
Gamified Acquisition of Software Feedback

Master’s Thesis in Game and Media Technology

ICA - 3935361

Nick Linakis
Department of Information
and Computing Sciences,
University of Utrecht,

Utrecht, The Netherlands

Supervisors: Dr. Fabiano Dalpiaz, Prof. dr. Johan Jeuring

n.linakis@students.uu.nl

August 31, 2015

Acknowledgments

First of all I would like to thank Fabiano Dalpiaz for supervising this thesis
project, and providing me with most helpful insights on this subject. Also,
I would like to thank Raian Ali, Malik Almaliki and Alimohammad Shahri
from Bournemouth University who under the collaboration of Utrecht and
Bournemouth Universities (BUUU) they provided valuable data and acumen
in order to conduct my research. Finally, I owe a debt of gratitude to
everyone who were kind enough to take some time for my research, so that
they could fill my database with user-feedback measurements. My sincere
thanks to all of you!

I hope someday to write something worth plagiarizing.

Unknow Author

i

Abstract

Efficient and successful software maintenance and evolution processes could
lead to better quality software applications, which could meet the end-user’s
requirements and preferences. A decisive contribution to software mainte-
nance and evolution could be achieved by defining more adequate and effec-
tive feedback acquisition practices in combination with the use of gamifica-
tion principles. The overall objective of this study is to create and validate
a feedback acquisition framework which will be embedded in already exist-
ing applications and will engage and motivate the users by exploiting the
advantages of gamification elements. To achieve this, we realized a concep-
tual solution by performing literature search and assessing current feedback
acquisition practices. Furthermore, with the implementation of the most
important functional requirements of such a framework. Last but not least,
we validated the usability and effectiveness of our framework by execut-
ing a controlled experiment between a treatment and a control group. Each
group provided feedback remarks by using our gamified feedback acquisition
mechanism and an existing feedback acquisition tool respectively. Experi-
ment results and analysis indicate that our developed tool appeared to be
more usable and more effective on acquiring feedback remarks, compared to
the existing feedback acquisition mechanism used for the experiment.

ii

Contents

Acknowledgment i

Abstract ii

1 Introduction 1

1.1 Background . 1

1.2 Problem Definition . 2

1.3 Research Objectives and Research Question 3

1.4 Solution Approach Overview 4

1.5 Scientific and Societal Relevance 6

1.6 Document Structure . 7

2 Related Work 9

2.1 Software Evolution and Maintenance 9

2.2 User Involvement in Software Evolution 14

2.3 Gamification . 17

3 Approach and Design 21

3.1 Problem Domain . 21

3.2 Conceptual Framework Requirements 22

3.3 Conceptual Solution Outline 23

4 Framework Implementation 28

4.1 Generic Implementation Details 28

4.2 Framework Design . 28

4.3 Framework Architecture . 35

5 Experiment 38

5.1 Experiment Scope . 38

5.2 Experiment Design . 39

5.2.1 Design Choices . 39

5.2.2 Participant Selection 40

iii

5.3 Experiment Process . 40

5.3.1 Tool Preparation . 41

5.3.2 Scenario Preparation 45

5.3.3 Survey Preparation . 46

5.3.4 Pilot Experiment . 47

5.3.5 Final Experiment . 48

5.3.6 Analysis . 48

5.4 Threats to validity . 49

6 Results 51

6.1 SUS Results . 52

6.1.1 Embedded Gamified Feedback Tool 52

6.1.2 Embedded Mantis Bug Tracker Tool 55

6.2 Feedback Remarks Acquired 58

6.3 Discussion . 59

6.3.1 Framework Usability 60

6.3.2 Feedback Remarks Acquired 62

7 Conclusions, Limitations, Future Perspectives 64

7.1 Answers to the Research Questions 64

7.2 Limitations . 65

7.3 Future Work . 66

A Appendix 67

Bibliography 83

iv

Chapter 1

Introduction

1.1 Background

A software application is defined as a packaged configuration of software
components, or a software-based service with auxiliary materials, which is
released for and traded in a specific market [33]. Software applications are
designed and developed in order to address general use by end users or
specific by a certain user or an organization. General purpose application
software is a software type which is used for a variety of tasks and is not
limited to a certain function. For example a text editor could be classified
as general purpose software as it could allow a user to write a novel, create a
restaurant menu or make a poster. Custom software (also known as bespoke
software or tailor-made software) is software that is specially developed for
some specific organization or other user. As such, it can be contrasted
with the use of software packages developed for the mass market, such as
commercial off-the-shelf (COTS) software, or existing free software.

Software production is the process of designing and developing a software
application. It includes several processes and it is often considered as a
subset of software systems development life cycle [18]. A decades-long still-
to-be-attained goal has been to find repeatable and predictable processes
that improve productivity and quality of software applications. In order
to achieve better quality design and development of software applications,
the maintenance and evolution of a software application should be properly
managed. In the late 1970’s, a widely cited survey study by Lientz and
Swanson [34] revealed the very high fraction of life-cycle costs that were
being dispensed on maintenance. They categorized maintenance activities
into four classes:

• Adaptive: modifying the system to cope with changes in the software
environment,

1

• Perfective: implementing new or changed user requirements which
concern functional enhancements to the software,

• Corrective: diagnosing and fixing errors, possibly ones found by users,

• Preventive: increasing software maintainability or reliability to pre-
vent problems in the future.

The survey showed that around 75% of the maintenance endeavor was on
the first two types, and error correction consumed about 21%. A more re-
cent study conducted by Koskinen [29] in 2003 showed that software costs
devoted to system maintenance and evolution reach more than 90% of the
total software costs. These evidence allow us to realize that software devel-
opment organizations invest more and more on maintenance and evolution.
A fact, which not only makes those two processes very valuable for software
development development organizations, but also constructs a field worth
investigating and improving.

1.2 Problem Definition

Important, but somewhat troublesome conclusions as reported by [45]
a decade later, is that maintenance problems are pretty much the same as
during the 1970’s (except for minor changes), despite improvements made in
structured methodologies and techniques [31] [8]. In terms of specific prob-
lems, personnel effectiveness problems, i.e. skills, motivation and productiv-
ity and personnel problems of maintenance programmers, i.e. turnover and
availability, have shown a rise, while problems concerning users’ knowledge
of computer systems have declined. Contribution of end user is crucial dur-
ing the new requirement data gathering and analysis and that all software
that is useful and successful stimulates user-generated requests for change
and improvements [12].

These user-generated requests should be taken into account as a software
application undergoes modification of code and associated documentation
due to a problem or the need for improvement. The objective is to modify
the existing software application in such a way, which meets user preferences
while preserving its core functionality elements. Software maintenance is
defined in IEEE Standard 1219 [23], as the modification of a software appli-
cation after delivery to improve performance or other attributes, to correct
faults, or to adapt the application to a modified environment. Software evo-
lution is defined by [1] as “the dynamic behavior of programming systems
as they are maintained and enhanced over their life times”. The ability
to change and evolve software easily, quickly and reliably is a “grand chal-
lenge” within software engineering [38]. Too much focus is currently on the
technology and not on the end-user [36].

2

(a) Existing feedback acquisition process.

(b) Feedback acquisition process to be.

Figure 1.1: Feedback Acquisition Processes.

Remaining informed of the users’ opinion on the role of software systems
in order to meet their constantly changing needs is crucial. Especially in
software applications used by a very large number of people who originate
from different backgrounds. Solutions are going to be essential to meet the
needs of businesses, where change is constant and urgent [31]. Thus, it is
expected that software evolution will be positioned at the center of utmost
importance in the field of software engineering in the future.

Users need stimuli that make them eager to contribute to the process.
Current practices do not involve systematically the user in feedback acqui-
sition process, neither provide the appropriate incentives the motivate and
engage the public for providing their feedback. Solutions are going to be es-
sential to meet the needs of businesses, where change is constant and urgent
[31].

1.3 Research Objectives and Research Question

In this research, we are going to investigate how it is possible to progress
from existing software feedback acquisition mechanisms (Figure 1.1.a), to a
system where feedback acquisition is encapsulated in the software applica-
tion (Figure 1.1.b). Current practices in software development are approach-
ing groups of users by using external tools in order to gather the required

3

information which will allow for improved software application releases (e.g.
discussion forums for feature requests, reports, bug resolution platforms for
managing bug reports, etc.) [15].

Feedback acquisition mechanisms vary depending on the software appli-
cation but they are all driven by the principle of obtaining users’ wishes in
order to deliver better quality software applications. We would like to in-
tegrate in a reusable manner, currently used feedback acquisition practices
under the hood of already existing software applications. We are going to
examine under the scope of software engineering and provide remarks to the
following research question and sub questions:

• Main Research Question:

– How to enable the development of software systems where feed-
back acquisition and processing are integral components of the
system to-be?

• Sub Questions:

– Which are the appropriate mechanisms for effective feedback ac-
quisition?

– How to integrate such feedback mechanisms in a reusable manner
into existing software development practices?

– How can we engage and involve more users in a systematic way?

In order to nettle users interest and involve them into software evolution we
will delve into feedback acquisition by using gamification and crowdsourcing
techniques. In addition, we are going to examine what the effects of the
introduction of gamification in software feedback acquisition are, as well as
the possibilities to maximize the participation of the users.

1.4 Solution Approach Overview

Current software feedback acquisition practices do not constitute integral
components of existing software applications. Moreover, feedback gathering
methods neither motivate or engage the end users in order to provided their
remarks, which as a result leads to minimum feedback disclosure.

In order to address these problems, we are investigating how current pro-
cesses on software maintenance and evolution are executed. All the basic
knowledge needed regarding this research project will be acquired through
literature review, including scientific papers, reports, and publications in
scientific magazines of research institutes. Moreover, we will identify the
gamification elements that will be appropriate to be used in order to moti-
vate users to provide their feedback.

4

There is need for improvement in current software maintenance and evolu-
tion characteristics. In order to identify any practices which could contribute
in the improvement of software maintenance and evolution, we are going to
examine the contexts of gamification and crowdsourcing techniques under
the scope of this research work. Crowdsourcing [9] is an emerging on line,
distributed problem-solving and production model, with the use of which
a problem is solved through the involvement of a large number of people.
Crowdsourcing has the potential to be a suitable technique for large-scale
user involvement. According to [11], crowdsourcing is“a strategic model to
attract an interested, motivated crowd of individuals capable of providing
solutions superior in quality and quantity to those that even traditional
forms of business can”.

Moreover along with the context crowdsourcing, gamification could pro-
vide an important contribution to software maintenance and evolution. Brian
Burke redefines gamification [10] as “the use of game mechanics and experi-
ence design to digitally engage and motivate people to achieve their goals”.
According to Gartners speculations [10], more than 50% of organizations
that manage innovation processes will have gamified those processes by 2015.
The development and use of a software tool that includes gamification ele-
ments in order to involve people in the evolution of a software application
may be able to better contribute to the quality of future software releases.

We go through the development and implementation of a software frame-
work, which contains gamification, crowdsourcing elements together with
current techniques that are being used to gather user feedback. We follow
an IDE - plug-in development approach during the development process of
our tool, by choosing a certain IDE and developing a plug-in which refactors
existing software code and adds an enhanced feedback acquisition mecha-
nism.

The properties of this mechanism will be based upon the literature study
concerning current feedback acquisition techniques and the choice of ap-
plicable gamification components that will serve as user incentives. This
approach ensures a better implementation structure which we expect to
have an impact on many important software qualities such as enhanced re-
usability and reduced complexity (Figure 1.2).

Upon the completion of the aforementioned step, the framework will be
tested upon an existing software application (e.g. an open source software
application) in order to identify the efficacy and performance of such ap-
proach.

5

In order to engage users and acquire as more responses as possible concern-
ing the evaluation of a certain software application, we use a market-based
approach described in [14]. According to this research, a new paradigm is
proposed, which allows for the involvement of a large number of people in
software evolution and also involves gamification elements in order to attract
users attention and feedback.

Figure 1.2: Research process overview.

1.5 Scientific and Societal Relevance

A decisive contribution to software maintenance and evolution could be
achieved by defining more adequate and effective feedback acquisition prac-
tices in combination with the use of gamification principles. Gamification
has been around for a long time, but its awareness has been documented
the first time in 2008 [41]. While many organizations already use the princi-
ples of gamification, the trend towards a more fun environment in software
engineering has just commenced [26]. This research provides a study on
feedback acquisition along with the provision of incentives and motives to
the end users as part of the gamification context. Furthermore, the frame-
work design and evaluation demonstrated an example how these concepts
can be combined in terms of scientific value. The results can be used for
future research to deeper elaborate in this specific field of interest.

Gamification has the hidden potential to increase work and learning per-
formance by changing people’s behavior in a positive manner. This is mostly

6

done by increasing engagement with the application of game-design elements
[42]. This aspect could potentially encourage end users to participate more
actively and efficiently in feedback acquisition procedures. Due to the fact
that most software applications really depend on the software maintenance
and evolution processes, it is very important to get the end users involved in
these processes. With game design principles, end users can have more plea-
sure while providing their remarks concerning a certain software application
and deliver valuable insights that otherwise would be missed.

Software companies can gain benefit from a concrete example of how ef-
fectively an embedded software gamified feedback acquisition mechanism
was applied in an already existing software application. By observing the
application of our tool and the results of this application, companies might
try to apply similar approaches for their software applications in order to
improve software maintenance and evolution processes in combination with
motivating the end users in providing their feedback. With the combina-
tion of these aforementioned elements this research was a first step in this
direction, resulting in valuable information that could be used and applied
by researchers and professionals.

1.6 Document Structure

This work is structured as following, firstly in Chapter 2 we overview the
background work on software evolution, software maintenance, user involve-
ment in software development and the gamification principles.

In Chapter 3, we define the problem domain, we proceed by identifying
a solution to the aforementioned problem statement and we provide the
conceptual framework requirements and outline for our framework.

Furthermore, in Chapter 4, we provide with a thorough description of the
implementation of our framework. We define the problem domain which
this study addresses, we analyze the conceptual requirements of a framework
which can provide solutions to the predefined problem and finally present a
conceptual outline towards the solution of that problem.

In Chapter 5, we proceed with the experimental part of our study. We ex-
plain the purpose, the methodology adopted along with the decisions behind
the experimental design choices and provide possible threats to it’s validity.

Additionally, in Chapter 6, we perform statistical analysis in order to iden-
tify the significance of our experimental findings, we interpret the outcome
of that analysis and discuss its implications.

7

Finally in Chapter 7, we submit our conclusions by providing an answer
to the research questions, we realize the limitations of this current study
and examine some possible future work areas.

8

Chapter 2

Related Work

In this section, we will discuss several subjects that are related to the re-
search at hand. First, in Section 2.1, we will discuss the fields of software
evolution and maintenance which can be found under the context of software
engineering. Next, in Section 2.2, we will discuss what research has been
conducted on the field of user involvement in software development. We will
also explore in Section 2.3 the world of gamification in general and we will
include some research done concerning gamification in the field of feedback
acquisition.

2.1 Software Evolution and Maintenance

Existing research can be found for both software evolution and software
maintenance and a related review will be presented in this subsection. Soft-
ware evolution is an important component of software engineering [22] and
it involved many different evolution processes. Software engineering contin-
ues throughout the lifetime of a software system and does not stop upon
a system deployment. There’s always the need for change in parts of a
software system. Modifications made in order to correct errors that are
found in operation, adaptation of the system for adjustments to its hardware
and software platform and improvement in its performance or requirements
and other non-functional attributes. Moreover, systems have to evolve in a
“systems-rich” environment, which often increases the difficulty of the evo-
lution process. Furthermore, understanding and analyzing the influence of
a proposed modification on the system itself, someone may also have to as-
sess how this modification may influence other systems in the operational
environment [22]. Therefore, software engineering could be perceived as a
spiral process with requirements, design, implementation, and testing going
on throughout the lifetime of the system (Figure 2.1).

9

Figure 2.1: Spiral model of development and evolution.

This model of software evolution indicates that a particular corporation
is pledged with the initial software development along with the evolution
of the software. Most packaged software applications are being developed
by adopting this approach. For a tailor-made software, a different approach
is frequently used. A software company develops software for a customer
organization and the customer’s own development personnel then is respon-
sible for that software. Alternatively, the software customer might hire a
separate a different company which will be responsible for system’s support
and it’s evolution [22].

Software evolution processes differ depending on the development pro-
cesses used in an organization, the type of software being maintained, and
the skills of the people consisting the development team. In some organiza-
tions, evolution may be an unofficial process where revision requests mainly
originate from conversations between developers and the system users. On
the other hand, in some companies, evolution is a formal procedure with or-
ganized documentation composed at very stage stage of the process. System
modification requests play the most significant role in system evolution in
most software development organizations. Modification proposals may orig-
inate from requests for new requirements, existing requirements that have
not yet been implemented in the released system, bug reports from system
stakeholders, and fresh ideas for software improvement from the develop-
ment team involved into the project. The processes of change identification
and system evolution continue throughout the lifetime of a system and are
recurrent [22] (Figure 2.2).

10

Figure 2.2: Identification and evolution processes.

According to Sommerville’s “Software Engineering” book [22], software
maintenance is defined as the general process of changing a system after
it has been deployed. This term is usually referring to custom software
applications in which separate development teams are involved before and
after the software’s release. Modifications made to the software may be
simple, changes to address coding errors, more extensive to address design
errors, or significant enhancements to accommodate new requirements or
address specification errors. These changes are implemented by modifying
current system components and by adding new ones to the system where
its necessary. According to [22] there are three different forms of software
maintenance:

1. Fault repairs: Errors in code which are usually relatively cheap to cor-
rect; error in the design which are more expensive as they may involve
rewriting several code areas. And requirements errors which may re-
quire extensive system redesign, thus they are the most expensive to
repair.

2. Environmental adaptation: This form of software maintenance is ap-
propriate when some aspect of the systems environment such as the
platform operating system, the hardware, or other support software is
modified. The application system must be altered in order to adapt
to these environmental changes.

11

3. Functionality addition: This form of software maintenance is crucial
when the system requirements alter in correlation with business or
organizational changes. The scale of these modifications needed to
the software is usually much greater than for other forms of software
maintenance.

These forms of software maintenance are universally accepted but some-
times named differently. “Corrective maintenance” is generally used to in-
dicate to maintenance for fault repairs. Nevertheless, “adaptive mainte-
nance” sometimes involves adaptation to a new environment and sometimes
indicates adjustment of the software to new requirements.“Perfective main-
tenance” refers to the improvement of the software by implementing new
requirements; but also in other cases it indicates the improvement of a sys-
tem’s structure and performance while preserving the key functionality of
the system [22].

The process of system evolution involves understanding of the program
that has to be modified and the implementation of these modifications.
Nevertheless, applying changes can be a challenging process in many sys-
tems, especially in older legacy ones, due the difficulty of understanding
such systems. These systems may have been optimized for space utilization
or performance at the expense of understandability, or the initial system
structure may have been depraved by continuous changes [22]. To maintain
more easily legacy software systems, reengineering could be adopted in or-
der to improve their structure and coherence. Reengineering may involve
several actions such as translating programs to a modernized programming
language, refactoring the system’s architecture, updating and modifying the
values and structure of the systems data and redocumenting the system. The
functionality of the software system is not changed and, normally, critical
changes are avoided to be made to the system architecture. The main issue
with software reengineering is that there are practical limitations about up
to which extend a system can be improved. “It is not possible, for example,
to convert a system written using a functional approach to an object-oriented
system” [22]. Major architectural changes or radical reorganizing of the sys-
tem data management can be very expensive since those processes cannot
be executed automatically. Although maintainability can be improved with
reengineering processes, maintaining the reengineered system will probably
not be as easy as maintaining a new system which is developed using modern
software engineering methods such as refactoring.

“Refactoring is the process of making improvements to a program to slow
down degradation through change” [17]. Refactoring involves program mod-
ifications in order to reduce its complexity, or to make it easier to understand
and improve its structure. It is considered to be suitable to object-oriented

12

development but the its principles can be adapted to any development con-
cept. Refactoring can be thought of as preventative maintenance that re-
duces the problems of future change since it involves changes that focus on
the improvement of the system. Although the process of reengineering and
refactoring are both intended to improve understandability and change of a
software system, they are not the same thing [22]. Reengineering takes place
after the maintenance of a system. Adoption of automated tools will allow
the processing and reengineering of an existing system in order to create
a new system that is more maintainable. Refactoring can be a continuous
process of improvement throughout the software development and software
evolution processes. It is intended to avoid the structure and code degrada-
tion which will eventually increase the difficulties and costs of maintaining a
system. Refactoring can be considered as an inherent fraction of agile meth-
ods such as extreme programming, since such methods are mainly based
around change. Program quality is therefore liable to degrade fast, thus
agile developers usually adopt a refactoring approach for their programs to
avoid this degradation [22]. Moreover, the use of refactoring with emphasis
on regression testing in agile methods lowers the risk of introducing new
faulty behavior of the system. Nevertheless, refactoring is not dependent
on other “agile activities” and could be used along with any software devel-
opment technique. Fowler [37] implies that there are stereotyped situations
(he calls them “bad smells”) in which the code areas of a program can be
upgraded. Examples of “bad smells” that could be improved with the use
of refactoring are the following [37]:

1. Duplicate code: The same of very similar code may be included at
different places in a program. This can be removed and implemented
as a single method or function that is called as required.

2. Long methods: If a method is too long, it should be redesigned as a
number of shorter methods.

3. Switch statements: These often involve duplication, where the switch
depends on the type of some value. The switch statements may be
scattered around a program. In object-oriented languages, polymor-
phism can often be used to achieve the same thing.

4. Data clumping: Data clumps occur when the same group of data items
(fields in classes, parameters in methods) reoccur in several places in
a program. These can often be replaced with an object encapsulating
all of the data.

5. Speculative generality: This occurs when developers include generality
in a program in case it is required in future. This can often simply be
removed.

13

Fowler, in his book and website [37], considers also some basic refactor-
ing transformations which could be used individually or simultaneously to
address the “bad smells”. Examples of these transformations include Ex-
tract method, where duplication is removed and a new method is created;
Consolidate conditional expression, where replace a sequence of tests is re-
placed with a single test; and Pull up method, where subclasses with a single
method in a super class, replace many similar methods. Integrated devel-
opment environments, such as Eclipse, include refactoring functionality. A
fact which makes it easier to identify parts of a program that require mod-
ifications in order to apply the refactoring. Refactoring, executed during
development, is an effective way to reduce the long-term maintenance costs
of a software system. Nevertheless, maintenance of a system whose struc-
ture has been significantly degraded, then it may be practically impossible
to refactor the code alone [22].

Takeaway: By examining the principles and functionality of software
evolution and maintenance in the previous section, we can understand the
importance of the role of such processes in the field of software engineer-
ing in general. Efficient and successful software maintenance and evolution
processes could lead to better quality software applications, which could
meet the end-user’s requirements and preferences. We would like to in this
present study to examine if there is room for improvement and which pos-
sible strategy could be adopted towards achieving more effective software
maintenance and evolution practices. In order for this to be more feasible,
user involvement should be taken into account as an effect mechanism to
software maintenance and evolution processes.

2.2 User Involvement in Software Evolution

User feedback contains important information for developers, helps in the
improvement of software quality and to the identification of features missing
from a current software version. Its aim is to maximize system’s usability
and usefulness by identifying users expectations and requirements. Over
the last three decades research concerning user involvement in software en-
gineering has been conducted; and it seems that user involvement is playing
a more and more important role in the system developing cycle [15]. User
feedback is a primary source for acquiring relevant information needed for
planning software evolution and adaptation [6].

Stakeholder involvement in software maintenance and evolution processes
is an important factor to increase the success of a software application. A
study performed by Kujala [43] shows that there is a significant equivalence

14

between user involvement and the success of information system develop-
ment as well as user satisfaction. An early study by Baroudi [24] has shown
that a greater user involvement leads to a higher software application usage
and admission.

The success of any development project relies on overall user orientation,
which be achieved by meaningfully involving users in systems development
process. User involvement has changed significantly over the last thirty
years. For instance, software users changed from programmers or trained
technical personnel to basically any person [27], provoking a significant shift
in developers attitude towards them [7]. With the use of application distri-
bution platforms and the constant increase of use of mobile devices, neither
the users of software nor its context of use are known before the software’s
release. As a consequence, these changes widen the distance between end
users and software developers [28], while more focus on users would actually
be vital to satisfy their increasing needs [46]. Therefore, post-release user
feedback such as bug reports and feature requests become increasingly cru-
cial to software developers [5]. Especially in the maintenance and evolution
phases, in case the users come across bugs while they use a system, they
should inform the system’s developers immediately for evaluation.

Another aspect is the fact that users may have new requirements about
the system; they provide the initial information for the system developers to
help them in defining the new problems [44]. User involvement can promote
the clear definition, although sometimes the users might provide the system
developers with inaccurate information. Thus, better understanding of the
problems occurring and the feedback to be provided by the users, can be
reached only by promoting effective communication between them and the
development teams during all processes of the software life cycle [40].

Dodd & Carr [16] consider that the end user is the first member of a team
organized to define problems. Users may participate in prototyping, data
gathering and data flow diagrams reviewing. System development method-
ologies could benefit in several ways from adoption of user involvement:

• User involvement helps system developers identify the current prob-
lems that might be neglected because lack of environment understand-
ing [16].

• As stated by Dodd & Carr [16], user involvement can avoid the conflict
between users and data services. Temporarily ignoring the conflict be-
tween the continuity of system development cycle and the limitation of
the budget and time, user should be involved throughout the system

15

development activities. In this way system developers can communi-
cate with them at any time for meeting latest needs and improve the
data service.

• “Jointly involving users and systems professionals helps create an un-
derstanding of why trade-offs are mad” [16]. If the systems profession-
als dont communicate with the users, it is very possible for users to
complain that the delivered system doesn’t fit with their requirements
although they believe that product is appropriate. However if users
are involved into the whole development process and are encouraged
to communicate with developers, they can reveal the existing problem
situation better. Meanwhile, during development process, users can
give immediate feedback when they find any mismatch between sys-
tem design and expected requirements. In these ways, the trade-offs
can be more reliable and reasonable.

• User involvement improves the overall computer literacy of the com-
pany and provides better understanding of computer-based technology
and the systems development process for users.“This creates a more
knowledgeable user community, one who is better able to request and
use such technology”[16]). User involvement is a mutual benefit pro-
cess. When users involves in the system development cycle, besides
the benefits for developers getting bettering understanding of current
system, users also can gain the opportunity to learning and studying
the new system, because it is a part of its creation. All of these will
contribute to further system implementation and use.

• User involvement provides insights into how individual works impact
the departments. Users and data services staff become more attuned to
a systems perspective of the whole company that leads to the depart-
ment integration within the company and work becomes more efficient.
Dodd & Carr [16] pointed out the close working relationship of data
services and users create a consensus of purpose that eliminates the
“we-versus-they” point of view. With these distinguished advantages,
user involvement has been realized as one effective technique for ef-
fective methodology implementation. Consequently, the technique is
adopted by several system development methodologies.

Takeaway: Adoption of user involvement provides several benefits for
system development methodologies as mentioned on the section above, thus
we would like to investigate further how involving the users could affect the
processes of software maintenance and evolution. According to Zhiwei [44],
user involvement is playing a more and more significant role in the system
developing cycle. Thus, certain measures should taken in order to approach
and stimulate the interest of the users in assessing software products. A

16

possible way intrigue and motivate end users to provide their feedback and
get involved more in current software development practices could be the
use of gamification.

2.3 Gamification

According to Ali & Dalpiaz, users generally lack motivation and interest
in getting involved into providing their comments and feedback, especially in
a such a way that would actually make a difference for software developers.
In their paper about “Gamified Culture-aware Feedback” they state that
gamification could be a technique to maximize users motivation and change
their reaction to feedback requests [35]. Zichermann & Cunningham on
their book “Gamification by Design”, they define the term gamification as
follows:

“The process of game-thinking and game mechanics to engage users and
solve problems”

This flexible and powerful framework for understanding gamification, it can
easily be applied to any problem that can be solved by influencing human
motivation and behavior. Gamification brings together all the various as-
pects that have been advanced in games for non gaming contexts. “Games
are generally good motivators” [21]. Games have become one of the most
powerful forces by focusing on three central components pleasure, rewards,
and time. Uniquely, games are able to get people to take actions that they
dont always know they want to take, without the use of force, in a pre-
dictable way [21]. The success of games relies in an idea called flow. The
perception of flow is derived from the work of Mihaly Csikszentmihalyi,
a psychology professor who is renown for his studies about creativity and
happiness. Achieving flow, indicates a player’s state between anxiety and
boredom, meeting his own motivational level in that experience (Figure 2.3)
[21].

Although the gamification concept might be motivating for people, the
same game rules might not apply for different groups of people. According
to Bartle, player types are a way of classifying individuals according to
specific psychological aspects of their personality and how they prefer to act
in a virtual environment (Figure 2.4) [39].

This classification is based on the compilation and observations of the
results of a forum discussion (that lead later to The Bartle Test - which,
despite bearing his name, was not created by Bartle) between players about
what they thought was fun in a game and what they thought others found
fun about the same game [21].

17

Figure 2.3: The state of flow is achieved when a player is placed
between anxiety and boredom over a period of time.

From the summary and observations of the discussion, Bartle denotes
that players could be split into four types; where players could also have
same different levels for each of these four types (e.g. a player can be 70%
killer and 30% achiever), providing psychological portraits of individuals
which inhabit a virtual world [39] [3] [30]:

• Killers like to provoke and cause drama and/or impose them over other
players in the scope provided by the virtual world. Trolls, hackers,
cheaters, and attention farmers belong in this category, along with the
most ferocious and skillful opponents [39].

• Achievers are competitive and enjoy beating difficult challenges whether
they are set by the game or by themselves. The more challenging the
goal, the most rewarded they tend to feel [39].

• Explorers like to explore the world - not just its geography but also
the finer details of the game mechanics. These players may end up
knowing how the game works and behave better than the game cre-
ators themselves. They know all the mechanics, short-cuts, tricks, and
glitches that there are to know in the game and thrive on discovering
more [39].

• Socializers are often more interested in having relations with the other
players than playing the game itself. They help to spread knowledge

18

Figure 2.4: Bartles player types.

and a human feel, and are often involved in the community aspect of
a game [39].

Bartle calls it a “bandwagon”. Meaning that not every game design will
be effective for all types of players, thus many different design approaches
should be used in order for gamification to be effective [39]. For instance,
a shoe selling website that provides points purchase of a pair of shoes. By
acquiring a specific amount of points, the buyer could gain access to a certain
pair of shoes he or she could only buy due to the points already acquired.
This concept is probably viable and could effectively work for achievers type.
On the other hand, an individual who belongs to the explorer type, is visiting
the entire web page, exploring every aspect of it. Points are awarded to him
or her for this specific action. These points would be worthless - rather,
one should reward the action of exploring by providing a way to continue to
interact and enjoy the web page. Under the same concept, a leader board
will not necessarily affect the actions of a socializer type. This type of
player would probably not be so interested in rating, getting to chat with
and meeting new people might be much more interesting.

Takeaway: Understanding the context of the main principles of gamifica-
tion will allow us to use the correct and appropriate incentives to engage the
users. Adoption of gamification could provides several benefits for software
application development methodologies [24], thus we would like to investi-
gate how user involvement could be affected by providing them with the
appropriate stimulus in order to provide their feedback. Thus, certain mea-
sures should taken in order to approach and stimulate the interest of the
users in assessing software products. Under this context, we can assume that
by using the right intrinsic or extrinsic incentives depending on the group

19

of people we are addressing; gamification could be used to allow software
versatility also for feedback acquisition purposes[35].

20

Chapter 3

Approach and Design

In this chapter, we present the approach and the design of our framework.
Firstly, we are going to examine the problem domain and identify the scope
of the problem to be solved (Section 3.1). Secondly, we are going to describe
our conceptual framework towards finding a solution to the aforementioned
problem (Section 3.2). Lastly, we are going to provide our approach for de-
livering a solution to that problem by providing the design and architecture
for that conceptual solution (Section 3.3).

3.1 Problem Domain

In the introduction of this document, the problem that drives this study
has been outlined. As described in Chapter 2 also, feedback acquisition is
a very important part of the software evolution and maintenance processes.
That explains why in our research we tried to investigate and construct
an instrument which could increase the effectiveness of current feedback
acquisition mechanisms and also provide some incentives in order to engage
the end users.

Pagano and Bruegge [15] on their work about user involvement in software
evolution are providing us with the following results:

1. There are four main user feedback artifacts: Error reports, feature
requests, feedback on existing features, ratings.

2. User feedback is scattered : email, application distribution platforms,
integrated feedback mechanisms etc.

3. Users intentionally select feedback channel : The more critical the feed-
back, the more public the channel.

4. Users are not systematically involved : No agreed practice how to pro-
vide nor how to gather user feedback.

21

Remaining informed of the users’ opinion on the role of software systems
in order to meet their constantly changing needs is crucial. Current prac-
tices do not involve systematically the user in feedback acquisition process,
neither provide the appropriate incentives the motivate and engage the pub-
lic for providing their feedback. Solutions are going to be essential to meet
the needs of businesses, where change is constant and urgent [31]. Users
need stimuli that make them eager to contribute to the process.

3.2 Conceptual Framework Requirements

By examining current studies, it is clear that there is still a big gap be-
tween development teams and users, thus it is still quite difficult to gather,
process and understand user’s comments concerning a software product. The
overall objective of this study is to create and validate a feedback acquisition
framework which will be embedded in already existing applications and will
engage and motivate the users by exploiting the advantages of gamification
elements. The following table contains a list of key functional requirements.
These functional requirements were prioritized with the MoSCoW approach
to determine their importance [32] (Figure 3.1). Along with the functional
requirements, we have identified the non-functional requirements our tool
should meet (Figure 3.2).

We would like our framework to be able to embed a gamified feedback
acquisition mechanism to already existing applications and redirect feedback
gathered to feedback report/resolution platforms (Table 3.1, Requirement
Category 1). Thus, the tool should be able to refactor the original code
of a software application and apply our feedback acquisition mechanism
(Table 3.1, Requirement Category 2). Our feedback acquisition mechanism
will enable certain feedback types gathering (e.g. comments, bug reports,
feature requests, etc.) for the application as a whole but also for specific
elements of the application (Table 3.1, Requirement Category 3). Moreover,
it will redirect the feedback gathered to a feedback report platform (e.g.
forums, bug resolution platform, mailing lists, etc.) (Table 3.1, Requirement
Category 4). Last but not least, the tool will use a certain point rewarding
system as part of the context of gamification in order to motivate and engage
the users (Table 3.1, Requirement Category 5).

This approach can be expressed as an effort towards addressing the afore-
mentioned issues Section 3.1, identified by Pagano and Bruegge [15] on their
research about current feedback acquisition practices. In our framework we
will include the main user feedback artifacts (error reports, feature requests,
comments, ratings). We will accumulate all feedback gathered and direct
it into one feedback report/resolution platform. And provide suitable user

22

incentives in order to engage and motivate the end users, while ensuring the
usability of our tool.

3.3 Conceptual Solution Outline

In order to address the effectiveness of feedback acquisition mechanisms we
started by investigating how current practices are requesting user feedback
and how users are being involved into the process. Our approach involved a
hands - on experience with modern general use software products with focus
on their feedback acquisition mechanisms. Such software products were

Figure 3.1: Overall Framework Functional Requirements.

23

modern productivity platforms such Microsoft Office, Open Office, Libre
Office and Apple’s iWork bundle. We examined how these software products,
which are meant for use by non expert end users, are requesting feedback
from their users and how they try involve them more in this process. We
identified that the most commonly used practices are to use forums and
discussion groups in order to gather feature requests for their products, bug
reporting and resolution platforms for bug reports and fixes, along with
mailing lists to provide support to their users. Moreover, other practices are
involving focus groups and and interviews with users in order to identify their
preferences and extract their remarks or criticism. Our investigation and the
aforementioned current feedback acquisition practices, is supported by the
findings of Pagano & Bruegge [15] on their work about user involvement in
software evolution.

In order to start with the design of our approach we had first to inves-
tigate further which current feedback acquisition techniques are the most
commonly adopted. There are two techniques currently being by experts;
explicit and implicit feedback. According to G. Jawaheer on his work about
these two different types of feedback [20], explicit feedback is considered as
a technique which involved rating scales, provides users with a mechanism
to decidedly express their interests in items. Explicit feedback is in general
more accurate than implicit feedback in the representation of user’s interests
(this is of course dependent on the application and the domain). Moreover,
explicit feedback can be either positive or negative, whereas implicit feed-
back is only positive. Furthermore, explicit feedback concentrates on either

Figure 3.2: Overall Framework Non-Functional Requirements.

24

side of the rating scale, as users tend to express their preferences if they feel
strongly for or against an object.

On the other hand, implicit feedback is created by the software appli-
cation itself, through inferences it makes about the user’s behavior. The
constitution of implicit feedback depends on the application domain: Usu-
ally, it will be one or multiple measurable and observable parameters that
are derived from the user’s interactions with the application. Most of the
research in software applications has focused on using one or the other type
of feedback; only few have combined these two heterogeneous feedbacks [47].

We decided to follow an explicit feedback design for our framework. This
decision is based on the features of the explicit feedback technique which
would ensure our tool can be used in different types of applications without
much customization or modification to a developer’s needs. We conceived
the following explicit feedback scenario in which our tool will be able to
reciprocate (Figure 3.3):

Figure 3.3: Explicit Feedback Scenario.

According to Figure 3.3 while using the tool:

1. The Developer will be able to use the feedback enabling tool
on the IDE.

2. The feedback enabling tool will refactor the application’s code.

3. The end user will be able to provide his/her feedback within
the application.

The main idea behind this conception is to allow the developer to enable
or disable the feedback acquisition mechanism according to his liking on the
application he is developing Figure 3.3. The developer will be able to enable

25

Figure 3.4: Framework Component Diagram.

or disable the feedback mechanism during development time and adjust its
capabilities according to his preferences. This way he will be able to pro-
duce an end product with a feedback mechanism already embedded, without
the need to create from scratch a different - external feedback mechanism.
Furthermore, the developer will able to decide what kind of feedback he
wants to retrieve from the users and where this feedback should be stored
and processed. Last but not least he will have the capability motivate and
engage the application’s end users by enabling a rewarding system which is
based on gamification practices.

In Figure 3.4 and Figure 3.5 we provide the component and activity
diagrams of our tool. First of all a wizard will be used in order to to
acquire the developer’s preferences. The developer will be to choose the
application’s code to be affected, the feedback types to be acquired, the
feedback storing platform to redirect the feedback gathered by the end users
and the gamification elements to be used. According to the developer’s
preferences the tool refactors the already existing of code of the application,
enables the acquisition of the feedback types defined by the developer and
directs the storing of the feedback gathered into the target platform of the
developer’s choice. The final output of our tool will be the same application
previously implemented by the developer enhanced with gamified feedback
acquisition.

26

Figure 3.5: Framework Activity Diagram.

27

Chapter 4

Framework Implementation

In this chapter we present the implementation process and dive into the
technical details which will clarify the functionality and purpose of our tool,
which we are going to call “Gamified Feedback Enabling Tool”. Firstly, in
section 4.1.1 we report on what kind of software and hardware was used for
our framework implementation. Further, in section 4.1.2 we describe the
software specific setup and follow up with framework architecture in section
4.1.3.

4.1 Generic Implementation Details

As previously mentioned in Chapter 3, our main goal is to develop a tool
that could be applied to an Integrated Development Environment(IDE) and
which can be used by developers in order to enable feedback acquisition for
their applications in combination with gamification elements. The IDE to
be used is Eclipse version Kepler and Java the programming language we
used for development . Development and testing was executed on a 2.4 GHz
Inter Core i5 processor Apple Macbook Pro with 8 GB 1600MHz DDR3 of
RAM.

4.2 Framework Design

For the purposes of the development of our framework we decided to take
a look at already existing open source software applications. This choice is
based on the opportunity of using the source code of a software application
under the open source license agreement without the need of acquiring the
rights of proprietary software application. Moreover, open source software
application involve a vast number of developers from all over the world who
contribute into the evolution and creation of such applications and that way
our framework could contribute to the open source community and to the
effective development and maintenance of such software projects. In order

28

to identify which software applications are the most accepted and used by
end users we did investigate the current download rates on platforms such
as sourceforge.net and github.com. We determined the most popular appli-
cations to be general productivity applications such as Open Office, Libre
Office and applications such as JEdit, OpenCV and OpenProj. These soft-
ware applications also scored amongst the highest rated according to the
users in these web-based repositories. By determining the applications that
are most downloaded by end users we had to determine the programming
language and the development environment these applications are being de-
veloped at. We identified that the most commonly programming language
currently used by developers around the world is Java and that most of the
developers are using Eclipse and Netbeans IDEs (integrated development
environment). These aforementioned attributes of open source software ap-
plications determined which programming language our framework will be
developed at and along with which already existing application our tool will
be tested with. Thus, we decided that the programming language to be
used is Java, the development will be executed in the Eclipse IDE and the
application on which our tool be tested at is JEdit. Our implementation
choices will be thoroughly explained in the paragraphs to follow.

Firstly, we created a plug in for the Eclipse IDE1 and our tool’s functional-
ity is based on the Eclipse Plug-in Development Environment (PDE)2. The
Eclipse development environment consists of several Eclipse components.
A component in Eclipse can be referred to as a plug-in. The Eclipse de-
velopment environment allows a developer to extend the Eclipse IDE with
supplementary functionalities with the use of plug-ins.

Eclipse applications use a runtime based on a specification termed OSGi3.
A software component in OSGi is referred as a bundle which is always a plug-
in. The Eclipse development environment forms the basis of one of the most
successful Java IDEs and therefore is very stable and broadly used. It uses
native user interface components which are fast and reliable. It has a strong
modular approach based on the industry standard module system for Java
(OSGi) that allows developers to design component based systems.

The Eclipse IDE version 2.0 started as a modular IDE application. In 2004
Eclipse version 3.0 was released. Eclipse 3.0 supported reusing components
of the Eclipse platform to build stand-alone applications based on the same
technology as the Eclipse IDE.

At this point the term Eclipse RCP was created. Eclipse RCP is short
for Eclipse Rich Client Platform4and indicates that the Eclipse platform is

1www.eclipse.org/ide/
2www.eclipse.org/pde/
3www.osgi.org/
4wiki.eclipse.org/index.php/Rich_Client_Platform

29

www.eclipse.org/ide/
www.eclipse.org/pde/
www.osgi.org/
wiki.eclipse.org/index.php/Rich_Client_Platform

used as a basis to create feature-rich stand-alone applications.
The release of Eclipse in version 4.x simplified and unified the Eclipse

programming model which is now based on state-of-the-art technologies, like
dependency injection and declarative styling via CSS files.

Eclipse RCP applications benefit from the existing user interface and the
internal framework, and can reuse existing plug-ins and features.

The Eclipse IDE is basically an Eclipse RCP application to support de-
velopment activities. Even core functionality of the Eclipse IDE is provided
via a plug-in, for example the Java development or the C development tools
are contributed as a set of plug-ins. Only if these plug-ins are present the
Java or C development capabilities are available.

According to this description about RCP capabilities in the Eclipse envi-
ronment, we decided to take advantage of all these features and create our
own extension of the Eclipse editor by developing our feedback enabling tool
as an Eclipse plug-in. Th plug-in consists of two parts, a wizard which is
responsible for acquiring the developer’s options concerning on the function-
ality the tool will have. Thus, the wizard is the first thing a developer will
encounter while using our tool.

The wizard consists of a series of questions which will give a certain num-
ber of choices to the developer and will define the functionality of the appli-
cation of our tool. Firstly, a developer will have to decide which Java class
of his application will be affected by the refactoring process and this class
must be responsible for the design and implementation of the user interface
of the application.

Secondly, the developer can decide about the position of a Feedback button
to be placed in his application’s already existing user interface. This button
will be responsible for initiating the feedback acquisition process. Moreover,
the developer will be able to decide in which platform the acquired feedback
will be stored and also the reward system to be used in order to provide a
set of incentives for the users.

As soon as the developer has provided his preferences to the wizard, then
our tool is able to start the refactoring of the application’s already existing
code, define the placement of the feedback button, redirect the feedback
gathered to the platform chosen and last but not least enhance the feedback
experience with gamification elements which will serve as user incentives.

During the refactoring process our tool searches and identifies all the
graphical user interface elements which are developed under the Java Swing5

5en.wikipedia.org/wiki/Swing_(Java)

30

en.wikipedia.org/wiki/Swing_(Java)

framework. Swing is a GUI widget toolkit for Java. It is part of Oracle’s
Java Foundation Classes6(JFC) an API for providing a graphical user inter-
face (GUI) for Java programs. Swing was developed to provide a more
sophisticated set of GUI components than the earlier Abstract Window
Toolkit7(AWT). Swing provides a native look and feel that emulates the
look and feel of several platforms, and also supports a pluggable look and
feel that allows applications to have a look and feel unrelated to the under-
lying platform. It has more powerful and flexible components than AWT.
In addition to familiar components such as buttons, check boxes and labels,
Swing provides several advanced components such as tabbed panel, scroll
panes, trees, tables, and lists.

The first thing to be done by our tool is identify the Java project on the
Package Explorer of Eclipse, identify the source folder and define the package
which includes the current project’s source files. As soon as the package
identification has been completed, the tool creates an Abstract Syntax Tree8

which serves as a tree representation of the abstract syntactic structure of
source code written in any programming language (e.g Java). Each node of
the tree denotes a construct occurring in the source code (Algorithm 1).

This is possible by using the ASTParser9class in Eclipse which is respon-
sible for creating such ASTs for the Java programming language along with
the use of the Visitor design pattern which allows for one or more operations
to be applied to a set of objects at runtime while decoupling the operations
from the object structure Figure 4.1.

Algorithm 1: AST Creation

ASTParser declaration;
Workspace identification;
JNATURE projects identification;
if project found then

while we have not reached the end of the source folder do
execute method identification;
execute variable identification;

else

define Compilation Unit;
parse AST’s created branches by method and variable analysis;
create AST;

6en.wikipedia.org/wiki/Java_Foundation_Classes
7docs.oracle.com/javase/8/docs/technotes/guides/awt/index.html
8en.wikipedia.org/wiki/Abstract_syntax_tree
9inst.eecs.berkeley.edu/~cs164/sp14/javadoc/ASTParser.html

31

en.wikipedia.org/wiki/Java_Foundation_Classes
docs.oracle.com/javase/8/docs/technotes/guides/awt/index.html
en.wikipedia.org/wiki/Abstract_syntax_tree
inst.eecs.berkeley.edu/~cs164/sp14/javadoc/ASTParser.html

Figure 4.1: Visitor Design Pattern.

We decided to use this specific design pattern along with it’s implemen-
tation in Eclipse as an extension of AST framework. Thus we used the
ASTVisitor10 class which allows for a preorder traversal of the abstract
syntax tree when previsiting each abstract syntax tree node and does a pos-
torder traversal of the abstract syntax tree when it performs a postorder
traversal of each abstract syntax tree node. That way we can affect each
node of the tree on runtime and perform changes on the nodes that the
pattern visits. This process will serve the purpose of identifying the already
existing source code’s methods and variables and apply the changes required
for our tool to perform (Algorithm 2 and Algorithm 3).

Algorithm 2: Method Identification - Visitor Pattern

method arraylist declaration;
if methods found then

while we have not iterated through all the project’s classes do
visit class;
identify method;
create visited node;

else

save methods identified to arraylist;
return method arraylist;

10docs.basex.org/javadoc/org/basex/query/util/ASTVisitor.html

32

docs.basex.org/javadoc/org/basex/query/util/ASTVisitor.html

As soon as the AST is created and the ASTVisitor is able to traverse
through it’s nodes, the tool is searching for all the Java Swing components
inside the Java class defined by the developer on the wizard pane and iden-
tifies the name of the top component which in Java Swing is a JFrame11. In
this specific JFrame we are able to identify all of its sub components which
the user interface of the application consists of. Moreover, all the variable
names, types and positions values of these components are being identified
in order to add an additional feedback functionality to them. That addi-
tional feedback functionality will serve as a user interface element specific
feedback feature, which will allow the end user to provide his or her feedback
for that specific user interface element.

By identifying the positions of the user interface elements we are able to
define the position of a Feedback Button to be added on the user interface
of the developer’s application. That Feedback Button will be responsible for
triggering the feedback acquisition process on the application for a certain
user interface element, the application functionality in general or both. Fur-
thermore, it will redirect the user to a user friendly environment to provide
his or her remarks for the application while providing some incentives under
the concept of gamification. The functionality of this Feedback Button is
added on the project’s current source code by injecting a new method on
the current user interface class. This method serves as an action listener
and when the button is pressed it enables the feedback functionality on the
application and all it’s components.

In order to complete the refactoring process all the aforementioned changes
have to applied to the original source code of the application. This was made

11docs.oracle.com/javase/7/docs/api/javax/swing/JFrame.html

Algorithm 3: Variable Identification - Visitor Pattern

variable arraylist declaration;
if variables found then

while we have not iterated through all the project’s variable
declarations do

visit class;
visit methods identify variable; create visited node;

else

save variables identified to arraylist;
return variable arraylist;

33

docs.oracle.com/javase/7/docs/api/javax/swing/JFrame.html

possible by using the ASTRewrite12 class, which serves as an infrastructure
for modifying code by describing changes to AST nodes. The AST rewriter
collects descriptions of modifications to nodes and translates these descrip-
tions into text edits that can then be applied to the original source.

The most significant point is that this process is done without actually
modifying the original AST, which has the quality of allowing one to enter-
tain several alternate sets of changes on the same AST (e.g., for calculating
quick fix proposals). The rewrite infrastructure tries to generate minimal
text changes, preserve existing comments and indentation, and follow code
formatter settings. On this step we are defining for the ASTRewrite the
insertion position of the code to be added to the original source code along
with its parameters, variables and functionality. By providing these infor-
mation to the ASTRewrite, we are able to apply all the modifications to
the application’s original source code and provide an end application with
embedded feedback functionality (Algorithm 4).

Algorithm 4: AST Rewrite

ASTRewrite declaration;
Feedback Method definition;
{

Functionality of the feedback button;

Mouse cursor position identification;

Feedback functionality added to user components;

}
Parse created AST of the application;
Define code area to inject the Feedback Method;
redefine AST with ASTRewrite;
return ASTRewrite output;

For testing purposes we designed and developed our own Agenda applica-
tion which could a serve as a simple scheduler and contact retriever. This
application was developed under the Java Swing framework and was used
for experimentation purposes for our tool. The Agenda application was de-
signed and created according to the modern standards as far as user interface

12www.cct.lsu.edu/~rguidry/eclipse-doc36/org/eclipse/cdt/core/dom/rewrite/

ASTRewrite.html

34

www.cct.lsu.edu/~rguidry/eclipse-doc36/org/eclipse/cdt/core/dom/rewrite/ASTRewrite.html
www.cct.lsu.edu/~rguidry/eclipse-doc36/org/eclipse/cdt/core/dom/rewrite/ASTRewrite.html

design is concerned in order to able to serve as an experimentation base for
the development of our tool.

All the aforementioned processes concerning the wizard functionality, the
user interface elements identification and the refactoring, have been per-
formed and tested on this specific application first in order to determine
first of all the feasibility and later on the performance of our tool. As soon
as we established the key functionality for our tool, we worked on improving
it’s performance and functionality and decided to attempt an assessment on
an original software application.

The software application to be chosen is JEdit13, which is a free software
text editor available under the GNU General Public License version 2.0. It is
written in Java, runs on any operating system with Java support, including
BSD, Linux, Mac OS X and Windows and retains very high download rates
and rating on sourceforge.net.

The choice of working with JEdit and test our tool’s capabilities on it, is
based on the fact that it is developed with the Java programming language
and also under the GNU General Public License in order to have access to its
source code. We decided to test our tool on an original software application
in order to examine how smooth it would perform and define its strong
aspects and it’s weaknesses but also we wanted to perform a case study in
order to identify the general users’ opinion about our feedback mechanism
embedded on a text editor such as JEdit. The case study analysis and it’s
findings will be explained more thoroughly in the following chapters.

4.3 Framework Architecture

As previously mentioned, the functionality and the processes executed by
pour tool are developed using the Java programming language. An overview
of our system architecture can be seen in a class diagram, depicted in Figure
4.2.

As previously mentioned in order to deliver a tool which takes into ac-
count the developer’s preferences, a wizard is appropriate to obtain such
preferences. Thus the wizard is the first functionality given to our tool and
Feedback Enabler Wizard is responsible for all the functionality that the
wizard is providing according to the aforementioned description.

13www.jedit.org/

35

www.jedit.org/

Figure 4.2: Class Diagram of our framework for enabling gamified
feedback on an existing software application.

As soon as the developer’s preferences have been acquired by the wizard,
the ASTCreator class is responsible for analyzing the original source code of
the application and creating the Abstract Syntax Tree in order to provide
the structure of the whole project and provide the tree nodes needed for the
processes to follow.

As long as the Abstract Syntax Tree is constructed, the ASTVisitor class
is pledged with the task to attempt “visiting” each tree node in order to
identify the components that the graphical user interface consists of. With
the help of the GUI Element Identifier class, all the component names and
types are being identified in order for the tool to be able to enable the
feedback acquisition mechanism for each user interface element specifically
but also adjust the Feedback Button position.

The Feedback Button Enabler class is gathering the information provided
by the ASTVisitor and the GUI Element Identifier classes and is positioning
a Feedback Button on the user interface accordingly (positioning done with-
out allowing any overlaps or replacements of any already existing buttons
or options in the user interface). A method (an action listener) is created

36

in order to provide functionality for this specific new button and also its re-
sponse is defined when the user is interacting with it. The behavior on user
interaction is specified to redirect the user to a feedback gathering platform
when the user chooses to provide his or her feedback for a certain applica-
tion element or the application as a whole. The Gamifier is applying the
gamification elements which will serve as user incentives and will be visible
to the user as soon as any kind of feedback is provided.

Last but not least, the ASTRewriter class is bound to gather all the code
additions and modifications done previously by all the aforementioned steps
and update the original application’s source code. This way, the whole pro-
cess is completely automated and the final output is a resulting application
with embedded gamified feedback.

37

Chapter 5

Experiment

In order to evaluate our developed tool and validate its effectiveness and us-
ability, an empirical study was conducted within the setting of a controlled
experiment. According to Wohlin [13], a controlled experiment in software
engineering is an empirical inquiry that manipulates one factor or variable
of the studied setting. Based in randomization, different treatments are ap-
plied to or by different subjects, while keeping other variables constant, and
measuring the effects on outcome variables. In human-oriented experiments,
humans apply different treatments to objects, while in technology-oriented
experiments, different technical treatments are applied to different objects.
Experiments are employed when we want control over the situation and want
to manipulate behavior directly, precisely and systematically. Also, experi-
ments involve more than one treatment to compare the outcomes [13].

There is an increasing understanding in the software engineering com-
munity that empirical studies are required to improve processes, methods,
and tools for software development and maintenance. Wohlin [13] is also
discussing that computer scientists should experiment more while they are
researching in the field of software engineering. This remark is justified
by denoting that an empirical research can build a reliable knowledge base,
lead to new and unexpected insights and help in the discovery of unexplored
territories.

This chapter contains the scope of the experiment, the design which de-
termined the participants to be included and the data to be acquired, along
with the instrumentation to be used and the possible threats to validity.

5.1 Experiment Scope

Firstly, we determine the scope of the experiment by defining its goal and
purpose. The purpose of conducting and executing this experiment is to

38

evaluate the usability of our tool. We would like to examine if the users
were satisfied and enjoyed interacting with the tool by evaluating the tool’s
ease of use, its coherence and accessibility. Moreover, we would like to ex-
amine the effectiveness of the use of gamification principles in the feedback
acquisition process. Hence, we propose the following scope for our experi-
mental research:

• Evaluate the usability of our developed tool.

• Determine the effectiveness and influence of the application of gamifi-
cation principles in the feedback acquisition process.

5.2 Experiment Design

5.2.1 Design Choices

In order to evaluate the usability of our tool, we used the System Usability
Scale (SUS)1 test, which is a reliable tool for measuring the usability of a
software application [25]. It consists of a 10 item questionnaire with five
response options for respondents; ranging from Strongly Disagree to Strongly
Agree. The SUS test was used to measure the usability of both our developed
feedback acquisition mechanism and an already existing one. The already
existing feedback acquisition instrument that was used in order to compare
the usability results of the SUS tests was Mantis Bug Tracker v.1.2.19 2. As
stated by it’s creators, “Mantis” is an open source issue tracker that provides
a delicate balance between simplicity and power. “Once you start using it,
you will never go back!”

The usability of our tool and the level of influence of gamification elements
to the participants were evaluated in an experiment conducted in a university
library setting. The participants who took part in the experiment, were
asked to use JEdit and execute a series of activities which are described in
Section 5.3, there was the possibility to report any issues the encountered
and provide their feedback. At the end of this process they were asked to
fill in the SUS questionnaire and provide any more remarks related to the
feedback gathering tool they used.

The experiment was intended to compare the results obtained from a
treatment group against a control group (Figure 5.1). In this experiment
the treatment group could provide their feedback by using our tool which was
embedded within JEdit’s environment and included gamification elements.
While on the other hand, the control group could provide their feedback

1www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
2www.mantisbt.org/

39

www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
www.mantisbt.org/

by using the Mantis Bug Tracker tool. The goal of the experiment was
then to measure the SUS scores of both group’s participants and identify
the quantity and quality of the bugs reported by both feedback acquisition
instruments.

Figure 5.1: Experiment participant distinction.

5.2.2 Participant Selection

In Wohlin’s work is denoted that the selection of subjects must be rep-
resentative for the population and ideally randomly chosen. Therefore, we
decided to conduct the experiment in a university library environment and
involve young people originating from different countries and from different
fields of expertise.

Although it is assumed that a good sample size should consist of mini-
mum 30 people to obtain statistical significant results [19], we had to rely
on people’s desire to participate in such experiment. Both people’s desire
in participating to the experiment and lessons learned from the pilot exper-
iment led to an allocation of 10 people per group. The experiment used a
balanced design, which means that the participants were divided into two
groups with equal number of subjects. Balancing is desirable because it
both simplifies and strengthens the statistical analysis of the data accord-
ing to Wohlin [13]. Once equivalent groups were formed, both were treated
identically, except for the use of the embedded gamified feedback acquisition
mechanism that was removed from the control group.

5.3 Experiment Process

The planning process for the experiment was used as a checklist and guide-
line of what tasks had to be done. While conducting an experiment, plan-
ning is crucial to ensure that the results of the experiment become beneficial.
Poor planning may ruin any well-intended study [13].

The experiment process was divided into six phases. The whole procedure
was partly iterative and it would have been possible to go back and refine
a previous activity before continuing with the final experiment. Especially

40

with the execution of the pilot experiment, which provided crucial evidence
that were used to refine and improve the design of the final experiment.
The following image illustrates the sequence of the different phases of our
research (Figure 5.2).

Figure 5.2: Experiment phases.

5.3.1 Tool Preparation

JEdit with Embedded Gamified Feedback Acquisition

To generalize the results, Wohlin in his work [13] suggests to execute the
experiment within the environment of a real software application, which
explains our choice of using an already existing application. We prepared
an already existing the text editor, “JEdit” which is developed under the
GNU General Public License3 and by using the Java programming language.
This ensured that it was possible to get our hands into JEdit’s source code
and that our tool will be able to be used along with JEdit. We imported
the source code of JEdit into the Eclipse IDE and we identified the key
classes that were responsible for the user interface of the application and
it’s functionality.

Our first activity is to tweak the functionality of certain JEdit’s user
interface elements. We affected the functionality of opening and saving
a document, we reversed the functionality of undo, redo, cut, copy and
paste buttons, bold, italic, underline buttons keyboard combinations were

3www.gnu.org/licenses/gpl-3.0.en.html

41

www.gnu.org/licenses/gpl-3.0.en.html

altered and the functionality of the “new line” (ENTER on the keyboard)
was adjusted to exhibit faulty behavior 40% of the times it was pressed.
These adjustments to the functionality of JEdit were intentional, in order
to introduce some bugs in activities the participant was more probable to
execute. This was a way to “provoke” some feedback from the users in
order to ensure that eventually they will experience our embedded gamified
feedback acquisition tool or the Mantis Bug Tracker.

At this point we took the role of a JEdit’s developer that would like to
enable the embedded gamified feedback acquisition into JEdit. We firstly
provided our preferences to the tool’s wizard by identifying the code areas to
be affected by our tool, defining the feedback button position, the feedback
types to be acquired and the gamification elements to be used for motivating
the users.

After the application of our tool, all the user interface elements still have
the functionality the used to have before but also they allow feedback to
be acquired for each one of them. The user is able to report feedback for
the application as a whole by pressing the feedback button, positioned in
the upper right corner of the user interface screen; but also he or she can
report feedback for each certain user interface element by hovering over
the mouse cursor over that element and pressing a certain key combination
(“CTRL+F”) (Figure 5.3).

Figure 5.3: JEdit environment.

As soon as the user decides to send his or her feedback for the application
or a certain user interface element, he/she is being redirected to an on-
line feedback acquisition form, where four different types of feedback are

42

being acquired. These are “General” remarks, “Comments”, “Bug Reports”,
and “Feature Requests”. These four feedback types were chosen as the
most broadly used according to our explorative research and the scientific
literature.

The user is also able to provide information about the severity and the
reproducibility of the issue he or she wants to report and provide a descrip-
tion. All the reported feedback is being gathered in an SQL4 (Structured
Query Language) Database which is designed and created according to the
“Mantis Bug Tracker” tool standards (Figure 5.4).

Figure 5.4: On-line feedback acquisition form.

As a final step, upon the completion of reporting a feedback remark, the
user is presented with a point system and a reward list which is correlated
to the points earned. Each time the user provides one feedback remark,
ten points are being awarded as part of the effort to motivate the user.
The idea is based on the extrinsic gamification principles according to the
literature and was used as a simple example for demonstrating our tool.
Of course more complex and maybe more effective intrinsic gamification
elements could be used along with our tool in order to achieve better results
towards user engagement (Figure 5.5).

The whole process is iterative, meaning that the end user is able to provide
his or her feedback as many times as he or she wants in order to collect more
points and try to obtain the top reward. This would serve as the first version
of our experiment tool, which was going to be experienced by our treatment
group participants.

4en.wikipedia.org/wiki/SQL

43

en.wikipedia.org/wiki/SQL

Figure 5.5: Points - Rewards table.

JEdit with Embedded Mantis Bug Tracker

For the second version of our experiment tool we had to provide a different
already existing feedback acquisition tool. Mantis Bug Tracker is the tool
of our choice mainly because is a broadly used feedback acquisition tool by
open source software developers.

The functionality of JEdit in this version of the experiment was exactly
the same as the already aforementioned one. The main difference was that
when the end users wanted to provide his or her remarks by pressing the
feedback button (or the “CTRL+F” keyboard combination), he or she was
being redirected to the on-line form of the Mantis Bug Tracker. The feed-
back provided by using Mantis Bug Tracker was stored in a similar design
database as with our tool which consisted of different tables. That way we
made sure there is no confusion between the remarks provided by both the
treatment and the control group (Figure 5.6).

Moreover, in this version, after the completion of a reported remark by
the user, the point rewarding system was absent in order to eliminate any
presence of gamification elements.

The whole process was also iterative, meaning that the end user was able
to provide his or her feedback as many times as he or she wanted. This
would serve as the second version of our experiment tool, which was going
to be experienced by our control group participants.

44

Figure 5.6: Mantis Bug Tracker on-line form.

5.3.2 Scenario Preparation

In order provide an activity for the participants we created the following
scenario. A printed paper description was handed into every participant
which included the steps to be taken. Each participant had to start the
JEdit application, open a text file named in a specific way and start typing
the text provided to them in printed paper. The text was long enough,
thus they were asked to spend some time typing but they did not have to
complete the whole document. The text provided is written in such a way,
that eventually the participants would have to use certain user interface
elements whose functionality was adjusted. This decision, is based on the
fact that the user definitely will experience some flaws and bugs while typing.

On the printed paper description it is clearly stated that it is possible
to provide some feedback concerning the JEdit text editor and help the
development team of the application and the participants are free to do so
if they chose to (Figure 5.7).

Additionally, to the experiment instructions and the text to be typed on
JEdit, a printed paper sheet is also distributed to every respondent. This
sheet includes the functionality of the user interface elements that might be
useful while typing the requested text, along with the functionality of the
feedback button (Figure 5.8).

45

Figure 5.7: Experiment instruction sheet.

5.3.3 Survey Preparation

An on-line survey tool“Web Survey Creator”5, was used to create and
present the experiment SUS questionnaire. Firstly, an introduction page
was presented as an explanation of the following experiment and its dura-
tion. Before starting with the questionnaire, subjects were presented with an
explanation of software feedback acquisition and the reasons we are explor-
ing different aspects of feedback acquisition. Furthermore, the participants
were notified about the software application (JEdit) they were going to use
and a paper printed version of the scenario and JEdit’s functionality was dis-
tributed to them. The page to follow included a demographic questionnaire
in order to identify certain personal information about the participants who
were informed that their personal details would be treated confidentially.
Moreover, a graphical illustration of the survey sequence was presented af-
terwards in order to clarify the next steps of the experiment. Last but not
least, the ten questions of the SUS test were included in order for the partic-
ipant to provide his or her evaluation of the tool he just used. The questions
provided five response options for the respondents; ranging from “Strongly
Disagree” to “Strongly Agree”. Additionally, the last page of the survey
was offering space for any comments or additional remarks any participant
would like to share.

5http://www.websurveycreator.com/

46

http://www.websurveycreator.com/

Figure 5.8: JEdit functionality sheet.

5.3.4 Pilot Experiment

After preparing the application to be used and the survey, it was beneficial
to execute a preliminary experiment. This ensured the evaluation feasibil-
ity, necessary time, design problems, select an appropriate sample size and
improvement upon the experimental design. Thus, an internal employee
of the University of Utrecht and two fellow colleagues were asked to spend
some time on our existing experimental setup and go through the whole
experiment process.

As soon as the process was complete, the participants were interviewed
and were asked to denote their feedback for possible improvements. After
running the preliminary experiment and going through the participants an-
swers, we identified whether we could extract the information we need by
this type of setup or some alterations had to be introduced. We identified
by their feedback that we should perform the following alterations:

• A more concrete, clearer printed description of the experiment proce-
dure should be added.

• Some bugs introduced in JEdit were quite “annoying”.

• Different script to be used (preferably a famous song’s lyrics).

• Functionality of JEdit should be better documented.

47

According to the pilot experiments participant’s feedback, we redefined
several aspects of our experiment. We included paper printed experiment
description along with the functionality capabilities of JEdit. This paper
version was handed in the final experiment participants. We did use a fa-
mous song’s lyrics as the text to typed by the participants during their inter-
action with JEdit. And we did reduce the faulty behavior of the “ENTER”
key to 60% and added a new keyboard combination “SHIFT+ENTER” for
the new line character which was always functioning.

For the preliminary experiment phase both our embedded gamified feed-
back acquisition tool and Mantis Bug Tracker were tested in order to have a
clear overview of how participants would interact with both versions of the
experiment.

5.3.5 Final Experiment

As soon as the appropriate changes were applied to our experimental
setup, the final experiment was executed. The experiment sessions took
place in the environment of Utrecht University Library, where people were
kindly asked to participate voluntarily in our study. Participants were in-
ternational students between the ages of twenty and thirty years old.

Firstly, the treatment group sessions were performed by involving the
first ten participants. As soon as the the data concerning the the embedded
gamified feedback version were gathered, we continued by performing the
control group sessions. Those sessions took place also in the same library
environment and involved ten more different respondents, who experienced
the same experiment process but instead of using the embedded gamified
feedback version; they utilized the Mantis Bur Tracker tool.

Both groups were notified beforehand that the whole experiment process
would take around twenty five minutes to complete, but they were allowed
to spend more time in case they wanted to. During the experiment, there
was no or very low interference with the subjects, just for explanation and
clarification purposes towards the tasks of the experiment. This choice was
part of our experimental design, because we did not want to affect in any
way the respondents intention towards providing their feedback while using
both of the tools provided.

5.3.6 Analysis

Last but not least, an appropriate statistical evaluation was used in order
to compare the produced data from the two groups. We used a significance
level of p = 0.05, two-tailed, due to the fact that we did not involve too

48

many participants in our experiment but we wanted to test if our tool is
more effective than current existing feedback acquisition practices (Mantis
Bug Tracker). If the observed sample result was below the significance
level, then we could conclude that the observed effect actually reflects the
characteristics of the population rather than just sampling error [4].

5.4 Threats to validity

While considering the planning phase of our experiment, a major con-
cern was also how valid the outcome and the results from this experiment
could be [13]. In order to address the validity of this study, the factors that
may affect it had to be thoroughly determined. According to Wohlin’s work
[13], the methods used and the reasoning based upon the discovered infor-
mation should be examined. Moreover, we also had to examine whether
the conclusions drawn while interpreting the results of the study, could be
generalized.

In this study we are examining the influence on the engagement and mo-
tivation of end users in the feedback acquisition process. Thus, feedback
reports from our embedded gamified feedback acquisition mechanism are
measured against the Mantis Bug Tracker tool. There is always the chance
that he difference in the feedback reports between the two tools might had
been affected by another unknown factor. Although, using a control group
already ensures that our results stand up to meticulous examination [13].

In this research the following threats to validity were identified. These
were the selection of gamification elements, instrumentation and selection
of subjects. The construction of the experiment and its operation consid-
ered these threats and tried to avoid them. Since this research object is of
artificial nature, it might be inaccurate or flawed. Aberrations and mislead-
ing conclusions might be drawn by using the artifact ineffectively. To avoid
some errors a preliminary study was conducted to improve the experimental
design.

The poor question expression and not the appropriate instrumentation
could have had a negative effect on the reliability of the measures. To avoid
this risk we decided to use the SUS questionnaire for examining the usability
of both tools, which is broadly used and ensures high reliability and validity
results.

The gamification elements were retrieved by identifying elements used
in already existing research while exploring the field of gamification. The
selection and implementation of the elements that were used in the gamified

49

feedback acquisition mechanism might not have the most appropriate ones
to trigger motivation of the users.

Moreover, we would like to state that the results from our experiment are
valid outside the real context in which the experiment was executed. How-
ever, there were some potential problems which could threaten the validity
of the results. During an experiment people find themselves in an unfamiliar
situation, making it difficult to guarantee that the outcome is caused by the
intervention [2]. This is most probable due to the reason that people were
interacting with a personal computer that was provided for them but it was
not their own personal device.

Furthermore, there were some limitations to our experimental condition.
First of all, our sample size was relatively small to make significant con-
clusions [4]. The reason was because we did rely on people’s desire and
voluntariness to participate in our study.

A further threat to validity was the possible interference between the ex-
perimenter and the participants. We did not want to affect the participant’s
desire to keep experimenting with JEdit and provide their remarks in any
way. To avoid this problem we decided to have as less as possible interfer-
ence and communication with the subjects and we only provided guidelines
and directed the sequence of the experiment in case there was something
not very clear to them.

50

Chapter 6

Results

Before the operation of the experiment was performed, all participants
were briefed and handed the exact same instruction guidelines. The exe-
cution of the experiment went quite smooth, without any issues for both
groups. In general barely any interaction was required by the researcher
with only a few exceptions, where some clarifications were requested.

After the experiment ended each participant of the treatment group was
receiving the reward he or she managed to achieve while providing his or her
feedback. For the participants who managed to achieve the top score and
obtained the top reward, were contacted via e-mail and the the reward was
distributed to them electronically. Only the participants of the treatment
group were received any rewards since they were the ones who experienced
the embedded gamified feedback version of the experiment. Despite the
same objective that was given to both groups, there was a quite distinctive
difference between the remarks reported by the treatment and the control
group.

Under the scope of our experiment, we decided to perform a statistical
analysis by comparing the treatment and the control groups with students
t-test. The type of t-test was unpaired and two tailed. Since the partici-
pants in both groups are different, unpaired t-test was used for statistical
comparison. Before the collection of the data, since we did not predict which
of the two groups would produce a larger mean, we performed a two tailed
t-test with 95% (p = 0.05) confidence interval of the difference.

During the process of analyzing the data with the use of t-test we identified
that, a parametric test such as the t-test is not appropriate for our analysis,
therefore further investigation was required. A non-parametric test such as
Mann-Whitney test was used, since the data points in the two groups being
compared did not have equal variance. Equal variance between two groups

51

is compared with Levene median test and if the P-value is <0.05, it implies
that the data in the two groups being compared do not have equal variance.

The following parts of this chapter represent the data from the two ver-
sions, which were statistically analyzed and visualized with appropriate il-
lustrations. The data to assess the quality and quantity of the feedback
remarks reported were further evaluated by a separate statistical analysis.
For simplicity reasons from now on we are going to refer to the embedded
gamified feedback acquisition tool as the gamified tool and the Mantis Bug
Tracker tool as the non gamified tool.

6.1 SUS Results

The first thing we examined from the data we gathered, were the respon-
dent’s answers on the SUS questionnaire which was part of the survey. We
analyzed the responds on the ten questions of the SUS questionnaire for
both the treatment and the control group.

To accomplish that, all participants answers were mapped onto a likert-
scale ranging from 1 to 5 (with 1 representing “Strongly Disagree” and 5
representing “Strongly Agree”). You can find an example of the questions
included in the SUS questionnaire in (Figure A.1) on the “Appendix A” but
also our SUS questionnaire in (Figure 6.1). Additionally the participant’s
answers from both groups to the SUS questions can be found also on the
“Appendix A” (Table A.1), (Table A.2).

6.1.1 Embedded Gamified Feedback Tool

By mapping the respondents answers onto likert-scale values, we identi-
fied the percentages of each choice per SUS question. In (Figure 6.2) it
is possible to notice the responses provided by the treatment group, which
experimented with the embedded gamified feedback tool.

By examining the the percentage rates on the participant’s responses and
by taking into account each SUS question, we can state that participants
were confident using our embedded gamified feedback tool, did not too much
or any guidance before starting using the tool. As one stated on his or her
comments towards our tool, “Well structured, not complex with unnecessary
features - - to the point.”.

A fact that could be supported by the calculation of the SUS scores for
every participant. SUS yields a single number representing a composite
measure of the overall usability of the system being studied. Note that

52

Figure 6.1: SUS questionnaire.

scores for individual items are not meaningful on their own. To calculate
the SUS score, we first summed the score contributions from each item.
Each item’s score contribution will range from 1 to 5. For items 1,3,5,7 and
9 the score contribution is the scale position minus 1. For items 2,4,6,8 and
10, the contribution is 5 minus the scale position. Finally we multiplied the
sum of the scores by 2.5 to obtain the overall value of SUS. SUS scores have

53

Figure 6.2: SUS questionnaire responses of the treatment group.

a range of 0 to 100 (the higher, the better).

On Table 6.1, we can observe the SUS scores for every participant who
experienced the embedded gamified feedback tool. On the bottom line of
the table, we average all the participant’s scores, which provides us with a
score of 78 for the usability of our tool.

Once we have set a threshold significance level (p = 0.05), every result
leads to a conclusion of either ”statistically significant” or not ”statistically
significant”. Some statisticians feel very strongly that the only acceptable
conclusion is significant or ’not significant’, and oppose use of adjectives or
asterisks to describe values levels of statistical significance. Many scientists
are not so rigid, and so prefer to use adjectives such as very significant or
extremely significant. We are going to use this approach as shown in the Fig-
ure 6.3 for denoting the statistical significant difference on the comparison
of the answers between the two groups.

Figure 6.3: Statistical Significant Difference notations.

54

Participant SUS Scores

1 67.5

2 92.5

3 62.5

4 92.5

5 62.5

6 95

7 67.5

8 90

9 60

10 90

Average 78

Table 6.1: SUS scores retrieved from the treatment group.

6.1.2 Embedded Mantis Bug Tracker Tool

We followed the same procedure for analyzing the results of the answers
of the control group. We identified the percentages of each choice per SUS
question. On(Figure 6.4) it is possible to notice the responses provided by
the control group, which experimented with the Mantis Bug Tracker tool.

Figure 6.4: SUS questionnaire responses of the control group.

In Table 6.2, we can observe the SUS scores for every participant who
experienced the Mantis Bug Tracker tool. On the bottom line of the table,
we average all the participant’s scores, which provides us with a score of 30.2

55

Participant SUS Scores

1 30

2 15

3 37.5

4 37.5

5 42.5

6 27.5

7 40

8 12.5

9 30

10 17.5

Average 30.2777

Table 6.2: SUS scores of the control group.

for the usability of this tool, a score which is quite lower than the average
outcome of our tool.

In Figure 6.5 we can observe the average response scores as those were
provided by the respondent’s answers. Depending on the nature of the
questions consisting the SUS questionnaire we can understand that, in the
questions 1,3,5,7,9 the highest score provides a positive response. On the
other hand, on the questions 2,4,6,8,10, the lowest score provides a positive
response.

By identifying the average scores on the participant’s responses we can
state that the embedded gamified feedback tool (gamified version), acquired
the most positive responses for most of the questions asked. An exception to
this observation is the questions N.5, on which the responses average values
are quite similar for both versions.

Moreover, in Figure 6.5 we can appreciate that the gamified version’s
responses are significantly positive compared to the non-gamified version’s
responses. Statistical significance is denoted by asterisks along with the
exact p values. Firstly, the responses’ equality of variance was examined by
executing the Levene Test.

The Levene Test provided us with a significance value to test the assump-
tion of the equality of variance. If this significance value is greater than
p = 0.05, then we did continue by executing an unpaired students t-test,
two tailed in order to identify the statistical significance between the re-
sponses. Otherwise, if the Levene significance value was lower than p =

56

0.05, we continued by executing the Mann-Whitney test in order to identify
the statistical significance between the responses.

We discovered that most of the SUS questionnaire answers are statistically
significantly different according to both groups participant’s remarks (Figure
6.5). Participants of the treatment group agreed significantly more to the
fact that they would like to use the embedded gamified feedback acquisition
mechanism compared to the Mantis Bug Tracker users (SUS Question 1, p
= 0.00012).

The embedded gamified feedback acquisition mechanism was found to be
significantly less complex by the treatments group’s respondents compared
to the Mantis Bug Tracker, which was used by the control group (SUS Ques-
tion 2, p = 0.0004). Moreover, the embedded gamified feedback acquisition
tool was denoted as significantly easier to use by respondents, compared to
the Mantis Bug Tracker tool (SUS Question 3, p = 0.0000002).

Treatment groups participants stated that the support of a technical per-
son was not needed, in order to be able to use the tool, which was not
the case for the Mantis Bug Tracker tool (SUS Question 4, p = 0.0023).
Concerning the inconsistency of the tool, treatments group’s participants
found the embedded gamified feedback acquisition tool to be significantly
less incosistent compared to the Mantis Bug Tracker (SUS Question 6, p =
0.0013.

While the learn ability of the embedded gamified feedback acquisition tool
was considered to be significantly higher than the Mantis Bug Tracker ac-
cording to its users (SUS Question 7, p = 0.0000001). Last but not least,
the embedded gamified feedback acquisition tool was considered to be sig-
nificantly less cumbersome to use, while the treatment group’s participants
stated that they did not need to learn a lot of things before they could use
the tool (SUS Question 8 and 10, p = 0.00004 and p = 0.0000001 respec-
tively).

For the SUS questions 5 and 9 no statistical significance was detected after
executing the Mann-Whitney test. Thus, we can state that both tools were
equally well integrated to JEdit’s environment and that treatment group’s
participants felt more (but not significantly) confident using the tool com-
pared to the Mantis Bug Tracker. Statistical tests executed for each ques-
tions are enclosed on “Appendix A”, (Figures A.6-A.21)

57

6.2 Feedback Remarks Acquired

On the following figures we provide the comparison of the means of the
quantities of the general remarks, comments, bug reports and feature re-
quests as those were expressed by participants of both groups. The error
bars illustrate the standard deviation of the answers on each feedback type
acquired, and the asterisks illustrate the statistical significant difference ac-
cording to the notation of Figure 6.3.

Overall average quantity of all feedback types measured is greater while us-
ing the embedded gamified feedback acquisition tool compared to the Mantis
Bug Tracker. The statistical analysis followed was the same as previously
executed for the SUS data and provides us with the statistical significant
differences ranging from p = 0.0000005 for feature requests, p = 0.000022
for bug reports, p = 0.000025 for comments and p = 0.0015 general remarks
provided by the experiment participants.

At this point it should be denoted that we measured the quality of the
different feedback types reported by both group’s participants, by creating a
scale from 1 to 3 to define each remark’s quality. “Poor” quality is mapped
to 1, “fair” quality to number 2 and “good” quality to number 3. This scale
and the definition of each reported remarks quality is decided by us while
identifying each participant’s feedback report.

Figure 6.5: Average response scores provided by treatment and
control groups and statistical significant difference.

58

Figure 6.6: Average quantity general remarks provided by treat-
ment and control groups. P = 0.0015

Figure 6.7: Average quantity comments provided by treatment
and control groups. P = 0.00025

The overall average quality of all feedback types reported is quite similar
amongst the two tools. The statistical analysis followed was the same as
previously executed for the feedback type quantity and provides us with the
statistical significant differences ranging from p = 0.00013 for comments and
p = 0.0043 general remarks. There was no statistical significant difference
identified for the quality of the bugs and feature requests reported (Figure
6.10).

6.3 Discussion

From the examination of the results provided by the experimental study it
is evident that the two experimental groups exhibited different behaviors
while interacting with both the gamified and the non gamified tools. Both
the treatment and the control groups experimented on the same library

59

Figure 6.8: Average quantity bugs provided by treatment and
control groups. P = 0.00022

Figure 6.9: Average quantity feature requests provided by treat-
ment and control groups.P = 0.0000005

setting environment, received the same instructions towards the execution
of the experiment and used the exact same hardware and software.

The main difference was the feedback acquisition mechanism which was
embedded into JEdit’s environment. This mechanism served as the mean for
the participants to report any kind of feedback remarks while they were in-
teracting with JEdit application. The treatment group experienced a simple
acquisition platform enhanced with a certain gamification element, while the
control group was able to report any feedback remarks by using an existing
feedback acquisition tool, the Mantis Bug Tracker.

6.3.1 Framework Usability

By observing the graphical illustrations, we can state that the treatment
group was more satisfied by the feedback acquisition mechanism provided for

60

Figure 6.10: Average subjective quality per feedback type re-
ported. Significance levels denoted with asterisks.

them compared to the control group (Section 6.1.1). Such statement can be
expressed by firstly examining the SUS scores of both feedback acquisition
mechanisms and observe that the treatment group (Table 6.1) provided
higher score (average score value 78) on the mechanism they used, compared
to the one experienced by the control group (average score value 30.27),
(Table 6.2).

Moreover, not only the SUS high score of the treatment group allows us
to understand that this groups participant’s were more satisfied, but also
that the tool was rated as more usable than the Mantis Bug Tracker tool. A
fact, supported by most of the participant’s answers on the SUS questions
concerning the complexity, the usability and the background knowledge re-
quired for the use of that certain feedback acquisition mechanism.

On the other hand, the control group’s SUS scores provided to the Mantis
Bug Tracker, allow us to assume that the participants were not satisfied
enough with the tool in order to evaluate it with higher usability ratings.
Most of the SUS questions which concerned the usability and the ease of
use towards the feedback reporting process, were lower rated compared to
our developed tool. A case that can be also be supported by the fact that,
during the experiment process, there were a few individual cases where the
respondents chose to report no feedback when using the tool.

Nonetheless, both feedback acquisition mechanisms were identified as be-
ing adequately integrated into JEdit’s environment, a conclusion that is
drawn from the equal positive rating on the fifth question of the SUS ques-
tionnaire. This observation also increases our confidence about integrating
both feedback acquisition mechanisms in the same manner into JEdit’s en-
vironment. This allows us to safely assume that the main contribution to

61

the difference of the usability ratings lies in the different “nature” of the
tools and not its way of integration.

Based on the statistical analysis performed for the SUS questionnaire data
and Figure 6.4 we can state that, participants interacting with the embedded
gamified feedback acquisition version; significantly provided higher scores
concerning the usability of the tool. Thus, the embedded gamified feedback
acquisition version appears to be significantly more usable than the Mantis
Bug Tracker tool for the feedback acquisition process.

6.3.2 Feedback Remarks Acquired

Moreover, while executing our result’s analysis we identified that there was
significant difference on the quantity and the quality of the feedback remarks
reported by participants of both groups. First of all, the average number
of general remarks, comments, bug reports and feature requests provided
by the treatment group was significantly higher than those provided by the
control group. As presented in the graphical illustration in Chapter 6 (Figure
6.6-6.9). The evidence presented in Figures 6.6-6.9 can be supported by
displaying the data acquired in Table 6.3, which presents the average number
of every feedback type reported by both groups, along with the standard
deviation calculated and their statistical significant difference.

Additionally, to the participant’s reported feedback quantity, we measured
the quality of the remarks. In order to do that we analyzed the content of
each feedback remark provided, and allocated a quality definition of poor,
fair or good. The analyzed data illustrated in Figure 6.10 in Chapter 6,
provide the subjective quality for all four types of feedback acquired. The
information presented in Figure 6.10 can be supported by their represen-
tation in Table 6.4, which provides the average subjective quality of every
feedback type reported by both groups, along with the standard deviation
calculated and their statistical significant difference.

62

After acquiring the background knowledge concerning the experimental
setup and after analyzing its results we can state that there was significant
difference on the way participant’s encountered the feedback acquisition pro-
cess on both versions of the experiment. Experimental results along with
the statistical analysis, support the fact that the gamified version enjoyed
better usability ratings than the non gamified version; and led into higher
amounts of feedback remarks reported with equal or better quality. We can
safely express that the simplistic and user friendly environment of the gam-
ified version along with the use of a certain extrinsic gamification element,
provided quite a distinctive difference both for the usability of the tool and
the quantity of the feedback reported.

63

Chapter 7

Conclusions, Limitations,
Future Perspectives

7.1 Answers to the Research Questions

In the scope of this research, we provided some insights towards the design
and implementation of an embedded gamified feedback acquisition mecha-
nism. The experimental process showed that such a mechanism has the
potential to be successful into the process of feedback acquisition. This suc-
cess however, highly depends on the design choices of game mechanics and
game elements, as they can affect different psychological needs. After ana-
lyzing the experimental results, it was identified that an embedded, simple,
user friendly, gamified feedback acquisition mechanism can motivate and
engage more actively the users towards the feedback gathering process.

The aim of this research was to find answers to our main research question,
which was stated as follows:

• How to enable the development of software systems where feedback ac-
quisition and processing are integral components of the system to-be?

In order to answer this main question, three sub-questions were formulated
each addressing a different problem area. Based on the literature study and
results derived from the conducted experiment, we were able to answer them
with following statements.

Sub Questions:

• Which are the appropriate mechanisms for effective feedback acquisi-
tion?

64

After examining the related literature and by getting our hands on the
current feedback acquisition practices, we identified that current feedback
acquisition practices offer the foundations for feedback reporting. Neverthe-
less, a big gap still exists between the developers and the end users for whom
software applications are designed and developed. In order to effectively ac-
quire feedback, the approach of a feedback acquisition framework which will
be embedded in already existing applications and will engage and motivate
the users by exploiting the advantages of gamification elements should be
adopted.

• How to integrate such feedback mechanisms in a reusable manner into
existing software development practices?

In order to design and develop such a feedback acquisition framework,
which will affectively acquire feedback and engage the end users, current
software engineering practices should adopted. Depending on the software
applications the framework is addressing, appropriate framework require-
ments should be identified, a suitable programming language and IDE should
be adopted for use and of course the appropriate game mechanics and gam-
ification elements should be determined.

• How can we engage and involve more users in a systematic way?

The design of our experiment demonstrated that a gamified experience
in the feedback acquisition process, is able to effectively influence users be-
havior. Not only did the treatment group provide more feedback remarks,
but also with equal or higher quality compared to the control group. More-
over, such an enhanced feedback mechanism enjoyed higher usability ratings
compared to an existing feedback gathering instrument.

7.2 Limitations

There are several limitations to this research project that relate to the
rather explorative nature of the study. Gamification is still a relatively
young field; thus, literature on the game elements and the effect of the game
elements on feedback acquisition is limitedly yet available. Therefore, the
game mechanics and gamification elements to be adopted constitute an area
further to be explored. Moreover, this current study lacks generalizations of
it’s findings due to the small sample size which was used in the experimental
study. Additionally, we can not generalize our findings for other existing
feedback acquisition tools sine we only compared our tool to Mantis Bug
Tracker. This is a research study currently exploring an uncharted area
hence, there is definitely room for continuous and repeated experiments
and research examinations. The results seem very promising, although it

65

is not clear if the gamification factor played the most significant role in
the significant difference between the two tools. The simpler and the more
user friendly interface of our tool may have affected in a positive way the
participant’s responses.

7.3 Future Work

This enigma could be answered by any related future investigations to-
wards that direction. As in every scientific field, repetition in the experimen-
tal process is needed in order to identify a significant artifact. Thus, further
investigation and experimentation with gamification principles should defi-
nitely be performed. Moreover, apart from the comparison with the Mantis
Bug Tracker tool, our embedded gamified feedback acquisition mechanism
can also be correlated against other existing feedback acquisition tools. This
correlation could provide some more concrete findings about our tool’s po-
tential capabilities. Additionally to a future experimentation setup, an ex-
isting feedback acquisition mechanism could be used and that mechanism
could be enhanced with game mechanics. This investigation could be prob-
ably bring to the surface some very interesting findings, concerning the sig-
nificant role of gamification on the feedback acquisition process along with
currently existing feedback acquisition techniques.

66

Appendix A

Appendix

Figure A.1: System Usability Scale Questionnaire Example.

67

Figure A.2: System Usability Scale Questionnaire Answers -
Treatment Group.

Figure A.3: System Usability Scale Questionnaire Answers - Con-
trol Group.

Figure A.4: Boxplot for the responses of the treatment group.

Figure A.5: Boxplot for the responses of the control group.

68

Figure A.6: SUS Question 1 T-Test.

Figure A.7: SUS Question 1 Mann - Whitney Test.

Figure A.8: SUS Question 2 T-Test.

69

Figure A.9: SUS Question 2 Mann - Whitney Test.

Figure A.10: SUS Question 3 T-Test.

Figure A.11: SUS Question 4 T-Test.

70

Figure A.12: SUS Question 4 Mann - Whitney Test.

Figure A.13: SUS Question 5 T-Test.

Figure A.14: SUS Question 5 Mann - Whitney Test.

71

Figure A.15: SUS Question 6 T-Test.

Figure A.16: SUS Question 7 T-Test.

Figure A.17: SUS Question 8 T-Test.

72

Figure A.18: SUS Question 8 Mann - Whitney Test.

Figure A.19: SUS Question 9 T-Test.

Figure A.20: SUS Question 9 Mann - Whitney Test.

73

Figure A.21: SUS Question 10 T-Test.

Figure A.22: General Remarks Reported Quantity T-Test.

74

Figure A.23: General Remarks Reported Quality T-Test and
Mann-Whitney Test.

Figure A.24: Comments Reported Quantity T-Test.

75

Figure A.25: Comments Reported Quantity Mann-Whitney Test.

Figure A.26: Comments Reported Quality T-Test.

Figure A.27: Bugs Reported Quantity T-Test.

76

Figure A.28: Bugs Reported Quality T-Test.

Figure A.29: Feature Requests Reported Quantity T-Test.

77

Figure A.30: Feature Requests Reported Quality T-Test and
Mann-Whitney Test.

Figure A.31: Feature Requests reported by treatment and control
group.

78

Figure A.32: Comments reported by treatment and control group.

Figure A.33: General remarks reported by treatment and control
group.

79

Figure A.34: Bugs reported by treatment and control group.

Figure A.35: Quality of Feature Requests reported by treatment
and control group.

80

Figure A.36: Quality of Comments reported by treatment and
control group.

Figure A.37: Quality of General remarks reported by treatment
and control group.

81

Figure A.38: Quality of Bugs reported by treatment and control
group.

82

Bibliography

[1] Belady L. A. and Lehman M. M. A model of large program development. IBM
Syst. J., 15(3):225–252, September 1976.

[2] Bhattacherjee A. Social science research: principles, methods, and practices.
2012.

[3] Canossa A. and Drachen A. Patterns of play: Play-personas in user-centred
game development. In DiGRA ཅ - Proceedings of the 2009 DiGRA
International Conference: Breaking New Ground: Innovation in Games, Play,
Practice and Theory. Brunel University, September 2009.

[4] Fisher R. A. Statistical methods for research workers. 1934.

[5] Ko A.J., Lee M. J., Ferrari V., Ip S., and Tran C. A case study of post-
deployment user feedback triage. In Proceedings of the 4th International Work-
shop on Cooperative and Human Aspects of Software Engineering, CHASE ’11,
pages 1–8, New York, NY, USA, 2011. ACM.

[6] Omoronyia I. Salehie M. Nuseibeh B. Ali R., Solis C. Social adaptation - when
software gives users a voice. In ENASE, pages 75–84, 2012.

[7] Kanstrup A.M. and Christiansen E. Selecting and evoking innovators: Com-
bining democracy and creativity. In Proceedings of the 4th Nordic Conference
on Human-computer Interaction: Changing Roles, NordiCHI ’06, pages 321–
330, New York, NY, USA, 2006. ACM.

[8] Alain Ap. and Alain Ab. Software maintenance management: evaluation and
continuous improvement, volume 67. John Wiley & Sons, 2012.

[9] Burke B. Gartner says by 2015, more than 50 percent of organizations that
manage innovation processes will gamify those processes. 2011.

[10] Burke B. Gartner redefines gamification. 2014.

[11] Brabham D. C. Crowdsourcing as a model for problem solving: An introduc-
tion and cases. Convergence, 14(1):75, 2008.

[12] Eickhoff C., Harris C. G., De Vries A. P., and Srinivasan P. Quality through
flow and immersion: Gamifying crowdsourced relevance assessments. In 35th
Annual International ACM Conference on Research and Development in In-
formation Retrieval (SIGIR), Portland, Oregon, USA, 2012.

[13] Wohlin C., Runeson P., Höst M., Ohlsson M. C., Regnell B., and Wesslén A.
Experimentation in Software Engineering: An Introduction. Kluwer Academic
Publishers, Norwell, MA, USA, 2000.

83

[14] Bacon D., Chen Y., Parkes D., and Rao M. A market-based approach to
software evolution. In Proceedings of the 24th ACM SIGPLAN Conference
Companion on Object Oriented Programming Systems Languages and Appli-
cations, OOPSLA ’09, pages 973–980, New York, NY, USA, 2009. ACM.

[15] Pagano D. and Brügge B. User involvement in software evolution practice:
A case study. In Proceedings of the 2013 International Conference on Soft-
ware Engineering, ICSE ’13, pages 953–962, Piscataway, NJ, USA, 2013. IEEE
Press.

[16] Carr H. H. Dodd J. L. Systems development led by end-users, volume 45. 1994.

[17] Ralph E. and William F. Refactoring and aggregation. In In Object Technolo-
gies for Advanced Software, First JSSST International Symposium, volume
742 of Lecture Notes in Computer Science, pages 264–278. Springer-Verlag,
1993.

[18] Vouk A. Elmaghraby E., Baxter I. An approach to the modeling and analysis
of software production processes. Addison-Wesley, 1995.

[19] Gravetter F. and Wallnau L. Essentials of statistics for the behavioral sciences.
Cengage Learning, 2013.

[20] Jawaheer G., Szomszor Ma., and Kostkova P. Comparison of implicit and
explicit feedback from an online music recommendation service. In Proceedings
of the 1st International Workshop on Information Heterogeneity and Fusion in
Recommender Systems, HetRec ’10, pages 47–51, New York, NY, USA, 2010.
ACM.

[21] Zichermann G. and Cunningham C. Gamification by Design: Implementing
Game Mechanics in Web and Mobile Apps. O’Reilly Media, Inc., 1st edition,
2011.

[22] Sommerville I. Software Engineering (9th Edition). Pearson Addison Wesley,
2010.

[23] IEEE. IEEE Standard for Software Maintenance, IEEE Std 1219-1998, vol-
ume 2. IEEE Press, 1999.

[24] Baroudi J. J., Olson M. H, and Ives B. An empirical study of the impact of user
involvement on system usage and information satisfaction. Communications
of the ACM, 29(3):232–238, 1986.

[25] Brooke J. Sus-a quick and dirty usability scale. Usability evaluation in industry,
189(194):4–7, 1996.

[26] Dubois D. J. and Tamburrelli G. Understanding gamification mechanisms
for software development. In Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, pages 659–662. ACM, 2013.

[27] Grudin J. Interactive systems: bridging the gaps between developers and users.
Computer, 24(4):59–69, April 1991.

[28] Grudin J. Systematic sources of suboptimal interface design in large product
development organizations. Hum.-Comput. Interact., 6(2):147–196, June 1991.

[29] Koskinen J. Software maintenance costs. Information Technology Research
Institute, ELTIS-Project University of Jyväskylä, 2003.

84

[30] Schell J. The Art of Game Design: A book of lenses. CRC Press, 2014.

[31] Bennett K. and Rajlich V. Software maintenance and evolution: A roadmap.
In Proceedings of the Conference on The Future of Software Engineering, ICSE
’00, pages 73–87, New York, NY, USA, 2000. ACM.

[32] Brennan K. et al. A Guide to the Business Analysis Body of Knowledger. Iiba,
2009.

[33] Xu L. and Brinkkemper S. Concepts of product software. In Eur J Inf Syst,
pages 531–541. Palgrave Macmillan Ltd, 2007.

[34] B. P. Lientz and E. B. Swanson. Software maintenance management: a study
of the maintenance of computer application software in 487 data processing
organizations. Addison-Wesley, 1980.

[35] Almaliki M., Nan J., Ali R., and Dalpiaz F. Gamified culture-aware feedback
acquisition. In Utility and Cloud Computing (UCC), 2014 IEEE/ACM 7th
International Conference on, pages 624–625, Dec 2014.

[36] DeBellis M. and Haapala C. User-centric software engineering. IEEE Expert:
Intelligent Systems and Their Applications, 10(1):34–41, February 1995.

[37] Fowler M. Refactoring: Improving the Design of Existing Code. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[38] Klein M., Moreno G., Parkes D., and Wallnau K. Designing for incentives:
Better information sharing for better software engineering. In Proceedings of
the FSE/SDP Workshop on Future of Software Engineering Research, FoSER
’10, pages 195–200, New York, NY, USA, 2010. ACM.

[39] Bartle R. Hearts, clubs, diamonds, spades: Players who suit muds. Journal of
MUD research, 1(1):19, 1996.

[40] Beyer H. R. and Holtzblatt K. Apprenticing with the customer. Commun.
ACM, 38(5):45–52, May 1995.

[41] Deterding S., Dixon D., Khaled R., and Nacke L. From game design ele-
ments to gamefulness: Defining ”gamification”. In Proceedings of the 15th
International Academic MindTrek Conference: Envisioning Future Media En-
vironments, MindTrek ’11, pages 9–15, New York, NY, USA, 2011. ACM.

[42] Deterding S., Sicart M., Nacke L., O’Hara K., and Dixon D. Gamification.
using game-design elements in non-gaming contexts. In CHI ’11 Extended
Abstracts on Human Factors in Computing Systems, CHI EA ’11, pages 2425–
2428, New York, NY, USA, 2011. ACM.

[43] Kujala S., Kauppinen M., Lehtola L., and Kojo T. The role of user involvement
in requirements quality and project success. In Requirements Engineering,
2005. Proceedings. 13th IEEE International Conference on, pages 75–84. IEEE,
2005.

[44] Zhiwei S. User involvement in system development process. In Proceedings of
the 2nd International Conference on Computer Science and Electronics Engi-
neering (ICCSEE 2013), EASE ’13, 2013.

[45] Nosek J. T. and Palvia P. Software maintenance management: Changes in the
last decade. Journal of Software Maintenance, 2(3):157–174, September 1990.

85

[46] Maalej W. and Pagano D. On the socialness of software. In Dependable,
Autonomic and Secure Computing (DASC), 2011 IEEE Ninth International
Conference on, pages 864–871, Dec 2011.

[47] Amatriain X., Pujol J. M., and Oliver N. I like it... i like it not: Evaluating user
ratings noise in recommender systems. In Proceedings of the 17th International
Conference on User Modeling, Adaptation, and Personalization: Formerly UM
and AH, UMAP ’09, pages 247–258, Berlin, Heidelberg, 2009. Springer-Verlag.

86

	Acknowledgment
	Abstract
	Introduction
	Background
	Problem Definition
	Research Objectives and Research Question
	Solution Approach Overview
	Scientific and Societal Relevance
	Document Structure

	Related Work
	Software Evolution and Maintenance
	User Involvement in Software Evolution
	Gamification

	Approach and Design
	Problem Domain
	Conceptual Framework Requirements
	Conceptual Solution Outline

	Framework Implementation
	Generic Implementation Details
	Framework Design
	Framework Architecture

	Experiment
	Experiment Scope
	Experiment Design
	Design Choices
	Participant Selection

	Experiment Process
	Tool Preparation
	Scenario Preparation
	Survey Preparation
	Pilot Experiment
	Final Experiment
	Analysis

	Threats to validity

	Results
	SUS Results
	Embedded Gamified Feedback Tool
	Embedded Mantis Bug Tracker Tool

	Feedback Remarks Acquired
	Discussion
	Framework Usability
	Feedback Remarks Acquired

	Conclusions, Limitations, Future Perspectives
	Answers to the Research Questions
	Limitations
	Future Work

	Appendix
	Bibliography

