2r − L(1− κr2) cos(ϕ)

a2 sin(ϕ)r
. (6.7)

Using the normalization of a geodesic ε, where ε = 0 for null geodesics and ε = −1 for timelike geodesics,
and Eqs. (6.4) and (6.7), we �nd that

ε = −
(
γ̇t
)2

+
a2

1− κr2
(γ̇r)

2
+ a2r2 (γ̇ϕ)

2

= −
(
γ̇t
)2

+
1

a2

(
K2

1r
2 + L2(1− κr2) sin2(ϕ) + 2K1rL sin(ϕ)

√
1− κr2

r2 cos2(ϕ)
+
L2

r2

)

= −
(
γ̇t
)2

+
1

a2

(
K2

1 +K2
2 + κL2

)
. (6.8)

Hence

γ̇t = ±
√
K2

1 +K2
2 + κL2 − εa2

a
. (6.9)

Using Eq. (6.7) we �nd that

K1r sin(ϕ) + L
√

1− κr2 sin2(ϕ) = K2r cos(ϕ)− L
√

1− κr2 cos2(ϕ), (6.10)

which leads to
[K1 sin(ϕ)−K2 cos(ϕ)] r = −L

√
1− κr2. (6.11)
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When we take the square of both sides and rewrite it, we �nd that (when L 6= 0)

r =
L√

(K2 cos(ϕ)−K1 sin(ϕ))
2

+ κL2

, (6.12)

(when L is negative, one gets an extra minus sign) which leads, using Eqs. (6.4) and (6.9), to

dϕ

dt
=

dτ

dt

dϕ

dτ

=
1√

K2
1 +K2

2 + κL2 − εa2

L

ar2

=
(K2 cos(ϕ)−K1 sin(ϕ))

2
+ κL2

aL
√
K2

1 +K2
2 + κL2 − εa2

. (6.13)

Hence ˆ ϕ

ϕ1

L

(K2 cos(ϕ′)−K1 sin(ϕ′))
2

+ κL2
dϕ′ =

ˆ t

t1

1

a
√
K2

1 +K2
2 + κL2 − εa2

dt′. (6.14)

A primitive of the integrand on the left-hand side is given by

κ > 0 : − 1√
κK2

1+κK2
2+κ2L2

arctan

(
K1K2−(K2

1+κL2) tan(ϕ)

L
√
κK2

1+κK2
2+κ2L2

)
κ < 0 : 1√

−κK2
1−κK2

2−κ2L2
tanh−1

(
K1K2−(K2

1+κL2) tan(ϕ)

L
√
−κK2

1−κK2
2−κ2L2

)
κ = 0, K2 6= 0 : L sin(ϕ)

K2(K2 cos(ϕ)−K1 sin(ϕ))

κ = 0, K2 = 0 : − L
K2

1 tan(ϕ)
.

(6.15)

The last one follows because it is impossible that K2 = K1 = 0.

6.2 Singularities1

Hubble's law, the observed abundance of elements, the cosmic background radiation and the large scale
structure formation in the universe are strong evidence that the universe expanded from an initial very high
dense state to how we observe it now. However, what happened exactly during this hot density state is still
an open problem. One of the questions that needs to be answered is whether there was a singularity at the
beginning of spacetime. Such a singularity is de�ned as a non-spacelike geodesic that is incomplete in the
past. We would like to stress that the motivation behind this de�nition is that test particles move on these
trajectories and thus have only traveled for a �nite proper time.

The �atness, horizon and magnetic monopole problem can be solved with a period of exponential expansion
in the very early universe [35], [36]. To avoid a singularity before that period, it was suggested that one can
have past-eternal in�ation in which the universe starts from an almost static universe and �ows towards a
period of exponential expansion. This way the universe would not have a beginning. One of the characteristics
of in�ationary models is that the Hubble parameter H = ȧ/a is positive. In [37] it was shown that when
the average Hubble parameter along a geodesic Hav is positive, the geodesic is past-incomplete such that we
would have a singularity. This is also applicable to models of eternal in�ation in which the average Hubble
parameter along geodesics does not go to zero su�ciently fast (i.e. such that we do not have that Hav is
zero). In [38], a model of eternal in�ation was given with all non-spacelike geodesics complete, but in [39]
these kind of models were shown to be quantum mechanically unstable. Hence, this would imply that also
models of eternal in�ation start from a singularity.

In [40] it was pointed out that in De Sitter space the test particles that follow those past-incomplete
trajectories and have a non-vanishing velocity, will have an energy that becomes arbitrarily large when going
back in the past. In this section we generalize this to general Friedmann-Lemaître-Robertson-Walker (FLRW)

1The material of this section can also be found in [15]. We only added a few extra comments.

73



CHAPTER 6 FLRW SPACETIME

spacetime. It means that the energy of such a test particle can become super-Planckian at some initial time
such that their description breaks down. This is the reason one should not consider those trajectories when
de�ning a singularity. When one only considers the trajectories of test particles that do not have a breakdown
of the description of their trajectory, one �nds that the only FLRW spacetimes that start from a singularity
are the ones with a scale factor that vanishes at some initial time. This implies that models of eternal in�ation
or bouncing models are singularity free provided one requires sub-Planckian test particles at all times.

In this section we �rst consider the past-(in)completeness of geodesics in spacetimes with an FLRWmetric.
We review the general singularity theorems of [3] (that can be found in Chapter 5) applied to these models
and we review the more general (in the context of cosmology) argument of [37]. After that we consider how
the energies of test particles change in time.

6.2.1 Past-(in)completeness of Geodesics

Normalize the scale factor a, such that a(t1) = 1 for a certain time t1 and let γ be a future-directed geodesic.
From Eq. (6.9) we �nd that

γ̇t =

√
K2

1 +K2
2 + κL2 − εa2

a
=

√
|~V (t1)|2 − εa2

a
, (6.16)

where |~V |2 = gij γ̇
iγ̇j . We thus have a past-incomplete geodesic when

ˆ
dτ =

ˆ t

t0

a√
|~V (t1)|2 − εa2

dt (6.17)

for an initial velocity |~V (t1)| is �nite. Here t0 is −∞ if a(t) > 0 for all t, otherwise t0 ∈ R is taken such that
a(t0) = 0 (one can also do this when a blows up at t0).

Consider �rst t0 ∈ R, then using normalization ε = −1

ˆ t

t0

a√
|~V (t1)|2 + a2

dt′ ≤
ˆ t

t0

a√
a2
dt′ = t− t0, (6.18)

which is �nite. This means these models are always singular, but notice that in this case we can have that
all the null geodesics are complete. The null geodesics are also incomplete in case a(t0) = 0. An example
when the null geodesics are complete is given by a(t) = 1/t for t > 0.

When t0 = −∞ and the integral (6.17) is converging, we cannot immediately conclude that geodesics are
past-incomplete. It is possible that we only consider a part of the actual spacetime manifold. An example
is given by κ = 0, and the Hubble parameter H = ȧ/a satisfying Ḣ/H2 = 0, in which case a(t) = eHt

with H constant. If the whole manifold would be covered by these coordinates, it would result in past-
incomplete geodesics. However, this model only describes one half of the larger De Sitter space; the whole
space is described by choosing κ = 1, a(t) = cosh(Ht)/H which yields complete geodesics. See also [41]
and [42].When the integral (6.17) is diverging one can conclude that geodesics in that speci�c coordinate
patch are past-complete. Of course, one can also assume that a certain model with t0 = −∞ covers the
whole spacetime. Then the past-(in)completeness of a geodesic is determined by the integral (6.17). If

a(t) ≥ A ∈ R>0 for all t ≤ t1 we �nd that since a/

√
|~V (t1)|2 + a2 is increasing as function of a, that

a√
|~V (t1)|2 + a2

≥ A√
|~V (t1)|2 +A2

(6.19)

such that ˆ t

−∞

a√
|~V (t1)|2 + a2

dt′≥
ˆ t

−∞

A√
|~V (t1)|2 +A2

dt′ =∞ (6.20)
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and in the same way null geodesics are complete. This implies that such spacetimes are non-singular. Hence
for a spacetime to have a non-spacelike geodesic that is past-incomplete, a(t) needs to become arbitrarily
small.

There are a few theorems that prove that an FLRW spacetime contains a (past-)incomplete geodesic. We
considered the theorems of Hawking and Penrose ([2], [3]) in Chapter 5 (here we put torsion to 0). These
theorems state that when

RµνK
µKν ≥ 0 (6.21)

for all non-spacelike vectors K and the spacetime obeys a few other conditions such as containing a trapped
surface, there is a non-spacelike geodesic that is incomplete. Using Eqs. (1.10) and (1.16), one �nds that the
non-vanishing components of the Ricci tensor for the metric (6.1) are given by

R00 = −3

..
a

a
;

R11 =
a
..
a+ 2ȧ2 + 2κ

1− κr2
;

R22 = r2(a
..
a+ 2ȧ2 + 2κ); (6.22)

R33 = r2(a
..
a+ 2ȧ2 + 2κ) sin2(θ).

Using these components we �nd that condition (6.21) yields:

0 ≤ RλνKλKν = −3

..
a

a

(
K0
)2

+
(
a
..
a+ 2ȧ2 + 2κ

)( (K1
)2

1− κr2
+ r2

(
K2
)2

+ r2 sin2(θ)
(
K3
)2)

= −3

..
a

a

(
K0
)2

+
1

a2

(
a
..
a+ 2ȧ2 + 2κ

) (
K2 +

(
K0
)2)

=

( ..
a

a
+ 2

ȧ2

a2
+ 2

κ

a2

)
K2 − 2

[ ..
a

a
− ȧ2

a2
− κ

a2

] (
K0
)2
. (6.23)

We can restrict to K being the tangent vector of null and timelike geodesics. Substitution of Eq. (6.9) in
Eq. (6.23) yields

0 ≤ RλνKλKν =

( ..
a

a
+ 2

ȧ2

a2
+ 2

κ

a2

)
ε− 2

[ ..
a

a
− ȧ2

a2
− κ

a2

]
|~V (t1)|2 − εa2

a2

= 3

..
a

a
ε− 2

|~V (t1)|2

a2

[ ..
a

a
− ȧ2

a2
− κ

a2

]
. (6.24)

This should hold for all timelike and null geodesics, so for all values of |~V (t1)| and for ε ∈ {0,−1}. For ε = 0
it yields

..
a

a
− ȧ2

a2
− κ

a2
≤ 0 (6.25)

and for ε = −1 it yields that

3

..
a

a
≤ −2

|~V (t1)|2

a2

[ ..
a

a
− ȧ2

a2
− κ

a2

]
. (6.26)

The right-hand side is positive by condition (6.25) and this inequality should hold for all |~V (t1)| ≥ 0 which
implies that we have the following two conditions:

..
a

a
− ȧ2

a2
− κ

a2
≤ 0;

..
a ≤ 0. (6.27)

Notice that for κ ≥ 0 the second condition implies the �rst, but that this does not happen for κ < 0.
Concluding, the geometric condition of the singularity theorems for this metric reads:

κ ≥ 0 :
..
a ≤ 0;

κ < 0 :

{ ..
a
a −

ȧ2

a2 − κ
a2 ≤ 0;

..
a ≤ 0.

(6.28)
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In particular
..
a ≤ 0 at all time, or that the spacetime is non-accelerating. Notice that when

..
a ≤ 0, a will

always be zero at some time t0 (this might be in the future), unless a is a positive constant (H = 0) in which
case we do not have past-incomplete geodesics. Hence, when we want to use the theorems of Hawking and
Penrose to say something about an initial singularity in an FLRW spacetime, we need a metric that has a
scale parameter a that becomes zero at some time in the past.

Describing the matter content of the universe by a perfect �uid

Tµν = (ρ+ p)UµUν + pgµν , (6.29)

where p is the pressure, ρ the energy density and Uµ = (1, 0, 0, 0), the condition (6.28) translates via the
Friedmann equations (Einstein equation for this metric),(

ȧ

a

)2

=
8πGN

3
ρ− κ

a2
; (6.30)

..
a

a
= −4πGN

3
(ρ+ 3p),

to

κ ≥ 0 : ρ+ 3p ≥ 0;

κ < 0 :

{
ρ+ p ≥ 0;

ρ+ 3p ≥ 0.
(6.31)

Although it seems that for κ ≥ 0 we have less restrictions, it is actually impossible to have an FLRW
spacetime with non-negative spatial curvature and ρ+ 3p ≥ 0 and ρ+ p < 0, because from Eq. (6.30) we see
that we need ρ ≥ 0 for κ ≥ 0. In Fig. 6.1 one �nds an illustration of condition (6.31).
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8
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p

Figure 6.1: Illustration of condition (6.31). For κ < 0 one needs (ρ, p) in the blue area above the
dashed line to apply the Hawking-Penrose singularity theorems. For κ ≥ 0, we have less restrictions,
the red shaded area below the dashed line is also included, but it is impossible for an FLRW spacetime
with non-negative spatial curvature to be in that area.

Another theorem that proves that a geodesic is past-incomplete was published in [37] and is also applicable
to spacetimes that have a(t) > 0 for all t. It says that when the average Hubble parameter H = ȧ/a along
a non-spacelike geodesic, Hav, satis�es Hav > 0, the geodesic must be past-incomplete. For the metric (6.1),
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the argument is as follows. Consider a non-spacelike geodesic γ(τ) between an initial point γ(τi) and a �nal
point γ(τf). We can integrate H along the geodesic, using Eq. (6.16):

ˆ τf

τi

Hdτ =

ˆ tf

ti

ȧ√
|~V (t1)|2 − εa2

dt

=

ˆ a(tf )

a(ti)

da√
|~V (t1)|2 − εa2

(6.32)

=


1

|~V (t1)|
[a(tf)− a(ti)] , ε = 0

log

(
a(tf )+

√
|~V (t1)|2+a(tf )2

a(ti)+
√
|~V (t1)|2+a(ti)2

)
ε = −1

≤


a(tf )

|~V (t1)|
, ε = 0

log

(
a(tf )+

√
|~V (t1)|2+a(tf )2

|~V (t1)|

)
ε = −1.

Notice that for the second equality sign, one should break up the integration domain into parts where a = a(t)
is injective, but that one will end up with the same result. Hence, this integral as function of the initial a�ne
parameter τi is restricted by some �xed �nal τf . This means that when

Hav =
1

τf − τi

ˆ τf

τi

Hdτ > 0 (6.33)

τi has to be some �nite value such that the geodesic is past-incomplete. Notice, that it is still possible to
construct an FLRW spacetime that has H > 0 at all times and complete geodesics. For this we need that
Hav must become zero when τi → −∞. Examples are for instance given by spacetimes with H > 0 and
a→ a0 > 0 for t→ −∞ (in this case we will have that H → 0 as t→ −∞).

6.2.2 Energy of Test Particles

As stated before, the de�nition of a singularity is based on the trajectories of massive test particles and
massless particles. For cosmological spacetimes with an FLRW metric, we would like to study the energies of
test particles over time. We will generalize the argument given in [40] for De Sitter space to a general FLRW
spacetime.

Using Eq. (6.16) we �nd that for massive test particles

|~V |2 ≡ gij γ̇
iγ̇j = ε+

(
γ̇0
)2

=
|~V (t1)|2

a2
. (6.34)

We already saw that in order for a spacetime to have a past-incomplete non-spacelike geodesic, the scale
parameter a needs to become arbitrarily small. With Eq. (6.34) this then implies that when the particle has

a velocity |~V (t1)| at time t1, the velocity and hence the energy E2 = m2
(

1 + |~V (t1)|2
a2

)
of a test particle with

mass m becomes arbitrarily large when moving back to the past.
The statement above for massive test particles carries over to photons. In this case the angular frequency

as observed by a comoving observer goes as

ω = γ̇0 =
ω(t1)

a
. (6.35)

Thus also the energy of photons E = ~ω will become arbitrarily large when moving back to the past.
In [40] it was noted that one cannot have particles with arbitrarily high energies because if such a particle

has a nonvanishing interaction cross section with any particle with a non-zero physical number density, then
the particle will interact with an in�nite number of them, breaking the Cosmological principle. However,

the particle's energy cannot become arbitrarily high because it will reach the Planck energy EP =
√

~
GN
≈
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1.22 · 1019 GeV at some time t. With this energy, the particle's Compton wavelength is approximately equal
to its Schwarzschild radius such that it will form a black hole. Therefore, the description of the particle's
trajectory will break down. Scattering processes involving vacuum �uctuations may cause the test particle's
energy to never reach the Planck energy. If these processes are signi�cant the particle's trajectory is not a
geodesic anymore. Near the Planck energy scattering processes are dominated by processes that involve the
exchange of a graviton [43]. To estimate this e�ect we consider photon-photon scattering with the exchange
of a graviton. We model the loss of energy of the photon when going back in time as

d

dt
E = (−H − σn)E, (6.36)

where n is the number density of virtual photons and σ is the cross section of the scattering process. The
particle gains energy from the expansion of the universe because −H is positive (when going back in time)
and it looses energy from the scattering with virtual photons. We estimate the density of virtual photons as
one per Hubble volume:

n =
1

VH
= −3H3

4π
. (6.37)

The di�erential cross section for photon-photon scattering with the exchange of a graviton for unpolarized
photons is [44]

dσ

dΩ
=

(16πGN)
2

8π2

k2

sin2(θ)

[
1 + cos16

(
1

2
θ

)
+ sin16

(
1

2
θ

)]
(6.38)

where k is the momentum of the photon and θ is the scattering angle. Since we are primarily interested in
large momentum exchange, we neglect small angle scatterings when calculating the total cross section of this
process:

σ =

ˆ
dσ

dΩ
dΩ

=
(16πGN)

2

π

k2

4

ˆ 1−ξ

−1+ξ

1 + 1
256 (1 + x)

8
+ 1

256 (1− x)
8

1− x2
dx

=
(16πGN)

2

π

k2

2

ˆ 1

ξ

1 + 1
256 (2− y)

8
+ 1

256y
8

y(2− y)
dy

=
(16πGN)

2

π

k2

4

[
2 log

1

ξ
− 363

140
+ log(4) +O(ξ)

]
, (6.39)

where we have the relation sin(θ/2)=
√
ξ/2. Taking only angles .26π < θ < .74π into account for the

scattering, we have that 2 log 1
ξ −

363
140 + log(4) ≈ 1. With Eqs. (6.36), (6.37) and (6.39) we �nd that the

energy of the test photon does not increase when

H ∼ σn = 48G2
NE

2H3, (6.40)

where E = k is the photon energy. Using the Hubble parameter of cosmic in�ation which typically is about
−~H ≈ 1013 GeV, we �nd from (6.40) that the scattering process becomes signi�cant when(

E

EP

)2

∼ E2
P

48~2H2
≈ 1010. (6.41)

Hence, processes involving gravitons will not cause the particle's energy to stay smaller than the Planck energy
and a black hole will form. This implies that the description of the particle's trajectory (as a geodesic) breaks
down, either because of interaction processes or by the formation of a black hole. The latter de�nitely happens
when the initial energy is near the Planck energy.

Up to now, the maximum energy of a single particle that has been measured is of the order of 1020 eV
[45] which is eight orders of magnitude smaller than the Planck scale. These particles were all cosmic ray
particles, so their probable origin is a supernova, an active galactic nucleus, a quasar or a gamma ray-burst.
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Even when using this energy as an upper bound for the energy of test particles, we have that the description
of the trajectories of non-comoving test particles breaks down at times that are certainly later than the Planck
era, the period where we have to take quantum gravitational e�ects into account. In [40] the arbitrarily high
energies of test particles were used to argue that these particles should be forbidden in De Sitter space. This
can be done by using a di�erent time arrow in the two patches of De Sitter space that one has in the �at
slicing. That way the two coordinate patches become non-communicating and describe eternally in�ating
spacetimes. We will not look into these kind of constructions for general FLRW spacetimes but we want to
use the arbitrarily high energies of test particles to give a consistent de�nition of a singularity. When the
particle's description breaks down before it reaches the beginning of its trajectory, it is not very useful to
use that particle as an indication for an initial singularity. That is the reason why we suggest to de�ne a
singularity in spacetimes with an FLRW metric that has a parameter a that becomes arbitrarily small, as a
timelike geodesic with |~V (t1)| = 0 that is past-incomplete. For such trajectories, we have that dt = dτ which
means that a spacetime has no initial singularity when a(t) > 0 for all t ∈ R. Hence, an FLRW spacetime
starts from a singularity precisely when a(t0) = 0 at some initial �nite time t0.

6.3 Relation between Conjugate Points and Singularities

Since the relation between the occurrence of conjugate points and singularities is evident in the singularity
theorems, we would like to study these conjugate points in FLRW spacetime. It is sometimes stated that in
this spacetime the singularity is equivalent to the occurrence of conjugate points. In this section we will �rst
change the de�nition of conjugate points a bit motivated by an example. After that we will prove a couple
of theorems about a singularity implying conjugate points and vice versa for certain FLRW models.

Let us �rst start to examine a speci�c model. We will study the FLRW metric with κ = 0 and a(t) =
√
t.

This models a universe with a perfect radiation �uid for which ρ ∝ 1/a4. To derive the geodesics we use
Cartesian coordinates for the metric (6.1)

ds2 = −dt2 + a(t)2
(
dxi
)2
. (6.42)

Let a geodesic be given by γ(τ) =
(
t(τ), xi(τ)

)
and let uµ = dγµ/dτ . The geodesic equations are given by

du0

dτ
+ aȧ

(
ui
)2

= 0

dui

dτ
+ 2

ȧ

a
u0ui = 0. (6.43)

The second equation can be rewritten as
d

dτ

[
a2ui

]
= 0 (6.44)

with solution

ui =
Ci
a2
, (6.45)

where Ci are constants. The constraint equation is

ε = −
(
u0
)2

+ a2
(
ui
)2
, (6.46)

so

u0 =

√
−ε+ a2 (ui)

2
=

√
−ε+

C

a2
=

√
C − εa2

a
, (6.47)

where C =
∑
i C

2
i (this corresponds with expression (6.9)). Let us now consider timelike geodesics, ε = −1

and choose C = 1. We can then solve Eq. (6.47) for a(t) =
√
t by√

t+ t2 − sinh−1
(√

t
)

= τ, (6.48)
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where we chose τ such that τ = 0 at the singularity. From Eq. (6.45) and Eq. (6.47) we �nd that

dxi

dt
=

1√
1 + a2

Ci
a
, (6.49)

which is solved by

xi = 2Ci sinh−1
(√

t
)

+Di, (6.50)

where Di are constants (notice that we have the restriction 1 =
∑
i C

2
i ). We consider the geodesic

γ =
(
t, 2 sinh−1

(√
t
)
, 0, 0

)
(6.51)

and we want to examine conjugate points along this geodesic. In the spirit of Chapter 2 we construct the
matrix A of Eq. (2.39) corresponding to the point t1 = 10 for this geodesic. An orthonormal basis that is
parallel transported along this geodesic is given by

E0 =

(√
1 + a(t)2

a(t)
,

1

a(t)2
, 0, 0

)
=

(√
1 + t

t
,

1

t
, 0, 0

)

E1 =

(
1

a(t)
,

√
1 + a(t)2

a(t)2
, 0, 0

)
=

(
1√
t
,

√
1 + t

t
, 0, 0

)
E2 =

(
0, 0,

1

a(t)
, 0

)
=

(
0, 0,

1√
t
, 0

)
E3 =

(
0, 0, 0,

1

a(t)

)
=

(
0, 0, 0,

1√
t

)
. (6.52)

We now need the Jacobi �elds Ji for i ∈ {1, 2, 3} such that Ji(t1) = 0 and DτJi(t1) = Ei(t1). The di�erential
equations for the �rst 2 components of the Jacobi �elds only depend on each other. The di�erential equation
for Jki , k ∈ {2, 3} is given by

(1 + 2t)
(
Jki
)′

+ 2t(1 + t)
(
Jki
)′′

t
= 0. (6.53)

This implies that

J1 = (h1(t), h2(t), 0, 0)

J2 = (0, 0, h3(t), 0) (6.54)

J3 = (0, 0, 0, h3(t)) .

We can solve for h3 explicitly and �nd

h3(t) = −2
√

10
(

sinh−1
(√

10
)
− sinh−1

(√
t
))

. (6.55)

We have to solve for h1 and h2 numerically. We can use the function g(J1, E0) to see how good this numerical
solution is since this function should be identically 0. The matrix A is then given by

A =

 − 1√
t
h1 +

√
1 + th2 0 0

0
√
th3 0

0 0
√
th3

 , (6.56)

which has determinant

detA = t

(
− 1√

t
h1 +

√
1 + th2

)
h2

3. (6.57)

Notice that at t = 0,
√
th3(t) = 0, which means that γ(10) is conjugate to the point at the singularity.

However, we do not have a Jacobi �eld that vanishes in the usual sense. Indeed from Eq. (6.55) we see
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that this Jacobi �eld does not vanish when we use another coordinate system. The norm of the Jacobi �eld
however, is zero in both coordinate systems. This strange behavior is caused because the metric is not well
de�ned at the singularity.

We use this example as a motivation to generalize the de�nition of conjugate points. From a physical
point of view it is the norm of the Jacobi �eld that matters since this corresponds to the distance between
particles moving on nearby geodesics. That is why we will also say that we have conjugate points on a
timelike geodesic when the norm of the Jacobi �eld vanishes. Such a Jacobi �eld should in principle still be
perpendicular to the geodesic (otherwise one could just get that it is a null vector). As long as the metric is
well de�ned this de�nition is the same as our original de�nition. Notice that the vanishing of the determinant
of the matrix A is equivalent to a Jacobi �eld J perpendicular to γ̇ and such that g(Ei, J) = 0 for all i. From

g(J, J) =
∑
i

g(Ei, J)2 (6.58)

we conclude that g(Ei, J) = 0 for all i is equivalent to g(J, J) = 0.
With this new de�nition two points on a geodesic can be conjugate in two di�erent ways. The �rst one

is that geodesics are indeed converging to one point (to �rst order), the second one is that that does not
happen, but that the norm of the Jacobi �eld vanishes. We found that the vanishing of the determinant of
A is equivalent to this new de�nition if the Jacobi �eld is perpendicular to the geodesic. In the same way
one can give a generalized de�nition of conjugate points for null geodesics.

6.3.1 A Singularity Implies Conjugate Points

We will now �rst prove a theorem that states that under a certain condition on a(t), every point on a geodesic
is conjugate to the point of the geodesic at the singularity. Here we do not know whether geodesics actually
converge to that point.

.

Theorem 6.3.1. Let γ(τ(t)) be a non-comoving geodesic (such that C ≡ K2
1 +K2

2 +κL2 6= 0) in a spacetime
with FLRW metric such that a(t0) = 0 for a certain t0 and a is smooth for t > t0. Let

f(t) = 3
..
a+ 2

C

a

[ ..
a

a
− ȧ2

a2
− κ

a2

]
(6.59)

and de�ne

f+(t) =

{
f(t) for t where f(t) ≥ 0

0 for t where f(t) < 0
(6.60)

f−(t) =

{
−f(t) for t where f(t) ≤ 0

0 for t where f(t) > 0.

Every point γ(τ(t)) for t 6= t0 is conjugate to γ(τ(t0)) if the following conditions are satis�ed:

lim
t→t0

ˆ t1

t

a(t′)

ˆ t1

t′

1

a

[ ..
a

a
− ȧ2

a2
− κ

a2

]
dt′′dt′ = −∞ (6.61)

lim
t→t0

ˆ t1

t

f+dt
′ = α ∈ R≥0 (6.62)

for a t1 > t0.

Proof. Let γ be a timelike geodesic. Let γ(τ(t2)) be a point on this geodesic and let A denote the corre-
sponding matrix that describes the Jacobi �elds that vanish at this point (Eq. (2.39)). To show that γ(τ(t2))
is conjugate to γ(τ(t0)), we will show that limt→t0 detA = 0, or equivalently limt→t0 log (detA) = −∞.
Unfortunately, we cannot use Lemma 2.1.2, because the metric is not well-de�ned at t0. However we can use
that

θA = ∂τ log (detA) . (6.63)
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Consider the Raychaudhuri equation, Eq. (2.67) and use Eq. (6.24) to obtain

dθA
dt

=
dτ

dt

dθA
dτ

=
a√

C + a2

(
3

..
a

a
+ 2

C

a2

[ ..
a

a
− ȧ2

a2
− κ

a2

]
− tr

(
σ2
A

)
− θ2

A

3

)
≤ 1√

C + a2

(
3
..
a+ 2

C

a

[ ..
a

a
− ȧ2

a2
− κ

a2

])
=

1√
C + a2

(f+ − f−) . (6.64)

We �nd from condition (6.61) that

lim
t→t0

ˆ t1

t

a

ˆ t1

t′

(
3
..
a+ 2

C

a

[ ..
a

a
− ȧ2

a2
− κ

a2

])
dt′′dt′ = 3ȧ(t1)

ˆ t1

t0

adt− 3 lim
t→t0

ˆ t1

t

aȧdt′

+2C lim
t→t0

ˆ t1

t

a

ˆ t1

t′

1

a

[ ..
a

a
− ȧ2

a2
− κ

a2

]
dt′′dt′

= 3ȧ(t1)

ˆ t1

t0

adt− 3

2
a(t1)2

+2C lim
t→t0

ˆ t1

t

a

ˆ t1

t′

1

a

[ ..
a

a
− ȧ2

a2
− κ

a2

]
dt′′dt′

= −∞. (6.65)

Hence:

−∞ = lim
t→t0

ˆ t1

t

a

ˆ t1

t′
(f+ − f−) dt′′dt′ = lim

t→t0

ˆ t1

t

a

ˆ t1

t′
f+dt

′′dt′ − lim
t→t0

ˆ t1

t

a

ˆ t1

t′
f−dt

′′dt′. (6.66)

From condition (6.62) it follows that ˆ t1

t

f+dt
′ (6.67)

is a function that is α at t0, 0 at t1 and strictly decreasing. Hence

a(t)

ˆ t1

t

f+dt
′ (6.68)

is vanishing at t0 and t1 and continuous and positive in between. This implies that

lim
t→t0

ˆ t1

t

a

ˆ t1

t′
f+dt

′′dt′ = β ∈ R≥0 (6.69)

and together with Eq. (6.66) this gives

lim
t→t0

ˆ t1

t

a

ˆ t1

t′
f−dt

′′dt′ = ∞. (6.70)

Choose t3 ≤ t1 such that γ(t3) is not conjugate to γ(t2). Then for t < t3 we �nd with Eq. (6.64) that

θA(t) = −
ˆ θA(t3)

θA(t)

dθA + θA(t3)

≥ −
ˆ t3

t

1√
C + a2

(f+ − f−) dt′ + θA(t3)

≥ − 1√
C

ˆ t3

t

f+dt
′ +

1√
C + a2

max

ˆ t3

t

f−dt
′ + θA(t3), (6.71)
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where amax = max{a(t)|t0 ≤ t ≤ t3}. Then

log (detA(t)) = −
ˆ t3

t

a√
C + a2

θAdt
′ + log (detA(t3))

≤ 1√
C

ˆ t3

t

a√
C + a2

ˆ t3

t′
f+dt

′′dt′ − 1√
C + a2

max

ˆ t3

t

a√
C + a2

ˆ t3

t′
f−dt

′′dt′

−θA(t3)

ˆ t3

t

a√
C + a2

dt′ + log (detA(t3))

≤ 1

C

ˆ t3

t

a

ˆ t3

t′
f+dt

′′dt′ − 1

C + a2
max

ˆ t3

t

a

ˆ t3

t′
f−dt

′′dt′

−θA(t3)

ˆ t3

t

a√
C + a2

dt′ + log (detA(t3)) . (6.72)

With Eqs. (6.69), (6.70) and (6.72) (notice that the integral of f± over the interval [t3, t1] is �nite) it then
follows that

lim
t→t0

log (detA(t)) ≤ 1

C
lim
t→t0

ˆ t3

t

a

ˆ t3

t′
f+dt

′′t′′ − 1

C + a2
max

lim
t→t0

ˆ t3

t

a

ˆ t3

t′
f−dt

′′dt′

−θA(t3)

ˆ t3

t0

a√
C + a2

dt′ + log (detA(t3)) = −∞. (6.73)

That means that γ(τ(t0)) is conjugate to γ(τ(t2)) along γ.

Consider now a null geodesic γ. The Raychaudhuri equation, Eq. (2.113), reads:

dθ̄Ā
dt

=
a√
C

(
2
C

a2

[ ..
a

a
− ȧ2

a2
− κ

a2

]
− tr

(
σ̄2
Ā

)
−
θ̄2
Ā

2

)

≤ 2

√
C

a

[ ..
a

a
− ȧ2

a2
− κ

a2

]
. (6.74)

Choosing again a t3 ≤ t1 such that γ(t3) is not conjugate to γ(t2), it follows that for t < t3

θ̄Ā(t) = −
ˆ θ̄Ā(t3)

θ̄Ā(t)

dθA + θ̄Ā(t3)

≥ −2
√
C

ˆ t3

t

1

a

[ ..
a

a
− ȧ2

a2
− κ

a2

]
dt′ + θ̄Ā(t3). (6.75)

This then implies that

log
(
det Ā(t)

)
= −

ˆ t3

t

a√
C
θ̄Ādt

′ + log
(
det Ā(t3)

)
≤ 2

ˆ t3

t

a

ˆ t3

t′

1

a

[ ..
a

a
− ȧ2

a2
− κ

a2

]
dt′′dt′ − θ̄Ā(t3)

1√
C

ˆ t3

t

adt′ + log
(
det Ā(t3)

)
. (6.76)

Condition (6.61) then implies

lim
t→t0

log
(
det Ā(t)

)
≤ 2 lim

t→t0

ˆ t3

t

a

ˆ t3

t′

1

a

[ ..
a

a
− ȧ2

a2
− κ

a2

]
dt′′dt′ − θ̄Ā(t3)

1√
C

ˆ t3

t0

adt′ + log
(
det Ā(t3)

)
= −∞.

(6.77)
Hence limt→t0 log

(
det Ā(t)

)
= −∞ such that γ(τ(t0)) is conjugate to every point on γ along this geodesic.
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Notice that one can rewrite condition (6.61) by partially integrating the �rst term such that one obtains

−∞ = lim
t→t0

ˆ t1

t

a(t′)

ˆ t1

t′

1

a

[ ..
a

a
− ȧ2

a2
− κ

a2

]
dt′′dt′

= lim
t→t0

ˆ t1

t

a(t′)

ˆ t1

t′

1

a

[
d

dt
H − κ

a2

]
dt′′dt′

=
ȧ(t1)

a2(t1)

ˆ t1

t0

adt′ − lim
t→t0

ˆ t1

t

ȧ

a
dt′ + lim

t→t0

ˆ t1

t

a(t′)

ˆ t1

t′

ȧ2 − κ
a3

dt′′dt′

=
ȧ(t1)

a2(t1)

ˆ t1

t0

adt′ − log(a(t1)) + lim
t→t0

log(a(t)) + lim
t→t0

ˆ t1

t

a(t′)

ˆ t1

t′

ȧ2 − κ
a3

dt′′dt′, (6.78)

such that condition (6.61) is de�nitely satis�ed when

lim
t→t0

ˆ t1

t

a

ˆ t1

t′

ȧ2 − κ
a3

dt′′dt′ (6.79)

is not ∞.
Also condition (6.62) is satis�ed as soon as f is negative for t ∈ (t0, t0 + ε).
Theorem 6.3.1 can also be proven under di�erent conditions. One set of such conditions would be for

instance

lim
t→t0

ˆ t1

t

a√
C + a2

ˆ t1

t′

1√
C + a2

(
3
..
a+ 2

C

a

[ ..
a

a
− ȧ2

a2
− κ

a2

])
dt′′dt′ = −∞; (6.80)

lim
t→t0

ˆ t1

t

a

ˆ t1

t′

1

a

[ ..
a

a
− ȧ2

a2
− κ

a2

]
dt′′dt′ = −∞

which would have made the proof really easy.
Theorem 6.3.1 is applicable to FLRW spacetimes with physical realistic scale factors. Take for instance

a(t) = t1/n for n > 1 (n = 2 corresponds to the scale factor of an FLRW spacetime with κ = 0 and a perfect
homogeneous radiation �uid and n = 3/2 to κ = 0 and a perfect homogeneous matter �uid). We then �nd
that for n 6= 3

ˆ t1

t

a

ˆ t1

t′

1

a

[ ..
a

a
− ȧ2

a2
− κ

a2

]
dt′′dt′ =

ˆ t1

t

t′1/n
ˆ t1

t′

[
− 1

n

1

t1/n+2
− κ

t3/n

]
dt′′dt′

=

ˆ t1

t

t′1/n
[

1

1 + n

1

t1/n+1
+

n

3− n
κ

t3/n−1

]t1
t′
dt′

= α

ˆ t1

t

t′1/ndt′ −
ˆ t1

t

(
1

1 + n

1

t
+

n

3− n
κ

t2/n−1

)
dt′ (6.81)

= α
n

1 + n

(
t
1/n+1
1 − t1/n+1

)
−
[

1

1 + n
log t+

n

3− n
n

2n− 2

κ

t2/n−2

]t1
t

,

where

α =
1

1 + n

1

t
1/n+1
1

+
n

3− n
κ

t
3/n−1
1

. (6.82)

We �nd that this scale factor obeys condition (6.61). Similarly, one can show that condition (6.61) is satis�ed
for n = 3.

Also

3
..
a+ 2

C

a

[ ..
a

a
− ȧ2

a2
− κ

a2

]
= 3

1

n
(

1

n
− 1)

1

t−1/n+2
− 2C

(
1

n

1

t1/n+2
+

κ

t3/n

)
(6.83)

which goes to −∞ when t→ 0 and that implies that condition (6.62) is satis�ed.
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Notice that when a(t) = t

ˆ t1

t

a

ˆ t1

t′

1

a

[ ..
a

a
− ȧ2

a2
− κ

a2

]
dt′′dt′ = −

ˆ t1

t

t′
ˆ t1

t′

1 + κ

t3
dt′′dt′ =

1

2

ˆ t1

t

t′
[

1 + κ

t2

]t1
t′
dt′

=
1

4

1 + κ

t21

(
t21 − t2

)
− 1

2
(1 + κ) (log t1 − log(t)) , (6.84)

such that condition (6.61) is not satis�ed for κ ≤ −1.

We will now give a more general proof when κ ≤ 0. For that we �rst need to examine when a timelike
non-comoving geodesic γ(τ) has a well de�ned point γ(τ0) at the singularity. We observe from Eq. (6.12)
that for κ ≤ 0, r →∞ at a certain angle. This is because

(K2 cos(ϕ)−K1 sin(ϕ))
2

= −κL2, (6.85)

will be satis�ed at two angles ϕ (when −κL2 = 0 only for one angle, but that does not matter for the
argument), because the left-hand side takes values between 0 and K2

1 +K2
2 , and

K2
1 +K2

2 =
a4

1− κr2
(γ̇r)

2
+
L2

r2
− κL2 (6.86)

which means that

0 ≤ −κL2 ≤ K2
1 +K2

2 . (6.87)

The divergence of r at a �nite angle implies that limτ→τ0 ϕ(τ) is converging because from Eq. (6.4) we see
that ϕ is monotonously increasing or decreasing and ϕ is bounded by the value where r → ∞. This means
that γ(τ0) is a well de�ned point, precisely when r does not diverge for τ → τ0.

Theorem 6.3.2. Let γ(τ) be a timelike non-comoving geodesic in a spacetime with FLRW metric with κ ≤ 0
such that a(t0) = 0 for a certain t0. If γ(τ0) = γ(τ(t0)) is a well de�ned point in the manifold, then every
point γ(τ(t)) for t 6= t0 is conjugate to γ(τ0).

Proof. Let γ(τ) be a timelike non-comoving geodesic with constants K1, K2 and L ((6.4), (6.5) and (6.6)),
let γ(τ1) be an initial point where τ1 corresponds to a time t1 and let τ0 correspond to t0:

τ0 = τ1 +

ˆ t0

t1

a√
K2

1 +K2
2 + κL2 + a2

dt. (6.88)

Let now ϕ0 = γϕ(τ0).

To prove this theorem we will construct a one parameter family of geodesics in such a way that we can
calculate the Jacobi �eld related to it. In Fig. 6.2 one can �nd an example where we used the FLRW metric
with a(t) =

√
t, κ = −1 and showed the evolution of r and ϕ for geodesics with initial point (t, r, θ, ϕ) =

(2, 0.5, π/2, 0.1) and initial velocity γ̇rw(τ1) = 1 +w, γ̇θw(τ1) = 0 and γ̇ϕw(τ1) = 0.1 (1 + w) for w ∈ {−0.5, 0, 1}.
At the singularity t = 0 the Jacobi �eld that corresponds to this family of geodesics is well de�ned, such
that its norm vanishes (assume that all geodesics in the family have equal length) and we have that γ(0) is
conjugate to γ(τ1).
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Figure 6.2: Illustration for this proof. Choose initial parameters such that all geodesics have equal
length and such that one can calculate ϕ and r at the singularity. That way one gets a Jacobi �eld
such that its norm vanishes at the singularity.

We will now do this for a general geodesic in an FLRW spacetime with κ ≤ 0.
We will construct a one-parameter family of geodesics γw(τ) = Γ(w, τ), where w ∈ (−δ, δ), (δ to be

determined later) such that γ0(τ) = γ(τ) and γw(τ1) = γ(τ1) = (t1, r1, π/2, ϕ1). Since L 6= 0 we have that
γ̇ϕ0 (τ1) 6= 0. We choose γθw(τ) = π/2 and as initial conditions

γ̇rw(τ1) = γ̇r(τ1)f(w), (6.89)

γ̇ϕw(τ1) = γ̇ϕ(τ1)f(w),

where f : (−δ, δ) → R and f(0) = 1. The only other parameter left to vary is the normalization ε(w)
(ε(0) = −1). Notice, that the constants (6.4), (6.5) and (6.6) that follow from the Killing vectors for γw are
related to the constants of γ = γ0 by

K1,w = K1f(w)

K2,w = K2f(w) (6.90)

Lw = Lf(w).

We now �rst require that γtw(τ0) = t0 to get J t(τ0) = 0. We do this by considering the function

h1(f, ε) = τ1 +

ˆ t0

t1

a√
(K2

1 +K2
2 + κL2) f2 − εa2

dt′. (6.91)

This function gives the value of the a�ne parameter corresponding to the geodesic with parameter f, ε at
t = t0. We want this parameter to be the same:

h1(f, ε) = τ0. (6.92)

The integrand of h1 is partial di�erentiable with respect to f and ε and the partial derivatives are continuous
for (f, ε) ∈ V a neighborhood of (f, ε) = (1,−1). This means that h1 is continuous di�erentiable for (f, ε) ∈ V.
The partial derivative with respect to ε is given by

∂h1

∂ε
=

1

2

ˆ t0

t1

a3

((K2
1 +K2

2 + κL2) f2 − εa2)
3/2

dt′, (6.93)

which is certainly non-zero in (1,−1) since the integrand is positive for all t ∈ [t0, t1]. By the implicit
function theorem we then have a continuous di�erentiable function ε : (1 − δ1, 1 + δ1) → W for a certain
δ1 (choose it such that

(
K2

1 +K2
2 + κL2

)
f2 > 0), where W an open interval around −1. Thus all geodesics

with parameters f, ε(f) have the same length.
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We will now construct f in terms of w such that γϕw(t0) = ϕ0(w+1) and therefore we consider the function

h2(f) =

ˆ t0

t1

1

a
√

(K2
1 +K2

2 + κL2) f2 − ε(f)a2
dt′. (6.94)

This is again a continuous di�erentiable function of f for f ∈ (1− δ1, 1 + δ1). Since γtw(τ0) = t0 we can use
Eq. (6.14) to obtain:

w(f) =


1
ϕ0

arctan

[
L
√
−κK2

1−κK2
2−κ2L2 tanh

(√
−κK2

1−κK2
2−κ2L2fh2(f)

)
−K1K2

−(K2
1+κL2)

]
− 1 κ < 0

1
ϕ0

arctan
[

h2(f)K2
2f

L+h2(f)K2K1f

]
− 1 κ = 0, K2 6= 0

1
ϕ0

arctan
[
− L
K2

1fh2(f)

]
− 1 κ = 0, K2 = 0.

(6.95)

We want to use the inverse function theorem and for that we need to show that dw
df (1) 6= 0. Consider �rst

the case κ = 0 and K2 6= 0. We have dw
df (1) 6= 0 precisely when

d

df

[
h2(f)K2

2f

L+ h2(f)K2K1f

]
f=1

6= 0. (6.96)

Now

d

df

[
h2(f)K2

2f

L+ h2(f)K2K1f

]
f=1

=

[
dh2

df f + h2(f)

(L+ h2(f)K2K1f)
2K

2
2L

]
f=1

=

dh2

df (1) + h2(1)

(L+ h2(1)K2K1)
2K

2
2L. (6.97)

We have that

dh2

df
(1) + h2(1) =

ˆ t0

t1

−K2
1 −K2

2 + 1
2
dε
df (1)a2 +K2

1 +K2
2 − ε(1)a2

a (K2
1 +K2

2 − ε(1)a2)
3/2

dt =

ˆ t0

t1

1
2
dε
df (1)a2 + a2

a (K2
1 +K2

2 + κL2 + a2)
3/2

dt

(6.98)
and we must have that dε

df (1) > 0 because otherwise we can never have that h1(f, ε(f)) is independent of
f . Since K2 6= 0 and L 6= 0 we have that w is a continuous di�erentiable function of f around 1 and
its derivative is non-zero in f = 1. By the inverse function theorem, there exists a continuous function
f : (−δ, δ)→ (1− δ1, 1 + δ1) and such that γϕw(τ0) = ϕ0(w + 1).

For κ = 0, K2 = 0 we �nd in a similar way that

d

df

[
− L

K2
1fh2(f)

]
f=1

=

L
(
h2(f) + dh2

df

)
K2

1 (fh2(f))
2


f=1

=
L
(
h2(1) + dh2

df (1)
)

K2
1 (h2(1))

2 , (6.99)

so w(f) can be inverted by similar reasoning as in the previous case.
For κ < 0, dwdf (1) 6= 0 precisely when

d

df

[√
−κK2

1 − κK2
2 − κ2L2fh(f)

]
f=1

6= 0. (6.100)

Now

d

df

[√
−κK2

1 − κK2
2 − κ2L2fh2(f)

]
f=1

=
√
−κK2

1 − κK2
2 − κ2L2

[
dh2

df
(1) + h2(1)

]
(6.101)

Hence, we have that w(f) can be inverted by similar reasoning as for κ = 0.
Hence we have constructed the family of geodesics γw. This family corresponds to a Jacobi �eld J such

that J(τ1) = 0. Furthermore using Eq. (6.12) we �nd that:

γrw =
L√

(K2 cos(ϕw)−K1 sin(ϕw))
2

+ κL2

, (6.102)

87



CHAPTER 6 FLRW SPACETIME

which we can use to calculate J at τ0:

J(τ0) = ∂wγw(t)|w=0,τ=τ0 =

0,
L (K2 cos(ϕ0)−K1 sin(ϕ0)) (K2 sin(ϕ0) +K1 cos(ϕ0))[

(K2 cos(ϕ0)−K1 sin(ϕ0))
2

+ κL2
]3/2 ϕ0, 0, ϕ0

 , (6.103)

which is well-de�ned. This means that g (J(τ0), J(τ0)) = 0 which proves that γ(τ1) is conjugate to γ(τ0)
along γ. Notice that we not necessarily have that g(J, γ̇) = 0, but at least J is a spacelike vector at the
singularity.

We want to stress that theorem 6.3.2 is less satisfactory than theorem 6.3.1 because in this case the Jacobi
�eld that has vanishing norm is not necessarily perpendicular to the geodesic. To improve on this theorem
one should try to use a similar construction to �nd a Jacobi �eld with vanishing norm that is perpendicular
to γ̇.

Theorem 6.3.2 only holds for non-comoving timelike geodesics γ with a well de�ned point γ(t0) at the
singularity. We would like to prove a similar theorem for timelike geodesics that do not satisfy this condition,
hence have that r →∞ for t→ t0. From Eq. (6.12) it follows that geodesics have this behavior if and only

if (K2 cos(ϕ)−K1 sin(ϕ))
2

+ κL2 → 0. Let ϕ be an angle such that (K2 cos(ϕ)−K1 sin(ϕ))
2

+ κL2=0, then

K2
1

[
K2

2 cos2(ϕ) +K2
1 sin2(ϕ)− 2K1K2 sin(ϕ) cos(ϕ) + κL2

]
=

−κL2
(
K2

2 cos2(ϕ) +K2
1 sin2(ϕ)− 2K1K2 cos(ϕ) sin(ϕ) + κL2

)
. (6.104)

This can be rewritten as

K2
1K

2
2 cos2(ϕ) +

(
K2

1 + κL2
)2 (

1− cos2(ϕ)
)
− 2K1K2

(
K2

1 + κL2
)

sin(ϕ) cos(ϕ) =

L2
(
−κK2

1 − κK2
2 − κ2L2

)
cos2(ϕ). (6.105)

Dividing by cos2(ϕ) yields[
K1K2 −

(
K2

1 + κL2
)

tan(ϕ)
]2

= L2
(
−κK2

1 − κK2
2 − κ2L2

)
. (6.106)

This implies that for κ < 0, limt→t0 r =∞ is equivalent to

lim
t→t0

K1K2 −
(
K2

1 + κL2
)

tan(ϕ)

L
√
−κK2

1 − κK2
2 − κ2L2

= −1, (6.107)

but then it follows from Eq. (6.15) and Eq. (6.14) that

lim
t→t0

ˆ t

t1

1

a
√
K2

1 +K2
2 + κL2 + a2

dt′ = −∞. (6.108)

When κ = 0, r → ∞ is equivalent to K2 cos(ϕ) −K1 sin(ϕ) → 0. Thus also in this case it follows from Eq.
(6.15) and Eq. (6.14) that

lim
t→t0

ˆ t

t1

1

a
√
K2

1 +K2
2 + κL2 + a2

dt′ = −∞. (6.109)

In principle one can do a similar construction as in theorem (6.3.2) for a geodesic γ with property (6.109)
and initial point γ(τ1). Namely construct a family of geodesics γw such that γ0 = γ, γw(τ1) = γ(τ1) and

γ̇rw(τ1) = γ̇r(τ1)f(w),

γ̇ϕw(τ1) = γ̇ϕ(τ1)f(w), (6.110)

where f : (−δ, δ) → R>0 and f(0) = 1. The constants (6.4), (6.5) and (6.6) are related to the constants of
γ = γ0 by

K1,w = K1f(w)

K2,w = K2f(w) (6.111)

Lw = Lf(w).
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The normalization ε(w) of γw can be �xed in the same way as in theorem 6.3.2 such that γtw(τ0) = t0.
From Eqs. (6.14), (6.15) and (6.109) it follows now that

κ < 0 : 1

f(w)
√
−κK2

1−κK2
2−κ2L2

tanh−1

(
K1K2−(K2

1+κL2) tan(ϕw)

L
√
−κK2

1−κK2
2−κ2L2

)
→ −∞

κ = 0, K2 6= 0 : L sin(ϕw)
f(w)K2(K2 cos(ϕw)−K1 sin(ϕw)) → −∞

κ = 0, K2 = 0 : − L
f(w)K2

1 tan(ϕw)
→ −∞.

(6.112)

This means that 
κ < 0 :

K1K2−(K2
1+κL2) tan(ϕw)

L
√
−κK2

1−κK2
2−κ2L2

→ −1

κ = 0, K2 6= 0 : L sin(ϕw)
K2(K2 cos(ϕw)−K1 sin(ϕw)) → −∞

κ = 0, K2 = 0 : − L
K2

1 tan(ϕw)
→ −∞

(6.113)

and this will give a unique solution for ϕw independent of w (and the function f). This means that γϕw(τ)→ ϕ0

when τ → τ0. The radius, Eq. (6.12), does not depend on f , but it goes to ∞ for all w. Ideally one would
like to prove that γrw/γ

r → 1, because in that case one would have a Jacobi �eld corresponding to γw that
vanishes in the limit of τ → τ0. It seems hard to do this unfortunately.

6.3.2 Conjugate Points Imply a Singularity

In the previous section we proved two theorems that show that when a(t0) = 0 for some t0 it is possible
that all points on a geodesic are conjugate to the point γ(t0). This seems like strange behavior and must
come from the metric not being well-de�ned at t0. Indeed, from Morse Index Theory it follows that there
can only be a �nite number of points of γ between some point γ(t1) and γ(t0) conjugate to γ(t0) when the
metric is well-de�ned (see e.g. [22]). In the timelike version of this theory one considers a timelike geodesic
γ : [τi, τf ]→M and the index form I : V ⊥(γ)× V ⊥(γ)→ R

I(X,Y ) = −
ˆ τf

τi

[g (DτX,DτY )− g (R (X, γ̇) γ̇, Y )] dτ. (6.114)

Let V ⊥0 (γ) be the subspace of V ⊥(γ) with elements X such that X(τi) = X(τf) = 0. The index of γ is then

Ind (γ) = lim sup
{

dimA : A is a vector subspace of V ⊥0 (γ) and I|A×A is positive de�nite
}
. (6.115)

If Jτ (γ) denotes the R−vector space of smooth Jacobi �elds along γ such that J(τi ) = J(τ) = 0 for
τi < τ ≤ τf , then one can show that Ind (γ) is �nite and

Ind (γ) =
∑

τi<τ≤τf

dim Jτ (γ). (6.116)

For a null geodesic γ one can use a similar argument using null Morse index theory. This proves that whenever
we �nd that all the points of a geodesic γ are conjugate to a certain point γ(t0) we have that a(t0) = 0 and
hence a singularity.

We now prove a theorem that shows in which cases an FLRW spacetime with κ = 0 has conjugate points.

Theorem 6.3.3. Let γ be a timelike geodesic with constant C in an FLRW spacetime with κ = 0, let a(t) > 0
for all t and let γ(τi) and γ(τf) be two points on this geodesic. These points are conjugate if and only if

ˆ tf

ti

1

a
√
C + a2

dt = 2C

ˆ tf

ti

ȧ

a3

ˆ t

ti

a
(
1− αa2

)
(C + a2)

3/2
dt′dt, (6.117)

where

α =

´ tf
ti

a
(C+a2)3/2 dt´ tf

ti
a3

(C+a2)3/2 dt
. (6.118)
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Proof. We will use Cartesian coordinates (t, x1, x2, x3) . We can choose these coordinates such that for γ,
x2 = x3 = 0. We furthermore have that

γ̇t =

√
C + a2

a

γ̇x1 =

√
C

a2
(6.119)

(Eq. 6.45) and as usual we choose g (γ̇, γ̇) = −1. Let γ(τi) =
(
ti, x

1
i , 0, 0

)
. A Jacobi �eld that vanishes at

two points γ(τi), γ(τf) corresponds to a variation Γ(w, τ) such that Γ(0, τ) = γ(τ), Γ(w, τi) = γ(τi) and
∂wΓ(0, τf) = 0. We know that γw(τ) = Γ(w, τ) satis�es

γ̇tw =

√
C(w)− ε(w)a2

a
;

γ̇x1
w =

C1(w)

a2
;

γ̇x2
w =

C2(w)

a2
; (6.120)

γ̇x3
w =

C3(w)

a2
,

where C(w) = C1(w)2 + C2(w)2 + C3(w)2. Consider �rst the function

F (u,w) =

ˆ u

ti

a√
C(w)− ε(w)a2

dt. (6.121)

We know that for τi ≤ τ ≤ τf , τ − τi = F (t(w, τ), w) ≡ G(w) for all w, hence

0 =
dG

dw
=
∂F

∂u

∂t

∂w
+
∂F

∂w
=

a√
C(w)− ε(w)a2

∂t

∂w
− 1

2

ˆ t

ti

a
(
Ċ(w)− ε̇(w)a2

)
(C(w)− ε(w)a2)

3/2
dt. (6.122)

Evaluation in w = 0 yields

a√
C + a2

∂t

∂w
|w=0(τ) =

1

2

ˆ t

ti

a
(
Ċ(0)− ε̇(0)a2

)
(C + a2)

3/2
dt. (6.123)

Hence

∂t

∂w
|w=0(τ) =

1

2

√
C + a2

a

ˆ t

ti

a
(
Ċ(0)− ε̇(0)a2

)
(C + a2)

3/2
dt (6.124)

(here γt(τ) = t). Evaluation in τ = τf (t = tf) yields

0 =

ˆ tf

ti

a
(
Ċ(0)− ε̇(0)a2

)
(C + a2)

3/2
dt. (6.125)

Therefore:

ε̇(0) = αĊ(0). (6.126)

We can integrate Eq. (6.120):

Γ(w, τ) =

(
t(w, τ),

ˆ τ

τi

C1(w)

a2(t(w, τ))
dτ ′ + x1

0,

ˆ τ

τi

C2(w)

a2(t(w, τ))
dτ ′,

ˆ τ

τi

C3(w)

a2(t(w, τ))
dτ ′
)
. (6.127)
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It then follows that

∂wΓ(w, τ) =

(
∂wt,

ˆ τ

τi

(
Ċ1(w)

a2(t(w, τ ′))
− 2

C1(w)ȧ∂wt(w, τ
′)

a3(t(w, τ ′))

)
dτ ′, (6.128)

ˆ τ

τi

(
Ċ2(w)

a2(t(w, τ ′))
− 2

C2(w)ȧ∂wt(w, τ
′)

a3(t(w, τ ′))

)
dτ ′,

ˆ τ

τi

(
Ċ3(w)

a2(t(w, τ ′))
− 2

C3(w)ȧ∂wt(w, τ
′)

a3(t(w, τ ′))

)
dτ ′

)
.

Evaluation in (w, τ) = (0, τf) yields

0 = ∂wΓ(0, τf) (6.129)

=

(
0,

ˆ τf

τi

(
Ċ1(0)

a2(τ)
− 2

C1(0)ȧ∂wt(0, τ)

a3(τ)

)
dτ, Ċ2(0)

ˆ τf

τi

1

a2(τ)
dτ, Ċ3(0)

ˆ τf

τi

1

a2(τ)
dτ

)
,

which implies Ċ2(0) = Ċ3(0) = 0. Eq. (6.124) and the x1 coordinate in Eq. (6.129) yield

ˆ tf

ti

Ċ1(0)

a
√
C + a2

dt = 2C1(0)

ˆ tf

ti

ȧ∂wt(0, τ(t))

a2
√
C + a2

dt (6.130)

= C1(0)

ˆ tf

ti

ȧ

a3

ˆ t

ti

a
(
Ċ(0)− ε̇(0)a2

)
(C + a2)

3/2
dt′dt.

Using Eq. (6.126) we �nd

Ċ1(0)

ˆ tf

ti

1

a
√
C + a2

dt = 2C2
1 (0)Ċ1(0)

ˆ tf

ti

ȧ

a3

ˆ t

ti

a
(
1− αa2

)
(C + a2)

3/2
dt′dt. (6.131)

If Ċ1(0) = 0, we have that ε̇(0) = 0 and we �nd the Jacobi �eld J = 0. Hence Eq. (6.131) yields condition
(6.117) if γ(τi) and γ(τf) are conjugate. If condition (6.117) is satis�ed, it follows with Eq. (6.131) that we
can choose a variation with Ċ1(0) 6= 0, Ċ2(0) = Ċ3(0) = 0 and ε̇(0) = αĊ(0). From Eqs. (6.123), (6.128) and
(6.131) we �nd that ∂wΓ(0, τf) = 0.

Notice that when a is constant, the right-hand side of Eq. (6.117) vanishes, which implies there are no
conjugate points in an FLRW spacetime with this scale factor. This makes sense, because this is Minkowski
space. Also comoving geodesics (that have C = 0) do not have conjugate points. Notice that when one can
choose times ti, tf and a constant C ≥ 0 in such a way that condition (6.117) is satis�ed, there are conjugate
points in a spacetime with a(t) > 0 at all times. This means that conjugate points do not necessarily imply
a singularity. At the other hand, when all points on a geodesic are conjugate to the point at the singularity,
that does imply a singularity.

6.4 Including Torsion

We will now study torsion in a spatially homogeneous, isotropic universe in two settings. First together
with a perfect radiation �uid and then with a perfect matter �uid. Torsion is induced by fermions and by
integrating out torsion in the Einstein equation, and studying the Dirac equation in conformal spacetime it
turns out that for torsion

ρs = −ρ1

a6
, (6.132)

where ρ1 ≥ 0.

6.4.1 Radiation and Torsion

Consider a spatially homogeneous, isotropic universe in which we have a perfect homogeneous �uid of radia-
tion, which density goes as

ρr =
ρ0

a4
, (6.133)
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where ρ0 > 0, and torsion, which density goes as Eq. (6.132). The Friedmann equation, Eq. (6.30) reads

ȧ2

a2
=

8πGN

3

(ρ0

a4
− ρ1

a6

)
− κ

a2
. (6.134)

We will examine the behavior of a using the right-hand side of Eq. (6.134):

f(a) = −κa4 +
8πGN

3
ρ0a

2 − 8πGN

3
ρ1. (6.135)

We have ȧ = 0 exactly when
f(a) = 0, (6.136)

which is solved for κ = 0 by

a = ±
√
ρ1

ρ0
. (6.137)

Since f → ∞ for a → ±∞ and f(0) ≤ 0, this always results in a bounce and therefore a non-singular
spacetime. When κ 6= 0 Eq. (6.136) is solved by

a = ±

√√√√− 8πGN

3 ρ0 ±
√(

8πGN

3 ρ0

)2 − 32πGN

3 κρ1

−2κ
. (6.138)

For κ > 0, this has two positive and two negative real solutions in case that

ρ1 ≤
2πGN

3κ
ρ2

0 (6.139)

and otherwise it has zero real solutions and is f(a) ≤ 0. When Eq. (6.136) has solutions, we �nd that for
a → ±∞, f(a) → −∞ and f(0) ≤ 0 so in this case we have that a solution a(t) will be bounded by two
values. This means that for non-vanishing torsion we do not have a singularity.

For κ < 0, f(a) = 0 always has two real solutions: one positive and one negative. Now f(a) → ∞ for
a→ ±∞ so we �nd that

a(t) ≥
√
−4πGN

3κ
ρ0 ·

√√√√−1 +

√
1− 3κ

2πGN

ρ1

ρ2
0

, (6.140)

which will result in complete geodesics and hence no singularity.
We will now expand on the example that we started with in Section 6.3. We will work in conformal time

gµν = a(η)2ηµν , (6.141)

since in this way we can solve for the scale parameter explicitly. Notice that we can transform back and forth
between time t and conformal time η using the relation

dt = a(η)dη. (6.142)

The Friedmann equation, Eq. (6.134) (we take κ = 0), in conformal time reads

a′2

a4
=

8πGN

3

(ρ0

a4
− ρ1

a6

)
, (6.143)

where we denote

a′ =
da

dη
. (6.144)

Eq. (6.143) is solved by

a(η) =

√
ρ1

ρ0
+

8πGNρ0

3
η2 ≡

√
α+ βη2. (6.145)

We have chosen the integration constants such that the bounce or singularity takes place at η = 0. In Fig.
6.3 one can �nd this a for α = β = 1. Taking α = 0 and transforming to time t using Eq. (6.142), one indeed
�nds that a(t) ∝

√
t.
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Figure 6.3: Scale parameter of a spatially
homogeneous, isotropic universe with radiation and
torsion.

Using that dt = a(η)dη, we �nd that the geo-
metric condition from the singularity theorems, Eq.
(6.24) (which is used to predict conjugate points) in
conformal time is given by:

− 3

(
a′′

a
−
(
a′

a

)2
)

ε

a2
+ 2

C

a4

[
a′′

a
− 2

(
a′

a

)2
]
≤ 0.

(6.146)
For Eq. (6.145) this yields:

− 3
(
α− βη2

)
ε+ 2C

[
α− 2βη2

α+ βη2

]
≤ 0. (6.147)

So for α = 0, we see that we get that

3βη2ε− 4C ≤ 0, (6.148)

which is clearly satis�ed. Of course we also have a
singularity here. For α > 0 we �nd that the condi-
tion gets broken for some timelike geodesics for

η2 <
α

β
=

3ρ1

8πGNρ2
0

(6.149)

(take C small enough). It gets broken for all geodesics when

η2 <
α

2β
=

3ρ1

16πGNρ2
0

. (6.150)

This model has a bounce for ρ1 > 0. Since it becomes singular for ρ1 = 0 it is an excellent example to
examine the relation between conjugate points and singular points. For that we �rst have to construct the
geodesics. Let a geodesic be given by

γ = (η, xi), (6.151)

and let uµ = d
dτ γ

µ, where τ is an a�ne parameter. Then the geodesic equation gives rise to two equations:

du0

dτ
+
a′

a

((
u0
)2

+
∑
i

(
ui
)2)

= 0 (6.152)

dui

dτ
+ 2

a′

a
u0ui = 0. (6.153)

Using that a′u0 = d
dτ a and that we can write

(
ui
)2

=
(
u0
)2

+ ε
a2 , Eqs. (6.152) and (6.153) can be written as

d

dη

[
a4
(
u0
)2

+ a2ε
]

= 0; (6.154)

d

dτ

[
a2ui

]
= 0.

which leads to

u0 =

√
C − a2ε

a2
; (6.155)

ui =
Ci
a2
. (6.156)

Normalization implies

C =
∑
i

C2
i .
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Let us now focus on timelike geodesics: ε = −1. Then Eqs. (6.155) and (6.156) can be written as

u0 =

√
C + a2

a2
; (6.157)

dxi

dη
=

dτ

dη
ui =

Ci√
C + a2

. (6.158)

For the scale parameter that we are considering, Eq. (6.157) reads

dη

dτ
=

√
C + α+ βη2

α+ βη2
(6.159)

and Eq. (6.158) gives us

dxi

dη
=

Ci√
C + α+ βη2

. (6.160)

This is solved by

xi =
Ci√
β

log
(
βη +

√
Cβ + αβ + β2η2

)
+Di. (6.161)

We consider the geodesic

γ =

(
η,

1√
β

log
(
βη +

√
β + αβ + β2η2

)
, 0, 0

)
(6.162)

and construct the matrix A (Eq. 2.39) corresponding to the point γ(−10) for this geodesic. An orthonormal,
parallel transported basis along γ is given by

E0 =

(√
1 + a(η)2

a(η)2
,

1

a(η)2
, 0, 0

)

E1 =

(
1

a(η)2
,

√
1 + a(η)2

a(η)2
, 0, 0

)

E2 =

(
0, 0,

1

a(η)
, 0

)
(6.163)

E3 =

(
0, 0, 0,

1

a(η)

)
.

We now need the Jacobi �elds Ji for i ∈ {1, 2, 3} such that Ji(−10) = 0 and DτJi(−10) = Ei(0). We
solve for the Jacobi �elds numerically (although just as in Section 6.3, one can solve for 2 of the Jacobi
�elds analytically). When we look at the determinant of the matrix A (which is zero at a conjugate point
to γ(−10)) for di�erent values of α and β, we �nd that this function goes through a minimum. A plot of
the determinant of A can be found in Fig. 6.4a. We see that the determinant of A is 0 at η = −10 and
becomes bigger at �rst, then it decreases again and has a minimum a little bit before the bounce at η = 0
after which it keeps increasing. In Fig. 6.4b the more familiar expansion parameter θA is shown. Here we
see that indeed θA is increasing for −1 < η < 1 where the singularity condition is broken. We observe that
there is no conjugate point along this geodesic to γ(−10).
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(a) Determinant of the matrix A corresponding to γ(−10).
The determinant vanishes at the initial point and has a
minimum just before η = 0.

-10 -5 0 5 10
-1

0

1

2

3

Η

Θ
A

(b) The expansion parameter corresponding to γ(−10).
Notice that θA is increasing for −1 < η < 1 where the
singularity condition is broken.

Figure 6.4

This minimum in the determinant is a common feature for di�erent values of α, β if the initial point γ(η1)
is far enough from γ(0). In Fig. 6.5 we show the dimensionless variable η

√
β (1/

√
β is a typical time for the

bounce) at which the determinant of A has a minimum for di�erent values of α, β. We see that this minimum
is further away for larger α because the minimum value of a is

√
α.
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Figure 6.5: The value of η
√
β at which the determinant of A has a minimum as function of α and β.

6.4.2 Matter and Torsion

Consider a spatially homogeneous, isotropic universe where we have a perfect homogeneous �uid of matter,
which density goes as

ρm =
ρ0

a3
, (6.164)

and torsion, which density goes as Eq. (6.132). The Friedmann equation, Eq. (6.30) reads

ȧ2

a2
=

8πGN

3

(ρ0

a3
− ρ1

a6

)
− κ

a2
. (6.165)
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We will examine the behavior of a using the right-hand side of Eq. (6.165):

f(a) =
8πGN

3

(
ρ0a

3 − ρ1

)
− κa4. (6.166)

We have that ȧ = 0 exactly when
f(a)=0. (6.167)

For κ = 0 this results in one solution which means we have a bounce and a(t)3 ≥ ρ1

ρ0
. This immediately implies

that all geodesics are complete as we have seen in Section 6.2. For κ > 0 we see that f has a maximum for a1 =
2πGNρ0

κ and the only other extremum can be found at a=0, but this is a saddle point. f(0) = − 8πGN

3 ρ1 ≤ 0

and f(a1) = 51
3
π4G4

Nρ
4
0

κ3 − 8πGN

3 ρ1. Hence when

ρ1 ≤ 2
π3G3

Nρ
4
0

κ3
, (6.168)

f crosses zero twice for 0 ≤ a0 ≤ a1 ≤ a2 such that a bounces back and forth between a0 and a2 and when

ρ1 > 2
π3G3

Nρ
4
0

κ3
, (6.169)

f is negative everywhere. This implies that for non-vanishing torsion we always have complete geodesics.
For κ < 0 we see that the function f has a minimum at a1 = 2πGNρ0

κ < 0 and the only other extremum is

at a = 0. The function f has the value− 8πGN

3 ρ1 ≤ 0 in 0 and 5 1
3
π4G4

Nρ
4
0

κ3 − 8πGN

3 ρ1 < 0 in a1. This implies that
f is zero twice for a0 ≤ a1 < 0 ≤ a2. Hence we again have a bounce for non-vanishing torsion and therefore
no singularities. Also all geodesics are complete.

The Friedmann equation corresponding to matter, torsion and κ = 0, Eq. (6.165), is solved by

a(t) =

(
ρ1

ρ0
+

9

4

8πGNρ0

3
t2
)1/3

≡
(
α+ βt2

)1/3
(6.170)

where the bounce (α > 0) or singularity (α = 0) takes place at t = 0.
We can again look at the singularity condition (6.23) to see what we get in this case:

0 ≥ 2C(α− βt2) + (−3α+ βt2)(α+ βt2)2/3ε. (6.171)

This leads to a violation of the condition for certain timelike geodesics (C small enough) when

t2 < 3
α

β
=

ρ1

2πGNρ2
0

(6.172)

and for all geodesics when

t2 <
α

β
=

ρ1

6πGNρ2
0

. (6.173)

One �nds similar behavior as in the radiation and torsion case when considering the matrix A (Eq. (2.39))
corresponding to an initial point γ(t1). The determinant of A can again have a minimum before the bounce
at t = 0.
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Conclusion

In this thesis we studied the singularity theorems of Hawking and Penrose in the context of spacetimes with
non-vanishing torsion. Assuming that test particles also move on geodesics for general torsion, we used an
incomplete non-spacelike geodesic as de�nition of a singularity. We started with a very general approach
to see whether we could generalize the propositions proven by Hawking and Penrose and used to prove the
singularity theorems in the context of general relativity to spacetimes with arbitrary torsion. To do this we
needed to study the generalized Jacobi and Raychaudhuri equations. We found an extra term with respect
to the literature in the Raychaudhuri equation for a timelike geodesic and arbitrary torsion. We succeeded
in proving the propositions of Hawking and Penrose for the case of totally anti-symmetric torsion and found
that the resulting singularity theorems agreed with the ones proven in a di�erent way in [14]. An important
step in doing that was to derive that the vorticity ωA = − 1

2Sγ , where γ is a geodesic. Our way of proving
the singularity theorems is more cumbersome than what has been done in [14], but we did it because we
were hoping that we could generalize the theorems to spacetimes with non totally anti-symmetric torsion.
In that case the proofs in [14] are not valid anymore because they assumed particles to move on curves of
maximal length instead of on geodesics. Only for totally anti-symmetric torsion both sets of curves are equal.
Unfortunately, we had to conclude that it is impossible to generalize the Hawking-Penrose theorems to non
totally anti-symmetric torsion in a very direct way (using the theorems that already exist). One has to come
up with completely new arguments to attack this problem. We only succeeded in giving a construction of
null geodesically incomplete spacetimes with vectorial torsion, by observing that we can map null geodesics
with respect to the Levi-Civita connection to null geodesics with respect to the connection with vectorial
torsion. It would be very interesting if one could generalize the singularity theorems to spacetimes with non
totally anti-symmetric torsion.

We also reviewed the ways to derive the equations of motion for Einstein-Cartan theory. We compared the
metric formalism, in which the metric and torsion are taken as dynamical variables and metric compatibility
is assumed, with the metric-a�ne formalism, in which the metric and connection are taken as dynamical
variables and no metric compatibility is assumed. It turned out that for the case of totally anti-symmetric
torsion (this is the torsion one gets for the matter in the Standard model) the both formalisms are actually
equivalent. Metric compatibility follows from the equations of motion in the metric-a�ne formalism. To
derive this equivalence one has to use a gauge symmetry of the action and since this symmetry is probably
broken when adding renormalization corrections to the action, the equivalence does possibly not hold anymore
when one introduces quantum corrections. This part was not new, although there are a lot of mistakes in
the literature. It would be interesting to see what happens with the conditions of the singularity theorems
when one includes quantum corrections, so this is something for future work. If the two formalisms are not
equivalent anymore, one has to use the metric formalism to make the translation from geometry to matter
in the singularity theorems since in the proofs one uses metric compatibility extensively.

In general relativity one has the Bianchi identity and conservation of the energy-momentum tensor that
follow from di�eomorphism invariance of the theory. We derived a generalization of these equalities to
spacetimes with torsion.

We concluded by studying the singularity theorems in FLRW spacetimes, mostly with respect to an initial
singularity. To do this we put torsion to zero. We �rst argued that one should not consider all geodesics
when looking for an incomplete one, but that one should only consider the comoving ones (this part can
also be found in our paper [15]). This is because non-comoving particles that follow an incomplete geodesics
have an energy that blows up when going back to the past. This means that (if they kept following that
geodesic) their energy will be larger than the Planck energy at some initial time at which point they form a
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black hole. This means that those particles do not reach the beginning of their incomplete trajectory which
is why they should not indicate a singularity. After de�ning what a singularity is in FLRW spacetimes, we
examined the relation between conjugate points and singularities which plays an important role in many
of the singularity theorems. We showed that for a class of singular FLRW spacetimes all points on certain
geodesics are conjugate to the point of the geodesic at the singularity. We also argued that when all points
on a geodesic are conjugate to a certain point one must have a singularity. Lastly we showed under which
condition a geodesic in an FLRW spacetime with �at spacelike three-surfaces has conjugate points. We have
to mention that we used a slightly di�erent de�nition of conjugate points. Normally, this is de�ned as two
points along a geodesic where a Jacobi �eld vanishes. Loosely speaking, one can see this as a one-parameter
family of geodesics leaving from one point and coming back at another point. We extended this de�nition
and also included cases where the norm of a Jacobi �eld vanishes at two points along the geodesic (this is not
equivalent at the singularity) because it is the distance between geodesics that matters. As far as we know
the part on the relation between conjugate points and singularities is completely new. There is still some
work to do, since we did not have time to treat all kind of models extensively. One can try to prove similar
theorems as we did here for other classes of FLRW spacetimes. For instance examine under what conditions
one has conjugate points in spacetimes with positive or negative curved spatial three-surfaces. One can also
examine what happens in spacetimes that are small perturbations of FLRW spacetime.

After this we introduced torsion in FLRW spacetime as an energy density, combined it with a perfect
radiation �uid and a perfect matter �uid, and examined what happened with singularities and conjugate
points. This part was mainly meant as example and also to see what happens with the initial singularity. We
actually found that one gets a bounce, but this has been noticed before and more rigorously, even including
quantum corrections, e.g. [16].
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Appendix

In this appendix we intend to give a very brief overview of tensors and di�erential forms. We will omit all
proofs, see e.g. [46] for a very thorough introduction to manifolds.

Tensors

De�nition. Let V be a vector space. A covariant k-tensor T on V is a multi-linear function

T : V × ...× V → R

where we have k copies of V . The vector space of covariant k-tensors on V is denoted by T kV

De�nition. The tensor product ⊗ of a k1-tensor T1 and a k2-tensor T2 is

(T1 ⊗ T2) (X1, ..., Xk1+k2
) = T1(X1, ..., Xk1

)T2(Xk1+1, ..., Xk1+k2
).

Proposition. Let (Ei) be a basis for a vector space V and let
(
εi
)
be its dual basis (so εj(Ei) = δji ). Then

the set of all covariant k-tensors of the form

εi1 ⊗ ...⊗ εik

forms a basis of T kV .

Since the dual space V ∗ is also a vector space, we can give the following de�nition.

De�nition. Let V be a vector space. A contravariant l-tensor T on V is a multi-linear function

T : V ∗ × ...× V ∗ → R

where we have l copies of V ∗. The space of contravariant l-tensors on V is denoted by TlV.

De�nition. Let V be a vector space. A mixed tensor T of type (k,l) on V is a multi-linear function

T : V × ...× V × V ∗ × ...× V ∗ → R

where we have k copies of V and l copies of V ∗. The space of mixed (k,l)-tensors on V is denoted by T kl V.

Let now M denote an n-dimensional smooth manifold. For each point p ∈M , TpM is a vectorspace with
a corresponding space of k-vectors.
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De�nition. The bundle of covariant k-tensors on M is

T kM =
∐
p∈M

T k(TpM);

The bundle of contravariant l-tensors on M is

TlM =
∐
p∈M

Tl(TpM);

The bundle of mixed (k,l)-tensors on M is

T kl M =
∐
p∈M

T kl (TpM).

De�nition. A covariant k-tensor �eld is a map

T : M → T kM.

This map can locally be expressed as

T = Tµ1...µkdx
µ1 ⊗ ...⊗ dxµk .

A covariant k-tensor �eld is smooth when the components Tµ1...µk are smooth in every coordinate chart.

Smooth contravariant l-tensor�elds and smooth mixed (k,l)-tensor�elds are de�ned in a similar way.

De�nition. The space of smooth covariant k-tensor �elds is denoted by

T k(M).

The space of smooth contravariant l-tensor �elds is denoted by

T l(M).

The space of smooth mixed (k,l)-tensor �elds is denoted by

T kl (M).

An example of a covariant 2-tensor that we use over and over in this thesis is of course the metric.

Di�erential Forms

Di�erential forms are tensors that are totally anti-symmetric. They are needed to de�ne integration on
manifolds. We will again �rst focus on a vector space V with dimension n.

De�nition. An alternating k-tensor on a vector space V is a covariant k-tensor T such that

T (X1, ..., Xi, ..., Xj , ..., Xk) = −T (X1, ..., Xj , ..., Xi, ..., Xk)

Denote the space of alternating k-tensors by Λk(V ).

Notice that the space of these tensors is again a vector space. We will now de�ne a basis for this vector
space.

Proposition. Let I = (i1, ..., ik) such that 1 < i1 < ... < ik < n (this is called a multi-index). The covariant
k-tensors

εI(X1, ..., Xk) = det


εi1(X1) . . . εi1(Xk)

. .

. .

. .
εik(X1) . . . εik(Xk)


form a basis of Λk(V ).
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We will now de�ne a product on the space of alternating tensors.

De�nition. Let Sk denote the symmetric group. The alternating projection of a covariant k-tensor T is
given by

Alt(T )(X1, ..., Xk) =
1

k!

∑
σ∈Sk

sign(σ)T (Xσ(1), ..., Xσ(k)).

De�nition. The wedge product of a tensor ω ∈ Λk(V ) and η ∈ Λl(V ) is

ω ∧ η =
(k + l)!

k!l!
Alt(ω ⊗ η).

Lemma. For multi-indices I, J ,
εI ∧ εJ = εIJ

where IJ = (i1, ..., ik, j1, ..., jl).

Proposition. The wedge product is bilinear, associative and anti-commutative: for ω ∈ Λk(V ) and η ∈ Λl(V )

ω ∧ η = (−1)klη ∧ ω.

Furthermore for a multi-index I
εi1 ∧ ... ∧ εik = εI ,

and for any covectors ω1, ωk ∈ V ∗.

ω1 ∧ ... ∧ ωk(X1, ..., Xk) = det(ωi(Xj)).

We now turn to the de�nition of di�erential forms on a manifold M .

De�nition. The bundle of alternating k-tensors on M is denoted by

ΛkM =
∐
p∈M

Λk(TpM)

and a di�erential k-form or a k-form is de�ned by a smooth tensor �eld

ω : M → ΛkM.

The space of k-forms is denoted by
Ak(M).

De�nition. Let V ∈ T (M). Interior multiplication is the map

iV : Ak(M) → Ak−1(M);

iV ω(Y1, ..., Yk) = ω(V, Y2, ..., Yk). (6.174)

Lemma. Let V ∈ T (M) and ω1, ..., ωk ∈ A1. Then

iV
(
ω1 ∧ ... ∧ ωk

)
=
∑
i

(−1)i−1ωi(V )ω1 ∧ ... ∧ ωi−1 ∧ ωi+1 ∧ ... ∧ ωk.

De�nition. Exterior di�erentiation is the map, locally expressed by

d : Ak(M) → Ak+1(M);

d

(∑
I

ωIdx
i1 ∧ ... ∧ dxin

)
=
∑
I

∑
i

∂ωI
∂xi

dxi ∧ dxi1 ∧ ... ∧ dxin . (6.175)

De�nition. Let φ : M → N be a smooth map and ω a k-form on N . The pullback φ∗ω of ω is

φ∗ω(X1, ..., Xk) = ω(φ∗X1, ..., φ∗Xk),

where (φ∗X1) (f) = X1(f ◦ φ).
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Integration on Manifolds

On an n-dimensional manifold integration of n-forms can be de�ned. The manifold should also have an
orientation and the form should be compactly supported, but we will not go into the details of how exactly
integration is de�ned. First of all, notice that an n-form ω always (locally) has the form

ω = fdx1 ∧ ... ∧ dxn

where f is a smooth function. dx1 ∧ ...∧ dxn is often denoted as dnx, such that integrals have the expression

ˆ
V

ω =

ˆ
V

fdnx,

where V ⊂M . We now state two propositions, which are very important.

Proposition. Di�eomorphism invariance. Let φ : M → N be a di�eomorphism. Then

ˆ
N

ω =

ˆ
M

φ∗ω.

Theorem. Stokes theorem. Let ω ∈ An−1(M), then

ˆ
M

dω =

ˆ
∂M

ω.
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